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ABSTRACT

HOMOMORPHIC ENCRYPTION BASED ON THE RING LEARNING WITH
ERRORS (RLWE) PROBLEM

Keskinkurt, İrem
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2017, 41 pages

The encryption techniques used to ensure data secrecy have been evolving in compli-
ance with the developments in technology and reforming according to need. Nowa-
days, the increase in the amount of data that should be stored in encrypted form, has
led to the need for encryption schemes that provide both the safety and the efficient
usability of data. Homomorphic encryption, which enables the ability to make compu-
tations on encrypted data, is seen as one of the solutions that can meet this need.

In this thesis, the definitions and the properties of homomorphic encryption, some pos-
sible practical applications of homomorphic encryption, the Ring Learning with Errors
problem and a somewhat homomorphic encryption scheme based on this problem has
been examined. The computational complexity and efficiency of the algorithm have
been studied by adapting some techniques in the literature to the algorithm.

Keywords : homomorphic encryption, partially homomorphic, fully homomorphic,
somewhat homomorphic, relinearization
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ÖZ

HALKALARDA HATALARLA ÖĞRENME (HHÖ) PROBLEMİNE DAYALI
HOMOMORFİK ŞİFRELEME

Keskinkurt, İrem
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2017, 41 sayfa

Verilerin mahremiyetini sağlamak için kullanılan şifreleme teknikleri, teknolojideki
gelişmelere uygun olarak değişmekte ve ihtiyaçlara göre şekillenmektedir. Günümüzde
şifrelenerek depolanması gereken verilerin miktarının artması, verilerin hem güvenliğini
ve hem de verimli bir şekilde kullanılabilirliğini sağlayan şifreleme tekniklerine ihtiyaç
doğmasına sebep olmuştur. Şifreli veriler üzerinde hesaplamalar yapabilme imkanı
sağlayan homomorfik şifeleme, bu ihtiyacı karşılayabilecek çözümlerden biri olarak
görülmektedir.

Bu tezde, homomorfik şifreleme tanımları ve temel özellikleri, homomorfik şifrelemenin
olası uygulama alanları ve şekilleri, Halkalarda Hatalarla Öğrenme problemi ve güvenliği
bu probleme dayalı olan bir sınırlı homomorfik şifreleme algoritması incelenmiştir.
Literatürdeki bazı teknikler algoritmaya uyarlanarak algoritmanın hesaplama karmaşıklığı
ve verimliliği üzerine çalışılmıştır.

Anahtar Kelimeler : homomorfik şifreleme, kısmi homomorfik şifreleme, sınırlı ho-
momorfik şifreleme, tam homomorfik şifreleme, tekrar doğrusallaştırma
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CHAPTER 1

INTRODUCTION

Since long before the common era, cryptography has been the main tool for informa-
tion security. Back then, people were using simple ciphers and techniques, such as
shift cipher, substitution cipher and stenography [20], to conceal private information
or communicate in secrecy. In time, the concept of cryptography has evolved. Today,
we can define cryptography as an interdisciplinary science that deals with designing
and developing secure cryptographic algorithms.

Modern cryptographic studies are being pursued in two main parts: the symmetric
key cryptography and the asymmetric(public) key cryptography [28]. Symmetric key
schemes use only one cryptographic key for both encryption and decryption, and they
are very efficient compared to asymmetric key schemes. Public key schemes are based
on hard mathematical problems, such as integer factorization and discrete logarithm,
and they require two different keys one for encryption, one for decryption. In public
key schemes, the key which must be kept secret is the decryption key, that we refer to
as the private key.

In today’s world people safely store or transmit their confidential data securely under
favor of symmetric and public key cryptosystems. Technological developments bring
about need for new cryptographic algorithms to provide more efficiency and security.
As an example of this, the use of cloud storage gives rise to a need for cryptosystems
that provide the ability to perform computations on encrypted data without having to
decrypt it.

The search of encryption schemes that can compute arbitrary functions on encrypted
data, namely fully homomorphic, started almost 40 years ago. Since then, lots of
schemes have been presented but none of them can be used practically due to effi-
ciency problems. The biggest problem is that computing arbitrary functions requires
so many arithmetic operations on ciphertext space. A ciphertext space is usually a set
with a large number of elements with which we can not make calculations easily. For
example the scheme we examine in this thesis has a ciphertext space which consists
of high degree polynomials with large coefficients. Operations on this set take lots of
time and make it unpractical.

On the other hand, it is easier to use homomorphic encryption to evaluate the functions
that can be computed with less arithmetic operations. The schemes that can support a
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limited number of arithmetic operations are called somewhat homomorphic. With these
schemes simple functions, such as functions that includes the sum of numbers and
multiplication of a few numbers, can be computed efficiently while they are encrypted.
But for more complicated functions, such as exponentiation and division, we need
many homomorphic multiplications and this makes the homomorpic operations very
slow. Therefore, any development on arithmetic operations would be a big contribution
to this subject.

1.1 Historical Process and Literature Review

In 1978 the widely used cryptosystem RSA was presented as the first practical public
key encryption scheme [32]. A classical RSA set up starts with generating two large
primes p and q. The numbers n = pq and N = (p − 1)(q − 1) are calculated. A
number d satisfying gcd(d,N) = 1 is chosen as the private key(decryption key). The
public key(encryption key) e is the number satisfying ed ≡ 1 mod N . The pair (n, e)
is published. RSA encrypts a message m by computing c = me mod n and decrypts
the ciphertext c by computing m = cd mod n. The matematical foundations of the
algorithm can be found in [32].

Suppose two messagesm1 andm2 are encrypted by RSA with the parameters above and
ciphertexts c1 and c2 are obtained. Then c1 = me

1 mod n and c2 = me
2 mod n. The

multiplication of this ciphertexts c1c2 = me
1m

e
2 mod n = (m1m2)

e mod n yields the
multiplication of the message m1m2 when decrypted. Because of this property RSA is
said to be a multiplicatively homomorphic encryption scheme. Altough this seems very
useful at first, RSA can not be used without padding as it is not semantically secure and
the padded version RSA-OAEP (RSA- Optimal Asymmetric Encryption Padding) [2]
does not have the homomorphic property.

Consider any cryptosystem that has a homomorphic property similar to unpadded RSA.
If this cryptosystem uses a one-to-one function as its encryption map, it would have
the same semantic security problem as RSA no matter what the encryption function
is. That means encryption maps should not be chosen as functions in order to make
homomorphic operations useable. Instead one should use randomized maps to define
encryption.

After noticing RSA’s homomorphic property, Ronald R.Rivest, Len Adleman and
Michael L. Dertouzos started the search of homomorphic encryption schemes or as
they call it “privacy homomorphism” [31]. Other encryption schemes that are homo-
morphic with respect to just one operation as RSA were presented. ElGamal cryptosys-
tem is another example of multiplicatively homomorphic encryption schemes [12]. We
can give Goldasser-Micali [18], Benaloh [3] and Paillier [29] cryptosystems as exam-
ples of additive homomorphic encryption schemes. These kinds of encryption schemes
are called partially homomorphic.

The search of encryption schemes that can have homomorphic property with respect
to both operations, namely fully homomorphic, continued with no results for almost 30
years until Dan Boneh, Eu-Jin Goh and Kobbi Nissim presented the BGN cryptosys-
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tem in 2005 [5]. This cryptosystem is the first significant development on this subject
but it was not the exact solution of the problem. This scheme could support an unlim-
ited number of homomorphic additions, but only a single multiplication. This scheme
was neither partially homomorphic nor fully homomorphic. After that discovery, en-
cryption schemes which support a limited number of homomorphic operations were
regarded as somewhat homomorphic.

Finally, in 2009 Craig Gentry presented the first fully homomorphic encryption scheme
[17]. To be more precise, he presented a somewhat homomorphic encryption scheme
and a bootstrapping technique that transforms this scheme into a fully homomorphic
encrypiton scheme. This lattice based scheme has both homomorphic properties, that
is, it can compute both addition and multiplication on encrypted data without prelimi-
nary decryption. This means any function can be evaluated on encrypted data by using
circuits. Gentry’s work is the first credible development for a fully homomorphic en-
cryption scheme. To explain Gentry’s brilliant scheme briefly, we should start with
the size-increasing effect of homomorphic operations on ciphertexts. Every homomor-
phic operation, especially multiplication produces a ciphertext with larger noise. Here
we mean extra loadings that a randomized encryption map add to the ciphertexts to
provide security. The bootstrapping technique applies decryption process homomor-
phically and produces a ciphertext with smaller noise. Therefore, it makes it possi-
ble to perform as many homomorphic operations as we want, theoretically. Although
some improvements were made [15, 36, 37] still there is no practical implementation
of the scheme due to efficiency problems. Gentry’s work has been an inspiration and
since then several fully homomorphic schemes that are simpler and efficient have been
presented[14, 35]. But again, non of them is efficient enough to use in practical appli-
cations yet. These studies of FHE can be categoriced into four main classes: lattice-
based [17], over the integers [39], the (Ring) Learning with Errors Problem based [7, 8]
and NTRU-like [23].

In 2011, Zvika Brakerski and Vinod Vaikuntanathan presented a fully homomorphic
encryption scheme [7]. Following Craig Gentry’s work, they present a somewhat ho-
momorphic encryption scheme and obtain a fully homomorphic encryption by using a
technique called relinearization which is similar to the bootstrapping technique in [17].
The scheme’s security is based on the Ring Learning with Errors(RLWE) problem [24].
Encryption and decryption algorithms of this scheme are both defined on a finite poly-
nomial ring and use polynomial arithmetic. Multiplication of high degree polynomials
with large coefficients is the most important factor that affects the efficiency of the
algorithm. As with other schemes, this one cannot be implemented efficiently to real
life applications.

We presented the important milestones of the historical development of homomorphic
encryption. Other studies on homomorphic encrypiton schemes can be found in [8, 16,
19, 23, 25, 27, 33, 39, 41].
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1.2 Outline

In this thesis, we work on a proposed somewhat homomorphic encryption scheme
based on the Ring Learning with Errors problem [7]. We mostly concentrated on
developing ideas for efficient implementation of the scheme. In Chapter 2, we give
some basic definitions, properties and we explain some algorithms as a background
information. In Chapter 3, we give a formal definition of homomorphic encryption and
mention some possible real life applications of it. In Chapter 4, we introduce the Ring
Learning with Errors problem and the somewhat homomorphic encryption scheme
based on this problem. In Chapter 5, we explain two methods we use to reduce the
computational complexity of the encryption scheme and make a comparison between
these methods. Finally, we state our conclusion in Chapter 6, and share some ideas
about future studies on homomorphic encryption schemes.
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CHAPTER 2

BACKGROUND

In this chapter, we give some background information for a better understanding on
the subjects that will come up later on. In Chapter 3, we explain the construction of
the functions that can be evaluated homomorphically and we use arithmetic circuits to
do that. In Chapter 4, a proposed somewhat homomorphic encryption scheme is ex-
amined with the focus of efficient implementation. To develop techniques for efficient
implementation, we use n-th cyclotomic polynomial, which we define in this chapter.
We also use Fast Fourier Transform and Teoplitz Matrix Vector Product in Chapter 5
to speed up polynomial multiplication in the finite polynomial ring of the encryption
scheme. We use the Big-Oh(O) notation to compare the computational complexity of
the algorithms.

2.1 Definitions and Properties

As we will see in Chapter 3, we need to construct arithmetic circuits to evaluate func-
tions homomorphically. A simple definition and some basic properties would be suffi-
cient for our purpose.

Definition 2.1. (Arithmetic circuits)[34]

Let R be a ring and X be a set of variables. An arithmetic circuit C over X and
R, is a directed acyclic graph, whose vertices are called gates and which satisfies the
following properties:

i. every input gate of C (in-degree 0 gate) is either labeled by a variable in X or an
element in R,

ii. every other gate of C (in-degree 2 gate) is labeled by either one of the arithmetic
operations of R.

An arithmetic circuit is the standard model of computing polynomials by using the
operations + and × with variables x1, x2, . . . , xn ∈ X and coefficients from R. The
output of an arithmetic circuit is simply a polyomial in R[x1, x2, . . . , xn]. The number
of edges in C is called the size of C and the length of the longest path in C is called
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the depth of C . The depth of an arithmetic circuit is our main concern because it is
directly related to the number of homomorphic operations that a somewhat homomor-
phic encryption scheme supports.

Before the definition of cyclotomic polynomial, we need to explain what a primitive
n-th root of unity is. For a positive integer n, the number ζ is called a n-th root of unity
if it satisfies the equation ζn = 1. The smallest integer k satisfying ζk = 1 is called the
order of ζ . If a n-th root of unity has order n then, it is called the primitive n-th root
of unity.

Definition 2.2. (Cyclotomic Polynomial)

The monic polynomial Φn(x) ∈ Z[x] having the primitive n-th roots of unity as its
roots is called the n-th cyclotomic polynomial.

A primitive n-th root of unity is a generator of the set of all n-th roots of unity. More
precisely if ζ is primitive a n-th root unity, then the set S of all n-th roots of unity is

S = 〈ζ〉 = {1, ζ, ζ2, . . . , ζn−1}.

If gcd(k, n) = 1 for the integer k < n then, ζk is also a primitive n-th root of unity.
Therefore, there are exactly ϕ(n) primitive n-th roots of unity, where ϕ is the Euler’s
totient function.

Proposition 2.1. (Some Properties of Cyclotomic Polynomial)

1. Since the roots of the n-th cyclotomic polynomial Φn(x) are the n-th roots of
unity, the following equalities hold:

Φn(x) =
∏

i=0,...,ϕ(n)
ζni =1

ord(ζi)=n

(x− ζi) =
∏

1≤k<n
gcd(k,n)=1

(x− ζk).

2. Since there are ϕ(n) primitive n-th roots of unity, the degree of Φn(x) is ϕ(n)
where ϕ(n) denotes the Euler’s totient function of n.

3. Let Fpm = Fq be a finite field such that p is a prime and m is a positive integer.
Φn(x) is defined over Fq if and only if n is not divisible by p.

4. Let k be a positive integer and n = 2k. Then, the n-th cyclotomic polynomial
Φn(x) can be determined easily as follows:

Φn(x) = xn/2 + 1 = x2
k−1

+ 1.

5. The n-th cyclotomic polynomial Φn(x) is irreducible over Q for every positive
integer n, but not all are irreducible when considered as a polynomial over a
finite field.
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The following theorem gives more detailed information about the factorization of the
n-th cyclotomic polynomial Φn(x) over the finite fields for which Φn(x) exists. We
use this fact to apply Fast Fourier Transform, which we explain next, to polynomial
multiplication algorithm in the ring of the encryption scheme we study.

Theorem 2.2 ([22, p. 65]). Let Fpm = Fq be a finite field where p is a prime number
and m is a positive integer. Suppose the positive integer n is not divisible by p. Then,
the n− th cyclotomic polynomial Φn(x) factors into ϕ(n)/d distinct irreducible poly-
nomials of the same degree d over Fq where d is the order of q modulo n, that is d is
the smallest positive integer satisfying qd ≡ 1 mod n.

Now we explain the algorithms of Fast Fourier Transform and Toeplitz Matrix Vector
Product and we need a measurement to analyze and compare the performance of the
algorithms. Implementing and running the algorithms with several inputs to measure
their performances according to their running times is not easy and requires lots of
time. In Computational Complexity Theory, instead of this approach the technique
called asymptotic analysis is used [40]. The idea is evaluating an algorithm’s compu-
tational complexity in terms of the input size and express it asymptotically by using
three notations Θ, O(Big-Oh) and Ω. We use O notation to analyze the algorithms.

Definition 2.3. Let M(n) be the function defining the computational complexity of
the algorithm A with input size n. If there exists a function f(n), a real number k and
a positive integer b such that M(n) ≤ kf(n) for all n ≥ b then, we say the algorithm
A runs in time O(f(n)).

2.2 Discrete Fourier Transform

In this section we explain the Discrete Fourier Transform(DFT) and the Inverse Dis-
crete Fourier Transfrorm(IDFT or DFT−1). Before that we need to mention two ways
of representing a polynomial which are essential for understanding DFT and IDFT.
The polynomials that have degree less than a positive integer n are referred as the
polynomials with degree bound n.

Definition 2.4. (Coefficient representation of a polynomial)

Let a(x) = a0 + a1x + · · · + an−1x
n−1 be a polynomial with degree bound n. The

coefficient representation of the polynomial a(x) is the vector A such that

A = (a0, a1, . . . , an−1).

The coefficient representation of a polynomial is unique. Obtaining a polynomial from
its coefficient representation is obvious and it does not require any arithmetic opera-
tions.
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Definition 2.5. (Point value representation of a polynomial)

Let a(x) = a0 + a1x+ · · ·+ an−1x
n−1 be a polynomial with degree bound n. A point

value representation of the polynomial a(x) is the set of n pairs

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)},

where xi are distinct and yi = a(xi) for i = 0, . . . , n− 1.

Unlike the coefficient representation, there are many different point value represen-
tations of a polynomial. Computing a point value representation of a polynomial re-
quires n point evaluations which can be done inO(n2) by using Horner’s method [10].
Given a point value representation, obtaining a polynomial that fits this representation
is called polynomial interpolation. The following theorem guarantees the existence
and the uniqueness of a polynomial when a point value representation is given.

Theorem 2.3 ([38, p. 38]). For given n pairs {(x1, y1), . . . , (xn−1, yn−1)} such that xi
are distinct for i = 0, . . . , n − 1, there exists a unique polynomial a(x) ∈ Pn with
a(xi) = yi for i = 0, . . . , n−1, where Pn is the set of all real or complex polynomials
with a degree bound n.

There are several methods in the literature for interpolating a polynomial. Further
detailed information about the methods can be found in [21]. Now we are ready to
give the definition of Discrete Fourier Transform.

Definition 2.6. (Discrete Fourier Transform)

Let A = (a0, a1, . . . , an−1) be the coefficient representation of a polynomial a(x) and
S = {ζ0, ζ1, . . . , ζn−1} be the set of all n-th roots of unity. The vector

y = (y0, y1, . . . , yn−1)

such that yi = a(ζi) for i = 0, . . . , n − 1 is called the Discrete Fourier Transform of
the coefficient vector A = (a0, a1, . . . , an−1) and it is denoted by DFTn(A) = y.

In short, we can define DFT as computing a point value representation of a polynomial
at the n-th roots of unity. By Theorem 2.3 we know that we can obtain the polynomial
when the evaluations at n-th roots of unity are given. This process is called the Inverse
Discrete Fourier Transform and we denote it by IDFTn(y) = A or DFT−1n (y) = A
where n, y, A are defined as in definition 2.6.

In the next section we see how to go back and forth between the coefficient repre-
sentation and the point value representation of a polynomial in O(n log n) by taking
advantage of the properties of roots of unity. Note that we mean base two logarithm of
n by log n. We use some properties of the special matrix called Vandermonde Matrix
to compute DFT−1 efficiently.

8



Definition 2.7. [30] A n× n matrix of the form

V =


1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12

1 x3 x23 . . . xn−13
...

...
...

...
...

1 xn x2n . . . xn−1n

 ,

which is determined by arbitrary and distinct n elements x1, x2, . . . , xn is called a
Vandermonde matrix of order n . We use V (x1, . . . , xn) notation to denote the ma-
trix above for simplicity. The determinant of a Vandermonde matrix V (x1, . . . , xn) is
defined by

det(V (x1, . . . , xn)) =
∏

1≤i<j≤n

(xi − xj).

2.3 Fast Fourier Transform(FFT)

In this section, we explain how Fast Fourier Transform(FFT) algorithm works and how
it computes DFTn and DFT−1n in O(n log n) by benefiting from the properties of n-th
roots of unity. Let

a(x) = a0 + a1x+ a2x
2 + a2x

3 + · · ·+ an−1x
n−1

be a polynomial with degree bound n. For simplicity we take n to be a power of 2, say
n = 2k for a positive integer k. We can always add zero coefficients (of higher order)
to provide this condition. Let us define two polynomials

aeven(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1,

aodd(x) = a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1.

Then, we can easily write a(x) and a(−x) in terms of these polynomials as follows:

a(x) = aeven(x2) + xaodd(x
2) and a(−x) = aeven(x2)− xaodd(x2).

Therefore, once we compute aeven(x2) and xaodd(x2) for a(x), just an extra addition of
half size polynomials would be enough to compute a(−x). We use this fact to calculate
DFTn(A) efficiently where A is the coefficient representation of the polynomial a(x).
Let ζ be a primitive n-th root of unity, then we may denote the set of all n-th roots of
unity by S0 = 〈ζ〉 = {1, ζ, ζ2, . . . , ζn−1}. We want to evaluate the polynomial a(x) at
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the points in S0. Using the property above we have

a(1) = aeven(1) + aodd(1),

a(ζ) = aeven(ζ2) + ζaodd(ζ
2),

...

a(ζn/2−1) = aeven(ζn−2) + ζn/2−1aodd(ζ
n−2),

a(ζn/2) = aeven(ζn) + ζn/2aodd(ζ
n),

a(ζn/2+1) = aeven(ζn+2) + ζn/2+1aodd(ζ
n+2),

...

a(ζn−1) = aeven(ζ2n−2) + ζn−1aodd(ζ
2n−2).

Since ζ is a ptimitive n-th root of unity we know that ζn = 1 and ζn/2 = −1. If we
replace ζn/2 by −1 in the equations above, we get

a(1) = aeven(1) + aodd(1),

a(ζ) = aeven(ζ2) + ζaodd(ζ
2),

...

a(ζn/2−1) = aeven(ζn−2) + ζn/2−1aodd(ζ
n−2),

a(−1) = aeven(1)− aodd(1),

a(−ζ) = aeven(ζ2)− ζaodd(ζ2),
...

a(−ζn/2−1) = aeven(ζn−2)− ζn/2−1aodd(ζn−2).

The set S1 = {1, ζ2, ζ4, . . . , ζn−2} is generated by ζ2 and it can be easily seen that ζ2
is a primitive n/2-th root of unity. So the set S1 = 〈ζ2〉 is the set of all n/2-th roots of
unity. Therefore, the problem is reduced to evaluating two polynomials aeven(x) and
aodd(x) with degree bound n/2 at n/2-th roots of unity, that is we have two half size
problems. We need n/2 multiplications and n additions to combine them. If we denote
the number of additions by S(n) and the number of multiplications byM(n) which
are needed to solve the size n problem then, clearly

S(n) = 2S(n/2) + n and M(n) = 2M(n/2) + n/2.

Moreover, if we define Si = 〈ζ2i〉 for i = 0, . . . , k the set Si is the set of all n/2i-th
roots of unity since ζ2i is a primitive n/2i-th root of unity from the fact that

(ζ2
i

)n/2
i

= 1 and (ζ2
i

)n/2
i+1

= −1,

for all i = 0, . . . , k. This means that we can reduce all size n/2i problems to two size
n/2i+1 problems and it allows us to solve the original problem by solving half size
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problems recursively. Then, the complexity can be written as follows:

S(n) = 2S(n/2) + n, M(n) = 2M(n/2) + n/2,

S(n) = 22S(n/22) + 2n, M(n) = 22M(n/22) + 2n/2,

...
...

S(n) = 2kS(n/2k) + kn, M(n) = 2kM(n/2k) + kn/2.

Recall that we chose n = 2k and therefore, we have k = log n. It is easy to see that
S(1) =M(1) = 0 since evaluating a polynomial with degree bound 1 (i.e. a constant
polynomial) at a point requires no algebraic operations. If we substitute these values
in the last line above we get

S(n) = n log n and M(n) = n/2 log n.

Hence, FFT requires
3n/2 log n ∈ O(n log n)

ring operations to evaluate DFTn(A) where A is the coefficient representation of the
polynomial a(x).

Now we show how to go back to the coefficient representation from the point value
representation DFTn(A). Suppose we are given the values bi such that a(ζ i) = bi for
i = 0, . . . , n − 1 where ζ is a primitive root of unity, that is DFTn(A) = B where
A = (a0, . . . , an−1) and B = (b0, . . . , bn−1). We use the fact that, evaluating the
polynomial

a(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

at the points {1, ζ, ζ2, . . . , ζn−1} is equivalent to compute the following matrix vector
product:


b0
b1
b2
...

bn−1


︸ ︷︷ ︸

B

=


1 1 1 . . . 1
1 ζ ζ2 . . . ζn−1

1 ζ2 ζ4 . . . ζ2(n−1)

...
...

...
...

...
1 ζn−1 ζ2(n−1) . . . ζ(n−1)(n−1)


︸ ︷︷ ︸

M


a0
a1
a2
...

an−1


︸ ︷︷ ︸

A

,

where the n × n matrix M is an order n Vandermonde matrix determined by the el-
ements 1, ζ, ζ2, . . . , ζn−1, that is M = V (1, ζ, ζ2, . . . , ζn−1) as in in definition 2.7.
When we want to go back from point value representation to the coefficient represen-
tation of a(x), we just have to multiply both sides of the equation with the inverse of
M . Then, we have

B = MA =⇒ M−1B = M−1MA =⇒ M−1B = A.

The existence of M−1 is obvious since the elements 1, ζ, ζ2, . . . , ζn−1 are all distinct,
det(M) 6= 0 by definition 2.7. Thanks to the specialty of M , computing it inverse
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is very easy and does not require any arithmetic operation unlike the general matrix
inversion which is done in O(n3) time using Gaussian elimination [10]. The inverse
of M is equal to

M−1 =
1

n
V (1, ζ−1, ζ−2, . . . , ζ−(n−1)).

Let ζ−1 = ζn−1 = ξ. Since gcd(n, n− 1) = 1 we know that ξ is also a primitive n-th
root of unity. Then, multiplying B by M−1 = 1

n
V (1, ξ, ξ2, . . . , ξn−1) is equivalent

to evaluate the polynomial b(x) = b0 + b1x + · · · + bn−1x
n−1 at n-th roots of unity

and to divide each component of the result by n. This means that we can compute
DFT−1n (B) = A by using a modified version of FFT which we explained above. For
this we need 3n/2 log n+ n ∈ O(n log n) ring operations.

Hence, we can transform the polynomial a(x) back and forth between its point value
and coefficient representations with 3n log n+n ring operations which is equivalent to
O(n log n) asymptotically.

2.4 Toeplitz Matrix Vector Product

Toeplitz matrix vector product(TMVP) arises in many cryptographic applications. For
example, the use of it in binary extension fields can be seen in [13]. We use TMVP
for polynomial multiplication in the finite polynomial ring Zq[x]/〈xn + 1〉 in Chapter
5 and give the computational complexity by similar techniques in [13].

Definition 2.8. A n× n Toeplitz matrix T has a specific type of the form:

T =



a0 a′1 a′2 . . . a′n/2−1 a′n/2 . . . a′n−3 a′n−2 a′n−1
a1 a0 a′1 . . . a′n/2−2 a′n/2−1 . . . a′n−4 a′n−3 a′n−2
a2 a1 a0 . . . a′n/2−3 a′n/2−2 . . . a′n−5 a′n−4 a′n−3
...

...
... . . . ...

... . . . ...
...

...
an/2−1 an/2−2 an/2−3 . . . a0 a′1 . . . a′n/2−2 a′n/2−1 a′n/2
an/2 an/2−1 an/2−2 . . . a1 a0 . . . a′n/2−3 a′n/2−2 a′n/2−1

...
...

... . . . ...
... . . . ...

...
...

an−3 an−4 an−5 . . . an/2−2 an/2−3 . . . a0 a′1 a′2
an−2 an−3 an−4 . . . an/2−1 an/2−2 . . . a1 a0 a′1
an−1 an−2 an−3 . . . an/2 an/2−1 . . . a2 a1 a0


,

which can be represented by the partitioned matrix

T =

(
T0 T1
T2 T0

)
,

where the partitions Ti are also n
2
× n

2
Toeplitz matrices.
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The sum of two n× n Toeplitz matrices requires 2n− 1 additions when general n× n
matrices need n2. Another useful property is, the sum of two Toeplitz matrices is again
a Toeplitz matrix. This property allows us to make recursive calculations. Now we
show the method of multiplying a n× n Toeplitz matrix by a n× 1 vector in O(nlog 3)
which is better than the schoolbook method’s complexity O(n2). Let us denote B as a
n× 1 vector with partitions B0 and B1 are n/2× 1 vectors.

B =



b0
...

bn/2−1
bn/2

...
bn−1


=

(
B0

B1

)
.

The product of a n × n Toeplitz matrix T and a n × 1 vector B can be calculated as
follows:

T =

(
T0 T1
T2 T0

)(
B0

B1

)
=

[(
T0 T0
T0 T0

)
+

(
0 T1 − T0

T2 − T0 0

)](
B0

B1

)
=

(
T0 T0
T0 T0

)(
B0

B1

)
+

(
0 T1 − T0

T2 − T0 0

)(
B0

B1

)
=

(
T0(B0 +B1)
T0(B0 +B1)

)
+

(
(T1 − T0)B1

(T2 − T0)B0

)
=

(
P1 + P2

P1 + P3

)
,

where P1 = T0(B0 +B1), P2 = (T1 − T0)B1, P3 = (T2 − T0)B0.

Therefore, the product reduces to 3 Toeplitz matrix vector products, 2 Toeplitz matrix
additions and 3 vector additions, all of which have half size. Now lets take a closer
look to T1−T0 and T2−T0. The last n/2−1 elements in the first column of T1−T0 are
the negatives of the first n/2− 1 elements in the last column of T2 − T0, in a different
order. That means we can reuse this elements for T2 − T0 after calculating T1 − T0 by
negating them. Considering negation is a free operation, this trick reduces the number
of additions to 3n/2 − 1 from 2n − 2. Let us denote the number of additions by
S(n) and the number of multiplications byM(n) which are needed to solve the size n
problem.
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Then, the number of additions required is

S(n) = 3S(n/2) + 3n− 1,

S(n) = 32S(n/22) + 3n+
3

2
3n− 1− 3,

...

S(n) = 3kS(n/2k) + 3n

(
1 + · · ·+ 3k−1

2k−1

)
− (1 + · · ·+ 3k−1),

S(n) = 3kS(n/2k) + 6n
3k − 2k

2k
− 3k

2
+

1

2
,

and the number of multiplications required is

M(n) = 3M(n/2),

M(n) = 32M(n/22),

...

M(n) = 3kM(n/2k).

For the value n = 2k we have S(n) = 5.5nlog 3− 6n+ 1/2 andM(n) = nlog 3. Hence,
multiplying a n× n Toeplitz matrix by a n× 1 vector requires

6.5nlog 3 − 6n+ 1/2 ∈ O(nlog 3) ≈ O(n1.58)

ring operations in total.
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CHAPTER 3

HOMOMORPHIC ENCRYPTION AND ITS PRACTICAL
APPLICATIONS

This chapter contains more theoretical information about homomorphic encryption
schemes and practical applications of them. We use some of the definitions and prop-
erties from the previous chapter.

3.1 Homomorphic Encryption

In this section we give more formal yet simplified definitions and properties of homo-
morphic encryption.

Definition 3.1. Let E be encryption map and D be decryption map of a cryptosys-
tem, and let (ke, kd) is the private-public key pair. Suppose that E(mi, ke) = ci and
D(ci, kd) = mi, i = 1, 2 . . . for all mi in plaintext space and ci in ciphertext space.

If there exists an operation ? defined on ciphertext space satisfying

D(c1 ? c2, kd) = D(c1, kd) +D(c2, kd) = m1 +m2, (3.1)

then the encryption scheme is said to be additively homomorphic.

If there exists an operation � defined on ciphertext space satisfying

D(c1 � c2, kd) = D(c1, kd).D(c2, kd) = m1.m2, (3.2)

then the encryption scheme is said to be multiplicatively homomorphic.

Encryption schemes which are homomorphic with respect to a single operation, in
other words encryption schemes satisfying either one of the properties above are called
Partially Homomorphic Encryption(PHE). As we mention in 1.1, RSA[31], ElGamal
[12] and Goldwasser-Micali [18] cryptosystems are some of the examples of PHE
schemes.

Encryption schemes that have homomorphic properties with respect to both algebraic
operations are called Fully Homomorphic Encryption(FHE). The first FHE scheme
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was presented in 2009 by Craig Gentry [17]. Following that, other FHE schemes has
been presented [6, 14, 16, 35, 39] but non of the proposed schemes are practical enough
to use in real life yet.

Encryption schemes which support a limited number of homomorphic operations are
regarded as Somewhat Homomorphic Encryption(SwHE). Since SwHE schemes are
seen more likely to be practical, studies are being pursued mostly on them. Another
reason to prefer working on SwHE schemes is Craig Gentry’s technique to obtain FHE
from a SwHE. Some of the studies about SwHE can be found in [6, 7, 33, 41].

Homomorphic encryption is a very interesting area of cryptography and it is very open
to developments. Researches on homomorphic encryption have been going on for al-
most 40 years and still there is a long way to go. With a homomorphic encryption
scheme we can perform operations on ciphertexts which give the sum or product of
corresponding plaintexts when decrypted. If we could have an efficient FHE scheme,
we would be able to compute arbitrary functions on encrypted data homomorphically,
by using arithmetic circuits. In the next section we give some examples of practi-
cal uses of SwHE schemes and illustrate some possible applications of FHE schemes
under the assumption that there exists one which is efficient enough to use.

3.2 Practical Applications

In this section, we give some example functions which can be computed on encrypted
data homomorphically by using a SwHE sheme with depth D. By D we refer the
multiplicative depth of the aritmetic circuit of the function to be computed. We use the
same notations in the previous section.

Example 3.1. It is possible to construct a system with a SwHE to compute the mean of
k numbers homomorphically. Suppose we have k numbers z1, . . . , zk which we store
in the cloud encrypted. Assume E(zi, ke) = z′i, i = 1, . . . , k. The mean of z1, . . . , zk is
defined by

µ =

∑k
i=1 zi
k

.

We can ask the cloud to compute z′ = z′1 ? · · · ? z′k. The cloud does this with k − 1
homomorphic addition operations and returns us the pair (z′, k) of a ciphertext and the
amount of the numbers involve this computation. When we decrypt the ciphertext we
get the sum of the k numbers.

D(z′) = D(z′1 ? · · · ? z′k, kd) = D(z′1, kd) + · · ·+D(z′k, kd)

= z1 + · · ·+ zk = µk.

Then, dividing it by k gives us the mean of the numbers.

If we had a FHE scheme then division can be performed homomorphically too.

Example 3.2. Let σ be the standard deviation of the terms in {z1, z2, . . . , zk} in the
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previous example. Then,

σ =

√∑n
i=1(µ− zi)2

k
.

The variance of these terms is defined by σ2. Since we can not divide numbers ef-
ficiently on encrypted data, we can arrange the terms in this formula to be able to
compute homomorphically.

σ =

√∑n
i=1(µ− zi)2

k

=

√∑n
i=1(

∑k
i=1 zi
k
− zi)2

k

=

√∑n
i=1(µk − kzi)2

k3
.

Then, the system can compute

z′′ =
[
((z′ ? (−kz′1)) � ((z′ ? (−kz′1))

]
? · · · ?

[
((z′ ? (−kz′k)) � ((z′ ? (−kz′k))

]
,

where z′ and z′i as in the previous example. Note that we use −kz′i notation for a
ciphertext which decrypts −kzi. Normally it can be found by E(−k) � E(zi), but it is
possible to find a trick to define multiplication by scalars homomorphically depending
on the scheme we use, as we see in example 4.2. For this reason we abuse the notation
for a simple explanation.

Decryption of z′′ gives us
∑k

i=1(µk − kzi)2. Therefore if we set the system to output
the pair (z′′, k) or (z′′, k3) we can compute the variance by division after decryption.

Example 3.3. Suppose for a prime integer q, we need to check whether two integers
in Zq are equal or not, while they are encrypted. To do this we can define a function
EQ such that for two integers x and y

EQ(x, y) =

{
1 if x = y

0 if x 6= y.

We can define EQ function as EQ(x, y) = 1− (x− y)q−1 mod q by using Fermat’s
little theorem. This function checks equality on encrypted data with a SwHE scheme
of depth dlog qe, which would not be a desirable for large q values. In example 4.2
we give a more detailed explanation about this function and the required depth of the
SwHE.

Example 3.4. It is possible to compare two integers by defining a function COMP
such that for two numbers x and y in Zq for a prime q

COMP (x, y) =

{
1 if x < y

0 if x ≥ y.
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The construction of an arithmetic circuit that computes the function above is given in
[9] with details. We omit the details and just share the requirements of the scheme.
This function can be computed on bitwise encrypted data with a SwHE scheme with
depth approximately log(log q).

We gave some examples of the functions to be computed on encrypted data. The
parameters of the system affects efficiency, security and the number of homomorphic
operations(especially for multiplication) that the system supports. So the parameters
must be readjusted as the function changes, according to the SwHE scheme used.

Now we present some made up scenarios to explain the potential use of fully homo-
morphic encryption in applications. For the first scenario, suppose a clinic wants to
pursue a genomic research. The clinic needs the genomic data of lots of people. Since
collecting, storing and processing this many data requires an expensive infrastructure
and maintenance the clinique decides to use a cloud service. The cloud lets test sub-
jects upload their genomic data to the cloud and the clinic could use them when they
need to. But even if only the researchers have access to this sensitive data, it is not pri-
vate and secure. Who can access this plain data could recover biological characteristics
of an individual or of a community with this information.

Possible threats can be avoided by using homomorphic encryption. A private key-
public key pair is generated. The private key is shared with people who are authorized
to use it, in this case the researchers. The test subjects upload their genomic data after
encrypting it with the public key. A researcher sends a query to the cloud and the cloud
makes the requested computations on encrypted data. Since the cloud does not have
the private key it returns the encrypted result to the researcher. Then the researcher
decrypts it to obtain the result of the query. If trusting the researchers is not an option
then some control mechanisms can be integrated into the system. For example, this
could be a mechanism which does not return values when the query has very few
results.

The studies for this scenario were started a few years ago. The Secure Genome Analy-
sis Competition has taken place every year since 2015. They publish a list of challenges
consisting of tasks to complete. For example in the 2015 competition, the task of se-
cure comparison between genomic data was given under the challenge of homomor-
phic encryption based secure genomic data analysis. The competitors were given two
genomic datasets of two individuals and required to develop a cryptographic protocol
using a homomorphic encryption scheme which can compute the hamming distance or
the edit distance between these two datasets while they are encrypted.

Our second scenario consists of two companies A and B. Suppose company B finds
formulas to analyze financial data and compute the risks and rewards of a business to a
high degree of accuracy and it wants to keep these formulas secret. On the other hand,
company A needs this financial analysis to make a decision for an investment, without
revealing its financial data. The solution is that company B offers a FHE scheme to
A with the option to choose its own private key. Then A decrypts its data with the
public key and sends it to B. Since the encryption scheme is constructed by B, B knows
how to apply its secret formulas homomorphically. After the computations B sends
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the resulting ciphertexts to A without knowing the actual results. Only A can see the
actual results by decrypting the encrypted results with its private key. Now A can make
decisions based on this analysis and B can make money from its discovery. Everything
works well and neither of the companies need reveal their secret information.

This scenario can be extended to a version where company A uploads its data to the
cloud and company B describes its secret formulas to the cloud by encrypting them.
The cloud applies the encrypted functions to encrypted data and returns the encrypted
results to A.

We think that even the idea of being able to use FHE is very exciting and satisfactory.
As we see in presented scenarios, it provides a different kind of privacy, security and
usability to data, that none of the existing cryptosystems could provide.
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CHAPTER 4

A SOMEWHAT HOMOMORPHIC ENCRYPTION SCHEME
(SwHE) BASED ON THE RING LEARNING WITH ERRORS

(RLWE) PROBLEM

4.1 The Ring Learning with Errors(RLWE) Problem

The Ring Learning with Errors (RLWE) problem was presented in 2010 by Vadim
Lyubashevsky, Chris Peikert and Oded Regev [24]. The RLWE problem is seen as
a powerful candidate for public key cryptography in the future because it is believed
that even with quantum computers solving RLWE is hard. In this section we give a
simplified definition of RLWE problem. Before the definition of the problem we need
to construct a background for it.

Let q be a prime number and n be a positive integer. Define the finite field Fq = Zq
and the polynomial ring Zq[x] over Zq. Suppose φ(x) ∈ Zq[x] is irreducible over Q,
hence over Z. The finite quotient ring Rq = Zq[x]/〈φ(x)〉 is a subring of Zq[x] and it
consists of integer polynomials of degree less than n and coefficients from Zq.

To complete the construction, an error distribution χ on R = Z[x]/〈φ(x)〉 which pro-
duces polynomials with relatively small coefficients must be defined. For now we do
not specify χ and we assume samples chosen according to χ have sufficiently small
coefficients. Suppose that the pairs (ai(x), bi(x)) are given where

• ai(x) are chosen uniformly random from Rq,

• s(x) is chosen uniformly random from Rq,

• ei(x) are chosen random according the error distribution χ,

• bi(x) = ai(x)s(x) + ei(x).

Definition 4.1. (The Ring Learning with Errors Problem (RLWE))

Decision-RLWE: Given arbitrarily many pairs (ai(x), bi(x)) ∈ R2
q , distinguish these

pairs from the pairs (ai(x), ui(x)) ∈ R2
q where ui(x) are truly random elements in Rq.

Search-RLWE: Given arbitrarily many pairs (ai(x), bi(x)) ∈ R2
q , find s(x) ∈ Rq.
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In [24] they proved that, when φ(x) is chosen to be a cyclotomic polynomial, solving
the search version of RLWE is equivalent to solving the Approximate Shortest Vector
Problem(α-SVP) [1] on lattices in the ring Z[x]/〈φ(x)〉. Since lattice problems are
very hard and lattice based cryptography is thought to be resistant to quantum comput-
ers [4], RLWE problem holds a great promise for future cryptosystems.

The error distribution χ is generally chosen to be discrete Gaussian distribution [11].
What makes the Gaussian distribution preferential is it enables to give hard lattice prob-
lem reductions for RLWE and security proofs for algorithms based on RLWE. Sampling
Gaussian distributed elements is one of the factors that affects the running time of the
algorithm [11]. According to the timings given in [26], sampling takes a considerable
amount of time in the encryption process.

4.2 A Somewhat Homomorphic Encryption Scheme

In this section we explain the SwHE scheme presented by Zvika Brakerski and Vinod
Vaikuntanathan in 2011 [7]. The scheme has parameters q, t, n, f(x), χ, A and D
where q is a large prime number, t ∈ Z∗q is a prime number which is much less
than q, n is a positive integer, f(x) is a degree n polynomial in Z[x], χ is discrete
Gaussian distribution with mean 0 and standard deviation σ on R = Z[x]〈f(x)〉 and
A,D ∈ N are the maximum numbers of homomorphic additions and multiplications
(respectively) that the scheme supports. Encryption and decryption processes of this
scheme uses polynomial arithmetic on the ring Rq = Zq[x]〈f(x)〉. The message space
of the scheme is the ring Rt = Zt[x]/〈f(x)〉 and homomorphism will be over this ring.

The scheme has both symmetric key and public key variances. We explain them both
but we mostly studied on the public key variant of the scheme. The operations are
ordinary polynomial operations in Rq for both variants of the scheme.

4.2.1 Symmetric Key Variant of the Scheme

In this section we explain key generation, encryption and decryption algorithms of the
symmetric key scheme and verify the decryption algorithm . We give a condition on
some parameters in order to perform decryption correctly.

4.2.1.1 Key Generation

The secret key sk of the scheme is a vector sk = (1, s(x), s2(x), . . . , sD(x)) ∈ RD+1
q

where s(x) is chosen by sampling a ring element s(x) ∈ Rq according to distribution
χ.

The power of s(x) are used in decryption process. To decrypt a ciphertext with γ
components we only use sk = (1, s(x), s2(x), . . . , sγ−1(x)) ∈ Rγ

q . Private key can be
set as sk = s(x) and the powers are calculated when needed in the decryption process.

22



4.2.1.2 Encryption

To encode the message m ∈ Rt sample polynomials a(x) ∈ Rq uniformly at random
and e(x) ∈ Rq according to χ. Compute

c0(x) = a(x)s(x) + te(x) +m and c1 = −a(x).

The ciphertext is the pair c = (c0(x), c1(x)) ∈ R2
q .

Even though the encryption map outputs ciphertexts as pairs in R2
q , homomorphic op-

erations may increase the number of components of the ciphertexts as we will see in
4.2.3.2. For this reason we denote a valid ciphertext by c = (c0(x), . . . , cγ(x)) ∈ Rγ+1

q

where γ ≤ D. The ciphertexts produced by an encryption algorithm will be referred
to as fresh ciphertexts.

We also use the term `∞ norm while explaining the correctness of the algorithms. The
`∞ norm of a vector a = [a0, a1, a1, . . . , an] is defined as max|ai| and denoted by
‖a‖∞. When we mention the `∞ norm of a polynomial, we mean the `∞ norm of its
coefficient representation.

4.2.1.3 Decryption

To decrypt a ciphertext c = (c0(x), . . . , cγ(x)) we just use the first γ + 1 element of
the secret key, say skγ = (1, s(x), . . . , sγ(x)). Compute the following inner product

〈c, skγ〉 =

γ∑
i=0

ci(x)si(x).

Then, the message can be obtained by m = 〈c, skγ〉 mod t.

Correctness of decryption of a fresh ciphertext:

Let c = (c0(x), c1(x)) be the encryption of the message m as given in 4.2.1.2. Then,
the decryption process goes as follows:

c0(x) + c1(x)s(x) mod t = a(x)s(x) + te(x) +m+ (−a(x))s(x) mod t

= (m+ te(x)) mod t.

Claim 4.1. The decryption process works correctly if only the error term (noise) sat-
isfies the inequality ‖e(x)‖∞ < q/t.

To prove this claim, let e(x) = e0 + · · ·+ ekx
k + · · ·+ en−1x

n−1 and ‖e(x)‖∞ ≥ q/t.
We know that the operations in the scheme are polynomial arithmetic in Rq and we
don’t usually indicate “mod q” in calculations. For the following calculations we think
it would be better to use it to prove our point.

Without loss of generality we assume ‖e(x)‖∞ = ek and ek ≥ q/t, ei < q/t for
i 6= k, i = 0, . . . , n− 1. We have ek ≥ q/t =⇒ tek ≥ q =⇒ tek = qb+ r for some
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positive integers b and r < q. Then,

(m+ te(x)) mod q = (m+ te0 + · · ·+ tekx
k + · · ·+ ten−1x

n−1) mod q

≡ m+ te0 + · · ·+ rxk + · · ·+ ten−1x
n−1,

((m+ te(x)) mod q) mod t = (m+ te0 + · · ·+ rxk + · · ·+ ten−1x
n−1) mod t

≡ m+ rxk 6= m.

Therefore, in order to perform decryption correctly, the polynomial e(x) must satisfy
‖e(x)‖∞ < q/t. We use this fact in upcoming verifications.

The symmetric key variant of the scheme is more efficient than the public key vari-
ant since it requires less polynomial multiplication. But as we give in Chapter 3 the
benefits of public key homomorphic encryption schemes are greater than of symmetric
keys.

4.2.2 Public Key Variant of the Scheme

This section contains the key generation, encryption and decryption algorithms of the
public key variant of the SwHE scheme in [7]. It also includes verification of decryp-
tion of a fresh ciphertext.

4.2.2.1 Key Generation

Sample three ring elements a1(x), e(x) and s(x) from Rq. Here a1(x) is chosen uni-
formly at random, s(x) and e(x) are chosen according to error distribution χ. The
polynomial s(x) is the private key. Compute a0(x) = −(a1(x)s(x) + te(x)). Publish
the pair pk = (a0, a1) = (−(a1(x)s(x) + te(x)), a1(x)) as the encryption key.

4.2.2.2 Encryption

To encrypt the message m ∈ Rt with a public key (a0, a1), sample three polynomials
u(x), h(x) and g(x) in Rq according to distribution χ. Compute

c0(x) = a0(x)u(x) + th(x) +m and c1(x) = a1(x)u(x) + tg(x),

then the ciphertext is the pair c = (c0(x), c1(x)) ∈ R2
q .

4.2.2.3 Decryption

Decryption is the same as the symmetric key variant’s. We just compute
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(
γ∑
i=0

ci(x)si(x)

)
mod t

to decrypt the ciphertext c = (c0(x), . . . , cγ(x)) ∈ Rγ+1
q .

Correctness of decryption of a fresh ciphertext:

Let c = (c0(x), c1(x)) be the decryption of the messagem ∈ Rt given in 4.2.2.2. Then,
the decrypiton goes as follows:

c0(x) + c1(x)s(x)

=a0(x)u(x) + th(x) +m+ (a1(x)u(x) + tg(x)s(x))

=(−a1(x)s(x)− te(x))u(x) + th(x) +m+ a1(x)s(x)u(x) + tg(x)s(x)

=− a1(x)s(x)u(x)− te(x)u(x) + th(x) +m+ a1(x)s(x)u(x) + tg(x)s(x)

=m+ t(−e(x)u(x) + h(x) + g(x)s(x)).

By using the same argument in the proof of claim 4.1, we can say that the decryption
works correctly if only the error term satisfies the inequality

‖−e(x)u(x) + h(x) + g(x)s(x)‖∞ < q/t.

4.2.3 Homomorphic Operations

The homomorphic operations of the SwHE [7] are defined the same for both symmetric
and public key variants. Basically, the homomorphic operations treat ciphertexts as the
coefficient representations of some polynomials and perform polynomial arithmetic on
them.

4.2.3.1 Homomorphic Addition (?)

Let c = (c0(x), . . . , cγ(x)) ∈ Rγ+1
q and c′ = (c′0(x), . . . , c′γ(x)) ∈ Rγ+1

q be two valid
ciphertexts. We assumed that the ciphertexts have the same size without loss of gener-
ality. If they have different lengths we pad the shorter one with zero components. The
homomorphic addition is done by componentwise addition of ciphertexts. Then,

cadd = c ? c′ = (c0(x), . . . , cγ(x)) + (c′0(x), . . . , c′γ(x))

= (c0(x) + c′0(x), . . . , cγ(x) + c′γ(x))

= (c̃0(x), . . . , c̃γ(x)).

Clearly, homomorphic addition does not increase the size of the ciphertexts.
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Correctness of homomorphic addition:

Consider two fresh ciphertexts c and c′ which are the encryptions of the messages m
and m′ respectively. Then, the sum of the ciphertexts

c = (c0(x), c1(x)) and c′ = (c′0(x), c′1(x))

is equal to
cadd = (c̃0(x), c̃1(x)) = (c0(x) + c′0(x), c1(x) + c′1(x)).

The decryption of cadd

c̃0(x) + c̃1(x)s(x) mod t

=(c0(x) + c′0(x)) + (c1(x) + c′1(x))s(x) mod t

=c0(x) + c1(x)s(x) + c′0(x) + c′1(x)s(x) mod t

=m+ te(x) +m′ + te′(x) mod t

=m+m′ + t(e(x) + e′(x)) mod t

works correctly if only ‖e(x) + e′(x)‖∞ < q/t and m + m′ is a valid message in Rt.
Homomorphic encryption increases the noise just a modest amount.

4.2.3.2 Homomorphic Multiplication (�)

Let c = (c0(x), . . . , cγ(x)) ∈ Rγ+1
q and c′ = (c′0(x), . . . , c′α(x)) ∈ Rα+1

q be two valid
ciphertexts. Choose a symbolic variable y and define two polynomials f1(y) and f2(y)
such that

f1(y) =

γ∑
i=0

ci(x)yi and f2(y) =
α∑
j=0

c′j(x)yj.

Multiply these polynomials

f1(y)f2(y) =

(
γ∑
i=0

ci(x)yi

)(
α∑
j=0

c′i(x)yj

)
=

γ+α∑
k=0

c̃k(x)yk.

Then, the result of the homomorphic multiplication c�c′ is cmult = (c̃0(x), . . . , c̃γ+α(x)) ∈
Rγ+α+1
q . So homomorphic multiplication increases the number of components in ci-

phertexts.

Correctness of homomorphic multiplication:

Consider two fresh ciphertexts c and c′ which are the encryptions of the messages m
and m′ respectively. Then, the product of the ciphertexts

c = (c0(x), c1(x)) and c′ = (c′0(x), c′1(x))

26



is the three component ciphertext

cmult = (c̃0(x), c̃1(x), c̃2(x))

= (c0(x)c′0(x), c0(x)c′1(x) + c1(x)c′0(x), c1(x)c′1(x)).

The decryption of cmult

(c̃0(x) + c̃1(x)s(x), c̃2(x)s2(x)) mod t

=(c0(x)c′0(x)) + (c0(x)c′1(x) + c1(x)c′0(x))s(x) + (c1(x)c′1(x))s2(x)) mod t

=(c0(x) + c1(x)s(x))(c0(x) + c1(x)s(x)) mod t

=(m+ te(x))(m′ + te′(x)) mod t

=mm′ + t(me′(x) +m′e(x) + te(x)e′(x)) mod t.

Decryption of a ciphertext produced by homomorphic multiplication works correctly
if ‖me′(x) +m′e(x) + te(x)e′(x)‖∞ < q/t and mm′ is in Rt. Homomorphic multi-
plication increases the noise a considerable amount.

The conditions we give in the verifications in 4.2.3.1 and 4.2.3.2 don’t tell so much
about the parameters of the scheme. The scheme has several dependent parameters
and the following theorem gives a more clear condition on these parameters. The
variables used in theorem are the scheme parameters as explained at the beginning of
Section 4.2.

Theorem 4.2 ([26]). The SwHE scheme given above can perform D multiplications
followed by A additions if the following inequality holds:

q ≥ 4(2tσ2
√
n)D+1(2n)D/2

√
A.

This theorem offers a lower bound for the prime modulus q but in [26] it is stated that
smaller q values can be used if they are confirmed by experiments.

4.2.4 Re-linearization

We see that homomorphic multiplication increases the number of components of ci-
phertexts. Brakerski and Vaikuntanathan presented a technique called re-linearization
to reduce the ciphertext size [8]. This technique also works for this SwHE scheme
as well and transforms a ciphertext with many components into a two component ci-
phertext. The output of this transformation is again a valid ciphertext and it can be
decrypted in the same way.

Suppose that ctmult = (ct0(x), ct1(x), ct2(x)) is the ciphertext obtained by applying
homomorphic multiplication to fresh ciphertexts

c = (c0(x), c1(x)) and c′ = (c′0(x), c′1(x)),

which are the encryptions of the messages m and m′ respectively. To perform re-
linearization, an extra key, called homomorphism key, is generated as a part of the

27



public key. A homomorphism key is defined as a vector hk = (h0, h1, . . . , hdlogtqe−1)
such that

hi = (αi(x), βi(x)) = (αi(x),−(αi(x)s(x) + tei(x)) + tis2(x)),

for i = 0, 1, . . . , dlogtqe − 1 where αi(x) ∈ Rq are chosen randomly and ei(x) ∈ Rq

are chosen according to the error distribution χ for every i.

Step by step re-linearization:

1. Write the polynomial ct2(x) in base t representation,

ct2(x) =

dlogtqe−1∑
i=0

ct2,i(x)ti.

2. Set

crelin1 (x) = ct1(x) +

dlogtqe−1∑
i=0

ct2,i(x)αi(x), (4.1)

crelin0 (x) = ct0(x) +

dlogtqe−1∑
i=0

ct2,i(x)βi(x), (4.2)

where hi = (αi(x), βi(x)) come from the homomorphism key.

3. Output the ciphertext ctmult := (crelin0 , crelin1 ) which has size two.

Verification of re-linearization:

We have
ct0(x) + ct1(x)s(x) + ct2(x)s2(x) = mm′ + temult(x).

By Equation (4.2),

crelin0 (x) =ct0(x) +

dlogtqe−1∑
i=0

ct2,i(x)βi(x)

=ct0(x) +

dlogtqe−1∑
i=0

ct2,i(x)(−(αi(x)s(x) + tei(x)) + tis2(x)))

=ct0(x)−

dlogtqe−1∑
i=0

ct2,i(x)αi(x)


︸ ︷︷ ︸

crelin1 (x)−ct1(x) by (4.1)

s(x)− t
dlogtqe−1∑

i=0

ct2,i(x)ei(x)︸ ︷︷ ︸
erelin(x)

+

dlogtqe−1∑
i=0

ct2,i(x)ti(x)


︸ ︷︷ ︸

ct2(x)

s2(x)
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=⇒ crelin0 (x) + crelin1 (x)s(x) = ct0(x) + ct1(x)s(x) + ct2(x)s2(x)− terelin(x)

=⇒ crelin0 (x) + crelin1 (x)s(x) = m(x)m′(x) + t(emult(x)− erelin(x))

=⇒
(
crelin0 (x) + crelin1 (x)s(x)

)
mod t = m(x)m′(x).

Hence, the ciphertext produced by the re-linearization process could be decrypted cor-
rectly if the final error emult(x)− erelin(x) is small enough.

Although the re-linearization technique reduces the ciphertext size considerably it also
increases the public key size. The public key has extra dlogtqe elements. Running time
of the homomorphic multiplication is also increased because extra dlogtqe polynomial
multiplication and addition are added to this process. In [26] they say that the benefits
of re-linearization seem to dominate its negative effects for large t values. From this
point of view a control mechanism can be added to implementations to decide whether
using re-linearization is an advantage or not.

4.2.5 How to Encode Messages and How to Choose Message Space

There are several factors that affect the efficiency of the algorithm. In this section
we pay attention to the following factors: the message space parameter t, the number
of encryptions needed and the depth of the arithmetic circuit of the function to be
computed on encrypted data. Since addition costs much less than multiplication, we
just count multiplications to calculate the depth [9]. With the given examples, we try
to form an opinion about the effects of different encoding techniques that are chosen
according to the function to be computed on encrypted data.

Note that, we use b and b(x) notations interchangeably for a polynomial b(x) in the
following examples.

Example 4.1. Suppose we want to compute the sum of k integers z1, . . . , zk ∈ Z
homomorphically by using the public key SwHE we explained above with the private
key s ∈ Rq and the public key (a0, a1) ∈ R2

q . Consider the following cases

1. For the first case, suppose we don’t use any encoding techniques and treat the
integers as plaintexts. After k encryptions we have z′1, . . . , z

′
k ∈ Rq where

z′i = E(zi) = (a0ui + thi + zi, a1ui + tgi).

We want to compute a ciphertext by applying the operation ? to the elements
z′1, . . . , z

′
k, which gives the result

∑k
i=1 zi when decrypted. Clearly,

z′1 ? · · · ? z′k =

(
a0

k∑
i=1

ui + t

k∑
i=1

hi +
k∑
i=1

zi, a1

k∑
i=1

ui + t

k∑
i=1

gi

)
.

We assume the condition on the `∞ norm of the error term is satisfied. The other
condition on

∑k
i=1 zi being in Rt would be satisfied if t >

∑k
i=1 zi. We have
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• k encryptions −→ 2k polynomial multiplications,

• t >
∑k

i=1 zi,
• k − 1 homomorphic addition.

Therefore, the computation above can be done with a SwHE with D = 1 and
t >

∑k
i=1 zi since it requires no multiplication.

2. Let us encode the integers as polynomials of degree less than n and coefficients
less than an integer w for the second case. Suppose zi < wn for every i =
1, . . . , k. To be more precise we define the polynomials fi(x) =

∑n−1
j=1 zi,jx

j

where zi,j are the digits of basew representation of zi. Therefore, fi(w) = zi. We
take fi(x) = fi as our plaintexts. After k encryptions we have f ′1, . . . , f

′
k ∈ Rq,

where
f ′i = E(fi) = (a0ui + thi + fi, a1ui + tgi).

Applying the ? operation gives us

f ′1 ? · · · ? f ′k =

(
a0

k∑
i=1

ui + t
k∑
i=1

hi +
k∑
i=1

fi, a1

k∑
i=1

ui + t
k∑
i=1

gi

)
.

Assuming that the `∞ norm of the final error is less than q/t, the only thing that
we should be concerned about is

∑k
i=1 fi being an element of the message space

Rt. Since the coefficients of the polynomials fi are less than w, the coefficients
of the sum must be less than kw. So choosing t > kw would suffice. In this
scenario we have

• k encryptions −→ 2k polynomial multiplications,
• t > wk,
• k − 1 homomorphic additions.

Therefore, the computation above can be done with a SwHE with D = 1 and
t > wk since it requires no multiplication.

For this example the second case seems better since wk <
∑k

i=1 zi. By Theorem
4.2 smaller values of t implies smaller values for q.

Example 4.2. Suppose we want to check homomorphically whether two l-bit integers
x and y are equal or not. We can construct an arithmetic circuit for the following
function:

EQ(x, y) =

{
1 if x = y

0 if x 6= y.

Let us consider the following cases:

1. We don’t use any encoding techniques and encrypt the messages as integers in
Zq. Let E(x) = x′ and E(y) = y′. By Fermat’s little theorem we know that

kq−1 mod q ≡

{
1 if k 6= 0

0 if k = 0,
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for every k ∈ Zq. Therefore, we can define the function such that

EQ(x, y) = 1− (x− y)q−1.

To check the equality of x and y homomorphically, in other words to compute
1− (x− y)q−1 homomorphically we should do the following:

(1, 0, . . . , 0︸ ︷︷ ︸
q−1

) ?
[
(−1, 0) � (x′ ? y′) � · · · � (x′ ? y′)︸ ︷︷ ︸

q−1

]
.

Then, we have

• 2 encryptions −→ 4 polynomial multiplications,
• t > max(x, y),
• ≈ q homomorphic multiplications, q homomorphic additions.

In this case the computations can be done homomorphically with a SwHE with
D = dlog pe.

2. We encrypt the integers bitwise. Let x = (xl−1, . . . , x0) and y = (yl−1, . . . , y0)
be the bit representations. Suppose E(xi) = x′i and E(yi) = y′i. Then, the
equality function can be defined by:

EQ(x, y) = Λl
i=1 (1⊕ xi ⊕ yi) .

To check the equality we should calculate:

[(1, 0) ? (x′l−1) ? (y′l−1)] � · · · � [(1, 0) ? (x′0) ? (y′0)].

Then, we have

• 2l encryptions −→ 4l polynomial multiplications,
• t = 2,
• ≈ l homomorphic multiplications, l homomorphic additions.

In this case the computations above can be done homomorphically with a SwHE
with D = dlog(l − 1)e.

For this example encoding the messages as bit strings and encrypting them bit wise
seems to be the better solution to check the equality of two integers in encrypted form.

These examples clearly tell us that encoding technique plays an important role on the
efficiency of the algorithm. Then, it should be chosen carefully based on the message
space, the number of encryptions and the number of multiplications.
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CHAPTER 5

OUR WORK

We studied the polynomial multiplication in the ring Rq = Zq[x]/〈f(x)〉 that was used
for encryption and decryption in the SwHE scheme explained in the previous chapter.
The modulus polynomial f(x) is set to be xn + 1 which is referred as the standard
parameter setting in [7]. We use the same specifications for the parameters n and q as
in [26]. The characteristics of these parameters are as follows:

• n is a positive integer which is a power of 2,

• q is a large prime number and q ≡ 1( mod 2n).

Our study is mostly concentrated on reducing the computational complexity of the
algorithm with the specified parameter settings. Considering that the predominant op-
eration in the scheme is polynomial multiplication in Rq = Zq/〈xn + 1〉, we decided
to work on ideas for speeding up this operation.

The choice of n makes the polynomial f(x) = xn + 1 the 2n-th cylotomic polynomial
by Proposition 2.1.4. Applying Theorem 2.2 to 2n-th cyclotomic polynomial f(x)
with q ≡ 1( mod 2n), gives that the polynomial xn + 1 factors into n linear poly-
nomials over Zq. In other words Zq includes all primitive 2n-th roots of unity, hence
all 2n-th roots of unity. These parameter settings are used in many studies in order
to take advantage of FFT for fast polynomial multiplication over the finite field Zq.
As we describe in 5.1.1 using FFT technique instead of naive method for polynomial
multiplication in Rq leads to an improvement from O(n2) to O(n log n).

In our studies, we use a different approach for efficient polynomial multiplication.
When we examine the coefficients of the product of two polynomials in Rq by re-
placing xn by -1, we notice a special situation. It turns out that we can represent a
polynomial multiplication in Rq as a TMVP. We can multiply two polynomials in Rq

in O(nlog 3) with this technique as we explain in 5.1.2.

5.1 Polynomial Multiplication Modulo xn + 1

Let a(x) = a0+a1x+a2x
2+· · ·+an−1xn−1 and b(x) = b0+b1x+b2x

2+· · ·+bn−1xn−1
be two polynomials in Rq = Zq/〈xn + 1〉. Product of these two polynomials modulo
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xn + 1 is again a degree less than n polynomial, say c(x). Then, we have

c(x) = a(x).b(x) mod xn + 1 = c′(x) mod xn + 1

= (a0 + a1x+ · · ·+ an−1x
n−1)(b0 + b1x+ · · ·+ bn−1x

n−1) mod xn + 1

= c′0 + c′1x+ c′2x
2 + · · ·+ c′2n−2x

2n−2 mod xn + 1

= (c′0 − c′n) + (c′1 − c′n+1)x+ (c′2 − c′n+2)x
2 + · · ·+ (c′n−2 − c′2n−2) + c′n−1x

n−1

= c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1,

where
c′k =

∑
i+j=k

aibj and ck =
∑
i+j=k

aibj −
∑

i+j=n+k

aibj.

Our goal is to find the coefficients ci efficiently. For this, we work on two techniques
that utilize FFT and TMVP algorithms we explained in Sections 2.3 and 2.4. We
calculate their computational complexity and compare the efficiency of the algorithms.

5.1.1 Multiplication using FFT

Since we know Zq has all 2n-th primitive roots of unity (by Theorem 2.2), we can use
FFT to multiply two polynomials. First we need one of the roots of f(x) = xn + 1
which is one of the primitive 2n-th roots of unity. That means we are looking for an
element ζ in Z∗q such that ζ2n = 1 and ζn = −1. By Fermat’s little theorem we know
zq−1 ≡ 1 mod q for every z ∈ Z∗q . We choose q ≡ 1 mod 2n, then q = 2nk + 1

for some positive integer k. Therefore, z2nk = (zk)2n = 1 for every z ∈ Z∗q . Since the
square roots of 1 are 1 and -1 we have zkn = 1 or zkn = −1. The latter means zk is a
primitive 2n-th root of unity. There are exactly q − 1 = 2nk elements in Z∗q and these
elements satisfy either zkn = 1 or zkn = −1 [22]. By choosing a few random elements
and checking whether they satisfy the second equation or not, we can get a primitive
2n-th root of unity ζ = zk.

Suppose we have ζ , a primitive 2n-th root of unity which is one of the roots of the
polynomial xn + 1 in Z∗q . First we pad the polynomials a(x) and b(x) with higher
degree zero coefficient terms until their degree become 2n − 1. Then, we evaluate
the polynomials a(x) and b(x) at the points 1, ζ, . . . , ζ2n−1 using FFT as described in
Section 2.3.

Let A and B be the coefficient representations of the polynomials a(x) and b(x) re-
spectively. To evaluate DFT2n(A) and DFT2n(B) we need 6n log n ring operations as
we explained in 2.3. Then, we compute

C ′ = DFT2n(A) ·DFT2n(B),

where (·) represents the dot product of two vectors. Obviously, the resultC ′ is the point
value representation of c′(x) at 2n-th roots of unity. As explained in 2.3, interpolating
C ′ by

C ′ = DFT−12n (DFT2n(A) ·DFT2n(B))
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gives us the coefficient representation of the polynomial c′(x) and we can do this with
3n log n ring operations. Once we calculate c′i, finally by computing ci = c′i − c′i+n we
get the coefficient representation of the polynomial c(x) and we need n ring additions
for this step. Thus, multiplying two polynomials modulo xn + 1 requires

9n log n+O(n)

ring operations in total when we use FFT.

5.1.2 Multiplication using TMVP

When we write the coefficients of c(x) in expanded form it is easy to see that there is
a pattern.

c0 = (c′0 − c′n) = a0b0 − a1bn−1 − a2bn−2 − · · · − an−3b3 − an−2b2 − an−1b1,
c1 = (c′1 − c′n+1) = a0b1 + a1b0 − a2bn−1 − a3bn−2 − · · · − an−2b3 − an−1b2,
c2 = (c′2 − c′n+2) = a0b2 + a1b1 + a2b0 − a3bn−1 − · · ·+ an−2b4 − an−1b3,

...
cn−1 = c′n−1 = a0bn−1 + a1bn−2 + · · ·+ an−3b3 + an−2b1 + an−1b0.

By using the pattern in the equalities above we can express the coefficients ci of the
product polynomial c(x) for i = 0, .., n−1 as a resulting vector of a TMVP as follows:

c0
c1
c2
...
...

cn−2
cn−1


=



a0 −an−1 −an−2 . . . −a3 −a2 −a1
a1 a0 −an−1 . . . −a4 −a3 −a2
a2 a1 a0 . . . −a5 −a4 −a3
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...
an−2 an−3 an−4 . . . a1 a0 −an−1
an−1 an−2 an−3 . . . a2 a1 a0





b0
b1
b2
...
...

bn−2
bn−1


.

Hence, the coefficients of the product of two polynomials modulo xn + 1 can be cal-
culated by multiplying a Toeplitz matrix and a vector in

6.5nlog 3 +O(n) ∈ O(nlog 3),

as we explain in Section 2.4. To specify a n×n Toeplitz matrix it is enough to give an
array of length 2n− 1 which contains the elements in the first column and the first row
of the matrix. For example the Toeplitz matrix above can be represented by the array
[an−1, an−2, . . . , a0,−an−1, . . . ,−a1] of length 2n − 1. This saves a lot of memory in
implementations because to store a general n×nmatrix we need an array of dimension
n2. We implemented this algorithm and we observed that the multiplication of two
polynomial inRq takes 1020 milliseconds on average when n = 214 and blog qc = 615.
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5.1.3 Comparison

The computational complexity of the techniques we describe in Sections 5.1.1 and
5.1.2 are 9n log n + O(n) and 6.5nlog 3 + O(n) respectively. Although the first tech-
nique(the one using FFT) has slightly lower complexity, we think that the second
technique(the one using TMVP) can also be used for implementations. Memory re-
quirements of implementations using FFT method is more than the ones using TMVP.
FFT method is efficient when n is a power of 2 while TMVP might be efficient for
other values of n.
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CHAPTER 6

CONCLUSION

Being able to operate on encrypted data would offer a whole new level of privacy. The-
oretically, it is possible to do this with FHE. To date, several cryptosystems which sat-
isfy fully homomorphism have been presented, but they are not efficient enough to use
in practical applications yet. Because evaluating arbitrary functions on encrypted data
requires lots of arithmetic operations. SwHE schemes, that support a limited number
of operations, are seen to be more eligible for practical applications. In this thesis we
examine the SwHE scheme presented by Zvika Brakerski and Vinod Vaikuntanathan
[7].

In Chapter 2, we gave some background information to help to understand the sub-
ject better. We gave some basic definitions such as roots of unity, cyclotomic polyno-
mial, coefficient and point value representations of a polynomial. Also some properties
were given. We explained discrete Fourier transform (DFT) of a polynomial and fast
Fourier transform (FFT) to perform DFT faster. Toeplitz matrices were introduced and
efficient Toeplitz matrix vector product (TMVP) algorithm explained. Computational
complexities of both FFT and TMVP were computed.

In Chapter 3,we defined homomophic encryption formally. We mentioned some pos-
sible practical applications and tried to provide some insight on constructing functions
that can be computed homomorphically. In Chapter 4 we explained the RLWE problem
and the SwHE scheme based on this problem. The scheme is built on the arithmetic
on the polynomial ring Zq[x]/〈xn + 1〉 and uses a randomized map for encryption.
The encryption and decryption algorithms of symmetric key and public key variants
of the scheme were explained. For both of them conditions on the parameters that
ensure the correctness of the decryption process were given. Then, we spelled out the
homomorphic operations. We observed that the homomorphic multiplication increases
ciphertext size and blows up the error term. The re-linearization technique, which re-
duces the size of the ciphertext after homomorphic multiplication, was introduced. At
the end of Chapter 4 we gave some encoding techniques with examples.

In Chapter 5, we described two techniques for polynomial multiplication in the ring
Zq[x]/〈xn + 1〉 using FFT and TMVP. We calculated computational complexity of the
algorithms and compared their efficiency. Although the computational complexity of
FFT technique is a little less than TMVP technique, we think that TMVP technique
works as well as FFT technique in implementations. We shared our arguments about
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this conclusion.

To summarize, during our research we studied on a proposed SwHE scheme in detail
and mostly focused on developing ideas to reduce the running time of implementations.
In this context, we adapted a fast polynomial multiplication technique to the algorithm
and shared the computational complexity. Different multiplication techniques might
be developed to use in this scheme as a future study. We hope that our research will be
helpful for others who are willing to study on this subject.
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