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ABSTRACT

EXIT PROBABILITIES OF MARKOV MODULATED CONSTRAINED
RANDOM WALKS

Başoğlu Kabran, Fatma

Ph.D., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2018, 77 pages

Let X be the constrained random walk on Z
2
+ with increments (0, 0), (1, 0), (−1, 1),

(0,−1) whose jump probabilities are determined by the state of a finite state Markov
chain M . X represents the lengths of two queues of customers (or packets, tasks,
etc.) waiting for service from two servers working in tandem; the arrival of customers
occur with rate λ(Mk), service takes place at rates µ1(Mk), and µ2(Mk) where Mk

denotes the current state of the Markov chain M . We assume that the average arrival
rate is less than the average service rates, i.e., X is assumed stable. Stability implies
that X moves in cycles that restart each time it hits the origin. Let τn be the first
time X hits the line ∂An = {x : x(1) + x(2) = n}, i.e., when the sum of the
queue lengths equals n for the first time ; if the queues share a common buffer, τn
represents the time of a buffer overflow and pn = P(x,m)(τn < τ0) is the probability
that a given cycle ends with a buffer overflow, i.e., system failure. Let Y be the same
random walk as X but only constrained on ∂2 = {y ∈ Z × Z+ : y(2) = 0} and
its jump probabilities for the first component reversed. Let B = {y ∈ Z

2 : y(1) =

y(2)} and let τ be the first time Y hits B. For x ∈ R
2
+, with x(1) + x(2) < 1

define xn = ⌊nx⌋ and let m ∈ M denote the initial point of the Markov chain M .
We show that P((n−xn(1),xn(2)),m)(τ < ∞) approximates P((xn(1),xn(2)),m)(τn < τ0)

with exponentially vanishing relative error when x(1) > 0. We then construct a
class of harmonic functions for (Y,M) and use their linear combinations to develop
approximate formulas for P(y,m)(τ < ∞). The construction is based on points on a
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characteristic surface associated with Y defined through the eigenvalues of a matrix
whose components depend on the transition matrix of the modulating chain and the
jump probabilities of Y . We indicate possible applications of our results and approach
in finance and insurance.

Keywords: Markov modulation, regime switch, multidimensional constrained ran-
dom walks, exit probabilities, rare events, insurance systems, market making, queue-
ing systems, characteristic surface, superharmonic functions, affine transformation
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ÖZ

MARKOV MODÜLASYONLU KISITLI RASTGELE YÜRÜYÜŞLERİN ÇIKIŞ
OLASILIKLARI

Başoğlu Kabran, Fatma

Doktora, Finansal Matematik Bölümü
Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2018 , 77 sayfa

X’in Z
2
+’de (0, 0), (1, 0), (−1, 1), (0,−1) adımlarını atan kısıtlı bir rastgele yürüyüş

olduğunu ve adımların artış olasılıklarının homojen Markov zincirinin durumuyla be-
lirlendiğini söyleyelim. X , ortalama servis oranları µ1(Mk) ve µ2(Mk) olan arka
arkaya çalışan iki hizmet sağlayıcıdan hizmet almak için bekleyen, ortalama varış
oranı λ(Mk) olan müşterilerin (paket, iş v.b.) her bir servis sağlayıcıyı beklerken
oluşturdukları iki kuyruğun uzunluklarını temsil eder. Mk Markov zincirinin şu an-
daki durumunu gösterir. Ortalama varış oranının ortalama servis oranlarından daha
küçük olduğunu varsayalım, yani X’in dengeli bir süreç olduğunu kabul edelim. X

dengeli olduğunda, süreç orijine her çarptığında yeniden başlayan döngülerle hareket
eder. X sürecinin kuyruk uzunluklarının toplamının n olduğu sınıra, yani ∂An =

{x : x(1) + x(2) = n}’e ilk çarpma anını τn ile gösterelim. Eğer kuyruklar ortak
kapasite kullanıyorsa, pn = P(x,m)(τn < τ0) sistemin herhangi bir döngüde kapasite
aşımı, bir başka deyişle, sistemin başarısız olma olasılığıdır. Y , X ile aynı rastgele
yürüyüş olmakla birlikte, sadece ∂2 = {y ∈ Z×Z+ : y(2) = 0} üzerinde kısıtlıdır ve
birinci bileşeninin artış olasılıkları yer değiştirmiştir. Y ’nin bileşenlerinin birbirine
eşit olduğu sınırı B = {y ∈ Z

2 : y(1) = y(2)}, B sınırına ilk çarpma anını τ olarak
gösterelim. x ∈ R

2
+ ve x(1) + x(2) < 1 için xn = ⌊nx⌋ şeklinde tanımlayalım

ve Markov zinciri M ’in ilk noktasını m ∈ M ile gösterelim. Bu tezde, x(1) > 0

için, P((xn(1),xn(2)),m)(τn < τ0) olasılığının P((n−xn(1),xn(2)),m)(τ < ∞) olasılığı ile,
üstel olarak 0’a yakınsayan göreli hatayla, yaklaşık olarak hesaplanabileceği gös-
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terilmiştir. (Y,M)-harmonik fonksiyonları oluşturulmuş ve bunların doğrusal kom-
binasyonlarıyla P(y,m)(τ < ∞) için yaklaşık formüller geliştirilmiştir. Harmonik
fonksiyonlar, bileşenleri modülasyon zincirinin geçiş olasılıklarına ve Y sürecinin
artış olasılıklarına bağlı olan bir matrisin özdeğerleri ile tanımlanan ve Y sürecine
ait karakteristik yüzey üzerinde bulunan noktalar ile oluşturulmuştur. Çalışmamızın
bulguları ve yaklaşımının finans ve sigortacılık alanlarındaki olası uygulamaları gös-
terilmiştir.

Anahtar Kelimeler: Markov modülasyonu, rejim değişimi, çok boyutlu kısıtlı rastgele
yürüyüş, çıkış olasılıkları, nadir olaylar, sigortacılık sistemleri, piyasa yapıcılığı sis-
temi, kuyruk sistemleri, karakteristik yüzey, süperharmonik fonksiyonlar, afin dönüşüm
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Markov Modulation/regime switch is one of the most popular methods of building

richer models for a wide range of applications from finance to computer networks to

queueing theory. Markov modulated stochastic processes are those in which the dy-

namics of the underlying X process is affected by the changes in a secondary Markov

process M modeling the environment within which X operates [23]; if the dynamics

of M is independent of that of X the environment is said to be external, otherwise

internal. Constrained processes in general, and constrained random walks in partic-

ular are used to model processes where there are natural barriers to the dynamics of

the underlying processes that keep them within a given set. Most human-made sys-

tems are of this type, for example, computer networks, machines, systems serving

customers, factories, etc. In finance and insurance applications constraints can rep-

resent short selling constraints, dividend payments or the total number of securities

available for trading. We give two examples of these in Chapter 5 one in modeling

the reserves of an insurance system operating under possible regime switches and an-

other in the inventory management of a market maker, again operating under possible

regime switches.

This thesis will concern itself with the approximation of the probability of a failure of

a system whose dynamics are modeled by a Markov modulated constrained random

walk (the precise probability of interest is given in (1.5)). Analysis, simulation and

approximation of this probability, for ordinary (non-modulated) constrained random

walks have received great interest at least since [15] and we review some of the re-

lated literature below. However there is hardly any study on the same probability for
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modulated constrained random walks, in fact we are aware of only [27], we comment

further on this below. For this reason, this thesis will focus on one of the simplest mul-

tidimensional constrained random walks, the tandem walk, arising from the modeling

of two servers working in tandem. Next we describe the dynamics of this process.

The tandem walk, which we will denote by X , is the constrained random walk on Z
2
+

with increments {I1, I2, I3, ...}, constrained to remain in Z
2
+:

X0 = x ∈ Z
2
+, Xk+1

.
= Xk + π(Xk, Ik−1), k = 1, 2, 3, ...

π(x, v)
.
=











v, if x+ v ∈ Z
2
+,

0, otherwise.

We assume the distribution of the increments Ik to be modulated by a Markov Chain

M with state space M (with finite size |M|) and with transition matrix P ∈ R
|M|×|M|
+ .

To ease analysis we will assume P to be irreducible, which implies that it has a unique

stationary measure π on M, i.e., π = πP. Let Fk
.
= σ({Mj, j ≤ k + 1}, {Xj , j ≤

k}), i.e. σ-algebra generated by M and X . The increments I form an independent

sequence given M and the increment Ik has the following distribution given Fk−1:

Ik ∈ {(0, 0), (1, 0), (−1, 1), (0,−1)},

P(Ik = (0, 0)|Fk−1) = 1{Mk 6=Mk−1}

P(Ik = (1, 0)|Fk−1) = λ(Mk)1{Mk=Mk−1}

P(Ik = (−1, 1)|Fk−1) = µ1(Mk)1{Mk=Mk−1}

P(Ik = (0,−1)|Fk−1) = µ2(Mk)1{Mk=Mk−1}.

The process (X,M) represents the dynamics of the embedded random walk of a

continuous time queueing system (or computer network, or two algorithms running

in tandem on a computer) consisting of two tandem queues whose arrival and service

rates are determined by a finite state Markov process M (see Figure 1.1).

λ(m)

queue 1 queue 2

µ1(m)
server 1 server 2

µ2(m)

Figure 1.1: Markov modulated two tandem queues
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(X,M) has the following dynamics:

• If the current state of M is Mk−1, M jumps to state Mk with transition proba-

bility P (Mk−1,Mk). In this situation, Ik takes value 0, which means there is no

increment.

• If the current state of M does not change with transition probability

P (Mk−1,Mk−1), i.e. Mk−1 = M , Ik takes value (1, 0) with arrival rate λ(Mk),

or (−1, 1) with service rate µ1(Mk) or (0,−1) with service rate µ2(Mk). Hence,

Ik takes a nonzero value only when the state of M does not change.

These dynamics are shown in Figure 1.2 where transition between states is repre-

sented by the multilayer structure.

µ2(m)

M = |M|

M = |M| − 1

M = 2

M = 1

µ1(m)

∂An

λ(m)

Figure 1.2: Markov modulated Constrained Random Walk (X,M); the left figure

shows dynamics in a given layer, the right figure shows jumps between layers repre-

senting regime switches

We assume (X,M) to be stable:

∑

m∈M

(λ(m)− µi(m))π(m)P (m,m) < 0, i = 1, 2. (1.1)

Stability is a natural assumption in any designed system, it means that the designed

system can serve on average faster than the service demand that it is expected to meet.

If X is used to model the finances of a system of companies stability means that the

companies are profitable on average. Throughout this thesis we will work with stable

processes.
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In addition to (1.1), for our analysis we need two further technical assumptions, see

(2.20) and (2.21). Stability means that the queueing system represented by (X,M)

serves customers on average faster than the customer arrival rate which keeps the

lengths of both queues close to 0 at all times with high probability; but (X,M) being

a random process, components of X can get arbitrarily high if one waits long enough.

For a stable constrained random walk such as (X,M) it is natural to measure time

in cycles that restart each time X hits 0. If the system represented by this walk

has a shared buffer where all customers wait (or where packets are stored, if, e.g.,

(X,M) represents a network of two computers in tandem) then a natural question is

the following: what is the probability that a given cycle ends with a system failure,

i.e., a buffer overflow? This problem is represented mathematically as follows: define

the region

An =
{

x ∈ Z
2
+ : x(1) + x(2) ≤ n

}

(1.2)

and its boundary

∂An =
{

x ∈ Z
2
+ : x(1) + x(2) = n

}

. (1.3)

Ao
n will denote the interior An− ∂1∪ ∂2. Similarly, Z2,o

+ will denote the Z2
+− ∂1∪ ∂2.

Let τn be the first time X hits ∂An:

τn
.
= inf{k ≥ 0 : Xk ∈ ∂An}, n = 0, 1, 2, 3, .. (1.4)

Then the buffer overflow probability described above is

pn(x,m)
.
= P(x,m)(τn < τ0). (1.5)

The main aim of this thesis is to develop formulas for the approximation of the prob-

ability pn; for this we will follow the approach developed in [30, 31]. Stability im-

plies that when x is away from the exit boundary ∂An, pn decays exponentially in

n, making the buffer overflow event rare. The approximation of this probability, in

the context of non-modulated random walks, has received great attention over the last

thirty years or so using a range of techniques including rare event simulation and large

deviations analysis, see [1, 10, 17, 32]. [22] is the first paper to suggest an heuris-

tic importance sampling algorithm to estimate pn by simulation. They proposed a

change of measure, interchanging the arrival rate with the smallest service rate, based

on previous large deviation results proposed by [33]. However, the performance of

importance sampling measure suggested in [22] was found far from perfection for a

4



range of parameters [15] and even in some cases with infinite variance [9]. A detailed

literature review is given in Chapter 6.

The problem, even for the simple two dimensional tandem walk is difficult; there are

two sources of difficulty: multidimensionality, and the discontinuous dynamics of the

problem on the constraining boundaries. In short, the problem has a nontrivial geom-

etry (if, there were no constraining boundaries, for the exit boundary ∂An, the com-

putation of pn can essentially be reduced to a single dimension (distance from ∂An)

allowing simple approximative formulas). Asymptotically optimal importance sam-

pling algorithms for the problem were constructed in [11], which proposed a dynamic

importance sampling algorithm based on subsolutions of a related Hamilton Jacobi

Bellman (HJB) and its boundary conditions. The approach of [11] is tightly connected

to the large deviations analysis of pn, which identifies the exponential decay rate of pn.

Large deviations analysis is based on transforming pn to Vn = −(1/n) log pn, scaling

space by 1/n and and taking limits; the limit V of Vn satisfies the HJB equation men-

tioned above. The works [30, 31] obtained sharp estimates of pn for non-modulated

two dimensional tandem walk using an affine transformation of the process X (see

Figure 1.3). One of the goals of the present work is to show that the same transforma-

tion approach can be extended to the much more challenging modulated constrained

random walk framework. Markov modulation complicates almost every aspect of the

problem: the underlying functions, the geometry of the characteristic surfaces, the

limit analysis, etc. but remarkably, as this thesis shows, it turns out to be possible to

extend the affine transformation approach of [30] to Markov modulated/regime switch

dynamics. A detailed comparision with non-modulated case is given in Section 7.1.

To the best our knowledge, there is very limited research on the analysis of this over-

flow probability pn for Markov modulated constrained random walks; in fact, we are

only aware of the article [27] which develops asymptotically optimal importance sam-

pling algorithms for the approximation of pn for the two tandem constrained random

walk. In doing this, a necessary step is also to compute the large deviation decay rate

of pn; this was also done in [27] and a note [25] accompanying it. The analysis in

these works is based on, following [11], the sub and supersolutions of a limit HJB

equation.
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Now, we summarize our analysis and give the main result.

(Y,M)

nen0nen

(X,M)

Tn n → ∞

∂Bn
∂B∂An

(Y n,M)

Figure 1.3: The transformation of (X,M)

Denote the constraining boundaries by ∂i
.
= {x ∈ Z

2 : x(i) = 0}, i = 1, 2. Thanks to

the Markov property, the following dynamic equations can be written for the process

(X,M):

pn(x,m) = 0 if X = (0, 0),

pn(x,m) = 1 if X ∈ ∂An,

pn(x,m) = p(x+ (1, 0),m)λ(m)P (m,m) + p(x+ (−1, 1),m)µ1(m)P (m,m)

+ p(x+ (0,−1),m)µ2(m)P (m,m) +
∑

n∈M,n 6=m

p(x, n)P (m,n) if X ∈ A0
n,

pn(x,m) = p(x+ (1, 0),m)λ(m)P (m,m) + p(x,m)µ1(m)P (m,m)

+ p(x+ (0,−1),m)µ2(m)P (m,m) +
∑

n∈M,n 6=m

p(x, n)P (m,n) if X ∈ ∂1,

pn(x,m) = p(x+ (1, 0),m)λ(m)P (m,m) + p(x+ (−1, 1),m)µ1(m)P (m,m)

+ p(x+m)µ2(m)P (m,m) +
∑

n∈M,n 6=m

p(x, n)P (m,n) if X ∈ ∂2.

Unfortunately, it is unfeasible to solve such a system numerically due to the large

state space. The number of unknowns increases by n2. As mentioned above, the

work [30, 31] proposed a general approach to the approximation of probabilities of

type pn. Figure 1.3 describes the transformation. The proposed transformation is that

move the origin (0, 0) to the corner point (n, 0) on the exit boundary. (Y n,M) is

the same process with (X,M). When n goes to infinity, (Y n,M) turns into the limit

process (Y,M) constrained only on ∂2.
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Define

I
.
=





−1 0

0 1



 ,

and the affine transformations

Tn = ne1 + I

where (e1, e2) is the standard basis for R2. Furthermore, define the constraining maps

π1(y, v) =











v, if y + v ∈ Z× Z+,

0, otherwise.

Define Y to be the M -modulated constrained random walk on Z+×Z with increments

Jk
.
= IIk : (1.6)

Yk+1 = Yk + π1(Yk, Jk).

Y has the same increments as X , but the probabilities of the increments e1 and −e1

reversed. Define the region

B
.
= {y ∈ Z× Z+ : y(1) ≥ y(2)}

and the exit boundary

∂B
.
= {y ∈ Z× Z+ : y(1) = y(2)} ,

Let τ is the hitting time

τ
.
= inf {k : Yk ∈ ∂B} .

Y is a process constrained to Z×Z+ with the constraining boundary ∂2; Z×Z
o
+ will

denote the interior Z× Z+ − ∂2 of this set.

Our main approximation result is the following:

Theorem (Theorem 3.15). For any x ∈ R
2
+, x(1) + x(2) < 1, x(1) > 0, and m ∈ M

there exist constants c > 0, ρ ∈ (0, 1) and N > 0 such that

|P(xn,m)(τn < τ0)− P(Tn(xn),m)(τ < ∞)|

P(xn,m)(τn < τ0)
< ρcn (1.7)

for n > N , where xn = ⌊xn⌋.
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Theorem 3.15 states that, as n increases, P(Tn(xn),m)(τ < ∞) gives a very good ap-

proximation of P(xn,m)(τn < τ0). The main ideas in the proof of Theorem 3.15 are

the same as those used in [30, 31] 1) the difference between the events {τn < τ0} and

{τ < ∞} can be characterized by the occurance of very specific events of the form

“X first hitting ∂1 then ∂2 and then ∂An” 2) the probability of these detailed events

are very small compared to the probabilites of the events {τn < τ0} and {τ < ∞}.

The challenges in the analysis come from in the implementation of these ideas in the

modulated framework. To find our bounds we will use the (Y,M)-harmonic and su-

perharmonic functions constructed in Chapter 2 from single and conjugate points on

the corresponding characteristic surface. An upper bound for P(y,m)(τ < ∞) using

these functions is given in Section 3.1. Section 3.2 constructs an upper bound for a

specific event characterizing the difference of the events {τn < τ0} and {τ < ∞}. A

lower bound for P(x,m)(τn < τ0) based on subharmonic functions constructed from

the functions of Chapter 2 is given in Section 3.3. These steps are combined in Sec-

tion 3.4 to prove our main approximation theorem, Theorem 3.15.

With Theorem 3.15 we know that P(x,m)(τn < τ0) can be approximated very well

with P(Tn(x),m)(τ < ∞). In the non-modulated case an exact formula for Py(τ < ∞)

can be constructed by linearly combining only two Y -harmonic functions. This is

no longer possible in the modulating case and therefore approximate formulas for

P(y,m)(τ < ∞) must be constructed. Chapter 4 tackles this problem; to do this,

we identify further points on the characteristic surface and derive further (Y,M)-

harmonic functions from them to construct increasingly accurate formulas for this

probability. A numerical example is also provided showing the effectiveness of the

resulting approximations. Chapter 5 gives two examples of applications from insur-

ance and finance. Chapter 6 is a further review of the literature related to the research

presented in this thesis. Section 7.1 of the Conclusion (Chapter 7) compares the anal-

ysis of the current work with the non-modulated tandem walk treated in [30, 31] and

the non-modulated parallel walk treated in [34]. Finally, we summarize our analysis

and results with an outlook to future work in Section 7.2 of the Conclusion.
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CHAPTER 2

HARMONIC FUNCTIONS

2.1 Harmonic functions of (Y,M)

A function h on Z× Z+ ×M is said to be (Y,M)-harmonic if

E(y,m)[h(Y1,M1)] = h(y,m), (y,m) ∈ Z
1,2 ×M; (2.1)

if we replace = with ≥ [≤], h is said to be (Y,M)-subharmonic [superharmonic].

For the case |M| = 1 (i.e., no modulation), [30, 31] looked for Y -harmonic functions

which were linear combinations of functions of the form [(β, α), ·] where

y 7→ [(β, α), y] = βy(1)−y(2)αy(2), (β, α) ∈ C. (2.2)

The studies [30, 31] chose (β, α) from the roots of a characteristic polynomial asso-

ciated with the process Y .

With Markov modulation we have an additional state variable m, this leads to the

following generalization of (2.2)

(y,m) 7→ βy(1)−y(2)αy(2)d(m), (2.3)

where d : M 7→ C is an arbitrary function on M. We will denote the function (2.3)

by

[(β, α, d), ·].

In the modulated case, there is a local characteristic polynomial for each modulating

state m ∈ M:

p(β, α,m)
.
= λ(m)

1

β
+ µ1(m)α + µ2(m)

β

α
; (2.4)
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p is rational in β and α, to get a polynomial representation, one must multiply it by

(βα)|M|. To define the global characteristic polynomial introduce the |M| × |M|

matrix A:

A(β, α)m1,m2

.
=











P (m1,m2), m1 6= m2,

P (m1,m1)p(β, α,m), m1 = m2,

(m1,m2) ∈ M2. Let I denote the |M| × |M| identity matrix. Attempting to find

functions of the form [(β, α, d), ·] that satisfy (2.1) leads to the following characteris-

tic equation:

A(β, α)d = d,

i.e,

p(β, α)
.
= det(I − A(β, α)) = 0, (2.5)

and d is an eigenvector of A(β, α) for the eigenvalue 1. The p of (2.5) is the global

characteristic polynomial for the modulated process (Y,M). Define the characteristic

surface for the interior:

H
.
=
{

(β, α, d) ∈ C
2+|M| : A(β, α)d = d, d 6= 0

}

.

Points on H give us (Y,M)-harmonic functions on Z× Z+ − ∂2.

Proposition 2.1. If (β, α, d) ∈ H then [(β, α, d), ·] satisfies (2.1) for y ∈ Z×Z+−∂2.

Proof. We would like to show [(β, α, d), ·] satisfies (2.1) when y ∈ Z× Z+ − ∂2 and

(β, α, d) ∈ H. By definition

E(y,m) [(β, α, d), (Y1,M1)]

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)]

+ P (m,m)(λ(m)[(β, α, d), (y + (−1, 0),m)] + µ1(m)[(β, α, d), (y + (1, 1),m)]

+ µ2(m)[(β, α, d), (y + (0,−1),m)])

Expand [(β, α, d), ((y + v),m)] terms:

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)]

+ P (m,m)(λ(m)βy(1)−y(2)−1αy(2)d(m) + µ1(m)βy(1)−y(2)αy(2)+1d(m)

+ µ2(m)βy(1)−y(2)+1αy(2)−1d(m))
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Factor out [(β, α, d), (y,m)] from the last three terms:

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)] + P (m,m)[(β, α, d), (y,m)]p(β, α,m)

= βy(1)−y(2)αy(2)

(

∑

n∈M,n 6=m

P (m,n)d(n) + P (m,m)d(m)p(β, α,m)

)

.

the expression in paranthesis equals the mth term of the vector A(β, α)d, which equals

d(m) because (β, α, d) ∈ H means A(β, α)d = d. Therefore,

= βy(1)−y(2)αy(2)d(m) = [(β, α, d), (y,m)].

This proves the claim of the proposition.

The previous proposition gives us (Y,M)-harmonic functions on Z×Z+−∂2; we will

next study the geometry of H, this will be useful in defining fully (Y,M)-harmonic

functions.

2.1.1 Geometry of the characteristic surface

Define Hβα, the projection of H onto its first two dimensions:

Hβα .
= {(β, α) ∈ C

2 : p(β, α) = 0}.

Lemma 2.2. For each (β, α) ∈ Hβα there is at least one paramater family of points

{(β, α, cd), c ∈ C − {0}} ⊂ H, for some d ∈ C
|M| − {0}. Conversely, for each

(β, α, d) ∈ H, we have (β, α) ∈ Hβα. Furthermore, all points on H can be obtained

from those on Hβα.

This follows from basic linear algebra, we provide a proof for completeness.

Proof. (β, α) ∈ Hβα implies, by linear algebra, that there exists d ∈ C
|M|, d 6= 0

such that A(β, α)d = d, i.e., (β, α, d) ∈ H. Therefore, for each point on Hβα there is

at least one point (β, α, d) on H. Furthermore, all points on H can be obtained from

those on Hβα by fixing (β, α) ∈ Hβα and solving A(β, α)d = d for d.
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β|M|α|M|p is a polynomial of degree 3|M| in (β, α), which makes, in general, the

analysis of the geometry of Hβα nontrivial. A natural approach to the study of the

geometry of this curve is through the eigenvalues of A(β, α). In this thesis we will

focus on the values of (β, α) for which these eigenvalues are simple:

Proposition 2.3. Let D ⊂ C
2 or D ⊂ R

2 be open and simply connected and suppose

A(β, α) has simple eigenvalues for all (β, α) ∈ D. Then the eigenvalues of A can be

written as |M| distinct smooth functions Λj(β, α) on D.

Proof. The argument is the same for both real and complex variables. For any point

(β, α) ∈ D that the eigenvalues Λj can be defined smoothly in a neighborhood of

(β, α) follows from [24, Theorem 5.3] and the assumption that they are distinct. Once

defined locally, one extends them to all of D through continuous extension, which is

possible because D is simply connected.

For D and Λj as in Proposition 2.3 define

Hj,D .
= {(β, α) ∈ D : Λj(β, α) = 1}.

Of particular interest to us is the open positive orthant D = R
2,o
+

.
= R

2
+ − ∂1 ∪ ∂2. In

the rest of this note we will work under the following assumption:

Assumption 2.1. A(β, α) has real distinct eigenvalues for (β, α) ∈ R
2,o
+ .

For D = R
2,o
+ we will omit the superscript D and write Hj instead of Hj,D.

The last proposition implies

Proposition 2.4. Let D and Λj , j = 1, 2, 3, ..., |M| be as in Proposition 2.3. Then

D ∩Hβα = ⊔
|M|
j=1H

j,D, (2.6)

where ⊔ denotes disjoint union.

Proof. The proof follows from the definitions involved. We need to prove the equality

in both directions :

(β, α) ∈ Hβα ⇒ (β, α) ∈ Hj,D, (β, α) ∈ Hj,D ⇒ (β, α) ∈ Hβα.
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Choose (β, α) ∈ Hβα, by definition p(β, α) = 0, i.e. d is an eigenvector of A(β, α)

for eigenvalue 1. This implies Λj(β, α) = 1 for some j which means (β, α) ∈ Hj,D.

Choose (β, α) ∈ Hj,D. Then (β, α) is a root of the polynomial p, i.e., p(β, α) = 0

which means (β, α) ∈ Hβα.

The following definitions are from [5, page 57]: A matrix is said to be totally non-

negative (totally positive) if all its minors of any degree are nonnegative (positive). A

totally nonnegative matrix is said to be oscillatory if some positive integer power of

the matrix is totally positive. If A is oscillatory, Assumption 2.1 holds:

Proposition 2.5. Suppose A(β, α) is an oscillating matrix for all (β, α) ∈ R
2,o
+ , then

A(β, α) has |M| distinct eigenvalues over R
2,o
+ .

This proposition is a basic fact on oscillating matrices [5, (6.28)]. [5, (6.26)] identifies

a particularly simple class of oscillating matrices:

Proposition 2.6. Suppose G(1, 1), G(1, 2), G(|M| − 1, |M|), G(|M|, |M|) and

G(j, j − 1), G(j, j), G(j, j + 1), j = 2, 3, 4, ..., |M| − 1 are all strictly positive

and the rest of the components of G are all zero, i.e., G is tridiagonal with strictly

positive entries. Then G is an oscillatory matrix.

We will call any tridiagonal matrix with strictly positive entries on the three diago-

nals “strictly tridiagonal.” By the above proposition any strictly tridiagonal matrix is

oscillatory. In particular, if P is strictly tridiagonal, A(β, α) will also be of the same

form for all (β, α) ∈ R
2
+; therefore, for such P Assumption 2.1 always holds.

For (β, α) ∈ R
2,o
+ , A(β, α) is a matrix with positive entries. Perron-Frobenius Theo-

rem implies that A(β, α) has a simple positive eigenvalue dominating all of the other

eigenvalues in absolute value. Λ1(β, α) will always denote this largest eigenvalue.

Furthermore, if A(β, α) has distinct real eigenvalues for (β, α) ∈ R
2,o
+ , we will label

them so that

Λj(β, α) > Λi(β, α), for j < i,

i.e., the eigenvalues are assumed to be sorted in descending order. If A(β, α) has

simple real eigenvalues for (β, α) ∈ R
2,o
+ we can define

Rj .
= {(β, α) ∈ R

2,o
+ : Λ(β, α) ≤ 1}.
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The continuity of Λj implies

Hj = ∂Rj.

Proposition 2.7. Suppose A(β, α) has simple real eigenvalues for (β, α) ∈ R
2,o
+ .

Then the curve Hj is strictly contained inside the curve Hj+1 for j = 1, 2, 3, ..., |M|−

1.

Proof. All diagonal entries of A(β, α) tend to ∞ when (β, α) → ∂R2,o
+ . This and

Gershgorin’s Theorem [19, Appendix 7], imply Λj(β, α) → ∞ for (β, α) → ∂R2,o
+ .

This implies in particular that Rj is a compact subset of R2,o
+ . Secondly, Λj+1 < Λj

implies Rj ⊂ Rj+1; the compactness of these sets, the strictness of the inequality

Λj+1(β, α) < Λj(β, α) imply that ∂Rj = Hj lies strictly within Rj+1 with strictly

positive distance from the boundary Hj+1 of Rj+1; this proves the claim of the propo-

sition.

The decomposition of Hβα ∩ R
2,o
+ into Hj is shown in Figure 2.1 for the transition

matrix

P =









0.6 0.4 0

0.1 0.4 0.5

0 0.2 0.8









. (2.7)

The matrix P of (2.7) is strictly tridiagonal; therefore, Proposition 2.6 applies and

A(β, α) has distinct real eigenvalues for all (β, α) ∈ R
2,o
+ and we have the decom-

position (2.6) of Hβα ∩ R
2,o
+ given by Propositions 2.4 and 2.7; Figure 2.1 illustrates

Hβα and its components Hj; the jump probabilities for this example are









0.1 0.4 0.5

0.12 0.41 0.47

0.09 0.39 0.52









(2.8)

where the ith row equals (λ(i), µ1(i), µ2(i)).
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Figure 2.1: Level curves

By Proposition 2.1 and Lemma 2.2 each point on any of the curves depicted in Fig-

ure 2.1 gives a Y -harmonic function on Z × Z
o
+. Most of our analysis will be based

on points on the innermost curve H1, the 1-level curve of the largest eigenvalue Λ1;

before identifying the relevant points, let us look at two different methods of con-

structing (Y,M)-harmonic functions from points on Hβα.

2.1.2 Construction of (Y,M)-harmonic and superharmonic functions

Parallel to [30, 31], we can proceed in two ways to get functions that satisfy (2.1) for

y ∈ ∂2 as well as the interior. The first is by defining the characteristic polynomial
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p1, the boundary matrix A1, and the boundary surface H1:

p1(β, α,m)
.
= λ(m)

1

β
+ µ1(m)α + µ2(m), m ∈ M,

A1(β, α)m1,m2

.
=











P (m1,m2), m1 6= m2

P (m1,m1)p1(β, α,m), m1 = m2,
, (m1,m2) ∈ M2,

H1
.
=
{

(β, α, d) ∈ C
2+|M| : A1(β, α)d = d

}

.

Define Λ1
1(β, α) to be the largest eigenvalue of A1(β, α). Parallel to the interior case,

define

Hβα
1

.
= {(β, α) ∈ C

2 : p1(β, α) = 0},

H1
1
.
= {(β, α) ∈ C

2 : Λ1
1(β, α) = 1}.

Proposition 2.8. [(β, α, d), ·] is (Y,M)-harmonic if (β, α, d) ∈ H ∩H1.

Proof. Proposition 2.1 says that for (β, α, d) ∈ H, [(β, α, d), ·] satisfies the harmonic-

ity condition when y ∈ Z×Z+−∂2. Similar to the proof of Proposition 2.1, we would

like to show that [(β, α, d), ·] is (Y,M)-harmonic on ∂2 when (β, α, d) ∈ H1. By def-

inition

E(y,m) [(β, α, d), (Y1,M1)]

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)]

+ P (m,m)(λ(m)[(β, α, d), (y + (−1, 0),m)] + µ1(m)[(β, α, d), (y + (1, 1),m]

+ µ2(m)[(β, α, d), (y,m)])

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)]

+ P (m,m)(λ(m)βy(1)−1d(m) + µ1(m)βy(1)αd(m) + µ2(m)βy(1)d(m))

=
∑

n∈M,n 6=m

P (m,n)[(β, α, d), (y, n)] + P (m,m)[(β, α, d), (y,m)]p1(β, α,m)

= βy(1)

(

∑

n∈M,n 6=m

P (m,n)d(n) + P (m,m)d(m)p1(β, α,m)

)

.

the expression in paranthesis equals the mth term of the vector A1(β, α)d, which

equals d(m) because (β, α, d) ∈ H1 means A1(β, α)d = d. Therefore,

= βy(1)d(m) = [(β, α, d), (y,m)].
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This argument and Proposition 2.1 proves the claim of the proposition.

The real sections of Hβα and Hβα
1 are 1 dimensional curves and their intersection will

in general consist of finitely many points. In the analysis of the tandem walk with no

modulation, these points can easily be identified explicitly. There turns out to be three

of them, of which only one is nontrivial (i.e., different from 0 and 1). In the present

case, there will in general be |M| nontrivial such points on Hβα ∩Hβα
1 ; the largest of

them is of special significance, and can be identified using the implicit function theo-

rem and the stability assumption (1.1). This point and the (Y,M)-harmonic function

it defines are given in Proposition 2.11 and 2.12 below. For the argument we need

two auxilary linear algebra results, these are given as Lemmas 2.9 and 2.10.

For a square matrix M , let M i,j denote the same matrix with its ith row and jth

column removed.

Lemma 2.9. Suppose B is an irreducible |M| × |M| matrix. Then

det ((Λ1(B)I −B)i,i) > 0 for all i ∈ {1, 2, 3, ..., |M|}, where I is the |M| × |M|

identity matrix.

Proof. The argument is the same for all i ∈ {1, 2, 3, ..., |M|}; so it suffices to argue

for i = 1. Suppose the claim is not true and

det
(

(Λ1(B)I −B)1,1
)

≤ 0. (2.9)

Consider the function r 7→ g(r) = det ((rI −B)1,1), r ≥ 0. The multilinearity and

continuity of det implies limrր∞ g(r) = ∞. This implies that if (2.9) is true there

must be r0 ≥ Λ1(B) such that det ((r0I −B)1,1) = 0, i.e., Λ1 (B
1,1) = r0 ≥ Λ1(B).

Let b1 ∈ R
d−1
+ denote the eigenvector B1,1 corresponding to r0.

For two vectors x, y ∈ R
d, let x ≥ y and x > y denote componentwise comparison.

Define b = [0; b1] ∈ R
d; it follows from B1,1b1 = r0b and the positivity of the

components of B and b1 that one can choose δ > 0 small enough so that

Bb > (r0 + δ)b. (2.10)

We know that

Λ1(B) = sup{c : ∃x ∈ R
d
+, Bx ≥ cx}, (2.11)
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(see [19, Proof of Theorem 1, Chapter 16]). This and (2.10) imply Λ1(B) ≥ r0 + δ,

which contradicts r0 ≥ Λ1(B).

The following fact was used in the proof of [27, Lemma 4.4], its proof is elemen-

tary and follows from the multilinearity of the determinant function and the previous

lemma.

Lemma 2.10. Let B be an irreducible transition matrix. Then the row vector whose

ith component equals det ((I −B)i,i) is the unique (upto scaling by a positive num-

ber) left eigenvector associated with the eigenvalue 1 of B.

The next proposition identifies the first point on Hβα that will play an important role

in our analysis. The proof, based on the implicit function theorem, is parallel to that

of [27, Lemma 4.4].

Proposition 2.11. Under assumption (1.1) there exists 0 < ρ1 < 1 such that (ρ1, ρ1) ∈

Hβα ∩ Hβα
1 , i.e., 1 is an eigenvalue of A1(ρ1, ρ1) and A(ρ1, ρ1). Furthermore, 1 is

the largest eigenvalue of A(ρ1, ρ1) and A1(ρ1, ρ1), i.e., (ρ1, ρ1) ∈ H1 ∩H1
1.

Proof. For q ∈ R
2 define

H(q)
.
= − logΛ

(

eq(1), eq(2)
)

.

By [27, Lemma 4.2, 4.3], H is convex in q. Proceeding parallel to [27, Proof of

Lemma 4.4, page 515] define f(Λ, r)
.
= det(ΛI − A(er, er)). We know that

f(Λ1(e
r, er), r) = 0 for r ∈ R. To prove our proposition, we will apply the implicit

function theorem to f at (1, 0) to prove that r 7→ Λ1(e
r, er) is decreasing at r = 0.

Differentiating f at (1, 0) with respect to r gives

∂f

∂r

∣

∣

∣

∣

(1,0)

=
∑

m∈M

(λ(m)− µ1(m))P (m,m) det(I − P )m,m,

which equals, by Lemma 2.10, for some constant c0 > 0,

= c0
∑

m∈M

(λ(m)− µ1(m))P (m,m)π(m)

< 0
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where the last inequality follows from the stability assumption (1.1). Similarly, dif-

ferentiation of f at (1, 0) with respect to Λ gives:

∂f

∂Λ

∣

∣

∣

∣

(1,0)

= 1.

This implies that the implicit function theorem is applicable to f ; the last two display

give:
d

dr
Λ1(e

r, er)|(0,0) > 0.

On the other hand, Gershgorin’s Theorem implies Λ1(e
r, er) → ∞ as r → −∞

(because of the λ(s)/β term appearing in the diagonal terms of A, tending to +∞

with β = er). Then we have Λ1(e
r, er) is monotone at r = 0 (decreases when r

decreases) and tends to infinity as r → −∞. By the continuity of Λ1, there must

exist at least one point in (0,∞) where Λ1(e
r, er) takes the value 1; the convexity of

H implies that such a point is unique, i.e., there is a unique point r∗ < 0 such that

Λ1(e
r∗ , er

∗
) = 1. Setting ρ1 = er

∗
proves the proposition.

Let d1 be an eigenvector of A(ρ1, ρ1) corresponding to the eigenvalue 1; because 1

is the largest eigenvalue of A(ρ1, ρ1) and because A(ρ1, ρ1) is irreducible, we can

choose d1 so that all of its components are strictly positive; (ρ1, ρ1) ∈ Hβα ∩ Hβα
1

implies (ρ1, ρ1,d1) ∈ H1 ∩ H1
1. This and Proposition 2.11 give us our first (Y,M)-

harmonic function:

Proposition 2.12.

hρ1
.
= [(ρ1, ρ1,d1), ·] (2.12)

is (Y,M)-harmonic.

The second way of obtaining (Y,M)-harmonic functions is through conjugate points

on Hβα. The function α|M|p is a polynomial of degree 2|M| in α. By the fundamental

of theorem of algebra, α|M|p has 2|M| roots, α1(β), ..., α2(β),..., α2|M|(β), in C

for each fixed β ∈ C. We will refer to the points (αi(β)), i = 1, 2, 3, ...., 2|M|,

as conjugate points. We know by Lemma 2.2 that corresponding to these conjugate

points, we have 2|M| conjugate points (αi(β), di), i = 1, 2, 3, ...., 2|M|, on H.

In the non-modulated case, i.e., when |M| = 1, αp is only of second order, therefore,

the conjugate points come in pairs, and given one of the points in the pair, the other
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can be computed easily; in the modulated case, there are obviously no simple formu-

las to obtain all of the conjugate points given one among them, because computation

of conjugate points involves finding the roots of a polynomial of degree 2|M|. For

(β, α, d) ∈ H define

C(β, α, d) ∈ C
M, C(β, α, d)(m) = P (m,m)µ2(m)d(m)

(

1−
β

α

)

. (2.13)

One can, in general, take linear combinations of conjugate points on H to define

(Y,M)-harmonic functions. This is based on the following lemma

Lemma 2.13. Suppose (β, α, d) ∈ H. Then

E(y,m)[h(Y1,M1)]− h(y,m) = βy(1)C(β, α, d)(m), (2.14)

where C is defined as in (2.13) for y ∈ ∂2.

Proof. The computation in the proof of Proposition 2.1 gives

E(y,m) [(β, α, d), (Y1,M1)] (2.15)

= βy(1)

(

∑

n∈M,n 6=m

P (m,n)d(n) + P (m,m)d(m)p1(β, α,m)

)

On the other hand, (β, α, d) ∈ H means

[(β, α, d), (y,m)] (2.16)

= βy(1)d(m) = βy(1)

(

∑

n∈M,n 6=m

P (m,n)d(n) + P (m,m)d(m)p(β, α,m)

)

.

Subtracting the last display from (2.15) gives

E(y,m)[h(Y1,M1)]− h(y,m)

= βy(1)P (m,m)µ2(m)d(m)

(

1−
β

α

)

= βy(1)C(β, α, d)(m),

which proves (2.14).

We can use the same argument to write the above lemma in the following equivalent

form:

Lemma 2.14. Suppose (β, α, d) ∈ H. Then

(A1(β, α)d)(m) = d(m) + C(β, α, d)(m), m ∈ M.
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The following proposition identifies a family of (Y,M)-harmonic functions con-

structed from conjugate points on H.

Proposition 2.15. For β ∈ C let (β, αi, di) i = 1, 2, 3, ..., l ≤ 2|M| be distinct conju-

gate points on H. Take any subcollection {i1, i2, ..., ik}, k ≤ l such that C(β, αij , dij)

are linearly dependent, i.e., there exists b ∈ C
k such that

k
∑

j=1

b(j)C(β, αij , dij) = 0. (2.17)

Then

h(y,m) =

|M|+1
∑

j=1

b(j)[(β, αij , dij), ·] (2.18)

is (Y,M)-harmonic.

For any β ∈ C such that p(β, α) = 0 has distinct roots, α1, α2,...,α2|M|, that are all

different from β, by definition, we have C(β, αj , dj) 6= 0 for all j = 1, 2, ..., 2|M|.

Therefore, for such β, and for any subcollection αj1 , αj2 , ..., αjk , with k ≥ |M| + 1,

we can find a nonzero vector b satisfying (2.17).

Proof. We already know from Proposition 2.1, harmonic functions of the form

[(β, αi, di), ·] are (Y,M)-harmonic in the interior Z×Z+−∂2. So, their linear combi-

nations are also (Y,M)-harmonic in the interior and we need to check the harmonicity

for y ∈ ∂2. By Lemma 2.13

E(y,·) [(β, αi, di), Y1]− [(β, αi, di), (y, ·)] = βy(1)C(β, αi, di). (2.19)

Taking linear combinations of these with weight vector b gives:

E(y,·) [h(Y1,M1)]− h(y, ·) = βy(1)

(

k
∑

j=1

b(j)C(β, αij , dij)

)

which equals 0 ∈ R
|M| by (2.17). This proves that h is (Y,M)-harmonic on ∂2.

Our primary aim in constructing the (Y,M)-harmonic functions of the present sec-

tion is to compute/bound the probability P(y,m)(τ < ∞), for (y,m) ∈ B ×M. The

function (y,m) 7→ P(y,m)(τ < ∞) is ∂B-determined (Y,M)-harmonic function tak-

ing the value 1 on ∂B. For α = 1, [(β, 1, d), ·] takes the value d(m) on ∂B (i.e.

21



independent of the position on ∂B), which makes α = 1 of special significance. The

next proposition identifies a point on H1 of the form (ρ2, 1) with 0 < ρ2 < 1; we

will use this point and its conjugates to construct (Y,M)-harmonic functions through

Proposition 2.15; we will also construct (Y,M)-superharmonic functions from them

to use in our error analysis, which is a new feature of the present setup. Assumption

(1.1) gives a point (ρ2, 1), 0 < ρ2 < 1 on H1:

Proposition 2.16. Under assumption (1.1) there exists 0 < ρ2 < 1 such that (ρ2, 1) ∈

H1 ⊂ Hβα; i.e., 1 is the largest eigenvalue of A(ρ2, 1).

Proof. The proof is parallel to that of Proposition 2.11. We now define f(λ, r) =

det(λI − A(er, 1)) and observe, by assumption (1.1) and Lemma 2.10,

∂f

∂r

∣

∣

∣

∣

(1,0)

=
∑

m∈M

(λ(m)− µ2(m))P (m,m) det(I − P )m,m

= c0
∑

m∈M

(λ(m)− µ2(m))P (m,m)π(m) < 0

for some constant c0 > 0. The rest of the proof proceeds as in the proof of Proposition

2.11.

Recall that (ρ2, 1) ∈ H1, i.e., 1 is the largest eigenvalue of A(ρ2, 1); the irreducibil-

ity of A implies that the eigenvectors corresponding to 1 has all negative or positive

components; let d2 denote a right eigenvector of A(ρ2, 1) corresponding to the eigen-

value 1 with all positive components. Proposition 2.1 and the previous proposition

imply that [(ρ2, 1,d2), ·] is (Y,M)-harmonic on Z× Z+ − ∂2. All of the prior works

([30, 31, 34]), use a conjugate point of (ρ2, 1) to construct (Y )-harmonic functions.

In the present case, in general, (ρ2, 1) will have 2|M| − 1 conjugate points. Figure

2.1 suggests that only one of these conjugate points lies on H1; we will use (ρ2, 1)

along with this conjugate to define (Y,M)-superharmonic functions. This will be in

two steps. Proposition 2.17 identifies the relevant conjugate point; Proposition 2.21

constructs the superharmonic function. We will use the superharmonic function in

Chapter 3, section 3.1 and 3.2 below in our analysis of the relative error (1.7).

The identification of the conjugate point requires the following assumption:

∑

m∈M

(ρ2µ2(m)− µ1(m))P (m,m) det(I − A(ρ2, 1))
m,m < 0. (2.20)
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Remark 2.1 comments on this assumption and Proposition 2.18 gives simple condi-

tions under which (2.20) holds.

Proposition 2.17. Let (ρ2, 1), ρ2 ∈ (0, 1) be the point on H1 identified in Proposition

2.16. Then there exists a unique point (ρ2, α
∗
1), α

∗
1 ∈ (0, 1) if (2.20) holds.

Proof. Set r2 = log(ρ2). Proof is parallel to those of Propositions 2.11 and 2.16 and

is based on the analysis of the function H at the point (r2, 0) via the implicit function

theorem. Define f(λ, r) = det(λI − A(ρ2, e
r)) and observe

∂f

∂r

∣

∣

∣

∣

(r2,0)

=
∑

m∈M

(ρ2µ2(m)− µ1(m))P (m,m) det(I − A(ρ2, 1))
m,m,

which, by assumption (2.20), is strictly less than 0. The rest of the proof goes as that

of Proposition 2.11.

Remark 2.1. Assumption (2.20) ensures that (ρ2, 1) has a conjugate point on the prin-

cipal characteristic surface H1 with α component less than 1. There is no corre-

sponding assumption in the non-modulated tandem case, because, in that setup, the

conjugate of (ρ2, 1) is (ρ2, ρ1) whose α component ρ1 is always less than 1 by the

stability assumption. In the simple constrained random walk case (treated in [34]) the

corresponding assumption is r2 < ρ2 (see [34, Display (14)]).

The condition α∗
1 < 1 is needed for the superharmonic function constructed in Propo-

sition 2.21 to be bounded on ∂B, see Proposition 3.2.

Proposition 2.18. Each of the following conditions are sufficient for (2.20) to hold:

1. λ(m)/µ2(m) < 1, λ(m) < µ1(m) for all m ∈ M and the ratio λ(m)/µ2(m)

does not depend on m,

2. µ2(m) < µ1(m) for all m ∈ M.

Proof. If λ(m)/µ2(m) < 1 does not depend on m we can denote the common ratio

by ρ′2 < 1. Substituting (β, α) = (ρ′2, 1) we see that A(ρ′2, 1) = P. This implies the

root ρ2 identified in Proposition 2.16 must equal ρ′2. Setting ρ2 = ρ′2 on the left side
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of (2.20) gives

∑

m∈M

(ρ2µ2(m)− µ1(m))P (m,m) det(I − A(ρ2, 1))
m,m

=
∑

m∈M

(ρ′2µ2(m)− µ1(m))P (m,m) det(I − A(ρ2, 1))
m,m

=
∑

m∈M

(λ(m)− µ1(m))P (m,m) det(I − A(ρ2, 1))
m,m

det(I − A(ρ2, 1))
m,m > 0 by Lemma 2.9, and λ(m) < µ1(m) by assumption; these

and the last line imply (2.20):

< 0.

That the condition µ2(m) < µ1(m) for all m ∈ M implies (2.20) follows from a

similar argument.

Remark 2.2. The argument used in the proof above can be used to prove that the

conjugate point (ρ2, α∗
1) satisfies α∗

1 > 1 if one replaces < with > in (2.20).

For the rest of our analysis we will need a further assumption:

ρ1 6= ρ2, (2.21)

where ρ1 is the first (or the second) component of the point on H1 ∩ H1
1 identi-

fied in Proposition 2.11 and ρ2 is the β component of the point on H1 identified

in Proposition 2.16. Assumption (2.21) generalizes the assumption µ1 6= µ2 used in

[30, 31, 34].The following lemma identifies sufficient conditions for (2.21) to hold.

Lemma 2.19. If µ1(m) > µ2(m) for all m ∈ M, or µ1(m) < µ2(m) for all m ∈ M,

then (2.21) holds.

Proof. Note that AD = A(ρ2, ρ2)−A(ρ2, 1) is a diagonal matrix whose mth entry is

(1− ρ2)(µ2(m)−µ1(m)). Suppose µ2(m) > µ1(m) for all m ∈ M; then ρ2 ∈ (0, 1)

implies that AD has strictly positive entries. We have then:

A(ρ2, ρ2)d2 = A(ρ2, 1)d2 + ADd2

= d2 + ADd2

> (1 + ǫ)d2
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for some ǫ > 0; here we have used 1) d2 is an eigenvector of A(ρ2, 1) corresponding

to the eigenvalue 1 and 2) AD has strictly positive entries. Then by (2.11), the largest

eigenvalue of A(ρ2, ρ2) is strictly greater than 1. This implies ρ2 < ρ1. That µ1(m) >

µ2(m) for all m ∈ M implies ρ2 > ρ1 follows from the same argument applied to

A(ρ2, 1)d
∗
2.
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Figure 2.2: ρ1 − ρ2 and α∗
1 − ρ2 have the same sign (Lemma 2.20); the points marked

with ’x’ are (ρ2, ρ2), (ρ2, α∗
1) and (1, ρ2); the point marked with ’o’ is (ρ1, ρ1)

Lemma 2.20. Let (ρ2, α
∗
1) be the conjugate point of (ρ2, 1) on H1 identified in Propo-

sition 2.17. Then ρ1 > ρ2 implies α∗
1 > ρ2 and ρ1 < ρ2 implies α∗

1 < ρ2.

Figure 2.2 illustrates this lemma.

Proof. By definition ρ1 is the unique positive number strictly less than 1 satisfying

Λ1(ρ1, ρ1) = 1; ρ2 < ρ1 implies Λ1(ρ2, ρ2) > 1. But α∗
1 satisfies Λ1(ρ2, α

∗
1) = 1 and

Λ1(ρ2, ρ) ≤ 1 for ρ ∈ (α∗
1, ρ2] It follows that ρ2 < α∗

1.

The argument for the opposite implication is similar.
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Remark 2.3. By the previous lemma the assumption (2.21) is equivalent to

α∗
1 6= ρ2. (2.22)

Remark 2.4. ρ1 is the unique solution of Λ1(β, β) = 1 on (0, 1); similarly ρ2 is the

unique solution of Λ1(β, 1) = 1 on (0, 1). That Λ1 is the largest eigenvalue of A(β, α)

and the above facts imply that ρ1 [ρ2] is the largest root of p(β, β) [p(β, 1)] on (0, 1).

Therefore, another way of stating the assumption (2.21) is as follows: “the largest

roots of p(β, β) and p(β, 1) on (0, 1) differ.” We will generalize this assumption in

Chapter 4 in our computation of P(y,m)(τ < ∞).

By definition, 1 is the largest eigenvalue of A(ρ2, α∗
1); let d∗

2 denote a right eigenvec-

tor of this matrix with strictly positive entries. Here is one of the key steps of our

argument: the construction of a (Y,M)-superharmonic function that will allow us to

find upper bounds on approximation errors:

Proposition 2.21. Under assumption (2.21) one can choose a constant c0 ∈ R

( c0 > 0 for α∗
1 < ρ2 and c0 < 0 for α∗

1 > ρ2) so that

hρ2
.
= [(ρ2, 1,d2), ·] + c0[(ρ2, α

∗
1,d

∗
2), ·], (2.23)

is a (Y,M)-superharmonic function.

Proof. By their construction, the conjugate points (ρ2, 1) and (ρ2, α
∗
1) lie on H1.

This and Proposition 2.1 imply that the functions [(ρ2, 1,d2), ·] and [(ρ2, α
∗
1,d

∗
2), ·]

are (Y,M)-harmonic on Z × Z+ − ∂2. This implies the same for their linear combi-

nation hρ2 . Therefore, to prove that hρ2 is (Y,M)-superharmonic, it suffices to check

this on ∂2.

By definition hρ2 is superharmonic on ∂2 if

E(y,m)[hρ2(Y1,M1)] ≤ hρ2(y,m)

for y = (k, 0) and m ∈ M.

By Lemma 2.13,

E(y,m)[(ρ2, 1,d2), (Y1,M1)]− [(ρ2, 1,d2), (y,m)] = ρk2C(ρ2, 1,d2)(m),

E(y,m)[(ρ2, α
∗
1,d

∗
2), (Y1,M1)]− [(ρ2, α

∗
1,d

∗
2), (y,m)] = ρk2C(ρ2, α

∗
1,d

∗
2)(m),
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where C(·, ·, ·) is defined as in (2.13). The last two lines give

E(y,m)[hρ2(Y1,M1)]− hρ2(y,m) = ρk2 (C(ρ2, 1,d2)(m) + c0C(ρ2, α
∗
1,d

∗
2)(m)) .

(2.24)

For hρ2 to be superharmonic, the right side of the last display must be negative. The

sign of this expression is determined by the difference

C(ρ2, 1,d2)(m) + c0C(ρ2, α
∗
1,d

∗
2)(m). (2.25)

The definition of C and ρ2 < 1 and d2(m) > 0 for all m ∈ M imply that the first

term is strictly positive for all m ∈ M. Define

dmax
.
= max

m∈M
C(ρ2, 1,d2)(m) > 0.

The sign of the second term in (2.25) depends on whether α∗
1 < ρ2 or α∗

1 > ρ2. For

α∗
1 < ρ2, the definition (2.13) of C and d∗

2(m) > 0 for all m ∈ M imply that the C

term in (2.25) is strictly negative for all m. Define

d∗max
.
= max

m∈M
C(ρ2, α

∗
1,d

∗
2)(m) < 0. (2.26)

If we choose c0 > 0 so that

dmax + c0d
∗
max < 0, (2.27)

(2.25) will be strictly less than 0 for all m. This and (2.24) imply that hρ2 is superhar-

monic for any c0 satisfying (2.27).

For α∗
1 > ρ2 the argument remains the same except that we replace the max in (2.26)

with min and c0 < 0.

In the next chapter we will use hρ2 to find bounds on the approximation error (1.7).
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CHAPTER 3

LIMIT ANALYSIS

3.1 Upper bound for P(y,m)(τ < ∞)

The works [30, 31, 34] carried out limit analysis using harmonic functions constructed

from points on characteristic surfaces. In the present case with a modulating Markov

chain, harmonic functions are constructed in general from |M| + 1 points on the

characteristic surface Hβα, which makes analyses based on them more complex. For

this reason, we will switch to superharmonic functions whenever we can; this em-

phasis on superharmonic functions is a new feature of the present work. As we saw

in Proposition 2.21 above, (Y,M)-superharmonic functions can be constructed from

just two conjugate points on H1 ⊂ Hβα.

We will need an upper bound on P(y,m)(τ < ∞) in our analysis of the relative error

(1.7); in the non-modulated tandem walk treated in [30, 31], this probability can

be represented exactly using the harmonic functions constructed from points on the

characteristic surface, which also obviously serves as an upper bound. In the present

case, we will construct an upper bound for P(y,m)(τ < ∞) from (Y,M)-harmonic

and superharmonic functions constructed in Propositions 2.15 and 2.21. The next

proposition constructs the necessary function the one following it derives the upper

bound.

Proposition 3.1. Let hρ1 = [(ρ1, ρ1,d1), ·] be as in (2.12) and hρ2 be as in (2.23).

One can choose c1 ≥ 0 so that

c2
.
= min

y∈∂B,m∈M
hρ2(y,m) + c1hρ1(y,m) > 0; (3.1)

for α∗
1 < ρ2 one can choose c1 = 0.
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Proof. By its definition,

hρ2(y,m) = d2(m) + c0(α
∗
1)

y(2)d∗
2(m), (3.2)

for y ∈ ∂B. We know by Proposition 2.21 that c0 > 0 for α∗
1 < ρ2. This, α∗

1 > 0,

d∗
2(m) > 0 imply

max
y∈∂B

hρ2(y,m) ≥ max
m∈M

d2(m) > 0,

which implies (3.1) with c1 = 0.

For α∗
1 > ρ2, c0 < 0 and (3.2) can take negative values for small y(2). But 0 < α∗

1 < 1

implies that there exists k0 > 0 such that

hρ2(y,m) ≥ dmax/2 > 0, y ∈ ∂B, y(2) ≥ k0. (3.3)

On the other hand, d1(m) > 0 for all m ∈ M and ρ1 > 0 imply that hρ1(y,m) > 0

for all y ∈ ∂B, m ∈ M. Then one can choose c1 > 0 so that

hρ1(y,m) = c1d1(m)ρ
y(2)
1 +d2(m)+c0(α

∗
1)

y(2)d∗
2(m) > dmax/2, y ∈ ∂B, y(2) ≤ k0,

(3.4)

since there are only finitely many inequalities to be satisfied in (3.4). c1 chosen thus,

(3.3) and (3.4) imply (3.1).

Proposition 3.2. Let c1 ≥ 0, c2 > 0 be as in Proposition 3.1

P(y,m)(τ < ∞) ≤
1

c2
(hρ2(y,m) + c1hρ1(y,m)) . (3.5)

Proof. For ease of notation set

f = hρ2 + c1hρ1 ;

ρ1, ρ2, α
∗
1 ∈ (0, 1) implies

|f(y,m)| ≤ c2 < ∞, y ∈ B, m ∈ M.

Furthermore, by Propositions 2.11 and 2.21 f is (Y,M)-superharmonic. These im-

ply, that k 7→ f(Yk∧τ ,Mk∧τ ) is a bounded supermartingale. Then by the optional

sampling theorem ([13, Theorem 5.7.6])

E(y,m)[f(Yτ ,Mτ )1{τ<∞}] ≤ f(y,m);

this, Yτ ∈ ∂B when τ < ∞ and (3.1) imply

c2P(y,m)(τ < ∞) ≤ f(y,m),

which gives (3.5).
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3.2 Upper bound for P(x,m)(σ1 < σ1,2 < τn < τ0)

Define

ρ
.
= ρ1 ∨ ρ2. (3.6)

The goal of the section is to prove

Proposition 3.3. For any ǫ > 0 there exists n0 > 0 such that

P(x,m)(σ1 < σ1,2 < τn < τ0) ≤ ρn(1−ǫ) (3.7)

for n ≥ n0 and (x,m) ∈ An.

We split the proof into cases ρ1 > ρ2 and ρ2 > ρ1. The first subsection below treats

the first case ρ1 > ρ2, the next gives the changes needed for the latter.

The following fact will be used a number of times; let us record it here:

Lemma 3.4. The function

(x,m) 7→ [(ρ2, 1,d2), (Tn(x),m)] = ρ
n−(x(1)+x(2))
2 d2(m) (3.8)

is (X,M)-harmonic on Z
2
+ − ∂2.

Proof. We know by Proposition 2.1 and (ρ2, 1,d2) ∈ H that [(ρ2, 1,d2), ·] is (Y,M)-

harmonic on Z × Z
o
+, which implies that (3.8) is (X,M)-harmonic on Z

2,o
+ ; this and

A1(ρ2, 1) = A(ρ2, 1) imply the (X,M)-harmonicity of (3.8) on ∂1.

3.2.1 ρ1 > ρ2

To prove (3.7) we will construct a corresponding supermartingale; applying the op-

tional sampling theorem to the supermartingale will give our desired bound. The

event {σ1 < σ1,2 < τn < τ0} consists of three stages: X first hits ∂1 then ∂2 and fi-

nally ∂An without ever hitting 0. If h is an (X,M)-superharmonic function, it follows

from the definitions that h(X,M) is a supermartingale. We will construct our super-

martingale by applying three functions (one for each of the above stages) to (X,M):

the function for the first stage is the constant ρn1 , which is trivially superharmonic. The

31



function for the second stage will be a constant multiple of (x,m) 7→ hρ1(Tn(x),m).

By Proposition 2.11, (x,m) 7→ hρ1(Tn(x),m) is (X,M)-harmonic on Z
2
+ − ∂1. One

can check directly that it is in fact subharmonic on ∂1. The definition of the super-

martingale S will involve terms to compensate for this. The function for the third

stage is

h3 : (x,m) 7→ hρ2(Tn(x),m) + c1hρ1(Tn(x),m) (3.9)

= hρ2((n− x(1), x(2)),m) + c1hρ1((n− x(1), x(2)),m), x ∈ An, m ∈ M,

= ρ
n−(x(1)+x(2))
2

(

d2(m) + c0α
∗
1
x(2)

d∗
2(m)

)

+ c1ρ
n−x(1)
1 d1(m),

where c1 ≥ 0 is chosen as in Proposition 3.1 and c0 is as in Proposition 2.21. The

next two propositions imply that h3 is (X,M)-superharmonic on Z
2
+ − ∂1.

Proposition 3.5. For ρ1 > ρ2, hρ2(Tn(·), ·) is superharmonic on all of Z2
+.

Proof. That hρ2(Tn(·), ·) is (X,M)-superharmonic on Z+ × Z+ − ∂1 follows from

Proposition 2.21 (i.e., from the fact that hρ2(·, ·) is (Y,M)-harmonic). Therefore, it

suffices to prove that hρ2(Tn(·), ·) is superharmonic on ∂1. hρ2(Tn(·), ·) is a sum of

two functions:

hρ2(Tn(·), ·) = [(ρ2, 1,d2), (Tn(·), ·)] + c0[(ρ2, α
∗
1,d

∗
2), (Tn(·), ·)]. (3.10)

Let us show that each of these summands is (X,M)- superharmonic on ∂1. The first

summand is (X,M)-harmonic (and therefore, superharmonic) on ∂1 by Lemma 3.4.

To treat the second term in (3.10) recall the following: ρ2 < ρ1 implies ρ2 < α∗
1

(Lemma 2.20); then, by Proposition 2.21, c0 < 0. Therefore, if we can show that

[(ρ2, α
∗
1,d

∗
2), (Tn(·), ·)] is (X,M)-subharmonic on ∂1 we will be done. Let us now

see that this is indeed the case.

For ease of notation set

h(x,m) = [(ρ2, α
∗
1,d

∗
2), (Tn(x),m)] = ρ

n−(x(1)+x(2))
2 α∗

1
x(2)

d∗
2(m).

A calculation parallel to the proof of Proposition 2.1 shows

E(x,m) [h(X1,M1)]− h(x,m) = d∗
2(m)µ1(m)(1− α∗

1)ρ
n−x(2)
2 > 0, (3.11)

for x ∈ ∂1, i.e., h is (X,M)-subharmonic on ∂1. This completes the proof of this

proposition.
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Proposition 3.6. hρ1(Tn(·), ·) is harmonic (and therefore superharmonic) on Z
2
+−∂1.

It is subharmonic on ∂1 where it satisfies

E(x,m)[hρ1(Tn(X1),M1)]− hρ1(Tn(x),m) = d1(m)µ1(m)(1− ρ1)ρ
n
1 > 0. (3.12)

The proof is parallel to the computation given in the proof of Proposition 2.1 and is

omitted. We can now define the supermartingale that we will use to prove (3.7):

S ′
k
.
=























h1, k ≤ σ1,

h2(Xk,Mk), σ1 < k ≤ σ1,2,

h3(Xk,Mk), k > σ1,2,

Sk
.
= S ′

k − c5kρ
n
1 ,

where

c3
.
=

maxm∈M d2(m) + c1 maxm∈M d1(m)

minm∈M d1(m)
, (3.13)

h1
.
= c4ρ

n
1 , c4

.
= c3 max

m∈M
d1(m),

h2
.
= c3hρ1(Tn(·), ·) = c3[(ρ1, ρ1,d1), (Tn(·), ·)] = c3ρ

n−x(1)
1 d1(·), (3.14)

c5
.
= c3(1− ρ1) max

m∈M
d1(m)µ1(m). (3.15)

two comments: h1 is a constant function, independent of x and m, and h1 ≥ h2 on

∂1.

Proposition 3.7. S is a supermartingale.

Proof. The claim follows mostly from the fact that the functions involved in the defi-

nition of S ′ are (X,M)-superharmonic away from ∂1. The term that breaks superhar-

monicity is [(ρ1, ρ1,d1, (Tn(Xk),Mk)] on ∂1; the term; −c5kρ
n
1 in the definition of S

is introduced to compensate for this. The details are as follows.

The (X,M)-harmonicity of h1, h2 and h3 implies

E(x,m)[S
′
k+1|Fk] = S ′

k

for Xk ∈ Z
2
+ − ∂1 ∪ ∂2. For x ∈ ∂2, all of these functions are (X,M)-superharmonic

by Propositions 3.5 and 3.6. This implies

E(x,m)[S
′
k+1|Fk] ≤ S ′

k
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for Xk ∈ ∂2 and k 6= σ1,2. For k = σ1,2 we have S ′
k+1 = h3(Xk+1,Mk+1). This, the

(X,M)-superharmonicity of h3 on ∂2 implies

E(x,m)[S
′
k+1|Fk] = E(x,m)[h3(Xk+1,Mk+1)|Fk]

≤ h3(Xk,Mk) (3.16)

for k = σ1,2. On the other hand,

S ′
k = h2(Xk,Mk) for k = σ1,2. (3.17)

The definitions of c3, h2 and h3 in (3.13), (3.14) and (3.9), ρ2 < ρ1 and c0 < 0 imply

h3(x,m) ≤ h2(x,m)

for x ∈ ∂1. This and (3.17) imply

h3(Xk,Mk) ≤ h2(Xk,Mk) = S ′
k

for k = σ1,2. The last display and (3.16) imply

E(x,m)[S
′
k+1|Fk] ≤ S ′

k,

i.e., S ′ is an (X,M)-supermartingale for k = σ1,2 as well.

It remains to prove

E(x,m)[Sk+1|Fk] ≤ Sk, when Xk ∈ ∂1. (3.18)

The cases to be treated here are: k = σ1, σ1 < k < σ1,2 and k > σ1,2.

For k = σ1, we have S ′
k = h1(Xk,Mk) = c3ρ

n
1d1(Mk) and S ′

k+1 = h2(Xk+1,Mk+1);

these and h2 = h1 on ∂1 imply

E(x,m)[Sk+1|Fk]− Sk (3.19)

= E(x,m)[c3hρ1(Tn(Xk+1),Mk+1)|Fk]− c3ρ
n
1d1(Mk)− c5ρ

n
1 ,

By (3.12) and σ1 = k, we compute the first difference as:

= c3d1(Mk)µ1(Mk)(1− ρ1)ρ
n
1 − c5ρ

n
1 .

By the definition of c5:

= ρn1c3(1− ρ1)(d1(Mk)µ1(Mk)− max
m∈M

d1(m)µ1(m)) ≤ 0,
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which proves (3.18) for k = σ1.

For σ1 < k < σ1,2, S ′
k = h2(Xk,Mk) = c3hρ1(Tn(Xk),Mk); therefore the above

argument applies to this case as well (except for the last step which is not needed here

because S ′
k and S ′

k+1 are defined by applying the same function h2 to (Xk+1,Mk+1)

and (Xk,Mk)).

Finally, to treat the case Xk ∈ ∂1 and k > σ1,2 we start with

E(x,m)[Sk+1|Fk]− Sk = E(x,m)[S
′
k+1|Fk]− S ′

k − c5ρ
n
1 ,

S ′
k = h3(Xk,Mk) for k > σ1,2. Then by the definition of h3:

= E(x,m)[hρ2(Tn(Xk+1),Mk+1) + c1hρ1(Tn(Xk+1),Mk+1)|Fk]

− hρ2(Tn(Xk),Mk)− c1hρ1(Tn(Xk),Mk)− c5ρ
n
1 ,

=
(

E(x,m)[hρ2(Tn(Xk+1),Mk+1)|Fk]− hρ2(Tn(Xk),Mk)
)

+ E[c1hρ1(Tn(Xk+1),Mk+1)|Fk]− c1hρ1(Tn(Xk),Mk)− c5ρ
n
1 .

The (X,M)-superharmonicity of hρ2(Tn(·), ·) implies that the difference inside the

parenthesis is negative:

≤ E[c1hρ1(Tn(Xk+1),Mk+1)|Fk]− c1hρ1(Tn(Xk),Mk)− c5ρ
n
1 .

Proposition 3.6 ((3.12)) now gives

= c1d1(Mk)µ1(Mk)(1− ρ1)ρ
n
1 − c5ρ

n
1 .

By its definition 3.15, c5 > c1d1(m)µ1(m)(1− ρ1) for all m ∈ M, which implies:

≤ 0.

This proves (3.18) for k > σ1,2 and completes the proof of this proposition.

We are now ready to give a proof of Proposition 3.3 for ρ1 > ρ2:

Proof of Proposition 3.3; case ρ1 > ρ2. By its definition (3.6), ρ of (3.7) equals ρ1

for ρ1 > ρ2. We begin by truncating time: [27, Theorem A.2] implies that there exists

c6 > 0 and N0 > 0 such that

P(x,m)(τn ∧ τ0 > c6n) ≤ ρ2n1 ,
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for n > N0. Then:

P(x,m)(σ1 < σ1,2 < τn < τ0) (3.20)

= P(x,m)(σ1 < σ1,2 < τn < τ0, τn ∧ τ0 ≤ c6n)

+ P(x,m)(σ1 < σ1,2 < τn < τ0, τn ∧ τ0 > c6n)

≤ P(x,m)(σ1 < σ1,2 < τn < τ0, τn ∧ τ0 ≤ c6n) + ρ2n1

for n > N0. Therefore, to prove (3.7) it suffices to bound the first term on the right

side of the last inequality. Now apply the optional sampling theorem to the super-

martingale S at the bounded stopping time τ = τ0 ∧ τn ∧ c6n:

E(x,m) [Sτ0∧τn∧c6n] ≤ S0 = c4ρ
n
1 .

By definition, Sk = S ′
k − c5kρ

n
1 ; substituting this in the last display gives:

−c5c6nρ
n
1 + E(x,m)[S

′
τ ] ≤ c4ρ

n
1

E(x,m)[S
′
τ ] ≤ (c4 + nc5c6)ρ

n
1 .

By its definition, S ′
k > 0, therefore restricting it to an event makes the last expectation

smaller:

E(x,m)[S
′
τ1{σ1<σ1,2<τn<τ0≤c6n}] ≤ (c4 + nc5c6)ρ

n
1 .

On the set {σ1 < σ1,2 < τn < τ0 ≤ c6n}, we have τ = τn and S ′
τn = h3(Xτn ,Mτn);

by definition Xτn ∈ ∂An. By definition of h3 and by Proposition 3.1 h3(x,m) ≥ c2 >

0 for x ∈ ∂An. These and the last display imply

c2P(x,m)(σ1 < σ1,2 < τn < τ0 ≤ c6n) ≤ (c4 + nc5c6)ρ
n
1 .

Substitute this in (3.20) to get

P(x,m)(σ1 < σ1,2 < τn < τ0) ≤ ρ
n(1−ǫn)
1

where

ǫn =
1

n
log1/ρ1

(

c4 + nc5c6
c2

+ ρn1

)

;

setting n0 ≥ N0 so that ǫn < ǫ for n ≥ n0 gives (3.7).
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3.2.2 ρ1 < ρ2

The previous subsection gave a proof of Proposition 3.3 when ρ2 < ρ1. The only

changes needed in this proof when ρ1 < ρ2 concern the functions used in the defini-

tion of the supermartingale S; the needed changes are:

1. Modify the function h2 for the second stage,

2. The function h3 is no longer superharmonic on ∂1; quantify how much it devi-

ates from superharmonicity on ∂1;

3. Modify the constants used in the definition of S in accordance with these

changes.

The next two propositions deal with the first two items above; the definition of the

supermartingale (taking also care of the third item) is given after them.

For ρ2 > ρ1, Λ1(ρ2, ρ2) < 1. Let d+
2 be a right eigenvector of A(ρ2, ρ2) with strictly

positive entries.

Proposition 3.8. The function

f : (x,m) 7→ [(ρ2, ρ2,d
+
2 ), (Tn(x),m)]

is superharmonic on Z
2
+ − ∂1. On ∂1 it satisfies

E(x,m)[f(X1,M1)]− f(x,m) ≤ d+
2 (m)µ1(m)(1− ρ2)ρ

n
2 . (3.21)

The proof is parallel to that of Proposition 3.6 and follows from Λ1(ρ2, ρ2) < 1,

A1(ρ2, ρ2) = A(ρ2, ρ2) and the definitions involved.

Proposition 3.9. Let h3 be as in (3.9); h3 is (X,M)-superharmonic on Z
2
+ − ∂1; on

∂1 it satisfies

E(x,m) [h3(X1,M1)]− h3(x,m) = c0d
∗
2(m)µ1(m)(1− α∗

1)ρ
n−x(2)
2 > 0. (3.22)

Proof. Lemma 2.20 and ρ2 > ρ1 imply α∗
1 < ρ2; this and Proposition 3.1 imply that

c1 in the definition of h3 is 0; i.e.,

h3(x,m) = hρ2(Tn(x),m) = ρ
n−(x(1)+x(2))
2

(

d2(m) + c0α
∗
1
x(2)

d∗
2(m)

)

;
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That h3 is (X,M)-superharmonic on Z
2
+ − ∂1 follows from the same property of

hρ2 (see Proposition 2.21). On the other hand, again by Proposition 2.21, α∗
1 < ρ2

implies that c0 in the definition of hρ2 satisfies c0 > 0. By Lemma 3.4 (x,m) 7→

[(ρ2, 1,d2), (Tn(x),m)] is (X,M)-harmonic on ∂1; (3.22) follows from these and

(3.11).

ρ2 > ρ1 implies ρ2 > α∗
1 (Lemma 2.20); this and Proposition 3.1 imply c1 = 0;

ρ2 > α∗
1 and Proposition 2.21 imply c0 > 0. That c0 > 0 and c1 = 0 lead to the

following modifications in the definition of S ′:

S ′
k
.
=























h1, k ≤ σ1,

h4(Xk,Mk), σ1 < k ≤ σ1,2,

h3(Xk,Mk), k > σ1,2,

Sk
.
= S ′

k − c5kρ
n
2 ,

where

c3
.
=

maxm∈M (d2(m) + c0d
∗
2(m))

minm∈M d+
2 (m)

, (3.23)

h1
.
= c4ρ

n
2 , c4

.
= c3 max

m∈M
d+
2 (m),

h4
.
= c3hρ2(Tn(·), ·) = c3[(ρ2, ρ2,d

+
2 ), (Tn(·), ·)] = c3ρ

n−x(1)
2 d+

2 (·), (3.24)

c5
.
= c3(1− ρ2) max

m∈M
d+
2 (m)µ1(m) + c0(1− α∗

1) max
m∈M

d∗
2(m)µ1(m). (3.25)

The modification in c3 ensures h4 ≥ h3 on ∂2; c0 > 0 implies that h3 is no longer

superharmonic on ∂1; the increase in c5 compensates for this.

Proposition 3.10. S as defined above is a supermartingale for ρ2 > ρ1.

Proof. With the modifications made as above, the proof proceeds exactly as in the

case ρ1 > ρ2 (Proposition 3.7) and follow from the following facts: h1 ≥ h4 on ∂1,

h4 ≥ h3 on ∂2 (these are guaranteed by the choices of the constants c4, c3); (X,M)-

superharmonicity of h4 and h3 on Z
2
+ − ∂1 (guaranteed by Propositions 3.8 and 3.9),

the −c5kρ
n
2 term compensating for the potential lack of (X,M)-superharmonicity

of h3 and h4 on ∂1 (guaranteed by (3.21) and (3.22) and the choice of the constant

c5).
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Proof of Proposition 3.3; case ρ2 > ρ1. With S defined as above, the proof given for

the case ρ1 > ρ2 works without change.

3.3 Lower bound for P(x,m)(τn < τ0)

To get an upper bound on the relative error (1.7), we need a lower bound on the

probability P(x,m)(τn < τ0). We will get the desired bound by applying the optional

sampling theorem, this time to an (X,M)-submartingale. This we will do, follow-

ing [34], by constructing a suitable (X,M)-subharmonic function. As opposed to

superharmonic functions, subharmonic functions are much simpler to construct.

Proposition 3.11.

(x,m) 7→ [(ρ2, 1,d2), (Tn(x),m)] ∨ [(ρ1, ρ1,d1), (Tn(x),m)] (3.26)

= ρ
n−(x(1)+x(2))
2 d2(m) ∨ ρ

n−x(1)
1 d1(m)

is (X,M)-subharmonic on Z
2
+.

Proof. We know by Lemma 2.13 that

E(x,m)[(ρ2, 1,d2), (Tn(X1),M1)]− [(ρ2, 1,d2), (x,m)]

= ρ
n−x(1)
2 P (m,m)µ2(m)d2(m)(1− ρ2) > 0,

i.e, (x,m) 7→ [(ρ2, 1,d2), (x,m)] is (X,M)-subharmonic on ∂2.

That(x,m) 7→ [(ρ2, 1,d2), (Tn(x),m)] is (X,M)-subharmonic on Z
2
+ − ∂2 follows

from Lemma 3.4. Then, (x,m) 7→ [(ρ2, 1,d2), (x,m)] is (X,M)-subharmonic on all

of Z2
+.

Similarly, Proposition 3.6 and (3.12) imply that (x,m) 7→ [(ρ1, ρ1,d1), (x,m)] is

(X,M)-subharmonic on all of Z2
+.

The maximum of two subharmonic functions is again subharmonic. This and the

above facts imply the (X,M)-subharmonicity of (3.26).
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Proposition 3.12.

P(x,m)(τn < τ0)

≥

(

max
m∈M

(d2(m) ∨ d1(m))

)−1

(3.27)

×

(

ρ
n−(x(1)+x(2))
2 d2(m) ∨ ρ

n−x(1)
1 d1(m)− ρn2 max

m∈M
d2(m) ∨ ρn1 max

m∈M
d1(m)

)

.

Proof. Set

g(x,m) = ρ
n−(x(1)+x(2))
2 d2(m) ∨ ρ

n−x(1)
1 d1(m);

by the previous proposition g is (X,M)-subharmonic. By its definition, g is positive

and bounded from above. It follows that

sk = g(Xτn∧τ0∧k,Mτn∧τ0∧k)

is a bounded positive submartingale. By definition

E[g(Xτn∧τ0 ,Mτn∧τ0)] = E[g(Xτn ,Mτn)1{τn<τ0}] + E[g(Xτ0 ,Mτ0)1{τ0≤τn}]. (3.28)

That Xτn ∈ ∂An implies g(Xτn ,Mτn) = g(k, n− k) for some k < n; then

g(Xτn ,Mτn) ≤ max
m∈M

(d2(m) ∨ d1(m)).

This, (3.28) and the optional sampling theorem applied to s at time τn ∧ τ0 give

P(x,m)(τn < τ0)

(

max
m∈M

(d2(m) ∨ d1(m))

)

+ g(0,m)P(x,m)(τ0 ≤ τn) ≥ g(x,m).

P(x,m)(τ0 ≤ τn) ≤ 1 implies
(

max
m∈M

(d2(m) ∨ d1(m))

)

P(x,m)(τn < τ0) ≥ g(x,m)− max
m∈M

[g(0,m)];

this and max
m∈M

[g(0,m)] = ρn2 max
m∈M

d2(m) ∨ ρn1 max
m∈M

d1(m) give (3.27).

3.4 Completion of the limit analysis

This section puts together the results of the last two sections to derive an exponentially

decaying upper bound on the relative error (1.7). As in previous works [30, 31, 34],

this task is simplified if we express the Y process in the x coordinates thus:

X̄k
.
= Tn(Yk);
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X̄ has the same dynamics as X , except that it is not reflected on ∂1.

In this section we will set the initial condition using the scaled coordinate x ∈ R
2
+,

x(1) + x(2) < 1, the initial condition for the X and X̄ will be

X0 = X̄0 = ⌊nx⌋.

Define

σ1,2
.
= inf{k > 0 : Xk ∈ ∂2, k ≥ σ1} (3.29)

As in the non-modulated case, the following relation between X̄ and X will be very

useful:

Lemma 3.13. Let σ1,2 be as in (3.29). Then

Xk(1) +Xk(2) = X̄k(1) + X̄k(2)

for k ≤ σ1,2.

This lemma is the analog of [30, Proposition 7.2], which expresses the same fact for

the non-modulated two dimensional tandem walk; the proof is unchanged because it

does not depend on the modulating process. We will give an illustrative example here.

(3, 3) (3, 3)

(2, 0)

(1, 1)

Figure 3.1: A sample path of Xk(left) and X̄k(right)

Example 3.1. For k ≤ σ1, Xk = X̄k. For σ1 < k < σ1,2, the process X only differ

from X̄ if Ik = (−1, 1). As can be seen from Figure 3.1, the difference between

increments is equal to

Xk − X̄k =
k
∑

j=1

1{j≤k}1{Ik=(−1,1)} · (−1, 1)

= (−1, 1)
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and the sum of the components at step k is equal to each other as stated in Lemma

3.13.

Define

τ̄n
.
= inf{k > 0 : X̄k ∈ ∂An},

σ̄1,2
.
= inf{k > 0 : X̄k(1) + X̄k(2) = 0, k ≥ σ1}.

X and X̄ have identical dynamics upto time σ1; σ̄1,2 is the first time after (σ1, i.e.,

the first time X and X̄ hit ∂1) that the sum of the components of X̄ equals 0. By the

definitions of X̄ and Y , τ̄n = τ.

What follows is an upper bound similar to (3.7) for the X̄ process. This is an adapta-

tion of [30, Proposition 7.5] to the present setup:

Proposition 3.14. For any ǫ > 0 there exists n0 > 0 such that

P(x,m)(σ1 < σ1,2 < τ̄n < ∞) ≤ ρn(1−ǫ) (3.30)

for n > n0 and (x,m) ∈ An.

Proof. As in [30, Proposition 7.5] we partition the event {σ1 < σ1,2 < τ̄n < ∞} into

whether X̄ hits ∂An before or after it hits {x ∈ Z× Z+ : x(1) + x(2) = 0}:

P(x,m)(σ1 < σ1,2 < τ̄n < ∞) (3.31)

= P(x,m)(σ1 < σ1,2 < τ̄n < σ̄1,2 < ∞) + P(x,m)(σ1 < σ1,2 < σ̄1,2 < τ̄n < ∞)

Take any ω′ ∈ {σ1 < σ1,2 < τ̄n} such that X̄ hits

{x ∈ Z× Z+ : x(1) + x(2) = n}

before hitting

{x ∈ Z× Z+ : x(1) + x(2) = 0},

Lemma 3.13 implies that

X̄ ′
σ1,2

(1) + X̄ ′
σ1,2

(2) = Xσ1,2
(1),

i.e., X and X̄ will be on the same line {x ∈ Z × Z+ : x(1) + x(2) = k} for some

k ∈ {1, 2, 3, ..., n − 1}. Then the fully constrained sample path X(ω′) cannot hit 0
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before the path X̄(ω′) hits {x ∈ Z × Z+ : x(1) + x(2) = 0} and it cannot hit ∂An

after X̄ hits {x ∈ Z × Z+ : x(1) + x(2) = n} (intuitively: more constraints on X

push it faster to ∂An and slower to 0 than less constraints do the process X̄): these

give

{σ1 < σ1,2 < τ̄n < σ̄1,2 < ∞} ⊂ {σ1 < σ1,2 < τn < τ0};

the bound (3.7) on the probability of the last event and (3.31) imply that there exists

n1 > 0 such that

P(x,m)(σ1 < σ1,2 < τ̄n < ∞) ≤ ρn(1−ǫ/2) + P(x,m)(σ1 < σ1,2 < σ̄1,2 < τ̄n < ∞)

(3.32)

for n > n1. To bound the last probability we observe that X̄σ̄1,2
lies on {x ∈ Z×Z+ :

x(1) + x(2) = 0}; by Proposition 3.2, starting from this line, the probability of X̄

ever hitting {x ∈ Z× Z+ : x(1) + x(2) = n} is bounded from above by

1

c2
(hρ2((n− x(1), x(2)),m) + c1hρ1((n− x(1), x(2)),m))

≤
1

c2
(ρn2d2(m) + c1ρ

n
1d1(m)) ;

this and the strong Markov property of X̄ give:

P(x,m)(σ1 < σ1,2 < σ̄1,2 < τ̄n < ∞) ≤ c7ρ
n

where c7 is a constant depending on d1, d2, c1 and c2. Substituting this in (3.32) gives

P(x,m)(σ1 < σ1,2 < τ̄n < ∞) ≤ ρn(1−ǫ/2) + c7ρ
n,

for n > n1. This implies the statement of the proposition.

Finally, we state and prove our main theorem:

Theorem 3.15. For any x ∈ R
2
+, x(1) + x(2) < 1, and m ∈ M (if ρ1 > ρ2 and

1 − x(2) < log(ρ2)/ log(ρ1) we also require x(1) > 0 ) there exists c8 > 0 and

N > 0 such that

|P(xn,m)(τn < τ0)− P(Tn(xn),m)(τ < ∞)|

P(xn,m)(τn < τ0)
< ρc8n (3.33)

for n > N , where xn = ⌊xn⌋.
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Proof. Proposition 3.12, the choice of x (i.e., x(1) + x(2) < 1 and x(1) > 0 when

ρ1 > ρ2 and 1− x(2) < log(ρ2)/ log(ρ1)) imply the lower bound

P(x,m)(τn < τ0) ≥ ρn(1−2c8) (3.34)

for some constant 1/2 > c8 > 0 depending on x.

By definition X̄ hits ∂An exactly when Y hits B, i.e., τ̄n = τ ; therefore, P(xn,m)(τ̄n <

∞) = P(Tn(xn),m)(τ < ∞) and

|P(xn,m)(τn < τ0)− P(Tn(xn),m)(τ < ∞)|

P(xn,m)(τn < τ0)
(3.35)

=
|P(xn,m)(τn < τ0)− P(xn,m)(τ̄n < ∞)|

P(xn,m)(τn < τ0)

We partition the probabilities of events {τn < τ0} and {τ < ∞} as follows

P(xn,m)(τn < τ0) = P(xn,m)(τn < σ1 < τ0) + P(xn,m)(σ1 < τn ≤ σ1,2 ∧ τ0)

+ P(xn,m)(σ1 < σ1,2 < τn < τ0) (3.36)

P(Tn(xn),m)(τ < ∞) = P(Tn(xn),m)(τ < σ1) + P(Tn(xn),m)(σ1 < τ ≤ σ1,2)

+ P(Tn(xn),m)(σ1 < σ1,2 < τ < ∞) (3.37)

Lemma 3.13 says the processes X and X̄ move together until they hit ∂1, so

P(xn,m)(τn < σ1 < τ0) = P(Tn(xn),m)(τ < σ1).

After hitting ∂1, the sum of the components of X and X̄ are still equal until one of

the processes hits ∂2. Lemma 3.13 now gives

P(xn,m)(σ1 < τn ≤ σ1,2 ∧ τ0) = P(Tn(xn),m)(σ1 < τ ≤ σ1,2)

The last two equalities, Propositions 3.3, 3.14, and partitions (3.36), (3.37) imply that

there exists n0 > 0 such that

| P(xn,m)(σ1 < σ1,2 < τn < τ0)− P(Tn(xn),m)(σ1 < σ1,2 < τ < ∞) |≤ ρn(1−c8)

(3.38)

for n > n0. Substituting the last bound and (3.34) in (3.35) gives (3.33).
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CHAPTER 4

COMPUTATION OF P(τ < ∞)

Theorem 3.15 tells us that P(Tn(xn),m)(τ < ∞) approximates P(xn,m)(τn < τ0) very

well. In this chapter we develop approximate formulas for P(y,m)(τ < ∞). We will

call a (Y,M)-harmonic function ∂B-determined if it of the form,

(y,m) 7→ E(y,m)[f(Yτ ,Mτ )1{τ<∞}]

for some function f .

(y,m) 7→ P(y,m)(τ < ∞) (4.1)

is a (Y,M)-harmonic function with the value 1 on ∂B. Furthermore, by definition

it is ∂B-determined, (for (4.1), f is the function taking the constant value 1 on ∂B).

Our approach to the approximation of P(y,m)(τ < ∞) is similar to [30, 31, 34]: take

linear combinations of the (Y,M)-harmonic functions identified in Propositions 2.8

and 2.15 approximate the value 1 on ∂B as closely as possible. We need our (Y,M)-

harmonic functions to be ∂B-determined; the next identifies a simple condition for

functions of the form (4.2) to be ∂B-determined.

Lemma 4.1. Suppose (β, αj , dj) are points on H and suppose

h(y,m) =

|M|+1
∑

j=1

b(j)[(β, αj, dj), ·] (4.2)

is (Y,M)-harmonic. If |β| < 1 and |αj| ≤ 1 then h is ∂B-determined.

This is a version of [30, Proposition 2.2, 4.10] adapted to the Markov modulated

setup.
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Proof. Define the region V = {y ∈ Z × Z+ : 0 ≤ y(1) − y(2) ≤ n} and the

boundaries of V ∂V1 = {y ∈ Z × Z+ : y(1) − y(2) = n} and ∂V2 = ∂B. Define

vn
.
= inf{k : Yk ∈ ∂V1}. We make the following claim: starting from a point y ∈ V

(Y,M) hits ∂V1∪ ∂V2 in finite time, i.e., vn∧ τ < ∞ almost surely. Let us first prove

this claim.

For each modulating state m, the sample path of the (Y,M) whose increments are

only type of (0,−1) hits ∂V2 in at most n steps and the probability of this event is

(µ1(m)P (m,m))n. Let us take the minimum of these probabilities for each state as

ε = min(µ1(i)P (i, i))n, i = 1, 2, ..., |M|.

Then

P(y,m)(τ ∧ vn ≥ n) ≤ (1− ε).

An iteration of this inequality and the Markov property of (Y,M) give

P(y,m)(τ ∧ vn ≥ kn) ≤ (1− ε)k.

Letting k → ∞ gives

P(y,m)(τ ∧ vn = ∞) = 0. (4.3)

The definition 4.2 and the harmonicity imply that h(y,m) is also bounded on B−∂B.

Then Sk = h(Yτ∧vn∧k,Mτ∧vn∧k) is a bounded martingale. The optional sampling

theorem applied to this martingale and (4.3) imply

h(y,m) = E(y,m)[h(Yτ∧vn ,Mτ∧vn)] (4.4)

= E(y,m)[h(Yτ ,Mτ )1{τ<vn}] + E(y,m)[h(Yvn ,Mvn)1{vn≤τ}]

For |αi| ≤ 1 implies |h(Yvn ,Mvn)| ≤ c0β
n for some constant c0. Then

lim
n→∞

E(y,m)[h(Yvn ,Mvn)1{vn≤τ}] ≤ c0 lim
n→∞

βnd = 0.

The last expression, that limn→∞ vn = ∞ and letting n → ∞ in (4.4) imply

h(y,m) = E(y,m)[h(Yτ ,Mτ )1{τ<∞}],

i.e, h(y,m) is ∂B-determined.

The last lemma and the condition 0 < ρ1 < 1 imply
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Lemma 4.2. hρ1 is ∂B-determined.

Recall that we have so far constructed a (Y,M)-superharmonic function correspond-

ing to the root (ρ2, 1) ∈ Hβα. We would like to strengthen this to a (Y,M)-harmonic

function. This requires the use of further conjugate points of (ρ2, 1) (in addition to

(ρ2, α
∗
1)). The next lemma shows that under Assumption 2.1 we have sufficient num-

ber of conjugate points of (ρ2, 1) to work with:

Lemma 4.3. Under Assumption 2.1 and (2.20), there exists K − 1 additional conju-

gate points (ρ2, α
∗
j ), j = 2, 3, ..., K, of (ρ2, 1) with 0 < α∗

j < α∗
1.

Proof. We know that Λ1(ρ2, 1) = 1; then Λj(ρ2, 1) < 1 for j = 2, 3, 4..., |M|. On

the other hand, Gershgorin’s Theorem implies limα→0 Λj(ρ2, α) = ∞. These and the

continuity of Λj imply the existence of α∗
j ∈ (0, 1) such that Λj(ρ2, α

∗
j ) = 1.

Figure 4.1 shows |M| conjugate points of (ρ2, 1).

βiα

α∗
i1

α∗
i2

α∗
i|M|

Figure 4.1: Conjugate points of (ρ2, 1)

To construct our (Y,M)-harmonic functions from the points identified in the previous

lemma we need the following assumption:

There exists j1, j2, ..., jn1
, n1 ≤ |M|, such that (4.5)

C(ρ2, 1,d2) ∈ Span
(

C(ρ2, α
∗
jk
,d2,jk), k = 1, 2, ..., n1

)

.

Remark 4.1. By definition, C(ρ2, αj ,d2,j) = 0 if αj = ρ2. Therefore, only those jk

satisfying α∗
jk
6= ρ2 have a role in determining Span

(

C(ρ2, α
∗
jk
,d2,jk), k = 1, 2, ..., n1

)

.

47



In this sense, assumption (4.5) can be seen as an extension of (2.22) (or, equivalently,

of (2.21)).

Remark 4.2. The linear independence of C(ρ2, α
∗
j ,d2,j), j = 1, 2, 3, ..., |M|, is suf-

ficient for (4.5) to hold. That C(β, β, d) = 0 implies that ρ2 6= αj for all j =

1, 2, 3, .., |M| is a necessary condition for this independence.

Now on to the (Y,M)-harmonic function:

Proposition 4.4. Let (ρ2, α
∗
j ) be the conjugate points of (ρ2, 1) identified in Propo-

sition 2.17 and Lemma 4.3. Under the additional assumption (4.5), one can find a

vector b ∈ R
n1 such that

hρ2
.
= [(ρ2, 1,d2), ·] +

n1
∑

k=1

b(j)[(ρ2, α
∗
jk
,d2,jk), ·] (4.6)

is (Y,M)-harmonic and ∂B-determined.

Proof. Assumption (4.5) implies that the collection of vectors

C(ρ2, 1,d2), C(ρ2, α
∗
jk
,d2,jk), k = 1, 2, ..., n1 are linearly dependent. Therefore, by

Proposition 2.15, there exists a vector b′ ∈ R
n1+1 such that

b′(0)[(ρ2, 1,d2), ·] +

n1
∑

k=1

b′(j)[(ρ2, α
∗
jk
,d2,jk), ·]

is (Y,M)-harmonic. Assumption (4.5) implies that b′(0) 6= 0. Renormalizing the last

display by b′(0) gives (4.6). That hρ2 is ∂B-determined follows from 0 < α∗
j ≤ 1,

ρ2 < 1 and Lemma 4.1.

Next proposition constructs an approximation of P(y,m)(τ < ∞) with bounded rela-

tive error from functions hρ2 and hρ1 .

Proposition 4.5. There exist constants c9, c10 and c11 such that

P(y,m)(τ < ∞) < ha,0(y,m) < c9P(y,m)(τ < ∞) (4.7)

where

ha,0 .
= c11(hρ2 + c10hρ1). (4.8)
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Proof. The proof is similar to that of Proposition 3.1. That 0 < α∗
j < 1, j =

1, 2, 3, ..., |M| imply that

[(ρ2, α
∗
j ,d2,j), (k, k,m)] = (α∗

j )
kd2,j(m) → 0 (4.9)

as k → ∞. We further have

[(ρ2, 1,d2), (k, k,m)] = d2,j(m) > 0, (4.10)

for all k. Therefore, there exists k0 > 0 such that

hρ2(k, k,m) > min
m∈M

d2(m)/2 (4.11)

for all k > k0. On the other hand,

hρ1(k, k,m) = [(ρ1, ρ1,d1), (k, k,m)] = d1(m)(ρ1)
k > 0, (4.12)

for all k. Then we can choose c10 > 0 large enough so that

hρ2(k, k,m) + c10hρ1(k, k,m) ≥ min
m∈M

d2(m)/2 (4.13)

for all k ≤ k0. The last display, (4.11) and the positivity of c10hρ1 imply that the last

display holds for all k and m ∈ M. Set

c11
.
=

(

min
m∈M

d2(m)/2

)−1

,

and ha,0 be as in (4.8). That (4.13) holds for k ≥ 0 and m ∈ M implies

ha,0|∂B ≥ 1.

By Lemma 4.2 and Proposition 4.4 ha,0 is (Y,M)-harmonic and ∂B-determined. This

and the last display imply,

ha,0(y,m) = E(y,m)[h
a,0(Yτ ,Mτ )1{τ<∞}] ≥ P(y,m)(τ < ∞). (4.14)

This proves the first inequality in (4.7). To choose c9 so that the second inequality in

(4.7) holds we note the following: (4.9), (4.10) and (4.12) imply

c9
.
= max

k≥0,m∈M
ha,0(k, k,m) < ∞.

Now the same argument giving (4.14) implies the second inequality in (4.7).
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Proposition 4.6. Fix m ∈ M and x ∈ R
2
+, such that 0 < x(1) + x(2) < 1 and

x(1) > 0 if ρ1 > ρ2 and 1 − x(2) ≤ log(ρ2)/ log(ρ1), and set xn = ⌊nx⌋. Then

ha,0(Tn(xn)) approximates P(xn,m)(τn < τ0) with relative error whose lim sup in n is

bounded by |c9 − 1|.

Proof. We know by the previous proposition that ha,0 approximates P(y,m)(τ < ∞)

with relative error bounded by |c9 − 1|; we also know by Theorem 3.15 that

P(Tn(xn),m)(τ < ∞) approximates P(xn,m)(τn < τ0) with vanishing relative error.

These two imply the statement of the proposition.

4.1 Improving the approximation

Proposition 4.6 tells us that ha,0 of (4.8) approximates P(y,m)(τ < ∞) and therefore

P(x,m)(τn < τ0) with bounded relative error. The works [30, 31, 34] covering the

non-modulated case are able to construct progressively better approximations (i.e.,

reduction of the relative error) by using more harmonic functions constructed from

conjugate points (in the tandem case with no modulation, one is able to construct an

exact representation of Py(τ < ∞) so no reduction in relative error is necessary). This

is possible because the function in [30, 31, 34] corresponding to hρ2 , takes the value

1 on ∂B away from the origin. Thus, by and large, that single function provides an

excellent approximation of Py(τ < ∞) for points away from ∂2. Rest of the harmonic

functions are added to the approximation to improve the approximation along ∂2.

When a modulating chain is present, the situation is different. Note that (4.9), (4.10)

imply that the value of hρ2 on ∂B, away from the origin, is determined by the eigen-

vector d2 and in general, the components of d2 will change with m. We need to

improve hρ2 itself so that we have a function that is almost 1 for most points on ∂B.

How is this to be done? Remember that the construction of hρ2 began with fixing

α = 1 and solving

β|M|p(β, 1) = 0; (4.15)

ρ2 is the largest root of this equation in the interval (0, 1). Then we fixed β = ρ2 in

α|M|p(ρ2, α) = 0 and solved for α to find the conjugate points (ρ2, α
∗
j ) of (ρ2, 1);
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from these points we constructed hρ2 . Now to get our (Y,M)-harmonic function that

almost takes the value 1 on ∂B away from the origin we will use the rest of the roots

of (4.15) in (0, 1); if there are enough of those whose corresponding eigenvectors are

linearly independent, we can combine them to obtain the value 1 on ∂B. The next

lemma shows that under the stability assumption and the simpleness of all eigenval-

ues, sufficient number of β roots exist. The proposition after that constructs, under

further assumptions, the desired (Y,M)-harmonic function from these β roots.

Lemma 4.7. Suppose, in addition to the stability assumption (1.1), all eigenvalues of

A(β, α) are real and simple for (β, α) ∈ R
2o
+ . Then there exist ρ2,k, k = 2, 3, ..., |M|,

such that ρ2 > ρ2,2 > ρ2,3 > · · · > ρ2,|M| > 0 and {e2 6= 0, e3 6= 0,...,e|M| 6= 0} ⊂

R
M such that

A(ρ2,j , 1)ej = ej , j = 2, 3, 4, ..., |M|,

holds.

The proof is parallel to that of Lemma 4.3 and is based on Gershgorin’s Theorem and

the fact that Λj(ρ2, 1) < 1 for j = 2, 3, ..., |M|.

Each of the points (ρ2,j, 1) will in general have 2|M| − 1 conjugate points. To get

∂B-determined (Y,M)-harmonic functions from these we need the analog of (4.5)

for each (ρ2,j , 1):

Assumption 4.1. For each j = 2, 3, ..., |M| there exists mj ≤ |M| conjugate points

(ρ2,j, αj,l), l = 1, 2, 3, ...,mj and eigenvectors 0 6= ej,l ∈ R
M such that

|αj,l| < 1, l = 1, 2, 3, ...,mj ,

A(ρ2,j , αj,l)ej,l = ej,l

C(ρ2,j, 1, ej) ∈ Span(C(ρ2,j, αj,l, ej,l), l = 1, 2, 3..,mj). (4.16)

Remark 4.3. Similar to the comments made in Remark 4.2, a set of sufficient con-

ditions for (4.16) is 1) mj = |M| and 2) C(ρ2,j, αj,l, ej,l), l = 1, 2, 3, ..., |M| are

linearly independent. By C(·, ·, ·)’s definition, linear independence of these vectors

require αj,l 6= ρ2,j , which is, yet another generalization of the assumption ρ1 6= ρ2.

Remark 4.4. One can introduce assumptions similar to (2.20) which imply, with an

argument similar to the proof of Lemma 4.3, that (ρ2,j, 1) has |M| − j conjugate
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points in the interval (0, 1). But in general, this number of conjugate points will not

suffice for (4.16) to hold and we will allow conjugate points with complex or negative

α components. Instead of introducing even more assumptions similar to (2.20), we

directly incorporate (4.16) as an assumption.

To get our (Y,M)-harmonic function with the value 1 on ∂B we need one condition:

1 ∈ Span(d2, e2, ..., e|M|). (4.17)

Obviously, a sufficient condition for (4.17) is that the vectors listed on the right of

this display are linearly independent.

Proposition 4.8. Let ej , j = 2, 3, ..., |M| be as in Lemma 4.7. and let d2 be as in

Proposition 2.16. Under Assumption 4.1 and (4.17) there exist vectors bj ∈ R
mj ,

j = 2, 3, .., |M| and b∗ ∈ R
|M| such that

hρ2,j(y,m)
.
= [(ρ2,j , 1, ej), (y,m)] (4.18)

+

mj
∑

l=1

bj(i)[(ρ2,j, αj,l, ej,l), (y,m)], j = 2, 3, ..., |M|,

and

h∗
ρ2

.
=

|M|
∑

j=1

b∗(j)hρ2,j (4.19)

are all (Y,M)-harmonic and ∂B-determined; furthermore

lim
k→∞

h∗
ρ2
(k, k,m) → 1 (4.20)

for all m ∈ M.

Proof. The existence of the vector bj so that hρ2,j defined in (4.18) is (Y,M)-harmonic

follows from (4.1) and the argument given in the construction of hρ2 (see the proof of

Proposition 4.4). By (4.17) there is a vector b∗ such that

b∗(1)d2(m) +

|M|
∑

j=2

b∗(j)ej(m) = 1

for all m ∈ M. If we choose b∗ in this way, h∗
ρ2

as defined in (4.19) satisfies

h∗
ρ2
(k, k,m) = 1 +

|M|
∑

j=1

b∗(j)

mj
∑

l=2

bj(i)α
k
j,lej,l(m)

|αj,l| < 1 implies the last sum goes to 0 with k. This gives (4.20).
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In Lemma 4.7 we found, in addition to (ρ2, 1), points on the line α = 1 lying on

the characteristic surface Hβα; we used these points above in the construction of h∗
ρ2
.

Similarly, one can go along the line β = α to find points, in addition to (ρ1, ρ1) lying

on Hβα giving simple ∂B-determined (Y,M)-harmonic functions:

Lemma 4.9. Suppose, in addition to the stability assumption (1.1), all eigenvalues of

A(β, α) are real and simple for (β, α) ∈ R
2,o
+ (same assumption as in Lemma 4.7).

Then there exist ρ1,k, k = 2, 3, 4, .., |M|, such that ρ1 > ρ1,2 > ρ1,3 > · · · > ρ1,|M| >

0 and {f2 6= 0, f3 6= 0,...,f|M| 6= 0} ⊂ R
|M| such that

A(ρ1,j , ρ1,j)fj = fj, j = 2, 3, 4, ..., |M|,

holds.

The proof is parallel to that of Lemma 4.3 and is based on Gershgorin’s Theorem and

the fact that Λj(ρ1, ρ1) < 1 for j = 2, 3, ..., |M|.

One can use the points identified in the previous lemma to construct further ∂B-

determined (Y,M)-harmonic functions.

Lemma 4.10. Let ρ1,j , fj , j = 2, 3, ..., |M| be as in Lemma 4.9. Then

[(ρ1,j, ρ1,j ,f), ·], j = 2, 3, ..., |M|,

are ∂B-determined (Y,M)-harmonic.

Proof. By definition, (ρ1,j , ρ1,j) ∈ Hβα and A(ρ1,j , ρ1,j)fj = fj. Again, A(β, β) =

A1(β, β) for all β follows from the definitions of A and A1. Then A(ρ1,j , ρ1,j)fj =

A1(ρ1,j, ρ1,j)fj = fj , i.e., (ρ1,j, ρ1,j ,f) ∈ H1. This and Proposition 2.8 imply that

[(ρ1,j , ρ1,j ,f), ·] is (Y,M)-harmonic. That it is ∂B-determined follows from |ρ1,j| <

1 and Lemma 4.1.

The next proposition allows us to compute an upper bound on the relative error of an

approximation of P(y,m)(τ < ∞) in terms of the values the approximation takes on

the boundary ∂B. For any z ∈ C, let ℜ(z) denote its real part.

Proposition 4.11. Let h : Z × Z+ 7→ C be ∂B-determined and (Y,M)-harmonic.

Then

max
(y,m)∈B×M

|ℜ(h)(y,m)− P(y,m)(τ < ∞)|

P(y,m)(τ < ∞)
≤ c∗ (4.21)
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where

c∗
.
= max

y∈∂B,m∈M
|h(y,m)− 1|. (4.22)

The last proposition allows h to be C valued because, for any (β, α, d) ∈ H with

complex components the function [(β, α, d), ·] will be complex valued; we may use

such fuctions in improving our approximation, see the next section.

The proof is similar to that of Proposition 4.5:

Proof. That h is ∂B-determined (Y,M)-harmonic implies the same for its real and

imaginary parts. For any complex number z we have |ℜ(z)− 1| ≤ |z − 1|; these and

(4.22) give

max
y′∈∂B,m∈M

|ℜ(h)(y′,m)− 1| ≤ c∗.

Then

(1− c∗)1{τ<∞} ≤ ℜ(h)(Yτ ,Mτ )1{τ<∞} ≤ (1 + c∗)1{τ<∞}.

Applying E(y,m)[·] to all terms above implies (4.21).

4.2 Numerical example

This section demonstrates the performance of our approximation results on a numer-

ical example. For parameter values P , λ(·), µ1(·) and µ2(·) we take those listed in

(2.7) and (2.8), for which |M| = 3. We know by Proposition 2.6 that for P as in

(2.7), A(β, α) has distinct positive eigenvalues for (β, α) ∈ R
2,o
+ . Furthermore, the

rates (2.8) satisfy λ(m) < µ1(m), µ2(m) for all m ∈ M, therefore, the stability as-

sumption (1.1) is also satisfied. Computing the right side of (2.20) at (ρ2, 1) shows

that the parameter values (2.7) and (2.8) satisfy (2.20). Therefore:

1. by Proposition 4.4, the function hρ2 is well defined and ∂B-determined and

(Y,M)-harmonic. Furthermore, Lemma 4.7 implies that we have |M| points

lying on Hβα of the form (β∗, 1) such that 0 < β∗ < 1. Solving the equation

p(β∗, α) = 0
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for each of these β∗ shows that these parameter values satisfy Assumption 4.1,

with mj = |M| for all j; this and Proposition 4.8 imply that have a (Y,M)-

harmonic ∂B-determined function h∗
ρ2

of the form (4.19) which satisfies (4.20);

2. Propositions 2.11, 2.12 and Lemma 4.2 apply and give the ∂B-determined

(Y,M)-harmonic function hρ1 = [(ρ1, ρ1,d1), ·],

3. Lemmas 4.9 and 4.10 apply and give the ∂B-determined (Y,M)-harmonic

functions hρ1,j = [(ρ1,j , ρ1,j ,fj), ·], j = 2, 3, 4, ....|M|.

In addition to these functions, we will use K · |M| (Y,M)-harmonic functions of the

form

hc
k,j

.
=

|M|
∑

j=0

bck(j)[(β
c
k,j, α

c
k,l, d

c
k,l), (y,m)], k = 1, 2, 3, ..., K,

such that

1. αc
k,0 = R eik

2π
K+1 ;

2. for each k, βc
k,j , j = 1, 2, 3, ...., |M|, are found by solving

p(αc
k,0, β) = 0 (4.23)

for β; we choose those solutions which satisfy |β| < 1.

3. for each k and j, αc
k,j,l are found by solving

p(βc
k,j, α) = 0; (4.24)

we choose those α satisfying |α| < 1;

4. dck,j,l is an eigenvector of A(βc
k,j, α

c
k,j,l) i,e., (βc

k,j, α
c
k,j,l, d

c
k,j,l) ∈ H,

5. the vectors bck,j are obtained by solving

|M|
∑

l=0

bck,j(l)C(βc
k,j, α

c
k,j,l) = 0. (4.25)

For hc
k,j , k = 1, 2, ..., K and j = 1, 2, 3, ...|M| to be defined (Y,M)-harmonic and

∂B-determined we need 1) for each k, the equation (4.23) needs to have at least |M|

roots β with absolute value less than 1; 2) for each k and j, the equation (4.24) needs
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to have at least |M| solutions with absolute value less than 1; 3) for each k and j the

equation (4.25) needs to have a nontrivial solution bk,j. Here we have two parameters

to set: K and R, for the purposes of this numerical example we set R = 0.7, and

K = 5. Upon solving (4.23), (4.24) and (4.25) with these parameter values we

observe that they have sufficient number of solutions for hj,k to be well defined and

(Y,M)-harmonic and ∂B-determined.

We have now 1 + 6|M|, ∂B-determined (Y,M)-harmonic functions to construct our

approximation of P(y,m)(τ < ∞); the approximation will be of the form

ha .
= ℜ(ha∗), ha∗ .

= h∗
ρ2
+

|M|
∑

j=1

cdj [(ρ1,j , ρ1,j ,d1,j), ·] +

K,|M|
∑

j=1,k=1

cj,kh
c
j,k, (4.26)

where cdj and cj,k are C valued coefficients to be chosen so that ha|∂B is as close

to 1 as possible. As in [30, Section 8.2], one simple way to do this is to choose

these (K + 1)|M| coefficients so that ha(y, y,m) = 1 for y = 0, 1, 2, 3, .., K and

m ∈ M. This defines a (K +1)|M|× (K +1)|M| system; for our parameter values

(K = 5 and |M| = 3) this is a 18× 18 system, and it does turn out to have a unique

solution. Once the cj and cj,k are determined through this solution, an upper bound

on the approximation relative error can be computed via Proposition 4.11; it suffices

to compute c∗ of (4.22); for ha∗ of (4.26) this quantity turns out to be

c∗ = 0.00367;

therefore, by Proposition 4.11, ha approximates P(y,m)(τ < ∞) with relative error

bounded by this quantity. By Theorem 3.15 we know that P(Tn(xn),m)(τ < ∞) ap-

proximates P(xn,m)(τn < τ0) with vanishing relative error for xn = ⌊nx⌋, x(1) > 0;

it follows from these that ha(n − xn(1), xn(2)) will approximate P(xn,m)(τn < τ0)

with relative error bounded by c∗ for n large. Let us see how well this approximation

works in practice. Figure 4.2 gives the level curves of − log(ha(n − x(1), x(2), 1))

and − logP(x,m)(τn < τ0); P(x,m)(τn < τ0) is computed by iterating the harmonic

equation satisfied by this probability; for n = 60, this iteration converges in less

than 1000 steps. As can be seen, and agreeing with the analysis above, these lines

completely overlap except for a narrow region around the origin.
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Figure 4.2: Level curves of − log(ha(n− x(1), x(2), 1)) and − logP(x,m)(τn < τ0)
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Figure 4.3: The relative error | log(ha(n−x(1),x(2),1)−log Px(τn<τ0)|
| log Px(τn<τ0)|
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Figure 4.3 shows the relative error

| log(ha(n− x(1), x(2), 1))− logP(x,m)(τn < τ0)|

| logP(x,m)(τn < τ0)|
,

we see that it is virtually 0 except for the same region around 0 where it is bounded

by 0.02. This narrow layer of where the relative error spikes corresponds to the region

1−x(2) < log(ρ2)/ log(ρ1) identified in Theorem 3.15. Figure 4.4 shows the detailed

graph of the relative error around the origin.
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Figure 4.4: The relative error (detailed graph around the origin)
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CHAPTER 5

APPLICATIONS IN FINANCE AND INSURANCE

Constrained random walks naturally arise in finance and insurance applications. In

Section 5.1 below we give an insurance interpretation of our results; in this context

constrained dynamics arise from dividend payments and the hitting time τn repre-

sents the total reserves of a system consisting of two insurance companies hitting a

low threshold n. In Section 5.2 we describe an application of the same ideas to the

problem of market making, i.e., to provide buy and sell liquidity for multiple assets.

In this context constraints on the dynamics correspond to “no short selling allowed”

and hitting time τn corresponds to the market makers inventory’s getting excessively

large, an undesirable state for the market maker. The first application involves mul-

tiple regimes modulated by an external Markov chain M , modeling different market

conditions under which the companies operate. In the second application modulation

is internal.

5.1 Reserve Problem

After the 2008 financial crisis great interest emerged in the modeling of financial and

insurance systems consisting of many companies, see [6, 16, 29] and the references

in these works. The simplest multidimensional model will consist of two companies;

each dimension modeling the financial situation of one of the companies. For the

purposes of this example, let us consider two insurance companies. We model their

reserves as a Markov modulated random walk in Z
2; the time step corresponds to a

unit of time such as a year, quarter or a month, the step increments of the random
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walk corresponds to some fixed unit of money, e.g., million dollars. The state of the

modulating chain M represents, e.g., the business cycle.

So far (X,M) is unconstrained; if these companies pay dividends when their reserves

hit certain fixed levels k(1) and k(2), these payments can be represented with a con-

straining map π:

π(x, v) =











x+ v, if x(i) + v(i) ≤ k(i), i = 1, 2,

0 otherwise.

The resulting process has the dynamics

X(k + 1) = X(k) + π(X(k), I(k)),

where I(k) represents the reserve changes from one period to the other whose distri-

bution is determined by the modulating chain M . In general, the possible jumps of

I will depend on the income, expenses of the companies as well as the agreements

made between them (for example, reinsurance agreements). In the specific case when

I(k) can take the values {(1,−1), (−1, 0), (0, 1), (0, 0)} this model reduces exactly

to a reflection of the tandem walk model given in Chapter 1, see Figure 5.1 which

shows the dynamics of X on a single layer.

∂Rn

µ1(m)

λ(m)
∂1

µ2(m)

x(1)

∂2

x(2)

Figure 5.1: The dynamics of (X,M)

The increment (−1, 0) corresponds to the decrease in reserves of the first company,

(1,−1) corresponds to the increase in reserves of the first company and a decrease in

the reserves of the second company, (0, 1) corresponds to an increase in the reserves

of the second company while the reserves of the first company stays constant.
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A sample path of the process (X,M) as regime changes occur is depicted in Figure

5.2 where each layer represents a state of the business cycle. For example, during the

expansion phase of the business cycle, the reserve level of companies moves on the

expansion layer. When the business cycle changes from expansion to recession, the

reserve levels remain stable. After the phase change, they continue their move on the

recession layer at recession rates.

state3

state1

state2

Figure 5.2: A sample path of (X,M)

The stability assumption implies that X moves in cycles which restart every time

it hits (k(1), k(2)), i.e., the point of maximum reserves for both companies. Let τ0

denote the first time X hits the points (k(1), k(2)). To see the financial interpretation

of the probability pn in this context introduce the absorbing barrier ∂Rn = {r ∈

Z
2
+, x(1) + x(2) = n}. The process hits ∂Rn exactly when the total reserves in the

system goes down to the level n, see Figure 5.1. Therefore, the probability pn that we

have studied in the last three chapters represents exactly the probability that the total

reserves in the system hits level n in a given cycle of the system.

Instead of the hitting time τn to the barrier Rn we can also study the probability

P(y,m)(σ1 ∧ σ2 < τ0), where σi is the first hitting time to the coordinate axis x(i). In

our present context σi represents the time when company i’s reserves hit 0, i.e., the

ruin time of company i. Then σ1 ∧ σ2 represents the first ruin time for this system

and the probability P(y,m)(σ1 ∧ σ2 < τ0) represents the probability that one of the

companies is ruined in a given cycle. This problem differs from the problem of earlier

chapters only in its rectangular exit boundary. We think that it is possible to extend the

approach of [30, 31] and the present work to treat such boundaries by using different
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points on the exit boundary as origin of the transformed coordinates and characteristic

surfaces compatible with the exit boundary. A careful study of these ideas remain for

future work. In the next section we present another possible application in finance

again making use of rectangular exit boundaries.

5.2 Market Maker’s Inventory Problem

Market makers play a significant role in financial markets as liquidity providers. They

are always ready to buy and sell an asset at the price they quote. Their profit comes

from the difference between the buying price and selling price of the traded asset, i.e.

bid-ask spread. We will introduce the market making model described in [16]; this

model was initially proposed by [2].

Consider a financial market in which a market maker trades two assets trying to max-

imize its expected utility. The buying and selling prices are continuously determined

by the market maker. The model assumes that one unit of asset is traded at every

transaction. The number of each assets held at time t in market maker’s inventory is

Nt(i) = N b,i
t −Na,i

t , i = 1, 2;

where N b,i
t and Na,i

t represents the number of the ith asset bought and the number

of the same asset sold, respectively. The inventory process Nt is a continuous time

process on Z
2, see Figure 5.3; the first [second] coordinate represents the inventory

of the market maker in the first [second] asset.

For each i = 1, 2, the processes N b,i
t and Na,i

t , are Poisson processes with intensity

λb,i
t and λa,i

t . The work in [2] assumes that these trading intensities depend on the

distance between market maker’s buying price (or selling price) and market price of

asset:

λb,i
t = Λb,i(δb,it ), δb,it = Si

t − Sb,i
t ,

λa,i
t = Λa,i(δa,it ), δa,it = Sa,i

t − Si
t .

The market maker determines the spreads δa,i and δb,i by solving the optimization
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problem

v(X,S,N, t) = max
δa,i,δb,i,i=1,2

E[− exp(−γ(XT + 〈NT , ST 〉))] (5.1)

where X is the market maker’s wealth and γ is the risk aversion parameter. The

optimal bid-ask prices quoted by the market maker depend both on N and X . Note

that the expectation on the right is smaller when NT is large. Larger NT exposes the

market maker to price risk; suggests that under optimal spreads, the process N would

be stable and work in cycles restarting each time N hits the origin (0, 0).

−Q

Q

Q

−Q

N(1)

N(2)

Figure 5.3: The dynamics of N

Observing the process N at the times when trades occur reduces it to a discrete time

random walk on Z
2; the possible increments of the random walk are (1, 0) (market

maker buys one unit of asset 1), (−1, 0) (sells one unit of asset 1), (0, 1) (market

maker buys one unit of asset 2), (0,−1) (sells one unit of asset 2); these jumps occur

with probabilities
λb,1

S
,
λa,1

S
,
λb,2

S
,
λa,2

S
,

where

S = λb,1 + λa,1 + λb,2 + λa,2.

Note that these jump probabilities depend on the spreads δa,i, δb,i; which can be inter-

preted as the environment variables within which N operates (i.e., modulation/ regime

switch). But these environment processes depend back on N through the optimization

problem (5.1), i.e., the regime switch in the present setup is internal.
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For inventory level, [16] specifies a threshold Q ∈ N, i.e., the market maker has an

upper bound on its inventories. The process stops once it hits the boundary where the

total number of assets 1 or 2 held by the market maker reach Q or −Q. The market

maker does not buy or sell an asset anymore if the inventory in that asset is Q or −Q.

Hitting these levels is an undesirable situation because it stops trading in the assets.

Q

Q

N(2)

N(1)∂2

∂1

Figure 5.4: The dynamics of N when no short selling is allowed

The model so far has no constraining boundaries; if the market maker is not allowed

to short sell, this restriction is modeled by constraining boundaries on the coordinate

axes ∂1 and ∂2, see Figure 5.4.

Define the hitting time

τQ
.
= inf{k : |Nk(i)| = Q, i = 1, 2}, τ0

.
= inf{k : Nk = (0, 0)}.

τQ is the first time trading in one of the assets halts; the probability

P(n1,n2)(τQ < τ0) (5.2)

is the probability that the market maker is unable to provide liquidity in one of its

cycles due to large negative or positive inventory buildup. Note that this is exactly the

type of probability studied in the present thesis. In future work we hope to extend the

analysis in this thesis to address the approximation of the probability (5.2) of lack of

liquidity in a market in a given cycle of the market maker.
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CHAPTER 6

LITERATURE REVIEW

As we have already pointed out the difficulty in the computation of pn is that the

state space grows in at least n2; making the exact and numerical solution of the cor-

responding linear system difficult. Another difficulty arises from the fact that the

stability assumption implies that the components of pn decay to 0 with n making an

asymptotic analysis with classical methods difficult, see [3] for a review discussing

these issues. The classisal approach to the asymptotic analysis of quantities such

as pn is large deviations analysis which gives the exponential decay rate of pn. The

large deviations (LD) analysis of pn for x = 0 for non-modulated constrained random

walks arising from Jackson networks was done in [17].

The popular technique in the literature for more precise estimates of pn has been

simulation. Because pn is the probability of a rare event, the ordinary Monte Carlo

(MC) method requires too many sample paths to give accurate estimates, this makes

MC a poor choice for the approximation of pn. Therefore, one needs to use variance

reduction techniques. One of these that has received great attention in the last several

decades is Importance Sampling (IS), which uses a new simulation measure under

which the overflow event is no longer rare; the estimator is modified accordingly using

the Radon Nikodym derivative of the original measure with respect to the simulation

measure (the likelihood ratio of these two measures). The goal in IS is to choose a

simulation measure that almost minimizes the second moment of the IS estimator;

for pn the second moment of the optimal estimator decays at twice the rate of pn. A

sequence of IS changes of measures is said to be asymptotically optimal if the decay

of their second moment matches this rate. As the relation between the decay rate
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of the second moment of the estimator and that of pn itself suggests, there is a close

connection between LD analysis of a probability and its optimal importance sampling.

Indeed, a heuristic idea that emerged early on is to use an “optimal path” that arises in

LD analysis to construct the IS change of measure. To the best of our knowledge, the

paper [33] is the first to use this connection to construct almost optimal IS changes of

measure for the estimation of a probability very similar to pn for a single dimensional

process.

The work [22] attempted to extend these ideas to multidimensions by applying them

to the constrained random walk associated with the two tandem queues. The IS

change of measure implied by the LD analysis turns out to be static (exchanging

λ with the smaller of µi). In [22] this change of measure is modified in boundary

layers along the coordinate axes ∂i leading to state dependent changes of measure,

see Figure 6.1.

µ1

µ2/(λ+ µ2)

λ/(λ+ µ2)

λ/(λ+ µ1)

µ1/(λ+ µ1)

µ2

λ

Figure 6.1: Boundary layers

Glasserman and Kou [15] further observed that the static change of measure given

by LD optimal path can have very poor performance for the two tandem constrained

random walk if when the service rates are nearly equal and the arrival rate is small.

Asymptotically optimal IS changes of measures for the simulation of pn for ordinary

constrained random walks associated with Jackson networks and for the initial condi-

tion x = 0, were finally constructed in [11, 12, 26, 28]. The construction and analysis

in these works rely on a limit HJB equation and its subsolutions. The limit HJB equa-

tion in these works arise from the convex transformation Vn(x) = − 1
n
log pn(⌊nx⌋).

The disadvantage of this transformation is that the presence of 1
n
log implies that
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much information about the behavior of pn is lost upon letting n → ∞ (only the

exponential decay rate of pn remains under this transformation; e.g., if the decay

rate is V n2e−nV (x) and e−nV (x) are the same, as far as this transformation is con-

cerned). To overcome this difficulty, [30] introduced a simple affine transformation

which keeps most of the structure of pn intact; this was already reviewed in Chapter 1.

[30, 31] derived approximation formulas for pn using this approach and showed that

they approximate pn with exponentially decaying relative error in the case of two di-

mensional non-modulated constrained tandem walk. For further works [7, 18, 20, 21]

we refer the reader to [31].

The works reviewed so far have all considered non-modulated constrained random

walks. The study of pn for modulated constrained random walks is extremely lim-

ited. To our knowledge, [27] is the only paper studying the estimation of overflow

probability pn focusing on the Markov modulated two tandem network. The system

dynamics are the same as our setup. This work extends the subsolution approach of

[11] to the two dimensional Markov modulated tandem walk and constructs asymptot-

ically optimal IS simulation algorithms for the estimation of pn; to prove asymptotical

optimality one also needs the LD decay rate of pn, this was also computed in the same

work. As with earlier works using the subsolution approach [27] focuses on the initial

condition x = (0, 0) (or any other sequence of initial condition converging to (0, 0)

with n). Just as there is a strong connection between the structures used in [30, 31]

and [11] there is a similar connection between the structures appearing in this thesis

and [27]. [27] constructs its subsolutions from the roots of a Hamiltonian function H

appearing in the limit HJB equation. The H of [27] equals p 7→ − log Λ1(e
p1−p2 , ep2);

the subsolutions in [27] are based essentially on two roots of this function, denoted by

r1 and r2 in [27] (see [27, Figure 2]). The first of these correspond to the point (ρ2, 1)

of Proposition 2.16, the second corresponds to the point (ρ1, ρ1) of Proposition 2.11.

The proofs of these propositions and that of [27, Lemma 4] use the same argument

based on the implicit function theorem; [27] uses these two points to construct sub-

solutions to a limit HJB equation which yield asymptotically optimal IS simulation

algorithms. We use the points (ρ2, 1), (ρ1, ρ1) and many others to construct (Y,M)

and (X,M)-(sub,super)harmonic functions 1) to prove that P(Tn(xn),m)(τ < ∞) ap-

proximates P(xn,m)(τn < τ0) with exponentially decaying relative error and 2) to con-
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struct approximate formulas for the probability P(y,m)(τ < ∞). Our formulas for the

last probability uses points on all of the components {Λj = 1}, j = 1, 2, 3, ...|M|, of

the characteristic surface allowing complex and negative values. As we have already

indicated the analysis in [27] is essentially based on the points mentioned above on a

curve that curresponds to the primary component {Λ1 = 1}.

In the previous chapter we have indicated several possible applications of constrained

random walk models in insurance and finance. Next we would like to point out fur-

ther studies in the current literature that uses ideas from queueing theory and con-

strained random walks in models of financial mathematics. The work [14] proposed a

model introducing a random environment where stock price is determined according

to the demand of market participants. Following this paper, [4] developed an agent-

based approach to stock price fluctuations based on methods and techniques from

state dependent Markovian queueing networks. In their model, the agent’s orders

arrive with an arrival rate depending on the current stock prices and investor charac-

teristics. The paper [8] proposed a credit risk model of a large portfolio by using state

dependent queueing networks. The authors made a connection between obligors that

moves around rating categories or default with rates change according to the macroe-

conomic environment and customers visiting service stations where the arrival and

service rates depend on the external Markov process.
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CHAPTER 7

CONCLUSION AND OUTLOOK

7.1 Comparison with earlier works

In the present work, we extend the limit anaysis approach for the approximation of

the probability Px(τn < τ0) by Py(τ < ∞) developed in [30, 31] to two tandem

walk with Markov modulated dynamics. In this section, we compare the Markov

modulated two tandem case treated in this thesis with the non-modulated two tandem

case treated in [30, 31] and the non-modulated parallel case (the two dimensional

simple random walk) treated in [34]. Our main finding is that it is indeed possible

to implement the affine transformation approach of [30, 31] in a Markov modulated

framework. But introduction Markov modulation leads to many novelties and diffi-

culties in the limit analysis and computation of P(y,m)(τ < ∞). We discuss these in

the paragraphs below.

Harmonic functions In the non-modulated two tandem case and the parallel case,

the harmonic functions are in the form y 7→ [(β, α), y] = βy(1)−y(2)αy(2) and (β, α)

are chosen from the roots of a characteristic polynomial of second order associated

with the process Y . With Markov modulation we have an additional state vari-

able m, leading to the harmonic functions in the form y 7→ [(β, α, d), (y,m)] =

β(y(1)−y(2)αy(2)d(m). The characteristic surface is now defined in terms of eigen-

value and eigenvector equations. We study the geometry of this characteristic surface

through the eigenvalues to identify the points in the analysis.
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Geometry of the characteristic surface The characteristic surface in [30, 31, 34]

are 1-level curves of second order polynomials; the projection of the characteristic

surface to R
2
+ consists of a simple egg shaped curve. Conjugate points on this curve

come in pairs and have very elementary formulas. The same curve in modulated case

is defined by a 2|M| order polynomial; its projection to R
2
+ consists of |M| pieces

one for each eigenvalue Λj of the matrix appearing in the definition of the characteris-

tic polynomial. There are in general no simple formulas for the roots of a polynomial

greater than degree 4, the formulas for degree 3 and 4 are fairly complex; therefore,

for |M| ≥ 2 (i.e., even for the simplest nontrivial Markov modulated constrained

random walk with two modulating states) the conjugate points no longer have simple

formulas and even to prove that they exist require a lot analysis using properties of

matrices, eigenvalues and eigenvectors and the implicit function theorem.

Assumptions We use the point (ρ2, 1) and its conjugate (ρ2, α
∗
1) lying on the H1

to define (Y,M)-superharmonic functions to use in our limit analysis. The identifica-

tion of the conjugate point (ρ2, α∗
1) requires a technical assumption ensuring α∗

1 < 1.

There is no corresponding assumption in the non-modulated tandem case, because the

α component of the conjugate point ρ1 = λ/µ1 is always less than 1 by the stability

assumption. For the parallel case, the corresponding assumption is r2 < ρ2.

ρ1 6= ρ2 This assumption is equivalent to α∗
1 6= ρ1 and generalizes the assumption

µ1 6= µ2 for the non-modulated tandem case and the parallel case. The computation

of P(y,m)(τ < ∞) needs progressively more general versions of this assumption (see

(4.5) and (4.1)).

Analysis The analysis in the non-modulated cases are based on the subsolutions

of a limit HJB equation and Y -harmonic functions. These works use the subsolu-

tions to construct supermartingales which are then used to find upper bounds on error

probabilities. In this thesis we construct the supermartingales directly using (Y,M)-

superharmonic functions constructed from points on the characteristic surface. Be-

cause Y has one less constraint compared to X , these functions can be subharmonic

on the boundary where Y is not constrained. To overcome this, we introduce a de-

creasing term to the definition of the supermartingale; these ideas are new to the
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present thesis.

In the tandem case there is an explicit formula for Py(τ < ∞); this formula is used

in the analysis of the error probability. There is obviously no explicit formula for

the corresponding probability in the Markov modulated case to compensate for this,

we derive an upper bound on this probability in Section 3.1 using again (Y,M)-

superharmonic functions.

Computation of the limit probability In the non-modulated tandem case there is

an explicit simple formula for Py(τ < ∞) that equal a linear combination of hρ2

and hρ1 . In the parallel case, an additional assumption ρ1ρ2 = r2 leads to an explicit

formula from the linear combinations of hρ1 and hr. Without this assumption, they

give an approximation for Py(τ < ∞) with exponentially decaying relative error

and add more harmonic functions constructed from conjugate points to improve their

approximation.

In our case, there is no more explicit formulas. We approximate the probability

P(y,m)(τ < ∞) with bounded relative error using linear combinations of (Y,M)-

harmonic functions; the construction of each of these functions require solution of

2|M| degree polynomial equation, the computation of corresponding eigenvectors

and the solution of a linear equation, which, in general, has |M|-unknowns. These

tasks either do not exist in the non-modulated case or are trivial, because the poly-

nomial equations are quadratic and the number of unknowns in the linear equation is

only 1.

7.2 Conclusion

In this thesis, we develop approximative formulas for the exit probability of two tan-

dem walk with modulated dynamics. The main approximation Theorem 3.15 says

that P(Tn(xn),m)(τ < ∞) approximates P(xn,m)(τn < τ0) with relative error vanish-

ing exponentially fast with n. To compute the exit probability, we first construct

∂B-determined (Y,M)-harmonic functions from single and conjugate points on the

corresponding characteristic surface and then with their linear combinations, approx-
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imate the boundary value 1 of the harmonic function P(y,m)(τ < ∞).

In the non-modulated tandem case treated in [30], the probability Py(τ < ∞) has an

explicit formula for tandem walks in d dimensions. As we have seen in this thesis,

even the extension to d = 2 entails considerable difficulties. Whether an extension to

higher dimensions is possible is a question we would like to tackle in future work.

The work [30] gives also a formula for Py(τ < ∞) for the case ρ1 = ρ2 based

on harmonic functions with polynomial terms for the non-modulated tandem walk.

Whether similar computations can be carried out for P(y,m)(τ < ∞) in the modulated

case when ρ1 = ρ2 is another questions for future research.

The computation and error analysis in the present work depend on the dynamics of

the process and the geometry of the exit boundary. Another problem for future re-

search is to extend the analyses to walks that have different dynamics than the tandem

walk and other exit boundaries. The simple random walk dynamics (i.e., increments

(1, 0), (−1, 0), (0, 1) and (0,−1)) and the rectangular exit boundary (which appears

in Section 5.2 in the market making problem) appear to be most natural to study in

immediate future work.

Another topic for future research is the approximation of large buildup probability for

market making problem (Section 5.2) in which the inventory process is constrained

in a rectangular domain.
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2018 - Present İzmir Vocational College of Higher Education Lecturer
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