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ABSTRACT

HOMOMORPHIC ENCRYPTION FOR DATA SECURITY IN CLOUD
COMPUTING

Wainakh, Asndar
M.S., Department of Cryptography

Supervisor : Prof.Dr. Ersan Akyıldız

Co-Supervisor : Assoc.Prof.Dr. Murat Cenk

June 2018, 64 pages

Recently, cloud computing has grown into a popular aspect of the IT industry. Cloud
computing provides a range of hardware and software resources to its customers, which
they can access through the internet. With the rapid development of cloud computing,
various security issues related to confidentiality, and integrity are appearing. Tradi-
tional encryption techniques provide security to data while it is stored and transmitted,
but not while it is processed. Hence traditional encryption techniques are not enough to
secure data completely. Homomorphic encryption presents a resolution to this obstacle
by allowing computation on encrypted data. Within the thesis, we present a summary
of cloud computing security concerns plus the possibility of applying homomorphic
encryption for data security.

Keywords : Cloud Computing, Homomorphic Encryption, Cryptography, Cloud Secu-
rity, Encryption
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ÖZ

BULUT BİLİŞİMDE VERİ GÜVENLİĞİNİ AMAÇLAYAN HOMOMORFİK
ŞİFRELEME

Wainakh, Asndar
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof.Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Doç.Dr. Murat Cenk

Haziran 2018, 64 sayfa

Son zamanlarda, bulut bilişimi, bilişim teknolojileri sektöründe yaygın bir fenomen
haline gelmiştir. Bulut bilişim, müşterilerine İnternet üzerinden erişebilecekleri bir
dizi donanım ve yazılım kaynağı sunar. Bulut bilişimin hızla gelişmesiyle, gizlilik
ve bütünlük ile ilgili çeşitli güvenlik sorunları ortaya çıkıyor. Geleneksel şifreleme
teknikleri, depolanırken ve iletirken verilere sağladığı güvenliği işlenirken sağlamaz.
Bu nedenle, verileri tamamen korumak için geleneksel şifreleme teknikleri yeterli
değildir. Homomorfik şifreleme, şifrelenmiş veriler üzerinde hesaplamaya izin ver-
erek bu soruna bir çözüm sağlar. Bu tezde, bulut bilişim güvenliği konularının bir
özetini ve veri güvenliği için homomorfik şifreleme uygulama olasılığını sunuyoruz.

Anahtar Kelimeler : Bulut Bilişim, Homomorfik Şifreleme, Kriptografi, Bulut Güvenliği,
Şifreleme

ix



x



To My Beloved Family.
My father who first taught me the value of education and critical thought.

My mother for her constant, unconditional love and support.
My brother and sister for always supporting, helping, and standing by me.

xi



xii



ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisors Prof. Dr.

Ersan Akyıldız and Assoc.Prof.Dr. Murat Cenk for their patient guidance, enthusiastic

encouragement and valuable advices during the development and preparation of this

thesis.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CHAPTER 1

Introduction

In today’s world, creating data is multiplying every 18 months [67]. The International
Data Corporation (IDC) predicted that from 2013 to 2020, the digital universe would
expand by a factor of 10 - from 4.4 trillion to 44 trillion gigabytes and the data volume
handled by organizations is increasing 50 times. Hence, processing and storing data,
by using conventional solutions, will get too expensive. To avoid the high expenses
organizations and individuals tend further to outsource data to other companies, which
have enough resources to perform the task in a shorter time and with a lower cost
[19, 78].

Cloud Computing is thought to be the highest progressive innovations of the century.
By delivering computing services such as storage, servers, software, networking and
more over the Internet. Cloud Computing Providers are companies providing these
services to the customers. Nevertheless, security is an essential challenge concerning
the adoption of Cloud services. The Cloud provider can access the data that is in the
Cloud at any time. It could modify or delete the data, and it could share the data with
other parties. That makes the Cloud customers worried about losing control of their
sensitive and high-risk data, such as medical records and financial details.

Several procedures can be adapted to reduce data security issues and help to provide
data confidentiality, integrity, and availability to the Cloud customer. Cloud customers
could encrypt the data on the Cloud in order to block unauthorized access, but the
encrypted data under processing needs a particular sort of encryption. Encryption
that enables the Cloud provider to process computation over encrypted data. This
encryption called Homomorphic Encryption (HE).

1.1 Objectives

This thesis aims to explain the data security issues in the Cloud. How encryption could
solve some issues. Moreover, we study the Homomorphic Encryption (HE) and its
implementations. By covering the following objectives:

• Define Cloud Computing and give a summary of the security matters influencing
Cloud Computing.
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• Describe the performance of traditional encryption as a possible threat counter-
measure and the challenges facing its implementation.

• Manifest the basics of Homomorphic Encryption (HE) then present some of its
real-life implementations.

1.2 Thesis Structure

In recent years, many experts presented the concepts of Cloud Computing, and Homo-
morphic encryption separately. Therefore based on the available literature, we tried to
present the connection between the two concepts with more details. We hope that our
research will be helpful to other researchers in this area.

The thesis is structured in a way that helps to achieve a broad and connected analysis
of Cloud Computing and Homomorphic encryption. The thesis formed in 6 chapters:

In chapter 2, “Cloud Computing”, we introduce the idea of Cloud Computing through
presenting many definitions in the literature, then we discuss the essential characteris-
tics of Cloud Computing together with a variety of existing services and deployment
models.

Chapter 3, “Encryption and Cloud Computing” presents a review of the security con-
cerns of Cloud Computing. Then we introduce the use of cryptography in general for
supporting security in the Cloud. More specifically, we analyze conventional encryp-
tion as a potential step for solving the data security concerns. Then the chapter ends
by reviewing the challenges involved when the traditional encryption is implemented
in a Cloud environment.

In chapter 4 “Homomorphic Encryption”, we describe in some detail Homomorphic
Encryption (HE), Partially Homomorphic Encryption (PHE), Somewhat Homomor-
phic Encryption (SWHE), and Fully Homomorphic Encryption (FHE), and we present
some example schemes.

In chapter 5 “Implementation of Homomorphic Encryption”, we present some different
implementations of Homomorphic Encryption (HE) as viewed in the literature.

2



CHAPTER 2

Cloud Computing

Cloud Computing is one of the quickest developing technologies that entice researchers
to add and enhance its services. This technology is changing the traditional IT ser-
vices into remote and on-demand paid hardware and software services. Usually, these
services configured for specific needs. The Cloud provider manages and hosts these
services and provide them to other organizations or customers. Organizations bene-
fit from this by increasing their flexibility and efficiency without the need to have a
devoted IT staff or buying special hardware equipment or software licenses.

2.1 What Is Cloud Computing?

Cloud Computing enables the customers to use applications installed on other Internet-
connected devices separate from their computers. These devices end up to be a distant
data center.

With the traditional IT model, the organization needs to purchase an application on Cds
or DVDs then install it on its computers and with each new update the organization
has to install that update on each computer. In addition to the expenses of all these
licenses, since most likely the organization will use the application only once in a
while, yet it has to pay as much for the license as if it used daily. The advantage
of Cloud Computing is that the cloud provider will host the application, manage the
software updates and handle the hardware (servers, networks). This will reduce the
expenses as the organization will pay for using the services only when it uses them.
Moreover, no need to purchase hardware equipment, or devote an IT team to operate
the equipment [102].

2.1.1 Definition

Although the name Cloud Computing has been animated by the cloud icon to symbol-
ize the World Wide Web in network diagrams the definitions that researchers and orga-
nizations provide often differ substantially. The Cloud was defined as “set of services
hosted online can be accessed via the Internet, which is metaphorically represented as
a ‘Cloud’.” [58].
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The Cloud Security Alliance (CSA) contributes another definition as “ Cloud describes
the use of a collection of services, applications, information, and infrastructure com-
prised of pools of computing, network, information, and storage resources that can be
acquired or released as necessary.” [18].

The US National Institute of Standards and Technology (NIST) provided the com-
mon popular definition. Where it defined the Cloud as “Cloud Computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction” [79] . NIST definition also includes the essential
characteristics, the service models, and the deployment models, see Figure 2.1.

Figure 2.1: Cloud Computing [79]

2.1.2 Cloud Components

Cloud Computing is composed of several components: the clients, the high-speed
broadband, and the data center.

Each component has a function and performs a specific part in providing an efficient
cloud service [118].

• The Clients: The clients inside a Cloud Computing structure are similar to the
clients in any local area network (LAN). These are, usually, the personal com-
puters. However, they might also be laptops, tablets and mobile phones, as a
result of their mobility, these play a significant rule in Cloud Computing. In
other words, clients are the devices which the customers use to manage their
data on the cloud [118]. Clients classified into three classes:

4



– Mobile smartphones.
– Thin clients are computers without hard drives. The server does all the data

processing, then present the results.
– Thick clients are the regular computers, which use an Internet browser to

connect to the cloud.

• High-speed broadband: An essential component, which offers the media to
connect all the other components. Broadband accessibility has become widely
available, especially wireless access (e. g., WiFi, mobile) [76].

• Data center: The data center is typically a combination of servers host the ser-
vices that the customer subscribed. However, the servers are not necessarily
located in one location. Usually, servers are in different places. Nevertheless,
from a customer perspective, these servers act as one system.

2.2 Essential Characteristics

NIST has identified five essential characteristics of the Cloud Computing model [79],
as in Figure 2.2. That shows how Cloud Computing model is different from the tradi-
tional computing model. The characteristics are:

• On-demand self-service: In the Cloud Computing model, there are customers
and Cloud providers. That allows the customer to self-provision additional com-
puting capabilities, such as storage, processing capability, applications, memory
and network resources as much as wanted automatically without any direct con-
tact with the cloud provider.

• Broad network access: Most of the data storage, and data processing is done in
the Cloud. Therefore these capabilities are accessible through the network using
standard protocols such as HTTP and IP. Which, permits the use of various types
of thin and thick clients.

• Resource pooling: Unlike traditional computing models, which dedicate com-
puting facilities to one user, Cloud Computing is a multi-tenant model. The
computing sources are combined to serve many customers.

• Rapid elasticity: Additional resources can be elastically provisioned and re-
leased by customers according to their demands. The available resources usually
seem to the customer as endless resources which can use in any capacity at any
moment.

• Measured service: There are several payment types in the Cloud, such as fixed
price plans, pay-as-you-go, and free. There are many metering functionalities
can be used in the cloud, based on the provided service (e.g., storage, process-
ing, and bandwidth), a metering functionality is selected. The customers pay
only for the used resources, only for the time they use them. To provide trans-
parency records to the customer and the provider, the usage of resources can be
monitored, controlled, and reported.
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Figure 2.2: Essential Characteristics [57]

2.3 Service Models

The concept of Cloud Computing services is to provide many reusable sources and
components across the vendor’s network to the customer. The main services are widely
known for Software, Platform, Infrastructure (SPI) model. NIST has categorized
the services into three main approaches, software-as-a-service (SaaS), platform-as-
a-service (Paas), and infrastructure-as-a-service (IaaS) [79], as shown in Figure 2.3.
SaaS primarily focuses on end-users, PaaS targets software developers, while IaaS
is enterprise oriented [83]. Each one of these services could split into more specific
types of implementations, such as Security as a Service (SECaaS), Storage as a Service
(STaaS), Application Programming Interface (API) as a Service (APIaaS), and Data as
a Service (DaaS).

2.3.1 Software as a Service (SaaS):

The traditional computing model based on purchasing software for a license fee paid
by the customer who has to load the software onto his hardware. The customer should
take care of the operating systems installations, and the license agreements. To obtain
additional utilization, the customer has to purchase a maintenance service.

In the SaaS model, the provider hosts applications as a service to the customer, who
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does not purchase applications, but instead uses them on a pay-per-use model. The
customer uses the service by any approved device wherever they have web access. The
customer does not have to maintain or support the applications. However, the customer
cannot manage or control the servers, network, storage, operating systems, or even the
configuration settings, except for few specific settings. Applications like Google Docs,
Gmail, and Microsoft Office365 are all considered as SaaS runs on the Cloud and offer
the customer some functions and options using only an Internet browser [118].

The pay-per-use model can be a double-edged sword. Rather than pay for purchasing
the software once and be done with it, costs for using the software can be a continuing
situation: the more the customer uses it, the more he will pay. On the other hand, the
customer is only billed based on his use of the software, which costs less money than
buying the software outright. Outsourcing the hosting and management of applications
to a Cloud service provider will help the customer to get rid of the cost of hosting the
application internally [76].

Despite the advantages of SaaS, some obstacles are facing its implementation, such as
the “lock-in” situation. After a customer starts using an application from a particu-
lar provider, it is considered difficult to port that application to another provider and
migrate existing data [102].

2.3.2 Platform as a Service (PaaS):

The customer gets the required development environment to build applications entirely,
including application design, programming languages, testing services, libraries and
other development tools. These tools are supported by the provider, and the customer
does not manage the cloud infrastructure still the customer can manage the applica-
tions deployed by him. Besides, the customer can manage some settings regarding the
application-hosting environment [76].

PaaS is beneficial for start-up companies because PaaS systems can help them reduce
the cost of deploying web-based applications by eliminating the complexity of manag-
ing the servers [102].

A limitation of PaaS is that the application is attached to a singular provider. In other
words, customers may not be able to move an application that they have created with
one cloud provider to another provider. Another limitation is, if the provider goes out
of business, the customer will lose his applications and data [118].

2.3.3 Infrastructure as a Service (IaaS):

While SaaS and PaaS provide customers with applications and programming plat-
forms, IaaS provides hardware that the customer can put whatever he wants onto it
[76]. That includes the entire infrastructure, of networks, storage, processing, and
other computing resources, which are needed to run and deploy applications [102].
The customer controls the authentication, identity management, operating systems,
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and supervision of the resources [20].

Based on the resources needed by the application, the infrastructure provided by IaaS
can be dynamically scaled up or down [118]. Still, the customer cannot control or man-
age the provider’s actual physical infrastructure but can install any operating system
or any application to run the resources [79]. The Cloud infrastructure hardware is usu-
ally shared among distinct Cloud customers using virtual servers, while the provider
guarantees that the infrastructures used by various customers are logically separated
[65].

Figure 2.3: Service Models [10]

2.4 Deployment Models

In the Cloud, NIST has defined four deployment models depending on the relation-
ship between the Cloud and the customers who are allowed to use the cloud services
(person, organization, enterprise,... ) [79]. The deployment models divided into four
categories: Private, Community, Public, and Hybrid Clouds (See Figure /reffig:dep).
In the following, we present an overview of each of these categories.

• Private Clouds: The Private Cloud dedicates the infrastructure for exclusive use
by a single organization and does not share it with other customers. This Cloud
infrastructure can be owned, built, managed, and operated by the organization.
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Thus this infrastructure requires more resources to build and manage. However,
this closed environment will assure the privacy and the security of the data. It
can also be owned, built, managed, and operated by some other third party, but
the organization will still be able to control the underlying infrastructure with the
logical and physical security features. The location of the infrastructure could be
on or off premises. Thus, we can classify the private clouds into three categories
[76]:

– Dedicated Private Clouds where the customer builds his data center, to host
the Cloud infrastructure and an internal IT team will manage it.

– Community Private Clouds where the Cloud provider owns and operates
the infrastructure. The customer decides the security and compliance re-
quirements, for the provider to follow. The infrastructure can be hosted on
the premises of a third party.

– Managed Private Clouds where the Cloud infrastructure is owned and hosted
by the customer and managed by the provider.

• Community Clouds: The Cloud infrastructure is dedicated to a specific com-
munity or a group of customers who have the same concerns or have a business
partnership. It can be operated, built, owned and managed by one of the organi-
zations or by another third party. It can be located on or off premises.

• Public Clouds: The Cloud infrastructure is available to the general public. It
is hosted, operated, and managed by the Cloud provider. Thus more significant
cuts in cost can be achieved. The customer can control only some of the logical
and physical security features. That might be a challenge for managing data
security considering potentially malicious users could use the infrastructure. The
infrastructure is located on the premises of the cloud provider.

• Hybrid Clouds: A Hybrid Cloud environment consists of linking multiple Cloud
deployments models (community, public, or private) together. With a Hybrid
Cloud, to manage data security during Cloud interaction, the customer needs to
consider the various security aspects of the different Clouds. For instance, orga-
nizations might run non-sensitive data and applications in a public cloud, while
maintaining sensitive applications and data in a private cloud.

2.5 Examples of Cloud Service Providers

Many companies offer Cloud Computing services (SPI) to other organizations and
customers. These companies referred to as Cloud Service Providers (CSPs). In what
follows, we provide a short overview of the most prominent three providers with their
service offerings and use cases (See Figure 2.5) [76].

• Amazon Web Services (AWS): Provides (IaaS) solutions like storage and com-
puting power among other services. These services allow organizations to get

9



Figure 2.4: Deployment Models [96]

the benefit of Amazon’s infrastructure. AWS offers many infrastructure-related
services, including the following: Elastic Compute Cloud (EC2), Simple Storage
Service (S3), Simple Queue Service (SQS), CloudFront, and SimpleDB [102].

• Google Cloud Platform: Is a (PaaS) providing the customers with hosting and
building applications on Google’s infrastructure. On the other hand, Google
Apps is a (SaaS) featuring several applications, including Gmail, Google Calen-
dar, Talk, Docs, and Sites.

• Microsoft Azure Services Platform: works as a runtime operating system for
the applications and provides a collection of services that support management,
development, and hosting of applications. The platform covers the following
services: SQL Services, .NET Services, and Live Services.

Figure 2.5: Cloud Computing Providers
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CHAPTER 3

Encryption and Cloud Security

Apart from the advantages of using the Cloud, we also need to look at the problems
or disadvantages that it could cause. Security in the Cloud is a primary problem, con-
sidering that the customer does not have immediate control over the infrastructure and
the data. As a consequence, the customer demands to have a guarantee that his data
is secure. In other words, to guarantee the confidentiality, integrity, and availability of
the data [111].

The data security threats categorized into three classes, the threats to confidentiality,
availability, and integrity. Confidentiality indicates that the data should not be exposed
to an unauthorized entity. Integrity means that the data should not be modified or
deleted by unauthorized users. The issues related to the availability of data stored on
the Cloud services are critical. Such issues, even if temporary, are a severe information
security threats. Given that makes the system or data unusable or unavailable [116].

Depending on the deployment models and the type of the services, the provider, and
the customer agreed on the security responsibilities. For example, in SaaS, the cloud
provider usually manages the security of the infrastructure and the applications. In
IaaS, the provider manages the infrastructure security, while the customer is subject to
make sure of the software and the platform security. In PaaS, the provider controls the
platform security, but the application security is controlled by the customer [102].

3.1 Cloud Security Threats

Through the years, many organizations like the Cloud Security Alliance (CSA) and the
European Network and Information Security Agency (ENISA) have taken up the task
of assessing the security risks in Cloud Computing models. They regularly evaluate
the security threats that Cloud Computing can be subject to [61, 101]. This section
introduces the most important Cloud security threats.
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3.1.1 Abuse and Nefarious Use of Cloud Computing:

The Cloud infrastructure can be abused for nefarious purposes, or for performing other
malicious activities. For instance, an attacker can use the virtually unlimited computing
power and resources to host malicious code or to launch an attack against customers.
Service providers may provide their potential customers with an illusion offer of un-
limited computing, storage, and network capacity. Some providers even offer a free
30-days trial, with an easy registration process where the customer is asked to provide
a legitimate credit card to join and instantly start using the Cloud services. These reg-
istration and usage models keep the customer identity relatively unknown, which can
be abused by malicious code authors and spammers. IaaS and PaaS providers have ex-
perienced several of these kinds of attacks, where the customer has enhanced control
over the infrastructure. SaaS, on the other hand, suffered fewer attacks since it has a
system in which the customer can use the resources only by a hosted application in
more controlled conditions.

3.1.2 Insecure Application Programming Interfaces:

Customers control and communicate with Cloud services using a set of Application
Programming Interfaces (APIs) or other software interfaces. The Cloud providers use
these interfaces to manage, monitor and synchronize data. Therefore, the security and
availability of the general services will be affected, if the security of the underlying
APIs is jeopardized. The APIs are exposed over the network, so the design of these
interfaces must consider protection against threats and activity monitoring of the inter-
faces.

3.1.3 Malicious Insiders:

The threat of malicious insiders at the provider’s data center is well-known to most
organizations. These insiders have access to the data to manage the Cloud services,
but they might also take advantage of the absence of transparency in the provider’s
procedures. For instance, a provider may not explain how the operators grant access to
the Cloud infrastructure, or what is the hiring measures and manners for the workers.
The level of access granted to employees could create an attractive opportunity for an
adversary to collect confidential data or obtain full control over the cloud services with
no chance of discovery. That is why, the provider is obligated to do all the needed
procedures, such as monitoring employees and auditing all their actions.

3.1.4 Shared Technology Issues:

In order to deliver the services in a scalable way, the IaaS vendors share the Cloud
infrastructure with different customers. The Cloud infrastructure tries to separate the
activities of the different customers in the Cloud. However, the infrastructure ( the
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CPU caches and GPUs) was not created to provide secure separation for a multi-tenant
Cloud infrastructure. That vulnerability could be a threat when a tenant operating
system gains unauthorized control or influence on the underlying Cloud infrastructure
[20]. To address this gap, the separation between these tenants is managed by a vir-
tualization hypervisor, which interferes between the tenant operating systems and the
hardware infrastructure [73]. However, virtualization hypervisors have shown some
flaws. Therefore, to assure that some customers cannot affect the operations of other
customers running on the same infrastructure, a robust defense strategy should be im-
plemented by enforcing compute, storage, and network security. For instance, an indi-
vidual customer should not have a way to access any other customer’s data.

3.1.5 Data Loss or Leakage:

In the traditional IT systems the data is under the customer’s direct control and more
isolated. However, the data in the Cloud can be compromised in more severe ways
due to the operational characteristics of the Cloud environment. The data in the Cloud
could get deleted or modified without a backup of the original data. Also, storing
data on unreliable media could cause loss of data confidentiality, this includes threats
to encryption, such as using inappropriate encryption algorithms and processes, and
bad key management practices. Finally, only authorized parties should have access to
sensitive data.

3.1.6 Account or Service Hijacking:

Attackers are still working on practices like fraud, phishing, and exploitation of soft-
ware vulnerabilities to hijack accounts or services. Reusing credentials and passwords
often amplify the impact of such attacks [115]. If attackers obtain the credentials to
the Cloud, then they can manipulate the data, return falsified information, eavesdrop
on the activities and transactions, and redirect the customers to illegal sites. Weak au-
thentication and access control pose a significant threat to the Cloud. Moreover, the
attacker might also use the account or service as a base to launch further attacks.

3.1.7 Unknown Risk Profile:

The term “unknown risk profile” is another threat to the Cloud. Usually, the customer
believes that the provider manages the Cloud infrastructure security, without knowing
exactly how risks are being assessed and managed by the provider. The Cloud provider
might lose track of the security consequences by using some nonstandard security
practices, versions of software, code updates, vulnerability profiles, or security design
that are not sufficiently verified and tested. Besides that, the provider might have
configured the Cloud infrastructure inappropriately, that information about who are
the other tenants using the infrastructure or other logs may be exposed. Consequently,
further unknown risks are exposed.
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3.2 Cryptography in The Cloud

After identifying the main security threats to Cloud Computing. It is useful to view
a few cryptographic techniques to address some of the security issues. Cryptography
performs an essential part in delivering data security in the Cloud. It can be used
efficiently to handle some of the security issues, mainly when it used in collaboration
with other countermeasures [7]. Various Cryptographic techniques can be practiced
such as confidentiality, data integrity, user authentication, non-repudiation, and data
origin authentication. In the following, we briefly present some of these techniques.

• User authentication: Is the process of verifying that the identities of the enti-
ties participated in a transaction, are true at that point in time. Alternatively, data
origin authentication is used to confirm the source of a specific message. In a
Cloud environment, digital signatures are used to perform data origin authenti-
cation, given that creating such signatures require information about the secret
key.

• Data integrity: Ensure that other unauthorized entities did not modify the data.
Using a key known only for the authorized entities, that can generate digital sig-
natures and Message Authentication Codes (MAC) for the messages. A changed
message will return invalid signatures or check-sums. In the Cloud, for instance,
such cryptographic methods can be applied to preserve the integrity of forensic
data used during an investigation.

• Non-repudiation: Prevent an entity from making an argument that he did not
make a transaction or send a specific message. The recipient can present a proof
that a particular sender created this message. Digital signatures can achieve non-
repudiation considering that the signature can only be created by an entity that
knows the secret key, over a specific message.

• Confidentiality: Means making data available exclusively to authorized entities,
assuring it is not revealed through unauthorized entities. Cryptography works
extremely well to achieve confidentiality by using encryption. Other techniques
based on cryptography used to generate a pseudorandom number to generate
keys for encryption schemes.

3.3 Encryption as a Threat Countermeasure

As we have seen in the previous section, a number of Cloud security threats were
identified. In the section, we evaluate how encryption can assist to minimize such
threats.

• Abuse and Nefarious Use of Cloud Computing: For an attacker, the Cloud
infrastructure is a desirable platform to use for conducting attacks. Because it is
adjustable and upon demand can afford large volumes of computing power and
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resources. To manage the use of the Cloud resources, some cryptographic pro-
cedures may help to stop unauthorized use. For example, to identify a customer
on the Cloud, a digital signature generated by the customer can be used without
revealing the secret key. The provider can easily identify malicious users. En-
cryption cannot solve this problem, because encryption works only on the data
and cannot work on the Cloud infrastructure.

• Insecure Interfaces and Application Programming Interfaces: To manage
the Cloud services, the APIs are opened over the network. To avoid unautho-
rized customers, these interfaces need to be protected. By encrypting the com-
munications, an unauthorized customer cannot eavesdrop the Cloud communi-
cations. Other cryptographic methods can be used, as explained in Section 4.1.
This guarantee the integrity of the Cloud management messages, which also pre-
serves against message forgery [7].

• Malicious Insiders: For controlling and managing the data, some of the Cloud
provide’s employees might have access to the stored data. A malicious employee
can easily abuse such rights. One of the methods of facing this threat is by en-
crypting the data, so it becomes insignificant to the employees. Then the data
will be preserved against insiders who got unauthorized access to the data. Nev-
ertheless, the encryption should be accompanied with proper key management
methods, because if the insider gain access to the keys then he can decrypt the
data [7, 61].

• Shared Technology Issues: Since Cloud is a resource pooling model and the
infrastructure is shared among many tenants, a customer can find a vulnerability
in the virtualization hypervisor to get unauthorized access to the Cloud infras-
tructure. To address this threat some cryptographic methods can be used such
as code signing, which allows the provider to verify that a trustworthy source
creates the applications on the Cloud and that it has not been modified. Data en-
cryption cannot help that a lot against this kind of threat as data confidentiality
is not the main interest in this situation.

• Data Loss or Leakage: Encryption can be used to achieve the data confiden-
tiality in the cloud, and to protect the data against unauthorized modification or
deletion. However, it cannot protect against the other threats [61].

• Account or Service Hijacking Authentication tools and access control methods
are very important in the Cloud. Because if an attacker managed to manipulate
these methods he can get access to the customer’s data and also use this data
to launch more attacks. Digital signatures can handle the bypass alterations of
access control information by attackers and verify identity. However, in such
situations encryption, has a limited effect.

• Unknown Risk Profile: The Cloud customer usually is not informed about how
the provider evaluates and manage threats. And what security measures are used
by the provider. Therefore, the customer should also take some steps, to increase
the security afforded by the provider. Better than just blindly depend on the
provider’s standards to manage the data security. Encrypting the data before
sending it to the provider is a very good step the customer should take.
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3.4 Cloud Encryption

The customer loses control over the data after he transmits the data to the Cloud, and it
becomes under the Cloud provider’s control. Therefore, encryption plays an essential
role in protecting data confidentiality. Cloud encryption is a complicated process that
can be achieved in various techniques, depending on the Cloud service models (section
...). SaaS presents the least risks since the customer has minimum control over the
infrastructure, while in IaaS the customer has more control over the infrastructure and
he is responsible for the security measures. In this Section, we review the applicability
of encryption in the Cloud service models.

3.4.1 Encryption in SaaS

In SaaS, the provider usually implements the security measures directly, even though
in some cases before transmitting the data to the Cloud the customer can perform some
security measures. Three main strategies can be adopted when considering encryption
in SaaS [29]:

• Cloud provider encrypt the data after transmission: The Cloud provider en-
crypts the data after receiving it from the customer. By doing this, data con-
fidentiality would be protected against any threats and then the provider can
re-transmit or store this data in the encrypted state. Transmitting the data, from
the customer to the provider, done by using secure SSL/TLS channels between
the customer and the provider. However, allowing the same provider to manage
the data encryption and the data storage, causes additional security issues.

• Customer encrypt the data before transmission: The customer can encrypt
the data before sending it to the Cloud, using an encryption scheme indepen-
dently from the provider. The encrypted data is transmitted to the provider and
when the customer retrieves it, the data is decrypted. In this case, the customer
is in complete control of the encryption scheme and the keys. Since the provider
does not have the decryption key, that means the SaaS application can only exe-
cute limited operations on the encrypted data (such as searching). In some cases,
the SaaS application will not be able to read or identify the encrypted data. For
example, if the email sender encrypts the message before sending it to the email
provider (SaaS provider), then the message will not be delivered to the recipi-
ents. The email provider is unable to interpret the message to find the receiver
email address, with knowing the decryption key.

• Third party encrypt the data during transmission: The data can be automat-
ically encrypted by a network-based encryption scheme, located between the
provider and the customer. The third party proxy could encrypt the transmitted
data from the customer to the Cloud provider, also can decrypt any data received
from the provider. This shifts the pressure of encryption and key management
from the customer, and separate the encryption - storage services introduced by
the provider. Of course, the third party proxy needs to be trusted.
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3.4.2 Encryption in PaaS

In PaaS, the customer or the cloud provider can encrypt the data [29]. PaaS encryption
can be done in two ways:

• Application-Level Encryption: In PaaS, the customer is usually a software de-
veloper who writes applications that uses several PaaS services to provide the
needed purposes. The PaaS encryption is implemented directly at the applica-
tion layer by the developer. For instance, applications developers can program a
software to encrypt the data before adding it to a database. Then when the data is
retrieved from the database the application decrypted it again. The benefit of this
technique is that the developer completely controls the encryption process, and
can control it as he wants. Also, the Cloud provider does not get the data orig-
inal form. However, this method could be complicated and slow to implement
securely.

• Infrastructure-Level Encryption: Typically, the Cloud provider in PaaS is re-
sponsible for secure the data stored on the Cloud infrastructure. Encrypting the
data files stored on the disk protects them from being opened by unauthorized
users. However, the Cloud provider can encrypt the data files when they arrive at
the infrastructure. The problem with this practice is that the provider again will
be responsible for both data storage and encryption.

3.4.3 Encryption in IaaS

The customer is responsible for the data security while the provider is responsible for
the security of the infrastructure by using firewalls and other measures [29]. Encryption
in IaaS implemented in many ways:

• Volume-Based Encryption: The whole storage volume is encrypted in the
Cloud infrastructure. So all the data which will be sorted on that volume (Hard
disk) will be encrypted directly and this makes it so difficult to understand the
data on the disk without the decryption keys. This guarantees the data confiden-
tiality and that the customer and the Cloud provider cannot access the volume
without keys. Usually, to handle the configuration the boot volume cannot be
encrypted.

• File-Based Encryption: In File-based encryption, each file is directly encrypted
by the Cloud provider before it is recorded on the disk. This method enables
the customer to decide which data must be encrypted, using which encryption
scheme with the needed key-strength. Nevertheless, this method works just with
files, and it cannot be used for data stored in a database.

• Application-Level Encryption: In IaaS, we can also implement encryption di-
rectly within the applications operating on the Cloud infrastructure, as in PaaS.
This encryption is recommended when IaaS is used to develop applications with
built-in encryption.
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3.5 Encryption and Data Life Cycle

Regardless of the fact that using encryption can help to maintain data confidentiality,
implementing encryption is not easy and needs much more thinking and attention.
We need to figure out at which point we should encrypt the data and when it should
be decrypted. Encrypting data at the wrong stage could cause an undesirable cost
regarding performance, computation, and complexity. However, not implementing
encryption on data when it is needed could compromise the data at its most vulnerable
state.

The data stored on the Cloud infrastructure referred to as data at rest. Data transmitted
between the customer and the provider or transmitted among different providers or
different customers called data in transit. Data is in use when the customer is currently
displaying or processing the data [8]. In the following, we discuss how encryption can
be applied to data in these stages.

• Encryption of Data at Rest: The encryption of the stored data provides con-
fidentiality for data, but also raises some difficulties such as falling to execute
particular processes on encrypted data and performing a search for an object.
The customer can encrypt data that is at rest before sending it to the Cloud, or
the Cloud provider can encrypt data directly. This method ensures that the data
is secure since it is encrypted. Also, the provider does not have the keys, which
will limit the operations provider can perform on the data [8, 61].
In IaaS and PaaS the data at rest is usually encrypted. However, in PaaS, de-
pending on the user data storage system, that could require extra complexity. In
SaaS, the encryption should be integrated into the software’s source code.

• Encryption of Data in Transit: To protect the confidentiality of the transmitted
data over the cloud network, Transport Layer Security (TLS) and Secure Socket
Layer (SSL) protocols can establish secure channels. In order to encrypt the data,
the asymmetric keys of SSLv3 and TLS are distributed using symmetric encryp-
tion. Other techniques can be used, depending on how the data is transmitted in
the Cloud.
In SaaS, a proxy can be located between the customer and the provider, to en-
crypt the transmitted data. This will ensure that the provider uses, and store only
encrypted data. In the public and the hybrid Cloud models, it is important to
encrypt data in transit, while in the private Cloud the data is transmitted over an
internal network, while data is transmitted over the Internet in a public Cloud
[8].

• Encryption of Data in Use: In some cases, a fault in the Cloud infrastructure
could expose the data in use. For example, the unencrypted data currently in
use in the Cloud infrastructure’s memory might be disclosed to a malicious user.
Therefore, this data should be encrypted to guarantee that it is not compromised.
Still, this could cause few difficulties while processing data, because only the
original plaintext of the data can be processed correctly. Processing encrypted
ciphertext data gives wrong results. Before load and process encrypted data
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in memory, it needs to be decrypted. Which makes it challenging to keep the
data encrypted at all time. Therefore, it is very important to have the ability to
perform meaningful processing operations on encrypted data without decrypting
it [8].

3.6 Challenges of Implementing Cloud Encryption

Encryption might be suitable to be used to assure data confidentiality in the Cloud.
However, we need first to recognize the difficulties that could face implementing en-
cryption in the Cloud. In the following, we highlight two of these challenges.

• Searching Encrypted Data: In order to access a specific file, when there are
large amounts of data in the Cloud, the customer needs to search for it. However,
searching encrypted data will be more complicated, unless the Cloud provider
knows the decryption key. Still, in order to perform the search, the data the
provider needs to decrypt the data continuously which is very computationally
expensive [6].

• Processing Encrypted Data: At this point, encrypted data cannot be processed,
it must be decrypted in order to be processed and used. However, to get the data
decrypted is a costly operation concerning the time and the required processing
power. Therefore other methods which allow using encrypted data, and maintain
its confidentiality are being researched. One alternative is Fully Homomorphic
Encryption (FHE). FHE has the ability to allow performing complex mathemati-
cal operations on encrypted data, without decrypting it and without jeopardizing
the encrypted data security in the process.
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CHAPTER 4

Homomorphic Encryption

Homomorphism, in abstract algebra, is described as a function that maps an input
element from the domain set, to an element as an output in the range of an algebraic
set. In cryptography, Homomorphic Encryption (HE) is an encryption scheme that
enables a cloud service provider to operate particular computation functions on the
data while it is encrypted. With traditional encryption schemes, customers have to
compromise their data security to use cloud services, since the traditional schemes
cannot allow the provider to operate on encrypted data. Therefore, it is necessary to
develop a scheme where computation operations can be performed on encrypted data
while it is still encrypted.

The idea of using Homomorphic Encryption to do some computations on encrypted
data was proposed for the first time after RSA sheme [104] by Rivest, Adleman, and
Dertouzous in 1978. It was called ”Privacy Homomorphism” [103]. This system in-
spired a lot of efforts by other researchers to create a homomorphic scheme supports
a lot of computations [9, 11, 30, 35, 49, 63, 64, 85, 89, 90, 104, 107, 124]. All the
proposed schemes have managed to perform one or few numbers of operations on
the encrypted data. The actual breakthrough happened with Gentry’s based on ideal-
lattices scheme [40] that can perform an unlimited number of operations with arbitrary
functions. However, it was not a practical scheme due to its high cost concerning
computation. In the following years, new optimizations and improvements with other
schemes were proposed.

There are three different types of the HE schemes depending on computational opera-
tions and the number of times it can be performed:

• Partially Homomorphic Encryption (PHE) supports only operations of one type
performed as many times as wanted.

• Somewhat Homomorphic Encryption (SWHE) supports few types of operations
performed only for few times.

• Fully Homomorphic Encryption (FHE) supports any kind of operations per-
formed as many times as wanted.

We start by introducing the basics of Homomorphic Encryption. Then, introduce ex-
amples of the well-known schemes.
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4.1 Definition of Homomorphic Encryption

Homomorphic encryption is a particular type of encryption, has the ability to execute
computation on ciphertexts and gives the result of the same computation executed on
the plaintexts. The result will be encrypted.

Definition 4.1. A homomorphic encryption scheme with encryption algorithm E over
an operation ‘∗’ supports the following equation:

E(m1) ∗ E(m2) = E(m1 ∗m2), ∀m1,m2 ∈M,

where M is the messages space [125].

The HE scheme has four main algorithms: (Figure 4.1):

• The Key Generation Algorithm, KeyGen: inputs a security parameter. For
an asymmetric HE scheme outputs a pair of secret key and public key, and for
symmetric HE scheme a single key.

• The Encryption Algorithm, Enc: inputs plaintext message m from message
space M with the encryption key. To generate the ciphertext c = E(m) from the
ciphertext space C.

• The Decryption Algorithm, Dec: inputs the ciphertext c with the decryption
key, to get the plaintext message D(c) = m.

• The Evaluation Algorithm, Eval: takes inputs ciphertexts (c1, c2) and performs
the function f(...) over the ciphertexts to output evaluated ciphertexts f(c1, c2) =
E(f(m1,m2)), without seeing the messages (m1,m2), i.e. D(f(c1, c2)) = f(m1,m2).

It is critical to preserving the format of the ciphertexts after an evaluation process to
decrypt it correctly. Also, to perform an unlimited number of operations, the size of the
ciphertext should stay constant. Otherwise, the ciphertext size will increase, and that
will restrict the number of performed operations. Eval function in PHE schemes sup-
ports only either addition or multiplication, while it supports only a limited number of
operations in SWHE schemes. In FHE schemes, Eval function supports the evaluation
of arbitrary functions for an unlimited number of times over ciphertexts.

4.2 Partially Homomorphic Encryption

Many traditional encryption schemes can be classified as PHE due to their ability to
perform one type of computation operation on encrypted data.

Definition 4.2. Partial Homomorphic Encryption (PHE) is either an additive homo-
morphic scheme, which supports only additive operations or a multiplicative homo-
morphic scheme, which supports only multiplicative operations on encrypted data.

We will intreduce examples for the important PHE schemes, such as RSA [104],
Goldwasser-Micali [49], Elgamal [35], Benaloh [9], and Paillier [90].
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Figure 4.1: Homomorphic Encryption [110]

4.2.1 RSA

Shortly after Diffie Helman [31] developed public key cryptography in 1976, Rivest,
Shamir, and Adleman [104] introduced RSA in 1978. The hardness of the RSA scheme
was based on the problem of factoring a product of two large prime numbers. The
homomorphic property of RSA was introduced later by, Rivest, Adleman, and Der-
touzous using the term “privacy homomorphism” [103], which was an early example
of PHE. The RSA scheme involves four algorithms as follows:

• KeyGen Algorithm The public key is two integers (n, e), where n = pq and
p, q are large primes and e chosen such that gcd(e, ϕ(n)) = 1,where ϕ(n) =
(p− 1)(q− 1) and namely e is invertible (mod ϕ(n)). The secret key is (d, n),
where d is determined such that d is the inverse of e (i.e. ed ≡ 1 (mod ϕ(n))).

• Encryption Algorithm First, the message is converted into a plaintext m ∈ Zn,
then computes the ciphertext c as follows:

E(m) = me (mod n) = c, (4.1)

where the ciphertext c ∈ Zn.

• Decryption Algorithm Takes the secret key (d, n) with ciphertext c to decrypt

D(c) = cd (mod n) = m, (4.2)

because d is the multiplicative inverse of e in Zn then ed ≡ 1 (mod ϕ(n)).

• Homomorphic Property For m1,m2 ∈ Zn,

E(m1) ∗ E(m2) = (me
1 (mod n)) ∗ (me

2 (mod n)),

= (m1 ∗m2)
e (mod n),

= E(m1 ∗m2).

(4.3)
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As we can see, the multiplication homomorphic property of RSA can evaluate E(m1 ∗
m2) directly from E(m1) and E(m2) without decrypting them.

4.2.2 Goldwasser-Micali

The first probabilistic public key encryption scheme was introduced in 1982 by Gold-
wasser and Micali [49]. Using the quadratic residuosity problem [47] , we say a num-
ber a is quadratic residue modulo n if we find an integer x satisfy x2 ≡ a (mod n).

• KeyGen Algorithm Takes n = pq where p and q two large prime. Then finds x
non-residue that the Legendre symbols

(
x
p

)
=
(
x
q

)
= −1 and hence the Jacobi

symbol
(
x
n

)
= 1. The public key consists of (x, n), while the secret key is (p, q).

• Encryption Algorithm The algorithm encodes the messagem into bits (m1, . . . ,mr),
then for every bit mi, we choose yi such that gcd(yi, n) = 1. To encrypt a bit:

E(mi) = y2i x
mi (mod n) = ci, (4.4)

mi ∈ {0, 1}, and m = m0,m1, . . . ,mr, c = c0, c1, . . . , cr where x ∈ Z∗n and the
block size is r.

• Decryption Algorithm We do not need a separate algorithm for decryption,
because x ∈ Z∗n, ci is quadratic residue modulo n only when mi = 0. So if ci is
a quadratic residue modulo n then mi = 0, otherwise mi = 1. Which gives the
plaintext m = (m1, . . . ,mr).

• Homomorphic Property For every bit mi ∈ {0, 1};

E(m1) ∗ E(m2) = (y21x
m1 (mod n)) ∗ (y22x

m2 (mod n)),

= (y1 ∗ y2)2xm1+m2 (mod n),

= E(m1 +m2).

(4.5)

The homomorphic property of GM scheme, allow us todirectly compute the encryp-
tion of the sum m1 + m2 from the encrypted E(m1) and E(m2). Since the message
and ciphertext in GM scheme are both binary numbers, GM is additive homomorphic
scheme over binary numbers.

4.2.3 ElGamal

In 1985 a new public key scheme based on the hardness of the discrete logarithm
problem [47] was proposed by Taher ElGamal [35]. ElGamal scheme is considered to
be an advanced variant of the Diffie-Hellman algorithm [31]. ElGamal is mostly used
to encrypt the secret key of asymmetric encryption schemes. The ElGamal scheme
algorithms are:

24



• KeyGen Algorithm g generate a cyclic group G of order n. Then compute,
h = gy for random y ∈ {1, 2, . . . , n − 1}. Outputs the public key (G, n, g, h)
and y is the secret key.

• Encryption Algorithm Using g and x ∈ {1, 2, . . . , n−1}, convert the messgage
m to m′ ∈ G then in output the ciphertext as a pair (c = (c1, c2)) as follows:

E(m) = c = (c1, c2) = (gx,m′hx) = (gx,m′gxy). (4.6)

• Decryption Algorithm To decrypt a ciphertext (c1, c2), first, compute s = cy1.
Then:

c2s
−1 = m′gxyg−xy = m′, (4.7)

where s−1 is the inverse of s in the group G. Then we get the plainttext message
m by converting back m′.

• Homomorphic Property

E(m1) ∗ E(m2) = (gx1 ,m1h
x1) ∗ (gx2 ,m2h

x2),

= (gx1gx2 ,m1h
x1m2h

x2),

= (gx1+x2 , (m1m2)h
x1+x2),

= E(m1 ∗m2).

(4.8)

As we can see the ElGamal is a multiplicative homomorphic scheme.

4.2.4 Benaloh

Instead of encrypting the message bit by bit as in the GM scheme, Benaloh proposed
an extension to the GM scheme to encrypt the message as a block [9]. Benaloh’s
security is using the higher residuosity problem (xn), a generalization of thequadratic
residuosity problems (x2) [47].

• KeyGen Algorithm Given a block size r, the two large primes p and q are
chosen such that r|(p − 1), gcd(r, (q − 1)) = 1 and gcd(r, (p − 1)/r) = 1.
Compute, n = pq and ϕ(n) = (p−1)(q−1) . Choose y ∈ Z∗n such that yϕ/r 6≡ 1
(mod n). Finally, set x = yϕ/r (mod n) then the secret key is (p, q, x) and the
public key is (y, r, n).

• Encryption Algorithm Encrypting m ∈ Zr, needs to take u ∈ Z∗n then:

E(m) = ymur (mod n) = c. (4.9)

• Decryption Algorithm Compute a = cϕ/r (mod n), since u ∈ Z∗n andm ∈ Zr:

a = cϕ/r ≡ (ymur)ϕ/r,

≡ (ym)ϕ/r(ur)ϕ/r,

≡ (yϕ/r)m(u)ϕ,

≡ xm(u)0 ≡ xm (mod n).

(4.10)
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To recover m from a, we find m = logx(a) i.e., find m such that xm ≡ a
(mod n). When r is small, by checking if xi ≡ a (mod n) for all 0 . . . (r − 1)
we can recover m. If r is large, to recover m in O(

√
r) time ,the Baby-step

giant-step algorithm can be used.

• Homomorphic Property

E(m1) ∗ E(m2) = (ym1ur1 (mod n)) ∗ (ym2ur2 (mod n)),

= ym1+m2(u1 ∗ u2)r (mod n),

= E(m1 +m2).

(4.11)

The Benaloh scheme is an additively homomorphic. Because any multiplication oper-
ation on encrypted data corresponds to the addition on plaintext.

4.2.5 Paillier

Pascal Paillier invented the Paillier encryption scheme [90] in 1999. It is another prob-
abilistic public-key scheme using composite residuosity problem [47]. It examines if
an integer x satisfy xn ≡ a (mod n2) for an integer a. The Paillier scheme algorithms
are:

• KeyGen Algorithm Let p and q two large prime numbers, such that gcd(pq, (p−
1)(q−1)) = 1. Compute n = pq and λ = lcm(p−1, q−1), then, select a random
g ∈ Z∗n2 such that gcd(n, L(gλ (mod n2))) = 1, and L(u) = (u−1)/n for every
u ∈ Z∗n2 . Output the public key (n, g) and (p, q) as secret key.

• Encryption Algorithm To encrypt a message m ∈ Zn. Select random r where
r ∈ Z∗n. Compute ciphertext as:

E(m) = gmrn (mod n2) = c. (4.12)

• Decryption Algorithm To decrypt c ∈ Z∗n2 . Compute the plaintext message as:

D(c) =
L(cλ (mod n2))

L(gλ (mod n2))
(mod n) = m. (4.13)

• Homomorphic Property

E(m1) ∗ E(m2) = (gm1rn1 (mod n2)) ∗ (gm2rn2 (mod n2)),

= gm1+m2(r1 ∗ r2)n (mod n2),

= E(m1 +m2).

(4.14)

Paillier is homomorphic over addition scheme. And it has some extra operations on
plaintexts m1,m2 ∈ Z∗n2 by using the public key pair (n, g) and E(m1), E(m2):

E(m1) ∗ E(m2) (mod n2) = E(m1 +m2 (mod n)). (4.15)
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E(m1) ∗ gm2 (mod n2) = E(m1 +m2 (mod n)). (4.16)

E(m)k (mod n2) = E(km (mod n)). (4.17)

Pailliler’s encryption scheme is widely used in electronic voting protocols and biomet-
ric applications.

4.2.6 Other PHE schemes

PHE schemes were not considered as solutions for Cloud Computing, due to the lim-
ited range of computation operations [68, 109]. Several efforts have tried to enhance
the adaptability of the existing PHE schemes. Examples of such efforts include a
new PHE scheme proposed by Okamoto-Uchiyama (OU) [89] to enhance the com-
putational efficiency. Naccache-Stern [85] introduced a generalization of the Benaloh
scheme to improve its computational performance by changing the decryption algo-
rithm of the scheme. Similarly, a generalization of Paillier was presented by Damgard-
Jurik (DJ) [30]. Likewise, Kawachi (KTX) et al. [64] proposed an additively ho-
momorphic scheme based on lattice problems. Finally, Galbraith [38] presented a
generalization of Paillier’s scheme on elliptic curves.

Table 4.1: Well-known Partial Homomorphic Encryption Schemes (PHE)
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2 (mod n)) =

(m1 ∗m2)
e (mod n)

GM [49] • • • (y21x
m1 (mod n)) ∗ (y22x

m2

(mod n)) = (y1 ∗ y2)2xm1+m2

(mod n)
Elgamal

[35] • • • (gx1 ,m1h
x1) ∗ (gx2 ,m2h

x2) =
(gx1+x2 ,m18m2h

x1+x2)
Benaloh

[9] • • • (ym1ur1 (mod n)) ∗ (ym2ur2
(mod n)) = ym1+m2(u1 ∗ u2)r
(mod n)

Paillier
[90] • • • (gm1rn1 (mod n2)) ∗ (gm2rn2

(mod n2)) = gm1+m2(r1 ∗ r2)n
(mod n2)
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4.3 Somewhat Homomorphic Encryption

Before the first usable FHE was released in 2009 [46], there were some practical
SWHE examples, such as [11, 63, 107, 124]. Some of the SWHE schemes are used to
build FHE schemes as we will see in FHE section. For now, we will talk about one of
the main SWHE schemes.

Definition 4.3. Somewhat Homomorphic Encryption (SWHE) can perform both ad-
ditive and multiplicative operations, but only for limited number of repetitions. This
limitation is defined by the scheme’s ability to decrypt ciphertexts associated with the
homomorphic operations correctly.

Generally, the ciphertext of the homomorphic encryption scheme has a noise param-
eter, and to decrypt it properly the noise must be less than a specific limit. A SWHE
scheme can perform both additive and multiplicative homomorphism on encrypted
data, but that will increase the noise in the generated homomorphic ciphertext with
each operation. In order to keep the noise parameter as small as possible, SWHE
schemes can execute only a limited number of operations.

4.3.1 Boneh-Goh-Nissim (BGN)

Until 2005, all the proposed Homomorphic encryption schemes limited to only either
addition or multiplication operation. The initial actions approaching new scheme were
presented by Boneh-Goh-Nissim (BGN) [11]. BGN scheme supports one multiplica-
tion and an unlimited number of additions and with a constant-size ciphertext. The
scheme based on the subgroup decision problem [47]. It is about deciding if an ele-
ment belongs to a subgroup Gp of the group G of order n = pq, and p, q are distinct
primes. The scheme algorithms are:

• KeyGen Algorithm The public key is (n,G,G1, e, g, h), whereG,G1 are cyclic
groups of order n = q1q2, q1 and q2 are two distinct large primes, and e is a
bilinear map such that e : G×G→ G1. Pick two random generators g, u of G,
let h = uq2 . Then h is a random generator of the subgroup of G with order q1.
The secret key is q1.

• Encryption Algorithm To encrypt m, pick a random number r ∈ {0, 1, . . . , n}
and encrypt it using g and h as follows:

E(m) = gmhr = c ∈ G. (4.18)

• Decryption Algorithm To decrypt a ciphertext c using the secret key q1, notice
that:

cq1 = (gmhr)q1 = (gq1)m. (4.19)

Note that hq1 ≡ 1 (mod n). To decrypt m, compute:

D(c) = loggq1 (cq1) = m. (4.20)
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Since the discrete logarithm cannot be computed quickly, the message space
should be kept small.

• Homomorphism over Addition: To addm1 andm2 by using ciphertextsE(m1) =
c1 and E(m2) = c2 :

c = c1c2h
r = (gm1hr1)(gm2hr2)hr = gm1+m2hr1+r2+r. (4.21)

From the resulting ciphertext c, it easy to recover m1 +m2.

• Homomorphism over Multiplication: Homomorphic multiplication, uses bi-
linear map. Let g1 = e(g, g) and h1 = e(g, h) then g1 with order n and h1 with
order q1. With α ∈ Z such that h = gαq2 . Then, the multiplication of m1 and
m2 by using c1 = E(m1) = gm1hr1 ∈ G and c2 = E(m2) = gm2hr2 ∈ G are
computed as follows:

c = e(c1, c2)h
r
1 ∈ G1,

= e(gm1hr1 , gm2hr2)hr1,

= e(gm1+αq2r1 , gm2+αq2r2)hr1,

= e(g, g)(m1+αq2r1)(m2+αq2r2)hr1,

= e(g, g)m1m2+αq2(m1r2+m2r1+αq2r1r2)hr1,

= e(g, g)m1m2+(m1r2+m2r1+αq2r1r2)αq2hr1,

= e(g, g)m1m2e(g, g)(m1r2+m2r1+αq2r1r2)αq2hr1,

= e(g, g)m1m2e(gm1r2+m2r1+αq2r1r2 , gαq2)hr1,

= e(g, g)m1m2e(gm1r2+m2r1+αq2r1r2 , h)hr1,

= e(g, g)m1m2e(g, h)m1r2+m2r1+αq2r1r2hr1,

= e(g, g)m1m2hm1r2+m2r1+αq2r1r2
1 hr1,

= e(g, g)m1m2hr+m1r2+m2r1+αq2r1r2
1 .

(4.22)

r + m1r2 + m2r1 + αq2r1r2 is distributed uniformly like r then m1m2 can be
recovered correctly from the c. But, c is now in G1 instead of G. That’s why
nomore homomorphic multiplication operation can be done in G1. However, it
allows unlimited number of homomorphic additions.

4.3.2 Other SWHE schemes

Melchor et al. [77] depending on some well-known schemes that have some homo-
morphic properties, introduced an encryption scheme supports constant depth circuit
homomorphic evaluation. Another scheme suggested by Sander, Young, and Yung
(SYY) [107], supports only one OR/NOT gate with many ANDing gates. However,
the circuit depth evaluation was limited, because the ciphertext size was increasing
with each OR/NOT gate evaluation. Some of the other efforts reported as broken such
as, [32, 51, 62, 84].
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4.4 Fully Homomorphic Encryption Schemes

During 2009, Craig Gentry introduced the earliest FHE scheme in his Ph.D. thesis [40].
His proposed scheme was also considered as a framework for how to obtain an FHE
scheme. Therefore, based on Gentry’s work several researchers tried to create other
practical FHE schemes.

Definition 4.4. Fully Homomorphic Encryption scheme (FHE) has the ability to per-
form an unlimited number of both additive and multiplicative homomorphic operations
on encrypted data [37].

Even though the FHE scheme introduced by Gentry was encouraging, it was very diffi-
cult to use in real life due to its computational cost. Consequently, many optimizations
have implemented his scheme to make it more usable in real life applications. While
the efforts continued to create new FHE schemes most of them were based on the
lattices problems.

Fully Homomorphic Encryption schemes can be categorized into four main categories
based on the problems:

1. Ideal lattice based was proposed by Gentry [46], then several researchers tried
to improve Gentry’s ideal lattice-based FHE scheme, such as Smart and Ver-
cauteren [112].

2. Over integers based Van Dijket al [117] proposed a scheme based on the Approximate-
GCD problems.

3. Ring Learning with Error (RLWE) problems-based was proposed by Brak-
erski and Vaikuntanathan [15].

4. NTRU-like NTRUEncrypt is an old lattice-based encryption scheme who has
homomorphic properties recognized recently [74].

We will explain more about these four categories in the following sections.

4.4.1 Preliminaries

This section states some necessary definitions for the schemes described later.

4.4.1.1 Lattice

Definition 4.5. Rm is an Euclidean space with m-dimensional, with n linearly inde-
pendent vectors b1, . . . , bn in Rm (m ≥ n). The following set in Rm defined as a
Lattice

L(b1, . . . , bn) =

{ n∑
i=1

xibi : xi ∈ Z
}
, (4.23)
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We call m dimension of the lattice and n the rank of the latticeand, when m = n,
the basis vectors equals the number of coordinates, we say it is a full rank or full
dimensional lattice [80]. The lattice basis is the sequence of vectors b1, . . . , bn is called,
and it is conveniently represented as a matrix

B = [b1, . . . , bn] ∈ Rm×n. (4.24)

Using the previous matrix notation, with the matrix-vector multiplication we can write
4.23 as:

L(B) = {Bx : x ∈ Zn}. (4.25)

Graphically, in a n-dimensional infinite regular grid a lattice is the set of intersection
points of the grid. The grid not necessarily orthogonal. A 2-dimensional example is
shown in Figure 4.2. A lattice point is a result of the bases vectors linearly combining,
and the repeated pattern “Fundamental Parallelepiped” shown in red area, is bounded
by lattice points.

Figure 4.2: A lattice in R2 [66]

The lattice’s basis is not unique. A lattice can have many different bases. If the vectors
of the basis are almost orthogonal, we call it a “good” basis. Otherwise, it is called
“bad” basis. Usually, the “bad” bases are shorter than the “good” bases. The lattice
theory was introduced in 1910 by Minkowski [82]. Then in 1996, Ajtai [5] defined
a class of random worst-case lattice problems, Shortest Vector Problem (SVP) and
Closest Vector Problem (CVP) were used later for lattice-based schemes [80, 91].

Given a basis, SVP problem finds the shortest nonzero vector in the lattice.

Definition 4.6. (Shortest Vector Problem, SVP) Given a basis B ∈ Zm×n, find a
nonzero lattice vector Bx (with x ∈ Zn \ {0}) such that ‖Bx‖ ≤ ‖By‖ for any
other y ∈ Zn \ {0} [80].

The CVP problem, finds the nearest lattice point to a given point of the lattice.
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Definition 4.7. (Closest Vector Problem CVP) LetB ∈ Zm×n be a lattice basis. Find a
lattice vector Bx closest to the target vector t ∈ Zm, i.e., find an integer vector x ∈ Zn
such that ‖Bx− t‖ ≤ ‖By − t‖ for any other y ∈ Zn [80].

Figure 4.3: Finding the nearest lattice point [66]

4.4.1.2 Circuits

Definition 4.8. (Circuits) A circuit is an acyclic directed graph has edges and nodes.
The edges named wires and nodes named gates. Depending on the input contents of
the circuit (Boolean, Integers, ...), the gates can represent logic gates (AND, OR, NOR,
NAND, ...) or arithmetic operations [50].

When a function f is needed to be evaluated, f is represented as a circuit where the
gates are arranged into levels according to the function’s operations, to be executed
sequentially.

Definition 4.9. The number of the non-input gates, is called the size of a circuit C
[50].

Definition 4.10. The length of the longest path, from an input gate to the output gate,
is the depth of a circuit C [50].

As shown in Figure 4.4 the function f computes A.B+B.C.(B+C) using logic gates
AND and OR.

4.4.2 Ideal Lattice-based FHE schemes

Craig Gentry [46] introduced the first encryption scheme that can evaluate arbitrary
depth circuits. Gentry first created a SWHE scheme based on ideal lattices. That can
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Figure 4.4: Circuit representation [50]

evaluate homomorphically the ciphertext for only a limited number of times, i.e., for
low depth circuits. This SWHE scheme adds some noise to the plaintext to get the
ciphertext. This noise increases with each addition and multiplication operation, i.e.,
with each gate in the circuit, performed on ciphertexts until eventually, the noise makes
the decryption algorithm unable to retrieve the plaintext from the ciphertext correctly.

To get a ciphertext that allows an arbitrary number of homomorphic operations, Gentry
used a method called bootstrapping. Bootstrapping reduces the noise in the ciphertext
to an acceptable level. To perform the bootstrapping the SWHE scheme needs to have
a low complexity decryption algorithm, i.e., low depth decryption circuit so that it
can evaluate its own decryption algorithm. RSA and ElGamal, have more complex
decryption algorithms than the lattice-based encryption schemes, which make it an
excellent choice for FHE schemes.

The bootstrapping efficiently refresh the ciphertext from the noise to be used again
in other addition and multiplication operations. Gentry’s meaning of “refreshing” is
first to generate a pair of encryption-decryption keys then encrypt the data with the en-
cryption key, perform as much as computations on the encrypted data that the SWHE
scheme can perform correctly. Then generate a second pair of encryption-decryption
keys and encrypt the results under the second encryption key. Now to reduce the noise
from the encrypted results, Gentry encrypted the first decryption key with the second
encryption key. Then run the decryption algorithm of the SWHE scheme through the
evaluation algorithm, which will decrypt the results encrypted under the first key but
will keep it encrypted under the second key. Continue with the computations as much
as wanted. When the computations are completed, decrypt the results ciphertext with
the last decryption key generated to obtain the computations result. This processes
can be repeated again and again, to make the scheme capable of evaluating an unlim-
ited number of operations on the ciphertexts. However, this scheme was not practi-
cal, because the operations time and the ciphertext volume keep increasing. Gentry’s
blueprint consist of three main steps:
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1. Step 1: Constructing a SWHE scheme based on ideal lattices. As with Gol-
dreich, Goldwasser, and Halevi (GGH) scheme [48], Gentry’s SWHE scheme
was based on the lattice reduction problems [91]. For a given lattice, the lattice
reduction tries to find a relatively short and orthogonal basis, i.e. “good” basis of
the lattice. Usually, If the “good” bases of a lattice are known, the SVP and CVP
problems can be solved in polynomial time. However, if the “good” bases of the
lattice are not known, the best-known algorithms can solve these problems, like
LLL algorithm [69] can solve it in exponential time.
A “bad” basis of the lattice is used to generate the public key, while a “good”
basis generates the secret key. Finally, the noise is added to a lattice point to get
the ciphertext. To decrypt the ciphertext, we need to find the closest lattice point
by using the secret key.
In this scheme, lattices are used to represent the ideals. For instance, in an ideal
lattice, a column of lattice with basis BI of length n is used to present an ideal
I ∈ Z[x]/(f(x)) with f(x) of degree n. The SWHE scheme algorithms are:

• KeyGen Algorithm Takes as input a fixed ringR and the basisBI of small
ideal I ER to embed the message into noise vector.
Additionally, an IdealGen(R,BI) algorithm generates the keys. Using a
“good” basis Bsk of J for the secret key. A “bad” basis Bpk of the ideal
lattice J is used as the public key is. J is an ideal lattice such that I, J are
relatively prime and I + J = R.
A Samp() algorithm used in the Encryption Algorithm to sample a short
vector from a coset of the ideal, by shifting an ideal a specific quantity.
The public key is (R,BI , B

pk
J , Samp()) and the secret key is Bsk

J .
• Encryption Algorithm Takes the public key Bpk and the message ~m. The

plaintext space P is a subset of R (mod BJ), where R (mod BJ) is the
set of distinguished representatives of ~r+ I over ~r ∈ R, with respect to the
basis BI of I .
Using Samp(~m,BI) algorithm to sample a vector ~e = ~m+~i which will be
reduced modulo the public basis Bpk

J

E(~m) = ~e (mod Bpk
J ) = (~m+~i) (mod Bpk

J ) = ~c. (4.26)

The ciphertext in this case is a vector ~c where it is encoded in the distance
to the closest lattice point.

• Evaluation Algorithm Takes as input the public key Bpk
J , a set of cipher-

texts Ψ = {~c1, . . . , ~ct}, and a circuit C with gates operations modulo BI

from a permitted set C . To compute the output ciphertext ~c, it performs
AddBI

and MultBI
in the specific sequence .

Add(Bpk
J , ~c1, ~c2) outputs ~c1 + ~c2 (mod Bpk

J ).
Mult(Bpk

J , ~c1, ~c2) outputs ~c1.~c2 (mod Bpk
J ).

In the process of computing ~c, the algorithm applies a (mod BI) circuit
C to the plaintexts, then by replacing C’s AddBI

and MultBI
operations

with the ring operations addition + and multiplication . in the ring R [50].
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• Decryption Algorithm

~m = (~c (mod Bsk
J )) (mod BI),

= ~e (mod BI),
(4.27)

because ~e = ~m+~i with~i ∈ I .

Figure 4.5: The SWHE based on ideal lattices [50]

As long as the noise parameter is very close to a lattice point, more addi-
tion and multiplication can be applied on the ciphertext. After a threshold
point, it is not possible to decrypt the ciphertext properly. With each ad-
dition, the noise parameter grows linearly, and with each multiplication, it
grows exponentially. The noise grows much faster with the multiplication
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operations, that is why the number of multiplication operations is limited.
To turn the SWHE scheme into a FHE scheme, Gentry used the bootstrap-
ping technique. To apply the bootstrapping technique, the SWHE scheme
should have a small decryption circuit depth. The depth of the circuit is
squashed to make the SWHE scheme bootstrappable.

2. Step 2: Squashing. In order to squash the decryption circuit, a hint about the se-
cret key is placed in the public key. That shifted some of the computations from
the decryption stage to the encryption stage. However, this procedure weak-
ened the security of the initial scheme. To treat that the hardness of the secret
key recovering using Sparse Subset Sum Problem (SSSP) [60]. The squashing
procedure split the decryption algorithm into two phases [50]:

(a) The encrypter performs an initial computationally intensive preprocessing
phase without the secret key.

(b) The decrypter, using the secret key, performs lightweight computational
phase.

The squashed scheme introduces the changed decryption algorithm and two new
algorithms ExpandCT , SplitKey.
The SplitKey algorithm puts in the public key, a hint about the secret key.
The ExpandCT algorithm prepares the ciphertext for the changed decryption
algorithm.

3. Step 3: Bootstrapping. The scheme which can evaluate its decryption algo-
rithm circuit is called bootstrappable [40]. Bootstrapping is basically “refresh-
ing” procedure to decrease the noise of a ciphertext after performing homomor-
phic operations on it. To do so, first generate key pairs, (pk1, sk1) and (pk2, sk2).
Then, encrypts m under the first public key pk1 that c = Epk1(m), again we
reencrypt c under the second public key pk2 i.e. Epk2(c) = Epk2(Epk1(m)),
and encrypt the first secret key under the second public key Epk2(sk1). Then
we transmit Epk2(sk1) and Epk2(c) to the Cloud provider. Since the squashed
SWHE scheme can evaluate its own decryption circuit, the cloud provider can
apply the decryption circuit to decrypt the noisy ciphertext homomorphically us-
ing the encryption of the first secret key sk1 under pk2 i.e. Epk2(sk1). Therefore
Epk2(Dsk1(c)) = Epk2(m), which can be decrypted by the customer using sk2,
i.e.,Dsk2(Epk2(m)) = m.

In summary, first the noise was removed from the noisy ciphertext using the homo-
morphic decryption, and the second encryption offers new ciphertext with small noise
as if the ciphertext is just encrypted, see figure 4.6. Then the “fresh” ciphertext can
go through more homomorphic operations until it reaches a threshold point again. The
bootstrapping technique increases the computational cost, which makes the scheme
impractical in real life.

Later, a new KeyGen algorithm was introduced by Gentry [41] with an enhancement to
the security of the hardness assumption of SSSP. However, Stehle and Steinfeld [113]
presented a more competitive analysis of SSSP.
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Figure 4.6: Step 3: Bootstrapping. [121]

Also, a new FHE scheme using a smaller key size and generating smaller ciphertext
size was introduced by Smart and Vercauterenin [112]. Some other works focused
on applying the FHE scheme effectively by optimizing the key generation algorithm
[42, 88, 108]. Moreover, to improve the number of homomorphic operations, a new
SWHE scheme by Mikuš [81] with bigger plaintext space and a small increase in the
key generation algorithm complexity.

4.4.3 FHF schemes Over Integers

In 2010, Dijk et al. [117] presented another fully homomorphic encryption scheme,
which uses many of Gentry’s, but they replaced Gentry’s ideal lattice-based SWHE
scheme with a SWHE scheme using integers. The scheme is based on the Approximate-
Greatest Common Divisor (AGCD) problem [39]. The AGCD problem seek to find p
from the set of xi = pqi + ri. The scheme is therefore conceptually simpler than Gen-
try’s ideal lattice scheme but has similar properties concerning homomorphic opera-
tions and efficiency. The proposed symmetric SWHE scheme is described as follows:

• KeyGen Algorithm The key is an odd integer p, chosen from some interval
p ∈ [2η−1, 2η).

• Encryption Algorithm To encrypt a bit m ∈ {0, 1}, set the ciphertext as

E(m) = m+ 2r + pq = c, (4.28)

where the q, r are random, and r < p/2.

• Decryption Algorithm To decrypt the ciphertext:

D(c) = (c (mod p)) (mod 2) = m. (4.29)
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• Evaluation Algorithm Given the (binary) circuit C with t inputs and t cipher-
texts ci apply the (integer) addition and multiplication gates of C to the cipher-
texts, performing all the operations over the integers, and return the resulting
integer.
Homomorphism over addition:

c1 + c2 = E(m1) + E(m2) = m1 + 2r1 + pq1 +m2 + 2r2 + pq2,

= (m1 +m2) + 2(r1 + r2) + (q1 + q2)p = E(m1 +m2).
(4.30)

Clearly, E(m1 +m2) can be decrypted if the noise r1 + r2 < p/2,
Homomorphism over Multiplication:

c1c2 = E(m1)E(m2) = (m1 + 2r1 + pq1)(m2 + 2r2 + pq2),

= m1m2 + 2(m1r2 +m2r1 + 2r1r2),

+ (pq1q2 + 2q1r2 + 2q2r1 +m1q2 +m+ 2q + 1)p,

= E(m1m2).

(4.31)

The encrypted data can be decrypted if 2r1r2 +m1r2 +m2r1 < p/2.
The scheme runs less homomorphic multiplication operations than addition, be-
cause the noise grows exponentially with the multiplication operation.

r1 + r2 < p/2

2r1r2 +m1r2 +m2r1 < p/2

That truly reduces the number of the performed operations on the ciphertext, plus
the decryption of C(c1, c2, . . . ct) could not be C(m1,m2, . . . ,mt). To transform
this SWHE scheme into a FHE scheme, the same squashing and bootstrapping
techniques were used by Dijk et al. [117].

The scheme introduced was symmetric homomorphic encryption. To transform it to
an asymmetric HE scheme, Dijk et al. [117] compute many “encryptions of zero”
xi = pqi + 2ri, then sharted many xi as the public key, where p is private key. The
encryption algorithm adds the message to a subset sum of xi. Without changing the
decryption algorithm. Since the scheme now uses different keys to encrypt and decrypt,
it has become a public key encryption scheme.

Many other tried to follow-up by decreasing the size of public keys [27, 28, 123].
Without reducing the security of the scheme, others suggested more efficient public
key generating (e.g., Rahmaiah et al. [98]) and re-encryption (e.g., Chen et al. [22]).
Later, Chen et al. [22] proposed batch FHE over integers [24], which could pack
multiple ciphertexts into a single ciphertext.

Some new over integers schemes were also suggested, like a new scheme with integer
plaintexts introduced by Ramaiah et al. [97]. Another symmetric FHE scheme without
bootstrapping by Aggarwal et al. [3]. Coron et al. [26] introduced a new scale invari-
ant FHE over integers. A new SWHE scheme proposed by Pisa et al. [93] without
converting the numbers to bits can compute arithmetic operations on large integers.
Also introduced FHE for non-binary message spaces Nuida et al. [87].

38



4.4.4 LWE-based FHF schemes

In recent years, Learning With Error (LWE) has become the foundation of post-quantum
cryptography. Oded Regev presented LWE as an extension of a problem known as
”learning from parity with error” problem [99]. The main contribution of Regev was
reducing the difficulty of worst-case lattice problems such as SVP problem to LWE
problems, i.e., in case an algorithm could solve LWE problems efficiently with respect
to time. It can efficiently as well solve SVP problems. The problem of LWE requires
to find a secret s ∈ Znq , knowing that there is a set of approximate random linear
equations on s are given. An example of the input can be

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17).

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17).

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17).

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17).

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17).

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17).

.

.

.

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17).

Knowing that each of these equations is valid considering small additive error (as-
sume, ±1). The goal now is recovering s, and the solution in this example is s =
(0, 13, 9, 11). Recovering s can be very easy, if not for the error: considering n equa-
tions, we can use Gaussian elimination to find s in a polynomial period of time. How-
ever, taking the error into account increases the difficulty of the problem significantly.
E.g., linear collections of n equations are taken by the algorithm of Gaussian elimina-
tion. Thus, magnifying the error to high levels leads to eliminate all information in the
output equations [100].

Notations:

• 〈a, b〉 refers to the inner product of vector a and vector b.

• Z[x]/(f(x)) refers to the ring of all polynomials modulo f(x).

• d $←− D means that d is chosen randomly out of the distribution D.

• Rq ≡ Zq[x]/(f(x)) denotes the ring of polynomials modulo f(x) with coeffi-
cients in Zq.

• χ refers to the distribution of an error over the ring Rq.

Definition 4.11. (Learn with error problem LWE) Let’s have a fixed size of parameter
n ≥ 1, a modulus q ≥ 2, and an ‘error’ probability distribution χ on Zq. Let As,χ on
Znq×Zq be the probability distribution achieved by selecting a vector a ∈ Znq uniformly
at arbitrary, selecting e ∈ Zq based on χ, and resulting with (a, 〈a, s〉 + e), and here
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additions operations are executed in Zq, i.e., modulo q. An algorithm solves LWE with
modulus q and error distribution χ if, for any s ∈ Znq , assuming an arbitrary number
of individualistic samples out of As,χ it results with s (big probability)[100].

Lyubashevsky et al. proposed one more important development for the LWE. [75]
introducing the problem of Ring-LWE (RLWE). This problem is an algebraic version
of LWE. From practical perspective, RLWE is even more useful for applications with
solid security proofs. By this work, it was shown that the RLWE problems can be
reduced to worst-case problems on ideal lattices. Those by turn are difficult for the
algorithms that are polynomial-time quantum.

Even though LWE and RLWE problems are utilized to build an FHE scheme, RLWE
showed more improved efficiency in the LWE-based FHE schemes. Brakerski and
Vaikuntanathan [15] made a remarkable improvement on the way to a practical FHE
scheme. They presented a novel SWHE scheme that is based on Polynomial-LWE
(PLWE). PLWE is, in turn, a simple version of RLWE, and they used two techniques,
namely, Gentry’s blueprint squashing and bootstrapping aiming at achieving the FHE
scheme.

• KeyGen Algorithm From the error distribution, sample an item of the ring as
a private key, i.e. s

$←− χ. After that, set a vector of the private key as ~s =
(1, s, s2, . . . , sD) ∈ RD+1

q which will be used in the decryption process.

• Encryption Algorithm The message space is the ring of polynomials with bi-
nary coefficientsR2 = Z2[x]/〈xn+1〉. That is, a message is encoded as a degree
n polynomial with coefficients in Z2. To encrypt, sample (a, b = as+ 2e) ∈ R2

q ,

where a $←− Rq and e $←− χ. Compute c0 = b+m ∈ Rq and c1 = −a

~c = (c0, c1) = (as+ 2e+m,−a), (4.32)

and produce the ciphertext c = (c0, c1) ∈ R2
q . Note that only the key s is used

by the encryptor to sample (a, b).

• Decryption Algorithm Now we have the ciphertext c = (c0, c1) and we would
like to decrypt it, so we need to compute c0 + c1s (mod 2).

• Evaluation Algorithm In the following, we present the way used to add and
multiply two elements homomorphically in R2.

Homomorphism over addition: Given two ciphertexts c = (c0, c1) and c′ =
(c′0, c

′
1)

cadd = c+ c′ = E(m) + E(m′),

= (c0, c1) + (c′0, c
′
1) = (c0 + c′0, c1 + c′1),

= (as+ 2e+m,−a) + (a′s+ 2e′ +m′,−a′),
= ((a+ a′)s+ 2(e+ e′) + (m+m′),−(a+ a′)),

= E(m+m′).

(4.33)
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The underlying messages’ sum is obtained by applying vector addition on the
ciphertext vectors. And it keeps the noise small.
Homomorphism over Multiplication: To deal with the multiplicative homomor-
phism, we need to be careful. To produce an element which is derived from the
two messages production, the c0 elements of the two ciphertexts must be multi-
plied. Let’s have the two following ciphertexts c = (c0, c1) and c′ = (c′0, c

′
1). An

encryption of their product is computed as shown below:

c0.c
′
0 = −aa′s2 + (c0a

′ + c′0a)s+ 2(2ee′ + em′ + e′m) +mm′. (4.34)

The output ciphertext is cmult = (cmult,0, cmult,1, cmult,2), where cmult,2 = c1c
′
1,

cmult,1 = c0c
′
1 + c′0c1, cmult,0 = c0c

′
0. It is known that m + 2e = c0 + c1s and

m′ + 2e′ = c′)0 + c′1s, therefore, it is true that

(m+ 2e).(m′ + 2e′) = (c0 + c1s).(c
′
0 + c′1s). (4.35)

It is possible to generate cmult such that

(c0 + c1s).(c
′
0 + c′1s) = cmult,0 + cmult,1s+ cmult,2s

2. (4.36)

To decrypt a ciphertext that contains 3 element c = (c0, c1, c2), we can perform
c0 + c1s+ c2s

2 (mod 2).

Aiming at achieving a fully homomorphic scheme Brakerski and Vaikuntanathan [15]
used Gentry’s “bootstrapping” and “squashing”. The basic scheme has a decryption
circuit with a high degree that cannot be evaluated homomorphically. Thereby, to re-
duce the complexity of decryption, they used the posting technique with a sequence
of elements, in addition to the public key. These elements mainly used for hiding the
secret key as a sparse subset sum. That is, the scheme becomes sufficient for the “boot-
strapping”. Later, Gentry proposed a BGN-type cryptosystem based on LWE [44].
After that, Brakerski and Vaikuntanathan [16] introduced a different SWHE scheme
based on standard LWE problems, where they performed re-linearization processing.

In 2012, Brakerski et al. [14] introduced a leveled-FHE scheme in the absence of
the bootstrapping technique. To keep the noise size constant as an optimization they
proposed the batching, which use the “modulus switching” technique.

Definition 4.12. Leveled-FHE is able to evaluate homomorphic operations only when
there is a predefined circuit depth level.

Later, the necessity of modulus switching was removed by Brakerski [13]. The new
FHE scheme is based on the difficulty of GapSVP [91].

Definition 4.13. Given a vector of length d for a B lattice basis, the problem of
GapSVP decides roughly whether there is a vector shorter than the given vector. The
output is Boolean: true or false.

Later on, the Brakerski scheme was optimized by Fan and Vercauteren, where they
used the RLWE problem as the based assumption [36].
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The first identity-based FHE scheme was introduced by Gentry et al. [45]. The new
scheme managed to preserve the format of the evaluated ciphertext under homomor-
phic operations, only by keeping some parameters small. Which allows the identity
which has the public parameters to apply the homomorphic evaluation on ciphertext,
while in the previous schemes, which uses the bootstrapping technique, an encrypted
version of the secret key is transmitted to the cloud where a homomorphically eval-
uation can be conducted on the ciphertext for the bootstrapping. Then, Brakerski
and Vaikuntanathan created an FHE scheme secure based on a polynomial LWE as-
sumption as well [17]. Recently, more LWE-based FHE schemes were proposed in
[23, 119, 126, 127], then Cheon et al. presented a novel and efficient SWHE scheme.
The proposed scheme uses as a basis the polynomial approximate common divisor
problem [25].

4.4.5 NTRU-like FHE schemes

For the previous FHE schemes, the data are required to be encrypted by the same en-
cryption key. Consequently, all the homomorphic computations can be applied only to
the encrypted data of a single customer. However, there are several situations where
different customers need to evaluate a joint function of encrypted data from the cus-
tomers. For instance, if a customer wants to generate some statistical information about
his data, then he needs to use a multi-key FHE scheme. Multi-key FHE can perform
operations on ciphertexts encrypted with different independent keys so that each cus-
tomer can use his encryption key to encrypt his data. Then the cloud provider executes
homomorphic operations on the ciphertexts. The customers need to interact only when
it comes to obtain a “joint secret key”. One of the earliest attempts to obtain a practi-
cal multi-key FHE scheme, which was introduced by López-Alt et al. [74], who was
building an FHE scheme from NTRU encryption scheme. NTRU encryption scheme
is among the early schemes that used lattice problems as a basis. The scheme was
designed by Hoffstein et al. [59]. Stehlé and Steinfeld [114] worked on improving the
security aspect of the scheme. Particularly, they were able, over ideal lattices, to reduce
the scheme’s security towards standard worst-case problems. Its high-performance ca-
pabilities again attract researchers interest. López-Alt et al. [74] noticed that the NTRU
encryption exhibits fully homomorphic properties, and they designed their NTRU-like
encryption scheme as follows:

Notations:

• Ring R = Z[x]/〈xn + 1〉, where n is a power of two,.

• q is odd prime number, a B-bounded distribution χ over R, for B << q. By
“B-bounded”, it means that the size of the coefficients of a polynomial sampled
out of χ is definitely less than B.

• Define Rq = R/qR.

• KeyGen Algorithm Sample ”small” polynomials f ′ and g from a distribution χ
and set f = 2f ′ + 1 so that f ≡ 1 (mod 2). Compute the inverse f−1 of f in
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Rq. The public key pk = h = 2gf−1 ∈ Rq and the secret key sk = f ∈ R.

• Encryption Algorithm To encrypt a bit m ∈ {0, 1}, samples s and e from the
same distribution χ, and outputs the ciphertext:

E(m) = hs+ 2e+m = c. (4.37)

• Decryption Algorithm The decryption algorithm computes µ = fc ∈ Rq then

D(c) = µ (mod 2) = m. (4.38)

Note that fc = 2gs+ 2fe+ fm ∈ Rq and f ≡ 1 (mod 2).

For describing the multi-key homomorphic properties of the scheme. Let c1 = h1s1 +
2e1 +m1 and c2 = h2s2 +2e2 +m2 be ciphertexts using two variant keys h1 = 2g1f

−1
1

and h2 = 2g2f
−1
2 , respectively. The multi-key homomorphism properties using joint

secret key f1f2 for two parties computation are:

• Multi-key Homomorphism over addition: We assume that cadd = c1 + c2 is
the encryption of m1 +m2 under the joint secret key f1f2.

D(cadd) = f1f2(c1 + c2),

= 2(f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 +m2),

= 2eadd + f1f2(m1 +m2),

(4.39)

for a slightly larger noise element eadd.

• Multi-key Homomorphism over Multiplication: We claim that cmult = c1c2
is the encryption of m1m2 under the joint secret key f1f2.

D(cmult) = f1f2(c1c2),

= 2(2g1g2s1s2 + g1s1f2(2e2 +m2) + g2s2f1(2e1 +m1),

+ f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2),

= 2emult + f1f2(m1m2),

(4.40)

for a slightly larger noise element emult

As noticed, the aforementioned scheme is in fact a SWHE scheme. To turn into boot-
strappable, López-Alt et al. [13, 16] used modulus reduction technique. The new
scheme had the capability to work with a limited number of public keys. Therefore,
it was a leveled-FHE scheme, because limited number of customers can be used in
homomorphic operations. However, the complexity of circuits used in homomorphic
operations was not effected. The López-Alt et al. [13, 16] scheme was based on the
Decisional Small Polynomial Ratio (DSPR) and the RLWE problems. Later, Bos et
al.[12] removeed the DSRP from López-Alt et al. [13, 16] scheme, and also showed
how to use larger inputs via Chinese Remainder theorem (CRT) . Recently, many hard-
ware improvements of the NTRU-like FHE schemes implementation were proposed in
[33, 71].
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CHAPTER 5

Implementation of Homomorphic Encryption

The ultimate purpose of working with HE schemes is to have a practical FHE scheme.
PHE schemes and SWHE schemes were steps in the direction of that goal. Never-
theless, they have limited applications, PHE has made it possible for several cloud
services and systems to obtain advantages [66]. In the following, we introduce a few
examples:

• CryptDB [94] is a database privacy layer that provides the ability to execute
SQL queries on encrypted data. CryptDB allows the server to execute queries
requested by users. The server runs the queries over encrypted data and then the
result is sent back to the customer. The customer then can decrypt the result. The
machine of the customer does not process any query. The Paillier cryptosystem
[90] was implemented, which offers basic addition operations over integers.

• Helios 2.0 [2] is an open-audit voting system based on cloud where homomor-
phic encryption is used to count the votes. This allows to count and submit all
the votes in an encrypted manner. The result will be decrypted only after casting
and adding the final votes to the tallies. The PHE scheme has utilized a version
of ElGamal [35].

• Porticor (2014) [95] is a commercial implementation of homomorphic encryp-
tion. It was one of the first implementations that offers a secure cloud key man-
agement platform based on PHE. Another firma called Intuit has acquired the
company Porticor.

On the other hand, most of the SWHE schemes proposed later to Gentry’s proposal are
actually part of some FHE schemes. Therefore, it is difficult to split the implementa-
tions of the SWHE and FHE schemes. In this section, our objective is to review some
of these implementations.

Implementing a cryptographic scheme comes as a second step after the designing
phase. After implementing the scheme, it can be applied to a real-world service, where
it can be used to assess the performance of the designed scheme [1]. Even though
the capability and the performance of the implementations of the new proposed FHE
schemes have improved significantly, the high cost of the FHE implementations is
a major pitfall that prevents applying FHE in real-world services without disturbing
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users. Gentry et al. [42] were the first to implement the FHE scheme by optimiz-
ing and simplifying the squashing process. They demonstrated four levels of security,
namely, toy, small, medium, and large. These levels have a lattice dimension of 215.
However, the implementation performance was not practical in the real life. Consid-
ering the setting of the large parameter, generating a key pair took more than 2 hours.
The public key’s size was of 2.25 GB. Moreover, the bootstrapping was done in 31
minutes.

Later, Coron et al. [27] implemented an integer version of Van Dijk et al. [117].
The key generation took 43 minutes; the public key’s size was 802 MB. After that,
Coron et al. [28] using a compression technique, improved the size of the public key
reaching 10 MB, in addition, the time of both the key generation and the bootstrapping
was improved to 10 minutes and 11 minutes, respectively. Some of the proposed FHE
implementations, which are evaluated over circuits with random depth is shown in
Table 5.1.

Table 5.1: Fully implemented FHE schemes [1]
Schemes Information Running Time

Implemented Scheme Base Scheme PK size KeyGen Enc Dec Recrypt
Gentry and Halevi[42] Gentry[46] 2.25

GB
2.2 h 3 min 0.66 s 31 min

Coron et. al.[27] Van Dijk et.
al.[117]

802
MB

43 min 2 min
57 s

0.05 s 14 min
33 s

Coron et. al. with
compressed PK[28]

Van Dijk et.
al.[117]

10.3
MB

10 min 7 min
15 s

0.05 s 11 min
34 s

Coron et. al. Leveled
[28]

Van Dijk et.
al.[117]

18 MB 6 min
18 s

3.4 s 0.00 s 2 h 27
min

Other researchers worked on implementing leveled-FHE schemes for circuits with
small depth and given runtime for both composed and isolated multiplication and addi-
tion. The comparison of these small-depth FHE implementations is presented in Table
5.2.

Table 5.2: FHE implementations for circuits with Low-depth [1]
Schemes Information Running Time

Implemented Scheme Base Scheme Enc Dec Mult Add
Naehrig et. al.[86] Brakerski and

Vaikuntanathan[15]
0.756s 0.057s 1.59s 0.004s

Bos et al.[12] López-Alt et.
al.[74]

0.027s 0.005s 0.031s 0.024
ms

Lepoint and
Naehrig[70]

López-Alt et.
al.[74]

0.016s 0.015s 0.018s 0.7 ms

Lepoint and
Naehrig[70]

Brakerski and
Vaikuntanathan[15]

0.034s 0.016s 59s 1.4 ms

Rohloff and
Cousins[106]

López-Alt et.
al.[74]

0.012s 0.00336s 0.001s 0.56 ms

For the first time, an implementation of BGV scheme was done by Gentry et al. [43]
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[14], which is a leveled-FHE scheme without bootstrapping. The implementation was
used to assess the AES circuit in homomorphic manner. This evaluation was enough
considering a real-life application but not practical since it took 48 hours to evaluate
AES circuit. To homomorphically evaluate AES, first, a customer encrypt the key of
AES with FHE FHE(K) and sends it. After that, the customer uploads the encrypted
(with AES only) data, AESK(m). To evaluate the data homomorphically, first, the
cloud provider computes FHE(AESK(m)), second, AES is decrypted homomorphi-
cally to get FHE(m). Then, the homomorphic operations on the encrypted (with
FHE) data can be done by the cloud.

Ducas and Micciancio presented recently another significant implementation, which is
”Fastest Homomorphic Encryption in the West” (FHEW) [34]. It noticeably enhances
the time required for bootstrapping the ciphertext professing homomorphic assessment
of a NAND gate in ¡ 1 sec.

Despite the fact that all previously mentioned implementations are publicly published
as research papers, there are just a small number available for the research commu-
nity. The most important and widely used one is HElib by Halevi and Shoup [53].
HElib implements the BGV scheme [13] with ciphertext packing techniques, in addi-
tion to novel optimizations. Halevi and Shoup do the design and implementation of
HElib in [52] and the algorithms they used in [54]. HElib was implemented based on
GPL-licensed C++ library, and it supports bootstrapping [55]. Gentry used HElib to
implement the homomorphic evaluation of AES [43]. However, HElib is not easy to
use because it is designed using low-level programming. The low-level programming
interacts with components of the computer and the hardware constraints without the
need to use the functions and commands of a programming language. There are other
notable open sources HE libraries such as SEAL [21], NFLlib [4], libScarab [92], and
PALISADE [105]. These libraries implement essentially low-level homomorphic oper-
ations such as arithmetic addition, subtraction, multiplication, and comparison. These
operations are useful in illustrating that the libraries work on small problems, but they
are less beneficial when making real-world systems that need to be deployed in the
cloud. To build a system using these libraries, it will take a tremendous effort from the
developers to figure out how the capabilities of the libraries can fit their requirement
and to figure out what the limitations of the libraries are [56].

As an illustration of how to use HELib, we wrote a simple program based on samples
provided with the library, to show how to install HELib (See Appendix B) and perform
basic computations, e.g., adding and multiplying of two integers (See Appendix A).
The initialization part of the program will create the public key and the private key,
after that, we will enter the two integers, which will be encrypted by the public key.
The Program will perform one homomorphic addition, and one homomorphic multi-
plication over the encrypted integers then will decrypt the results and print them out.
The running time average of the program is 38.444 s, and the output file size was 37.1
MB Although this is a simple example, HElib allows us to do more advanced things
that are needed for practical applications. Most of those can be found in the samples
that come with HElib,
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CHAPTER 6

Conclusion and Future Work

Unfortunately, there are still some open security issues need to be proven about the
FHE schemes. As we have reviewed, Gentry’s blueprint bootstrapping technique is
utilized by most of the FHE schemes. Which means that in order to bootstrap the
noisy ciphertexts, an encrypted copy of the secret key is sent to the cloud provider, in
that case, an eavesdropper can get the encrypted secret key. Although it is proven that
some SWHE schemes are semantically secure, the semantic security of an unlimited
FHE is not proven yet regarding functions, therefore, there is no guarantees to protect
the private key from being determined from the encrypted public key by adversary.
Therefore, FHE schemes need to be examined to prove that it is secure enough. An-
other open problem is to design an unlimited FHE scheme that allows unlimited opera-
tions without bootstrapping. Although the bootstrapping can be essential to reduce the
noise in the assessed ciphertexts, it increases the computational cost. Also, designing a
noise-free FHE scheme remains as one of the research challenges. Liu [72] presented
a noise-free FHE and Yagisawa [122] presented a FHE without bootstrapping, but both
schemes were reported as insecure by Wang [120].

As we have presented, the security issues are a significant challenge for Cloud Com-
puting development. In order to protect the privacy of the customer’s data, he needs
to encrypt his data before uploading it to the cloud. In case he needs to run some
operations on the encrypted data, he has to download the data on his machine and
decrypt it, then do the computation then encrypt it again and upload it to the cloud.
Otherwise, the customer needs to share his key with the cloud service provider to per-
form the computations for him which is not secure. In cryptography, Homomorphic
encryption is considered a very promising concept. It can significantly promote the
security of Cloud Computing because HE schemes permit performing computations
on encrypted data with no need for sharing the private key. In this thesis, we have
defined Cloud Computing and discussed its security issues. Then we described the
use of traditional encryption as a possible threat countermeasure, and the challenges
facing its implementation. We reviewed some of the Partially Homomorphic Encryp-
tion (PHE) schemes like RSA and Paillier schemes which were not sufficient to secure
Cloud Computing because these schemes allow to perform only one computation on
the encrypted data. The fully Homomorphic encryption is the genuine solution to se-
cure the customer data in the Cloud Computing because it permits to execute random
operations on encrypted data with no need to decrypt it. However, as we explored in
chapter 5, the FHE schemes suffer from unsatisfactory speed performance and huge
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storage size, it can be improved to be practical for real-life applications. Still, the
adoption of HE schemes can start with solutions for some specific problems using the
capabilities of the available HE libraries.
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APPENDIX A

Program source code

1 include ”FHE .h”
2
3 int main (int argc , char argv )
4
5 / BEGIN INITIALIZATION /
6 long m = 0 ; / / Specific modulus
7 long p = 1021 ; / / Plaintext base [default= 2] , should be a prime number
8 long r = 1 ; / / Lifting [default=1]
9 long L = 1 6 ; / / levels in the modulus chain , we assume the default is ←↩

heuristic
10 long c = 3 ; / / columns in key switching matrix , assuming default is 2
11 long w = 6 4 ; / / Hamming weight of private key
12 long d = 0 ; / / The field extension s degree , assuming default is 1
13 long k = 128 ; / / Security parameter [default=80]
14 long s = 0 ; / / Minimum number of slots [default=0]
15
16
17 m = FindM (k , L , c , p , d , s , 0 ) ; / / Find a value for m given the specified ←↩

values
18
19
20
21 FHEcontext context (m , p , r ) ; / / Initialize context
22 buildModChain (context , L , c ) ; / / Modify the context , adding primes to the ←↩

modulus chain
23
24
25
26 ZZX G = context .alMod .getFactorsOverZZ ( ) [ 0 ] ; / / Creates the polynomial used ←↩

to encrypt the data
27
28
29 std : : cout ”Generating keys . . . ” std : : flush ;
30 FHESecKey secretKey (context ) ; / / Build the structure of a private key
31 const FHEPubKey publicKey = secretKey ; / / FHESecKey is a subclass of ←↩

FHEPubKey
32 secretKey .GenSecKey (w ) ; / / Generating a private key
33 / / std : : cout ”secretKey= ” secretKey std : : endl ;
34 std : : cout ”DONE ! ” std : : endl ;
35 / END INITIALIZATION /
36
37 Ctxt ctx1 (publicKey ) ; / / Initialize the first ciphertext (ctx1 ) using ←↩

publicKey
38 Ctxt ctx2 (publicKey ) ; / / Initialize the first ciphertext (ctx2 ) using ←↩

publicKey
39 long N1 ;
40 long N2 ;
41 std : : cout ”Please enter the first value : ” std : : flush ;
42 cin N1 ;
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43 std : : cout ”Please enter the second value : ” std : : flush ;
44 cin N2 ;
45
46 std : : cout ”Creating the ciphertext of ” N1 ” . . . ” std : : flush ;
47 publicKey .Encrypt (ctx1 , toZZX (N1 ) ) ; / / Encrypt the value 1
48 / / std : : cout ctx1 std : : endl ;
49 std : : cout ”DONE ! ” std : : endl ;
50
51
52 std : : cout ”Creating the ciphertext of ” N2 ” . . . ” std : : flush ;
53 publicKey .Encrypt (ctx2 , toZZX (N2 ) ) ; / / Encrypt the value 2
54 / / std : : cout ctx2 std : : endl ;
55 std : : cout ”DONE ! ” std : : endl ;
56
57
58 Ctxt ctSum = ctx1 ; / / Create a ciphertext to hold the Sum and initialize it ←↩

with (ctx1 )
59 Ctxt ctProd = ctx1 ; / / Create a ciphertext to hold the Prod and initialize it ←↩

with (ctx1 )
60
61 std : : cout ”Performing the Homomorphic Addition over Ciphertexts . . . ” std : :←↩

flush ;
62 ctSum += ctx2 ; / / Perform (ctx1 ) + (ctx2 )
63 / / std : : cout ctSum std : : endl ;
64 std : : cout ”DONE ! ” std : : endl ;
65
66
67 std : : cout ”Performing the Homomorphic Multiplication over Ciphertexts . . . ” ←↩

std : : flush ;
68 ctProd = ctx2 ; / / Perform (ctx1 ) (ctx2 )
69 / / std : : cout ctProd std : : endl ;
70 std : : cout ”DONE ! ” std : : endl ;
71
72
73 ZZX ptSum ; / / Create a plaintext to hold the plaintext of the Sum
74 ZZX ptProd ; / / Create a plaintext to hold the plaintext of the Prod
75
76 std : : cout ”Decrypting the addition result . . . ” std : : endl ;
77 secretKey .Decrypt (ptSum , ctSum ) ; / / Decrypt the ciphertext ctSum into the ←↩

plaintext ptSum using secretKey
78 std : : cout N1 ” + ” N2 ” = ” ptSum [ 0 ] std : : endl ;
79
80 std : : cout ”Decrypting the multiplication result . . . ” std : : endl ;
81 secretKey .Decrypt (ptProd , ctProd ) ; / / Decrypt the ciphertext ctProd into the ←↩

plaintext ptProd using secretKey
82 std : : cout N1 ” ” N2 ” = ” ptProd [ 0 ] std : : endl ;
83
84
85 return 0 ;
86
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APPENDIX B

HElib Installation

Building HElib requires two libraries, namely, GMP and NTL.

GMP is pre-installed in many Linux distributions. In case it is not installed, please
follow the instructions below.

1. Downloading GMP at http://www.gmplib.org

2. Unzip the compressed file and navigate to the directory gmp-XXX

3. Execute the commands:

1 . / configure
2 make
3 sudo make install

4. By that, GMP should be installed into the directory /usr/local

After that, we install NTL v9.4.0 or higher:

1. Downloading NTL at http://www.shoup.net/ntl/download.html

2. Unzip the compressed file and navigate to the directory ntl-XXX/src

3. Execute the commans:

1 . / configure NTL_GMP_LIP=on
2 make
3 sudo make install

4. By that, NTL should be installed into the directory /usr/local

As soon as you got the libraries installed, we can build HElib, first, navigate to HElib
src directory.

Currently, HElib has a basic building system. There is no configure script, only a
Makefile. The main task of the Makefile is building fhe.a, which a static library. After
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that, applications programs can be built based on it (NOTE: your application should be
in HElib src directory or you can set the include parameters to include the library).

It is recommended to have a look at the Makefile to consider adapting the default
parameters of CFLAGS & CC. However, usually the defaults work with the majority
of the systems.

In HElib src directory, execute the command:

1 make

this compiles then builds the library fhe.a. Following that, execute

1 make check

This in turn compiles & calls a set of programs for testing.

To build programs based on the library HElib, you can create a file called myprog.cpp,
and write your program in it, then execute

1 make myprog_x

this compiles myprog.cpp and links fhe.a with the required libraries. In addition,
the executable myprog_x will be created.

For more examples of programs that use HElib, you can check Test_*.cpp.

https://github.com/shaih/HElib/blob/master/INSTALL.txt
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