
OPTIMAL CONTROL IN FLUID FLOW PROBLEMS WITH POD
APPLICATIONS TO FEM SOLUTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANSU EVCİN
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ABSTRACT

OPTIMAL CONTROL IN FLUID FLOW PROBLEMS WITH POD
APPLICATIONS TO FEM SOLUTIONS

Evcin, Cansu
Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

September 2018, 155 pages

This study investigates the numerical solutions of optimal control problems con-
strained by the partial differential equations (PDEs) of laminar fluid flows and heat
transfer with the model order reduction (MOR). This is achieved by the three objec-
tives of the thesis: obtaining accurate solutions, controlling the dynamics of the fluid
and reducing the computational cost.

Fluids exposed to an external magnetic field and the heat transfer are governed by
the magnetohydrodynamics (MHD) and energy equations. Considering an advanced
physical systems with a temperature dependent viscosity such as chemical reactors,
their control has significant importance and becomes one of the major subject of
this thesis. Furthermore, power-law fluid flow, which describes the dynamics for
non-Newtonian fluids such as polymer solutions, is considered as an optimal control
problem for the characterization of these fluids as shear-thinning or shear-thickening.

Simulations of solutions of the fluid flows and heat transfer equations are carried
out by the finite element method (FEM). First of all, FEM solution of the Navier-
Stokes (N-S) equations with an exact solution is obtained for the validation of the
method using quadratic-linear elements for the velocity-pressure formulation. On the
other hand, considering the coupled non-linearity of the MHD flow and heat transfer
equations with temperature dependent viscosity, quadratic elements are used for both
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velocity and temperature. Moreover, for the power-law fluid flows, due to the fact that
equations are decoupled and the temperature equation is linear, quadratic elements for
the velocity and the linear elements for the temperature are considered.

Solutions of the optimal control problems are attained by employing the adjoint
method within the discretize-then-optimize approach. While the control of N-S equa-
tions are studied with a distributed force function, control of the MHD flow and
power-law fluid flow is attained by using the problem parameters as control variables.

Computational cost and data storage problems arise with implementation of the opti-
mal control strategies. Thus, computing resources are optimized by performing MOR
using the proper orthogonal decomposition (POD) method to obtain a reduced order
model (ROM). The system dynamics is transferred by POD bases using the sample
solutions (snapshots) for various values of the parameters. Setting up a user-friendly
framework for the development of the ROM is also provided to help reduce the dis-
cretization procedure of the system of equations.

Consequently, the dynamics of the fluid flows and heat transfer are well identified
by applying FEM and their control are successfully achieved by the optimal control
using the parameters of the problems as control variables. Besides, providing a user-
friendly framework, computational costs are minimized.

Keywords: optimal control, finite element method, proper orthogonal decomposition,
magnetohydrodynamics
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ÖZ

SONLU ELEMANLAR ÇÖZÜMLERİNE ÖZ DİK AYRIŞIM UYGULANMASI
İLE AKIŞKAN AKIŞI PROBLEMLERİNDE EN İYİLEMELİ KONTROL

Evcin, Cansu
Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Eylül 2018, 155 sayfa

Bu çalışmada, düzgün akışkan akışı ve ısı transferinin kısmi diferansiyel denklemleri
ile kısıtlanmış en iyilemeli kontrol problemlerinin nümerik çözümleri model indir-
geme yöntemi ile araştırılmaktadır. Bu, tezin üç hedefi ile elde edilmektedir: doğru
çözümler elde etmek, akışkanın dinamiklerini kontrol etmek ve hesaplama maliyetini
düşürmek.

Harici bir manyetik alana maruz kalan akışkanlar ve ısı transferi manyetohidrodina-
mik ve enerji denklemleri tarafından yönetilmektedir. Kimyasal reaktörler gibi sıcak-
lığa bağlı viskoziteye sahip gelişmiş bir fiziksel sistem göz önüne alındığında, bun-
ların kontrolü büyük önem taşımaktadır ve bu tezin ana konusu haline gelmektedir.
Dahası, polimer çözeltileri gibi Newtonian olmayan akışkanların dinamiklerini ta-
nımlayan kuvvet-kanunu akışkan akışı, bu akışkanların kesme ile incelen veya kesme
ile kalınlaşan olarak ikiye ayrılan karakterizasyonu için bir en iyilemeli kontrol prob-
lemi olarak ele alınmaktadır.

Akışkan akışları ve ısı transfer denklemlerinin çözümlerinin simülasyonları sonlu
elemanlar yöntemi ile gerçekleştirilmektedir. İlk olarak, tam çözümleri olan Navier-
Stokes denklemlerinin sonlu elemanlar çözümü metodun doğrulanması için hız-basınç
formülasyonunda ikinci dereceden-doğrusal elemanlar kullanılarak elde edilmekte-
dir. Öte yandan, sıcaklığa bağlı viskozite ile manyetohidrodinamik akış ve ısı trans-
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fer denklemlerinin birleştirilmiş doğrusal olmayanlığı göz önüne alındığında, ikinci
dereceden elemanlar hem hız hem de sıcaklık için kullanılmaktadır. Dahası, kuvvet-
kanunu akışları için denklemler ayrık olup sıcaklık denklemi doğrusal olduğundan,
hız için ikinci dereceden elemanlar ve sıcaklık için doğrusal elemanlar ele alınmakta-
dır.

En iyilemeli kontrol problemlerinin çözümlerine, ayrıklaştır-sonra-en iyile yaklaşımı
ile adjoint metodu kullanılarak ulaşılmaktadır. N-S denklemlerinin kontrolü dağıtıl-
mış bir kuvvet fonksiyonu ile çalışılırken, kontrol değişkenleri olarak problem para-
metreleri kullanılarak manyetohidrodinamik akışın ve kuvvet-kanunu akışkan akışı-
nın kontrolü sağlanmaktadır.

En iyilemeli kontrol stratejilerinin uygulanması ile hesaplama maliyeti ve veri de-
polama problemleri ortaya çıkmaktadır. Bu nedenle, hesaplama kaynakları, öz dik
ayrışım yöntemini kullanarak model indirgeme ile optimize edilmektedir. Sistem di-
namikleri, parametrelerin çeşitli değerleri için alınan çözümleri kullanarak öz dik ay-
rışım bazları ile aktarılmaktadır. Derecesi indirgenmiş modeldeki denklem sistemle-
rinin ayrıklaştırma prosedürünü ortadan kaldırmak için bu modelin geliştirilmesinde
kullanıcı dostu bir çerçevenin oluşturulması sağlanmaktadır.

Sonuç olarak, akışkan akışları ve ısı transferinin dinamikleri sonlu elemanlar yön-
temi uygulanarak hesaplanmaktadır ve kontrolleri, problem parametrelerinin kontrol
değişkenleri olarak kullanılmasıyla en iyilemeli kontrol uygulanarak başarılı olarak
sağlanmaktadır. Kullanıcı dostu bir çerçeve sağlayarak, hesaplama maliyetleri en aza
indirgenmektedir.

Anahtar Kelimeler: en iyilemeli kontrol, sonlu elemanlar yöntemi, öz dik ayrışım,
manyetohidrodinamik
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CHAPTER 1

INTRODUCTION

Computational fluid dynamics (CFD) has become a powerful tool serving as a sub-

branch of fluid mechanics that uses scientific computing and data analysis to under-

stand the physical characteristics of fluid flows. It has been introduced as a new third

approach being equal partner with the theoretical and experimental approaches in the

development of fluid dynamics. The arrival of the high performance computers and

newly developed algorithms enables CFD to analyze and predict the results of theory

and experiment by doing so-called ‘numerical experiments’. In this manner, CFD

has appeared an attractive branch providing numerical experiments conducted by a

computer program which has more favorable conditions in the implementation. For

instance, unlike a wind-tunnel experiment, a code for a computer program can be car-

ried in your disks and can be accessible remotely by people far away from it. Even it

can simulate the extreme cases where real experiments are difficult or impossible to

perform. Thus, CFD is an appealing research tool for science and engineering as well

as applied mathematics.

CFD is based on providing solutions to the problems governed by the fundamental

equations of fluid dynamics which are, in general, the triple of the following princi-

ples: conservation of mass, Newton’s second law, and conservation of energy. They

give rise to the continuity, momentum and energy equations, respectively.

Moreover, they represent the ‘complete Navier-Stokes equations’ for the solution of

a viscous flow where the thermal conduction and transport phenomena of viscosity

are considered. If these principles are combined with the presence of a magnetic field

and electrically conducting fluid, which brings the laws of electromagnetic, then the
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subject is extended to the study of Magnetohydrodynamics (MHD). It is concerned

with the interaction of magnetic fields and conducting fluids. Considering their vital

importance in industry, in addition to the Navier-Stokes equations, these are primary

interest of this thesis.

The equations corresponding to the fundamental principles of fluid dynamics are re-

placed by the integrals or partial derivatives. However, closed form solutions may not

be available in general or may be difficult to evaluate. In such cases, CFD emerges as

an efficient tool using numerical methods to express them as a discrete algebraic sys-

tem of equations. Among many numerical approaches, finite difference, finite volume

and finite element methods are mostly used and well-known by the CFD community.

They provide solutions to the above problems at discrete points in space and/or time.

Because of their simplicity in the implementation, finite difference methods (FDMs)

are the first and widely used approach in literature. FDMs obtain the discrete system

of equations using the Taylor series expansions of the derivatives around the grid

points in the domain. However, due to the need for a structured grid, FDMs are not

directly applicable for complex geometries.

On the other hand, finite volume methods (FVMs) offer a discretization of the integral

form of the equations. In FVMs, the discretization is carried out directly in the phys-

ical space, which is divided into a number of control volumes. However, an irregular

mesh computation of fluxes leads to a huge amount of effort.

In finite element methods (FEMs), the weighted residual is used to integrate the partial

differential equations over an element by multiplying the weight functions, so-called

the shape functions. As an advantage, its application to any geometric shape does not

cause an extra cost.

However, all well-interpreted results are achievable with a price of large comput-

ing sources and long computation time, which is the main obstacle of the CFD. As

a result, many toolbox, packages and computing platforms have been developed to

present efficient tools in terms of both accuracy and cost. Yet, the advance in high

level technology in science demands for a more modest and enhanced programming

environment everyday.
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One of the major topics in CFD is the control of the fluid flow and the determination

of the physical characteristic of the fluid. Besides obtaining numerical approxima-

tions to the fluid variables such as velocity, temperature and viscosity, it is also vital

to drive the fluid to a predefined/desired state or to determine the physical parameters

of the fluid for a desired state. So, the problem is designed as an optimization prob-

lem where the constraint equations are formed from the dynamics of the fluid. This is

called a partial differential equation (PDE)-constrained optimal control problem and

it has to be treated by the optimization tools. Furthermore, the solution to an optimal

control problem can be reached iteratively by solving the constraint equations at each

optimization step until the optimality conditions meet. But, this process requires re-

peated evaluations of the equations and increases the computational cost enormously.

For example, the dimension of the systems to be solved in order to obtain a high-

fidelity finite element method (FEM) solution of a flow problem may be hundred of

thousands or even more and this reveals the possible costs in an optimization problem

with the PDE constraints.

The key progress on the reduction of the costs in optimization algorithms has been

obtained by the advancement of ‘model order reduction’ (MOR), which still is a hot

topic in fluid dynamics and control problems. In this manner, MOR provides an al-

ternative way to find both sufficient and low-dimensional approximations by using

detailed information about the dynamics of the problem. The well-known technique

used in this concept is proper orthogonal decomposition (POD) method. The main

idea is to collect sample solutions which are obtained from the fine-scaled approx-

imations via any numerical method such as FDMs, FEMs; and use them to get an

overall view about the system. POD saves these solutions to the so called ‘snapshot

matrix’ to which a singular value decomposition (SVD) is applied. So, the left singu-

lar vectors corresponding to the significant singular values constitutes the POD basis,

which are only a few. Later on, the problem is projected to a low-dimensional space

generated by the POD basis.

Despite the expense of obtaining fine-scaled solutions, which are named as offline

work and performed only once, POD provides high profits in computational cost and

time for the problems where repeated evaluations of the system’s equations are re-

quired. Thus, it becomes promising to use POD for the solution of the optimal control
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problems for the fluid flows.

Inspired from the discussion above, this thesis deals with the optimal control problems

in fluid flows and their reduced order modeling for the FEM solutions with the POD

method.

Rest of the thesis is organized as follows.

In Chapter 2, we introduce the optimal control problems considered in this thesis.

Starting with the main stone of the fluid dynamics problems, Navier-Stokes (N-S)

equations are presented as coupling of the momentum and the continuity equations.

Then, problems are extended with the energy and Maxwell equations as Magnetohy-

drodynamics (MHD) flow considering a temperature dependent viscosity. Next, the

MHD equations are reformulated for the power-law fluids flow, where the underly-

ing fluid can exhibit Newtonian and non-Newtonian characteristic. Transformations

of the equations for a cross section of a rectangular duct and into non-dimensional

forms are given.

Furthermore in Chapter 2, optimal control problem is modeled for the N-S equations

by the control of distributed source force. On the other hand, control of the MHD flow

and heat transfer and also the power-law fluid flows are designed for the control by the

physical parameters of the systems in order to regain the desired states or determine

the characteristics of the fluid flow.

In Chapter 3, the FEM solutions of the problems introduced in Chapter 2 are analyzed.

The variational formulations and the fully discrete non-linear system of equations

are derived. Following the ‘discretize-then-linearize’ approach, Newton’s method is

applied to the solutions of the nonlinear problems. While the numerical solutions of

the N-S equations are compared with the exact solution, the validity of the results

for the MHD flow and power-law fluid flows are tested with the computation of the

critical quantities, which reflect the capability of the method for obtaining solutions,

such as the fanning friction factor and the Nusselt number. Also, midline velocity,

contours and isolines of the solutions are depicted for various values of the problem

parameters.

In Chapter 4, the solution of the optimal control of the fluid flow problems are studied
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for control with a distributed force function and control with the physical parameter of

the problem. Firstly, a gradient-based optimization algorithm, L-BFGS, is introduced.

Then, pursuing a ‘discretize-then-optimize’ approach, problems are projected to the

FEM spaces to obtain finite dimensional approximations. Furthermore, first-order

optimality conditions are derived in the fully discrete setting and adjoint equations

are formulated. Using the selected optimization algorithm, optimal states are attained

for different simulations of the desired states.

In Chapter 5, the MOR idea is introduced with the POD method by using the SVD

of the snapshot matrix. After giving the underlying algorithm, reduced order models

are constructed with the ‘reduce-then-discretize’ approach for the control of steady

parametrized problems.

In Chapter 6, a summary of the applications in this thesis and their numerical results

are presented and possible future work and extensions are discussed.
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CHAPTER 2

OPTIMAL CONTROL PROBLEMS CONSTRAINED BY

INCOMPRESSIBLE FLUID FLOWS AND HEAT TRANSFER

This chapter presents equations of the fundamental principles of fluid dynamics and

related optimal control problems. In the following, we begin with introducing these

equations and then continue with forming the control problems. Firstly, coupling of

the continuity and momentum equations are introduced in order to form the Navier-

Stokes equations. Then, the momentum equation is coupled with the energy equation

under the effect of an external magnetic field, which yields the MHD equations and

heat transfer problem with a temperature dependent viscosity. Finally, momentum

and energy equations are coupled in such a way that the fluid may exhibit Newtonian

and non-Newtonian behavior according to the values of the parameter in the viscos-

ity.

2.1 Navier-Stokes Equations

Many physical phenomena of science and engineering are described with the help of

the well-known Navier-Stokes equations. They serve as a core design tool for various

areas such as the simulation of air-conditioning, compressors, flow ducts and airplane.

Mainly, they are originated by the mass conservation and Newton’s second law, which

yield to the continuity and momentum equations. For a model of an infinitesimally

small element fixed in a space, the continuity equation of a viscous flow takes the
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following form [5]

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.1)

where ρ is the flow density and ~v is the fluid velocity in vector form.

On the other hand, the mathematical formulation of Newton’s second law has to con-

sider the forces acting on the fluid; they are the body forces (gravitation, electromag-

netic) and the surface forces (pressure, normal and shear stresses). Body forces are

represented by the vector, ρ~f = (ρfx, ρfy), assuming a two dimensional domain.

Conventionally, for the surface forces from the viscosity, τij denotes a stress in the

j direction exerted on a plane perpendicular to the i axis. Hence, τii represents the

normal stress for each coordinate axis; and the shear stress, which is related to the

time rate of change of the shearing deformation of the fluid element, is represented

by τij , i 6= j. The fact that the shear stresses can be used to classify the fluid as

Newtonian or non-Newtonian, which was first stated by Isaac Newton, gives the vital

importance of their presence in the dynamical system. So, if the shear stress has a

linear relationship with the gradient of the velocity then the fluid is called Newtonian,

otherwise non-Newtonian. Therefore, the momentum equations are obtained as the

following system of equations

∂(ρv1)

∂t
+∇ · (ρv1~v) = −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+ ρfx, (2.2)

∂(ρv2)

∂t
+∇ · (ρv2~v) = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+ ρfy, (2.3)

where p is the pressure and v1, v2 are the components of the velocity ~v.

The Newtonian fluids are considered following the Stokes hypothesis; and normal

and shear stresses are replaced with the forms given by

τxx = −2

3
µ(∇ · ~v) + 2µ

∂v1

∂x
, (2.4)

τyy = −2

3
µ(∇ · ~v) + 2µ

∂v2

∂y
, (2.5)

τxy = τyx = µ

[
∂v1

∂x
+
∂v2

∂y

]
, (2.6)

where µ is the dynamic viscosity. For instance, substituting the (2.4)–(2.6) into the

right hand side of (2.2) leads to

∂(ρv1)

∂t
+∇ · (ρv1~v) = −∂p

∂x
− 2

3
µ
∂2v1

∂x2
− 2

3
µ
∂2v2

∂x∂y
+ 2µ

∂2v1

∂x2
+ µ

∂2v1

∂y2
+ µ

∂2v2

∂x∂y
,
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then, rearranging and using the property∇ · ~v = 0 give

∂(ρv1)

∂t
+∇ · (ρv1~v) = µ

(
∂2v1

∂x2
+
∂2v1

∂y2

)
.

Meanwhile, for an incompressible flow, the momentum and continuity equations re-

duce to

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆~v + ρ~f, (2.7)

∇ · ~v = 0. (2.8)

In order to obtain a non-dimensional form of the Navier-Stokes equations for an in-

compressible fluid with a constant viscosity, the dimensionless quantities,

x′ =
x

l
, y′ =

y

l
, ~v′ =

~v

vc
, t′ =

t

(l/vc)
, p′ =

p

v2
cρ
, (2.9)

are introduced, where l denotes a characteristic length and vc denotes a characteristic

velocity. Substituting these quantities into (2.7)–(2.8) results in the dimensionless

form of the N-S equations for a time-dependent, incompressible, viscous fluid flow:

∂~v′

∂t
+
(
~v′ · ∇

)
~v′ = −∇p′ + ν∆~v′ + ~f ′, (2.10)

∇ · ~v′ = 0, (2.11)

where ν is the reciprocal of the Reynolds number Re so that

ν =
1

Re
=

µ

ρvcl
.

Reynolds number is a dimensionless quantity that identifies the tendency of the fluid

as laminar or turbulent. Values of Re ≤ 2000 generally produces laminar regimes,

and we will be interested in this case. Specifically, the main focus in this thesis will

be to consider steady flows; thus the term for time derivative is dropped and also the

prime notation is omitted from the variables for simplicity. Consequently, the N-S

equations of a two-dimensional, steady, incompressible, viscous fluids are given in

the vector form:

−ν∆~v + (~v · ∇)~v +∇p = ~f, (2.12)

∇ · ~v = 0. (2.13)
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Of course, the steady N-S equations are supplemented with the essential boundary

condition for the velocity as ~v = ~vD with a specified vector function vD on the

boundary of the domain, say Ω. Since there is no boundary condition defined for

the pressure, its unique solution can be achieved by imposing a constraint such as∫
Ω
p dΩ = 0.

Instead of working in the vector form of the N-S equations, it is also possible to obtain

a stream function-vorticity formulation where the pressure term is removed from the

system. However, in this case the vorticity function fails to have a boundary condi-

tion; and the boundary values of the vorticity are calculated by using the derivative of

the boundary conditions of stream function. Nevertheless, each case requires a spe-

cial treatment of the boundary conditions and the choice between them can be made

according to the demand of the underlying problem. In this respect, pressure is pre-

served and the N-S equations are preferred to work within the vector form as given in

(2.12)–(2.13) in this section of the thesis.

Having mathematical formulation for the velocity and pressure of a fluid flow enables

to determine the motion and behavior of the flow for different physical conditions.

This information is of great importance in the design of many technological equip-

ments where there is a fluid flow. Moreover, it might be necessary to specify the

required forces to evolve the flow into a desired profile. At this point, the optimal

control strategies enter the scene and optimization algorithms begin to play.

A control problem can be designed for the fluid flow to regain the velocity vector field

for a desired flow behavior by applying, for instance, a distributed force function as

the control. In this case, the N-S equations corresponding to the physical principles

are participated as the constraints of the control process. Meanwhile, an objective

functional having a velocity tracking profile is added to minimize the difference be-

tween the optimal and desired states. Furthermore, having a control function may

need a cost and this may be introduced as the norm of the control function. Therefore

a cost functional may be given as

J(~v, ~u) =
αv
2

∫
Ω

(~v − ~vd)T (~v − ~vd) dΩ +
αu
2

∫
Ω

~uT~u dΩ,

where αv and αu are the regularization parameters of the velocity ~v and the control

function ~u, respectively.
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Consequently, the PDE-constrained optimal control problem for the distributed con-

trol of the N-S equations is formulated as follows:

minimize
~u

J(~v, ~u) =
αv
2

∫
Ω

(~v − ~vd)T (~v − ~vd) dΩ +
αu
2

∫
Ω

~uT~u dΩ (2.14)

subject to − ν∆~v + (~v · ∇)~v +∇p = ~f + ~u in Ω (2.15)

∇ · ~v = 0 in Ω (2.16)

~v = 0 on ∂Ω. (2.17)

Throughout the thesis, we shall investigate the solution of this problem by solving

PDEs and the controlling the flow. Thus, numerical solutions are obtained by the FEM

and the control problem is examined by the adjoint method. Since there have been

many studies conducted before on the subject, a short literature survey is provided in

the following.

Solutions of the Navier-Stokes equations have been studied extensively in literature

since it serves as the fundamental tools of the fluid flow. The finite difference solu-

tions have been introduced by Chorin in [16] for the time-dependent case by solv-

ing the velocity and pressure iteratively, which is also named as Chorin’s projec-

tion method. Taylor and Hood in [91] have presented velocity-pressure and stream

function-vorticity formulations using the finite element discretization technique, as

founders of the Taylor-Hood finite element pairs. The existence and the uniqueness

results and the regularity of solutions has been investigated by Temam in [92], Gi-

rault and Raviart in [32] and Thomasset in [93] using the finite element method. An

upwind finite element scheme for the convective part of the N-S equations has been

introduced by Heinrich in [46]. The discontinuous Galerkin approach has been used

by Baumann and Oden [10]. Elman[23] has applied the preconditioning for the steady

state case with low viscosity. On the other hand, the detailed finite volume analysis

is provided by Jasak in [53]. A higher order approximation by the finite volume is

given by Pereira et al. in [75].

Besides the numerical solutions, the optimal control of the N-S equations have also

attracted many researchers. Abergel and Temam [1] have given the proof of an ex-

istence of solutions to control problems for various physical situations, such as dis-

tributed control, boundary control in a channel; and they have provided basic numer-

ical algorithms, such as steepest descent and conjugate gradient methods. Ghattas
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and Bark have investigated the optimal control of the stationary N-S equations in two

and three dimensions by developing large scale optimization methods such as quasi–

Newton and sequential quadratic programming in [31]. Considering an augmented

Lagrangian method, optimality conditions are established for the control problems

on the N-S equations by Desai and Ito in [21]. Further studies are provided by Gun-

zburger, Hou and Svobodny in [38, 40], by Málek and Roubiček in [69], by Heinken-

schloss in [45] and by Kunisch in [57]. A comprehensive overview on control of N-S

equations is given in [39, 86].

2.2 MHD Flows and Heat Transfer with Temperature Dependent Viscosity and

Hall effect

As is clear from the previous section, the evolution of the fluid flow is based on the

N-S equations. However, if applications with fluid flow are enlarged to the phys-

ical systems such as chemical reactor, cooling modules or heat exchangers for an

electrically conducting fluid then it becomes necessary to take into account the mag-

netic effects as well as the heat transfer. This brings out the readjustment of the N-S

equations with the addition of new terms, and hence, one needs to consider the third

principle of the fluid dynamics: conservation of energy.

In order to implement such improvements, the model problem is investigated for a

steady flow of a viscous, incompressible, electrically conducting fluid in a long chan-

nel of rectangular cross-section together with heat transfer: This is generally referred

to the problem of MHD flow and heat transfer. The configuration of the problem is

shown in Figure 2.1, where a uniform magnetic field of intensityB0 is applied with an

angle to the duct which is perpendicular to the axis of the channel (z-axis). Herewith,

we assume a constant pressure gradient −dp
dz

applied in the z-direction and the in-

duced magnetic field is neglected due to the assumption of small magnetic Reynolds

number. Moreover, both the flow and the temperature are assumed to be steady and

fully developed along the channel. Besides, the viscosity of the fluid is considered to

vary exponentially with the temperature; however, the Joule and viscous dissipations

are not neglected. Due to the strong effect of magnetic force, the Hall effect is nec-

essarily taken into account as well. As a result, the flow is only in the channel axis
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Figure 2.1: Physical Configuration of the MHD Problem.

direction with the velocity, ~v = ωk̂, which varies in the duct, that is, ω = ω(x, y) for

(x, y) ∈ Ω = [0, a]× [0, b] .

According to the problem definition given above, the equations of the flow are ob-

tained by adding the electromagnetic Lorentz force ~J× ~B, as in [22], to the governing

N-S equations so that (2.7) with a variable viscosity turns into

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+∇ · (µ∇~v) + ~J × ~B, (2.18)

where ~B = (Bx, By, 0) with B0 = (B2
x + B2

y)
1/2 is the magnetic field perpendicular

to the channel axis lying on the duct plane, and ~J is the current density. Also, the

effect of a variable viscosity is included to enhance the heat transfer; the viscosity µ

is chosen such that it varies exponentially with temperature in the form

µ = µ0e
−b0(T−Tω), (2.19)

as given in [7, 8, 81] where µ0 is the coefficient of viscosity at temperature T = Tω,

and b is a constant. Although the common expression for the temperature dependent

viscosity in engineering literature is the Arrhenius equation [43], the choice of such

a dynamic viscosity in (2.19) is considered to weaken the convection dominance of

the flow due to the high temperature. Moreover, the physical properties of the system

is flourished by the addition of the impact of the Hall current. Since it can affect the

magnetic force term by altering the magnitude and the direction of the current density,

the Ohm’s law is included with the Hall effect having form [22]

~J = σ(~v × ~B − β( ~J × ~B)), (2.20)
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in which σ is the electrical conductivity of the fluid and β is the Hall factor. Solving

(2.20) for ~J yields to
~J × ~B =

σB2
0

1 +m2
ω(x, y)k̂,

where m = σβB0 is the Hall parameter; hence, ~J × ~B has only the z component to

be added to (2.18). Consequently, for the steady fluid motion in z-direction, the terms

multiplied by the flow density parameter ρ vanish; hence, the N-S equations reduce

to [81]
∂

∂x

(
µ
∂ω

∂x

)
+

∂

∂y

(
µ
∂ω

∂y

)
− ∂p

∂z
− σB2

0

1 +m2
ω = 0. (2.21)

We also assume a no-slip wall condition for the velocity that

ω = 0 on ∂Ω.

On the other hand, the law of conservation of energy is taken into consideration in a

general form based on the temperature as

ρcp

(
∂T

∂t
+ ~v · ∇T

)
= k∇2T + q′′′, (2.22)

where ρ, cp, k, and q′′′ are the density, the specific heat capacity, the thermal con-

ductivity of the fluid and heat source, respectively. Assuming a steady problem and

a velocity vector which has only the z component defines a energy equation with

viscous and Joule dissipation in the following form

ρcpω
∂T

∂z
= k∇2T + µ

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+
σB2

0

1 +m2
ω2, (2.23)

where the second and the third terms on the right hand side of the equality represent

the viscous and Joule dissipations, respectively. Furthermore, having a hydrodynam-

ically and thermally developed flow, the H1 thermal boundary condition, which as-

sumes constant heat flux axially and constant wall temperature peripherally, replaces

the term
∂T

∂z
by the following equation

∂T

∂z
=
dTm
dz

,

for which the temperature equation is supplied with the boundary condition as T = Tω

on the duct walls. This condition is preferable in many applications such as resistance

heating and heat exchanger [70].
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In order to simplify the equations and to reduce the number of parameters, the non-

dimensional quantities are introduced as follows

x′ =
x

a
, y′ =

y

a
, ω′ =

µ0ω

−dp
dz
a2
, T ′ =

k(T − Tω)

ρcpωma2 dTm
dz

, µ̄ =
µ

µ0

,

where a is the characteristic length (i.e., major side of the rectangular cavity). Having

left the prime notation in the new quantities, the dimensionless momentum and energy

equations on the domain Ω = [0, 1]× [0, b/a] become

∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 +

Ha2

1 +m2
ω (2.24)

and

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+
Ha2Br
1 +m2

ω2 =
ω

ωm
, (2.25)

where

ωm =
1

L

∫
Ω

w dΩ, µ̄ = e−BT (2.26)

and L = b/a is the aspect ratio; m, B, Br and Ha are the resulting dimensionless pa-

rameters: Hall parameter, viscosity parameter, Brinkman number, and the Hartmann

number, respectively. These are defined as

m = σβB0, B =
b0ρcpωma

2 dTm
dz

k
, Br =

−dp
dz

kρcp
dTm
dz
ωm

, and Ha2 =
σB2

0a
2

µ0

.

Regarding the physically significant parameters of the problem, the dynamics of the

system can be altered by changing these specific constants. A reasonable way to take

advantage of this fact is to use these parameters in order to manipulate the behavior

of the flow or determine the properties of a given state of the flow. This is achieved

by defining an optimal control problem by using the problem parameters as control

variables. Hereby, the control problem is designed for the flow and the temperature

equations (2.24)–(2.25) for regaining the problem parameters for a desired flow be-

havior.

Therefore, an objective function(al) is defined to track the difference between the

optimal and desired fluid velocity as well as temperature, and possibly, the magnitude

of the control variables as well. Such a cost function is

J(ω, T,u) =
αω
2

∫
Ω

(ω − ωd)2dΩ +
αT
2

∫
Ω

(T − Td)2dΩ +
αu

2

∫
Ω

‖u‖2 dΩ,
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where the regularization parameters αω, αT , and αu, (respectively for the cost of

achieving desired velocity ωd, temperature Td, and the control variable vector u) may

be regarded as penalty parameters. They may vary based on the effects of the control

parameters as well as the accuracy required to achieve the desired state; and further,

they also affect the number of iterations of the underlying optimization algorithm.

Consequently, the PDE-constrained optimal control problem of MHD flow and heat

transfer with temperature dependent viscosity reads as follows:

minimize
u∈U

J(ω, T,u) =
αω
2

∫
Ω

(ω − ωd)2dΩ +
αT
2

∫
Ω

(T − Td)2dΩ

+
αu

2

∫
Ω

‖u‖2 dΩ (2.27)

subject to
∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 +

Ha2

1 +m2
ω in Ω (2.28)

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+
Ha2Br
1 +m2

ω2 =
ω

ωm
in Ω (2.29)

ω = 0, T = 0 on ∂Ω. (2.30)

The admissible set of controls is defined as the set of parameters of the problem,

U = {Ha,m,Br, B}. In the course of this study, this problem will be one of the

main contributions of the thesis in terms of obtaining solutions by the FEM, applying

optimization by using the physical parameters of the system and also constructing a

ROM. A short overview on the literature is provided below.

Some researchers have studied the magnetic effects on the flow and heat transfer of

electrically conducting fluids in rectangular ducts by using numerical methods. Turk

and Tezer-Sezgin [97] have given a solution of natural convection flow in square en-

closures under magnetic field using the finite element method (FEM). Akgün and

Tezer [4] have solved natural convection MHD flow equations in a cavity by using

both the dual reciprocity boundary element method (DRBEM) and the differential

quadrature method (DQM) comparing the solutions from the two methods. DRBEM

solution of MHD flow with magnetic induction and heat transfer has been shown in

[74]. A finite difference (FD) solution has been provided for MHD flow free convec-

tion flow in a vertical rectangular duct considering the effects of Ohmic heating and

viscous dissipation by Umavathi et al. [98]. Kishan and Shekar [56] have showed the

combined effects of viscous and Ohmic dissipations on MHD flow by using the FEM.
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When the viscosity of the fluid is temperature dependent, a significant heat transfer

enhancement is achieved even neglecting the Hall effect, viscous and Joule dissipa-

tions. Under strong external magnetic field the Hall current is important and has an

effect on the current density due to the influence of the electromagnetic force. At-

tia [7, 8] has employed FD solutions to transient MHD flow with heat transfer for

dusty fluid with temperature dependent viscosity. The effects of variable viscosity

and the magnetic field on the flow and heat transfer of both the fluid and dust parti-

cles are shown between parallel plates. The problem of MHD flow and heat transfer

with variable viscosity for Newtonian fluids in a rectangular duct with the Hall effect

has been investigated using finite difference method (FDM) by Ahmed and Attia [81].

Ahmed [80] has investigated numerically with FDM also the effect of Hall current on

MHD flow and heat transfer for Bingham fluids in a rectangular duct. The solution to

transient MHD flow and heat transfer of a dusty fluid between parallel plates has been

given by Türk and Tezer-Sezgin [96] using Chebyshev spectral collocation when the

fluid possesses time-dependent viscosity.

Many researchers have also studied and derived theoretical results on control prob-

lems in fluid mechanics. The boundary control of an electrically conducting fluid has

been studied by Hou and Meir [48] using Lagrange multiplier technique for instance.

Ito and Ravindran [51] have used the thermal convection on part of the boundary and

provided a first-order necessary optimality condition for control of cavity and channel

type flows. An analysis and discretization of an optimal control problem of tracking

the velocity and the magnetic fields of viscous, incompressible, electrically conduct-

ing fluid for the time-periodic MHD equations has been studied by Gunzburger and

Trencha [41]. Griesse and Kunisch [34] have considered the control mechanisms by

external and injected currents and magnetic fields and provided optimality conditions

for a stationary MHD system in a velocity-current formulation. A comprehensive

study on the boundary control of the incompressible MHD equations has been con-

ducted by Bornia [12], where a new boundary control approach is proposed based

on lifting functions of the boundary condition. Optimal control problem of non-

isothermal viscous fluid with a temperature dependent viscosity has been solved by

Cox and Lee [19] using FEM for the state and adjoint equations and within the frame-

work of the optimize-then-discretize approach. Recently, Ren et al. [77] have worked
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on the control problem in 1D MHD flow by a discretize-then-optimize approach using

SQP optimization algorithm.

The idea of controlling the dynamics by using parameters of the problem have been

also considered in some studies in the literature. Kunisch and Sachs [58] have in-

troduced the reduced SQP methods with BFGS update for parameter identification

problems. An augmented Lagrangian method for the estimation of parameters in el-

liptic systems has been used by Ito et al.[49]. Ito and Kunisch [50] have also studied

the augmented Lagrangian-SQP methods in parameter estimation problems. An ap-

plication of the optimal control as a parameter identification problem to hyperthermia

has been introduced by Ganzler et al. [28]. Tonn et al. [94] have studied optimal

control of parameter dependent convection-diffusion problems. Parameter estima-

tion via derivative-based optimization has been applied to fluid-structure interaction

problems by Richter and Wick [78]. Stoll et al.[87] have used a Lagrange-Newton

scheme to identify parameters of a reaction-diffusion type model in pattern forma-

tion. Optimal experimental design has been applied to Bingham fluids for parameter

identification by Logashenko et al.[65]. Garvie and Trencha[29] have considered

the Gierer-Meinhardt reaction diffusion system for identification of space-time dis-

tributed parameters. A trust-region Gauss–Newton approach has been proposed for

the parameter identification of the Cahn–Hilliard-Chemotaxis system by Kahle and

Lam [54].

2.3 Power-Law Fluid Flow and Heat Transfer

The viscosity of a fluid is defined as the ratio of the shear stress and the shear rate, or

informally a fluid’s resistance to flow. Previously, assuming a Newtonian fluid, vis-

cosity is a linear function of the shear rate: it is assumed to be constant in Section 2.1

and it varies exponentially with the temperature in Section 2.2. Although they may

correspond to many physical phenomena, it is also important to consider a viscosity

which is a non-linear function of the shear rate since it represents the non-Newtonian

fluids. They are employed in many applications from industry to biotechnology such

as polymer solutions [13] and biofluids [42].
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Among various viscosity models of non-Newtonian fluids such as Powell-Eyring [73],

Cross or Carreau [3], the power-law model is mostly preferred for which the apparent

viscosity µ assumes the form

µ = Kγn−1 (2.31)

as in [11, 88], where K is the consistency index of the model, γ is the shear rate

and n is the flow index. Particularly, subclasses are identified according to the value

of n. If n is greater than one then the model represents dilatant fluids having shear-

thickening behavior, for example, suspensions of starch and potassium silicate. On

the other hand, if n is less than one, then the model introduces pseudoplastic fluids

having shear-thinning behavior like solution of polymers. Thus, n plays a crucial role

in the determination of the dynamics of the flow, which brings out the idea of the

control by the parameters. As a result, the control problem of the power-law fluid

flow and heat transfer becomes one of the primary interests of this thesis.

In the following, we consider the laminar, fully developed, steady MHD flow and heat

transfer for an incompressible, electrically conducting non-Newtonian fluid within a

power-law model in a cross section of a rectangular duct. The flow is only in the

channel axis direction with the velocity, ~v = ωk̂, so that ω = ω(x, y) for (x, y) ∈ Ω =

[0, a] × [0, b] . The configuration of the problem is again as depicted in Figure 2.1;

however, the channel has a rectangular shape. Physical problem assumes similar

conditions of Section 2.2 such as having an external magnetic field ~B = (Bx, By, 0)

with B0 = (B2
x + B2

y)
1/2 and a constant pressure gradient −dp

dz
applied in the z-

direction. However, Hall effect is not considered here; hence the term resulted from

the Lorenz force turns into

~J × ~B = σB2
0 ω(x, y)k̂

and the apparent viscosity µ of the power–law fluid assumes the form [44]

µ = K

√(∂ω
∂x

)2

+

(
∂ω

∂y

)2
n−1

, (2.32)

where n represents the flow index. Under these specifications, following the similar

procedure in Section 2.2 the Navier-Stokes equations integrated with the Lorenz force

and Ohm’s law reduce to
∂

∂x

(
µ
∂ω

∂x

)
+

∂

∂y

(
µ
∂ω

∂y

)
− ∂p

∂z
− σB2

0w = 0, (2.33)
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where σ is the electrical conductivity of the fluid. The no-slip wall condition is valid

for the velocity on the whole boundary.

On the other side, similarly, the energy equation with viscous and Joule dissipation is

given for the temperature T [80]:

ρcpω
∂T

∂z
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+ µ

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+ σB2
0ω

2. (2.34)

Here, the temperature equation is accompanied with the H2 thermal boundary condi-

tion, which considers a constant heat flux, allowing the heat transfer through the walls

where the flux q′′ is constant. Thus, the term
∂T

∂z
in the energy equation (3.17) can be

represented as
∂T

∂z
=
dTm
dz

, where Tm is the mean fluid temperature defined by

Tm =
1

Lwm

∫
Ω

ωT dΩ, (2.35)

and wm is the average velocity:

ωm =
1

L

∫
Ω

ω dΩ. (2.36)

In order to express the equations in non-dimensional form, the dimensionless vari-

ables those which are different from the previous problem are introduced as follows:

ω′ =
ω

ωr
, wr =

[(
−dp
dz

)
an+1

K

]1/n

, T ′ =
kT

aq′′
,

and

µ̄ =
µ

µr
, µr =

[
K{(

−dp
dz

)
a
}1−n

]1/n

.

To summarize, the non-dimensional momentum and energy equations with dimen-

sionless velocity ω and temperature T (leaving the prime notation in the new quanti-

ties) on the domain Ω = [0, 1]× [0, b/a] become

∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 + Ha2ω (2.37)

and

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+ Ha2Brω2 =
4ω

ωm
, (2.38)
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where the viscosity of the power-law fluid is given as

µ̄ =

√(∂ω
∂x

)2

+

(
∂ω

∂y

)2
n−1

.

The dimensionless boundary conditions are also given as

ω = 0 on ∂Ω

and

∂T

∂y

∣∣∣
(x,b/a)

=
∂T

∂x

∣∣∣
(1,y)

= 1,
∂T

∂y

∣∣∣
(x,0)

=
∂T

∂x

∣∣∣
(0,y)

= −1,

where we consider to have four heated walls; that is,
∂T

∂n̂
= 1 on the walls. The result-

ing dimensionless parameters Br and Ha are the Brinkman number and the Hartmann

number, respectively; these are

Ha =
B0a
√
σ

√
µr

and Br =
1

q′′

( a
K

)1/n
(
−dp
dz

)(n+1)/n

,

where µr is the reference viscosity of the power-law fluid.

Although the idea of designing a control problem for parameter dependent fluid flow

and heat transfer equations is well-interpreted in Section 2.2, the same idea has gained

more importance for the power-law fluid flow since it enables to make a classification

of the non-Newtonian fluids as shear-thinning or shear-thickening. Also, the deter-

mination of an optimal value for the desired state of the flow has a sound structure to

drive the fluid viscosity to a required form. Therefore, the control problem is designed

for the flow and the temperature equations (2.37)–(2.38) by using the problem param-

eters as control variables for regaining a desired flow behavior as in the Section 2.2

with the same cost functional in (2.27).

As a result, the PDE-constrained optimal control problem of power-law fluid flow and
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heat transfer is formulated as follows:

minimize
u∈U

J(ω, T,u) =
αω
2

∫
Ω

(ω − ωd)2dΩ +
αT
2

∫
Ω

(T − Td)2dΩ

+
αu

2

∫
Ω

‖u‖2 dΩ (2.39)

subject to
∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 + Ha2ω in Ω (2.40)

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+ Ha2Brω2 =
4ω

ωm
in Ω (2.41)

ω = 0 on ∂Ω (2.42)

∂T

∂y

∣∣∣
(x,1)

=
∂T

∂x

∣∣∣
(1,y)

= 1,
∂T

∂y

∣∣∣
(x,0)

=
∂T

∂x

∣∣∣
(0,y)

= −1. (2.43)

The admissible set of controls is defined as the set of parameters of the problem,

U = {Ha, n}. The numerical solution of these flows is of great importance and has

attracted many researchers. Hartnett and Kostic [44] have reported a comprehensive

review of the flow and heat transfer for non-Newtonian fluids in a rectangular duct.

The finite element solution of the laminar flow of power law fluid has been studied

by Syrjala [89, 90]. A few researchers have introduced the presence of the external

magnetic field on non-Newtonian fluids and heat transfer. In this respect, the finite

difference solution of laminar flow and heat transfer of a viscous incompressible elec-

trically conducting power law fluid flows has been provided by Ahmed [80].

The characterization and controlling of complex fluids are the main concerns of indus-

try and engineering. Statistical models to investigate the physical characteristics of

such fluids and optimal environmental setting for desired flows require large amount

of data to examine. However, optimal control approach to such problems provides

a more systematic way by coupling of a finite element model with an optimization

framework to identify the best set of parameters. Thus, the determination of physical

properties of the fluid by optimal control algorithms is of great importance. However,

the studies in the optimal control of non-Newtonian fluids from the theoretical point

of view are very few. Some researchers have studied the existence, uniqueness and

optimality conditions of the distributed controls of such fluids [6, 35, 85, 100].

On the other hand, the studies from the numerical point of view have started with

Gavrus and Massoni [30] by minimizing an objective function in the least-squares
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sense using FEM for the identification of the parameters. Then, Kunisch and Mar-

duel [57] have studied the optimal control of the viscoelastic fluid to find the optimal

temperature on the boundary of the domain. The estimation of the physical parame-

ters by solving an inverse problem using conjugate gradient and finite volume meth-

ods has been investigated by Park and Hong [72]. The optimal control in blood flow

with shear thinning viscosity has been conducted by Guerra and Tiago [37] using

the discretize-then-optimize (DO) approach within the data assimilation technique.

Recently, they have also extended their results for 3D geometries in [36].
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CHAPTER 3

FEM SOLUTION OF FLUID FLOW PROBLEMS

This chapter presents the finite element method (FEM) analysis of two-dimensional

flows of laminar, incompressible viscous Newtonian and non-Newtonian fluids. As

being the origin of FEM, the foundation of the method of weighted residuals is in-

troduced first and then the basic steps of the FEM are presented. Starting with the

derivation of the variational formulation, solutions of the problems are projected into

the finite-dimensional spaces (so-called finite element spaces) by the Galerkin-type

projection. That is, equations of the problem are multiplied by test functions which

are same with the basis functions of the finite element spaces. Next, the Green for-

mula is used to weaken the second-order derivatives to obtain the so-called weak

formulation of the problem. Consequently, the discretized system of equations are

obtained for the finite dimensional approximations.

3.1 Introduction

The method of weighted residuals [25] aims to find an approximate solution (trial

solution) ẑ for the solution z of a boundary value problem; such a problem can be

given in a compact form as

C(z(~x)) = 0, ~x =
(
x1, x2, . . . , xn

)
∈ Ω ⊂ Rn. (3.1)

Basically, ẑ is expanded in a set of trial functions, {φi}Ni=1, in the form

z ≈ ẑ =
N∑
i=1

ziφi, (3.2)
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where the φi satisfy the homogeneous Dirichlet boundary conditions so that φi = 0

on the boundary for every i = 1, 2, . . . , N . This trial solution is then used in the

boundary value problem (3.1) and the residual R is defined by

R(ẑ(~x)) = C(ẑ(~x)). (3.3)

The principal idea is to force the residual to vanish in an average sense so that the

weighted integrals of the residual are set to zero:

〈ψj , R 〉 = 0, (3.4)

where ψj are the weight functions for j = 1, 2, . . . , N and the inner product 〈u , v 〉
on the space of square integrable functions over domain Ω is defined by

〈u , v 〉Ω =

∫
Ω

uv dΩ.

Combining (3.3) and (3.4) results in〈
ψj , C

(
N∑
i=1

ziφi

)〉
= 0 (3.5)

which is to be solved for zi to obtain the approximate solution in (3.2).

The choice of the weighting functions determines the type of the method of weighted

residuals. For example, collocation method is derived when the weighting functions

are chosen as the displaced Dirac delta function

ψj = δ(~x− ~xj),

which corresponds to that ∫
Ω

ψjRdΩ = R(ẑ(~xj)).

Therefore, the residual becomes zero at the specified collocation points ~xj . Further-

more, the Galerkin method, which this thesis is interested in, is developed if the

weighting functions are chosen to be the trial functions, φi = ψi. Particularly, in

the FEM, the domain is partitioned into elements (triangles, tetrahedrons, etc.) and

the trial functions (for example, Lagrange type elements: piecewise polynomials) are

defined on each element.
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Basically, a typical construction of piecewise linear polynomials [62] on a mesh K =

{K}, where K is a triangle of a domain Ω ⊂ R2, requires the space of all continuous

piecewise linear polynomials Qh given by

Qh = {q ∈ C(Ω) | q|K ∈ P1(K), K ∈ K} ,

where h denotes the local mesh size, defined as the length of the longest edge on K,

P1(K) is the space of linear functions on K defined by

P1(K) =
{
q = c0 + c1x+ c2y | (x, y) ∈ K ⊂ R2, c0, c1, c2 ∈ R

}
.

A function q in Qh can be determined uniquely by its nodal values

{q(~xj)}Nj=1

and conversely, for each set of nodal values there is a unique function q inQh with the

given nodal values: the degrees of freedom. Hence, a basis {φj}Nj=1 ⊂ Qh is defined

such that

φj(~xi) =

1, i = j,

0, i 6= j

for i, j = 1, . . . , N . According to this construction of basis functions, their supports

share a small set of triangles and this enables to have a sparse matrix equation in

system (3.5). Although the structure is more complicated than matrices obtained by

the finite differences, it becomes more advantageous for arbitrary complicated bound-

aries and provides systematic rules for the developments of numerical schemes. For

the implementations in this thesis, uniform meshes are considered and an illustrative

example is given in Figure 3.1(a). FEM basis functions are chosen linear or quadratic

with respect to the type of the problems: linear or non-linear. A piecewise linear ba-

sis function is depicted in Figure 3.1(b) and nodes of the linear and quadratic basis

functions are shown in Figure 3.2.

One of the computational efficiency of the FEM is the procedure for the treatment of

the integrals in (3.5). These integrals are evaluated firstly on each element (triangle)

then an efficient summation of the element-wise matrices into the global matrix, the

so-called ‘assembling’, is conducted. Due to the structure of the basis functions and

the need for an automated framework for the integral evaluations, numerical quadra-

ture rules become highly appealing. In the finite element literature, Gaussian quadra-

ture is preferred mostly among all quadratures because it requires fewer function
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(a) A uniform mesh

~xi

1

(b) Linear basis function φ on a node ~xi
Figure 3.1: Uniform mesh and linear basis on a square duct.

Linear basis Quadratic basis

Figure 3.2: FEM nodes for linear and quadratic basis functions on a triangle.

evaluations for a given order of accuracy. Basic cases such as first and second order

Gaussian quadrature nodes and weights for the integral of a function g on a standard

triangle in Ω ⊂ R2 can be given as follows:

1st-order :

∫∫
K

g(~x)d~x =
1

2
g(1/3, 1/3),

2nd-order :

∫∫
K

g(~x)d~x =
1

6
[g(1/6, 1/6) + g(2/3, 1/6) + g(1/6, 2/3)] ,

where ~x = (x, y) and K is the standard triangle defined by the vertexes (0, 0), (1, 0),

and (0, 1).

In the following, the analysis of the Navier-Stokes equations, which consist of the mo-

mentum and continuity equations, is introduced in Section 3.2. Section 3.3 presents

the analysis for the MHD flow and heat transfer equations with temperature depen-

dent viscosity and Hall effect. The analysis is conducted for the power-law fluid flow

and heat transfer equations where the momentum and energy equations are combined

with a flow dependent viscosity in Section 3.4. The FEM approximations in this chap-

ter constitute a basis for the solution of the optimal control problems in Chapter 4 and
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the model order reduction applications in Chapter 5.

3.2 FEM Applications to the Navier-Stokes Equations

The FEM approximation of the Navier-Stokes equations are formulated for steady,

laminar flow of an incompressible fluid in a domain Ω ⊂ R2 in terms of velocity and

pressure which are introduced in Section 2.1 as

−ν∆~v + (~v · ∇)~v +∇p = ~f in Ω, (3.6)

∇ · ~v = 0 in Ω, (3.7)

where the homogeneous Dirichlet type boundary condition ~v = 0 on the boundary

∂Ω is considered for the velocity.

The first attempt to derive a finite element method is to reconstruct the system of

equations (3.6)–(3.7) in the weak form. The Sobolev spaces used in this context are

standard; for a general domain Ω, with the inner product 〈u , v 〉Ω =
∫

Ω
uv dΩ and

‖u‖L2(Ω) =
√
〈u , u 〉, we define

H1(Ω) =
{
v | ‖v‖L2(Ω) + ‖∇v‖L2(Ω) <∞

}
H1

0 (Ω) =
{
v | v ∈ H1(Ω) and v = 0 on ∂Ω

}
.

Multiplying (3.6) and (3.7) by the test functions (~v, q) ∈ (H1
0 (Ω))2 × L2(Ω) and

integrating over the domain Ω, respectively, the Green formula corresponds to that

−ν
∫

Ω

∆~v · ~w dΩ = −ν
∫
∂Ω

(∇~v · n̂)~w dS + ν

∫
Ω

∇~v : ∇~w dΩ,

where n̂ = (n1, n2) is the unit normal vector pointing out of ∂Ω and∫
Ω

∇~v : ∇~w dΩ =
2∑

i,j=1

∫
Ω

∂vi
∂xj

∂wi
∂xj

dΩ.

Accordingly, we have

ν

∫
Ω

∇~v : ∇~w dΩ−
∫
∂Ω

(ν∇~v · n̂)~w dS +

∫
Ω

(~v · ∇)~v · ~w dΩ−
∫

Ω

p (∇ · ~v) dΩ

+

∫
∂Ω

p n̂ · ~w dS −
∫

Ω

~f · ~w = 0
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and from (3.7), ∫
Ω

(∇ · ~v) q dΩ = 0.

Thus, the variational formulation of the problem (3.6)–(3.7) yields: find (~v, p) ∈
(H1

0 (Ω))2 × L2
0(Ω) such that

ν

∫
Ω

∇~v : ∇~w dΩ +

∫
Ω

(~v · ∇)~v · ~w dΩ−
∫

Ω

p (∇ · ~w) dΩ−
∫

Ω

~f · ~w = 0,∫
Ω

(∇ · ~v) q dΩ = 0

for ~w ∈ (H1
0 (Ω))2 and q ∈ L2

0(Ω), where introduction of the trilinear form is neces-

sary; namely,

(~u · ∇)~v · ~w =
2∑

i,j=1

uj
∂vi
∂xj

wi

so that

(~v · ∇)~v · ~w =
2∑

i,j=1

vj
∂vi
∂xj

wi.

Next, the finite dimensional approximations for the governing equations are intro-

duced by employing quadratic and linear finite elements for velocity and pressure,

respectively. Let Kh be a triangulation of Ω with size h > 0 and let Vh,0 and Qh be

the space of quadratic and linear polynomials onKh and Vh,0 ⊂ H1
0 (Ω), Qh ⊂ L2

0(Ω),

where

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dΩ = 0

}
.

Replacing H1
0 (Ω) with Vh,0 and L2

0(Ω) with Qh in the variational formulation, the

following finite element formulation is obtained: find (~v, p) ∈ V 2
h,0 ×Qh such that

〈 ν∇~v , ∇~w 〉Ω + 〈 (~v · ∇)~v , ~w 〉Ω − 〈 p , ∇ · ~w 〉Ω −
〈
~f , ~w

〉
Ω

= 0, (3.8)

〈∇ · ~v , q 〉Ω = 0 (3.9)

for ~w ∈ V 2
h,0 and q ∈ Qh. Therefore, letting

{
~φi

}βv
i=1

and {ψk}βpk=1, being the basis

functions respectively for V 2
h,0 and Qh, it is obtained that

~v ≈
βv∑
j=1

vj~φj and p ≈
βp∑
l=1

plψl,

where vj and pl are the components of the vectors v and p.
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Accordingly, the vector f = (fi) for the finite element approximation of ~f is intro-

duced so that

~f ≈
βv∑
i=1

fi~φi with fi =

∫
Ω

~f · ~φi dΩ,

and the matrices M = (Mij) , K = (Kij) and D = (Dik) with entries

Mij =

∫
Ω

~φj · ~φi dΩ,

Kij = ν

∫
Ω

∇~φj : ∇~φi dΩ,

Dik = −
∫

Ω

ψk

(
∇ · ~φi

)
dΩ

for 1 ≤ i, j ≤ βv and 1 ≤ k ≤ βp.

The matrix N(v) is defined with entries

N(v)ij =

βv∑
r=1

∫
Ω

(~vr~φr · ∇) ~φj · ~φi dΩ, 1 ≤ i, j ≤ βv (3.10)

in order to manage the nonlinear term in (3.8). The algebraic matrix-vector form of

the discrete non-linear problem reads asK + N(v) D

DT 0

v

p

 =

Mf

0

 . (3.11)

However, no boundary condition is specified for the pressure. Instead, the condition

on p is given as
∫

Ω
p dΩ = 0, which can be imposed by introducing a new variable,

so-called Lagrange multiplier, such that∫
Ω

p d dΩ +

∫
Ω

c q dΩ = 0, c, d ∈ R.

Here, c is the unknown Lagrange multiplier represented in a real finite element space

Rh having only one degree of freedom and d is the corresponding test function from

the same finite element space. Thus, the non-linear system in (3.11) turns into the

following system 
K + N(v) D 0

DT 0 rT

0 r 0




v

p

c

 =


Mf

0

0

 , (3.12)
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where r = (rk) =
∫

Ω
dψk dΩ for 1 ≤ k ≤ βp. To be clear, the dimensional structure

of the block matrices in (3.12) is
βv × βv βv × βp βv × 1

βp × βv βp × βv βv × 1

1× βv 1× βv 1× 1



βv × 1

βp × 1

1× 1

 =


βv × 1

βp × 1

1× 1

 ,
which has (βv + βp + 1) × (βv + βp + 1) dimension. Shortly, the problem in (3.12)

reads:

solve C(z) = 0 for z = (v,p, c)T , (3.13)

where

C(z) =


C1(z)

C2(z)

C3(z)

 =


K + N(v) D 0

DT 0 rT

0 r 0




v

p

c

−


Mf

0

0

 = 0. (3.14)

Considering a Galerkin type discretization (projection) of a PDE, Newton’s system

for the solution of non-linear equations can be equally well interpreted either as a

discretization of the linearized operator or as a linearization of the discrete non-linear

system [101]. Thus, a discretize-then-linearize approach is followed to handle the

non-linear problem. This can be summarized briefly as

J (zk)(zk+1 − zk) = −C(zk), (3.15)

where J (zk) is the Jacobian with the entries

J ij(z
k) =

∂Ci

∂zj
(zk).

Since the contribution to Jacobian from the linear parts is trivial, the non-linearity

arising from only the convective term is examined in detail

N(v)i =

βv∑
j,r

∫
Ω

~vr(~φr · ∇)~vj~φj · ~φi dΩ for i = 1, . . . , βv

so that

∂N(v)i
∂vl

(v) =

βv∑
r

∫
Ω

~vr(~φr · ∇)~vl~φl · ~φi dΩ

+

βv∑
j

∫
Ω

~vl(~φl · ∇)~vj~φj · ~φi dΩ.

32



This contribution can be also written as

J NL(v) = N(v) + N∗(v),

where J NL(v) denotes the Jacobian corresponding to the non-linear term, which

depends only on v. The components of N(v) are given in (3.10) and the components

of N∗(v) are defined as

N∗(v)ij =

βv∑
r=1

∫
Ω

(~φj · ∇)~vr ~φr · ~φi, 1 ≤ i, j ≤ βv dΩ.

Thus, each Newton iteration becomes
K + N(vk) + N∗(vk) D 0

DT 0 rT

0 r 0



vk+1 − vk

pk+1 − pk

ck+1 − ck

 =


Mf

0

0

−

K + N(vk) D 0

DT 0 rT

0 r 0



vk

pk

ck

 .
Using the fact that N(vk)vk = N∗(vk)vk, the simplified system of equations is

obtained as follows
K + N(vk) + N∗(vk) D 0

DT 0 rT

0 r 0




vk+1

pk+1

ck+1

 =


Mf + N∗(vk)vk

0

0

 ,
which is to be solved iteratively until the absolute and relative errors between two

consecutive solutions are less than the given tolerance.

3.3 FEM Applications to MHD Flows and Heat Transfer with Temperature

Dependent Viscosity

The FEM approximations of the MHD flow and heat transfer equations in terms of

the velocity magnitude and the temperature introduced in Section 2.2:

∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 +

Ha2

1 +m2
ω (3.16)

and

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+
Ha2Br
1 +m2

ω2 =
ω

ωm
(3.17)

are examined in a square duct with no-slip and zero-temperature walls, where ωm

is defined as ωm = 1
L

∫
Ω
ω dΩ, L being the aspect ratio. It is also assumed that the
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flow has a temperature dependent viscosity, µ̄ = e−BT , where B is the viscosity

parameter. In order to derive a finite element method, the dimensionless system of

equations (3.16)–(3.17) is reformulated in the weak form. Multiplying (3.16) and

(3.17) by the test functions (v, q) ∈ H1
0 (Ω)2 and integrating over the domain Ω, it is

obtained that∫
Ω

µ̄∇ω · ∇v dΩ−
∫
∂Ω

(µ̄∇ω · n̂) v dS −
∫

Ω

(
1− Ha2

1 +m2
ω

)
v dΩ = 0

and∫
Ω

∇T · ∇q dΩ−
∫
∂Ω

(∇T · n̂) q dS −
∫

Ω

Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
q dΩ

−
∫

Ω

(
Ha2Br
1 +m2

)
ω2q dΩ +

∫
Ω

ω

ωm
q dΩ = 0.

Here, n̂ = (n1, n2) is the unit normal vector pointing out of ∂Ω. Integrating by parts,

the variational formulation of the problem (3.16)–(3.17) yields: find (ω, T ) ∈ H1
0 (Ω)2

such that

〈 µ̄∇ω , ∇v 〉Ω −
〈

1− Ha2

1 +m2
ω , v

〉
Ω

= 0, v ∈ H1
0 (Ω), (3.18)

〈∇T , ∇q 〉Ω −

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, q

〉
Ω

−
(

Ha2Br
1 +m2

)〈
ω2 , q

〉
Ω

+

〈
ω

ωm
, q

〉
Ω

= 0, q ∈ H1
0 (Ω). (3.19)

Now, the finite-dimensional approximations for the governing equations are intro-

duced by employing quadratic finite elements for both variables, velocity and tem-

perature. Let Kh be a triangulation of Ω with size h > 0 and let Vh,0 and Qh,0 be the

space of quadratic polynomials on Kh such that Vh,0 ⊂ H1
0 (Ω) and Qh,0 ⊂ H1

0 (Ω).

Replacing H1
0 (Ω) with Vh,0 and Qh,0 in the variational formulation, the following

finite element problem is attained: find (ω, T ) ∈ Vh,0 ×Qh,0 such that

〈 µ̄∇ω , ∇v 〉Ω −
〈

1− Ha2

1 +m2
ω , v

〉
Ω

= 0, v ∈ Vh,0 (3.20)

〈∇T , ∇q 〉Ω −

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, q

〉
Ω

−
(

Ha2Br
1 +m2

)〈
ω2 , q

〉
Ω

+

〈
ω

ωm
, q

〉
Ω

= 0, q ∈ Qh,0. (3.21)
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Therefore, letting {φi}βωi=1 and {ψk}βTk=1 being the bases for Vh,0 andQh,0, respectively,

we have

ω =

βω∑
j=1

ωjφj and T =

βT∑
l=1

Tlψl,

where ωj and Tl are the components of the vectors ω and T , respectively. Accord-

ingly, the approximations are introduced in the following forms:

µ̄ = e−BT ≈
βT∑
l=1

e−BTlψl,

ω2 ≈
βω∑
j=1

ω2
jφj,

∂ω

∂x
≈

βω∑
j=1

ωj(φj)x, and
∂ω

∂y
≈

βω∑
j=1

ωj(φj)y,

(
∂ω

∂x

)2

≈
βω∑
j=1

ω2
j (φj)x, and

(
∂ω

∂y

)2

≈
βω∑
j=1

ω2
j (φj)y,

(
∂ω

∂x

)2

+

(
∂ω

∂y

)2

≈
βω∑
j=1

ω2
j [(φj)x + (φj)y] .

Furthermore, entries of the vector d = (di) and the matrices M = (Mij) and S =

(Skl) are

di =

∫
Ω

φi dΩ, 1 ≤ i ≤ βω,

Mij =

∫
Ω

φjφi dΩ 1 ≤ i, j ≤ βω,

Skl =

∫
Ω

∇ψl∇ψk dΩ 1 ≤ k, l ≤ βT .

In order to manage the non-linear terms, the matrices K(T ), D(ω,T ), N(ω) and

P(ω) are proposed with the following entries

K(T )ij =

βT∑
r=1

e−BTr
∫

Ω

ψr∇φj∇φi dΩ,

D(ω,T )kj =

βT∑
r=1

e−BTrωj

∫
Ω

ψr

(
∂φj
∂x

+
∂φj
∂y

)
ψk dΩ,

N(ω)kj =

∫
Ω

ωjφjψk dΩ,

P (ω)kj =

∫
Ω
φjψk dΩ

1
L

∫
Ω

(∑βω
l=1 ωlφl

)
dΩ

,
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where 1 ≤ i, j ≤ βω, and 1 ≤ k ≤ βT . The algebraic form of the discrete problem

reads: c1M 0

0 S

ω
T

+

 K(T )ω − d
c2N(ω)− BrD(ω,T )ω + P(ω)ω

 = 0,

where constants c1 and c2 are defined as

c1 =
Ha2

1 +m2
and c2 =

Ha2Br
1 +m2

.

Then discrete non-linear system of equations can be reformulated for finding z =

(ω,T ) such that

C(z) :=

c1M 0

0 S

ω
T

+

 K(T )ω − d
c2N(ω)ω − BrD(ω,T )ω + P(ω)ω

 = 0. (3.22)

Because of the same reasoning given in Section 3.2, a discretize-then-linearize ap-

proach is followed. The Newton formula for the mixed problem given in (3.15) is

used with the Jacobian

J (z) =

c1M 0

0 S

+

K(T) ∂K(T)
∂T

ω

G(z) −Br∂D(ω,T)
∂T

ω

 , (3.23)

where

G(z) = c2

[
∂N(ω)

∂ω
ω + N(ω)

]
−Br

[
∂D(ω,T)

∂ω
ω + D(ω,T)

]
+
∂P(ω)

∂ω
ω+P(ω).

Due to the local convergence of Newton’s method, an appropriate initial guess is

obtained by solving the problem with zero initials for both velocity and temperature,

which corresponds to a constant viscosity and accordingly a linear problem. Then the

resulting approximation is used as an initial guess for Newton’s method.

Below are some important physical constants and notations used in the sequel. The

product of the friction factor f and the Reynolds number Re is given as

fRe =
2L2

(1 + L)2ωm

and the average Nusselt number Nu is

Nu = − L2

(1 + L)2Tm
,

where

Tm =
1

Lωm

∫
Ω

ω T dΩ

is the mean fluid temperature and L is the aspect ratio.
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3.4 FEM Applications to Power-Law Fluid Flow and Heat Transfer

The solutions of the power-law fluid flow and heat transfer equations are investigated

by the FEM for the velocity magnitude and the temperature, previously introduced in

Section 2.3, as follows:

∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 + Ha2ω (3.24)

and

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+ Ha2Brω2 =
4ω

ωm
(3.25)

with the boundary conditions

ω = 0 on ∂Ω

and
∂T

∂y

∣∣∣
(x,b/a)

=
∂T

∂x

∣∣∣
(1,y)

= 1,
∂T

∂y

∣∣∣
(x,0)

=
∂T

∂x

∣∣∣
(0,y)

= −1

where

µ̄ =

√(∂ω
∂x

)2

+

(
∂ω

∂y

)2
n−1

.

As a first attempt for deriving finite element equations, the weak form of the dimen-

sionless system of equations (3.24)–(3.25) is reconstructed. Multiplying (3.24) and

(3.25) by the test functions v and q, respectively, and integrating over the domain Ω,

it is obtained that∫
Ω

µ̄∇ω · ∇v dΩ−
∫
∂Ω

(µ̄∇ω · n̂) v dS +

∫
Ω

(
−1 + Ha2ω

)
v dΩ = 0,

and∫
Ω

∇T · ∇q dΩ−
∫
∂Ω

(∇T · n̂) q dS −
∫

Ω

Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
q dΩ

−
∫

Ω

(
Ha2Br

)
ω2qdΩ +

∫
Ω

4ω

ωm
q dΩ = 0,

where n̂ = (n1, n2) is the unit normal vector pointing out of ∂Ω. Hence, the varia-

tional formulation of the problem (3.24)–(3.25) yields: find (ω, T ) ∈ H1
0 (Ω)×H1(Ω)
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such that

〈 µ̄∇ω , ∇v 〉Ω +
〈
−1 + Ha2ω , v

〉
Ω

= 0, v ∈ H1
0 (Ω), (3.26)

〈∇T , ∇q 〉Ω − 〈 1 , q 〉∂Ω −

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, q

〉
Ω

−
(
Ha2Br

) 〈
ω2 , q

〉
Ω

+

〈
4ω

ωm
, q

〉
Ω

= 0, q ∈ H1(Ω). (3.27)

Here, the Neumann boundary condition of the temperature is weakly imposed. Next,

the finite-dimensional approximations for the governing equations are introduced by

employing the quadratic and linear finite elements for velocity and temperature, re-

spectively. Let Kh be a triangulation of Ω with size h > 0 and let Vh,0 and Qh be the

space of quadratic and linear polynomials on Kh and Vh,0 ⊂ H1
0 (Ω), Qh ⊂ H1(Ω).

Replacing H1
0 (Ω) with βω-dimensional Vh,0 and H1(Ω) with βT -dimensional Qh in

the variational formulation, respectively, we obtain the following finite element for-

mulation: find (ω, T ) ∈ Vh,0 ×Qh such that

〈 µ̄∇ω , ∇v 〉Ω +
〈
−1 + Ha2ω , v

〉
Ω

= 0, v ∈ Vh,0(Ω),

〈∇T , ∇q 〉Ω − 〈 1 , q 〉∂Ω −

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, q

〉
Ω

−
(
Ha2Br

) 〈
ω2 , q

〉
Ω

+

〈
4ω

ωm
, q

〉
Ω

= 0, q ∈ Qh(Ω).

Within this formulation, given the bases {φi}βωi=1 and {ψk}βTk=1 for Vh,0 and Qh, re-

spectively, we can express ω and T as

ω =

βω∑
j=1

ωjφj and T =

βT∑
l=1

Tlψl,

where ωj and Tl are the components of the vectors ω and T. The similar approxima-

tions in Section 3.3 are not repeated here; however, it should be noted that the basis

functions φi and ψk are quadratic and linear, respectively, in this problem. Accord-

ingly, the approximation of the variable viscosity is introduced as

µ̄ =

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]n−1

2

≈

(
βω∑
j=1

ω2
j [(φj)x + (φj)y]

)n−1
2

.

Besides, the vector e = (ek) and the the entries of the non-linear stiffness matrix
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K(ω) are proposed as

ek =

∫
∂Ω

ψk dS, 1 ≤ k ≤ βT ,

K(ω)ij =

∫
Ω

(
βω∑
k=1

ω2
k [(φk)x + (φk)y]

)n−1
2

∇φj∇φi dΩ.

Due to the form of (3.24), the velocity solution can be obtained separately from the

temperature since it is not coupled with (3.25). Thus, the algebraic form of the dis-

crete problem for the velocity reads:

K(ω)ω + Ha2Mω = d;

and the resulting non-linear system of equations can then be represented as

F(ω) = K(ω)ω + Ha2Mω − d = 0.

This can be solved using Newton’s method by following a discretize-then-linearize

approach. Same as before, we solve a linear problem considering a constant viscos-

ity to obtain a proper suitable initial guess. The Newton formula given in (3.15) is

implemented with the Jacobian

J (ω) =
∂F

∂ω
=
∂K(ω)

∂ω
ω + K(ω) + Ha2M

of the non-linear velocity equation. Accordingly, with the known velocity profile,

temperature equation folds into a linear one:

ST = f + e,

or, equivalently,

G(T) = ST− (f + e) = 0,

where the vector f = (fk) has the components

fk =

∫
Ω

Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
ψk dΩ +

∫
Ω

(
Ha2Br

)
ω2 ψk dΩ−

∫
Ω

4ω

ωm
ψk dΩ,

for 1 ≤ k ≤ βT . Although equations are solved in a decoupled way, the discrete

problem can be reformulated as a system of equations in the form of C(z) = 0, where
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z = (ω,T) to be used as the discretized PDE constraints in the control problem as

follows:

C(z) :=

F(ω)

G(T)

 = 0.

Below are some important physical constants and notations to be used in the sequel.

The term fRe defines the product of the fanning friction factor f and the Reynolds

number Re [89],

fRe =
(2L)n

(1 + L)n+1ωnm
,

which depends also on the flow index parameter n in this case, unlike the case before.

Likewise, the average Nusselt number is defined to be

Nu =
2L

(1 + L)(Tωm − Tm)
,

where Tm is the mean fluid temperature given in (2.35) and Tωm is

Tωm =
2

1 + L

∫ 1

0

T (x, 0) dx+
1

2

∫ L

0

T (0, y) dy.

3.5 Numerical Results

In this section, FEM solutions to steady, two-dimensional, laminar flow problems of

incompressible Newtonian and non-Newtonian fluids in a square duct are presented.

Firstly, simulations are performed for a benchmark problem, Navier-Stokes equa-

tions, with an exact solution given in Section 3.5.1 to ensure the efficiency of ap-

proaches in this study. Secondly, in Section 3.5.2 the solution of the MHD flow and

heat transfer equations with temperature dependent viscosity is presented. The MHD

flow contains the viscous and Joule dissipations; and the Hall effect is taken into con-

sideration as well. The coupled non-linear equations are solved by Newton’s method

using quadratic elements. Finally, the solution of the power-law fluid flow and heat

transfer, where the fluid may become non-Newtonian according to the value of the

flow index, is presented in Section 3.5.3. Since the non-linear momentum equation

does not depend on the temperature in this problem, its solution is obtained by the

Newton method using quadratic elements, and thereby, the resulting velocity magni-

tude is used for the solution of the linear temperature equation with the help of linear

elements.
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Besides, the linear system of equations in each iteration is solved, particularly, by

standard LU decomposition. Computer simulations are executed on a platform with

Intel Core i7-4770 processor and 15.6 GB RAM using Python programming language

with a computing platform FEniCS [66] for solving PDEs. Python codes used for all

simulations in this thesis are basically sampled in Appendix A.2.

3.5.1 Navier-Stokes Equation with Exact Solutions

The Navier-Stokes equations which consist of the momentum and the continuity

equation are solved by Newton’s method using a mixed FEM. The velocity and the

pressure are obtained on a unit square [0, 1] × [0, 1] for an incompressible flow. In

order to ensure the stability and convergence, Ladyzhenskaja-Babuska-Brezzi (LBB)

condition [76], or also known as compatibility condition, is satisfied by choosing the

Taylor–Hood element pair (P2–P1) for the velocity and the pressure, respectively. In

order to verify the accuracy of the FEM procedure, a test problem is studied with the

following functions

~v = exp(−0.5ν)

 sin2(πx) sin(πy) cos(πy)

− sin2(πy) sin(πx) cos(πx)


p = exp(−0.5ν) cos(πx) sin(πy)

from which the homogeneous Dirichlet type boundary condition of the velocity is

obtained and the force function f is derived by substitution this exact solution into

(3.6). The convergence of solutions is tested for decreasing maximum cell diameter

(hmax) as given in Table 3.1. The results in Table 3.1 show that the difference between

the exact and FEM solution is decreasing as h decreases, which validates the accuracy

of the method. The convergence rates for the FEM solutions of the velocity and the

pressure are also attained at optimal orders, namely, they are three and two for P2 and

P1 elements, respectively. Numerical solutions for various values of ν are depicted in

Figure 3.3, where we consider a uniform mesh consisting of 1089 vertices and 2048

triangular elements with 8450 and 1089 nodes respectively for quadratic and linear

finite element spaces for velocity and pressure.
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Figure 3.3: Solutions v1, v2 and p of the Navier-Stokes equation, row 1: ν = 1, row
2: ν = 10−1, row 3: ν = 10−2, row 4: ν = 10−3.
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Table 3.1: L2 Errors and convergence rates for ν = 0.1
hmax v1 rate v2 rate p rate

7.0710× 10−1 7.1345× 10−2 - 7.1994× 10−2 - 1.2367× 10−1 -
3.5355× 10−1 1.1739× 10−2 2.6035 1.1532× 10−2 2.6423 2.8548× 10−2 2.1151

1.7678× 10−1 1.2644× 10−3 3.2148 1.2597× 10−3 3.1945 6.3510× 10−3 2.1683

8.8388× 10−2 1.4741× 10−4 3.1006 1.4727× 10−4 3.0965 1.5421× 10−3 2.0421

4.4194× 10−2 1.8055× 10−5 3.0293 1.8051× 10−5 3.0283 3.8288× 10−4 2.0100

2.2097× 10−2 2.2451× 10−6 3.0075 2.2450× 10−6 3.0073 9.5557× 10−5 2.0025

1.1049× 10−2 2.8028× 10−7 3.0019 2.8028× 10−7 3.0018 2.3879× 10−5 2.0006

3.5.2 The MHD Flows and Heat Transfer with Temperature Dependent Vis-

cosity and Hall Effect

The MHD flow equations containing viscous and Joule dissipations in which the Hall

effect is taken into account are solved together with the energy equation by using a

mixed FEM. The pipe axis velocity and the temperature are obtained in the square

cross-section of the pipe [0, 1] × [0, 1] for the hydrodynamically and thermally fully

developed flow. At each simulation, Newton’s method for the solution of the coupled

non-linear equations (3.16)–(3.17) is initialized by solving the problem for a constant

viscosity with zero initials for both velocity and temperature. Considering the small

velocity magnitude in the problem, Newton’s iterations are performed until not only

the the absolute error becomes below 10−10 but also the relative error falls below

10−9.

A quadratic finite element method on a uniform mesh, consisting of 2601 vertices

and 5000 triangular elements, is used with the 10201 nodes for each subspace of the

mixed finite element space. The number of unknowns is pre-determined according

to the mesh dependence convergence test results given in Figure 3.4(a) providing an

accuracy about 10−6. The time costs for the finite element solutions are tested for

increasing degrees of freedom (Dofs) and depicted Figure 3.4(b).

The following results are obtained for various values of the Hartmann number, 0 ≤
Ha ≤ 10; viscosity parameter, B = 0, 1, 2; Brinkman number Br = 0, 1; and the Hall

parameter, m = 0, 3, 8.

Figure 3.5 shows the velocity behavior for increasing values of Ha. It can be seen that

as Ha increases the velocity magnitude drops, verifying the well-known flattening
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0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0
.0
0
0

0.008

0.
01

6

0.024

0.032

0.040

Ha = 3, maxω = 0.04715

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0
.0
0
0

0.005

0
.0
1
0

0
.0
1
5

0.020
0.025

Ha = 5, maxω = 0.02913

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.000

0
.0
0
0

0.0020.003
0.005

0
.0
0
6

0.
00

8 0.009

Ha = 10,maxω = 0.00971

Figure 3.5: Velocity contours for m = 0, Br = 0, B = 1 and for increasing values of
Ha.

tendency of the MHD flow or the damping effect of external magnetic field with

increasing intensity [22]. Same behavior for the velocity is also observed when the

viscosity parameter B is increased, since the viscosity of the fluid is incremented due

to the exponential variation of −BT (see Figure 3.6).

One can deduce that increasing the Hall parameter m increases the magnitude of the

axis velocity ω: Figure 3.7 and Figure 3.8 show such an increase for Br = 0 and for

Br = 1, respectively. This is due to the fact that an increase in the Hall parameter

reduces the effective conductivity
σ

1 +m2
of the fluid and decreases the damping

effect of the magnetic force. As can be seen from the temperature equation (2.19),

nonzero values of the Brinkman number Br introduce the non-linear terms of the axis

velocity due to the constant variation dTm/dz. Thus, the inclusion of these effects

with Br = 1 slightly increases the velocity magnitude for all values of m, shown as

maxω = 0.04715 in Figure 3.7 and maxω = 0.04718 in Figure 3.8 for m = 0.
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Figure 3.6: Velocity contours for Ha = 3, Br = 0, m = 0 and for increasing values
of B.
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Figure 3.7: Velocity contours for Ha = 3, Br = 0, B = 1 and for increasing values
of m.
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Figure 3.8: Velocity contours for Ha = 3, Br = 1, B = 1 and for increasing values
of m.
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(b) Ha = 3 and Br = 1
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Figure 3.9: Velocity profiles along the midline of the square duct.

Figure 3.9(a) depicts the variation of midline velocity ω(x, 0.5) for increasing B and

Ha values when m = 0 and Br = 0. It is clearly seen that the increase in Ha or

B drops the midline velocity magnitude as it was observed in the whole contour

behaviors of ω in Figure 3.9(a). This increase of B decreases ω for all values of m;

and the influence of B on ω is more seen for larger values of m. Figure 3.9(b) and

Figure 3.9(c) show again the midline velocity ω(x, 0.5) for increasing B and m when

Ha = 3 and Br = 1 while increasing Ha and m when B = Br = 1. In both cases, the

increase of m overwhelms the drop of the velocity with the increase in Ha or B.
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Figure 3.10: Isolines for m = 0, Br = 0, B = 1 and for increasing values of Ha.
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Figure 3.11: Isolines for Ha = 3, Br = 0, B = 1 and for increasing values of m.

Meanwhile, the temperature attains negative values inside the cavity, dropping to zero

on the insulated walls. As Ha increases temperature increases through the center of

the cavity, since the fluid tends to be stagnate at the center. This can be seen from

equal temperature contours (isolines) in Figure 3.10 for various values of Ha. In-

creasing m decreases isoline values due to the reduction in the effective conductivity,

which reduces the Joule dissipation when both Br = 0 and Br = 1 in Figure 3.11 and

Figure 3.12. When the viscosity parameter B increases, temperature increases as a

result of increasing the viscosity; and consequently, the viscous dissipation increases

as depicted in Figure 3.13. Furthermore, in Figure 3.14 and Figure 3.15, a slight

increase is observed in temperature for all values of m when Br = 0 is changed to

Br = 1 as is in the pipe-axis velocity.

Table 3.2 and Table 3.6 show the effects of both viscosity parameter B and Hartman

number Ha on fRe and the average Nusselt number Nu when m = 0 and Br =

0. Both fRe and Nu increase as B increases; and also, as Ha increases due to the

increase in viscous dissipation and strong magnetic field, respectively.

On the other hand, Table 3.4 and Table 3.5 demonstrate the effect of increase in m on
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Figure 3.12: Isolines for Ha = 3, Br = 1, B = 1 and for increasing values of m.
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Figure 3.13: Isolines for Ha = 3, Br = 0, m = 0 and for increasing values of B.
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Figure 3.14: Isolines for Ha = 5, B = 2, m = 3.
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Figure 3.15: Isolines for Ha = 5, B = 2, m = 1.
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Table 3.2: The effect of the viscosity parameter B and Ha on Nu (m = 0, Br = 0).
B / Ha 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.6079 3.6232 3.6678 3.7375 3.8269 3.9297
1.0 3.7582 3.7665 3.7932 3.8411 3.9095 3.9946
2.0 3.9042 3.9042 3.9149 3.9427 3.9915 4.0597

Table 3.3: The effect of the viscosity parameter B and Ha on fRe (m = 0, Br = 0)
B / Ha 0.0 1.0 2.0 3.0 4.0 5.0

0.0 14.2270 14.9150 16.9646 20.3368 24.9783 30.8325
1.0 14.6620 15.3442 17.3773 20.7253 25.3387 31.1643
2.0 15.0748 15.7531 17.7747 21.1042 25.6944 31.4952

Nu and fRe, respectively, for increasing values of Hartmann number when Br = 0

and B = 1. As m increases, fRe decreases; Nusselt number Nu also decreases due

to the reduction in the effective conductivity, which reduces the Joule dissipation.

While Ahmed and Attia [81] investigated this problem by using finite difference

method for solving temperature and velocity equations iteratively, here in this the-

sis, finite element solutions are provided, which are more reliable and fast, within a

mixed formulation of the velocity and temperature equations. Furthermore, the phys-

ical quantities such as fRe and Nu obtained in the thesis show similar behaviors with

the ones given in [81]. Also, although their numerical results are limited to some

range of parameters such as 0 ≤ Ha ≤ 3, the results are extended to 0 ≤ Ha ≤ 10.

However, even for larger Hartman values solutions by FEM are easily attainable; they

are not reported here due to small velocity magnitude. Therefore, this thesis extends

the results of [81] in terms of both the underlying method and the ranges of the con-

sidered parameters besides the accuracy obtained.

Table 3.4: The effect of the Hall parameter m and Ha on Nu (Br = 0, B = 1)
m / Ha 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.7582 3.7665 3.7932 3.8411 3.9095 3.9946
3.0 3.7582 3.7590 3.7615 3.7656 3.7716 3.7796
5.0 3.7582 3.7585 3.7594 3.7610 3.7633 3.7662
8.0 3.7582 3.7583 3.7587 3.7593 3.7602 3.7613
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Table 3.5: The effect of the Hall parameter m and Ha on fRe (Br = 0, B = 1)
m / Ha 0.0 1.0 2.0 3.0 4.0 5.0

0.0 14.6620 15.3642 17.3773 20.7253 25.3387 31.1643
3.0 14.6620 14.7303 14.9351 15.2760 15.7524 16.3632
5.0 14.6620 14.6883 14.7611 14.8984 15.0821 15.3180
8.0 14.6620 14.6725 14.7040 14.7566 14.8301 14.9246

3.5.3 Power-Law Fluid Flow and Heat Transfer

In this part of the section, solutions of the power-law fluid flow and heat transfer equa-

tions are obtained numerically by using FEM. Different from the previous method-

ology, velocity and energy equations are treated in a decoupled form. At each sim-

ulation, Newton’s method for the solution of the non-linear momentum equation is

initialized with a constant viscosity. Then, substituting this velocity, the temperature

is found by solving the linear equation. Same as before, the pipe axis velocity and

the temperature are obtained in the square cross-section [0, 1]× [0, 1] of the pipe and

stooping tolerance is 10−10 for absolute error and 10−9 for the relative error.

In this problem, considering the non-linearity in the momentum equation and the

linearity in the energy equation, P2-P1 (quadratic-linear) finite element pair is used

for the velocity and temperature. A uniform mesh, consisting 4225 vertices and 8192

triangular elements, is used with 16641 and 4225 nodes for quadratic and linear finite

element spaces, respectively. These are determined according to the mesh dependence

convergence test results given in Figure 3.16(a) in order to provide an accuracy about

10−6. Since the number of degrees of freedom is different for each finite element

space, tests for the convergence and time costs are conducted for the maximum cell

diameter (h), which is same for both spaces. Accordingly, the time costs for the finite

element solutions are depicted in Figure 3.16(b). The results are obtained for various

values of the Hartmann number (0 ≤ Ha ≤ 10), Brinkman number (0 ≤ Br ≤ 2),

and the flow index (1
2
≤ n ≤ 2).

Figure 3.17 shows the velocity behavior for increasing values of the Hartmann num-

ber Ha for a fixed value of n = 0.5. As Ha increases boundary layers are formed:

flow concentrates near the walls and the fluid becomes stagnant at the center of the

duct. Flow behavior is also simulated for increasing values of Ha when n = 1.5 and
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Figure 3.16: Error and CPU time of FEM solutions for Ha = 1.0, n = 1.5, Br = 1.0.

n = 2.0; see Figure 3.18 and Figure 3.19, respectively.

As the flow index n increases, in Figure 3.18, boundary layer formation occurs when

Ha is increased, but for much smaller Ha when compared with the formation when

n = 0.5. For Ha ≥ 30 the duct is almost stagnant except a thin boundary layer with

very small velocity magnitude there (n = 1.5). The increase in n causes an increase

in the magnitude of the velocity; however, this is lost when Ha is also increased as it

can be seen in Figure 3.19 for n = 2.0.

Meanwhile, Figure 3.20 depicts the variation of the midline velocity ω(x, 0.5) for

increasing values of Ha for each fixed n. It is clear that as Ha increases the velocity

magnitude drops for all values of n, verifying the well-known flattening tendency of

the MHD flow in Figure 3.20. On the contrary, an increase in the flow index n results

in an increase in the velocity and consequently, a peak at the center x = 0.5 occurs.

Furthermore, in Figure 3.21, velocity drop continues with an increase in Ha for all

values of n. However, increase in the velocity is compensated by an increase in n for

values of Ha ≥ 30 and n ≥ 1. The reason is that MHD equations become reaction

dominated and this fact diminishes the effect of variable viscosity coefficient.

We also present the effects of the flow index and the Hartmann number on fRe in

Table 3.6. It is clearly seen that as Ha increases fRe increases for any values of n;

however, the change of fRe is very small for n = 0.5. One can also deduce that as n

decreases, fRe decreases for any values of Ha because of the fact that the viscosity

decreases faster than the increase in the wall shear rate.
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Figure 3.17: Velocity contours for n = 0.5 and increasing values of Ha.

Table 3.6: The effect of the parameter n and Ha on fRe
n / Ha 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0.5 5.7214 5.7775 5.9394 6.1909 6.5126 6.8866 7.9672 9.1623
1.0 14.2270 14.9150 16.9646 20.3368 24.9783 30.8324 50.4572 76.8114
1.5 34.8609 37.8540 47.7100 66.8303 98.4061 145.5560 349.5695 711.2614
2.0 85.1464 95.0650 131.5440 217.5824 393.7651 709.7827 2522.4330 6846.6395
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Figure 3.18: Velocity contours for n = 1.5 and increasing values of Ha.
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Figure 3.19: Velocity contours for n = 2.0 and increasing values of Ha.
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Figure 3.20: Midline velocity profiles for Ha ≤ 10.

On the other hand, temperature attains positive values on the walls where we have

assumed constant heat flux. As Ha increases temperature increases through the center

of the cavity; this can be seen from the temperature contours (isolines) in Figure 3.22

for Br = 1.0. Increasing n also increases the values on the isolines as presented in

Figure 3.23 for n = 1.5.

We also note that the constant heat flux condition
∂T

∂n̂
= 1 on the duct walls yields

symmetrical temperature isolines about the central lines x = 0.5 and y = 0.5. Heat

circulates through the corner symmetrically with increasing values. Temperature vari-

ation can be visualized better when the vertical walls are changed to the insulated

walls condition
∂T

∂n̂
= 0. This time heat reaches positive maximum values on the

upper and bottom walls symmetrically with respect to y = 0.5 line. Furthermore, if

one of the walls, for instance x = 1, has the constant heat flux condition
∂T

∂n̂
= 1

and the rest of the walls are insulated, then isolines become perpendicular to these

insulated walls and temperature achieves its maximum near x = 1. These conditions

as well as the behaviors of the isolines are depicted in Figure 3.24.
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Figure 3.21: Midline velocity profiles for Ha = 30, 50, 100.

Meanwhile, another physical quantity Nu, which represents the dynamic on the tem-

perature is investigated. Figure 3.25 presents the variation of the Nusselt number Nu

with the Hartmann number Ha for Br = 0 and Br = 2. It indicates that as the flow in-

dex increases the average Nusselt number decreases for small values of Ha (Ha . 3).

On the other hand, the effect is reversed for larger values of Ha (Ha & 5) so that

increasing n increases Nu. For Ha such that 3 . Ha . 5 a transition is observed.

In Tables 3.7, 3.8 and 3.9, respectively for n = 0.5, n = 1.0, and n = 1.5, it is also

observed that the effect of Brinkman number Br on Nu is non-uniform. The increment

in the Brinkman number Br decreases the value of Nu for n = 0.5 for all values of

Ha; however, for n = 1.0 and n = 1.5 it increases the values of Nu for Ha > 3 and

Ha > 1, respectively. It should also be noted that the effect of Br on Nu is almost

invisible, when compared to the effects of other parameters on Nu.

Inspiring the work of Ahmed in [80], where he employed finite difference method for

the numerical solution of this problem, solutions are enlarged with the finite element

method in this study. In addition, the parameter ranges of the flow index as well as
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Figure 3.22: Isolines for n = 0.5 and increasing values of Ha.

Table 3.7: The effect of the parameter Br and Ha on Nu (when n = 0.5)
Br / Ha 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0.0 3.3023 3.3060 3.3166 3.3329 3.3533 3.3765 3.4401 3.5054
1.0 3.3009 3.3047 3.3154 3.3319 3.3525 3.3759 3.4398 3.5053
2.0 3.2995 3.3033 3.3143 3.3309 3.3517 3.3752 3.4395 3.5052

Table 3.8: The effect of the parameter Br and Ha on Nu (when n = 1.0)
Br / Ha 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0.0 3.0880 3.1006 3.1370 3.1941 3.2673 3.3515 3.5824 3.8080
1.0 3.0839 3.0972 3.1353 3.1939 3.2680 3.3527 3.5837 3.8090
2.0 3.0799 3.0939 3.1336 3.1937 3.2687 3.3538 3.5850 3.8100

Table 3.9: The effect of the parameter Br and Ha on Nu (when n = 1.5)
Br / Ha 0.0 1.0 2.0 3.0 4.0 5.0 7.5 10.0

0.0 3.0067 3.0239 3.0786 3.1766 3.3177 3.4894 3.9320 4.2905
1.0 3.0013 3.0204 3.0788 3.1794 3.3214 3.4929 3.9343 4.2919
2.0 2.9960 3.0169 3.0789 3.1822 3.3250 3.4964 3.9365 4.2933
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Figure 3.23: Isolines for n = 1.5 and increasing values of Ha.
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Figure 3.24: Isolines for n = 0.5, Ha = 5.0, Br = 1.0.

58



0 2 4 6 8 10
Ha

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Nu

n = 0.5
n = 1.0
n = 1.5

Br = 0

0 2 4 6 8 10
Ha

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Nu

n = 0.5
n = 1.0
n = 1.5

Br = 2

Figure 3.25: Variation of the average Nusselt number with Ha for various values of
Br.

the Hartman number are expanded to larger intervals with respect to the ones in [80].
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CHAPTER 4

OPTIMAL CONTROL IN FLUID FLOW PROBLEMS

In this chapter optimal control problems for two-dimensional flows of laminar, in-

compressible viscous Newtonian and non-Newtonian fluids are introduced. The aim

of this part in the thesis is to contribute the application of powerful methods from

mathematical optimization to the control of fluid flow problems. For this purpose

methods under investigation are introduced firstly. Then, applications to the N-S

equations, MHD flow and heat transfer equations and also the power-law fluid flows

are presented.

4.1 Introduction to Optimal Control with PDE Constraints

Optimal control problems are formulated for many purposes in science and engineer-

ing such as tracking a velocity field, designing an aircraft or reduction of turbulence.

Defining a cost functional for tracking the difference between the current state and the

desired state, an optimization problem is constructed. Controlling idea is achieved by

minimizing or maximizing the cost functional based on the needs of the underlying

systems. The constraints arising from the dynamics of these systems can be governed

by the ordinary differential equations (ODEs), PDEs or some other types. In this

study, we consider the control of fluid flow problems constrained by the PDEs.

In general, the PDE-constrained optimization problem can be stated as

minimize
u

J(z, u) (4.1)

subject to C(z, u) = 0 on Ω, (4.2)
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where J is the cost functional, C is the set of partial differential equations, z is the

state and u is the control variable. There might be additional constraints on the control

and the state variables. Here, u can be embedded in a boundary condition, or be a

source term or a parameter appearing in the PDE. The functional J and the constraint

PDE operator are assumed to be Fréchet differentiable, which is a generalization of

differentiability for functions from Rn to Banach spaces:

Definition 1. Let g : B ⊂ Bx → By be an operator with Banach spaces Bx, By and

B 6= 0 open. g is called Fréchet differentiable if for all x ∈ B there exist a bounded

linear operator g′(x) : Bx → By such that:

lim
‖h‖Bx→0

‖g(x+ h)− g(x)− g′(x)h‖By
‖h‖Bx

= 0.

g is continuously Fréchet differentiable if the function x 7→ g′(x) is continuous.

Also, the state equation in (4.2) is assumed to have a unique solution z and Cz(z, u)

is invertible for all u ∈ U where U is a Banach space. Then, a solution operator z(u)

can be defined as u 7→ z(u), which is continuously differentiable. Thus, embedding

the PDE constraints into the cost functional in (4.1) gives rise to

J̃(u) := J(z(u), u), (4.3)

which is generally referred to as the reduced cost functional. A more detailed infor-

mation about the mathematical foundations of the control theory is provided in [47]

and [95].

The solution process of an optimization problem begins with invoking the first deriva-

tive of the cost functional to derive the optimality conditions that have to be satisfied.

These ensure that the numerically obtained controls are optimal. In this respect the

derivative of J̃ is derived as follows〈
J̃ ′(u) , s

〉
U∗,U

= 〈 Jz(z(u), u) , z′(u)s 〉Z∗,Z + 〈 Ju(z(u), u) , s 〉U∗,U

= 〈 z′(u)∗Jz(z(u), u) , s 〉U∗,U + 〈 Ju(z(u), u) , s 〉U∗,U

so that

J̃ ′(u) = z′(u)∗Jz(z(u), u) + Ju(z(u), u),
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where we refer to [47] for the definition of an adjoint operator and dual space. How-

ever, z′(u) cannot be obtained directly. Instead, (4.2) is used to obtain the following

relation

Cz(z(u), u)z′(u) + Cu(z(u), u) = 0,

which yields to

z′(u) = −Cz(z(u), u)−1Cu(z(u), u),

and

z′(u)∗ = −Cu(z(u), u)∗
(
Cz(z(u), u)−1

)∗
.

Rather calculating inverse in the last equation, a new variable, so-called the adjoint

variable is defined as

Λ = −
(
Cz(z(u), u)−1

)∗
Jz(z(u), u),

which can be solved by the adjoint equation

Cz(z(u), u)∗Λ = −Jz(z(u), u). (4.4)

This yields:

J̃ ′(u) = Ju(z(u), u) + Cu(z(u), u)∗Λ(u). (4.5)

Therefore, the adjoint approach computes the derivative J̃ ′(u) by solving the adjoint

equation.

This approach can also be constructed on a Lagrangian formulation: let the Lagrange

function L : Z × U × Y ∗ → R be such that

L(z, u,Λ) = J(z, u) + 〈Λ , C(z, u) 〉Y ∗,Y (4.6)

for Λ ∈ Y ∗, where Z, Y ∗ = H1(Ω) and U = L2(Ω). Then, substituting z = z(u) into

(4.6) yields to

L(z(u), u,Λ) = J(z(u), u) + 〈Λ , C(z, u) 〉Y ∗,Y , (4.7)

and the corresponding optimization problem becomes an unconstrained one:

minimize
u

L(z, u,Λ).
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For the optimality, the derivatives of L with respect to z, u and λ are expected to

vanish. Thus, the derivation of them are obtained as follows

〈 Lz(z, u,Λ) , d 〉Z∗,Z = 〈 Jz(z, u) , d 〉Z∗,Z + 〈Λ , Cz(z, u)d 〉Y ∗,Y

= 〈 Jz(z, u) + Cz(z, u)∗Λ , d 〉Z∗,Z

so that

Lz(z, u,Λ) = Jz(z, u) + Cz(z, u)∗Λ.

By imposing Lz = 0, the adjoint equation (4.4) is obtained

Cz(z, u)∗Λ = −Jz(z, u).

Similarly, Lu(z, u,Λ) is derived:

〈 Lu(z, u,Λ) , e 〉U∗,U = 〈 Ju(z, u) , e 〉U∗,U + 〈Λ , Cu(z, u)e 〉Y ∗,Y

= 〈 Ju(z, u) + Cu(z, u)∗Λ , e 〉U∗,U

so that

Lu(z, u,Λ) = Ju(z, u) + Cu(z, u)∗Λ,

which represents the same equation in (4.5).

Both approaches are well applicable and generate the same adjoint equations to be

solved in the optimization. Picking up an optimization algorithm, problem is solved

after the discretization of the PDE constraints and the adjoint equations. In the

literature, this procedure is called as optimize-then-discretize, where all derivatives

are attained in the PDE-level and then discretization is performed to get a finite-

dimensional problem. This procedure can improve the numerical accuracy when

independent discretization schemes are necessary for the primal and adjoint prob-

lem. However, manual derivation of the continuous adjoint system can be tough for

complex PDEs and this leads to additional complexity for the implementation [27].

Instead, first the state equation can be discretized then the adjoint equation can be de-

rived from the discrete first-order optimality conditions. This is called as discretize-

then-optimize. Once the forward model has been discretized, the procedure to obtain

the corresponding adjoint model becomes conventional in discretize-then-optimize
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approach. It is also attractive in practice since discrete adjoints can be generated with

low effort using automatic differentiation, which we followed in this thesis. Readers

can also refer to [27] for more information and pros-and-cons of the two approaches.

After all, whichever approach is chosen, an optimization algorithm has to be selected;

below we present the general steps in a gradient-based optimization algorithm.

4.2 Optimization Algorithm

For the implementations in this thesis a gradient-based algorithm is used. It is a type

of quasi-Newton method with a limited memory usage, called as L-BFGS (Limited-

Memory Broyden-Fletcher-Goldfarb-Shanno) method, which is introduced by Liu

and Nocedal in [64].

In the quasi-Newton type methods only the gradient of the cost function is required.

Unlike Newton’s method, the second derivative is not addressed, thus they become

more efficient computational tools. The most popular one is the BFGS method whose

derivation starts with forming a quadratic model of the cost function at the iterate uk:

for the reduced cost functional J̃ in (4.3) we have

J̃k(p) ≈ qk(p) = J̃k +∇J̃Tk p+
1

2
pTBkp,

where Bk is an n× n symmetric positive definite matrix so that if p = 0 then

qk(0) = J̃k and ∇qk(0) = ∇J̃k.

This quadratic model is minimized for the search direction pk by imposing∇qk(pk) =

0 so that

pk = −B−1
k ∇J̃k,

and new iterate becomes

uk+1 = uk + γkpk.

This update is very close to the line search Newton method except that the exact

Hessian is replaced with the approximate Bk.
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Updating of the approximate Hessian Bk has many versions in the literature [71]. An

alternative is to update the inverse of Bk, denoted by Hk, so that the search direction

can be computed by a matrix-vector multiplication. The inverse Hessian approxima-

tion Hk can be updated by the following formula:

Hk+1 =
(
I − ρkskyTk

)
Hk

(
I − ρkyksTk

)
+ ρksks

T
k , (4.8)

where sk = uk+1 − uk, yk = ∇J̃k+1 − ∇J̃k and ρk =
1

yTk sk
. The use of this

approximation, so-called the BFGS update, can be invoked in an optimization as

presented in Algorithm 1. As mentioned in Algorithm 1, a step length γk has to

be determined from a line search, where sufficient decrease and curvature conditions

are satisfied. They are called as Wolfe conditions and stated as

J(uk + γkpk) ≤ J(uk) + d1γk∇JTk pk,

∇J(uk + γkpk)
Tpk ≥ d2∇JTk pk,

with 0 < d1 < d2 < 1.

Algorithm 1 BFGS Method

1: procedure BFGS(J̃ , u0, H0, ε)

2: k ← 1

3: while
∥∥∥∇J̃k∥∥∥ > ε; do

4: Compute search direction pk = −Hk∇J̃k;
5: Set uk+1 + γkpk where γk is computed from a line search procedure to

satisfy the Wolfe condition;

6: Define sk = uk+1 − uk and yk = ∇J̃k+1 −∇J̃k;

7: Compute Hk+1 by (4.8);

8: k ← k + 1;

9: end while

10: end procedure

Although the convergence rate of this algorithm is super-linear, that is slower than

Newton’s method, its cost per iteration is much smaller due to the absence of the

second order derivatives. Yet, one drawback is the requirement for a storage of the

inverse Hessian approximationHk. Fortunately, this is overcome by a memory saving
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strategy, yielding the so-called limited-memory BFGS method (L-BFGS) [64]. In this

version of BFGS method, Hk∇J̃k is computed by carrying out a sequence of vector

summations and inner products by storing a certain number, saym, of the vector pairs

(si, yi). By the computation of the new iterate, the new pair {sk, yk} of the current

step is substituted into the set of pairs {si, yi}, which includes information from them

most recent iterations, and the oldest vector pair is removed from the set. Therefore,

the storage requirement for fully dense approximations of Hk is resolved by saving

only a few vectors.

In order to give a more detailed description, the BFGS update formulas are rewritten

in the following form:

Hk+1 = V T
k HkVk + ρksks

T
k , (4.9)

where

ρk =
1

yTk sk
and Vk = I − ρkyksTk . (4.10)

If the update formula (4.9) is recursively substituted into itself, then it yields to the

following formula

Hk =
(
V T
k−1 · · ·Vk−mT

)
H0
k

+ ρk−m
(
V T
k−1 · · ·V T

k−m+1

)
sk−ms

T
k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·+ ρk−1sk−1s
T
k−1.

This expression enables us to perform a recursive computation of Hk∇J̃k, which can

be simply stated by the case of two-loop recursion in Algorithm 4 in Appendix A.1.

The full version of the limited-memory BFGS method is summarized in Algorithm 2.

In the following, first, the optimal control of the Navier-Stokes equations is studied

using a distributed control function based on a Lagrangian view. Second, control of

the MHD flow and heat transfer with variable viscosity and Hall effect is investigated

by considering the parameters of the problem as control variables. Third, the optimal

control of the power-law fluid flow and heat transfer is examined by determining the

optimal parameters of the problem. Optimization structure is constructed directly

based on the reduced cost functional for the last two problems in order to exemplify

both approaches introduced in Section 4.1.
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Algorithm 2 L-BFGS method

1: procedure L-BFGS(J̃ , u0,m)

2: k ← 0;

3: repeat

4: Choose H0
k ;

5: Compute pk ← −Hk∇J̃k from Algorithm 4;

6: Compute uk+1 ← uk + γkpk where γk is chosen to satisfy the Wolfe

condition;

7: if k > m then

8: Discard the vector pair [sk−m, yk−m] from storage;

9: end if

10: Compute and save sk ← uk+1 − uk and yk = ∇J̃k+1 −∇J̃k;

11: k ← k + 1;

12: until convergence

13: end procedure

4.3 Distributed Control of Navier-Stokes Equations with Exact Solution

The optimal control problem of the Navier-Stokes equations is investigated by invok-

ing a control function distributed over whole domain, which is introduced in Sec-

tion 2.1 as follows

minimize
~u

J(~v, ~u) =
αv
2

∫
Ω

(~v − ~vd)T (~v − ~vd) dΩ +
αu
2

∫
Ω

~uT~u dΩ (4.11)

subject to − ν∆~v + (~v · ∇)~v +∇p = ~f + ~u in Ω (4.12)

∇ · ~v = 0 in Ω (4.13)

~v = 0 on ∂Ω. (4.14)

As stated in Section 4.1, optimization is to be performed by the DO approach. Thus,

the procedure begins with finding finite-dimensional approximation of the problem.

Since we implement approximations to velocity ~v and pressure p by using FEM with

~v ≈
βv∑
j=1

vj~φj and p ≈
βp∑
l=1

plψl,

where βv and βp denote the number of basis functions in finite element spaces of

velocity and temperature; and the control function ~u is also approximated within the
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same setting

~u ≈
βv∑
i=1

ui~φi.

So that adding the term corresponding to the control function to the discrete non-

linear system of N-S equations in (3.12) yields to
K + N(v) D 0

DT 0 rT

0 r 0




v

p

c

 =


M(f + u)

0

0

 . (4.15)

Then, constraint equation (3.13) turns into C(z,u) = 0. In order to get the discretized

form of the control problem, we substitute the finite element approximations into the

cost function J = J(~v, p, ~u) in (4.11). Hence, the discretized optimal control problem

takes the form

minimize
u

J(z,u)

subject to C(z,u) = 0,

where J is the discrete objective function computed as

J(z,u) =
αv
2

(v − vd)
TM(v − vd) +

αu
2

uTMu.

Now, the procedure based on a Lagrange function, introduced in Section 4.1, is go-

ing to be used in the discrete concept. Thus, discretized Lagrange function in the

derivation of first-order optimality condition is formulated as follows

L(z,Λ,u) = J(z,u) + ΛTC(z,u),

where Λ = (λ,η, e) is the discrete adjoint variable corresponding to primal variable

z = (v,p, c). As stated earlier, the first-order optimality condition requires that the

partial derivatives of the Lagrangian function are zero at the optimality. That is, the

formulations in Section 4.1 are stated once again but now for the discrete case:

∂L(z,Λ,u)

∂Λ
= C(z,u) = 0, (4.16)

∂L(z,Λ,u)

∂z
=
∂J(z,u)

∂z
+

(
∂C(z,u)

∂z

)∗
Λ = 0, (4.17)

∂L(z,Λ,u)

∂u
=
∂J(z,u)

∂u
+

(
∂C(z,u)

∂u

)∗
Λ = 0, (4.18)
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which are satisfied at an optimal point (z∗,Λ∗,u∗).

First, from (4.16) the constraint equation of the problem is obtained, which is already

have to be satisfied. Second, from (4.17) the adjoint equation

Cz(z,u)∗Λ = −Jz(z,u),

leads to a linear system of equations
KT + NT (v) D 0

DT 0 rT

0 r 0



λ

η

e

 =


−αvM(v − vd)

0

0

 (4.19)

that is to be solved for Λ. Third, from (4.18) the equation for the control function is

derived,

Cu(z,u)∗Λ = −Ju,

which, in turn, gives

(−M)Λ = −αuMu,

or equivalently,

M(λ− αuu) = 0.

The discrete formulation of the derivative of reduced cost functional in (4.5) is ob-

tained by (4.18). Therein, the optimization is conducted for the equation (4.18), by

using the L-BFGS algorithm given in Section 4.2. This procedure requires solutions

of the state and adjoint equations iteratively. In other words, at each optimization

step, a new control candidate uk is generated, so that this new uk is used to obtain a

new zk and correspondingly a new Λk.

4.4 Parameter Control of MHD Flows with Temperature Dependent Viscosity

This section is devoted to the problem of controlling the MHD flows and heat transfer

equations with temperature dependent viscosity and Hall effect by using the parame-

ters of problem as control variables. The mathematical statement is formulated as in
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Section 2.2 for U = {Ha,m,Br, B},

minimize
u∈U

J(ω, T,u) =
αω
2

∫
Ω

(ω − ωd)2dΩ +
αT
2

∫
Ω

(T − Td)2dΩ

+
αu

2

∫
Ω

‖u‖2 dΩ (4.20)

subject to
∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 +

Ha2

1 +m2
ω in Ω (4.21)

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+
Ha2Br
1 +m2

ω2 =
ω

ωm
in Ω (4.22)

ω = 0, T = 0 on ∂Ω. (4.23)

Again, pursuing the similar structure with the DO approach, implementation is started

with the discretization of the problem. Having implemented a finite element approx-

imation to the velocity ω, the temperature T and the control variable u, their dis-

cretized forms are substituted to the cost functional J = J(ω, T,u) in order to get the

discretized form J in (4.20). Hence, the discretized optimal control problem takes the

form

minimize
u∈U

J(z,u) (4.24)

subject to C(z,u) = 0, (4.25)

where z = (ω,T), and J is the discrete objective function computed as

J(z,u) =
αω
2

(ω − ωd)TM(ω − ωd) +
αT
2

(T−Td)
TM(T−Td) +

αu
2
‖u‖2 |Ω|,

where |Ω| represents the area of the domain in two-dimensional space. Here, it is

assumed that C and J are continuously differentiable, and for all control u the state

equation C(z,u) = 0 has a unique solution z = z(u), and the derivative Cz(z,u) is

invertible. By the implicit function theorem, u 7→ z(u) is continuously differentiable,

and hence, the cost function can be considered as

J̃(u) = J(z(u),u), (4.26)

where the PDE constraints are embedded to this cost function. Generally, such form

J̃(u) is referred to as discrete reduced cost function.

Again, the first-order optimality conditions are derived as in Section 4.1, but for the

discretized problem. This implies that the discrete form of the adjoint equation in
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(4.4) becomes

Cz(z(u),u)∗Λ = −Jz(z(u),u), (4.27)

which is to be solved for Λ = (λ,η). Hence, it is substituted into the discrete form

of (4.5) is obtained as

J̃′(u) = Ju(z,u) + Cu(z,u)∗Λ. (4.28)

Consequently, Cz(z(u),u) has to be computed for the discretized non-linear system

of equations of PDEs in (4.21) and (4.22) with (4.23) as follows

Cz(z(u),u) =

c1M 0

0 S

+

K(T) KT (T)ω

G(z) −BrDT (ω,T)ω

 ,
where

G(z) = c2

[
∂N(ω)

∂ω
ω + N(ω)

]
−Br

[
∂D(ω,T)

∂ω
ω + D(ω,T)

]
+
∂P(ω)

∂ω
ω+P(ω).

Then, the adjoint system to be solved becomes

Cz(z(u),u)∗

λ
η

 = −

αωM(ω − ωd)
αTM(T−Td)

 . (4.29)

Having derived the system (4.29), the adjoint-based reduced gradient equation in

(4.28) is used to find the optimal parameter(s) by the L-BFGS algorithm, described

in Section 4.2.

4.5 Parameter Control of Power-Law Fluid Flow and Heat Transfer

Now, we will investigate the problem of controlling the power-law fluid flow and heat

transfer equations considering the parameters as control variables. The formulation
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in Section 2.3 for U = {Ha, n} reads:

minimize
u∈U

J(ω, T,u) =
αω
2

∫
Ω

(ω − ωd)2dΩ +
αT
2

∫
Ω

(T − Td)2dΩ

+
αu

2

∫
Ω

‖u‖2 dΩ (4.30)

subject to
∂

∂x

(
µ̄
∂ω

∂x

)
+

∂

∂y

(
µ̄
∂ω

∂y

)
= −1 + Ha2ω in Ω (4.31)

∇2T + Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]

+ Ha2Brω2 =
4ω

ωm
in Ω (4.32)

ω = 0 on ∂Ω (4.33)

∂T

∂y

∣∣∣
(x,b/a)

=
∂T

∂x

∣∣∣
(1,y)

= 1,
∂T

∂y

∣∣∣
(x,0)

=
∂T

∂x

∣∣∣
(0,y)

= −1. (4.34)

Using the DO approach, firstly, the discretized form J of the cost function in (4.30)

is obtained by substituting the discrete solutions into J(ω, T, u). As a result, the

discretized control problem is stated as

minimize
u∈U

J(z,u)

subject to C(z,u) = 0,

where z = (ω,T), and J is the discrete objective function constructed as

J(z,u) =
αω
2

(ω − ωd)TMω(ω − ωd) +
αT
2

(T−Td)
TMT (T−Td) (4.35)

+
αu
2
‖u‖2 |Ω|. (4.36)

Here, Mω and MT are mass matrices of the quadratic and linear finite element spaces

for ω and T , respectively. The adjoint equation has to be formulated as

C∗z(z(u),u)Λ = −Jz(z(u),u), (4.37)

where

Cz(z(u),u) =

Fz

Gz

 =

∂F(ω)
∂ω

0

0 ∂G(T )
∂T

 .
Hence, the adjoint problem in (4.37) for Λ = (λ,η) becomes

Cz(z(u),u)∗

λ
η

 = −

αωMω(ω − ωd)
αTMT (T−Td)

 ,
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which has to be solved at each optimization step for the gradient of the reduced cost

function:

∂J̃(u)

∂u
= Λ∗ Cu(z(u),u) + Ju(z(u),u) = 0. (4.38)

The optimization algorithm is, used here, again L-BFGS algorithm, described in Sec-

tion 4.2.

4.6 Numerical Results

This section presents solutions to the optimal control of steady, two-dimensional, lam-

inar flow problems of incompressible, Newtonian and non-Newtonian fluids. First

simulations are conducted for the distributed control of Navier-Stokes equations with

an exact solution to confirm the performance of control approaches in this study.

Second, numerical tests are performed for the parameter control of the MHD flow

and heat transfer with temperature dependent viscosity. Third, simulations are im-

plemented for the control of power-law fluid flow and heat transfer with parameter

control.

Controls are studied as single and as well as pairwise parameters for both problems.

The numerical results with parameter control indicate the efficiency of the controlling

idea not only for regaining the flow and temperature profiles but also the characteri-

zation of them, specifically for the classification as Newtonian or non-Newtonian of

a power-law fluid.

Computer simulations of the optimal control problem are executed using dolfin-adjoint

[24] which is implemented in Python and works with FEniCS platform. dolfin-adjoint

provides algorithmic differentiation routines acting on the discrete equation of the pri-

mal problem to derive the discrete adjoint equations. The gradients obtained are used

in the optimization process of the L-BFGS algorithm. Starting with an initial estimate

the optimization loop to calculate new estimates for optimal solution is repeated until

the norm of the gradient of the reduced cost function J̃ is less than the value of a

tolerance 10−10.
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Table 4.1: Distributed control for regaining the desired states given below with the
uncontrolled initial state of ν = 1.0

νd ‖vopt
1 − vd1‖L2 ‖vopt

2 − vd2‖L2 J Tit
0.1 2.2452× 10−3 2.2452× 10−3 1.512× 10−4 11
0.05 2.2401× 10−3 2.2401× 10−3 1.731× 10−4 12
0.01 2.5297× 10−3 2.5297× 10−3 1.921× 10−4 12
0.005 2.5427× 10−3 2.5427× 10−3 1.946× 10−4 13
0.001 2.5557× 10−3 2.5557× 10−3 1.966× 10−4 13

0 2 4 6 8 10 12 14 16 18
Nofe

10-11

10-10

10-9

10-8

10-7

10-6

ν=0. 1

ν=0. 05

ν=0. 01

ν=0. 005

ν=0. 001

Figure 4.1: Norm of the gradient values versus number of function evaluations (Nofe)
during optimization.

4.6.1 Control for Navier-Stokes Equations

Control of the steady Navier-Stokes flow in (4.11)-(4.14) is simulated by using an

additional source function as a distributed control. The uncontrolled initial state of

the velocity is produced by simulating the flow for ν = 1.0 with the given exact

solution in Section 3.5.1. The aim is to find the required force function to move the

velocity profile to the desired velocity, which has various values as given in Table 4.1.

It also indicates that the number of iterations is increasing for smaller initial values of

ν as the difference between the desired and initial states increases.

Test results indicate that the optimization algorithm is successful for attaining the

desired profiles even if the desired states are chosen far from the initial ones, where the

regularization parameters are chosen as (αv, αu) = (103, 10−3), which are successful

in the penalization of corresponding variables. In order to see the convergence of the

optimization to the optimal states, the norm of the gradient values versus number of

function evaluations during the optimization are presented in Figure 4.1.
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Figure 4.2 is depicted for monitoring the difference between the uncontrolled initial

states and desired states corresponding to νd = 0.005, and also the closeness of the

controlled and desired profiles. Profiles are also presented in Figure 4.3 as vector

fields.

4.6.2 Control for MHD Flow and Heat Transfer with Temperature Dependent

Viscosity and Hall Effect

The MHD flow is constructed as an optimal control problem by using the parameters

of the system as the control variables. These parameters include Hartmann number,

Brinkman number, viscosity parameter and Hall parameter. The control of each of

these parameters has a significant importance in achieving the desired state of hydro-

dynamically and thermally fully developed flow and the fluid temperature in the duct.

For example, the control of Hartmann number determines how strong the magnetic

field should be applied for reaching a desired velocity profile, and hence, isolines in

the duct.

Since the magnitude of the velocity is small, regularization parameters are chosen

large enough in this respect to prevent the objective function from being close to zero

because of the cancellation without converging to optimal state.

First, the Hartmann number Ha is introduced as the control variable u, since its con-

trol provides information about the optimal electromagnetic force to reach a desired

flow. As illustrated in Figure 3.5 and Figure 3.10, the increase in Hartmann number

has more significant effect on the velocity than on the temperature of the flow in the

duct. In order to reach the desired states for both velocity ωd and temperature Td, the

regularization parameters are chosen as αω = 103, αT = 100, αHa = 10−5. Here, the

desired states ωd and Td are (pre-)computed FEM solutions (as in Section 3.5.2) given

the parameters in Table 4.2, particularly the values of Had. At optimality, the states

ωopt, Topt, and the optimal control variable Haopt in Table 4.2 indicate that the choice

of regularization parameters is not only sufficient to control the states, but it also en-

sures that the optimal Haopt is close to the Hartmann number Had of the desired flow

even if the initial Ha0 is chosen far away from Haopt in BFGS algorithm. It is also

noted that the total number of iterations required in the optimization is remarkably
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Figure 4.2: Uncontrolled (ν0 = 1.0), desired (νd = 0.005) and controlled velocity
profiles and control profile.
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(a) uncontrolled ~v (b) desired ~v

(c) controlled ~v (d) control ~u

Figure 4.3: Velocity field and control field for the desired state of νd = 0.005 and
uncontrolled state ν0 = 1.0.
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Table 4.2: Control with Hartman number Ha, m = 1, Br = 1, B = 1, αω = 103,
αT = 100, αHa = 10−5, Ha0 = 0.1.

Had Haopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 1.0125 4.4417× 10−5 2.6390× 10−6 6.059× 10−6 3
3.0 3.0353 2.6263× 10−4 2.0360× 10−5 9.816× 10−5 4
5.0 5.0374 2.6129× 10−4 3.3324× 10−5 3.500× 10−4 4

10.0 9.9696 8.7007× 10−5 3.7295× 10−5 1.214× 10−3 3

Table 4.3: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, αω = 103,
αT = 100, αm = 0.0, m0 = 10.0

md mopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.9693 5.4917× 10−5 3.2632× 10−6 8.997× 10−7 5
3.0 2.9521 1.0771× 10−5 6.2470× 10−7 3.170× 10−8 3
5.0 4.9379 3.4532× 10−6 1.9957× 10−7 3.206× 10−9 3
8.0 8.0076 1.0692× 10−9 6.1708× 10−9 1.943× 10−10 3

few, denoted by Tit.

Second, the Hall parameter m is introduced as the control variable u because it is

also significant to gain information about, for instance, the material from which the

conductor should be made of. The increase of the Hall parameter has an effect that

is contrary to the effect of Ha, but the magnitude of the effect on the velocity is

larger than that on the temperature, again. Thus, regularization parameters αω, αT are

selected the same as in the case of Ha; however, αm is taken zero so that optimal m

is obtained close to the Hall parameter of the desired state. At optimality, Table 4.3

shows that the state of the flow is perfectly controlled. In fact, no matter what value of

αm is given, the optimization algorithm converges and the desired state of the flow are

achieved. However, due to the significance of the penalization effect of αm, no matter

how small, at the optimal solution, mopt may not be close to md; this is illustrated in

Table 4.4.

Table 4.4: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, αω = 103,
αT = 100, αm = 10−5, m0 = 10.0

md mopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.9581 7.5264× 10−5 4.4729× 10−6 5.543× 10−6 5
3.0 2.2898 2.2016× 10−4 1.2791× 10−5 3.184× 10−5 6
5.0 2.6081 3.2969× 10−4 1.9103× 10−5 4.758× 10−5 7
8.0 2.7242 3.8048× 10−4 2.2024× 10−5 5.549× 10−5 5
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Table 4.5: Control with Brinkman number Br, Ha = 1, m = 1, B = 1, αω = 100,
αT = 103, αBr = 10−5, Br0 = 0.0

Brd Bropt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.9870 7.0049× 10−7 1.6050× 10−5 4.935× 10−6 3
2.0 1.9742 1.3999× 10−6 3.2051× 10−5 1.974× 10−5 4
3.0 2.9615 2.0984× 10−6 4.8004× 10−5 4.442× 10−5 4

Table 4.6: Control withB, Ha = 1,m = 1, Br = 1, αω = 103, αT = 103, αB = 10−5,
B0 = 0.0

Bd Bopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.9980 6.1371× 10−6 7.6739× 10−6 4.990× 10−6 4
2.0 1.9951 1.3414× 10−5 1.6993× 10−5 1.995× 10−5 6
3.0 2.9911 2.1835× 10−5 2.7997× 10−5 4.487× 10−5 7

Third, the Brinkman number Br is used as the control variable u. Being one of the

important parameters, it specifies the speed of the conduction of the heat produced by

the viscous dissipation. Since its presence in the system of PDEs mostly dominates

the temperature, the regularization parameters are chosen as αω = 100, αT = 103,

αBr = 10−5; and this selection is again rather sufficient to reach the desired states

within a few iterations shown in Table 4.5.

Fourth, the control of the viscosity parameter B is considered. The control of the

viscosity provides another essential information of the fluid so that flow can be ma-

nipulated by changing its viscosity to reach a desired flow behavior. The different test

values of regularization terms show that B has almost the similar dominance on both

velocity and temperature, thus they are selected as αω = 103, αT = 103, αB = 10−5.

As shown in Table 4.6, the algorithm is successful to control the states of the flow for

various values of Bd.

In the light of the above discussions and the results obtained for the control problem

using only one significant parameter of the MHD flow, the optimal control parameters

are studied, now in this case, pairwisely so that the velocity and isolines are controlled

at the desired states.

To begin with, pairwise control is performed by Ha and B, that is, u = (Ha, B). As

it is clear from Figure 3.5, Figure 3.10, Figure 3.6 and Figure 3.13, these parame-

ters highly effect the velocity and isolines. In any case, the control of the problem
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Figure 4.4: Norm of the gradient versus the number of evaluations of the cost function
(Nofe) for the control with single parameter.

Table 4.7: Control with Hartmann number Ha and B, m = 1, Br = 1, αω = 103,
αT = 100, α(Ha,B) = 10−5, (Ha0, B0) = (0.1, 0.0)

Had Bd Haopt Bopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.0 0.9494 0.0654 3.9802× 10−5 2.6174× 10−4 5.702× 10−6 12
1.0 1.0 1.0201 0.9888 3.7112× 10−5 3.8666× 10−5 1.105× 10−5 12
3.0 2.0 3.0804 1.9691 4.9921× 10−4 7.4232× 10−5 1.188× 10−4 10
5.0 1.0 5.0446 0.9103 2.0662× 10−4 1.6474× 10−4 3.550× 10−4 10

is achieved, shown in Table 4.7; and even, the optimal values of (Ha, B) are close

to those of the desired states. Another pairwise control is conducted by taking the

control variable as u = (Br, B). At optimality, the controlled parameters are again

close enough to the ones of the desired states, even they do not have to be close, along

with successfully controlling the desired velocity profiles and isolines. See Table 4.8.

The pairwise control is also considered with u = (m,Br). However, the effects of

these parameters on the change of the magnitude of velocity and temperature are too

small as indicated in Section 3.5.2. Fortunately, as is shown in Table 4.9, the optimal
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Table 4.8: Control with Brinkman number Br and B, m = 1, Ha = 1, αω = 103,
αT = 103, α(Br,B) = 10−5, (Br0, B0) = (0.0, 0.0)

Brd Bd Bropt Bopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 1.0 0.9784 1.0045 1.4931× 10−5 1.5024× 10−5 9.914× 10−6 10
2.0 1.0 1.9493 1.0134 4.3470× 10−5 3.1279× 10−5 2.456× 10−5 10
1.0 2.0 0.9865 1.9991 1.1013× 10−6 1.8125× 10−5 2.492× 10−5 11
2.0 2.0 1.9547 2.0087 2.7642× 10−5 3.1640× 10−5 3.963× 10−5 11

Table 4.9: Control with the Hall parameter m and Br, B = 1, Ha = 1, αω = 100,
αT = 103, α(m,Br) = 10−5, (m0,Br0) = (10.0, 0.0)

md Brd mopt Bropt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 1.0 1.6959 0.2678 8.2345× 10−4 9.4556× 10−4 2.354× 10−5 13
1.0 2.0 1.5727 1.1708 7.1134× 10−4 1.0789× 10−3 2.997× 10−5 14
3.0 1.0 1.7736 0.3098 5.5295× 10−4 8.2053× 10−4 2.717× 10−5 14
3.0 2.0 1.6818 1.2376 6.3009× 10−4 9.0018× 10−4 3.554× 10−5 13

states of the flow is successfully recovered; but the optimal solution u = (mopt,Bropt)

differs from the parameters md and Brd used to describe the desired velocity profiles

and isolines.

Although using pairwise controls requires relatively more number of iterations than

the single ones as expected, the most costly one may be considered as the case when

the pair u = (m,B) is used. Indeed, this is due to their counter-effects on the velocity

and temperature: see Figure 3.7, Figure 3.6, Figure 3.11 and Figure 3.13. As a result,

the total number of iterations is reported up to 22 given in Table 4.10. Although at op-

timality u = (mopt, Bopt) are relatively far from the parameters md and Bd used in the

desired velocity and isolines, the major aim of the implementation of the controlling

idea is successfully achieved by attaining the desired profiles.

Gradient values, which are the crucial quantities in the first-order optimality condi-

tions, are given in Figure 4.4 and Figure 4.5. These figures also confirm the conver-

gence to the optimal controls of corresponding simulations.

4.6.3 Control for Power-Law Fluid Flow and Heat Transfer

In the sequel, the power-law fluid flow and heat transfer is investigated as a control

problem considering the problem parameters, such as Hartmann number and the flow
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Figure 4.5: Gradient of the objective function during the optimization iterations for
the control with pairwise parameters.
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Table 4.10: Control with the Hall parameter m and B, Br = 1, Ha = 1, αω = 103,
αT = 103, α(m,B) = 10−5, (m0, B0) = (10.0, 0.0)

md Bd mopt Bopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 1.0 1.5012 0.8148 1.2745× 10−3 7.6907× 10−4 3.034× 10−4 16
3.0 1.0 1.4884 0.6167 4.6715× 10−4 1.4806× 10−3 3.180× 10−5 22
1.0 2.0 1.2871 1.7006 1.2463× 10−3 1.0617× 10−3 2.976× 10−4 22
3.0 2.0 1.3442 1.5438 4.4036× 10−4 1.6208× 10−3 4.075× 10−3 22

index n as control variables. Apart from the discussion on the parameter control given

in the previous problem, idea of optimal control has more crucial effect on power-law

fluid flow. Having the flow index n as control variable, it is not only possible to derive

the flow to the desired state but it is also possible to identify the flow type: Newtonian

or non-Newtonian. Moreover, it enables the classification of the non-Newtonian fluid

as shear-thinning or shear-thickening as well.

Firstly, the control variable u is introduced as the flow index n. Here, the desired

states ωd and Td are (pre-)computed FEM solutions given the parameters in Ta-

ble 4.11; particularly the values of nd are given for the forward problem. In order

to reach the desired states for both velocity ωd and temperature Td, corresponding

regularization parameters (αω, αT , αn) in (4.35) have to be chosen. The effect of

n is more significant on the velocity magnitude than on the temperature; therefore,

the corresponding regularization parameter to regain the desired velocity has to be

more pronounced. This is achieved when the regularization parameters are chosen as

(αω, αT , αn) = (105, 100, 10−5), for instance.

At optimality, the states ωopt, Topt, and the optimal control variable nopt in Table 4.11

indicate that the choice of the regularization parameters is sufficiently suitable so that

it successfully controls the states and even ensures that the optimal nopt is close to nd

of the desired flow.

Secondly, the control variable u is introduced as the Hartmann number Ha, whose

control enables to find the optimal electromagnetic force in order to yield a desired

fluid flow. As demonstrated in Figure 3.22 and Figure 3.23, heat transfer is too

slow with respect to the increment of Ha compared to the change in the magnitude

of the velocity. Thus, the regularization parameters are chosen as (αω, αT , αn) =

(103, 100, 10−5) to impose a large penalization effect on the velocity. As reported in
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Table 4.11: Control with n, Ha = 1.0, Br = 1.0, αω = 105, αT = 100, αn = 10−5,

and n0 = 0.5

nd nopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
0.6 0.5999 3.6768× 10−6 2.0850× 10−6 5.520× 10−4 6
0.8 0.7998 1.4206× 10−5 4.6814× 10−6 6.370× 10−3 5
1.0 0.9997 2.7075× 10−5 6.3191× 10−6 1.933× 10−2 7
1.2 1.1997 4.0722× 10−5 7.4407× 10−6 3.823× 10−2 7
1.5 1.4994 6.0865× 10−5 8.5349× 10−6 7.365× 10−2 5
1.8 1.7991 7.9540× 10−5 9.1834× 10−6 1.130× 10−1 8
2.0 1.9989 9.0956× 10−5 9.4505× 10−6 1.398× 10−1 10

Table 4.12: Control with Ha, n = 1.5, Br = 1.0, αω = 103, αT = 100, αHa = 10−5,

and Ha0 = 0.1

Had Haopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.9994 9.6677× 10−6 2.4025× 10−6 9.931× 10−6 3
3.0 2.9982 4.5044× 10−5 2.0047× 10−5 2.245× 10−4 5
5.0 4.9956 6.1726× 10−5 6.1227× 10−5 4.845× 10−4 5
8.0 7.9824 6.9147× 10−5 1.3982× 10−4 6.027× 10−4 7

10.0 9.9491 1.0267× 10−4 2.5725× 10−4 7.026× 10−4 6

Table 4.12, the desired states of the flow are achieved and the optimal Haopt is found

close to Had even if the initial Ha0 is chosen far away from Had.

Thirdly, rather than using only one significant parameter, we also seek the optimal

control parameters in pairs: a pairwise control is performed by n and Ha, u = (n,Ha),

whose effects counteract on the dynamics of the system. Different scenarios are stud-

ied as given in Tables 4.13 for various n and Ha values. In all cases, the controlled

optimal states are perfectly matched with the desired states; even the optimal values of

uopt = (nopt,Haopt) are close to those of the desired states ud = (nd,Had). However,

the cost of achieving optimal control parameters is paid with an increasing number of

iterations (Tit) in the optimization (see Table 4.13).

Verification of the controls are provided by the history of the norm of the gradient

values versus the number of function evaluations depicted in Figure 4.6 for each of

the simulations.
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Table 4.13: Control with n and Ha, Br = 1.0, αω = 105, αT = 100, αHa = 10−5,

αn = 10−5, Ha0 = 0.1 and n0 = 0.5

Had nd nopt Haopt ‖ωopt − ωd‖∞ ‖Topt − Td‖∞ J Tit
1.0 0.6 0.5988 0.9119 6.1196× 10−6 2.6280× 10−5 5.043× 10−4 53

0.8 0.8032 1.0961 1.8956× 10−5 6.2564× 10−5 6.016× 10−3 47
1.0 1.0057 1.0917 3.8514× 10−5 8.8894× 10−5 1.837× 10−2 43
1.2 1.2078 1.0807 5.6036× 10−5 1.0274× 10−4 3.646× 10−2 40
1.5 1.5107 1.0679 7.8726× 10−5 1.3050× 10−4 7.039× 10−2 38
1.8 1.8134 1.0591 9.8521× 10−5 1.5060× 10−4 1.081× 10−1 33
2.0 2.0151 1.0547 1.1227× 10−4 1.6105× 10−4 1.338× 10−1 30

3.0 0.6 0.5974 2.9251 1.1670× 10−5 7.0598× 10−5 1.896× 10−4 45
0.8 0.8022 3.0277 1.2439× 10−5 5.4969× 10−5 2.423× 10−3 36
1.0 1.0039 3.0259 2.6034× 10−5 9.7203× 10−5 7.040× 10−3 36
1.2 1.2046 3.0196 3.8319× 10−5 1.2127× 10−4 1.315× 10−2 40
1.5 1.5050 3.0125 6.4596× 10−5 1.3772× 10−4 2.339× 10−2 42
1.8 1.8049 3.0080 9.2681× 10−5 1.4171× 10−4 3.338× 10−2 39
2.0 2.0047 3.0060 1.1115× 10−4 1.4040× 10−4 3.941× 10−2 32

5.0 0.6 0.5949 4.8878 2.0484× 10−5 1.7541× 10−4 1.245× 10−4 51
0.8 0.8005 5.0052 4.0751× 10−6 2.1532× 10−5 5.901× 10−4 45
1.0 1.0016 5.0081 1.2639× 10−5 6.9971× 10−5 1.590× 10−3 37
1.2 1.2018 5.0056 2.0973× 10−5 8.7427× 10−5 2.670× 10−3 40
1.5 1.5017 5.0030 3.0269× 10−5 9.2425× 10−5 3.879× 10−3 36
1.8 1.8016 5.0019 2.9640× 10−5 8.6835× 10−5 4.385× 10−3 32
2.0 2.0017 5.0015 2.3644× 10−5 7.8796× 10−5 4.421× 10−3 32
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Figure 4.6: Norm of the gradient versus the number of evaluations of the cost function
(Nofe): (a) when n is the control parameter and Ha = 1; (b) when Ha is the control
parameter and n = 1.5; (c) when both n and Ha are control parameters. For all cases
Br = 1.
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CHAPTER 5

MODEL ORDER REDUCTION OF OPTIMAL CONTROL

PROBLEMS IN FLUID FLOWS

This chapter presents the model order reduction of finite element solutions for the

optimal control problems of two-dimensional incompressible viscous Newtonian and

non-Newtonian fluid flows. The main goal of this chapter is to contribute to the con-

trol of fluid flow problems by the application of the proper orthogonal decomposition

(POD) method with a Galerkin projection based on a continuous formulation. Thus,

the model reduction technique to be used in the sequel is introduced, firstly. Then,

reduced models for the control problems, given in Chapter 4, are investigated.

5.1 Introduction

Numerical solutions of the PDE-constrained optimal control problems require the re-

peated evaluations of high-fidelity solutions of the state and adjoint equations. These

fine-scaled solutions are attained from the discretization of the PDE constraints by

some numerical schemes such as finite difference, finite volume or finite elements.

They require long computational times due to the large size of the resulting algebraic

systems. For example, typical finite element simulations may appeal for hundred of

thousands of degrees of freedom. Moreover, computational cost grows extensively

within the simulation of the solution at several instants of time of a transient PDE or

several values of parameter of a parametrized PDE or combination of both. In order

to decrease the cost of such simulations, reduced order modeling has been devised as

an efficient way of reducing required computational resources. This approach relies
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on the assumption that the characteristics of the system can be described by a small

number of dominant modes (global functions) which encode the information of the

system in detail.

One of the most powerful and probably the mostly used reduced modeling technique

is the proper orthogonal decomposition (POD), which is also named as Karhunen-

Loeve expansion or principal component analysis. POD produces a global basis by

using the samples of system’s trajectories, the so-called ‘snapshots’ which take pic-

tures of the underlying system’s dynamics. These snapshots can be collected from

the sample instants of time, parameters or both depending on the problem. However,

the possibility of exhibiting linear dependency of the snapshots requires an orthog-

onalization procedure. This is achieved by applying a singular value decomposition

(SVD) and selecting left singular vectors corresponding to the leading singular values

as POD basis functions. Then, this ‘intelligent basis’ is used to establish an approx-

imate solution by applying a projection. Due to this projection, high-dimensional

system of equations are replaced with a very low-dimensional one, which enables the

repetitive evaluation of the solution of reduced PDEs with a relatively small compu-

tational cost.

The discretization stage of the model order reduction is an important subject in terms

of obtaining ROM. Usually, studies follow the discretize-then-reduce approach, where

the full order model (FOM) is discretized first then the Galerkin-projection is per-

formed on the discrete setting. In contrast, it is also possible to carry out projection

in continuous formulation, in other words, projection is attained on the weak form

of the problem using the POD basis first, then the discretization is followed. This

approach can be called as the reduce-then-discretize. Although both approaches lead

to the same reduced order model (ROM), the latter provides a user-friendly setting

for the implementation in the automated framework used in this thesis.

When the PDE solver environment works on the variational form of the PDEs, de-

velopment of the ROM in the weak form is also applicable and does not require the

user-defined discretization of the FOM. Hence, the automated optimization frame-

work (dolfin-adjoint), which uses algorithmic differentiation to derive adjoint mod-

els, also becomes adaptable to work with the ROM without requiring any extra cost

90



of user’s discretization. Consequently, the reduced optimal control problem can be

represented in a continuous environment and solved automatically. By this approach,

a user-friendly solution of the reduced optimal control problem is proposed. Even if it

does not provide a computational efficiency or advantages over the former approach,

it proposes a simpler and more trivial way of construction for the ROM.

The literature of the MOR with POD for reducing computing resources are summa-

rized as follows.

The idea of low dimensional approximations for coherent structures of turbulent flows

have been introduced by Lumley [67, 68]. Lumley has stated that the velocity correla-

tions can be orthogonally decomposed and called as the proper orthogonal expansion.

It has been also called as the Karhunen-Loeve expansion by Fukunaga [26] in pat-

tern recognition or the principal component analysis by Nasir [2] in statistics. Later,

Sirovich has also discussed the methodology in detail for supporting its usefulness

in a series of studies [82, 83, 84]. The subject has attracted the attention of many

scientists and illustrative results have been proposed. The analysis of a large eddy

simulation of axisymmetric jet flow by the snapshots has conducted by Kirby [55].

Christensen et al [17] has used the POD based on snapshots generated from a finite-

difference algorithm for the axisymmetric Navier-Stokes equations. More recently,

error estimates for Galerkin POD methods for linear and certain non-linear parabolic

systems have been proved by Kunisch and Volkwein [59, 60]. The have also proposed

a strategy for the application of POD on the optimality systems, so-called OS-POD

in [61]. Specifically, applications of MOR on problems of fluid dynamics have been

reviewed in [63].

In terms of the parameter dependent systems, a reduced basis method has been pro-

posed by Ito and Ravindran [52] for simulation and control of viscous flows. Chris-

tensen et al. [18] have derived the residual functions to measure the quality of the

reduced systems by allowing to weight the snapshots according to the effects of the

parameters. Reduced basis approximation for affinely parametrized elliptic PDEs

haven been studied by Rozza et al. [79]. Certified rapid solution for real-time pa-

rameter estimation has been given by Grepl et al. [33]. Dede has given the posteriori

error estimates for parametrized linear-quadratic optimal control problems in [20].
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Moreover, Chappele et al. have addressed the issue of parameter variations in POD

approximations of time-dependent problems in [14].

Since the POD does not fully reduce the dimension of the problems having non-

linearities, some other variants of applications for the POD are developed such as em-

pirical interpolation method (EIM) [9] or the discrete empirical interpolation method

(DEIM) [15]. These methods determine some interpolation points on the domain,

where the dynamics of the system is mostly carried, either before the projection (EIM)

or after the projection (DEIM). After all, they have to deal with the grid points of the

domain for the evaluation of the interpolation.

However, in this study, since we do not aim to work on the discrete settings of the

problems, the main concern is to implement the POD method in a user-friendly set-

ting. We will discuss the main steps of POD as well as its properties and applications

later in the next section.

5.2 Proper Orthogonal Decomposition (POD)

In this section, the detailed procedure of the POD based model reduction is presented

by focusing on the general form of the steady parametrized PDEs with the parameter

vector ν ∈ D ⊂ Rp which describes the physical properties of the system. Thus, the

system of equations given in (3.1) takes the following form

C(z(~x, ν)) = 0, ~x ∈ Ω ⊂ Rn, ν ∈ D ⊂ Rp. (5.1)

Main stages of the POD application consist of the collection of snapshots, genera-

tion of the POD basis and the projection. Collection of snapshots is composed from

the high-fidelity FEM solutions of (5.1) obtained in Chapter 3 and constitutes the

snapshot matrix with columns representing solutions for several values of the param-

eter(s). In order to motivate second stage, some basic definitions are introduced for

clarification.

Let Z = [z1, . . . , zµ] be a real valued β × µ dimensional snapshot matrix of rank e,
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where each column represents coefficients in the FEM approximations so that

zi =

β∑
k=1

zki φk with zki = 〈 zi , φk 〉 , zi = (zki ).

The inner product for the space of square integrable functions leads to the definition

of a weighted inner product for FEM approximations as follows:

〈 zi , zj 〉L2(Ω) =

∫
Ω

zi zj dΩ

=

∫
Ω

(
β∑
k=1

zki φk

)(
β∑
l=1

zljφl

)
dΩ

= zTi Wzj

= 〈 zi , zj 〉W ,

where W = (Wkl) is the weight matrix with components Wkl =
∫

Ω
φlφkdΩ rep-

resenting the symmetric positive definite mass matrix of the corresponding finite

element basis functions. Then, considering the matrix Z̄ = W1/2Z, the Singular

Value Decomposition (SVD) of Z̄ guarantees the existence of real numbers σ1 ≥
σ2 ≥ · · · ≥ σe > 0 and orthogonal matrices Ῡ ∈ Rβ×β with columns {ῡi}βi=1 and

Π̄ ∈ Rµ×µ with columns {π̄i}µi=1 such that

Ῡ
T
Z̄Π̄ =

D 0

0 0

 =: Σ ∈ Rβ×µ,

where D = diag(σ1, . . . , σe) ∈ Re×e. Moreover, the set of vectors {ῡi}ei=1 and

{π̄i}ei=1 are left and right singular vectors of Z̄ corresponding to its non-zero singular

values and they are also eigenvectors of Z̄Z̄T and Z̄T Z̄, respectively, satisfying

Z̄π̄i = σiῡi and Z̄T ῡi = σiπ̄i

for i = 1, . . . , e. So that, the reduced SVD of Z̄ is given as

Z̄ = ῩeD(Π̄
e
)T ,

where Ῡ
e

= (υi)
e
i=1 and Π̄

e
= (πi)

e
i=1. Alternatively, it can also be written as

Z̄ = Ῡ
e
B̄e with B̄e = D(Π̄

e
)T ∈ Re×µ so that the column space of Z̄ can be
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represented in terms of Ῡ
e. Moreover, orthogonality of Ῡ indicates that

z̄j =
e∑
i=1

B̄e
ijῩi =

e∑
i=1

(
D
(
Π̄
e)T)

Ῡi

=
e∑
i=1

((
Ῡ
e)T

Ῡ
e
D
(
Π̄
e)T)

ij
Ῡi

=
e∑
i=1

((
Ῡ
e)T

Z̄
)
ij

Ῡi

=
e∑
i=1

(
β∑
k=1

Ῡ
e
kiZ̄kj

)
Ῡi =

e∑
i=1

〈
Ῡi , z̄j

〉
Rβ Ῡi.

Knowing z̄j = W1/2zj and Ῡi = W1/2Υi, the following relation is obtained

zj =
e∑
i=1

〈 zj , Υi 〉W Υi,

which asserts that the high-fidelity solutions collected as the columns zj of the matrix

Z can be written as linear combination of the left singular vectors of the matrix Z̄.

This result states the importance of SVD as an orthogonal basis selection and can be

summarized in the following theorem.

Theorem 1 (Theorem 1.3.2 [99]). Let Z ∈ Rβ×µ be a given matrix with rank e ≤
min{β, µ}, W be a symmetric, positive definite matrix, Z̄ = W1/2Z and l ∈ {1, . . . , e}.
Further, let Z̄ = Ῡ

T
ΣΠ̄ be the singular value decomposition of Z̄, where Ῡ =

[ῡ1, . . . , ῡβ] ∈ Rβ×β , Π̄ = [π̄1, . . . , π̄µ] ∈ Rµ×µ are orthogonal matrices and the

matrix Σ has the form

Ῡ
T
Z̄Π̄ =

D 0

0 0

 =: Σ ∈ Rβ×µ.

Then the solution to

(Pl
W) max

υ̃1,...,υ̃l∈Rβ

l∑
i=1

µ∑
j=1

∥∥〈 zj , υ̃i 〉W∥∥2

Rβ s.t. 〈 υ̃i , υ̃j 〉 = δij for 1 ≤ i, j ≤ l

is given by the vectors υi = W−1/2ῡi, i = 1, . . . , l. Moreover,

argmax(Pl
W) =

l∑
i=1

σ2
i =

l∑
i=1

τi.

The detailed proof can be found in [99].
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In the light of above theorem, it becomes clear that the vectors {υi}γi=1 for γ ∈
{1, . . . , µ} are named as POD basis of rank γ. Also, the theorem reveals the optimal-

ity of this basis in the mean among all rank γ approximations to the columns of Z.

For the choice of γ following remark becomes crucial.

Remark 1. The determination of the size of the reduced basis is also crucial part in

POD. This selection is performed according to an energy criterion given as

εPOD(γ) =

∑γ
i=1 τi∑n
i=1 τi

.

Hence, γ is chosen to be the minimum integer satisfying

εPOD(γ) ≥ εtol,

for a given tolerance, 0 < εtol ≤ 1.

The procedure for the generation of the POD basis is summarized in Algorithm 3,

which constitutes the second stage of the process of reducing model order.

Algorithm 3 POD basis of rank e with a weighted inner product

1: procedure POD({zi}µi=1 ⊂ Rβ , W ∈ Rβ×β)

2: Set Z = [z1, . . . , zµ] ∈ Rβ×µ;

3: Determine Z̄ = W1/2Z ;

4: Compute singular value decomposition [Ῡ,Σ, Π̄] = svd(Z̄);

5: Set υi = W−1/2Ῡ.,i ∈ Rβ and τi = Σ2
ii for i = 1, . . . , e;

6: Compute the energy criterion ε(e)POD =
∑e
i=1 τi∑d
i=1 τi

;

7: return POD basis {υi}ei=1, eigenvalues {τi}ei=1 and ratio ε(e)POD.

8: end procedure

Finally, at the last stage, the solution of the PDE system is projected in a low-

dimensional space spanned by the set of POD basis functions. Recalling the Galerkin

projection, method of weighted residual form in (3.5) is reproduced by the POD basis

{υi}γi=1 to find the reduced solution vector z̃ = (z̃i):〈
υj , C

(
γ∑
i=1

z̃iυi

)〉
= 0, (5.2)

which results in the reduced system of equations.
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In the next section, Section 5.3, reduced order modeling is applied for the FEM solu-

tions of the distributed control of Navier-Stokes equations using POD method. Then,

the same approach is used for the FEM solutions of the parameter control of the MHD

flow and the heat transfer equations with temperature-dependent viscosity and also

power-law fluid flow in Section 5.4 and in Section 5.5, respectively. Results of the

numerical simulations and analyses are presented in Section 5.6 for the comparison

of FOM and ROM solutions of three problems.

5.3 Reduced Model for Distributed Control of Navier-Stokes Equations

The reduced model of the FEM solutions of the Navier-Stokes equations is established

as a steady parametrized PDEs in terms of both velocity and pressure variables. Hav-

ing obtained the high-fidelity solutions in Section 3.2, POD bases are generated by the

help of Algorithm 3. Then, projection onto the low-dimensional space is conducted

for the control problem as wells as the PDEs.

Let {~ξj}γvj=1 and {θl}γpl=1 be the POD basis functions for the velocity and pressure

functions so that

~̃v ≈
γv∑
j=1

ṽj~ξj and p̃ ≈
γp∑
l=1

p̃lθl, (5.3)

where ṽj and p̃l are the components of the vectors ṽ and p̃. It is also noted that the

function ~f and ~u have to be approximated in the reduced space, which is spanned by

the POD basis. These approximations can be written as follows:

~̃f ≈
γv∑
j=1

f̃j~ξj with f̃j =

∫
Ω

~f · ~ξj dΩ, (5.4)

and

~̃u ≈
γv∑
j=1

ũj~ξj with ũj =

∫
Ω

~u · ~ξj dΩ.

Then, following the idea of Galerkin, test functions (~ϑ, ρ) are chosen the same as

the POD basis functions and the weak formulation of the equations in (4.12)–(4.14)
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becomes 〈
ν∇~̃v , ∇~ϑ

〉
Ω

+
〈(

~̃v · ∇
)
~̃v , ~ϑ

〉
Ω
−
〈
p̃ , ∇ · ~ϑ

〉
Ω

−
〈
~̃f , ~ϑ

〉
Ω
−
〈
~̃u , ~ϑ

〉
Ω

= 0, (5.5)〈
∇ · ~̃v , ρ

〉
Ω

= 0, (5.6)

where the boundary integrals vanish. This is due to the fact that POD basis generated

from the solutions vanishing on the boundary.

Thus, substitution of the reduced approximations in (5.3) and (5.4) into the equations

(5.5) and (5.6) leads to〈
ν∇

γv∑
j=1

ṽj~ξj , ∇~ξi

〉
Ω

+

〈(
γv∑
j=1

ṽj~ξj · ∇

)
γv∑
j=1

ṽj~ξj , ~ξi

〉
Ω

−

〈
γp∑
l=1

p̃lθl , ∇ · ~ξi

〉
Ω

−

〈
γv∑
j=1

f̃j~ξj , ~ξi

〉
Ω

= 0,〈
∇ ·

γv∑
j=1

ṽj~ξj , θk

〉
Ω

= 0

for any integers i and j in {1, 2, . . . , γv} and k and l in {1, 2, . . . , γp}. In order to

obtain the reduced algebraic form of the problem, introducing the components of

the reduced matrices and the vectors is necessary: Let M̃ = (M̃ij) , K̃ = (K̃ij),

D̃ = (D̃ik), and Ñ(ṽ) denote the reduced matrices whose entries are

M̃ij =

∫
Ω

~ξj · ~ξi dΩ,

K̃ij = ν

∫
Ω

∇~ξj : ∇~ξi dΩ,

D̃ik = −
∫

Ω

θk

(
∇ · ~ξi

)
dΩ,

Ñ(ṽ)ij =

γv∑
r=1

∫
Ω

(~̃vr~ξr · ∇)~ξj · ~ξi

for i and j in {1, 2, . . . , γv} and k and l in {1, 2, . . . , γp}. In fact, these matrices can

also be derived from the discretized full order model in the discretize-then-reduce

approach via the use of

M̃ = ΥT
v MΥv,

where columns of the matrix Υv are the POD basis vectors of the velocity and M is

the corresponding mass matrix of the full order model.
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Nevertheless, the algebraic form of the discrete reduced non-linear problem reads:K̃ + Ñ(ṽ) D̃

D̃T 0

ṽ

p̃

 =

M̃(f̃ + ũ)

0

 , (5.7)

which stands for the reduced formulation of (3.11). The treatment for the boundary

evaluation of the pressure follows the idea in Section 3.2 and POD basis generation is

maintained for the Lagrange multiplier c as well. Thus, the reduced non-linear system

in (5.7) turns into 
K̃ + Ñ(ṽ) D̃ 0

D̃T 0 r̃T

0 r̃ 0




ṽ

p̃

c̃

 =


M̃(f̃ + ũ)

0

0

 , (5.8)

where r̃k =
∫

Ω
d̃ θk dΩ for 1 ≤ k ≤ γp are the components of r̃, and d̃ is the POD

basis for the Lagrange multiplier. Hence, the reduced problem simply becomes:

solve C̃(z̃, ũ) = 0 for z̃ = (ṽ, p̃, c̃)T , (5.9)

where C̃(z̃, ũ) is the reduced discrete non-linear system of N-S equations. Solution

of (5.9) is carried out using Newton’s method and this procedure may be named as

reduce-then-discretize-then-linearize.

Meanwhile, the reduced objective function formulated with the POD basis leads to

the discrete form

JR(z̃, ũ) =
αv
2

(ṽ − ṽd)
TM̃(ṽ − ṽd) +

αu
2

ũTM̃ũ

so that the reduced discretized optimal control problem takes the form

minimize
u

JR(z̃, ũ)

subject to C̃(z̃, ũ) = 0.

Furthermore, the same procedure with the FOM is carried out for the ROM of control

problem as well and the discrete adjoint equations are derived as follows

C̃∗z̃(z̃(ũ),u)Λ̃ = −JRz̃ (z̃(u),u), (5.10)

where 
K̃T + ÑT (ṽ) D̃ 0

D̃T 0 r̃T

0 r̃ 0



λ̃

η̃

ẽ

 =


−αvM̃(ṽ − ṽd)

0

0

 , (5.11)
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has to be solved for the reduced adjoint variable Λ̃ = (λ̃, η̃, ẽ). Herewith, the opti-

mization algorithm, L-BFGS, given in Section 4.2 is carried out again, but now for a

very low-dimensional system of equations.

5.4 Reduced Model for Parameter Control of MHD Flow and Heat Transfer

with Temperature Dependent Viscosity

Here in this section we analyze the reduced order modeling of the FEM solutions

of the MHD flow and heat transfer with temperature dependent viscosity as a steady

parametrized PDEs. Pursuing Algorithm 3 and using the fine-scaled solutions ob-

tained in Section 3.3, POD bases of the velocity and temperature variables are con-

structed. Then, control problem as well as the PDE constraints are projected to the

space spanned by these POD basis functions.

The ROM approximation z̃ = (ω̃, T̃ ) of the solution (ω, T ) can be written as

ω̃ =

γω∑
j=1

ω̃jξj and T̃ =

γT∑
l=1

T̃lθl, (5.12)

where {ξj}γωj=1 and {θl}γTl=1 are the POD basis functions for ω and T , respectively.

Reduced variational formulation is found by writing the forms in (3.18)–(3.19) by

using the POD basis functions as test functions, namely ϑ and ρ; this yields

〈 µ̃∇ω̃ , ∇ϑ 〉Ω −
〈

1− Ha2

1 +m2
ω̃ , ϑ

〉
Ω

= 0, (5.13)

〈
∇T̃ , ∇ρ

〉
Ω
−

〈
Brµ̃

[(
∂ω̃

∂x

)2

+

(
∂ω̃

∂y

)2
]
, ρ

〉
Ω

−
(

Ha2Br
1 +m2

)〈
ω̃2 , ρ

〉
Ω

+

〈
ω̃

ω̃m
, ρ

〉
Ω

= 0, (5.14)

where µ̃ is the reduced variable viscosity, and

µ̃ = e−BT̃ ≈
γT∑
l=1

e−BT̃lθl.

Since it is temperature dependent viscosity, it is approximated by the POD basis of

temperature.
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It is notable that POD basis generated from the snapshots having homogeneous Dirich-

let boundary condition vanishes on the boundary; and hence, the boundary integrals

become zero as in the FOM model by FEM basis.

Substituting the low-dimensional approximations in (5.12) into the equations (5.13)-

(5.14) results in〈
µ̃

γω∑
j=1

ω̃j∇ξj , ∇ξi

〉
Ω

−

〈
1− Ha2

1 +m2

γω∑
j=1

ω̃jξj , ξi

〉
Ω

= 0,〈
γT∑
l=1

T̃l∇θl , ∇θk

〉
Ω

−

〈
Brµ̃

[(
γω∑
j=1

ω̃j∇ξj

)
·

(
γω∑
j=1

ω̃j∇ξj

)]
, θk

〉
Ω

−
(

Ha2Br
1 +m2

)〈( γω∑
j=1

ω̃jξj

)2

, θk

〉
Ω

+

〈
1

ω̃m

γω∑
j=1

ω̃jξj , θk

〉
Ω

= 0

for i and j in {1, 2, . . . , γω} and k and l in {1, 2, . . . , γT}. Before giving the reduced

form of the discrete algebraic problem, components of the reduced vector and matri-

ces, namely, d̃ = (d̃i), M̃ = (M̃ij) and S̃ = (S̃kl) are introduced as follows:

d̃i =

∫
Ω

ξi dΩ, 1 ≤ i ≤ γω,

M̃ij =

∫
Ω

ξjξi dΩ 1 ≤ i, j ≤ γω,

S̃kl =

∫
Ω

∇θl∇θk dΩ 1 ≤ k, l ≤ γT .

Furthermore, the non-linear terms K̃(T̃), D̃(ω̃, T̃), Ñ(ω̃) and P̃(ω̃) have the entries

defined by

K̃(T̃ )ij =

γT∑
r=1

e−BT̃r
∫

Ω

θr∇ξj∇ξi dΩ,

D̃(ω̃, T̃ )kj =

γT∑
r=1

e−BT̃rωj

∫
Ω

θr

(
∂ξj
∂x

+
∂ξj
∂y

)
θk dΩ,

Ñ(ω̃)kj =

∫
Ω

ω̃jξjθk dΩ,

P̃ (ω̃)kj =

∫
Ω
ξjθk dΩ

1
L

∫
Ω

(
∑γω

l=1 ω̃lξl) dΩ
,

for i and j in {1, 2, . . . , γω} and k in {1, 2, . . . , γT}.

Alternatively, projection can be performed on the discretized FOM by the substitution

of the discrete approximation formulas,

ω = Υωω̃ and T = ΥT T̃, (5.15)
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where Υω and ΥT are the POD basis matrices having columns as basis coefficients

of the velocity and the temperature, respectively. Therefore, the algebraic form of the

discrete problem in reduced form is then formulated asc1M̃ 0

0 S̃

ω̃
T̃

+

 K̃(T̃ )ω̃ − d̃

c2Ñ(ω̃)ω̃ − BrD̃(ω̃, T̃ )ω̃ + P̃(ω̃)ω̃

 = 0.

As a result, the reduced problem given by discrete non-linear system of equations

reads:

solve C̃(z̃) = 0 for z̃ = (ω̃, T̃). (5.16)

Pursuing the structure in Section 5.3, reduce-then-discretize-then-linearize approach

is used by applying the Newton method. Apart from the previous application of MOR

on the control problem of Navier-Stokes equations, where the control is a vector field

function, the current MHD problem considers the control as a constant variable. Thus,

the control does not need to be approximated in the low-dimensional space.

Having reduced the constraint PDEs, dimension reduction is also applied to the ob-

jective function of the optimal control problem. Hence, substituting the POD approx-

imations into (4.20) leads to the following discrete reduced cost function:

JR(z̃,u) =
αω
2

(ω̃ − ω̃d)TM̃(ω̃ − ω̃d) +
αT
2

(T̃− T̃d)
TM̃(T̃− T̃d)

+
αu
2
‖u‖2 |Ω|. (5.17)

Therefore, the problem in (4.24)– (4.25) turns into the discrete constrained optimiza-

tion problem

minimize
u∈U

JR(z̃,u) (5.18)

subject to C̃(z̃,u) = 0. (5.19)

Similarly, the discrete adjoint equations of the reduced model can be written in the

form

C̃∗z̃(z̃(ũ),u)Λ̃ = −JRz̃ (z̃(u),u), (5.20)

where

C̃z̃(z̃(u),u) =

c1M̃ 0

0 S̃

+

K̃(T̃) K̃T̃ (T̃)ω̃

G̃(z̃) −BrD̃T̃ (ω̃, T̃)ω̃
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with

G̃(z̃) = c2

[
∂Ñ(ω̃)

∂ω̃
ω̃ + Ñ(ω̃)

]
−Br

[
∂D̃(ω̃, T̃)

∂ω̃
ω̃ + D̃(ω̃, T̃)

]
+
∂P̃(ω̃)

∂ω̃
ω̃+P̃(ω̃),

which is to be solved for the reduced adjoint Λ̃ = (λ̃, η̃).

Finally, the reduced optimal control is achieved by the implementation of the opti-

mization algorithm given in Section 4.2.

5.5 Reduced Model for Parameter Control of Power-Law Fluid Flow and Heat

Transfer

This section of the thesis constructs the reduced order model for the power-law fluid

flow and heat transfer equations which constitute a steady parametrized problem. As

in Section 5.4, POD bases of the velocity and temperature variables are generated

by following Algorithm 3 and using high-fidelity solutions obtained in Section 3.4.

Afterwards, reduced control problem and reduced constraint equations are obtained

by projection to the low-dimensional space spanned by the POD basis functions.

Similarly, the reduced approximation z̃ = (ω̃, T̃ ) of the solution (ω, T ) can be formed

as

ω̃ =

γω∑
j=1

ω̃jξj and T̃ =

γT∑
l=1

T̃lθl, (5.21)

where {ξj}γωj=1 and {θl}γTl=1 are the POD basis functions for ω and T , respectively.

By choosing the test functions, namely ϑ and ρ, as POD basis functions, reduced

variational forms are derived for the forms in (3.26)–(3.27) as follows:

〈 µ̃∇ω̃ , ∇ϑ 〉Ω +
〈
−1 + Ha2ω̃ , ϑ

〉
Ω

= 0, (5.22)〈
∇T̃ , ∇ρ

〉
Ω
− 〈 1 , ρ 〉∂Ω −

〈
Brµ̃

[(
∂ω̃

∂x

)2

+

(
∂ω̃

∂y

)2
]
, ρ

〉
Ω

−
(
Ha2Br

) 〈
ω̃2 , ρ

〉
Ω

+

〈
4 ω̃

ω̃m
, ρ

〉
Ω

= 0, (5.23)

where µ̃ is the reduced variable viscosity, and

µ̄ =

[(
∂ω̃

∂x

)2

+

(
∂ω̃

∂y

)2
]n−1

2

≈

(
γω∑
j=1

ω̃2
j [(ξj)x + (ξj)y]

)n−1
2

.
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Now, since it is a velocity dependent viscosity, its approximation is obtained by the

POD basis functions of the velocity.

The low-dimensional approximations in(5.21) are substituted into the equations(5.22)–

(5.23); this yields 〈
µ̃

γω∑
j=1

ω̃j∇ξj , ∇ξi

〉
Ω

+

〈
−1 + Ha2

γω∑
j=1

ω̃jξj , ξi

〉
Ω

= 0,〈
γT∑
l=1

T̃l∇θl , ∇θk

〉
Ω

− 〈 1 , θk 〉∂Ω −

〈
Brµ̃

[(
γω∑
j=1

ω̃j∇ξj

)
·

(
γω∑
j=1

ω̃j∇ξj

)]
, θk

〉
Ω

−
(
Ha2Br

)〈( γω∑
j=1

ω̃jξj

)2

, θk

〉
Ω

+

〈
4

ω̃m

γω∑
j=1

ω̃jξj , θk

〉
Ω

= 0

for i and j in {1, 2, . . . , γω} and k and l in {1, 2, . . . , γT}. We refer to Section 5.4 for

components of the reduced vectors and matrices except the vector ẽ = (ẽk) and the

entries of the reduced non-linear stiffness matrix K̃(ω̃), which are given as

ẽk =

∫
∂Ω

θk dS,

K̃(ω̃)ij =

∫
Ω

(
γω∑
k=1

ω̃2
k [(ξk)x + (ξk)y]

)n−1
2

∇ξj∇ξi dΩ.

The reduced form of the discrete algebraic problem can also be obtained by the pro-

jection in the discretized FOM by defining discrete approximations given in (5.15) so

that the discrete form of the ROM is derived as

C̃(z̃) =

F̃(ω̃)

G̃(T̃)

 =

K̃(ω̃)ω̃ + Ha2M̃ω̃ − d̃

S̃T̃− (̃f + ẽ)

 = 0

for z̃ = (ω̃, T̃), where the vector f̃ = (f̃k) has the components

f̃k =

∫
Ω

Brµ̃

[(
∂ω̃

∂x

)2

+

(
∂ω̃

∂y

)2
]
θk dΩ +

∫
Ω

(
Ha2Br

)
ω̃2 θk dΩ−

∫
Ω

4 ω̃

ω̃m
θk dΩ,

for 1 ≤ k ≤ γT . Then, solution procedure in the FOM is followed by the ROM as

well, again in a decoupled way.

After obtaining the discretized reduced constraint equations, reduced cost function

JR(z̃,u) is formulated as in (5.17) for controlling the power-law fluid flow as well.
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Thus, the reduced control problem has the same structure in (5.18),

minimize
u∈U

JR(z̃,u)

subject to C̃(z̃,u) = 0.

Accordingly, the reduced adjoint equation has to be formulated as

C̃∗z̃(z̃(u),u)Λ̃ = −JRz̃ (z̃(u),u), (5.24)

where

C̃z̃(z̃(u),u) =

F̃z̃

G̃z̃

 =

∂F̃(ω̃)
∂ω̃

0

0 ∂G̃(T̃ )

∂T̃

 .
Thus, the reduced adjoint problem in (5.24) for Λ̃ = (λ̃, η̃) becomes

C̃z̃(z̃(u),u)∗

λ̃
η̃

 = −

αω̃M̃ω̃(ω̃ − ω̃d)
αTM̃T̃ (T̃− T̃d)

 ,
which is to be solved for the reduced adjoint Λ̃ = (λ̃, η̃).

After all, solution of the reduced optimal control problem is attained by the perform-

ing the optimization algorithm given in Section 4.2. In the next part, the simulation

results for the reduced modeling of the FEM solutions of the control problems inves-

tigated so far are presented.

5.6 Numerical Results

This section presents numerical results obtained via the ROM solutions of the control

problem of steady, parametrized, two-dimensional and laminar flow of incompress-

ible Newtonian and non-Newtonian fluids applying the method of POD. Firstly, nu-

merical results of the MOR application to the FEM solutions of the Navier-Stokes

equations are presented in Section 5.6.1. Next, results of the analyses of the reduced

models for the control of MHD flow and heat transfer with temperature dependent

viscosity and for the power-law fluid flows are given in Section 5.6.2 and in Sec-

tion 5.6.3, respectively. As being steady parametrized problems, POD bases of three

problems are generated over the snapshots obtained for various values of the prob-

lem parameters. Singular values and as well as the resulting POD bases are depicted.
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Simulations performed for the FOM in Section 4.6 are implemented for the ROM

under the same conditions and stopping criteria. Comparisons between the FOM and

the ROM are also provided to see the effectiveness of the MOR.

5.6.1 POD Application to Navier-Stokes Equations

The reduced modeling of the distributed control of the Navier-Stokes equations is

implemented with the POD application. Simulations are performed for the parameter

ν ∈ [1/300, 1], that is, snapshots are saved for several values of ν,

s(ν) =
{

1, 1
10
, 1

20
, 1

30
, 1

40
, . . . , 1

300

}
,

where s(·) denotes the set of values of the given parameter. Hence, card(s(ν)) =

31 shows the number of FEM solutions in the snapshot matrices. Singular values

obtained for the POD generation are shown in Figure 5.1, where the sharp decrease

can be seen clearly. The energy of the system can be well approximated with the first

two singular values and its corresponding left singular vectors included in the POD

basis. POD basis of the velocity as vector fields are depicted in Figure 5.2. Since the
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Figure 5.1: Singular values of velocity and pressure.

leading singular values are expected to be responsible for the leading basis elements

in the approximation, first POD basis function reflects the main characteristic of the

velocity. As expected, second basis provides a bit more detailed information about the

dynamics. Other remaining singular values do not contribute significant improvement
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on the characterization of the problem. More descriptive figures are given by contours

of the basis functions of velocity components in Figure 5.3.

First POD basis function of velocity Second POD basis function of velocity

Figure 5.2: POD basis functions of velocity vector field.

In Figure 5.4, POD basis functions for pressure are also shown indicating that first

basis function can almost catch the overall dynamics alone. Noting the first singular

values of pressure, it can be inferred that the second basis function corresponding to

the singular value σ = 1.7396×10−5 carries very small information about the dynam-

ics of the pressure. Meanwhile, contours corresponding to the POD basis functions

of pressure given in Figure 5.5 provide more interpretive data about this basis.

In Table 5.1, CPU times are given for FOM and ROM solutions in order to interpret

the efficiency of the POD, where the speed-up with the POD is calculated according

to the ratio

Speed-up =
CPU time for FOM
CPU time for ROM

.

The results in Table 5.1 also show that as ν decreases computing time increases.

However, this cost is minimized by the ROM with POD indicated by the given speed-

up values.

Test controls are conducted for regaining desired velocity profiles corresponding to ν

values, νd = 0.1, 0.05, 0.01, 0.005, 0.001, given in Table 5.2. It is clear that ROM is

capable of finding optimal states with relatively small number of iterations compared

to the FOM results given in Table 4.1 of Chapter 4.

For a comprehensive understanding of the test results, the case for the desired state
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Figure 5.3: Contours of POD basis functions of velocity vector components.

when ν = νd = 0.005 is analyzed in detail. The contours of the components of the

controlled velocity in ROM are presented in Figure 5.6 which depicts almost the same

results with Figure 4.2 in the FOM. Moreover, observations are maintained with the

required control field and its components given in Figure 5.7 and Figure 5.8, which

demonstrate that the optimal control in ROM is achieved with the same optimal states

and control function given in Figure 4.3(c) and Figure 4.3(d).

5.6.2 POD Application to Control of MHD Flow and Heat Transfer with Tem-

perature Dependent Viscosity

In this section, the control problem of MHD flow and heat transfer with temperature

dependent viscosity is subjected to the model reduction with POD application. Con-
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Figure 5.4: POD basis functions of pressure.
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Figure 5.5: Contours of POD basis functions of pressure.

sidering the equations in (3.16)–(3.17) as steady parametrized PDEs, the high-fidelity

solutions obtained in Section 3.5.2 are replicated for various values of the parameters

for the generation of the snapshots. Comparisons for the optimal control as well as

the FEM solutions are provided.

Snapshot matrices of velocity and temperature are sampled based on the solutions for

the following values of the parameters:

s(Ha) = {0, 1, . . . , 10},

s(Br) = {0, 1, 2},

s(B) = {0, 1, 2},

s(m) = {0, 1}.
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Table 5.1: FOM-ROM Errors and CPU times for the solutions of N-S equations and
speed-up with POD

ν L2-Error v1 L2-Error v2 L2-Error p CPU-FOM CPU-ROM Speed-up
1.0 2.9499× 10−6 2.9521× 10−6 2.5867× 10−3 2.4228 3.2201× 10−1 7.52

0.05 5.0746× 10−6 5.0169× 10−6 1.4015× 10−3 2.3523 2.1646× 10−1 10.86

0.01 1.0266× 10−5 1.0142× 10−5 4.7506× 10−5 3.1392 3.4542× 10−1 9.09

0.005 1.8720× 10−5 1.9718× 10−5 8.0802× 10−5 3.1532 2.5522× 10−1 12.35

0.001 9.7841× 10−5 9.7345× 10−5 2.1895× 10−4 5.6834 1.7702× 10−1 32.10

Table 5.2: Distributed control for regaining the desired states given below with the
uncontrolled initial state of ν = 1.0 in ROM

νd ‖vopt
1 − vd1‖L2 ‖vopt

2 − vd2‖L2 J Tit
0.1 2.0121× 10−3 2.0120× 10−3 1.502× 10−4 2
0.05 2.1526× 10−3 2.1526× 10−3 1.719× 10−4 2
0.01 2.2676× 10−3 2.2676× 10−3 1.907× 10−4 2
0.005 2.2822× 10−3 2.2822× 10−3 1.932× 10−4 2
0.001 2.2938× 10−3 2.2938× 10−3 1.952× 10−4 2

The cartesian product

s(Ha,Br, B,m) = s(Ha)× s(Br)× s(B)× s(m),

which corresponds to the set of values for the parameters in the snapshot matrices.

Thus,

card(s(Ha,Br, B,m)) = card(s(Ha))× card(s(Br))× card(s(B))× card(s(m))

= 11× 3× 3× 2 = 198

shows the number of solutions that are generated for the snapshot matrices. It is

noticeable that the sample values of the Hall parameter m is less than the others. This

is because of the fact that m and Ha dominate the same terms in the system, thus it is

not necessary to extend the samples in both parameters.

The SVD is applied to the velocity and temperature snapshots separately and the

corresponding singular values are given in the Figure 5.9. Therein, it reports the first

80 singular values to see the rapid decay and stagnation for both functions. The first

5 singular values are presented to see clearly how many singular values are sufficient

for satisfying the energy criterion for velocity and temperature. Moreover, since the

singular values of the temperature decreasing more rapidly than the velocity, POD

algorithm (see Algorithm 3) generates four basis functions for the velocity and three

basis functions for the temperature for a given tolerance of the energy criterion.
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Figure 5.6: Reduced controlled velocity
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Figure 5.7: Components of the reduced control.

The four POD basis functions of the velocity are given in Figure 5.10. As expected,

first basis function reflects the main behavior about the velocity. The more the number

of basis increases the more they include the detailed information for the velocity.

Also, the contours of the velocity POD basis functions are reported in Figure 5.11 to

see the behavior clearly.

Next, the three POD basis functions for temperature and the corresponding isolines

are presented in Figure 5.12 and in Figure 5.13, respectively. Similar behavior as

in the case for the velocity is obtained for the temperature as well. That is, by the

increase in the number of basis functions, POD basis starts to include more detailed

information of the solution.
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Figure 5.8: Reduced controlled velocity vector field and control vector field.
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Figure 5.9: Singular values of velocity and temperature.

Error plots of the reduced order model with the increasing number of basis functions

are given in Figure 5.14, which indicates that the POD reduced model can approxi-

mate the solution even if small number of basis functions are used. Similar results

supporting the accuracy of the reduced order solution are obtained for all values of

the parameters in the snapshot matrix. In addition, the efficiency of the application

of ROM with POD is verified in Table 5.3 which provides the CPU times and the

speed-ups of the solutions for various values of the parameters of the problem. More-

over, the largest speed-up is obtained for the case when the viscosity parameter B is

large, B = 2.0, which is the coefficient of the exponential non-linearity. However,

the overall speed-up for the MHD problem compared to the N-S equations is small;

but this is due to the high non-linearity of the problem.
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Figure 5.10: POD basis functions of velocity.

Numerical simulations performed for the FOM of the optimal control problem are

reconducted for the ROM in order to make comparison. Same regularization param-

eters are chosen as in the FOM. The ROM solutions satisfactorily reconstruct the

high-fidelity solutions for the control problem by using a small number of basis func-

tions.

Among all the results corresponding to the reduced control problem, most important

ones are reported. For example, the total number of iterations (Tit), the optimal pa-

rameter values and the cost function value are exactly the same as the full order model

for one single parameter control. The differences occur only in ‖ω̃opt − ω̃d‖∞ and

‖T̃opt − T̃d‖∞. This is surely expected due to the projection error inherently included

from the beginning of the optimization. Moreover, results given for ‖ω̃opt− ω̃d‖∞ and

‖T̃opt − T̃d‖∞ state the convergence of the optimization algorithm up to a given toler-
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Figure 5.11: Contours of POD basis functions of velocity.

ance to the reduced desired state. Hence, it will not be appropriate to compare these

values with full order model since they have desired states having different accuracy

(representation). Below, results are summarized in two parts: single and pairwise

control.

Using a single control, first, simulations for the ROM of the control problem with

the Hartmann number as the control variable are summarized in Table 5.4. Optimal

values indicate that the POD basis exactly reflects the dynamics of the problem and

solutions attain optimal states at the desired (designed) values of the parameters. Sec-

ond, reduced model is tested for the control with the Brinkman number in Table 5.5

and they are all compatible with the FOM results obtained in Table 4.5. Third, similar

satisfactory results are obtained for the ROM of the control problem with the viscos-

ity parameter B as the control in Table 5.6. Final simulation of the single parameter
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Figure 5.12: POD basis functions of temperature.

control is implemented for the Hall parameter m, which is sensitive to the value of

the corresponding regularization parameter. Thus, tests are conducted twice, one for

αm = 0 and the other for αm = 10−5 in Table 5.7 and in Table 5.8. These results

are very close to the ones in Table 4.3 and Table 4.4, respectively, which shows that

solutions of the ROM have also same sensitivities as in the FOM.

Simulations are also performed for the pairwise control of the parameters. First, the

pairwise control in ROM is executed for the control problem with Hartmann number

and viscosity parameter as the control variables. The results are shown in Table 5.9

and verify that optimal states are significantly close to desired states. The difference

between the optimal values of the FOM in Table 4.7 and ROM in Table 5.9 just

appears at least after the third decimal digit. For instance, in order to obtain the

desired state for the case in which Ha = 1.0 and B = 0.0, optimal state in ROM
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Figure 5.13: Isolines of POD basis functions of temperature.

is attained at Ha = 0.9491 and B = 0.0658 while the optimality is achieved Ha =

0.9494 and B = 0.0654 in FOM.

Second, pairing of Brinkman number and the viscosity parameter is reported in Ta-

ble 5.10. The optimal values of ROM are almost exactly same as the FOM given in

Table 4.8.

Third, optimal control in ROM is examined with the pairwise control of Hall pa-

rameter and Brinkman number as the control variables; and results are reported in

Table 5.11. Although optimal values start to change after the second decimal digit,

the desired states are achieved at the optimal states. It is worth noting that although

Hall parameter values m for m > 1 are not covered in the snapshot set, the generated

POD bases are capable to reflect the solutions for those as well.
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Table 5.3: FOM-ROM Errors and CPU times for solutions of the MHD equations and
heat transfer with temperature dependent viscosity and speed-up with POD

(Ha,m,Br, B) ‖ω − ω̃‖L2 ‖T − T̃‖L2 CPU-FOM CPU-ROM Speed-up
(1.0, 1.0, 1.0, 1.0) 1.6218× 10−6 9.0379× 10−6 2.4506× 10−1 8.6063× 10−2 2.84

(3.0, 1.0, 1.0, 1.0) 1.1036× 10−6 8.6997× 10−7 2.2383× 10−1 8.6133× 10−2 2.61

(5.0, 1.0, 1.0, 1.0) 9.0775× 10−7 8.4900× 10−6 2.1916× 10−1 7.0967× 10−2 2.97

(10.0, 1.0, 1.0, 1.0) 1.2821× 10−6 4.6399× 10−6 1.6395× 10−1 6.6184× 10−2 2.43

(1.0, 3.0, 1.0, 1.0) 1.7540× 10−6 1.0209× 10−5 2.4358× 10−1 8.8826× 10−2 2.74

(1.0, 5.0, 1.0, 1.0) 1.7761× 10−6 1.0395× 10−5 2.4415× 10−1 8.8721× 10−2 2.75

(1.0, 8.0, 1.0, 1.0) 1.7846× 10−6 1.0465× 10−5 2.4381× 10−1 8.9996× 10−2 2.70

(1.0, 1.0, 2.0, 1.0) 2.0096× 10−6 5.7881× 10−6 2.4495× 10−1 8.5833× 10−2 2.85

(1.0, 1.0, 1.0, 2.0) 2.5921× 10−6 5.5032× 10−6 3.2410× 10−1 9.9516× 10−2 3.25

Fourth, control in the ROM is implemented with the Hall parameter and the viscosity

parameter; and the results are summarized in Table 5.12. Since these parameters have

opposite effects on the fluid, optimization becomes more challenging, especially in

the ROM. So, desired states are successfully achieved at the optimal values, which

are differ only after the first decimal digit from the optimal values attained by the

FOM. However, it does not imply a failure in ROM, since the opposite effects of the

parameters just leads to another optimal state to meet for the desired state.

To sum up, the results obtained for the pairwise control in ROM are identical to

the FOM’s in a general perspective. First of all, some optimal parameter values are

attained with the differences between FOM and ROM at fourth or fifth digit. However,

this does not effect the total number of iterations in the cases when controlling using

Ha and B, or Br and B. On the other hand, in the case of controlling with m and Br,

first test case requires 12 Tit instead of 13; similarly, in the case of controlling m and

B, first test case requires 21 Tit instead of 16.
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Table 5.4: Control with Hartman number Ha, m = 1, Br = 1, B = 1, αω = 103,
αT = 100, αHa = 10−5, Ha0 = 0.1

Had Haopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 1.0125 4.4411× 10−5 2.5290× 10−6 6.059× 10−6 3
3.0 3.0353 2.6265× 10−4 1.9812× 10−5 9.816× 10−5 4
5.0 5.0374 2.6137× 10−4 3.2947× 10−5 3.500× 10−4 4

10.0 9.9696 8.6965× 10−5 3.7786× 10−5 1.214× 10−3 3

Table 5.5: Control with Brinkman number Br, m = 1, Ha = 1, B = 1, αω = 100,
αT = 103, αBr = 10−5, Br0 = 0.0

Brd Bropt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.9870 7.1252× 10−7 1.5914× 10−5 4.935× 10−6 3
2.0 1.9743 1.4240× 10−6 3.1781× 10−5 1.974× 10−5 4
3.0 2.9615 2.1345× 10−6 4.7602× 10−5 4.442× 10−5 4

5.6.3 POD Application to Control of Power-Law Fluid Flow and Heat Transfer

In this part, the MOR with POD method is applied to the control problem of power-

law fluid flow and heat transfer. The snapshots are generated for the fine-scaled so-

lutions of the equations in (3.24)–(3.25) given in Section 3.5.3. The results for the

FOM and the ROM are compared regarding CPU times and accuracy.

Sample solutions of the velocity and temperature are collected for the snapshot ma-

trices for various values of the parameters:

s(Ha) = {1, . . . , 5},

s(n) = {0.5, 0.6, . . . , 2.0},

s(Br) = {1, 2}

so that the set of values for the parameters to form snapshot matrices are constructed

by the following cartesian product:

s(Ha, n,Br) = s(Ha)× s(n)× s(Br).

Table 5.6: Control withB, Ha = 1,m = 1, Br = 1, αω = 103, αT = 103, αB = 10−5,
B0 = 0.0

Bd Bopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.9980 6.1231× 10−6 7.5840× 10−6 4.990× 10−6 4
2.0 1.9951 1.3428× 10−5 1.6815× 10−5 1.995× 10−5 6
3.0 2.9911 2.1916× 10−5 2.7733× 10−5 4.487× 10−5 7
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Table 5.7: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, αω = 103,
αT = 100, αm = 0.0, m0 = 10.0

md mopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.9693 5.4910× 10−5 3.1272× 10−6 8.997× 10−7 5
3.0 2.9521 1.0770× 10−5 5.9757× 10−7 3.170× 10−8 3
5.0 4.9379 3.4527× 10−6 1.9082× 10−7 3.206× 10−9 3
8.0 8.0076 1.0690× 10−7 5.8996× 10−9 1.943× 10−10 3

Table 5.8: Control with Hall parameter m, Ha = 1, Br = 1, B = 1, αω = 103,
αT = 100, αm = 10−5, m0 = 10.0

md mopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.9581 7.5255× 10−5 4.2866× 10−6 5.543× 10−6 5
3.0 2.2898 2.2013× 10−4 1.2236× 10−5 3.184× 10−5 6
5.0 2.6081 3.2965× 10−4 1.8270× 10−5 4.758× 10−5 7
8.0 2.7242 3.8043× 10−4 2.1063× 10−5 5.549× 10−5 5

Table 5.9: Control with Hartmann number Ha and B, m = 1, Br = 1, αω = 103,
αT = 100, α(Ha,B) = 10−5, (Ha0, B0) = (0.1, 0.0)

Had Bd Haopt Bopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.0 0.9491 0.0658 3.8818× 10−5 2.6019× 10−4 5.700× 10−6 12
1.0 1.0 1.0201 0.9887 3.7135× 10−5 3.8663× 10−5 1.105× 10−5 12
3.0 2.0 3.0804 1.9693 4.9949× 10−4 7.3384× 10−5 1.188× 10−4 10
5.0 1.0 5.0445 0.9119 2.0677× 10−4 1.5976× 10−4 3.550× 10−4 10

Table 5.10: Control with Brinkman number Br and B, m = 1, Ha = 1, αω = 103,
αT = 103, α(Br,B) = 10−5, (Br0, B0) = (0.0, 0.0)

Brd Bd Bropt Bopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 1.0 0.9784 1.0045 1.4933× 10−5 1.4960× 10−5 9.914× 10−6 10
2.0 1.0 1.9493 1.0134 4.3465× 10−5 3.1019× 10−5 2.456× 10−5 10
1.0 2.0 0.9865 1.9991 1.0906× 10−6 1.7890× 10−5 2.492× 10−5 11
2.0 2.0 1.9547 2.0087 2.7740× 10−5 3.1628× 10−5 3.963× 10−5 11

Table 5.11: Control with the Hall parameter m and Br, B = 1, Ha = 1, αω = 103,
αT = 100, α(m,Br) = 10−5, (m0,Br0) = (10.0, 0.0)

md Brd mopt Bropt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 1.0 1.6986 0.2699 8.2493× 10−4 9.3333× 10−4 2.363× 10−5 12
1.0 2.0 1.5757 1.1733 7.1337× 10−4 1.0648× 10−3 3.009× 10−5 14
3.0 1.0 1.7754 0.3111 5.5214× 10−4 8.1828× 10−4 2.722× 10−5 14
3.0 2.0 1.6834 1.2389 6.2940× 10−4 8.9842× 10−4 3.559× 10−5 13

Table 5.12: Control with the Hall parameter m and B, Br = 1, Ha = 1, αω = 103,
αT = 103, α(m,B) = 10−5, (m0, B0) = (10.0, 0.0)

md Bd mopt Bopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 1.0 1.4309 0.7838 1.2961× 10−3 8.7522× 10−4 3.033× 10−4 21
3.0 1.0 1.4851 0.6152 4.6409× 10−4 1.4693× 10−3 3.173× 10−5 22
1.0 2.0 1.2854 1.6996 1.2474× 10−3 1.0527× 10−3 2.976× 10−4 22
3.0 2.0 1.3414 1.5423 4.4070× 10−4 1.6096× 10−3 4.068× 10−5 22
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Accordingly, the number of solutions is determined as

card(s(Ha, n,Br)) = card(s(Ha))× card(s(n))× card(s(Br))

= 5× 16× 2 = 160.

Considering the effect of the parameters on the dynamics of the problem, the number

of sample values of the flow index parameter n is chosen larger than the other pa-

rameters. The other significant parameter Ha is also considered on the interval [1, 5]

regarding the previous simulations on the problem.

As the main part of the POD method, SVD is applied to the snapshot matrices of the

velocity and temperature. As a result, Figure 5.15 interprets the first 120 singular val-

ues decaying for both functions. Further, the first 8 singular values are shown closely

here to clarify the sufficient number of singular values satisfying the energy criterion.

Accordingly, POD algorithm (see Algorithm 3) determines six basis functions for

the velocity and four basis functions for the temperature for a given tolerance of the

energy criterion.
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Figure 5.15: Singular values of velocity and temperature.

The POD basis functions of the velocity are depicted in Figure 5.16, where the similar

expected behavior is observed as in the POD basis functions of the previous problems.

First basis functions govern the fundamental part of the system’s dynamics and the

remaining basis functions assist to reflect the detailed information about the system.

The more quantitative information about the POD basis of the velocity is also given

in Figure 5.17 by the contours.
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Table 5.13: FOM-ROM Errors and CPU times for solutions of the power-law fluid
flow and heat transfer and speed-up with POD

(Ha, n,Br) ‖ω − ω̃‖L2 ‖T − T̃‖L2 CPU-FOM CPU-ROM Speed-up
(1.0, 0.8, 1.0) 8.0021× 10−6 7.5868× 10−5 9.6441× 10−1 3.6147× 10−1 2.66

(3.0, 0.8, 1.0) 2.7490× 10−6 1.4703× 10−5 9.6647× 10−1 3.5914× 10−1 2.69

(5.0, 0.8, 1.0) 9.0134× 10−6 1.3042× 10−4 8.3896× 10−1 3.6117× 10−1 2.32

(1.0, 1.2, 1.0) 8.3909× 10−6 5.1176× 10−5 7.2048× 10−1 3.7084× 10−1 1.94

(3.0, 1.2, 1.0) 8.9679× 10−6 1.0644× 10−4 7.8558× 10−1 3.6716× 10−1 2.14

(5.0, 1.2, 1.0) 5.7618× 10−6 2.2080× 10−4 7.8447× 10−1 3.6939× 10−1 2.12

(1.0, 1.8, 1.0) 4.2095× 10−6 2.1822× 10−4 1.0997× 100 5.7737× 10−1 1.90

(3.0, 1.8, 1.0) 9.3888× 10−6 1.8972× 10−4 1.0840× 100 5.0642× 10−1 2.14

(5.0, 1.8, 1.0) 1.8120× 10−5 1.7314× 10−4 1.0808× 100 4.3894× 10−1 2.46

Next, POD basis functions of the temperature and the isolines are interpreted in Fig-

ure 5.18 and in Figure 5.19, respectively. Similarly, POD basis reflects more detailed

information by the increase in the number of basis functions.

Figure 5.20 plots the projection errors by the increasing number of POD basis func-

tions for velocity and temperature. As it can be seen clearly from this graph, the

increase in the number of POD basis functions decreases the error up to a certain

number of basis functions. That is, whereas the error of the velocity becomes con-

stant after 17 basis functions, the error of the temperature do not decrease after 11

basis functions. This result also clarifies the reason why the required number of basis

functions for the velocity is greater than the number of basis functions for the temper-

ature determined by the same tolerance for the energy criterion. Moreover, Table 5.13

reports the errors and CPU times for various cases of the parameters to demonstrate

the accuracy and efficiency attained by the POD method. However, when compared

to the results of the problem with temperature dependent viscosity given in Table 5.3,

required computational times increase for both FOM and ROM due to highly non-

linear structure of the power-law model.

The performance of the ROM is investigated by the simulation of the optimal con-

trol problem for various cases. The conditions of the numerical implementation are

arranged in the same manner of the FOM for an ideal comparison. Thus, the same

regularization parameters and stopping criteria are considered. The ROM with a low

dimension is able to approximate the solutions of the FOM sufficiently.

In the following, most significant results of the reduced optimal control problem are
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Table 5.14: Control with n, Ha = 1.0, Br = 1.0, αω = 105, αT = 100, αn = 10−5,

and n0 = 0.5

nd nopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
0.6 0.6 1.7354× 10−9 9.9681× 10−10 4.577× 10−6 6
0.8 0.8 2.3388× 10−9 7.5598× 10−10 1.950× 10−5 5
1.0 1.0 3.2764× 10−9 7.3168× 10−10 3.665× 10−5 7
1.2 1.2 4.5396× 10−9 7.7922× 10−10 5.285× 10−5 7
1.5 1.5 5.3226× 10−9 6.8661× 10−10 7.428× 10−5 2
1.8 1.8 1.0568× 10−8 1.1043× 10−9 9.273× 10−5 7
2.0 2.0 1.3444× 10−8 1.2527× 10−9 1.038× 10−4 8

summarized. First of all, it is noted that the total number of iterations (Tit) in the

optimization of ROM are very close FOM’s; the difference in Tit is at most 3 and 4

for single and pairwise controls, respectively. Moreover, the optimal states attained

in the ROM are closer the desired states of the ROM with respect to the results in the

FOM. These are clearly observed in the Table 5.14, Table 5.15 and Table 5.16 with the

values ‖ω̃opt − ω̃d‖∞ and ‖T̃opt − T̃d‖∞ of the velocity and temperature, respectively.

This also indicates the convergence of the optimization in the ROM satisfactorily.

Further, the values of the cost functional J attained at the optimal states of the ROM

are smaller than the FOM’s, which also assures the efficiency of the underlying POD

basis. Below, the detailed analysis of the reduced control problems are given for both

single and pairwise controls.

First, simulations of the ROM are conducted for the single parameter control with the

flow index n as given in Table 5.14. Although the aim of the control is to achieve

the desired states of the velocity and temperature, the optimal parameter values are

also attained exactly at the same parameter values of the desired states in the ROM,

which is a different result than the one obtained for the FOM in Table 4.11. Second,

the Hartmann number is used to control the ROM as summarized in Table 5.15. As

in the previous case, in addition to being close the desired states, optimal parameter

values are closer to the parameter values of the desired states with respect to the values

obtained for the FOM in Table 4.12.

Third, control in the ROM is simulated with pairwise control of the parameters Ha

and n. Besides reaching the desired states successfully, the optimal parameter values

given in Table 5.16 are close to the parameters of the desired states similar to the
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Table 5.15: Control with Ha, n = 1.5, Br = 1.0, αω = 103, αT = 100, αHa = 10−5,

and Ha0 = 0.1

Had Haopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.9998 2.8809× 10−6 7.1494× 10−7 5.300× 10−6 3
3.0 2.9998 5.4765× 10−6 2.4386× 10−6 6.803× 10−5 5
5.0 4.9990 1.3708× 10−5 1.4147× 10−5 2.734× 10−4 5
8.0 7.9886 4.5965× 10−5 1.0293× 10−4 8.162× 10−4 6
10.0 9.9564 9.1193× 10−5 2.5134× 10−4 1.204× 10−3 6

results obtained for the FOM in Table 4.13 except the first simulation. The most

apparent difference is observed for the case in which the desired states are generated

for Ha = 1.0 and n = 0.6. However, the optimal states are obtained sufficiently

closed to the desired states.

To conclude, the POD bases generated for the three problems in this thesis are not

only capable of inheriting the dynamics of the problem but they can also be used to

identify the characteristics of the problems in the optimal control. Moreover, the low-

dimensional systems obtained by these bases reduce the cost of computational time

in the optimization algorithm.
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Table 5.16: Control with n and Ha, Br = 1.0, αω = 105, αT = 100, αHa = 10−5,

αn = 10−5, Ha0 = 0.1 and n0 = 0.5

Had nd nopt Haopt ‖ω̃opt − ω̃d‖∞ ‖T̃opt − T̃d‖∞ J Tit
1.0 0.6 0.5973 0.7689 1.2019× 10−5 7.2518× 10−5 8.283× 10−6 52

0.8 0.7994 0.9826 3.6069× 10−6 1.1797× 10−5 2.375× 10−5 45
1.0 0.9997 0.9960 1.7844× 10−6 4.0165× 10−6 4.071× 10−5 39
1.2 1.1999 0.9985 1.1316× 10−6 1.9730× 10−6 5.675× 10−5 39
1.5 1.4999 0.9994 7.3910× 10−7 1.0955× 10−6 7.800× 10−5 38
1.8 1.7999 0.9996 5.8852× 10−7 7.9352× 10−7 9.633× 10−5 32
2.0 1.9999 0.9997 5.4209× 10−7 6.9688× 10−7 1.074× 10−4 30

3.0 0.6 0.5964 2.8928 1.5120× 10−5 1.1119× 10−4 4.570× 10−5 48
0.8 0.7992 2.9914 4.3351× 10−6 1.8373× 10−5 5.347× 10−5 36
1.0 0.9997 2.9984 1.8717× 10−6 6.4208× 10−6 6.035× 10−5 37
1.2 1.1999 2.9995 9.8641× 10−7 3.0299× 10−6 6.587× 10−5 43
1.5 1.4999 2.9999 4.7879× 10−7 1.3101× 10−6 7.195× 10−5 42
1.8 1.8000 3.0000 3.0722× 10−7 7.1170× 10−7 7.653× 10−5 39
2.0 2.0000 3.0000 2.7835× 10−7 5.1798× 10−7 7.930× 10−5 38

5.0 0.6 0.5949 4.8874 1.9584× 10−5 1.9185× 10−4 1.251× 10−4 53
0.8 0.7991 4.9920 4.9366× 10−6 3.5157× 10−5 1.294× 10−4 46
1.0 0.9997 4.9988 1.8002× 10−6 1.1502× 10−5 1.333× 10−4 36
1.2 1.1999 4.9997 8.3467× 10−7 4.8658× 10−6 1.395× 10−4 40
1.5 1.5000 4.9999 5.0940× 10−7 1.8675× 10−6 1.585× 10−4 36
1.8 1.8000 5.0000 3.4405× 10−7 1.0440× 10−6 1.945× 10−4 30
2.0 2.0000 5.0000 2.6720× 10−7 8.8031× 10−7 2.276× 10−4 30
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First POD basis function of velocity Second POD basis function of velocity

Third POD basis function of velocity Fourth POD basis function of velocity

Fifth POD basis function of velocity Sixth POD basis function of velocity

Figure 5.16: POD basis functions of velocity.
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Figure 5.17: Contours of POD basis functions of velocity.
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First POD basis function of temperature Second POD basis function of temperature

Third POD basis function of temperature Fourth POD basis function of temperature

Figure 5.18: POD basis functions of temperature.
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Figure 5.19: Isolines of POD basis functions of temperature.
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Figure 5.20: POD Errors of Velocity and Temperature corresponding to the solution
for Ha = 1, n = 1.5,Br = 1,
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CHAPTER 6

CONCLUSION

In this study, numerical solutions of the optimal control problems constrained by the

governing PDEs for laminar, steady flows of incompressible viscous fluids are pre-

sented. By the implementation of the model order reduction with the proper orthogo-

nal decomposition method, solutions are obtained with the reduced order models.

The problems under investigation are the Navier-Stokes equations, MHD flow and

heat transfer equations with temperature dependent viscosity, and power-law fluid

flows. As being the fundamental tool for interpreting the flow behavior, N-S equa-

tions constitute the basis for applications on fluid flows. Moreover, consideration

of MHD flow and heat transfer with temperature dependent viscosity as well as the

non-Newtonian fluids enables to explain advanced physical phenomena. However,

the high non-linearity in these equations poses new challenges in terms of providing

solutions and controls. Thus, this study implements numerical methods and apply

optimization for the optimal control of these problems.

Specifically, the considered problems are treated from the three aspects: numerical

solutions by FEM, optimal control solutions by the adjoint method following the

discretize-then-optimize approach, and the reduced order modeling solutions by the

POD method with the projection on a continuous form.

While the efficiency of the methods are proved by studying the steady state N-S equa-

tions, where the exact solution is available, implementations for the other two prob-

lems, where the closed form solutions are not available, are carried out. These studies

constitute the extensions of the literature and may be regarded as the main contribu-
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tions of the thesis.

First, N-S equations are considered in a velocity-pressure formulation with the mixed

finite element method using the Taylor-Hood elements in order to ensure the stability

and convergence. Meanwhile, the control problem is designed for a force function

distributed over the whole domain. The efficiency of the methods are validated for

various values of the parameter ν within the exact solution.

Second, the FEM solutions of MHD flow and heat transfer equations with temperature

dependent viscosity and also the case for the power-law fluids are obtained extending

the results in literature, where other easy to implement numerical methods such as

finite difference have been used.

Third, the main contribution of the thesis is attained by investigating the optimal

control for these problems by using the parameters as the control variables. This

approach has not been considered before in the literature for such problems and is

addressed here for the first time. Furthermore, the control is not only applied for a

single parameter but also for pairwise parameters of the underlying systems. Attained

controls are successful in achieving the desired states and as well as characterization

of the fluids in the case of the power-law fluids. Particularly, since the non-Newtonian

fluids are classified as shear-thinning or shear-thickening according to the flow index

parameter, the determination of the optimal values of the parameters for a given state

is of great importance when the power-law fluids are considered.

Fourth, the computational costs due to the repeated evaluation of the constraint and

adjoint equations in the optimal control problems are reduced by the model order

reduction. Particularly in this study, POD method is used to obtain a set of basis

functions with a low-dimension by using the snapshots taken over the various values

of the parameters. The resulting POD basis functions are capable to reflect the dy-

namics of the fluids for all parameter values covered by the snapshots. Furthermore,

these basis functions also enable to obtain controls with pairwise parameters, which

is a more challenging optimization problem.

Besides those mentioned above, in this thesis, computer programming of the model

order reduction is performed with the projection on a continuous level using a com-
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bined automated framework, which is also applicable directly to the optimal control

problems by supplying a user-friendly approach of the implementation of the POD in

reduced control problems.

To sum up, the outcomes of this study provide a new understanding of the fluid dy-

namics problems in terms of the optimal control applications and offer a user-friendly

computing approach for achieving reduced order models in order to fast computation

of the solutions.

Studies can be extended to the time-dependent dynamical systems where the model

order reduction has to be conducted on the snapshots having the time information as

well. Also, in terms of the physical applications, consideration of the more complex

geometries and boundary conditions are also of vital importance. Moreover, controls

can be supplied on the boundary of the domain for the heat transfer problems. There-

fore, the next step to move this study forward is to work on the boundary controls on

the more complex geometries and time-dependent systems for optimal control of the

fluid dynamics problems in real-world, industrial applications.
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APPENDIX A

ALGORITHMS, COMPUTER CODES AND OPTIMALITY

CONDITIONS

A.1 L-BFGS two loop recursion

Algorithm 4 L-BFGS two-loop recursion

1: procedure L-BFGS2LOOP(J̃ , m, Smk , Y m
k , ρmk )

2: Smk = sk−1, . . . , sk−m, Y m
k = yk−1, . . . , yk−m and ρmk = ρk−1, . . . , ρk−m;

3: r ← ∇J̃k;
4: for i = k − 1, k − 2, . . . , k −m do

5: γi ← ρis
T
i r;

6: r ← r − γiyi;
7: end for

8: d← H0
kr;

9: for i = k −m, k −m+ 1, . . . , k − 1 do

10: β ← ρiy
T
i d;

11: d← d+ si(γi − β);

12: end for

13: Stop with Hk∇J̃ = d

14: end procedure

A.2 Python Codes
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1 mesh = UnitSquareMesh(nx,ny)

2 V_element = VectorElement(’CG’, triangle, 2)

3 Q_element = FiniteElement(’CG’, triangle, 1)

4 R_element = FiniteElement(’R’, triangle, 0)

5 W_element = MixedElement([V_element,Q_element,R_element])

6 W = FunctionSpace(mesh, W_element)

7 v, q, d = TestFunctions(W)

8 w = Function(W)

9 y, p, c = split(w)

Listing A.1: Mesh, elements and function spaces of the Navier-Stokes equations

1 def main():

2 F = nu*inner(grad(y),grad(v))*dx\

3 + inner(dot(y, nabla_grad(y)),v)*dx\

4 - q*div(y)*dx\

5 - p*div(v)*dx\

6 + c*q*dx\

7 + p*d*dx\

8 - inner(f,v)*dx

9 solve(F==0, w, bc)

Listing A.2: Variational formulation of the Navier-Stokes equations

A.3 First-order optimality conditions for the control of the MHD Flow and

heat transfer equations with variable viscosity

For deriving the first order optimality conditions in case when optimize-then-discretize

approach is used, we introduce the Lagrange multiplier Λ = (λ, η) and construct the

Lagrange function as

L(ω, T,u, λ, η) =J(ω(u), T (u)) + 〈 µ̄∇ω , ∇λ 〉Ω −
〈

1− Ha2

1 +m2
ω , λ

〉
Ω

+ 〈∇T , ∇η 〉Ω −

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, η

〉
Ω

−
(

Ha2Br
1 +m2

)〈
ω2 , η

〉
Ω

+

〈
ω

ωm
, η

〉
Ω

, Λ = (λ, η) ∈ H1
0 (Ω)2.
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1 J = Functional( 0.5 * alphav * inner(y - yd, y - yd) * dx \

2 + 0.5 * alphau * inner(u, u) *dx )

3 rf = ReducedFunctional(J, Control(u))

4 u_opt = minimize(rf, options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.3: Optimization of the Navier-Stokes equations

1 yPHI, k_y = load_PODbasis(yPhi,V)

2 pPHI, k_p = load_PODbasis(pPhi,Q)

3 cPHI, k_c = load_PODbasis(cPhi,R)

4 Rv_element = VectorElement(’R’, triangle,0, dim=k_y)

5 Rq_element = VectorElement(’R’, triangle,0, dim=k_p)

6 Rr_element = VectorElement(’R’, triangle,0, dim=k_c)

7 Rw_element = MixedElement([Rv_element,Rq_element,Rr_element])

8 Rw = FunctionSpace(mesh, Rw_element)

9 Rv = FunctionSpace(mesh, Rv_element)

10 vdofs,qdofs,ddofs = TestFunctions(Rw)

11 wdofs = Function(Rw)

12 ydofs,pdofs,cdofs = split(wdofs)

13 yr = sum([ydofs[i]*yPHI[i] for i in range(k_y)])

14 pr = sum([pdofs[i]*pPHI[i] for i in range(k_p)])

15 cr = sum([cdofs[i]*cPHI[i] for i in range(k_c)])

16 vr = sum([vdofs[i]*yPHI[i] for i in range(k_y)])

17 qr = sum([qdofs[i]*pPHI[i] for i in range(k_p)])

18 dr = sum([ddofs[i]*cPHI[i] for i in range(k_c)])

Listing A.4: Elements and function spaces for the ROM of the Navier-Stokes equa-

tions

In order to satisfy the first-order necessary optimality conditions, the derivatives of L
with respect to ω and T have to vanish at the optimal solution; that is,

Lω(ω, T,u, λ, η)hω =Jω(hω) + 〈 µ̄∇hω , ∇λ 〉Ω +

〈
Ha2

1 +m2
hω , λ

〉
Ω

− 2 〈Brµ̄ (∇ω · ∇hω) , η 〉Ω − 2

(
Ha2Br
1 +m2

)
〈hω , η 〉Ω

+

〈
hω · ωm − (hω)mω

ω2
m

, η

〉
Ω

= 0 (A.1)

for hω ∈ H1(Ω), and

LT (ω, T,u, λ, η)hT =JT (hT )−BhT 〈 µ̄∇ω , ∇λ 〉Ω + 〈 (∇hT , ∇η 〉Ω

−B

〈
Brµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
, ηhT

〉
Ω

= 0 (A.2)
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1 def main():

2 Fr = nu*inner(grad(yr),grad(vr))*dx\

3 + inner(dot(yr, nabla_grad(yr)),vr)*dx\

4 - qr*div(yr)*dx\

5 - pr*div(vr)*dx\

6 + cr*qr*dx\

7 + pr*dr*dx\

8 - inner(fr,vr)*dx

9 solve(Fr==0, wdofs)

Listing A.5: Variational formulation of the Navier-Stokes equations

1 udofs = Function(Rv,name="Control")

2 ur = sum([udofs[i]*yPHI[i] for i in range(k_y)])

3 J = Functional(0.5 * alphav * inner(yr - ydes, yr - ydes) * dx(mesh)

4 + 0.5 * alpha * inner(ur, ur) * dx(mesh))

5 rf = ReducedFunctional(J, Control(udofs))

6 u_opt = minimize(rf, options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.6: Optimization with the ROM of the Navier-Stokes equations

for hT ∈ H1(Ω). Hence, (A.1) and (A.2) determine the adjoint problem to be in the

form

− ∂

∂x

(
µ̄
∂λ

∂x

)
− ∂

∂y

(
µ̄
∂λ

∂y

)
+

Ha2

1 +m2
λ− 2Brµ̄∇ω · ∇η − 2

Ha2Br
1 +m2

ωη

+
ηωm − ωηm

ω2
m

= −αω(ω − ωd)

−∆η+BBrµ̄

[(
∂ω

∂x

)2

+

(
∂ω

∂y

)2
]
η+B

∂

∂x

(
µ̄
∂ω

∂x

)
+
∂

∂y

(
µ̄
∂ω

∂y

)
λ = −αT (T−Td)

λ = 0 and η = 0 on ∂Ω.

Optimality condition on the derivative with respect to the control vector u should be

considered similarly. If, for instance, u = Ha is assumed to be the control variable,

then

Lu(ω, T,u, λ, η) = 0

is simplified into〈
2Haω

1 +m2
, λ

〉
Ω

−
〈

2HaBr
1 +m2

ω2 , η

〉
Ω

+
∂J

∂Ha
= 0.
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1 mesh = RectangleMesh(Point(0.0,0.0), Point(a,b), nx, ny)

2 V_element = FiniteElement(’CG’, triangle, 2)

3 P_element = FiniteElement(’CG’, triangle, 2)

4 W_element = MixedElement([V_element,V_element])

5 P = FunctionSpace(mesh, P_element)

6 W = FunctionSpace(mesh, W_element)

7 V = FunctionSpace(mesh, V_element)

8 q,r = TestFunctions(W)

9 u = Function(W)

10 w, theta = split(u)

Listing A.7: Mesh, elements and function spaces of the MHD flow and heat transfer

with temperature dependent viscosity

1 def main():

2 F1 = inner(-mu(B,theta)*grad(w),grad(q))*dx\

3 - Ha*Ha/(1+m*m)*w*q*dx\

4 + one*q*dx

5 F2 = inner(grad(theta),grad(r))*dx\

6 + (b/a)/(w_m(w))*w*r*dx(mesh)\

7 - Br*mu(B,theta)*inner(grad(w),grad(w))*r*dx\

8 - Ha*Ha*Br/(1+m*m)*w*w*r*dx

9 F = F1+F2

10 solve(F==0, u, bc)

Listing A.8: Variational formulation of the MHD flow and heat transfer with temper-

ature dependent viscosity

1 def w_m(w):

2 return assemble(w*dx)

3 def mu(B,theta):

4 return exp(-B*theta)

Listing A.9: Nonlinear terms of the MHD flow and heat transfer with temperature

dependent viscosity

1 J = Functional( 0.5 * alfaw * ( w - w_d ) * ( w - w_d ) * dx(mesh)\

2 + 0.5 * alfatheta*(theta - theta_d)*(theta - theta_d) * dx(mesh)\

3 + 0.5 * alfau * Ha * Ha * dx(mesh))

4 rf = ReducedFunctional(J, Control(Ha))

5 par_opt = minimize(rf,options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.10: Optimization of the MHD flow and heat transfer with temperature de-

pendent viscosity
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1 wPHI, k_w = load_PODbasis(wPhi,V)

2 thetaPHI, k_theta = load_PODbasis(thetaPhi,V)

3 mesh = RectangleMesh(Point(0.0,0.0), Point(a,b), nx, ny)

4 Rw_element = VectorElement(’R’, triangle,0, dim=k_w)

5 Rtheta_element = VectorElement(’R’, triangle,0, dim=k_theta)

6 Ru_element = MixedElement([Rw_element,Rtheta_element])

7 Ru = FunctionSpace(mesh, Ru_element)

8 vdofs,qdofs = TestFunctions(Ru)

9 udofs = Function(Ru)

10 wdofs,thetadofs = split(udofs)

11 wr = sum([wdofs[i]*wPHI[i] for i in range(k_w)])

12 thetar = sum([thetadofs[i]*thetaPHI[i] for i in range(k_theta)])

13 vr = sum([vdofs[i]*wPHI[i] for i in range(k_w)])

14 qr = sum([qdofs[i]*thetaPHI[i] for i in range(k_theta)])

Listing A.11: Elements and function spaces for ROM of the MHD flow and heat

transfer with temperature dependent viscosity

1 def main():

2 Fr1 = inner(-mu(B,thetar)*grad(wr),grad(vr))*dx\

3 - Ha*Ha/(1+m*m)*wr*vr*dx\

4 + one*vr*dx

5 Fr2 = inner(grad(thetar),grad(qr))*dx\

6 + (b/a)/(w_m(wr))*wr*qr*dx(mesh)\

7 - Br*mu(B,thetar)*inner(grad(wr),grad(wr))*qr*dx\

8 - Ha*Ha*Br/(1+m*m)*wr*wr*qr*dx

9 Fr = Fr1+Fr2

10 solve(Fr==0, udofs)

Listing A.12: Reduced variational formulation of the MHD flow and heat transfer

with temperature dependent viscosity

1 J = Functional( 0.5 * alfaw * ( wr - wr_d ) * ( wr - wr_d ) * dx(mesh)\

2 + 0.5 * alfatheta*(thetar - thetar_d)*(thetar - thetar_d)*dx(mesh)\

3 + 0.5 * alfau * Ha * Ha *dx(mesh))

4 rf = ReducedFunctional(J,Control(Ha))

5 par_opt = minimize(rf,options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.13: Optimization with the ROM of the MHD flow and heat transfer with

temperature dependent viscosity
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1 mesh = RectangleMesh(Point(0.0,0.0), Point(a,b), nx, ny)

2 V_element = FiniteElement(’CG’, triangle, 2)

3 Q_element = FiniteElement(’P’, triangle, 1)

4 R_element = FiniteElement(’R’, triangle, 0)

5 W_element = MixedElement([Q_element,R_element])

6 V = FunctionSpace(mesh, V_element)

7 Q = FunctionSpace(mesh, Q_element)

8 R = FunctionSpace(mesh, R_element)

9 W = FunctionSpace(mesh,W_element)

10 normal = FacetNormal(mesh)

11 boundary_markers = FacetFunction(’size_t’, mesh)

12 ds = Measure(’ds’, domain=mesh, subdomain_data=boundary_markers)

13 q = TestFunction(V)

14 w = Function(V)

15 q1, d1 = TestFunctions(W)

16 th = TrialFunction(W)

17 theta, c = split(t)

Listing A.14: Mesh, elements and function spaces of the power-law fluid flow and

heat transfer

1 def main():

2 F1 = inner(-mu(w,(n-1.0)/2.0)*grad(w),grad(q))*dx\

3 - Ha*Ha*w*q*dx\

4 + one*q*dx

5 solve(F2==0,w,bc)

6 F2 = inner(grad(theta),grad(q1))*dx\

7 + (4.0*(b/a)/w_m(w))*w*q1*dx\

8 - Br*mu(w,(n+1.0)/2.0)*q1*dx\

9 - Ha*Ha*Br*w*w*q1*dx\

10 - one*q1*ds\

11 + c*q1*dx\

12 + d1*theta*dx

13 a2, L2 = lhs(F2), rhs(F2)

14 th = Function(W)

15 solve(a2==L2, th)

16 theta,c = th.split()

Listing A.15: Variational formulation of the power-law fluid flow and heat transfer

1 def w_m(w):

2 return assemble(w*dx)

3 def mu(w,n):

4 return (inner(grad(w),grad(w)))**n

Listing A.16: Nonlinear terms of the power-law fluid flow and heat transfer
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1 J = Functional( 0.5 * alfaw * ( w - w_d ) * ( w - w_d ) * dx(mesh)\

2 + 0.5 * alfatheta*(theta - theta_d)*(theta - theta_d) * dx(mesh)\

3 + 0.5 * alfau * n * n * dx(mesh))

4 rf = ReducedFunctional(J, Control(n))

5 par_opt = minimize(rf,options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.17: Optimization of the power-law fluid flow and heat transfer

1 vPHI, k_v = load_PODbasis(vPhi,V)

2 thetaPHI, k_theta = load_PODbasis(thetaPhi,Q)

3 cPHI, k_c = load_PODbasis(cPhi,R)

4 Rv_element = VectorElement(’R’, triangle,0, dim=k_v)

5 Rtheta_element = VectorElement(’R’, triangle,0, dim=k_theta)

6 Rc_element = VectorElement(’R’, triangle,0, dim=k_c)

7 Rw_element = MixedElement([Rtheta_element,Rc_element])

8 Rv = FunctionSpace(mesh, Rv_element)

9 Rtheta = FunctionSpace(mesh, Rtheta_element)

10 Rc = FunctionSpace(mesh, Rc_element)

11 Rw = FunctionSpace(mesh, Rw_element)

12 vdofs = Function(Rv)

13 qdofs = TestFunction(Rv)

14 qtdofs, ddofs = TestFunctions(Rw)

15 wdofs = TrialFunction(Rw)

16 thetadofs,cdofs = split(wdofs)

17 vr = sum([vdofs[i]*vPHI[i] for i in range(k_v)])

18 qr = sum([qdofs[i]*vPHI[i] for i in range(k_v)])

19 thetar = sum([thetadofs[i]*thetaPHI[i] for i in range(k_theta)])

20 qtr = sum([qtdofs[i]*thetaPHI[i] for i in range(k_theta)])

21 dr = sum([ddofs[i]*cPHI[i] for i in range(k_c)])

22 cr = sum([cdofs[i]*cPHI[i] for i in range(k_c)])

Listing A.18: Elements and function spaces for ROM of the power-law fluid flow and

heat transfer
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1 def main():

2 Fr1 = inner(-mu(vr,(n-1.0)/2.0)*grad(vr),grad(qr))*dx\

3 - Ha*Ha*vr*qr*dx\

4 + one*qr*dx

5 bc = None

6 solve(Fr1==0,vdofs,bc)

7 vr = sum([vdofs[i]*vPHI[i] for i in range(k_v)])

8 Fr2 = inner(grad(thetar),grad(qtr))*dx\

9 + (4.0*(b/a)/w_m(vr))*vr*qtr*dx\

10 - Br*mu(vr,(n+1.0)/2.0)*qtr*dx\

11 - Ha*Ha*Br*vr*vr*qtr*dx\

12 - one*qtr*ds\

13 + cr*qtr*dx\

14 + dr*thetar*dx

15 a2, L2 = lhs(F2), rhs(F2)

16 wdofs = Function(Rw)

17 solve(a2==L2, wdofs)

18 thetadofs,cdofs = wdofs.split()

Listing A.19: Reduced variational formulation of the power-law fluid flow and heat

transfer

1 J = Functional( 0.5 * alfaw * ( wr - wr_d ) * ( wr - wr_d ) * dx(mesh)\

2 + 0.5 * alfatheta*(thetar - thetar_d)*(thetar - thetar_d)*dx(mesh)\

3 + 0.5 * alfau * n * n *dx(mesh))

4 rf = ReducedFunctional(J,Control(n))

5 par_opt = minimize(rf,options = {"gtol": 1e-10, "ftol": 1e-10})

Listing A.20: Optimization with the ROM of the power-law fluid flow and heat trans-

fer
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1 from dolfin import *
2 import numpy as np
3 def pod_basis(percentage,Mass,U,snapshots):

4 """ pod_basis generates the pod basis of a given snapshots set.

5 Parameters

6 percentage : percentage of the information content in POD bases.

7 Mass : Mass matrix of the related function (u).

8 U : function space of the related function (u).

9 snapshots : it is .npy object which has the snapshots.

10 Returns

11 k : number of selected pod basis

12 Phi : coefficient matrix of the pod basis.

13 PHI : function matrix of the pod basis.

14 Svel : singular values of the snapshot matrix.

15 """

16 snaps = snapshots

17 massL = np.linalg.cholesky(Mass)

18 massLT = massL.T

19 snaps_tilde = np.dot(massLT, snaps)

20 Uvel, Svel, Vhvel = np.linalg.svd(snaps_tilde)

21 sum_full = sum(Svel[:]**2)

22 sum_partial = 0.0

23 information = 0.0

24 while information<(percentage/100):

25 sum_partial +=Svel[k]**2

26 k += 1

27 information = sum_partial/sum_full

28 print k, "number of POD basis is selected."

29 Ulvel = Uvel[:,0:k]

30 massLT_inv = np.linalg.inv(massLT)

31 Phi = np.dot(massLT_inv, Ulvel)

32 PHI = []

33 for i in range(k):

34 ph = Function(U)

35 ph_array = ph.vector().array()

36 ph_array[:] = Phi[:,i]

37 ph.vector()[:]= ph_array

38 PHI.append(ph)

39 return k, Phi, PHI, Svel

Listing A.21: Generation of the POD basis

150



1 def load_PODbasis(Phi,U):

2 PHI = []

3 k = Phi.shape[1]

4 for i in range(k):

5 ph = Function(U)

6 ph_array = ph.vector().array()

7 ph_array[:] = Phi[:,i]

8 ph.vector()[:] = ph_array

9 PHI.append(ph)

10 return PHI, k

Listing A.22: Assignment of the POD basis
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1. Cansu Evcin, Ömür Uğur, Münevver Tezer-Sezgin, “Optimal Control for the

MHD Flow and Heat Transfer with Variable Viscosity in a Square Duct”, 6th

European Seminar on Computing (ESCO), Pilsen, Czech Republic, 3-8 June

2018.
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3. Cansu Evcin, Ömür Uğur, ”Nonlinear Model Order Reduction in PDE Con-

strained Optimal Control Problems", European Conference on Numerical Math-

ematics and Advanced Applications (ENUMATH), Ankara, Turkey, 14-18 Sep-

tember 2015.
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