
SENTIMENT ANALYSIS WITH RECURRENT NEURAL NETWORKS ON
TURKISH REVIEWS DOMAIN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DARKHAN RYSBEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

MAY 2019

Approval of the thesis:

SENTIMENT ANALYSIS WITH RECURRENT NEURAL NETWORKS ON
TURKISH REVIEWS DOMAIN

submitted by DARKHAN RYSBEK in partial fulfillment of the requirements for the
degree of Master of Science in Scientific Computing Department, Middle East
Technical University by,

Prof. Dr. Ömür Uğur
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Hamdullah Yücel
Head of Department, Scientific Computing

Prof. Dr. Ömür Uğur
Supervisor, Scientific Computing, METU

Examining Committee Members:

Prof. Dr. Kasırga Yıldırak
Department of the Actuarial Sciences, Hacettepe University

Prof. Dr. Ömür Uğur
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Ümit Aksoy
Department of Mathematics, Atılım University

Assoc. Prof. Dr. Hamdullah Yücel
Institute of Applied Mathematics, METU

Assist. Prof. Dr. Büşra Zeynep Temoçin
Institute of Applied Mathematics, METU

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DARKHAN RYSBEK

Signature :

v

vi

ABSTRACT

SENTIMENT ANALYSIS WITH RECURRENT NEURAL NETWORKS ON
TURKISH REVIEWS DOMAIN

RYSBEK, DARKHAN
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

May 2019, 57 pages

Easier access to computers, mobile devices, and availability of the Internet have given
people the opportunity to use social media more frequently and with more conve-
nience. Social media comes in many forms, including blogs, forums, business net-
works, review sites, and social networks. Therefore, social media generates mas-
sive sources of information in the shape of users‘ views, opinions, and arguments
about various products, services, social events, and politics. By well-structuring and
analysing this kind of data we can obtain significant feedbacks about products and
services. This area of research is typically called sentiment analysis or opinion min-
ing. In the last decade, this field of Natural Language Processing (NLP) has witnessed
a fascinating progress due to Deep Neural Networks (DNNs).

Recurrent Neural Networks (RNNs) are one of the main types of DNN architectures
which are used at modelling units in sequence. They have been successfully used for
sequence labelling and sequence prediction tasks, such as handwriting recognition,
language modelling, machine translation, and sentiment analysis.

Most of the studies carried on sentiment analysis using RNNs have been focused
on English texts and some researches have studied on different languages. In this
thesis, sentiment classification using RNNs is applied on Turkish reviews domain.
Additionally, different types of word representations are used to achieve acceptable

vii

results. This dissertation presents a description of the considered model architectures
and comparison of them with various word representations on two Turkish movie
reviews datasets. Generally, our experimental results show that RNN models achieve
reasonably good results on Turkish texts as on English texts and choice of different
word representations can improve the performance of the approaches.

Keywords: Sentiment Analysis, Natural Language Processing, Deep Neural Net-
works, Recurrent Neural Networks, Machine Learning, Turkish

viii

ÖZ

TÜRKÇE YORUMLAR ALANI ÜZERİNDE ÖZYİNELİ SINIR AĞLARI İLE
DUYGU ANALİZİ

RYSBEK, DARKHAN
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Mayıs 2019, 57 sayfa

İnternetin kullanılabilirliği ve bilgisayarlara, mobil cihazlara daha kolay erişim insan-
lara sosyal medyayı daha sık ve daha rahat kullanabilme fırsatı verdi. Sosyal medya,
bloglar, forumlar, iş ağları, eleştiri siteleri ve sosyal ağlar dahil olmak üzere pek çok
biçimde gelir. Bu nedenle, sosyal medya çeşitli ürün, hizmet, sosyal olaylar ve poli-
tika hakkında kullanıcıların görüşleri, düşünceleri ve tartışmaları şeklinde muazzam
bir bilgi kaynağı oluşturur. Bu tür verileri iyi yapılandırarak ve analiz ederek, ürün-
ler ve hizmetler hakkında önemli geri bildirimler elde edebiliriz. Bu araştırma alanı
genellikle duygu analizi veya düşünce madenciliği olarak adlandırılmaktadır. Derin
Sınır Ağları (DNNs) nedeniyle bu Doğal Dil İşleme alanı son on yılda büyüleyici bir
ilerlemeye tanık olmuştur.

Özyineli Sınır Ağları (RNNs), modelleme birimlerinde dizi ile kullanılan DNN mi-
marileri türlerinden biridir. El yazısı tanıma, dil modelleme, makine çevirisi ve duygu
analizi gibi dizi etiketlendirme ve dizi öngörü görevleri için başarıyla kullanılmıştır.

RNN’leri kullanarak duygu analizi üzerinde yapılan çalışmaların çoğu İngilizce me-
tinlere odaklanmıştır. Birkaç araştırmalar değişik dillerde yapıldı. Bu tez kapsamında,
RNN‘leri kullanılarak duygu sınıflandırması Türkçe yorum alanına uygulanmıştır.
Ek olarak, kabul edilebilir sonuçlar elde etmek için farklı türlerde kelime gösterim-
leri kullanılmıştır. Bu tez, ele alınan model mimarilerinin bir tanımını ve bunların

ix

iki Türk film incelemesi veri setinde çeşitli kelime temsilleriyle karşılaştırılmasını
sunmaktadır. Genel olarak, deneysel sonuçlarımız RNN modellerinin, Türkçe metin-
lerinde İngilizce metinlerde olduğu gibi oldukça iyi sonuçlar elde ettiğini ve farklı
kelime gösterimlerini seçmenin yaklaşımların performansını artırabileceğini göster-
mektedir.

Anahtar Kelimeler: Duygu Analizi, Doğal Dil İşleme, Derin Sınır Ağları, Özyineli
Sınır Ağları, Makine Öğrenme, Türkçe

x

To my family

xi

xii

ACKNOWLEDGMENTS

I would first like to my supervisor Prof. Dr. Ömür Uğur who has provided me with
invaluable guidance and persistent support during my research.

I would also like to thank Prof. Dr. Ismail Hakkı Toroslu for his help and ideas.
It has been very good to have the opportunity to get advice if any problems were
encountered with either the data or the machine learning procedure.

I want to thank my friends and colleagues for their advices and encouragements
throughout my academic career.

My appreciation also extends to my sister who supported me morally during my edu-
cation.

Above all, I would like to thank my parents for all the unconditional support through-
out all these years, and also for giving me the opportunity to study in this university.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Sentiment Analysis . 2

1.3 Structure of the Thesis . 3

2 LITERATURE SURVEY . 5

2.1 Sentiment Analysis and Opinion Mining 5

2.1.1 Definition . 5

2.1.2 Concepts in Sentiment Analysis 6

xv

2.1.3 Types of Sentiment Analysis 7

2.2 Sentiment Analysis in Turkish 9

2.2.1 Turkish Sentiment Analysis 9

2.2.2 The Studies on Turkish Sentiment Analysis 11

2.2.3 Natural Language Processing Tool (Zemberek) . . 13

3 BACKGROUND . 15

3.1 Text Representation . 15

3.1.1 One-Hot Representation 15

3.1.2 Distributed Representation 16

3.2 Deep Learning . 17

3.2.1 Neural Networks 18

3.2.2 Perceptron . 19

3.2.3 Activation Function 20

3.2.4 Loss Function . 22

3.2.5 Backpropagation 23

3.2.6 Optimization Algorithm: Adam 24

3.2.7 Recurrent Neural Networks 25

3.2.8 Long Short-Term Memory 27

3.2.9 Bidirectional LSTM 28

3.2.10 Overfitting . 29

4 EXPERIMENTAL SETUP . 31

xvi

4.1 Data Description . 31

4.2 Evaluation Metrics . 32

4.3 Framework . 33

5 RESULTS AND DISCUSSION . 35

5.1 Results for Experiments with Tokenizer 37

5.2 Results for Experiments with Word2Vec 39

5.3 Comparison of the Models 41

6 CONCLUSION AND FUTURE WORK 45

REFERENCES . 47

APPENDICES

A EXAMPLE TURKISH DATA . 55

A.1 Positive Movie Reviews . 55

A.2 Negative Movie Reviews 55

B SOURCE CODE . 57

xvii

xviii

LIST OF TABLES

TABLES

Table 2.1 Levels of Sentiment Analysis . 7

Table 2.2 Samples of Turkish words and sentences 10

Table 2.3 The suggestions of the Zemberek library for the word “hoşlanmak” 13

Table 5.1 The results for Dataset 1 . 38

Table 5.2 The results for Dataset 2 . 38

Table 5.3 The results for Dataset 1 . 41

Table 5.4 The results for Dataset 2 . 41

Table 5.5 The comparison of the results for Dataset 2 42

Table 5.6 The results for IMDB dataset . 43

xix

LIST OF FIGURES

FIGURES

Figure 2.1 A standard sentiment analysis pipeline [38]. 11

Figure 3.1 CBOW and Skip-gram model architectures [86]. 17

Figure 3.2 Artificial Neural Network with three hidden layers [11]. 19

Figure 3.3 The Perceptron [64]. 20

Figure 3.4 Standard Sigmoid function. 21

Figure 3.5 Standard Hyperbolic tangent function. 22

Figure 3.6 Rectified Linear Unit function. 22

Figure 3.7 General RNN model. Left: folded version of the RNN. Right:
unfolded version of the RNN [46]. 26

Figure 3.8 LSTM memory block [75]. 28

Figure 3.9 Bidirectional LSTM network [16]. 29

Figure 4.1 Confusion matrix. 32

Figure 5.1 An example of overfitting. 37

Figure 5.2 An example of avoided overfitting. 38

Figure 5.3 An example of overfitting. 39

Figure 5.4 An example of fluctuated overfitting. 40

Figure 5.5 An example of avoided overfitting. 40

Figure 5.6 An example of avoided overfitting. 43

xx

LIST OF ABBREVIATIONS

AdaGrad Adaptive gradient algorithm

Adam Adaptive Moment Estimation

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange

BDLSTM Bidirectional Long Short-Term Memory

BRNN Bidirectional Recurrent Neural Network

BPTT Backpropagation Through Time

BoW Bag-of-Words

CBOW Continuous Bag-of-Words

CE Cross Entropy

CNN Convolutional Neural Network

CNTK Microsoft Cognitive Toolkit

DL Deep Learning

GRU Gated Recurrent Units

LSTM Long Short-Term Memory

ME Maximum Entropy

MSE Mean-Squared Error

ML Machine Learning

MLP Multilayer Perceptron

NN Neural Network

NLP Natural Language Processing

POS Part of Speech

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SO Semantic Orientation

SVM Support Vector Machines

URL Uniform Resource Locator

VSM Vector Space Models

xxi

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In human life the role of language is very significant because it is an essential tool

for people to communicate with each other in our society. Human being has always

been absorbed with supernatural ideas, one of which was the creation of intelligent

robots. To make a machine to be considered intelligent, the well-known Turing test

stated that machines must have capacities as much as human [43]. That is how the

interest of embedding human language into machines, Natural Language Processing

(NLP), the one of the study area of Artificial Intelligence came out.

Machine translation was the first field of natural language processing where research

studies initially started with the translation of 60 Russian sentences by the George-

town - IBM experiment in 1954 [34]. However, researchers acknowledged that the

existing linguistic system was not enough to be successful and more advanced meth-

ods to understand linguistic unit were needed. After a quarter century later with the

evolution of machine learning, researchers made sufficient breakthrough in the areas

of NLP. Machine learning approaches become suitable tools for computers to learn

and incorporate the rules themselves. The final step of NLP to be successful came

with by the development of the Internet and its infinite supply of data resources.

With the advent of social media resources on the Internet, which include social net-

works, forums, blogs, and so on, there has been a raise in the number of users of these

resources. Meanwhile, people actively share their opinions and views in comments,

reviews, and discussion forums with their phones, laptops, and tablets. Therefore,

1

the amount of data collected from social media has been unbelievably increased. For

example, according to reliable resources each day 500 million Tweets and 4.3 billion

Facebook messages are shared [77]. So, millions of positive, negative or neutral com-

ments are added every day. By well-structuring and analysing this kind of data we

can obtain significant feedbacks about products and services. This area of research is

typically called sentiment analysis or opinion mining. Interest in this area has been

actively manifested in recent years and has been applied in various domains by using

different methods. There are several annual competitions. For example, the compe-

tition to create automatic systems for sentiment analysis in English called SemEval,

which has been taking place since 2010.

At the first time it seems that machine learning approaches were the best choice for

sentiment analysis but later researches have been using state-of-the-art deep learning

models which have been showed excellent results [41, 18, 80]. There are a lot of

researches for sentiment analysis applied to English texts whereas for Turkish texts

there have been only a few studies [20, 40, 44]. In this study, the problem of classi-

fying Turkish texts by sentiments will be considered. For classification part we use

deep learning models such as LSTM and bidirectional LSTM. Earlier, models based

on RNN were not used so much for the sentiment classification of the Turkish texts,

although they managed to show impressive results in the tasks of classifying English

texts. The goal of this thesis is to find the performance of these models on Turkish

reviews and to compare the results with the other machine learning technique based

on the same dataset.

1.2 Sentiment Analysis

Term Sentiment is mainly related with the words as feeling, emotion or opinion which

are subjective responses.

Sentiment analysis is a subfield of natural language processing that focuses on de-

termine the polarity, sentiment or emotion of events and, through the detected word

features assign them into, for instance, three category of polarity as positive, negative

or neutral. Generally in practice, the semantic or polarity of a given text chooses a

2

binary categorization, instead of using three categories, as:

• positive or negative;

• like or dislike;

• good or bad.

Furthermore, there exists various levels of sentiment analysis; most popular of them

are document level sentiment analysis, sentence level sentiment analysis, and aspect

level sentiment analysis [51]. Studies [63] and [85] are based on document level

sentiment analysis where they discuss the polarity of whole document. Pang and

Lee in their study [62] explain different applications of sentiment analysis in various

domains and applications:

• to review-related websites;

• as a sub-component technology like recommendation systems, flame detection,

question answering systems, summarization, citation analysis;

• in business and government intelligence;

• across different domains like politics, sociology, etc.

The motivation of this thesis is to apply sentiment analysis in review-related web-

sites by using Turkish reviews domain crawled from the well-known Turkish movie

website of BeyazPerde [1].

1.3 Structure of the Thesis

The rest of the thesis is organised as follows:

Chapter 2 - Literature Survey provides fundamental concepts of sentiment analysis

and its application for Turkish language.

Chapter 3 - Background covers information about different methods and models

used in this thesis.

3

Chapter 4 - Experimental Setup is the part where the dataset, evaluation metrics

and frameworks used in experiments are described briefly.

Chapter 5 - Results and Discussions reveals the results of the experiments and dis-

cusses these results.

Chapter 6 - Conclusion and Future Work gives a summary and concludes the the-

sis. Moreover, future work and ideas to improve achievements gained in this thesis

are suggested in this chapter.

4

CHAPTER 2

LITERATURE SURVEY

2.1 Sentiment Analysis and Opinion Mining

This section will introduce the general understanding and principles in the field of

sentiment analysis. First of all, the basic definition of sentiment analysis will be

described. Then, the concepts of sentiment analysis will be provided. Finally, the

types of sentiment analysis which appears in studies of sentiment analysis in different

levels: document level, sentence level, and aspect level sentiment analysis.

2.1.1 Definition

Sentiment analysis, also familiar as opinion mining, is the field of study that anal-

yses people’s opinions, sentiments, evaluations, appraisals, attitudes, and emotions

towards entities such as products, services, organizations, individuals, issues, events,

topics, and their attributes [52]. Initially, sentiment analysis has been about opin-

ion polarity, i.e., whether someone has positive, neutral, or negative opinion towards

something [17].

Sentiment analysis is accepted as a classification problem in the field of computa-

tional linguists and sometimes called as sentiment classification. It aims to deter-

mine whether a given document or text as a whole express a positive or negative

opinion [51]. Sentiment classification has several important characteristics, including

various tasks, features, techniques, and application domains [3].

In the past decades, there has been done numerous research works related to sentiment

5

analysis due to the existence of various domains with huge amounts of literature data

on document, sentence, phrase, and aspect level analyses. Therefore, it has gained

extensive attention and the number of its application domains has increased by the

time. Moreover, it has become one of the highly active challenging research areas of

NLP in recent years due to a wide variety of practical applications [50].

2.1.2 Concepts in Sentiment Analysis

Generally, sentiment classification problem can be divided into two independent clas-

sification problems where the first problem is the subjectivity classification and the

second problem is based on the polarity of the opinion. In other words, one is to

figure out if a given document or text are subjective or objective and the other is to

classify the subjective document into separate categories like positive or negative.

The determination of the distinction between subjective and objective documents is

the initial task that has to be considered. In computation linguistics the term sub-

jectivity has different meanings and is usually closely related to the point of view.

Lei and Liu in their research work [47] mentioned that due to various facts opinions

and sentiments can be involved in objective texts, whereas they cannot be signified in

subjective texts. In addition, an automatic processing of objective and subjective doc-

uments are occasionally complicated since the documents are mostly not explicitly

formulated. Moreover, in some cases the entire document cannot be either objective

or subjective text, which demonstrates a new challenge in the form of aspect level of

subjectivity analysis.

Despite the fact that the analysis of subjectivity is a complicated work, it is used as a

criterion to denote the importance of an expression regarding the sentiment analysis.

Therefore, subjectivity analysis has been used as a pre-processing step to clean the

data for sentiment classification [49].

On the whole, the determination of polarity is the major area in sentiment analysis.

The main task is to identify the polarity of the text and the most commonly used

method is the binary orientation, positive or negative, of a subjective approval without

regarding the external context of the proposal or document. Furthermore, there exist

6

a few types of scales as continuous [6] and discrete [83] which are used in sentiment

analysis studies.

In general, polarity is ranked as a number in [-1,1]: (−1) means the most negative

polarity and 1 corresponds to the most positive polarity. In theory, the center of this

interval has the neutral polarity however in practice this category is refused in most

cases in order to make the problem easier and spelt up into positive and negative

categories. In this research, the problem is conducted as a binary classification task

which means we identify the polarities in two categories: positive or negative.

2.1.3 Types of Sentiment Analysis

As mentioned earlier, sentiment analysis evaluates the text or document and catego-

rizes it into various classes as positive, negative, and neutral according to opinions

expressed in text. Sentiment analysis has been investigated on multiple linguistic lev-

els and most frequently at three levels: document level, sentence level, and aspect

level. The basic descriptions are given in Table 2.1.

Table 2.1: Levels of Sentiment Analysis
LEVELS DESCRIPTION

Document level
Classifying the whole document as
positive, negative or neutral

Sentence level Associated with a phrase or sentence

Aspect level
Sentiment on entities and / or aspect
of those entities

Document Level Sentiment Classification: The main challenge of document-level sen-

timent analysis is to determine overall polarity expressed in a whole document. For

example, this system would be able to label the overall sentiment polarity of a cus-

tomer review about a certain product. This level of sentiment analysis assumes that

the documents express sentiment towards a single entity such as reviews of products,

movies, and hotels. The results of document level sentiment analysis usually have

two, positive or negative, or three, positive, negative or neutral, outputs and the av-

erage length of a document depends on the domains. However, in some cases like

news domains there can be several opinions in one document and criticizes multiple

7

targets.

There are a few number research studies for document level sentiment analysis and

various methods to address the problem and improve the accuracy. Supervised and

unsupervised learning are the main approaches for document level sentiment analysis.

In supervised learning, there are finite set of category outputs for each document and

training data accessible for each category. In unsupervised learning, the main idea

is to find the Semantic Orientation (SO) of specific phrases within the document,

compute the average of SO of these phrases and compare it with some predefined

threshold which can then help to label the documents as positive or negative [71].

Sentence Level Sentiment Classification: The sentence level sentiment classification

is a fine-grained level than document level sentiment analysis and each sentence has

expressed a neutral, positive, or negative opinion. Due to the fact that the sentences

are a type of short documents, there is no particular variation between the two de-

scribed levels of sentiment analysis [51]. The essential part in this level is subjectiv-

ity classification in which objective sentences signifying factual information are split

up from subjective sentences with sentiment. In addition, each specific sentence is

syntactically and semantically connected with other parts of the text. Thus, this level

task is desired both local and global contextual information. On the other hand, dif-

ferent strategies are applied to resolve the task with various sentences which can be

conditional, question, and even complicated sarcastic sentences [36].

Aspect Level Sentiment Analysis: Unlike an earlier described two levels, aspect level

sentiment analysis explores what the holder feels, likes or hates, about the target. To

make a prediction it primarily collects information related to a specific entity which

generally has many aspects, attributes with different opinions. It appears in discussion

forums or in product review blogs where reviews are about products such as phones,

cameras, even drugs and so on [73].

At the document level, if the text is positive or negative this does not mean that the

entire document is respectively positive or negative because of the existence of as-

pects with different opinions. Besides the sentence level sentiment analysis often

related to subjectivity classification. Therefore, aspect level which performs a more

fine-grained analysis than two other levels are explored and has three steps of eval-

8

uation: extracting features of target, determining feature-wise polarity, summarizing

the overall evaluation. Aspect level sentiment analysis, also called feature-based or

entity-based sentiment analysis, is more challenging task compared to other level of

analysis due to it identifies fine-grained opinion polarity towards a specific aspect

associated with a given target. Moreover, feature-based sentiment analysis requires

more complicated machine learning approaches since basic algorithms cannot deal

with complex sentences unfortunately.

Besides, different from the levels described above there are other levels of sentiment

analysis. A few number of researches have been made on phrase level [88], clause

level [89], and word level [90].

2.2 Sentiment Analysis in Turkish

2.2.1 Turkish Sentiment Analysis

There are many languages in the world and each language has its own grammar rules.

Turkish language is one of the grammatically rich languages and morphologically

agglutinative language. Its specific characteristics make sentiment analysis problems

more complicated to resolve for this language. In order to achieve more excellent

results and get more precise sentiment classifications, a powerful sentiment analysis

structure specific to Turkish should be created which must handle with different lin-

guistic markers such as negations, conditional constructions and so on. Unfortunately,

already demonstrated natural language processing systems for English language can-

not directly be applied and then translated into Turkish language because of the sev-

eral differences between these languages. Some of the main differences are described

as follows:

1. Turkish Alphabet. As other Turkic languages, Turkish alphabet has several

letters which do not exist in English alphabet: ‘ı’,’ğ’,’ü’,’ş’,’ö’,’ç’. In some

practical cases users substitute these Turkish characters for their closest ASCII

characters, for example, letter ‘ğ’ into ‘g’, and use the new strings which may

create a new and more complicated problem, set of meaningless words. There-

9

fore, a pre-processing step, which is called deasciification, is needed that con-

verts Turkish text written with ASCII characters into proper Turkish text with

its specific accented letters.

2. Agglutinative Morphology. Different from English language in Turkish lan-

guage, the words can be generated by adding suffixes to a root word instead of

adding new several words to the main word. These suffixes can change the part-

of-speech tagging or semantic orientation of the word. For example, the word

“göz” means “eye” but with the suffix “lük” it changes into “gözlük” which

means “glasses”. For all agglutinative languages, not just for Turkish language,

there are extra additional challenges such that a creation of a reasonable corpus

of polarity lexicon which would contain all necessity words of a language.

3. Negation. In Turkish language, there are several approaches where negation

markers are switched the sentiment polarity of a word: with the affixes “ma/me”,

“siz/sız” or with the help of another word such as “değil” and “yok”. The Ta-

ble 2.2 shows the words with their meaning in English and some sentences as

an example. In the last example, polarity of all sentence switches into neg-

ative with the word “başarısız” and then changes to positive with the word

“olmadı” [22].

Table 2.2: Samples of Turkish words and sentences
TURKISH ENGLISH
‘Bitmedi’, ‘bağımsız’ ‘it is not finished’, ‘independent’
‘akıllı değil’,’parası yok’ ‘not smart’, ‘has no money’
Bu filmi izlediğim için pişman değilim. I don’t regret watching this movie.
Sınavdan başarısız olan kimse olmadı. No one failed the exam.

In most cases, the text data collected from any domains through the Internet is more

noisy and has insignificant information. In order to change it to more well-organized

data with less noise, there is a need of the pre-processing step which is called data

pre-processing. This step usually improves the quality of the dataset and generates

more meaningful information from the dataset. In general, the main steps of the data

pre-processing step are: tokenization, removal of stop-words, and stemming.

After the pre-processing step is the step of feature extraction, a creation of vector

space and feature selection. This step will be described in next chapter.

10

Figure 2.1: A standard sentiment analysis pipeline [38].

Finally, after the feature selection, the training text data would be learned and clas-

sified into polarity categories by using the classifier and when the test data arrives it

tries to predict correctly as shown in Figure 2.1. Two main categories of sentiment

analysis approaches are commonly used as classifiers, which are divided based on

the information they use. They are lexicon-based and corpus-based approaches. The

former approach essentially computes the polarity for a document by aggregating the

semantic orientation of the words, whereas the latter approach uses supervised learn-

ing algorithms, which include machine learning or deep learning algorithms, to train

a sentiment classifier through the training data. Sometimes hybrid approaches are

used which are developed by combining the two approaches [21]. This study relates

to corpus-based approach since only deep learning models are used.

2.2.2 The Studies on Turkish Sentiment Analysis

There are a lot of researches done for English language in the fields of natural lan-

guage processing, especially related to sentiment analysis: not only research works

in literature but also necessary resources are established for English language [84,

18, 80]. Research interests on sentiment analysis for non-English languages have in-

creased in recent years. One of them is the Turkish language but there is still not

much research in this field.

One of the first studies about sentiment analysis in Turkish is Eroğul‘s master the-

sis [20]. In this study, as features used n-grams and the effects of part of speech

11

tagging, spellchecking, and stemming are explored by using the Turkish morpholog-

ical analyser called Zemberek [4]. Moreover, as a dataset for this work used Turkish

movie reviews which are crawled from the familiar website Beyazperde [1] and clas-

sified by using Support Vector Machines (SVM) at the document level. As a result,

85% of accuracy is achieved on the binary sentiment classification.

Kaya et al. (2012) have investigated sentiment analysis of Turkish political news

in online media by using various supervised machine learning algorithms which are

Naive Bayes, Maximum Entropy (ME), SVM, and the character based n-gram lan-

guage models [40]. As classification features frequency of polar word unigrams,

bigrams, root words, adjectives, and effective (polar) words are used. In conclusion,

they have reported a classification accuracy of 76%-77% with different features and

conclude that the maximum entropy and the n-gram language models in comparison

with SVM and Naive Bayes methods are more efficient in classifying Turkish political

news.

Vural et al. (2013), present a framework for unsupervised sentiment analysis in Turk-

ish text documents [87]. They customized SentiStrength [84], a lexicon-based senti-

ment analysis library for English that assigns a positive or a negative score to a given

text, by translating its polarity lexicon to Turkish. Authors classified their unsuper-

vised framework on the same dataset that was already used in [20] and report an

accuracy of 76% on classifying Turkish movie reviews as positive or negative.

Apart from the binary sentiment classification of texts in Turkish, the different areas

of the research are also on analysis of emotions. The master thesis of Boynukalın [9]

is one of the research related to emotion analysis. She has presented an emotion clas-

sification on Turkish texts by using a new dataset and applied machine learning tech-

niques to compare them with each other. To improve the performance she has added

new features appropriate with the morphological characteristics of Turkish language.

In spite of the existing works on sentiment analysis of the Turkish language including

different levels such as sentence, aspect, and document levels, there is still almost no

research by applying the state-of-the-art neural networks. In this study, a well-known

recurrent neural networks and its types will be applied to Turkish reviews at document

level since they have proved to have better performance for English texts [31].

12

2.2.3 Natural Language Processing Tool (Zemberek)

There exist various kinds of natural language processing tool for English language.

However, for Turkish language there are a few and the most utilized open source tool

is Zemberek [4]. It has several capabilities such as morphological analysis, stemming,

spellchecking, and part of speech tagging.

One of the most important tools in natural language processing is the stemming pro-

cess where a morphological parser of Zemberek reduces inflected words to their base

or to root form which would be used as features in the experiments.

Another important tool in NLP is the spellchecking step in which the incorrectly

spelled words in a text would be checked and replaced with its correct form by using

Zemberek library. A spellchecking algorithm under Zemberek allows to process up to

3 inappropriate or incorrect characters in the roots and 2 characters in suffixes. How-

ever it has some limitations or drawbacks: it does not fix dates, times and numbers;

there may be a lot of word suggestions, and so on. For example, for the word “hoşlan-

mak” which translates to English as “like”, suggestions of the Zemberek library are

shown in Table 2.3.

Table 2.3: The suggestions of the Zemberek library for the word “hoşlanmak”
’hoşlaşmak’ ’hoşlatmak’
’hoşlamak’ ’hoşlansak’
’hoşlanma’ ’hoşlanman’
’hoşlanmam’ ’hoşlanmaz’
’hoşlanmak’ ’boşlanmak’
’haşlanmak’ ’hoplanmak’

Part of speech tagging, also familiar as grammatical tagging, is very significant pre-

processing task for natural language processing activities that reads text in some lan-

guage and assigns parts of speech to each word such as noun, verb, adjective, etc. In

fact, part of speech tagging process is not just mapping words to their part of speech

tags. It is much more complex procedure due to the different meanings of the word

in different contexts or domains.

13

14

CHAPTER 3

BACKGROUND

3.1 Text Representation

In natural language processing field, the most essential part is the so called word

representation, the representation of words, sentences or documents in a numerical

way since computers cannot recognize and analyse raw text data. When machine

learning or deep learning approaches are applied for sentiment analysis tasks, as the

input features to represent text data in the model would be taken word representations

or word embeddings. There are several types of them: One-Hot Representation, Bag-

of-Words, Word2Vec, FastText [8], Glove [67], and others.

3.1.1 One-Hot Representation

The most trivial word representation is the One-Hot Representation, which is gener-

ally used before neural networks were applied to natural language processing prob-

lems. In this method, each word is represented as a vector with the length equal

to the size of the vocabulary, which is created by all words after pre-processing in

the corpus. The representation vector is consisted of one in the position of the word

corresponding to its index in the vocabulary and multiple zeros in the rest of the po-

sitions. For example, the vector representation of words “Ankara”, “Turkey” would

be as [0, 0, 0, 1, 0, . . . , 0, 0], [0, . . . , 0, 1, 0, . . . , 0] respectively. However, this type of

word representation has many drawbacks such as the expensive computation of word

similarity and the large size of the vocabulary. Despite the disadvantages, this word

representation method can solve some natural language processing problems by us-

15

ing machine learning algorithms like Naïve Bayes [57] and Support Vector Machines

(SVM) [37].

In this research, the type of distributed representation, which is known as Word2Vec,

is used since the state-of-the-art recurrent neural network approaches are applied for

sentiment analysis problem. More about Word2Vec method will be described in the

following subsection.

3.1.2 Distributed Representation

Different from one-hot representation and more superior alternative is the distributed

representation which was originally introduced by Hinton in 1986 [32] and has been

improving its relevance to natural language processing applications in recent years.

The distributed representation of words is more familiar as word embeddings and the

main purpose is embedding the words into real-valued, dense, and low-dimensional

vectors by the meanings of words. As described earlier, the drawback of the one-

hot representation is the independence between words in representation space and

inability to calculate word similarities. In contrast, word embeddings are allowed to

compute similarity of words through low-dimensional matrix operations. Metric used

is the cosine similarity due to fact that the semantic similarity between two words is

correlated with the cosine of the angle between their word embeddings [48].

In general, the word embeddings are derived by Vector Space Models (VSM) [76].

VSMs are divided into two categories: count-based and predictive models. The for-

mer is about the computation of the statistics of co-occurrence of words with its

neighbouring words in large text corpus and mapping those statistics into a low di-

mensional, dense vector. The latter, as its name suggests, tries to predict the word

from its neighbours by the learned low dimensional, dense vectors.

One of the most popular models of VSM predictive models is the well-known Word2Vec

algorithm which was developed by Mikolov et al. in 2013 [58]. The fundamental idea

behind Word2Vec is to predict the surrounding words of each word in a window with

the fixed length, instead of capturing directly all co-occurrence counts.

There are two possible variations of learning algorithms to produce a distributed

16

(a) CBOW (b) Skip-gram

Figure 3.1: CBOW and Skip-gram model architectures [86].

representation of words: Continuous Bag-of-Words model (CBOW) and continuous

Skip-gram model. In CBOW architecture (see the Figure 3.1a), the network aims to

predict the current word based on the window of n neighbours that occur before and

n neighbours that occur after the current word which has been given as an input. In

contrast, Skip-gram architecture (see the Figure 3.1b) is the opposite of CBOW model

in that, it tries to predict the surrounding 2n words with the central target word as in-

put. Finally, the authors of [58] conclude that both models get almost similar results

and the difference is mostly depends on the size of the dataset, Skip-gram tends to

be a useful model for larger datasets, while CBOW performs slightly better on small

datasets.

3.2 Deep Learning

For a long time applying neural network architectures, in comparison with other ma-

chine learning models, to solve some problems unbeneficial due to the lack of com-

putational resources and the data. However, it can be seen that the technology has

been progressing exponentially with the years that is also affected by the growing of

computational infrastructure and by the availability of large amount of good quality

of training data. Consequently, the complex neural network models have been ex-

17

ceeded any other machine learning models in various tasks such as image processing,

object detection, recommender systems, and others.

In recent years, NNs have been the most widely used approaches for natural language

processing tasks such as sentiment analysis, text summarization [74], named entity

recognition [45] and question answering [25]. The most popular types of neural net-

works are Recurrent Neural Networks (RNNs) and Convolutional Neural Networks

(CNNs).

Next, we provide the necessary background for neural networks and the types of

recurrent neural networks.

3.2.1 Neural Networks

Artificial Neural Networks (ANNs), also familiar as Neural Networks (NNs) are ma-

chine learning models which are inspired from the human brain. The first models

of neural network developed by a neurophysiologist Warren McCulloch and a math-

ematician Walter Pitts in 1943. In their work [68], they stated how neurons might

work. Neural networks consists of the layer of input neurons or signals which can be

different feature values, an output layer where the result of the network obtained, and

an amount of various hidden layers between the input and output layers. In addition,

each layer has a few or several neurons.

Input signals are passed through the network, layer by layer, by using the weighted

connections to eventually reach the output layer. At some neurons, a nonlinear func-

tion can be triggered. The goal of a learning process is finding weights that would

made the neural network demonstrate desired behaviour. This is the example of Mul-

tilayer Perceptron (MLP) which is also called Feedforward Neural Networks. A gen-

eral architecture of artificial neural networks is shown in Figure 3.2.

Despite the fact that the feedforward neural networks have been successfully applied

and got better performance in many tasks, it does not consider the transient prospect

that characterizes sequential data. That is they are not reasonably good when it comes

to the data that depend on the previous data. To solve such kind of problems the neural

networks have evolved to so called recurrent neural networks. In the next subsections

18

Figure 3.2: Artificial Neural Network with three hidden layers [11].

not only the training process of neural networks would be described briefly in detail,

but also the basics of recurrent neural network architectures with its types will be

introduced.

3.2.2 Perceptron

The fundamental unit of neural networks is the one of the types of artificial neuron,

called perceptron. A perceptron takes a fixed number of inputs and produces a single

output. The way of computing the output essentially has several steps such as taking

an input, calculating the weighted sum by introducing weights, bias term, and apply-

ing activation function. The process described above can be formalized as follows:

The perceptron has n inputs represented as an input vector x = (x1, x2, . . . , xn). Each

input has an assigned weight that defined by a vector of weightsw = (w1, w2, . . . , wn).

Consequently, the weighted input values are combined which gives the weighted sum:

ε = w · x =
n∑

i=1

wi · xi. (3.1)

At this step the activation function is applied to the weighted sum in order to calculate

the output and the weighted sum is compared with a threshold θ to produce an output

y that is either 0 or 1, depending on whether or not it exceeds the threshold. Thus,

y = σ(ε) =

1, if ε ≥ θ,

0, if ε < θ.
(3.2)

19

Figure 3.3: The Perceptron [64].

On the other hand, (3.1) and (3.2) can be transformed as follows:

ε = w · x =
n∑

i=0

wi · xi, (3.3)

y = σ(ε) =

1, if ε ≥ 0,

0, if ε < 0,
(3.4)

where w and x are extended weight vector and extended input vector of the percep-

tron, respectively. Extended weight vector w = (w0, w1, w2, . . . , wn) is the vector of

weights w = (w1, w2, . . . , wn) with a bias weight w0 = −θ. Similarly, the extended

input vector x = (x0, x1, x2, . . . , xn) is the input vector x = (x1, x2, . . . , xn) with a

bias value x0 = 1.

The structure of a perceptron can be seen in Figure 3.3, where b = x0×w0 is the bias.

3.2.3 Activation Function

The activation function plays very significant role in artificial neural network model

architecture. The activation functions do the nonlinear transformation to the input

signal in order to make it capable to learn and execute more complicated nonlinear

tasks.

On the whole, the nonlinear activation functions are used in neural networks. The

most common used types of activation functions are sigmoid, hyperbolic tangent

(tanh), and Rectified Linear Unit (ReLU) functions.

20

Figure 3.4: Standard Sigmoid function.

The Sigmoid function is one of the most widely used activation functions and some-

times referred to as the logistic function. It is a monotonically increasing function

which is defined as:

σ(x) = sigmoid(x) =
1

1 + e−x
. (3.5)

The sigmoid function takes a real-valued number and transforms it into the range

between 0 and 1 (see Figure 3.4). Therefore, it has nice interpretation for output

neuron that perform classification task. However, there are some drawbacks of using

the sigmoid function due to the vanishing or being small of its gradient values near

saturation points, either tail of 0 or 1. The network rejected to learn further or will be

remarkably slow.

The hyperbolic tangent (tanh) function is another type of activation functions. It is a

nonlinear S – shaped function as the sigmoid function. The main difference between

them is that the output range of tanh function is zero-centered, [-1,1] instead of [0,1]

(see Figure 3.5). Therefore, the hyperbolic tangent function is more preferred in

practice and is given by:

σ(x) = tanh(x) =
ex − e−x

ex + e−x
. (3.6)

Rectified Linear Unit (ReLU) functions mathematically expressed in (3.7), squashes

the net input to a value greater or equal than zero by setting the negative input val-

ues to zero (see Figure 3.6). In comparison with sigmoid and tanh function, ReLU

computations are cheaper: there is no need for computing the exponential function in

activations, and sparsity can be exploited [23]. The advantages of using ReLU in neu-

21

Figure 3.5: Standard Hyperbolic tangent function.

Figure 3.6: Rectified Linear Unit function.

ral networks: it is faster to converge and it doesn’t face gradient vanishing problem.

σ(x) = ReLU(x) = max(0, x). (3.7)

3.2.4 Loss Function

To determine the capacity of a prediction of a machine learning or statistical model

is based on a loss function which is also called as cost or objective function. The

main concept of the loss function is to measure the error rate between the predicted

and correct target values. Therefore, to receive the best-performed machine learning

model, the output of the loss function should be minimized. There are various types

of loss functions. Furthermore, these types of loss functions are usually used with

specific activation functions in preference.

22

The Mean-Squared Error (MSE) is the one of the most commonly used loss function

that is used to calculate the average squared difference between the predicted and the

actual target values:

MSE(y, ŷ) =
1

N

N∑
i=1

(ŷi − yi)2. (3.8)

where N is the number of training examples, ŷi is the model‘s prediction value and

yi is actual expected output.

The Mean-Squared Error is generally used with the hyperbolic tangent and linear

activation functions. In addition, it assumes that the errors are normally distributed.

Another loss function that widely used to measure the error rate in statistical model

is Cross Entropy (CE) which is given by the following equation:

CE(y, ŷ) =
1

N

N∑
i=1

yi log(ŷi). (3.9)

Binary cross entropy is a loss function used on problems involving binary decisions:

BCE(y, ŷ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi)(1− log(ŷi))). (3.10)

Accordingly, Cross Entropy is used when the activation nodes are representing prob-

abilities and generally it is used in combination with sigmoid activation function in

neural networks. In practice, CE mostly leads to faster convergence and better results

than mean squared error in terms of classification error rates [24].

3.2.5 Backpropagation

Backpropagation algorithm is a supervised learning algorithm that is used for training

neural networks. The goal of the algorithm is to optimize the weights so that the

neural network would obtain more valuable predictions which can be reached by

minimizing the error rate between the predicted and the correct target values. The

described algorithm, which has two steps, forward pass and backward pass, would

start after initializing the weights randomly.

23

The forward pass process begins with calculating the output of the perceptron and

continues by finding the loss function. Then, in the backward pass process the ob-

tained loss function would be minimized by using the derivatives and the weights

would then be updated. One of the most common used optimization algorithms is the

gradient descent which uses derivatives to stepwise follow the direction of the nega-

tive gradient of the loss function. Since the loss function is a function of the activation

function ŷ = σ(ε) then the chain rule would be used to calculate the derivative of the

loss function. The gradient of the loss function, L, with respect to a certain weight wi

is given as follows:
∂L

∂wi

=
∂L

∂ŷ

∂ŷ

∂ε

∂ε

∂wi

, (3.11)

where ε expressed in (3.3).

The weight then is updated by the following equation:

w
′

i = wi − α
∂L

∂wi

, (3.12)

where α is known as the learning rate.

This is the main concept of the algorithm which is applied even to neural networks

with more hidden layers and large amount of inputs.

3.2.6 Optimization Algorithm: Adam

As discussed above, the weights are updated by an optimization algorithm. There

are several techniques for optimization algorithms such as Adam [42], Adagrad [19],

RMSProp, and others. In the subsequent sections of this work the Adam optimizer

will be used to train the neural network model due to its fast convergence. Empirical

results demonstrate that Adam works well in practice and compares favorably to other

stochastic optimization methods [42].

Adam (Adaptive Moment Estimation) algorithm is an extension of traditional stochas-

tic gradient descent algorithm. In stochastic gradient descent, there is only one learn-

ing rate α that updates all weights and stays constant during the training process. In

contrast, Adam optimization algorithm computes the adaptive learning rates for each

parameter. In addition to storing an exponentially decaying average of past squared

24

gradients vt like RMSprop, Adam also keeps an exponentially decaying average of

past gradients mt, similar to momentum:

mt = β1mt−1 + (1− β1)gt and vt = β2vt−1 + (1− β2)g2t , (3.13)

where mt and vt are estimates of the first moment (the mean) and the second moment

(the uncentered variance) of the gradients respectively [72].

The Adam update rule for any weight θ is then defined as:

θt+1 = θt −
η√
v̂t + ε

m̂t, (3.14)

where m̂t and v̂t are given by:

m̂t =
mt

1− βt
1

and v̂t =
vt

1− βt
2

. (3.15)

Frequently, the values of β1, β2, ε are 0.9, 0.999, 10−8, respectively.

3.2.7 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are one of the most successful network archi-

tectures in the state-of-the-art artificial neural networks. It is principally utilized in

deep learning when handling sequenced data. The main difference from traditional

feedforward neural networks, where input features are assumed to be independent to

each other, is the significant role of time in recurrent neural networks. Furthermore,

RNNs are effective tool to capture information over the dimension of time and store

it inside the network so that the texts in the input layer are interpreted as a time se-

quence of the words. In order to achieve desirable results in various machine learning

domains, a few versions of recurrent neural networks have been developed such as

Long Short-Term Memory [33] and Gated Recurrent Units [15].

The acceptance of feedback connections which can produce past context information

is the vital modernization in RNNs compared to feedforward neural networks. In

other words, RNNs have its internal memory which gives privilege over the other

neural networks especially when applied to natural language processing tasks where

the words can entirely be recognized if the context that they appears in is already

learned before.

25

Figure 3.7: General RNN model. Left: folded version of the RNN. Right: unfolded
version of the RNN [46].

The basic RNN architecture and its recurrent structure before and after unfolding in

time are shown in Figure 3.7. It can be visible that a network with a simple feedback

connection after unfolding can be converted into a deep feedforward neural network

by adding a new layer in each time step. Wxh, Whh, and Why are the learned weight

matrices and xt, ht, and yt are input, hidden state, and output state at time step t

respectively.

The forward propagation formulas corresponding to the recurrent neural network

models can be described by:

ht = f(Wxhxt +Whhht−1 + bh) and yt = g(Whyht + by), (3.16)

where bh and by are bias terms; f and g are activation functions where f is generally a

nonlinear, differentiable function applied to hidden nodes and g is a function chosen

depending on the specific task.

After processing the forward propagation, in order to train RNN models the back-

ward propagation, is needed. Since the RNN model can be represented as a deep

feedforward neural network then, the extension of the standard backpropagation al-

gorithm is known as Backpropagation Through Time (BPTT) algorithm [91] is used.

The significant distinction is that for every time step the gradients of the weights have

to be summed up. Consequently, when the sequences are long the backpropagation

process will be very lengthy and cost of computation will be too expensive. In the-

ory, RNNs do not have any limits on using information in arbitrarily long-sequences,

but practically standard RNNs can look back only a few steps due to the vanishing

or exploding gradient problem [7]. Therefore, there are a number of solutions to

26

this problem such as by truncating the feedback connection after a certain number

of time steps, regularization of the RNN’s weights [65], training with second order

optimization methods [55], and a very careful initialization of RNN’s hyperparame-

ters [56]. However, the most effective approach is to use another architecture called

Long Short-Term Memory (LSTM) [33].

3.2.8 Long Short-Term Memory

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochreiter

and Schmidhuber [33] in 1997. Then, some modifications have been made to the

original LSTM architecture by Alex Graves [26]. It is special type of RNNs designed

to avoid long-term dependency problem. Unlike the conventional RNNs, the LSTM

model capable to remember information for a long period of time [30]. The LSTM

networks have been implemented to distinct sequence modelling tasks like machine

translation [82], speech recognition [28], with the state-of-the-art performance.

LSTM is made up by a memory cell and its structure is shown in Figure 3.8. The

memory block has three main components: input gate, forget gate, and output gate.

Essentially, each of the gates has its own responsibility. The input gate decides which

information to store at the cell; the forget gate decides which information from the

previous hidden state has to be passed to the network; and the output gate controls

which information of the new computed hidden state goes to the output vector of the

network.

The given formulas below are the mathematical expression of how the network layer

in memory cell is updated at each time step t. We denote xt the vector of the input

sequence at time step t and ht the hidden layer value of the memory cell at time step

t. We consider Ct, C̃t, and Ct−1 as the current, candidate, and previous cell states,

respectively. Firstly, the input and forget vector gates calculated as follows:

it = σ(Wixt + Uiht−1 + bi) and ft = σ(Wfxt + Ufht−1 + bf). (3.17)

Then, the candidate and current cell states are computed:

C̃t = tanh(Wcxt + Ucht−1 + bc) and Ct = ft × Ct−1 + it × C̃t. (3.18)

27

Figure 3.8: LSTM memory block [75].

Finally, the value of output gate and the memory cell output value are calculated:

ot = σ(Woxt + Uoht−1 + bo) and ht = ot × tanh(Ct). (3.19)

3.2.9 Bidirectional LSTM

The main concept of introducing the bidirectional RNN model is the improvement of

standard RNNs performance. While unidirectional RNN use only previous context

to predict the next segment for a given sequence, Bidirectional RNN (BRNN) can

process both directions with two separate hidden layers where one reads the training

sequences forwards, beginning from the start of the sequence, and the other one back-

wards, beginning from the end of the sequence. Therefore, the BRNN architecture is

able to achieve and to use the information from the past and the future states [78].

Bidirectional LSTM (BDLSTM) is received by changing the recurrent neurons of

RNNs to the LSTM units and is connected to both hidden layers to the same output.

The unfolded structure of this model is presented on Figure 3.9. The output layers of

both forward and backward hidden state are computed by using the LSTM updating

equations. It has been proved that the bidirectional networks are substantially better

than unidirectional ones in many applications, such as phoneme classification [29]

and speech recognition [27].

28

Figure 3.9: Bidirectional LSTM network [16].

3.2.10 Overfitting

Overfitting is a common problem during the learning process of deep learning mod-

els. This appears when the model achieves a good fit on the training data; however

in new unseen data or validation data, it does not categorize the data correctly. In

other words, the model learns and memorizes patterns specific to training data which

are irrelevant in validation data. In practice, overfitting is identified by looking at the

validation loss or accuracy and by comparing with training loss or accuracy. Gen-

erally, the training loss continues decreasing while validation loss in contrast starts

increasing after a few number of epochs. To avoid overfitting or to address this issue,

there are several remedies such as early stopping, dropout regularization [81], tradi-

tional regularizations, reducing the size of the model, getting more data, and batch

normalization [35].

During the experiments, the overfitting issue can be seen from the graph that shows

the change in accuracy values, calculated on training and validation sets during subse-

quent iterations of learning process. Moreover, the graph displays from which number

of epochs the overfitting has been started. One of the well-known overfitting reduc-

tion methods is to interrupt the learning process before the model starts overfitting.

This method called early stopping. In practice, it allows for a significant improvement

in the performance of the model as it demonstrates in this study.

Dropout is a very popular regularization technique mainly applied to reduce overfit-

ting of neural networks. The idea of this method is temporarily dropping neurons

during the learning process. The neurons from input and hidden layers are removed

29

randomly from the network and the probability of being kept for each neuron is equal

to p. Hyperparameter p is called dropout rate and very often its default value is set to

0.5. Thus, the learning process runs faster since the network becomes smaller.

L2 regularization [60] avoids overfitting by adding the squared magnitude of the

weight parameters as a penalty term to the loss function. A term λ ‖w‖2 is added

to the original loss function for each present weight w in the neural network architec-

ture. The regularized version of binary cross entropy from (3.10) is:

BCEL2(y, ŷ) = −
1

N

N∑
i=1

(yi log(ŷi) + (1− yi)(1− log(ŷi))) +
λ

2N

nx∑
j=1

w2
j . (3.20)

The choice of λ regularization parameter depends on data and some tuning process

is needed. The goal is to catch a proper balance between simplicity and training the

data because of the occurring overfitting, if λ is too low, and underfitting, if λ is too

high, problems during the learning process of the model. Underfitting appears when

a model will not learn enough about the training data to make useful predictions.

30

CHAPTER 4

EXPERIMENTAL SETUP

In this section, the datasets used in this work will be described; the setup of the

experiments is introduced, and the evaluation metrics to measure the performance of

the models are represented.

4.1 Data Description

For the Turkish language, there are not so much available datasets not only for sen-

timent analysis, but also for other NLP tasks. In 2009, for example, U. Eroğul has

created a dataset of Turkish movie reviews for his master thesis manually [20]. In this

thesis, we use an available dataset which was created for the paper ‘SentiWordNet

for New Language: Automatic Translation Approach’ [59] and a dataset that is used

for U. Eroğul‘s master thesis. A former dataset which has two types of reviews, pos-

itive and negative, would be used to demonstrate RNN models for Turkish texts. It

has movie reviews which are collected from BeyazPerde [1]. Overall, 53,400 movie

reviews by the average length of 33 words are selected. The dataset is well-balanced,

that is the number of positive and negative reviews are almost equal. However, for

research train and test parts of the dataset are matched as only train in order to split

it into new three parts: train, test, and validation set. Moreover, a latter dataset which

is created by U. Eroğul would be also used to apply RNN models, distinct methods

from earlier implemented machine learning model in U. Eroğul‘s master thesis.

31

Figure 4.1: Confusion matrix.

4.2 Evaluation Metrics

The choice of an evaluation metric is changeable depending on the task. Generally,

various types of evaluation metrics like accuracy, precision, recall, and F1-score are

used for sentiment analysis tasks. The mathematical formulas of them are:

accuracy =
tp + tn

tp + tn + fp + fn
, (4.1)

precision =
tp

tp + fp
, (4.2)

recall =
tp

tp + fn
, (4.3)

F1-score =
2 ∗ precision ∗ recall

precision + recall
, (4.4)

where true positive (tp) is defined when a positive real value is correctly classified

as positive, false positive (fp) is a negative real value which is classified as posi-

tive, the true negative (tn) is a negative real value correctly classified as negative,

and false negative (fn) is a positive real value that is classified as negative [10]. In

Figure 4.1, we depict the confusion matrix.

32

In this research, the accuracy and F1-score evaluation metrics in (4.1) are used to

determine how well they work on sentiment analysis model since they estimate the

overall correctness of the system.

4.3 Framework

The programming language Python was used to implement proposed models in this

work since it has a large number of scientific libraries for data processing and machine

learning algorithms. To perform machine learning or deep learning tasks, there exist

several tools or libraries such as TensorFlow [2], Theano [69], Scikit-learn [66], and

Keras [13].

Keras is a high level open source neural network API which is written in Python

programming language. It is capable of running on top of TensorFlow, Theano or

The Microsoft Cognitive Toolkit (CNTK) [79]. It is minimalistic, scalable and sup-

port fast experimentation with deep neural networks. Keras is a model-level library,

providing high-level building blocks for developing deep learning models. It doesn’t

handle low-level operations such as tensor manipulation and differentiation. Instead,

it relies on a specialized, well-optimized tensor library, serving as the backend engine

of Keras [14].

Keras library has been selected for this research since it is so well-suited to the con-

cepts of neural networks and building of simple or complex neural networks takes a

few minutes by the help of some powerful models, such as the Sequential model and

the Model class used with the functional API. Therefore, for building neural networks

in the research used Sequential model of Keras framework whereas for word repre-

sentation used Python package Gensim [70] in order to handle words to vectors. It

is a great package for processing texts and working with word vector models such as

Word2Vec and FastText.

33

34

CHAPTER 5

RESULTS AND DISCUSSION

This chapter not only presents the results of experiments for sentiment analysis on

Turkish reviews domain but also considers some comparisons with previous work

and discussions over the results of experiments for English dataset. The kinds of re-

current neural networks, namely Long Short-Term Memory and bidirectional LSTM,

with their hyperparameters are used over two types of datasets to figure out the per-

formance that they could demonstrate. Therefore, the results from the experiments of

each model applied with each dataset will be presented separately in following sec-

tions. Finally, the last section provides a comparison between described models and

the other machine learning technique SVM.

Before start training the model, the first step is to clean data by removing stopwords,

punctuations, URLs, and then apply pre-processing techniques such as stemming,

lemmatization, tokenization. Zemberek, natural language processing tool for Turkic

Languages, is used to handle described processes in this research work. As a conse-

quence, the consecutive step is to map words into vectors that contain numeric values

for input to neural network. Word embedding is a type of mapping that allows words

with similar meaning to have similar representation. There are several types of word

embedding methods including Word2Vec and FastText, which are the most popular

for word representation. In this study, the simple tokenizer under neural networks

and most popular word embedding algorithm, Word2Vec, is used. Finally, the recur-

rent neural network architectures are applied to train the model then they are saved

and used to predict a new text in order to verify the effectiveness.

In general, the training model could have various numbers of layers but in this re-

35

search it consists of four layers in total which are Embedding layer, RNN layer, two

Dense layers with different input features. For the entire research, we split the main

dataset into three sets: training, cross validation, and test set. Since cross validation

set is playing main part on getting more truly results of classifiers, the model trained

with 20-fold cross validation set. Moreover, Adam optimization algorithm [42] and

binary cross entropy loss are used for optimizer and loss function, respectively. For

the activation a sigmoid and ReLU functions are used.

To train the model not only the optimization or loss functions but also the batch

size and number of epochs are significant, where one epoch is when entire dataset

is passed the neural network forward and backward only once and batch size is the

total number of training examples presented in a single batch. The reason of dividing

one epoch into smaller batches is that it has too large size for calculation at whole.

However, the right number of epochs and batch size is unknown and it can vary from

domain to domain, from larger dataset to smaller dataset. Generally, the most com-

mon used batch size is the 20, 25, and 32. In addition, it is important to use cross

validation set as validation data in training model and to shuffle the dataset.

In this research, the fixed number of epochs and batch size are used: 5 and 20, re-

spectively. The reason choosing small number of epochs is to avoid overfitting. More

precisely, overfitting is caused even in using just 5 epochs over both of two datasets.

In this study, techniques except such as early stopping, dropout regularization, and

L2 regularization are used to overcome overfitting. As mentioned earlier, the small

number of epochs is used and little size of model is applied. Moreover, in next sub-

sections the results of experiments with and without the regularization techniques are

shown and compared.

In this thesis, we use an available dataset which was created for the paper " Senti-

WordNet for New Language: Automatic Translation Approach " and a dataset that is

used for U. Eroğul‘s master thesis. The former dataset is represented as Dataset 1,

while the latter is named Dataset 2. A set of positive and negative examples for movie

reviews is given in the Appendix A.

36

(a) LSTM model for Dataset 1 (b) Bidirectional LSTM for Dataset 2

Figure 5.1: An example of overfitting.

5.1 Results for Experiments with Tokenizer

This specific section only presents the results for experiments that are done by using

simple tokenizer under neural networks.

Tokenizer allows to vectorize a text corpus, by turning each text into either a se-

quence of words ids or into a vector where the coefficient for each token could be

binary, based on word count, and based on frequency. Keras provides the Tokenizer

class for preparing text documents for deep learning. However, simple Tokenizer has

been constructed by ourselves for this research and has been used to tokenize Turkish

sentences.

As shown in Figure 5.1, the overfitting problem occurrs on both datasets when apply-

ing, both RNN models, LSTM, and bidirectional LSTM. To address the issue dropout

regularization and most popular L2 regularization are applied. Despite the fact that

the dropout regularization is the powerful tool to address overfitting, in our case it was

not the solution to the problem. On the other hand, the L2 regularization technique

is the alternative way to solve the problem and to avoid overfitting from the training

model. The overfitting problem is addressed using L2 regularization and can be seen

in the Figure 5.2.

Table 5.1 presents the results of 20-fold cross-validation of different models on the

training set and the results on the test set of a Dataset 1 for movie reviews, while

Table 5.2 shows the results for a Dataset 2. The metrics used are the accuracy and

37

(a) LSTM model with L2 regularization for
Dataset 1

(b) Bidirectional LSTM with L2 regularization for
Dataset 2

Figure 5.2: An example of avoided overfitting.

F1-score by classes of positive and negative polarities.

Table 5.1: The results for Dataset 1

DATASET 1 Validationa data
Accuracy

Test data
F1-score

LSTM 87.3 87.1
LSTM with Dropout 87.4 87.6
LSTM with L2 regularization 87.8 88.4
Bidirectional LSTM 87 87.3
Bidirectional LSTM with Dropout 87.3 87.3
Bidirectional LSTM with L2 regularization 87.9 88

Table 5.2: The results for Dataset 2

DATASET 2 Validationa data
Accuracy

Test data
F1-score

LSTM 81 80.9
LSTM with Dropout 81.4 81.6
LSTM with L2 regularization 81.5 81.7
Bidirectional LSTM 80.5 81.3
Bidirectional LSTM with Dropout 81.2 81.7
Bidirectional LSTM with L2 regularization 81.8 82.7

Since the overfitting is the biggest issue during whole research, the results of the mod-

els with L2 regularization are taken as more correctly performance for the datasets.

So, LSTM and bidirectional LSTM with L2 regularization show 88.4% and 88% as

their F1-score for Dataset 1 while for Dataset 2 these measures are 81.7% and 82.7%,

38

(a) LSTM model for Dataset 1 (b) Bidirectional LSTM for Dataset 2

Figure 5.3: An example of overfitting.

respectively (see the Appendix B). Each of the architectures gives acceptable results

for Turkish datasets by using simple tokenizer as a vector representation of words.

5.2 Results for Experiments with Word2Vec

This section only presents the results for experiments that are done by using state-

of-the-art word embedding algorithm, so called Word2Vec. For this research, a pre-

trained Word2Vec model for Turkish language is utilized.

It can be seen from Figure 5.3 that overfitting starts at some point instead of start-

ing at the beginning point as in the previous section. In such situation to avoid the

overfitting, the early stopping method can be used with the epoch where the valida-

tion loss starts increasing. However, in this research the regularization methods are

also applied to avoid overfitting. The difference from the previous section when used

simple tokenizer under neural networks is validation loss, fluctuated when dropout

regularization is applied to overcome the overfitting (see Figure 5.4). Finally, the L2

regularization method avoids overfitting from the training model shown in Figure 5.5.

The results for experiments using Word2Vec embedding for Dataset 1 and Dataset 2

can be seen in Table 5.3 and Table 5.4, respectively. The accuracy and F1-score

metrics are used for binary classification.

39

(a) LSTM model with dropout regularization for
Dataset 1

(b) Bidirectional LSTM with dropout regulariza-
tion for Dataset 2

Figure 5.4: An example of fluctuated overfitting.

(a) LSTM model with L2 regularization for
Dataset 1

(b) Bidirectional LSTM with L2 regularization for
Dataset 2

Figure 5.5: An example of avoided overfitting.

40

Table 5.3: The results for Dataset 1

DATASET 1 Validationa data
Accuracy

Test data
F1-score

LSTM 89.5 84.3
LSTM with Dropout 90.2 85.1
LSTM with L2 regularization 87.5 81.2
Bidirectional LSTM 89.2 83.8
Bidirectional LSTM with Dropout 90 85.1
Bidirectional LSTM with L2 regularization 89.2 83.8

Table 5.4: The results for Dataset 2

DATASET 2 Validationa data
Accuracy

Test data
F1-score

LSTM 86.4 78.6
LSTM with Dropout 86.8 79.5
LSTM with L2 regularization 84.9 76.6
Bidirectional LSTM 86.3 78.3
Bidirectional LSTM with Dropout 86.6 79.6
Bidirectional LSTM with L2 regularization 86 78.4

From the tables, it can be seen that depending on the dataset and the model the pre-

dicted test can be far worth than the validation or training data. Since overfitting prob-

lem cannot be avoided by using dropout regularization, the outcomes made by using

L2 regularization would be taken as a result. LSTM architecture gives 81.2% and

76.6% F1-score for Dataset 1 and Dataset 2, respectively, while for the same datasets

bidirectional LSTM provides performances of 83.8% and 78.4% for F1-score. To

conclude, the bidirectional LSTM overcomes the simple LSTM model in most cases.

5.3 Comparison of the Models

This section provides the comparison between our study and Eroğul‘s master the-

sis [20] since both studies used the same dataset.

U. Eroğul in his thesis used traditional machine learning algorithm SVM with bag-

of-words method and acquired a F1-score of 85% on binary sentiment classification

at the document level. In order to compare the results of our work and Eroğul‘s study,

only the performances for Dataset 2 is taken from the previous sections. The results

41

are presented in Table 5.5.

Table 5.5: The comparison of the results for Dataset 2

DATASET 2 Validationa data
Accuracy

Test data
F1-score

LSTM with L2 regularization using
simple tokenizer

81.5 81.7

Bidirectional LSTM with L2 regu-
larization using simple tokenizer

81.8 82.7

LSTM with L2 regularization using
Word2Vec

84.9 76.6

Bidirectional LSTM with L2 regu-
larization using Word2Vec

86 78.4

SVM with bag-of-words 85.1 84.9

Looking at the results in Table 5.5, the best result was obtained using SVM algorithm

with bag-of-words method. Initially, U. Eroğul acquired a F1-score of 84% by using

only the roots of words as features for machine learning and with adding standard

spellchecking methods the performance F1-score increased up to 85%. The better

result from our study for Dataset 2 is acquired applying bidirectional LSTM with

L2 regularization using simple tokenizer and shows good measure of 82.7% as its

F1-score. However, models with Word2Vec achieve lower results as compared to

models with simple tokenizer or SVM model with bag-of-words due to lower capacity

of pre-trained Turkish Word2Vec model.

Finally, we use LSTM and bidirectional LSTM models to perform sentiment analysis

on English movie reviews from the Internet Movie Database (IMDB). Keras library

is used to build RNN models and its built-in IMDB movie reviews dataset. It means

that we do not need any tokenizers for tokenization process since Keras provides

tokenized version of IMDB movie reviews. The IMDB dataset was first proposed

in [54], as a benchmark for sentiment analysis. As for Turkish dataset, we use the

same activation, loss functions and Adam optimizer during the learning process of

the model. However, the batch size and number of epochs are changed to 64 and 4,

respectively. The reason of choosing such small number of epochs is again due to

overfitting problem. Early stopping, dropout, and L2 regularization techniques are

applied to address overfitting issue. L2 regularization eventually avoids overfitting

42

(a) LSTM model with L2 regularization for IMDB
dataset

(b) Bidirectional LSTM with L2 regularization for
IMDB dataset

Figure 5.6: An example of avoided overfitting.

problem for two models, LSTM and bidirectional LSTM, and can be seen in Fig-

ure 5.6.

Table 5.6 presents the results of the models, LSTM and bidirectional LSTM, and also

the results from the research [31]. In that study, author achieved excellent results by

applying LSTM approach with the word embedding model Word2Vec and showed

95.1% as its F1-score (see the last row in Table 5.6). Since L2 regularization avoids

the overfitting problem, then the results with it are taken from our study as more cor-

rectly performance for both approaches. So, LSTM and bidirectional LSTM presents

performances of 87.7% and 88.2% for F1-score. Therefore, we can see that apply-

ing Word2Vec as word representation with the model LSTM increases F1-score by

almost 7.5% for English texts.

Table 5.6: The results for IMDB dataset

IMDB dataset Validationa data
Accuracy

Test data
F1-score

LSTM 86.1 86.4
LSTM with Dropout 87.8 87.8
LSTM with L2 regularization 86.9 87.7
Bidirectional LSTM 87 86.8
Bidirectional LSTM with Dropout 88.5 88.9
Bidirectional LSTM with L2 regularization 88.1 88.2
LSTM using Word2Vec 95.1

43

44

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, the state-of-the-art recurrent neural networks have been classified for

sentiment analysis task on Turkish movie reviews domain. The main concept of using

RNN models for this sentiment classification problem is the lack of researches using

them for Turkish language. Generally, their architectures provide excellent results for

English language and this research encourages this fact since it achieves reasonably

good results for Turkish language, too. Furthermore, word representations play a key

role in classifying sentiment analysis tasks and choosing the right word representa-

tions are also important to achieve acceptable results.

In the first part of research, the simple tokenizer under neural network has been used

as a word representation and presents more superior results than the word embed-

ding model Word2Vec. In general, Word2Vec model performs outstanding results

for English texts but in this research it achieves reduced results as compared to the

simple tokenizer for the same datasets. It can be explained by the lower capacity

of pre-trained Turkish Word2Vec model. In spite of this, both word representations

with RNN models present results between 81% and 88% for Dataset 1 and the results

between 77.6% and 82.7% for Dataset 2, which are preferably results for Turkish

domains.

Despite the fact that the models perform well, there can be done more research on

changing and reducing the size of the model and taking another batch size to train the

model should be carried out for further studies. Moreover, it is known that there exist

several types of loss functions, optimizations algorithms which can be adapted and

the vocabulary size which can be shaped to a smaller dimension. Therefore, all these

45

changes tend to do more research and achieve valuable results for sentiment analysis

tasks on Turkish review domains.

As future work, the new, well-balanced dataset with larger size must be created in

order to train deep learning models more precisely for Turkish reviews domain due

to the fact that for deep learning models the extension of larger dataset is a signif-

icant one. Another approaches different from recurrent neural networks can be im-

plemented to solve sentiment analysis on Turkish texts. More precisely, architectures

such as Convolutional Neural Networks (CNNs), FastText for text classification [39],

Attention Mechanism [5, 53] and Recursive Neural Networks can be applied since

there no works related to these approaches in Turkish.

Different from the approaches mentioned earlier, the word representation is also an-

other important part for improving the performance of models. So, one of the most

popular text representation methods is Universal Sentence Encoder[12] representa-

tions and its various types. In recent years, these methods applied with deep learning

models have become more active in the area of natural language processing. More-

over, another approach is the so called transfer learning method [61] which is used

earlier for Turkish domains and highly improved the performance of baseline models.

On the whole, since the document level is not just one type of sentiment analysis

then the other levels, sentence and aspect, can be a new research work for Recurrent

Neural Network architectures.

46

REFERENCES

[1] Beyazperde, Online Available at: http://www.beyazperde.com.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Tensor-
Flow: Large-scale machine learning on heterogeneous systems, Software avail-
able from tensorflow.org, 2015.

[3] A. Abbasi, H. Chen, and A. Salem, Sentiment analysis in multiple languages:
Feature selection for opinion classification in web forums, ACM Transactions
on Information Systems, 26(12), 2008.

[4] A. A. Akın and M. D. Akın, Zemberek, an open source NLP framework for
Turkic languages, Structure, 10, pp. 1–5, 2007.

[5] D. Bahdanau, K. Cho, , and Y. Bengio, Neural machine translation by jointly
learning to align and translate, arXiv preprint arXiv:1409.0473, 2014.

[6] F. Benamara, C. Cesarano, A. Picariello, D. Reforgiato, and V. S. Subrahmanian,
Sentiment analysis: Adjectives and adverbs are better than adjectives alone,
in Proceedings of the International Conference on Weblogs and Social Media
(ICWSM), 2007.

[7] Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE Transactions on Neural Networks 5, pp. 157–
166, 1994.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors
with subword information, Transactions of the Association for Computational
Linguistics 5, pp. 135–146, 2017.

[9] Z. Boynukalın, Emotion analysis of Turkish texts by using machine learning
methods, Master’s thesis, Middle East Technical University, 2012.

[10] A. Bradley, The use of the area under the ROC curve in the evaluation of ma-
chine learning algorithms, Pattern Recognition, 30(7), pp. 1145–1159, 1997.

47

[11] F. Bre, J. Gimenez, and V. D. Fachinotti, Prediction of wind pressure coefficients
on building surfaces using artificial neural networks, Energy and Buildings, 158,
2017.

[12] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. St.John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, Y. Sung, B. Strope, and R. Kurzweil,
Universal sentence encoder, arXiv preprint arXiv:1803.11175, 2018.

[13] F. Chollet, Keras, https://github.com/fchollet/keras, 2015.

[14] F. Chollet, Deep learning with python, Manning Publications, 2017.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Gated feedback recurrent neural
networks, in 37, editor, Proceedings of the 32nd International Conference on
Machine Learning (ICML), pp. 2067–2075, 2015.

[16] Z. Cui, R. Ke, and Y. Wang, Deep bidirectional and unidirectional lstm recur-
rent neural network for network-wide traffic speed prediction, arXiv preprint
arXiv:1801.02143, 2018.

[17] K. Dave, S. Lawrence, and D. M. Pennock, Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews, in Proceedings of the
12th International Conference on World Wide Web, pp. 519–528, 2003.

[18] C. N. Dos Santos and M. Gatti, Deep convolutional neural networks for senti-
ment analysis of short texts, in Proceedings of the 25th International Conference
on Computational Linguistics (COLING), pp. 69–78, 2014.

[19] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online
learning and stochastic optimization, The Journal of Machine Learning Re-
search, 12, pp. 2121–2159, 2011.

[20] U. Eroğul, Sentiment analysis in Turkish, Master’s thesis, Middle East Technical
University, 2009.

[21] B. Erşahin, O. Aktaş, D. Kılınç, and M. Erşahin, A hybrid sentiment analysis
method for Turkish, Turkish Journal of Electrical Engineering and Computer
Sciences, 2019.

[22] G. Gezici and B. Yanikoglu, Sentiment Analysis in Turkish, chapter 12, pp. 255–
271, Oflazer, K. and Saraçlar, M. (editor). Turkish Natural Language Processing,
2018.

[23] X. Glorot, A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks,
in Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2011.

48

[24] P. Golik, P. Doetsch, and N. Hermann, Cross-entropy vs. squared error training:
a theoretical and experimental comparison, in 14th Annual Conference of the In-
ternational Speech Communication Association (Interspeech), pp. 1756–1760,
2013.

[25] D. Golub and X. He, Character-level question answering with attention, in Pro-
ceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2016.

[26] A. Graves, Generating sequences with recurrent neural networks, arXiv preprint
arXiv:1308.0850, 2013.

[27] A. Graves, N. Jaitly, and A. Mohamed, Hybrid speech recognition with
deep bidirectional lstm, in Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE, pp. 273– 278, 2013.

[28] A. Graves, A. Mohamed, and G. Hinton, Speech recognition with deep recur-
rent neural networks, in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 6645–6649, 2013.

[29] A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures, Neural Networks, 18(5), pp.
602–610, 2005.

[30] S. Hasim, S. Andrew, and B. Francoise, Long short-term memory recurrent neu-
ral network architectures for large scale acoustic modeling, in 15th Annual Con-
ference of the International Speech Communication Association, 2014.

[31] A. Hassan and A. Mahmood, Sentiment analysis with recurrent neural network
and unsupervised neural language model, in 42nd IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), 2017.

[32] G. Hinton, Learning distributed representations of concepts, in Proceeding of
the 8th Annual Conference of the Cognitive Science Society, pp. 1–12, 1986.

[33] S. Hochreiter and J. Schmidhuber, Long short- term memory, Neural Computa-
tion, pp. 1735–1780, 1997.

[34] W. Hutchins, The Georgetown-IBM experiment demonstrated in January 1954,
Conference of the Association for Machine Translation in the Americas, 2004.

[35] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, International Conference on Machine
Learning, pp. 448–456, 2015.

[36] V. S. Jagtap and P. Karishma, Analysis of different approaches to sentence-
level sentiment classification, International Journal of Scientific Engineering
and Technology, 2, pp. 164–170, 2013.

49

[37] T. Joachims, Text categorization with support vector machines: Learning with
many relevant features, in Proceedings of the 10th European Conference on
Machine Learning, pp. 137–142, 1998.

[38] S. Jose, A three-stage methodological process of data text mining: A ugc busi-
ness intelligence analysis, Symmetry, 2019.

[39] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient
text classification, arXiv preprint arXiv:1607.01759, 2016.

[40] M. Kaya, G. Fidan, and I. H. Toroslu, Sentiment analysis of Turkish political
news, in Proceedings of the The 2012 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence and Intelligent Agent Technology, pp. 174–180,
2012.

[41] Y. Kim, Convolutional neural networks for sentence classification, in Proceed-
ing of the 2014 Conference on Emprical Methods in Natural Language Process-
ing (EMNLP), pp. 1746–1751, 2014.

[42] D. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR),
2015.

[43] M. Z. Kurdi, Natural Language Processing and Computational Linguistics 2:
Semantics, Discourse and Applications, volume 2, John Wiley and Sons, 2017.

[44] F. Kurt, Investigating the Effect of Segmentation Methods on Neural Model
based Sentiment Analysis on Informal Short Texts in Turkish, Master’s thesis,
Middle East Technical University, 2018.

[45] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, Neural
architectures for named entity recognition, arXiv preprint arXiv:1603.01360,
2016.

[46] T.-T.-H. Le, J. Kim, and H. Kim, Analyzing effective of activation functions
on recurrent network for intrusion detection, Journal of Multimedia Information
System, 3, 2016.

[47] Z. Lei and B. Liu, Identifying noun product features that imply opinions, in
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (HLT), pp. 575–580, 2011.

[48] O. Levy and Y. Goldberg, Dependency-based word embeddings, in 2, editor,
Proceeding of the 52nd Annual Meeting of the Association for Computational
Linguistics, pp. 302–308, 2014.

[49] C. Lin and Y. He, Joint sentiment/topic model for sentiment analysis, in Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Manage-
ment (CIKM), pp. 375–384, 2009.

50

[50] B. Liu, Sentiment Analysis and Subjectivity, Handbook of Natural Language
Processing, Second Edition, 2010.

[51] B. Liu, Sentiment analysis and opinion mining. Synthesis Lectures on Human
Language Technologies, volume 5, Morgan & Claypool Publishers, 2012.

[52] B. Liu, Sentiment Analysis Mining Opinions, Sentiments, and Emotions, Cam-
bridge University Press, 2015.

[53] M.-T. Luong, H. Pham, and C. D. Manning, Effective approaches to attention-
based neural machine translation, in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1412–1421,
2015.

[54] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Ng, and C. Potts, Learning
word vectors for sentiment analysis, in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 142–150, Association for Computational Linguistics, 2011.

[55] J. Martens and I. Sutskever, Learning recurrent neural networks with hessian-
free optimization, in Proceedings of the 28th International Conference on Ma-
chine Learning (ICML), pp. 1033–1040, 2011.

[56] J. Martens, I. Sutskever, G. Dahl, and G. Hinton, On the importance of initializa-
tion and momentum in deep learning, in Proceedings of the 30th International
Conference on Machine Learning (ICML), pp. 1139–1147, 2013.

[57] A. McCallum and K. Nigam, A comparison of event models for Naive Bayes
text classification, in Proceedings of AAAI-98, Workshop on Learning for Text
Categorization, pp. 41–48, American Association for Artificial Intelligence,
1998.

[58] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed rep-
resentations of words and phrases and their compositionality, in Advances in
Neural Information Processing Systems, pp. 3111–3119, 2013.

[59] B. Naderalvojoud, E. A. Sezer, H. Sever, and A. Ucan, Sentiwordnet for new
language: Automatic translation approach, in 12th International Conference on
Signal-Image Technology and Internet-Based Systems, 2016.

[60] A. Ng, Feature selection, l1 vs. l2 regularization, and rotational invariance, in
Proceedings of the International Conference on Machine Learning, 2004.

[61] S. Pan and Q. Yang, A survey on transfer learning, Knowledge and Data Engi-
neering, IEEE Transactions, 22(10), pp. 1345–1359, 2010.

[62] B. Pang and L. Lee, Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, Now Publishers Inc, 2008.

51

[63] B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up? : sentiment classification
using machine learning techniques, in Proceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86,
2002.

[64] A. Parmezan, V. Alves de Souza, and G. Batista, Evaluation of statistical and
machine learning models for time series prediction: Identifying the state-of-the-
art and the best conditions for the use of each model, Information Sciences,
2019.

[65] R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent
neural networks, arXiv preprint arXiv:1211.5063, 2012.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Ma-
chine learning in python, The Journal of Machine Learning Research, 12, pp.
2825–2830, 2011.

[67] J. Pennington, R. Socher, and C. D. Manning, Glove: Global vectors for word
representation, in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532–1543, Association for Com-
putational Linguistics, Doha, Qatar, 2014.

[68] W. Pitts and W. S. McCulloch, A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics, pp. 115–133, 1943.

[69] A. Rami, A. Guillaume, A. Amjad, A. Christof, B. Dzmitry, and B. Nicolas,
Theano: A python framework for fast computation of mathematical expressions,
arXiv preprint arXiv:1605.02688, 2016.

[70] R. Rehurek and P. Sojka, Software framework for topic modelling with large
corpora, in Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pp. 45–50, 2010.

[71] F. Ronen, Techniques and applications for sentiment analysis, Communications
of the ACM, 56, pp. 82–89, 2013.

[72] S. Ruder, An overview of gradient descent optimization algorithms, arXiv
preprint arXiv:1609.04747, 2016.

[73] P. Rudy and T. Mike, Sentiment analysis: A combined approach, International
Journal of Informatics, 3, pp. 143–157, 2009.

[74] A. M. Rush, S. Chopra, and J. Weston, A neural attention model for abstrac-
tive sentence summarization, in Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2015.

52

[75] J. Said, S. Jadid Abdulkadir, H. Alhussian, M. Nazmi, and A. A Elsheikh, Long
short term memory recurrent network for standard and poor’s 500 index mod-
elling, International Journal of Engineering and Technology, 7, pp. 25–29, 2018.

[76] G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic index-
ing, Communications of the ACM, 18, pp. 613–620, 1975.

[77] J. Schultz, How much data is created on the internet each day?, Online Available
at: https://www.gwava.com/blog/internet-data-created-daily/, 2012.

[78] M. Schuster and K. Paliwal, Bidirectional recurrent neural networks, IEEE
Transactions on Signal Processing, 45(11), pp. 2673–2681, 1997.

[79] F. Seide and A. Agarwal, CNTK: Microsoft’s open-source deep-learning toolkit,
in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 2134–2135, 2016.

[80] H. Shirani-Mehr, Applications of deep learning to sentiment analysis of movie
reviews, Technical report, Stanford University, 2014.

[81] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, The Journal
of Machine Learning Research, 15(1), pp. 1929–1958, 2014.

[82] I. Sutskever, O. Vinyals, and Q. Le, Sequence to sequence learning with neural
networks, in Advances in Neural Information Processing Systems, pp. 3104–
3112, 2014.

[83] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, Lexicon-based
methods for sentiment analysis, Computational Linguistics, 37, pp. 267–307,
2011.

[84] M. Thelwall, K. Buckley, and G. Paltoglou, Sentiment strength detection for
the social web, Journal of the American Society for Information Science and
Technology, 63(1), pp. 163–173, 2012.

[85] P. Turney, Thumbs up or thumbs down? : semantic orientation applied to un-
supervised classification of reviews, in Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pp. 417–424, 2002.

[86] E. Tutubalina and S. Nikolenko, Demographic prediction based on user reviews
about medications, Computacion y Sistemas, 21, pp. 227–241, 2017.

[87] A. Vural, B. Cambazoglu, P. Senkul, and Z. Tokgoz, A framework for senti-
ment analysis in Turkish: Application to polarity detection of movie reviews in
Turkish, Computer and Information Sciences III, pp. 437–445, 2013.

53

[88] T. Wilson, J. Wiebe, and P. Hoffmann, Recognizing contextual polarity in
phrase-level sentiment analysis, in Proceeding of Conference Human Lan-
guage and Technology and Empirical Methods in Natural Language Processing
(EMNLP), pp. 347–354, 2005.

[89] T. Wilson, J. Wiebe, and R. Hwa, Just how mad are you? finding strong and
weak opinion clauses, in 4, editor, Proceeding 19th National Conference of Ar-
tificial Intelligence, pp. 761–769, 2004.

[90] Z. Zhang, D. Miao, and B. Yuan, Context-dependent sentiment classification
using antonym pairs and double expansion, in Web-Age Informative Manage,
pp. 711–722, 2014.

[91] D. Zipser and R. J. Williams, Gradient-based learning algorithms for recurrent
networks and their computational complexity, in Back-propagation: Theory, Ar-
chitectures and Applications, pp. 433–486, 1995.

54

APPENDIX A

EXAMPLE TURKISH DATA

A set of positive and negative movie review examples from each dataset are given in

the following sections.

A.1 Positive Movie Reviews

Aklına sağlık bu filmin yönetmeninin ve yazarının. Bu film hakkında

söyleyebileceğim tek şey, hani bi filmle hayatınız bambaşka olur yaa...

İzlemeden Ölmeyin!!

Bu filme puan verenleri cok merak ediyorum aslında.her şeyi ile mükem-

mel bir film 1010 luk bir film ben herşeyi ile 10 verdim.Puan kıranlar

acaba neresinden kırıyorlar anlamış değilim.

Edward Norton yeni nesil aktörler içerisinde Johnny deppten sonra

belkide en yeteneklisi ve oynadığı tüm filmlerde olduğu gibi sihirbazda

da kalitesini konuşturmuş. Ayrıca film yorumlarda sıkca Prestijle kıyaslan-

mış. Prestij sinema tarihinin en iyi filmlerinden birisi bu filmle kıyaslanıl-

ması bence yanlış. Genel olarak bakıldığında film zevkle izlenebilecek

seyirciyi sıkmayan kaliteli bir yapım. İzlemenizi tavsiye ederim 10/8

A.2 Negative Movie Reviews

Tam bir piyasa korku filmiydi ya.. Rezalet yani begenenler bu film-

den korkmayi nasil basarmis gerçekten anlamadim.. Vakit kaybetmek

istiyorum derseniz yada hangi korku filminde katila katila gülerim diye

55

sorarsaniz kesinlikle tavsiye ederim.. Ama malesef bundan da kötülerini

izledim zamaninda..

Başından sonunun ne olacağını tahmin edebileceğiniz, aşırı derecede

durağan, çok fazla belden aşağı muhabbet içeren(çocukları da katan),

her üç kelimesinden biri küfür olan bir film olmuş. Gerçekten hayal

kırıklığına uğradım. Üstüne üstlük ne Nicholas Cage ne de Michael

Caine beklediğim gibiydi ikisi de normalde gösterdikleri performansların

o kadar altındaydı ki!!!Boşyere gidip de iki saat sıkıntıdan bayılmayın

derim ben....

Fatih akın türkiyenin geleceği parlak isimlerindense türkiye bitmiş

desenize.adamın her filminde erotizm her filminde sıkıcı bir psikoloji var.

bu filmde öyle boş bir film. farklı duygular katmasını bekliyorsunuz ama

hiçbirşey katmıyor haydi kekillinin sahnesi gelsede izlesek diye düşün-

mekten başka birşey değil bu film.

56

APPENDIX B

SOURCE CODE

This appendix reports sample codes of the experiment. More precisely, text pre-

processing, simple tokenizer, and model construction source codes of the LSTM al-

gorithm with L2 regularization which shows good performance of 88.4% as their

F1-score for Dataset 1.

57

1 import numpy as np

2 import pandas as pd

3 from sklearn.model_selection import train_test_split

4 from keras.preprocessing import sequence

5 from keras.preprocessing.sequence import pad_sequences

6 np.random.seed(7)

7

8 data = pd.read_excel("movie_reviews.xlsx")

9

10 from zemberek_parser_master.zemberek_python

11 import main_libs_my_version as ml

12 zemberek_api = ml.zemberek_api(

13 libjvmpath="C:\\Program Files\\Java\\jre1.8.0_144\\

14 bin\\server\\jvm.dll",

15 zemberekJarpath= "C:\\Users\\admin\\Documents\\

16 zemberek_parser_master\\

17 zemberek_python\\zemberek-tum-2.0.jar").zemberek()

18

19 X_data = pad_sequences(reviews, maxlen = 50)

20 y_data = np.asarray(labels)

21

22 X_train, X_test, y_train, y_test =

23 train_test_split(np.asarray(X_data), np.asarray(y_data),

24 test_size = 0.2)

25 X_train, X_val, y_train, y_val =

26 train_test_split(X_train, y_train, test_size=0.2,

27 random_state=42)

Listing B.1: Text preprocessing source code in Python.

58

1 reviews = []

2 labels = []

3 all_tokens = []

4 unique_tokens = dict()

5 for i in range(len(data)):

6 try:

7 tokens = ml.ZemberekTool(zemberek_api).

8 metinde_gecen_kokleri_bul(data["Text"][i])

9 reviews.append(tokens)

10 labels.append(data["Sentiment"][i])

11 all_tokens += tokens

12 for t in tokens:

13 if t in unique_tokens.keys():

14 unique_tokens[t] += 1

15 else:

16 unique_tokens[t] = 1

17 except:

18 pass

19 def create_dictionary(unique_tokens, threshold):

20 token_to_idx = dict()

21 idx_to_token = dict()

22 unique_token_keys = list(unique_tokens.keys())

23 j = 0

24 for i in range(len(unique_token_keys)):

25 if unique_tokens[unique_token_keys[i]] > threshold:

26 token_to_idx[unique_token_keys[i]] = j

27 idx_to_token[j] = unique_token_keys[i]

28 j += 1

29 return token_to_idx, idx_to_token

30 token_to_idx, idx_to_token = create_dictionary(unique_tokens, 30)

31 for i in range(len(reviews)):

32 for j in range(len(reviews[i])):

33 if reviews[i][j] in token_to_idx.keys():

34 reviews[i][j] = token_to_idx[reviews[i][j]]

35 else:

36 reviews[i][j] = None

37 reviews[i] = [x for x in reviews[i] if x != None]

38 i = 0

39 for r in reviews:

40 if len(r)!=0:

41 i += 1

42 for i in range(len(reviews)):

43 if len(reviews[i]) == 0:

44 labels[i] = None

45 reviews = [x for x in reviews if len(x) != 0]

46 labels = [x for x in labels if x != None]

Listing B.2: Simple tokenizer source code in Python.

59

1 import numpy as np

2 import pandas as pd

3 from keras.models import Sequential, load_model

4 from keras.layers

5 import Dense, Dropout, Activation, LSTM, Embedding, Bidirectional

6 from keras.layers.embeddings import Embedding

7 from keras.regularizers import l2

8 from sklearn.metrics import f1_score

9 from sklearn.metrics import classification_report, confusion_matrix

10

11 embedding_size=400

12 model = Sequential()

13 model.add(Embedding(len(token_to_idx), embedding_size,

14 input_length = X_train.shape[1]))

15 model.add(LSTM(50,kernel_regularizer=l2(0.01),

16 recurrent_regularizer=l2(0.01),

17 bias_regularizer=l2(0.01)))

18 model.add(Dense(50, activation = "relu",kernel_regularizer=l2(0.01),

19 bias_regularizer=l2(0.01)))

20 model.add(Dense(1, activation = "sigmoid"))

21 print(model.summary())

22

23 nb_epoch = 5

24 batch_size = 20

25 model.compile(loss = "binary_crossentropy",

26 optimizer = "adam", metrics = ["accuracy"])

27 hist_lstm = model.fit(X_train, y_train,

28 validation_data=(X_val, y_val),shuffle=True,

29 epochs = nb_epoch, batch_size = batch_size)

30 score = model.evaluate(X_val, y_val)

31 print("Validation Loss: %.2f%%" % (score[0]*100))

32 print("Validation Accuracy: %.2f%%" % (score[1]*100))

33 model.save(’lstm_regularizer_movie_reviews.h5’)

34

35 y_pred = model.predict(X_test)

36 yy_scores = (y_pred > 0.5)

37 yy_true = (y_test>0.5)

38 print("F1 Score: " + str(f1_score(yy_true, yy_scores,

39 average=’weighted’)))

40 print(confusion_matrix(y_test, yy_scores))

41 print(classification_report(y_test,yy_scores))

Listing B.3: A LSTM model source code in Keras.

60

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Problem Definition
	Sentiment Analysis
	Structure of the Thesis

	LITERATURE SURVEY
	Sentiment Analysis and Opinion Mining
	Definition
	Concepts in Sentiment Analysis
	Types of Sentiment Analysis

	Sentiment Analysis in Turkish
	Turkish Sentiment Analysis
	The Studies on Turkish Sentiment Analysis
	Natural Language Processing Tool (Zemberek)

	BACKGROUND
	Text Representation
	One-Hot Representation
	Distributed Representation

	Deep Learning
	Neural Networks
	Perceptron
	Activation Function
	Loss Function
	Backpropagation
	Optimization Algorithm: Adam
	Recurrent Neural Networks
	Long Short-Term Memory
	Bidirectional LSTM
	Overfitting

	EXPERIMENTAL SETUP
	Data Description
	Evaluation Metrics
	Framework

	RESULTS AND DISCUSSION
	Results for Experiments with Tokenizer
	Results for Experiments with Word2Vec
	Comparison of the Models

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	EXAMPLE TURKISH DATA
	Positive Movie Reviews
	Negative Movie Reviews

	SOURCE CODE

