
LARGE SPARSE MATRIX-VECTOR MULTIPLICATION OVER FINITE FIELDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CEYDA MANGIR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

FEBRUARY 2019

Approval of the thesis:

LARGE SPARSE MATRIX-VECTOR MULTIPLICATION OVER FINITE
FIELDS

submitted by CEYDA MANGIR in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Cryptography Department, Middle East Technical
University by,

Prof. Dr. Ömür Uğur
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Assoc. Prof. Dr. Murat Manguoğlu
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ferruh Özbudak
Mathematics Department, METU

Assoc. Prof. Dr. Murat Cenk
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics Department, METU

Assoc. Prof. Dr. Sedat Akleylek
Computer Engineering Department, 19 Mayıs University

Assist. Prof. Dr. Oğuz Yayla
Mathematics Department, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: CEYDA MANGIR

Signature :

v

vi

ABSTRACT

LARGE SPARSE MATRIX-VECTOR MULTIPLICATION OVER FINITE FIELDS

Mangır, Ceyda

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

Co-Supervisor : Assoc. Prof. Dr. Murat Manguoğlu

February 2019, 76 pages

Cryptographic computations such as factoring integers and computing discrete log-

arithms require solving a large sparse system of linear equations over finite fields.

When dealing with such systems iterative solvers such as Wiedemann or Lanczos al-

gorithms are used. The computational cost of both methods is often dominated by

successive matrix-vector products. In this thesis, we introduce a new algorithm for

computing a large sparse matrix-vector multiplication over finite fields. The proposed

algorithm is implemented and its performance is compared with a classical method.

Our algorithm exhibits a significant improvements between 34% and 77%.

Keywords: Discrete Logarithms, Sparse Matrix-Vector Multiplication

vii

viii

ÖZ

SONLU CİSİMLER ÜZERİNDE BÜYÜK SEYREK MATRİS-VEKTÖR
ÇARPIMI

Mangır, Ceyda

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Ortak Tez Yöneticisi : Doç. Dr. Murat Manguoğlu

Şubat 2019, 76 sayfa

Çarpanlara ayırma ve ayrık logaritma hesaplama gibi kriptografik işlemler sonlu ci-

simler üzerinde büyük ve seyrek denklem sistemlerinin çözümünü gerektirmektedir.

Bu işlemler için Wiedemann ve Lanczos gibi yinelemeli yöntemler benimsenmek-

tedir. Her iki algoritmada da matris-vektör çarpımlarının baskın olduğu hesaplama-

lar kullanılmaktadır. Bu tezde, sonlu cisimler üzerinde büyük seyrek matris-vektör

çarpma işlemine yönelik bir algoritma önerilmiştir. Söz konusu algoritmanın perfor-

mansı klasik yöntemle kıyaslanmış ve %34 ile %77 arasında hızlanma sağlanmıştır.

Anahtar Kelimeler: Ayrık Logaritma, Seyrek Matris-Vektör Çarpımları

ix

To My Family

x

ACKNOWLEDGMENTS

My deep gratitude goes first to my thesis supervisor Assoc. Prof. Dr. Murat Cenk
for his guidance, encouragement and valuable advices during the development and
preparation of this thesis. His willingness to give his time and to share his experiences
has brightened my path.

I would also like to extend my gratitude to my co-supervisor Assoc. Prof. Dr. Murat
Manguoğlu for his constructive advices and ingenious suggestions.

In special, I am indebted to my parents, Ferda and Afet, and my brother, Cem, for
love, guidance and inspiration throughout my life.

I am deeply grateful to my husband, Görkem, for encouraging me in all of my pursuits
and giving me the extra strength throughout my study.

And the last word goes for Begüm, my daughter, who has been the light of my life
since she was born and who has given me the motivation to complete this thesis.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Organization . 2

2 PRELIMINARIES . 5

2.1 Linear Algebra . 5

2.1.1 Matrices . 5

2.1.2 Vector Spaces . 7

2.1.3 Matrix Equations 8

xiii

2.2 Algorithms and Complexity 9

2.2.1 Order Notations and Time Complexities 10

2.2.2 Sorting Algorithms 11

2.2.2.1 Bucket Sort 12

2.2.2.2 Counting Sort 14

2.2.2.3 Radix Sort 17

3 DISCRETE LOGARITHMS . 19

3.1 Cryptosystems Based on DLP 20

3.1.1 Diffie-Hellman Key Exchange 20

3.1.2 The ElGamal Encryption and Signature Scheme . . 21

3.1.3 Digital Signature Algorithm 23

3.2 Solving DLP . 24

3.2.1 Generic Algorithms 24

3.2.1.1 Baby-Step-Giant-Step Algorithm . . . 24

3.2.1.2 Pollard’s Rho Algorithm 25

3.2.1.3 Pohlig-Hellman Algorithm 25

3.2.2 Index Calculus Algorithms 27

3.2.2.1 Basic Index Calculus Algorithm . . . 27

3.2.2.2 Linear Sieve Algorithm 30

3.2.2.3 Gaussian Integer Algorithm 33

3.2.2.4 Number Field Sieve Algorithm 34

xiv

4 LARGE SPARSE LINEAR SYSTEMS 37

4.1 Structured Gaussian Elimination 38

4.2 Sparse Matrix Storage Formats 40

4.2.1 Coordinate Format (COO) 41

4.2.2 Compressed Sparse Row (CSR) 41

4.2.3 Block CSR . 42

4.3 Iterative Methods . 42

4.3.1 Lanczos Algorithm 43

4.3.1.1 Block Lanczos Algorithm 46

4.3.2 Wiedemann Algorithm 46

4.3.2.1 Block Wiedemann Method 48

4.4 Sparse Matrix-Vector Multiplication 49

4.4.1 Structured Matrices 51

5 PERMUTATIONAL MATRIX-VECTOR MULTIPLICATION WITH
PREPROCESSING . 53

5.1 Preprocessing Stage . 54

5.2 Permutational Matrix-Vector Multiplication Stage 57

5.3 Analysis of The Algorithm 59

6 IMPLEMENTATION AND PERFORMANCE 61

6.1 Implementation . 61

6.1.1 Development Environment 61

6.1.2 Input Data Generation 63

xv

6.2 Performance Results . 64

7 CONCLUSION . 67

REFERENCES . 71

CURRICULUM VITAE . 75

xvi

LIST OF TABLES

TABLES

Table 5.1 An example for Algorithm 1 . 56

Table 5.2 An example for Algorithm 2 . 57

Table 6.1 Time required by PMVM with Preprocessing and CSRMVM 65

xvii

LIST OF FIGURES

FIGURES

Figure 6.1 The speed of PMVM with preprocessing 64

xviii

CHAPTER 1

INTRODUCTION

The problem of solving a large sparse system of linear equations over finite fields

arises in different areas such as computer algebra, number theory, and cryptography.

In cryptographic computations, factoring integers and solving discrete logarithms

over finite fields are two well-known problems that require solving a large sparse

system of linear equations [1, 18, 31, 35, 36]. Two of the widely used methods for

solving large sparse systems of linear equations in cryptographic computations are

the Wiedemann [42] and the Lanzcos algorithms [27] and their block variants [2, 30].

These methods compute the iterative matrix-vector products Atv for t = 1, . . . ,m

where A is an n×n matrix, v is an n dimensional column vector, and m is a positive

integer.

1.1 Motivation

Matrices that are encountered when solving discrete logarithms or factoring integers

are usually very large. Therefore, iterative matrix-vector products used in Wiedemann

and Lanczos algorithms can take considerable time. Fortunately, the sparse structure

of these matrices let us take advantage of sparse matrix storage formats and reduce

1

not only the size of the memory needed for the matrix but also irregular access to ma-

trix entries. Besides, matrix-vector multiplication over large finite fields uses multiple

precision arithmetic which is considerably slower than the single precision arithmetic

using numbers that are limited by the size of the processor register. Although sim-

ple algorithms exist for multiple precision addition, subtraction and comparison, the

multiplication and modular reduction are more complex. Reducing the number of

modular reductions enhances the performance of matrix-vector multiplication over

finite fields significantly [8, 10].

1.2 Objectives

In this thesis, we propose a new algorithm for large sparse matrix-vector multipli-

cations over finite fields. The purpose of the algorithm is to reduce the number of

big integer multiplications and modular reductions. We mainly target discrete log-

arithm computations, particularly, index calculus algorithms for large prime fields.

The proposed algorithm consists of two stages, namely, the preprocessing stage and

the permutational matrix-vector multiplication stage. In the first part of our work,

we describe the two stages of the algorithm along with pseudocodes, examples and a

brief analysis. In the second part, an implementation of the algorithm is introduced

and the performance results with the comparison to a classical method are given.

1.3 Organization

The rest of the thesis is organized as follows: Chapter 2 gives the preliminaries to

the subject. In Chapter 3, The discrete logarithm problem is described and the algo-

2

rithms to solve discrete logarithm problem are investigated. Chapter 4 is about the

large sparse linear systems. The proposed algorithm and its analysis are explained in

Chapter 5. Chapter 6 is about the implementation details and the performance results

of the proposed algorithm. Finally, the conclusion is presented in Chapter 7.

3

4

CHAPTER 2

PRELIMINARIES

In this chapter, the preliminaries for the proposed algorithm are given. First, the linear

algebra background, with an introduction to matrices and vector spaces, is presented.

Second, the time complexities of algorithms and order notations will be introduced.

Sorting algorithms are also explained for easy comprehension of the proposed algo-

rithm.

2.1 Linear Algebra

The linear algebra is one of the main topics in applied mathematics but usually is

studied for the field of real and complex numbers. This section is dedicated to the

basic concepts of linear algebra in order to show that the techniques remain valid

over an arbitrary field.

2.1.1 Matrices

m×n matrix A over a field F is an arrangement of mn elements of F in a rectangular

array with m rows and n columns.

5

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn


If most of the elements of a matrix is zero then it is called a sparse matrix. By contrast,

if most of the elements is nonzero then it is considered as a dense matrix. The ratio of

the number of zero elements to the total number of elements is said to be the sparsity

of the matrix and the ratio of the number of nonzero elements to the total number of

elements is called the density of the matrix. If m is equal to n then the matrix A is

called a square matrix. The set which consists of aii, for i = 1, 2, · · · , n, forms the

main diagonal of a square matrix. If the entries of a square matrix are symmetric with

respect to main diagonal then the matrix is called symmetric matrix. When the row

and column indices of A are switched, an n×m matrix A-transpose is formed and it

is denoted by AT . The rows of A becomes the columns of AT , that is

AT =



a11 a21 . . . am1

a12 a22 . . . am2

...
...

a1n a2n . . . amn


.

A matrix that consists of a single column with n elements is called a column vector

a =



a1

a2

...

an


.

6

Similarly, a matrix with a single row of n elements is called a row vector. A row

vector is a transpose of a column vector and vice versa

[
a1 a2 . . . an

]T
=



a1

a2

...

an


.

Throughout the thesis, boldface notation is used to denote all the vectors and they are

considered as column vectors unless otherwise stated.

2.1.2 Vector Spaces

Let F be a field and the elements of F are called as scalars. A vector space V over F

is a set of vectors {v1,v2, · · · ,vn} where addition of two vectors and multiplication

of a vector by a scalar satisfy the following properties.

1. V is an Abelian group under vector addition.

2. Distributive law is hold, that is, for any vectors u,v ∈ V and any scalars

α, β ∈ F

α(u + v) = αu + βv, (2.1)

(α + β)u = αu + βu. (2.2)

3. Associative law is also hold, i.e., for any vector v and any scalars α, β ∈ F

(αβ)v = α(βv). (2.3)

The zero element of V is called the origin of V and denoted as 0.

7

The inner product of two vectors u =
[
α1 α2 . . . αn

]T and v =
[
β1 β2 . . . βn

]T
is a scalar defined as

u · v = α1β1 + α2β2 + · · ·+ αnβn (2.4)

If the inner product of two vectors is zero then they are said to be orthogonal. A

nonzero vector over a finite field Fq can be orthogonal to itself.

If a vector v ∈ V can be written as

v = α1v1 + α2v2 + · · ·+ αkvk (2.5)

for any set of scalars α1, α2, · · · , αk ∈ F then it is said to be a linear combination of

the set of the vectors {v1,v1, · · · ,vk}. If there exist elements α1, α2, · · · , αk, not all

zero, such that

α1v1 + α2v2 + · · ·+ αkvk 6= 0 (2.6)

then {v1,v2, · · · ,vk} are said to be linearly independent. If every vector v ∈ V can

be expressed as at least one linear combination of a set of vectors {v1, · · · ,vk} ∈ V ,

then this set of vectors is said to span the vector space V . The number of linearly

independent vectors in a set that spans a vector space V is called the dimension of

V . A set of k linearly independent vectors that spans a k-dimensional vector space is

called a basis of the space.

2.1.3 Matrix Equations

Matrices are convenient tools for working with systems of linear equations. If A is an

m× n matrix and v is an n-vector then the elementary method for multiplying A by

8

v computes the inner product of the ith row vector of A and v as follows

Av =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn





v1

v2

...

vn


=



a11v1 + a12v2 + . . .+ a1nvn

a21v1 + a22v2 + . . .+ a2nvn

...

am1v1 + am2v2 + . . .+ amnvn


(2.7)

Therefore, a system of m linear equations with n unknown variables x1, x2, · · · , xn

given as

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...

am1x1 + am2x2 + . . .+ amnxn = bm

(2.8)

is equivalent to the matrix equation Ax = b where x =
[
x1 x2 . . . xn

]T and

b =
[
b1 b2 . . . bm

]T

Av =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn





x1

x2

...

xn


=



b1

b2

...

bm


= b. (2.9)

2.2 Algorithms and Complexity

The performance of an algorithm is measured by its running time. However, because

of the run-time conditions can differ from architecture to architecture, the theoreti-

cal cost usually cannot be characterized easily and precisely. Therefore it is usually

expressed with order notations. Order notations compare the rates of growth of func-

tions.

9

It should be noted that the notation log n is used for binary logarithm (i.e. log2 n)

throughout the thesis.

2.2.1 Order Notations and Time Complexities

Big-Oh Notation. A function f(n) is of the order of g(n), denoted f(n) = O(g(n)),

if there exist a positive real constant c and a non-negative integer n0 such that f(n) ≤

cg(n) for all n ≥ n0. f(n) = O(g(n)) implies that f does not grow faster than g up

to multiplication by a positive constant value. For example, if f = 5n3 +7n2 +1 then

f = O(n3). Commonly encountered time complexities are listed below.

1. If f(n) = O(1) then it is said to be constant time.

2. If f(n) = O(log n) then it is said to be logarithmic time.

3. If f(n) = O(n) then it is said to be linear time.

4. If f(n) = O(nk) then it is said to be polynomial time.

5. If f(n) = O(2k) for some constant k then it is said to be exponential time.

Big-Omega Notation. Big-Omega indicates lower bound. If f(n) = O(g(n)) then

g(n) = Ω(f(n)).

Big-Theta Notation. If f and g exhibit the same rate of growth then f(n) = Θ(g(n)).

This implies f(n) = O(g(n)) and f(n) = Ω(g(n)).

Small-o Notation. We say f(n) = o(g(n)) if g is an upper bound on f but it is not

tight. For example, for any non-negative integer d and real constant a > 1, nd =

10

o(an), i.e. any exponential function asymptotically grows faster than any polynomial

function.

Small-omega Notation. If f(n) = o(g(n)) then g(n) = ω(f(n)).

L-Notation. In order to express the complexity of number theoretical problems such

as integer factoring or solving discrete logarithms, the L-notation is used. It is defined

as

Ln[α, c] = e(c+o(1))(lnn)
α(ln lnn)1−α (2.10)

where c is a positive constant, and α is a constant 0 ≤ α ≤ 1. When α = 0 then

Ln[0, c] = e(c+o(1)) ln lnn = (lnn)(c+o(1)) (2.11)

is a polynomial function of lnn. When α = 1 then

Ln[α, c] = e(c+o(1))(lnn) = nc+o(1) (2.12)

is a fully exponential function of lnn. If 0 < α < 1 then the function is subex-

ponential of lnn. When n is clear from the context Ln[α, c] can be abbreviated as

L[α, c].

2.2.2 Sorting Algorithms

As we will see in the following sections, the proposed algorithm employs a sorting

algorithm in the preprocessing stage. Therefore, sorting algorithms are reviewed in

this section.

A sorting algorithm is an algorithm that rearranges the elements of a list according

to a comparison operator. The sorting algorithms can be classified as comparison

11

and non-comparison based algorithms. Comparison based sorting algorithms work

by comparing values. If the array to be sorted has no structural properties to exploit

than one of these algorithms can be preferred. The most well-known comparison sort

algorithms are selection sort, insertion sort, merge sort and quick sort [4]. At worst

case, an array of size n can be sorted in O(n2) time by using selection, insertion or

quick sort and in O(n log n) time by using merge sort. However quick sort can have

O(n log n) time on average. If the size of the array to be sorted is relatively large

when compared to available memory then the memory usage becomes more critical.

However, under some special conditions having to do with the values to be sorted, it is

possible to implement non-comparison based algorithms that have linear complexity

O(n). Three such algorithms are bucket sort, counting sort and radix sort [4]. If the

values to be sorted are evenly distributed in some range and it is possible to divide the

range into n equal parts, each of size k then bucket sort can be used. When the array

contains values each of a sequence of length k, the radix sort becomes appropriate. If

the values are integers less than some upper bound k and may have some associated

information such as reordered indices to be carried along with them then the counting

sort is more applicable.

2.2.2.1 Bucket Sort

Bucket sort is a divide and conquer algorithm. First, a finite number of buckets are

created by partitioning the array. Then a sorting algorithm which can be either a

different algorithm or recursively implemented bucket sort is applied on each bucket.

The pseudocode of the algorithm is given in Algorithm 1 and an example is provided

in Example 1.

12

Algorithm 1 The Bucket Sort Algorithm
Input: n dimensional array A

Output: Sorted array B

1: for i← 1, n do

2: Insert A[i] into list B[bnA[i]c]

3: end for

4: for i← 0, n− 1 do

5: Sort list B[i] using the appropriate sorting algorithm

6: end for

7: Concatenate the lists B[0], B[1], · · · , B[n− 1] together in order

Example 1: Sorting the array A = {56, 29, 8, 5, 24, 48, 77, 62} using bucket sort.

1. Create an empty buckets array B of size 10n for n = 8.

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]

2. Go through array A by putting each value in the appropriate bucket.

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]

8, 5 29, 24 48 56 62 77

3. Sort each bucket.

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]

5, 8 24, 29 48 56 62 77

4. Concatenate the buckets into a single array B = {5, 8, 24, 29, 48, 56, 62, 77}.

If n input values are distributed evenly in some range min to max then there should

be one value per bucket and the time to insert each value into a bucket will be O(1).

13

If the values are not evenly distributed then all the values go into the same bucket and

the worst case time complexity for inserting the values into the buckets will beO(n2).

Passing through the buckets array in order to place the sorted values into the output

array requiresO(n) time. So the total time isO(n) if the values are evenly distributed

and, O(n2), if they are not evenly distributed.

2.2.2.2 Counting Sort

Counting sort algorithm can be used for sorting a collection of small integers k ≤ n.

The pseudocode for the algorithm is given in Algorithm 2.

Algorithm 2 The Counting Sort Algorithm
Input: n dimensional array A

Output: Sorted array B

1: C ← empty count array

2: for i← 1, n do

3: C[A[i]]← C[A[i]] + 1

4: end for

5: for i← 1, k do

6: C[i]← C[i] + C[i− 1]

7: end for

8: for i← n, 1 do

9: B[C[A[i]]]← A[i]

10: C[A[i]]← C[A[i]]− 1

11: end for

Counting sort algorithm uses an auxiliary array to store the number of counted ele-

14

ments. An example is given in Example 2.

Example 2: Sorting the array A = {1, 5, 3, 7, 4, 1, 2, 3} using counting sort.

1. Set C[A[i]] to C[A[i]] + 1

C:
0 1 2 3 4 5 6 7 8 9

0 2 1 2 1 1 0 1 0 0

2. Set C[i] to C[i] + C[i− 1]

C:
0 1 2 3 4 5 6 7 8 9

0 2 3 5 6 7 0 8 0 0

3. Set B[C[A[i]]] to A[i] and set C[A[i]] to C[A[i]]− 1

For i = 0

B:
0 1 2 3 4 5 6 7

1

C:
0 1 2 3 4 5 6 7 8 9

0 1 3 5 6 7 0 8 0 0

For i = 1

B:
0 1 2 3 4 5 6 7

1 5

C:
0 1 2 3 4 5 6 7 8 9

0 1 3 5 6 6 0 8 0 0

For i = 2

B:
0 1 2 3 4 5 6 7

1 3 5

15

C:
0 1 2 3 4 5 6 7 8 9

0 1 3 4 6 6 0 8 0 0

...

For i = 6

B:
0 1 2 3 4 5 6 7

1 1 2 3 4 5 7

C:
0 1 2 3 4 5 6 7 8 9

0 0 2 4 5 6 0 7 0 0

For i = 7

B:
0 1 2 3 4 5 6 7

1 1 2 3 3 4 5 7

C:
0 1 2 3 4 5 6 7 8 9

0 0 2 3 5 6 0 7 0 0

The count array is of size k and initializing it together with the second for loop which

is used to apply a prefix sum on the count array, require O(k) time. The operation of

counting the elements of the array takes and the last for loop which assigns the sorted

elements to the output array require O(n) time. Therefore, the whole algorithm takes

O(n+ k) time.

16

2.2.2.3 Radix Sort

Radix sort is an integer algorithm. The data is sorted using keys grouped by the indi-

vidual digits which share the same significant position and the value. The pseudocode

for the algorithm is given in Algorithm 3.

Algorithm 3 The Radix Sort Algorithm
Input: n dimensional array A

Output: Sorted array B

1: k ← the maximum number of digits that the values to be sorted have

2: for i← 1, k do

3: The digit i of B ← Sort A on digit i

4: end for

As can be seen from Algorithm 3, each digit of the sequence is processed once. Since

processing one digit involves sorting the n values at that position, this can be done by

using a non-comparison based sorting algorithm such as bucket sort or counting sort.

There exist k digits, thus the total time becomes O(k ∗ n).

If there exist values that are shorter than the maximum number of digitsk then padding

can be done in order to have an equal number of digits for each value. An example is

given in Example 3.

Example 3: Sorting the A = {125, 5, 98, 546, 357, 11, 23, 19} using radix sort for

k = 3.

17

1. Set B by sorting A on the digit 1

0 1 2 3 4 5 6 7

011 023 005 125 546 357 098 019

2. Set B by sorting A on the digit 2

0 1 2 3 4 5 6 7

005 011 019 023 125 546 357 098

3. Set B by sorting A on the digit 3

0 1 2 3 4 5 6 7

005 011 019 023 098 125 357 546

4. Sorted array B = {5, 11, 19, 23, 98, 125, 357, 546} .

18

CHAPTER 3

DISCRETE LOGARITHMS

Let G be a finite Abelian group of size `. Assume that G is cyclic and g is a generator

of G. Any element α ∈ G can be uniquely expressed as α = gβ for some integer β

in the range 0 ≤ β ≤ ` − 1. The integer β is called the discrete logarithm of α with

respect to g. The discrete logarithm problem (DLP) is the problem of computing β

when G, g and α are known.

Depending upon the group G, the computational complexity of DLP varies from easy

(polynomial time) to intractable (exponential time). If G is taken as F∗q then the prob-

lem is considered as finite field discrete logarithm problem and the computation of the

discrete logarithm of α with respect to g appears to be an intractable computational

problem for sufficiently large finite fields. It has to be noted that finite fields of order

q exist only when q is of the form q = pr, where p is a prime number and r is a natural

number, and that there is a unique field of any such order up to isomorphism.

In this thesis, we are interested in finite field discrete logarithm problem with the field

having large prime characteristic. Due to recent developments, discrete logarithms in

extension fields such as Frp with p being a small prime are much easier to compute

when compared to large prime fields Fp [31, 12, 14, 15, 20]. Hence, the fields Fp with

19

p being large prime appear to offer relatively high levels of security depending on the

bit size of p.

In the first section of this chapter, cryptosystems that rely on DLP are addressed. In

the second section, the algorithms for solving DLP, including the generic algorithms

along with the index calculus algorithms, are summarized.

3.1 Cryptosystems Based on DLP

In secure communication, the cryptosystems that are based on computationally diffi-

cult problems are used. The most known algorithms predicate their security on DLP.

3.1.1 Diffie-Hellman Key Exchange

Diffie-Hellman was one of the first public-key protocols. It was originally conceptu-

alized by Ralph Merkle and named after Whitfield Diffie and Martin Hellman [29, 7].

Two parties A and B can agree on a secret key by using Diffie-Hellman key exchange.

Let G be a cyclic group of order n and g be a generator of this group. Suppose that G

and g are made public to both A and B. When A and B need to agree on a secret key

1. A chooses an element privA as private key, computes gprivA (modn) and sends

it to B.

2. B chooses an element privB as private key, computes gprivB (modn) and sends

it to A.

20

3. A gets gprivB (modn), raises it to the power privA, and computes the secret key

KAB = (gprivB)privA = gprivAprivB (modn). (3.1)

4. B gets gprivA (modn), raises it to the power privB and computes the secret key

KAB = (gprivA)privB = gprivAprivB (modn). (3.2)

Diffie-Hellman key exchange is the basis of many popular internet protocols such

as TLS [6, 37]. In general, it does not provide authentication of the communicating

parties, thus can be subject to man-in-the middle attacks. The protocol is considered

secure if G and g are chosen properly and authentication is used. In addition, the

order n of G must be large enough.

3.1.2 The ElGamal Encryption and Signature Scheme

ElGamal encryption is a public key encryption method derived from Diffie-Hellman

key exchange. It is first described by Taher El Gamal in 1985 [9].

Let B wants to send a ciphertext to A:

1. A generates his public-private key pair by first choosing a cylic group G of

order n and a generator g of the group G. Second, he chooses an element

privA < p−1 as a private key. Finally, he constructs his public key as a 3-tuple

pubA = (G, g, h = gprivA (modn)) (3.3)

and sends his public key to B.

2. B gets A’s public key and encrypts the messagem as a composition of c0 = mhr

and c1 = gr where r is a random integer < n.

21

3. A decrypts the message by computing

c0(c
privA
1)−1 = mhr((gr)privA)−1 = m. (3.4)

ElGamal encryption can also be used to sign messages. If A wants to send a signed

message to B:

1. A generates his public-private key pair by first choosing a prime p and a gener-

ator g of the group Z∗p. Second, he chooses an element privA < n as a private

key. Finally, he constructs his public key as a 3-tuple

pubA = (p, g, h = gprivA (mod p− 1)) (3.5)

and sends his public key to B.

2. A generates the signature s of the messagem by first choosing an integer ewith

gcd(e, p) = 1. Then he computes

r = ge (mod p), (3.6)

s = (m− privAr)e−1 (mod p− 1) (3.7)

and sends B the triple (m, r, s).

3. B verifies the signature (r, s) by comparing hrrs (mod p) and gm (mod p). If

they are equal then it is validated that m is signed by A. During the signature

generation of A, the equality

m = privAr + se (mod p− 1) (3.8)

is hold and by Fermat’s little theorem

gm = gprivArgse = hrrs (mod p). (3.9)

22

3.1.3 Digital Signature Algorithm

The Digital Signature Algorithm (DSA) was proposed in 1991 by the National Insti-

tute of Standards and Technology [22]. It differs from ElGamal signature scheme in

the way that it uses groups with order p− 1 where p− 1 has a large prime factor. Let

gq be a generator of the subgroup of order q of the group F∗p. Then

gq = g(p−1)/q (mod p). (3.10)

The private key of A, privA, is less than q and his public key, pubA, is little bit

modified compared to the ElGamal scheme. It is composed of the parameters

pubA = (p, q, gq, h = gprivAq (mod p)). (3.11)

When A wants to sign a message m:

1. A generates the signature s of the messagem by first choosing an integer e < q.

Then he computes

r = (geq (mod p)) (mod q), (3.12)

s = (m+ privAr) (mod q) (3.13)

and sends B the triple (m, r, s).

2. B verifies the signature (r, s) by computing

w = s−1 (mod q), (3.14)

u0 = mw (mod q), (3.15)

u1 = rw (mod q), (3.16)

v = (gu1q h
u2 (mod p)) (mod q). (3.17)

If v = r then the signature is validated.

23

DSA is faster than ElGamal since it uses subgroups where the computations are

faster.

3.2 Solving DLP

Let G be a finite cyclic multiplicative group of size `, and g is a generator of G.

Solving the discrete logarithm of α with respect to g is to find β such that β = logg α.

Several algorithms are proposed for computing discrete logarithms. These algorithms

can be categorized into two groups, namely, the generic algorithms and the index

calculus algorithms. While the generic algorithms work in arbitrary groups, the index

calculus algorithms are known to be the most powerful methods for solving DLP on

certain groups [28, 19].

3.2.1 Generic Algorithms

Generic algorithms are also called as square root methods. Baby-step-giant-step, Pol-

lard’s rho, and Pohlig-Hellman algorithms fall in the category of generic algorithms.

3.2.1.1 Baby-Step-Giant-Step Algorithm

The baby-step-giant-step algorithm refers to a class of algorithms, proposed by Shanks

[39]. Let t = d
√
ne. In this method, gi for i = 0, 1, 2, · · · , t − 1 are computed and

stored in a table as ordered pairs (i, gi) by sorting with respect to the second element.

Then αg−jt is searched among the second elements of the table. If such an i is found

for a particular j that is α = gjt+i, then logg α ≡ jt + i. The determination of j

24

is called the giant-step whereas the determination of i is called the baby-step. Since

logg α ∈ {0, 1, 2, · · · , `− 1} and ` ≤ t2, logg α can always be expressed as jt+ i for

some i, j ∈ {0, 1, · · · , t− 1}.

3.2.1.2 Pollard’s Rho Algorithm

Pollard’s Rho algorithm is first introduced by John Pollard [34] in order to solve the

integer factorization problem. The algorithm can also be adapted for the discrete

logarithms. A random element w0 = gs0αt0 is computed and the sequence wi =

gsiαti is calculated consecutively. By the birthday paradox it is expected to arrive at

a collision wi = wj after O(
√
n) iterations. That is, we get

αti−tj = gsj−si . (3.18)

Since the order of g is `, we have

(ti − tj)loggα ≡ sj − si (mod `). (3.19)

If gcd(ti − tj, `) = 1 then

loggα ≡ (ti − tj)−1sj − si (mod `) (3.20)

is obtained.

3.2.1.3 Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm was introduced in [33]. Suppose that the complete

prime factorization of ` = pe11 p
e2
2 . . . perr is known. If the largest prime divisor of ` is

small then the algorithm is quite efficient.

25

If δ = logg α (mod peii) is known for all i = 1, 2, · · · , r then the Chinese remainder

theorem (CRT) gives the desired value of δ (mod `). First, pe is taken to be a divisor

of n and δ (mod `) is obtained by solving a DLP in the subgroup of G of size p.

Then this value is lifted to δ (mod p2), δ (mod p3), and so on. Each lifting involves

computing a discrete logarithm in the subgroup of size p.

Let γ = gn/p
e and ζ = αn/p

e . alpha = gβ implies that

ζ = αn/p
e

= (gn/p
e

)β = γβ = γβmod p
e

. (3.21)

In order to compute ξ = β mod pe we write

ξ = β0 + β1p+ β2p
2 + . . .+ βe−1p

e−1. (3.22)

We keep on computing p-ary digits β0, β1, β2, · · · of ξ one by one. If β0, β1, · · · , βi−1

are already computed then we know

λ = β0 + β1p+ · · ·+ βi−1p
i−1. (3.23)

Now, ζ = γξ gives

ζγ−λ = γξ−λ = γβip
i+βi+1p

i+1+···+βe−1pe−1

. (3.24)

Raising both sides of the equality to the power pe−i−1 gives

(ζγ−λ)p
e−i−1

= γβip
e−1+βi+1p

e+···+βe−1p2e−i−2

= (γp
e−1

)βi . (3.25)

The order of γpe−1 is p and βi is the discrete logarithm of (ζγ−λ)p
e−i−1 to the base

γp
e−1 . If it is rephrased in terms of g and α we see that

βi = loggn/p [(αg
−(β0+β1p+···+βi−1p

i−1))n/p
i+1

] (3.26)

for i = 0, 1, 2, · · · , e − 1. These calculations are done in the subgroup of size p,

generated by gn/p.

26

3.2.2 Index Calculus Algorithms

The index calculus method is a probabilistic method for computing the discrete log-

arithms. It is first invented in 1922 by Kraitchik [25] for the integer factorization.

The basic idea of using the index calculus method in the discrete logarithms was

introduced by Western and Miller [41].

In order to give the general description for the index calculus algorithms, let G be a

cyclic group of order ` generated by g and let β = logg α. When α is known, β is

calculated by relying on three main steps: the sieving phase, linear algebra phase, and

individual logarithm phase. Different index calculus methods vary mostly in the way

the relations are found during the sieving phase and the linear algebra phase remains

the same for most of them. In this section some of the index calculus algorithms,

namely, the basic index calculus, linear sieve, Gaussian integer and number field sieve

algorithms are introduced.

3.2.2.1 Basic Index Calculus Algorithm

In practice, two kinds of groups namely the finite fields Fp and F2` are widely used in

cryptographic computations. The basic index calculus method can be applied to both

fields.

When the basic index calculus algorithm is applied to finite field Fp for prime p,

the factor base B is determined by choosing the first n primes p1, p2, · · · , pn. Then a

random integer u < p−1 is taken and the integer k with k = gu (modp) is calculated.

If k can be written as a product of primes in the factor base, then a relation is obtained.

27

If we intend to collect m relations then the set of identities of the form

ki ≡ gui (mod p) =
n∏
j=1

p
aij
j (3.27)

are gathered for i = 0, 1, · · · ,m.

In practice, the exact choice of B is implementation dependent. If B has small size

then testing the smoothness and collecting the relations are fast. On the other hand,

choosing a small value for the size ofB makes difficult to find enough number of rela-

tions. From a computational point of view, finding the necessary relations is trivially

parallelizable and requires a relatively small amount of storage.

When all of the prime factors of k are less than a given bound S, k can be completely

factored at most S + log k divisions. If u is chosen from a uniform distribution,

x = Lp[α, c] and S = Lp[αS, cS] then the probability that a random k ≤ X will factor

as a product of primes less than S is

Ψ(X,S)

X
= Lp[α− αB,−(α− αB)(c/cB)] (3.28)

where Ψ(X,S) is defined to be the number of positive integers less than or equal to

X that have no prime factors exceeding S. One can refer to [40] for an experimental

analysis of the parameters X and S.

It is trivial that the exponents aij coming from the prime factorization of k in the

calculation of ith relation constitute a row of A. Thus each row in A is an exponent

vector. Since k < p, the exponents and consequently the entries of A are limited by

the size of the prime p.

In the linear algebra phase of the index calculus algorithms, the relations collected in

28

the first phase are written as a set of linear congruences

n∑
j=1

aij logg pj ≡ ui (mod p− 1). (3.29)

The linear system (3.29) is solved for xi = logg pi and can be interpreted as

Ax =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn





logg p1

logg p2

...

logg pn


≡



u1

u2

...

um


(mod p− 1) = u. (3.30)

The existence of a unique solution depends on the rank of the matrix A. If A has full

rank then the system (3.30) has a unique solution. In order to ensure the existence

of a solution, the number of relations m is chosen to be greater than the size n of

the factor base. In Chapter 4, solution techniques for large sparse linear systems that

arise in this phase are given in detail.

Once the logarithms of pi have been computed, then β = logg α can be calculated by

constructing a relation of the form

n∏
j=1

p
ej
j = αge (3.31)

from which β =
∑n

j=1 ej logg pj−e can be obtained. In practice, the third stage takes

considerably less time than the first two stages.

When the basic index calculus algorithm is applied over the finite field F2` , the factor

base B is chosen to be consisted of non-constant irreducible polynomials ω(x) ∈

F2[x] of degrees at most some prescribed bound s. The finite field F2` has the

polynomial-basis representation F2(θ) with f(θ) = 0, where f(x) ∈ F2[x] is an

irreducible polynomial of degree `. In the first stage, given a primitive element

29

g(θ) ∈ F∗
2`

, the discrete logarithms of all ω(θ) to the base g(θ) are computed. To

this end, g(θ) is raised to a random exponent u and it is checked whether the canoni-

cal representatives of g(θ)u ∈ F2` can be expressed as the products of the polynomials

ω(θ) with ω(x) ∈ B. If a factoring attempt is successful, the relation of the form

g(x)u =
∏

ω(x)∈B

ω(x)γω (mod (f(x)) (3.32)

is obtained. It can also be written as

g(θ)u =
∏

ω(x)∈B

ω(θ)γω ∈ F2` . (3.33)

When the discrete logarithm of both sides are taken, we have

u ≡
∑
ω∈B

γω logg(θ) ω(θ) (mod (2` − 1)). (3.34)

If |B| = n then m relations with n ≤ m ≤ 2n are generated. In the linear algebra

stage the resulting m × n system is solved modulo 2` − 1 to obtain the logarithms

of elements in the factor base. At the third stage individual logarithms are computed.

Suppose that β = logg α(θ) is going to be computed. Random u is selected and

decomposing α(θ)g(θ)u into irreducible factors of degrees ≤ s gives

α(θ)g(θ)u =
∏
ω∈B

ω(θ)δω . (3.35)

Then β = logg α(θ) can be computed as

β = logg α(θ) ≡ −u+
∑
ω∈B

δω logg ω(θ) (mod 2` − 1). (3.36)

3.2.2.2 Linear Sieve Algorithm

Linear sieve algorithm [26] is an adaptation of the quadratic sieve algorithm [35] for

factoring integers. It is an L[1/2, 1]-time algorithm for the computation of discrete

30

logarithms over prime fields and L[1/2, 0.8325...]-time for the finite fields of charac-

teristic 2 [5].

Let H = d√pe and J = H2−p. Suppose that for small integers c1 and c2, the integer

T (c1, c2) = J + (c1 + c2)H + c1c2 (3.37)

factors completely over the first n primes p1, p2, · · · , pt. This leads to

J + (c1 + c2)H + c1c2 ≡ H2 + (c1 + c2)H + c1c2

≡ (H + c1)(H + c2)

≡ pe11 p
e2
2 . . . pett (mod p). (3.38)

By taking the base g discrete logarithms of (H+c1)(H+c2) and pe11 p
e2
2 . . . pett (mod p)

we get

e1 logg p1 + . . .+ et logg pt ≡ logg (H + c1) + logg (H + c2) (mod p− 1). (3.39)

This implies that as well as the small primes p1, p2, · · · , pt, the integers H + c for

small values of c should be in the factor base B. Hence, c1 and c2 are chosen to

be between −M and M . Moreover, for certain values of c1 and c2, T (c1, c2) takes

negative values. Thus the factor base B is taken as

B = {−1} ∪ {p1, p2, · · · , pt} ∪ {H + c | −M ≤ c ≤M}. (3.40)

The size of the factor base is n = 2M + t + 2. By choosing proper M and t and

letting c1, c2 vary in the range−M ≤ c1 ≤ c2 ≤M , we generate m−1 relations. We

assume that the base g of the discrete logarithms itself a small prime pi in the factor

base. This gives us a free relation

logg pi ≡ 1 (mod p− 1). (3.41)

31

The resulting system has m relations with n unknowns thus the m × n dimensional

coefficient matrix is generated.

After applying the linear algebra step, individual logarithms can be calculated as done

in the basic method by searching a smooth value of αgu (mod p) for randomly chosen

u.

When the linear sieve method is applied over F2l , it uses a defining polynomial f(x)

of the form xn + f1(x) where f1(x) has low degree and constructs a factor base

B with two parts B1 and B2. B1 contains non-constant irreducible polynomials of

degree ≤ t and B2 contains polynomials of the form xdn/2e + c(x) with c(x) ∈ F2[x]

of degrees ≤ t. T (c1, c2) is obtained by multiplying two polynomials xdn/2e + c1(x)

and xdn/2e + c2(x) from B2 and it is factored over the irreducible polynomials of B1

(xdn/2e + c1(x))(xdn/2e + c2(x)) ≡
∏

ω(x)∈B1

ω(x)γω (mod (f(x)) (3.42)

where ε = 2dn/2e − n is 0 if n is even or 1 otherwise. This is equivalent to

θεf1(θ) + (c1(θ)c2(θ))θ
dn/2e + c1(θ)c2(θ) =

∏
ω∈B1

ω(θ)γω . (3.43)

By taking the logarithm of both sides, we obtain a linear congruence. As c1 and c2

range over all polynomials in B2, m relations are generated by choosing t such that

all (c1, c2) pairs lead to an expected number s of relations, satisfying |B| ≤ s ≤ 2|B|.

The linear system is solved modulo 2n − 1.

The linear algebra and the individual logarithms stages are the same as the linear sieve

method in Fp.

32

3.2.2.3 Gaussian Integer Algorithm

Let d be a small nonzero positive integer such that −d is a quadratic residue in Fp

and let s be a square root of −d modulo p. The integers u, v such that p = u2 + dv2

can be computed. Either u + vs ≡ 0 (mod p) or u − vs ≡ 0 (mod p). Suppose that

u+ vs ≡ 0 (mod p). Here, p = u2 + dv2 implies that the sizes of u and v are O(
√
p).

If

T (c1, c2) = c1u+ c2v (3.44)

where c1 and c2 small integers, then T (c1, c2) can be treated as an element of Z[
√
−d]

and

c1u+ c2v = c1(u+ v
√
−d) + v(c2 − c1

√
−d) (3.45)

can be written. Applying the ring homomorphism

Φ : Z[
√
−d]→ Fp (3.46)

gives

T (c1, c2) ≡ c1u+ c2v ≡ c1(u+ vs) + vΦ(c2 − c1
√
−d) (mod p). (3.47)

Since u+ vs ≡ 0 (mod p) then the equivalence becomes

T (c1, c2) ≡ c1u+ c2v ≡ vΦ(c2 − c1
√
−d) (mod p). (3.48)

If T (c1, c2) can be factored completely over the set of all rational primes B1 =

{p1, p2, · · · pn} and (c2− c1
√
−d) can be factored completely over the set of all com-

plex primes B2 = {q1, q2, · · · qn′} then

pe11 p
e2
2 . . . penn ≡ vΦ(q1)

t1Φ(q2)
t2 . . .Φ(qn′)

tn′ (mod p). (3.49)

33

When the logarithm of both sides are taken, the relation

e1 logg p1e2 logg p2 . . . en logg pn ≡

logg v + t1 logg Φ(q1)t2 logg Φ(q2) . . . tn′ logg Φ(qn′) (mod p) (3.50)

is generated in the Gaussian integer method [26]. The size of the factor base B =

B1∪B2∪−1∪v is n+n′+2. The Gaussian integer method produces smaller systems

when compared to the linear sieve method. The resulting system of congruences can

be solved in L[1/2, 1] time.

3.2.2.4 Number Field Sieve Algorithm

The number field sieve [13] is known as the fastest algorithm for computing discrete

logarithms over prime fields with L[1/3, (64/9)1/3] time complexity. It can be re-

garded as a generalization of the Gaussian integer algorithm.

Let NK be the number ring of integers of K = Q(θ) where θ is a root of f ∈ Zx

which is an irreducible polynomial over Q. For simplicity, it is assumed that NK sup-

ports unique factorization of elements which can be written as polynomials in θ with

rational coefficients. The map Φ : θ 7→ m (mod p) extends to a ring homomorphism

NK → Fp.

Suppose that

T1(c1, c2) = c1 + c2θ ∈ NK (3.51)

is smooth with respect to small primes qi of NK , and

T2(c1, c2) = Φ(T1(c1, c2)) = c1 + c2m ∈ Z (3.52)

34

is smooth with respect to small rational primes pj . Applying the homomorphism Φ

gives

Φ(T1(c1, c2)) ≡ Φ(
∏
i

qtii) ≡
∏
i

Φ(qi)
ti ≡ T2(c1, c2) ≡

∏
j

p
ej
j (mod p). (3.53)

Taking the discrete logarithm leads to the following relation

∑
i

ti logg (Φ(qi)) ≡
∑
j

ej logg (pj) (mod p− 1). (3.54)

The rational primes pj and Φ(qi) for small primes qi of NKshould be included in

the factor base B. In addition, a set of generators of the group of units of NK is

considered and for each such generator u, Φ(u) is also included.

35

36

CHAPTER 4

LARGE SPARSE LINEAR SYSTEMS

In index calculus computations, as the size of the finite field increases, the size of the

system of linear equations that are encountered during the linear algebra phase also

increases. Besides, the revealed linear systems are desired to have full rank in order

to ensure the existence of a unique solution, so they are arranged to have much more

rows than columns, i.e. m � n for m × n matrix A. Since n can be millions, the

huge size of the matrix can cause storage problems. However, the high sparsity of

the matrix permits us to store the matrix by utilizing a sparse matrix storage format.

In addition, the size of the matrix can be also reduced by applying a filtering step

that involves structured Gaussian elimination [32]. This step reduces the matrix size

without much increasing the density.

Despite the high sparsity of the matrices, ordinary Gaussian elimination is insuffi-

cient for solving these systems since the cost depends on a complicated relationship

between the sparsity structure and the fill-in. Thus rather than direct methods, itera-

tive methods such as Lanczos and Wiedemann methods are used in order to benefit

from the sparsity. The recent discrete logarithm records employ either Lanczos or

Wiedemann algorithms or their block variants. For instance, the latest discrete loga-

37

rithm record solves the linear system of 24 million columns and rows with an average

row weight of 135 using the block Wiedemann algorithm [24].

In this chapter, first, the structured Gaussian elimination and the sparse matrix storage

formats are introduced in separate sections. Second, under the section of iterative

solvers, Lanczos and Wiedemann algorithms and their block variants are explained.

Finally, sparse matrix-vector multiplication is given in detail.

Throughout this chapter, the linear system of congruences of the form

Ax ≡ u (modM) (4.1)

is considered. Here A is an m× n matrix, x is an n-vector, u is a nonzero m-vector

and M is the modulus.

4.1 Structured Gaussian Elimination

The structured Gaussian elimination (SGE) eliminates some of the rows and columns

of the matrix in order to reduce the dimension. In some situations, SGE can reduce

the size of the matrix to such an extent that standard Gaussian elimination becomes

practical for solving the system.

The basic strategy implemented by structured Gaussian elimination is to name the

columns that have the largest number of nonzero elements heavy and to operate on the

remaining light columns by preserving the sparsity. In practice, the matrix is stored

by using one of the sparse matrix storage formats. However, SGE can be understood

better considering the full-matrix. The algorithm employs the following steps:

Step 1. The columns of weight zero and one are deleted. The corresponding row for

38

the column that has one nonzero coefficient is also removed. After this step, all the

columns have weight ≥ 2. Therefore, it is essential to declare some light columns

heavy, obviously by choosing those have the highest weights.

Step 2. The rows of weight zero and one are deleted. A row of weight zero corre-

sponds to the equation 0 = 0 thus can be eliminated. Let the row Ri has weight one

and suppose that the nonzero entry is the value at he j th column, xj . The value of xj is

substituted in all the rows where the xj occurs and the row Ri and the corresponding

j th column is deleted.

Step 3. The rows of weight one in the light part is deleted. These are the rows whose

intersection with all the light columns contain exactly one nonzero entry. Let this row

be Ri and the entry be the variable xj . Ri allows xj to be written in terms of some

variables corresponding to heavy columns. The value of xj is substituted in all the

rows where xj occurs. Then the row Ri and the corresponding j th column is deleted.

It may be better to redefine the heavy and light columns after this step.

Step 4. The redundant rows are deleted. If the matrix still have more rows than

columns after above steps then some redundant rows may be removed. Rows with

the largest number of nonzero entries in the light columns may be a good choice

since this removal can make light parts even lighter.

Above steps are usually applied in sequence. For instance after steps 2 − 4 are exe-

cuted, maybe some columns with weight one and zero can occur again. Thus the first

step needs to be repeated.

Although structured Gaussian elimination is a heuristic algorithm, in [32], the size of

the matrix is reduced by structured Gaussian elimination on variable data sets and an

39

improvement of 90% is recorded.

4.2 Sparse Matrix Storage Formats

In order to take advantage of the sparsity of the matrices, specialized algorithms and

data structures are used when storing and manipulating them. If regular dense ma-

trix structures and algorithms are implemented for large sparse matrices then both

processing and memory are wasted on the zero-valued elements. On the other hand,

sparse data can easily be compressed and thus requires significantly less storage and

one does not often need to do arithmetic operations with zeros.

A dense matrix is typically stored as a two-dimensional array. Each element of the

array corresponds to the ath
ij element of the matrix and it is accessed by the row index

i and the column index j. For a m×n matrix, the amount of memory needed to store

the matrix in this format is proportional to mn.

The objective of the storage formats for sparse matrices is to exploit certain matrix

properties by storing the nonzero elements in contiguous memory locations. This

strategy not only reduces the memory space but also provides efficient execution of

the subroutines on the matrix data. Coordinate format (COO), compressed sparse

row (CSR) and Block CSR are the most well-known sparse matrix storage formats

that have been proposed so far [38].

In general, matrices over finite fields do not have any structural properties that can

be taken advantage of to improve performance. In [10], the underlying matrix rep-

resentation and the corresponding arithmetic are selected by a code generation tool

employing heuristics.

40

4.2.1 Coordinate Format (COO)

The most basic storage format for a sparse matrix is the so-called coordinate format.

The nonzero values are stored with the associated coordinates in terms of row and

column indices. Three arrays are used by COO. First array is to store the nonzero

values, the second array is for the row indices and the third array is for the column

indices. Each array is of size nnz, the number of nonzero elements.

4.2.2 Compressed Sparse Row (CSR)

CSR format stores the compressed data according to the row indices. Three arrays are

needed, first one is the array for storing the nonzero values in the matrix, the second

one is for the column indices and the third one stores the number of nonzero entries

per row. If A is a m× n sparse matrix and the rows of A are denoted by A1, · · · , Am

then CSR format represents A as the set of vector {r1, · · · , rm+1}, where the ith

row Ai is represented by the vector ri and rm+1 is an imaginary (m + 1)th row

which is included for computational convenience during matrix-vector multiplication

operations. Each element ri is the ordered pair of the form {j, aij}, where j denotes

the column which contains a nonzero element aij .

In CSR format, the values and column indices are stored in an array of size nnz and

the row pointers are stored in an array of sizem+1. Therefore the storage requirement

is lower than COO format. CSR format allows fast row access. A similar format

is compressed sparse column (CSC) storage, where the column pointers are stored

instead of row pointers which allow fast column access if a matrix is stored in CSC

format.

41

4.2.3 Block CSR

If the sparse matrix A consists of dense blocks of nonzero elements, the CSR can be

modified to exploit such block patterns in order to improve the number of cache hits

during sparse matrix-vector multiplications relying on small dense matrix operations

with those blocks. The matrix is partitioned in small blocks and each block is treated

as a dense matrix, even though it may have some zeros. It could be still advantageous

to treat those zeros as nonzero values within the blocks.

The Block CSR format needs three arrays as in the CSR format. These arrays are an

integer array storing the column indices of the original matrix A, an array storing the

nonzero blocks in row-wise fashion, a pointer array in which the entries point to the

beginning of each block row in other two arrays. Similarly, one could also use a block

CSR format as well.

4.3 Iterative Methods

Solving large sparse linear systems by Gaussian elimination is not affordable since

it requires O(n3) operations for a dense coefficient matrix. In order to decrease the

running time of the process and also to take advantage of the sparsity of the matrices,

some iterative methods are developed. Conjugate gradient [17], Lanczos [27] and

Wiedemann [42] algorithms are widely used algorithms to solve such systems. Al-

though conjugate gradient and Lanczos methods are originally designed for systems

with real numbers, their adaptations for finite fields exist in the literature [3].

Both Lanczos and Wiedemann algorithms are applicable on square matrices. In order

42

to transform the rectangular matrix into a square one, the both sides of the linear

equation given by (4.1) is multiplied from left by AT and it is transformed into the

equation

Bx ≡ c (mod p). (4.2)

Here, B = ATA is an n × n diagonal matrix and c = ATu is an n-vector. It is clear

that a solution to the equation (4.1) is also a solution to the equation (4.2). However,

it is not feasible to compute B = ATA explicitly since B may be denser than A and

it is instead preferable to apply sparse matrix-vector multiplication without explicitly

forming B.

The choice of the solver heavily depends on the modulus M . Block methods are usu-

ally suited for M = 2. If M ≥ 3 the non-block variants are employed. The systems

obtained from index calculus algorithms need not to be prime. If it is the situation

and the complete prime factorization of M is known then the system is solved for

the prime divisors of M and then the solution is lifted to appropriate powers of these

primes. If the factorization of the modulus M is not known then M is assumed as

a prime. If the system solver fails when attempting to invert an element then a non-

trivial factor of M is discovered. M is divided into its factors M1 and M2 and the

system is solved modulo both M1 and M2 again pretending as if they were primes.

4.3.1 Lanczos Algorithm

The Lanczos algorithm is an iterative algorithm which is originally proposed for solv-

ing equations over real numbers, but also adapted to work over finite fields.

Lanczos method is a Krylov space method. Krylov space methods build up Krylov

43

subspaces

Kj(A, b) = span{b, Ab, A2b,Aj−1b} (4.3)

in order to find good approximations to eigenvectors and invariant subspaces within

Krylov spaces.

The Lanczos algorithm solves the linear system Ax = u for symmetric A ∈ Rnxn

by computing the eigenspace of A. A-conjugent basis {w0,w1, . . . ,wj−1} of the

Krylov space Kj(A,u) is computed for d ≤ n. Thus

wi
TAwj = 0 when i 6= j. (4.4)

If a solution x to Ax = u exists in Kj(A,u), it can be found by projecting u onto

{w0,w1, . . . ,wj−1}:

x =

j−1∑
i=0

wi
Tu

wi
TAwi

wi. (4.5)

The algorithm computes {w0,w1, . . . ,wj−1} by modifying the Gram-Schmidt or-

thogonalization in order to induce A-conjugacy. Let

w0 = u, (4.6)

v1 = Aw0, (4.7)

w1 = v1 −
v1

Tv1

w0
Tv1

w0. (4.8)

Then for i ≥ 1

vi+1 = Awi, (4.9)

wi+1 = vi+1 −
vi+1

Tvi+1

wi
Tvi+1

wi −
vi+1

Tvi

wi−1
Tvi

wi−1. (4.10)

The iteration stops when

wj
TAwj = 0 (4.11)

44

i.e wj is A-conjugate to itself.

In particular, the matrices that are generated by index calculus algorithms are not

symmetric. One way to make these matrices symmetric is to multiply both sides

of the equality from left with the transpose of the coefficient matrix and instead of

solving Ax = u, the equation

(ATA)x = (ATu) (4.12)

is solved. If A is of rank close to minimum of m and n then the two systems are

equivalent with high probability. As mentioned earlier ATA is not computed ex-

plicitly since ATA is denser than A. The iteration (4.9) can be carried out by first

multiplying v′i+1 = Awi and then computing vi+1 = ATv′i+1. Therefore instead of

one matrix-vector multiplication, two multiplications are computed in each iteration.

Another problem that arise when utilizing Lanczos algorithm to solve a system of lin-

ear equations over finite fields is that there can be a nonzero vector which is conjugate

to itself over finite fields. One possible solution to these problem is given in [32]. In

their method, the field over which the equations to be solved is embedded in a con-

siderably larger field. This reduces the possibility of encountering a self-conjugate

nonzero vector. Then a diagonal random m × m matrix D with entries from Fqd is

chosen and the scaled system (DA)T (DA)x = (DA)TDu is solved which has the

same solution vector as the original system. Here, A and DA have nonzero entries

at same locations. Although the sparsity is not effected by defining D, the storage of

DA may take more space since D is from a larger field. Hence, in (4.9) vi+1 can be

computed as AT (D2(Awi)) by adding one more matrix-vector multiplication and a

matrix squaring to complexity.

45

4.3.1.1 Block Lanczos Algorithm

In the block Lanczos method, higher dimensional subspaces are generated instead of

individual vectors. This helps us in two ways. First, we process multiple dimensions

simultaneously by block operations on words. Second, the number of iterations is

reduced by a factor of the word size. The word size can be 32-bit or 64-bit depending

on the platform.

We work on pairwise A-orthogonal subspaces W0,W1, · · ·Ws. They are generated

by the method satisfying the conditions:

1. Wi is A-invertible for all i = 0, 1, 2, · · · , s− 1,

2. Wi and Wj are A-orthogonal for i 6= j,

3. AW ⊆ W where W = W0 +W1 + · · ·+Ws−1.

The iterations stop as soon as the zero space Ws is obtained.

4.3.2 Wiedemann Algorithm

Let K be a field. Wiedemann algorithm solves the linear system Ax = u by proba-

bilistically determining the minimal polynomial µA(x) ofA in K[x] using Berlekamp-

Massey algorithm. Let a0, a1, a2, · · · be an infinite sequence of elements from a field

K. When the first d initial terms are given, for all k ≥ d, we have

ak = cd−1ak−1 + cd−2ak−2 + · · ·+ c1ak−d+1 + c0ak−d (4.13)

46

for some constant c0, c1, · · · cd−1 ∈ K. Given the first 2d terms of the sequence, the

constants c0, c1, · · · cd−1 ∈ K can be computed by

C(x) = 1− cd−1x− cd−2x2 − · · · − c0xd (4.14)

using Berlekamp-Massey algorithm. Cayley-Hamilton theorem states that n× n ma-

trixA satisfies its characteristic equation χA(x) = det(xI−A) where I is the identity

matrix. Clearly, µA(x) | χA(x) in K[x]. Let

µA(x) = xd − cd−1xd−1 − cd−2xd−2 − · · · − c1x− c0 ∈ K[x], (4.15)

µA(A) = 0 (4.16)

with d = degµA(x) ≤ n. For any non zero n−vector v and for any integer k ≥ d,

µA(x) = 0:

Ak−dvµA(A) = Akv − cd−1Ak−1v − · · · − c1Ak−d+1v − c0Ak−dv = 0. (4.17)

Let vk be the element of Akv at some particular position. The sequence vk satisfies

the recurrence relation

vk =cd−1vk−1 + · · ·+ c1vk−d+1 + c0vk−d. (4.18)

Using Berlekamp-Massey algorithm, the polynomial C(x) of degree d′ ≤ d is com-

puted and xd′C(1/x) is obtained. Trying several sequences that correspond to differ-

ent position in Akv many polynomials xd′C(1/x) are gathered whose least common

multiple (lcm) is expected to be the minimal polynomial of A. If the upper bound for

d is chosen to be n and 2n vector elements are supplied then the Berlekamp-Massey

algorithm works correctly. Hence, 2n matrix-vector multiplications are computed in

Wiedemann algorithm.

47

4.3.2.1 Block Wiedemann Method

In Wiedemann’s algorithm, the minimal polynomial of the sequence uTAiv is com-

puted for a randomly chosen vector v and for a projection vector u. In block Wiede-

mann method, the block of µ vectors are taken as U and a block of ν vectors as V .

That is, U is an n×µ matrix, whereas V is an n× ν matrix. If we take W = AV and

consider the sequence

Mi = UTAiW for i ≥ 0 (4.19)

of µ×ν matrices. There exist coefficient vectors c0, c1, · · · , cd with d = dn/νe such

that the sequence Mi is linearly generated as

Mkcd +Mk−1cd−1 + . . .+Mk−d+1c1 +Mk−dc0 = 0 (4.20)

for all k ≥ d, let e = dν(d+1)/µe. Applying the (4.20) for k = d, d+1, · · · , d+e−1

yields the system



Md Md−1 Md−2 . . . M1 M0

Md+1 Md Md−1 . . . M2 M1

...
...

Md+e−1 Md+e−2 Md+e−3 . . . Me Me−1





cd

cd−1

cd−2

...

c1

c0


= 0 (4.21)

In order to solve the above system, Coppersmith [2] proposes a generalization of the

Berlekamp-Massey algorithm. However, in [5], a simpler version of the algorithm

proposed by Kaltofen [21] is explained. Kaltofen’s algorithm uses the fact that the

coefficient matrix in (4.21) is in the Toeplitz form.

48

4.4 Sparse Matrix-Vector Multiplication

Sparse matrices are usually involved in the applications which use very large matrices.

Typically the dimensions of the matrices that are encountered in the cryptographic

applications are in the range one million and 25 millions with approximately 150

nonzeros per row.

Sparse matrix-vector multiplication (SpMVM) is one of the basic operations needed

for solving sparse linear systems. In the previous chapter, two iterative methods

namely Lanczos and Wiedemann algorithms are explained. As concluded, both meth-

ods need at least n matrix-vector multiplications for n dimensional square matrices.

Therefore the performance of the SpMVM affects the speed of the linear algebra

phase of the index calculus algorithm at the first place.

The ordinary method for multiplying m × n matrix A by an n-vector v is given in

Algorithm 4.

Algorithm 4 The ordinary matrix-vector multiplication algorithm
Input: A = {{A0,0, · · · , A0,n−1}, · · · , {Am−1,0, · · · , Am−1,n−1}}: The array for

the matrix elements, v = {v0, · · · , vn−1}: The array for the vector elements.

Output: u = {u0, u1, · · · , um−1}: The array for the result vector.

1: ui ← An empty array of length m

2: for i← 0,m− 1 do

3: for j ← 0, n− 1 do

4: ui ← ui + Ai,j.vj

5: end for

6: end for

49

If the matrix is dense then the ordinary matrix-vector multiplication applies O(mn)

operations on O(mn) amount of data. The cost is O(nnz) operations and storage for

the sparse case where nnz is the number of nonzero elements. Even though the cost

is lower in the sparse case, the operation is not cache friendly, i.e., there would be a

lot of cache misses. Thus, better sparse matrix-vector multiplication algorithms can

be used depending on the storage format of the matrix and if available, the special

structure of the matrix should be exploited for optimization.

If COO format is used to store the sparse matrix then the matrix-vector multiplication

can be implemented as given in Algorithm 5.

Algorithm 5 The sparse matrix-vector multiplication algorithm using COO format
Input: nnz: The number of the nonzero elements, a = {a0, a1, · · · , annz−1}:

The array for values of the nonzero elements, r = {r0, r1, · · · , rnnz−1}: The array for

the row indices of the nonzero elements, c = {c0, c1, · · · , cnnz−1}: The array for the

column indices of the nonzero elements.

Output: u = {u0, u1, · · · , um−1}: The array for the result vector.

1: ui ← An empty array of length m

2: for i← 0, (nnz − 1) do

3: uri ← uri + ai.vci

4: end for

If the CSR storage format is used then Algorithm 6 can be applied when multiplying

A by v. Applying sparse matrix-vector multiplication using CSR format is advan-

tageous to COO format. Although the number of operations are the same for both

algorithms, the number of memory accesses is two times better in CSR method.

50

Algorithm 6 The sparse matrix-vector multiplication algorithm using CSR format
Input: nnz: The number of the nonzero elements, a = {a0, a1, · · · , annz−1}:

The array for values of the nonzero elements, r = {r0, r1, · · · , rnnz}: The array for

the row index range of the nonzero elements, c = {c0, c1, · · · , cnnz−1}: The array for

the column indices of the nonzero elements

Output: u = {u0, u1, · · · , um−1}: The array for the result vector.

1: ui ← An empty array of length m

2: for i← 0,m− 1 do

3: for j ← ri, ri+1 do

4: ui ← ui + aj.vcj

5: end for

6: end for

4.4.1 Structured Matrices

Another approach for efficient SpMVM is to optimize the operation by exploiting the

structure of the matrices. There are many different structures that one can encounter

in practice. Some examples can be given as Toeplitz, Hankel, Vandermonde and

Cauchy matrices.

Let the matrices A ∈ Fm×m and B ∈ Fn×n are given. Let X ∈ Fm×n be a matrix

satisfying a equation of the form (Sylvester equation)

4A,B(X) = AX −XB = Y Z (4.22)

for some matrices Y ∈ Fm×α and Z ∈ Fα×n, where α < n. The pair of matrices

Y, Z is referred to as the {A,B}-generator of X and the smallest possible inner size

51

α among all {A,B}-generators is called a A,B displacement rank of X . This is the

so-called Toeplitz-like displacement operator.

When the displacement has low rank, the generators are utilized as a compact data

structure and this approach is the basic idea behind the algorithms of structured ma-

trices. Generally, diagonal matrices and cyclic down shift matrices are selected for

matrices A and B. As computing matrix vector products with such structured matri-

ces have close algorithmic correlation to computations with polynomials and rational

functions, these matrices can be multiplied by vectors nearly in linear time.

In general, the matrices that are generated by the index calculus algorithms for dis-

crete logarithms have no such structural properties to take advantage.

52

CHAPTER 5

PERMUTATIONAL MATRIX-VECTOR MULTIPLICATION

WITH PREPROCESSING

In this chapter, we present a new algorithm for computing matrix-vector multiplica-

tions over prime fields. The proposed algorithm consists of two stages. The first one

is the preprocessing stage which constructs the permutation tables. The second stage

is the actual matrix-vector multiplication using the permutation tables.

The underlying idea behind the proposed algorithm can be understood by rearranging

the vector-vector multiplications that are employed for each row of the matrix. Let

the ith row vector of n × n matrix A be a =
[
a0, a1, · · · , an−1

]
and let s1 be the

index of the smallest entry of a. If we take the inner product of aT and the n−vector

v =
[
v0, v1, · · · , vn−1

]T then the result aT · v = a0v0 + a1v1 + · · · + an−1vn−1 can

be written as:

aT · v = (a0 − as1)v0 + as1v0 + (a1 − as1)v1 + as1v1 + · · ·+ as1vj + · · ·

+(an−1 − as1)vn−1 + as1vn−1

= as1

n−1∑
j=0

vj +
n−1∑
j=0
j 6=s1

(aj − as1)vj

If the set {aj − as1|j = 0, 1, · · · , n − 1 and j 6= s1} has (as2 − as1) as the smallest

53

element then the product can be rearranged as:

aT · v = as1

n−1∑
j=0

vj + (as2 − as1)
n−1∑
j=0
j 6=s1

vj +
n−1∑
j=0

j 6∈{s1,s2}

(aj − as2)vj

In the same way, by picking the smallest element and excluding it from the last sum-

mation, the equality becomes:

aT · v = as1

n−1∑
j=0

vj + (as2 − as1)
n−1∑
j=0
j 6=s1

vj + (as3 − as2)
n−1∑
j=0

j 6∈{s1,s2}

vj + · · ·

+(asn−2 − asn−3)(vsn−2 + vsn−1) + (asn−1 − asn−2)vsn−1 (5.1)

Above rearrangement can be regarded as the first step and successive steps can be

applied until the subtractions (ask − ask−1
) are minimized to zero. The algorithm

for this process is separated into two stages as subtraction on matrix entries given in

Section 5.1 namely the preprocessing stage and the vector additions given in Section

5.2 namely the PMVM stage.

In the preprocessing stage of the proposed algorithm, the entries of the matrix are

sorted in order to make the subtraction operations in (5.1) sequential. As soon as a

matrix entry is subtracted from the preceding entry, the corresponding element in the

vector should be excluded from the addition. Therefore the same sorting permutation

is applied to the vector in PMVM stage.

5.1 Preprocessing Stage

In this stage, each row is sorted in ascending order and then minimized by applying

sequential subtractions until desired number of nonzero elements z̄ is left at the row.

The main objective of the preprocessing stage is to save the permuted indices of the

sorted row into a table in every sorting step. Each row vector Ai of them×nmatrixA

54

has (ci + 1) number of permutation tables Pi. How the value z̄ is chosen is discussed

in Chapter 6. Algorithm 7 shows the pseudocode for preprocessing and Table 5.1

gives an example of an application of the algorithm to a 3× 3 matrix.

Algorithm 7 The Preprocessing Algorithm
Input: m× n matrix A

Output: Permutation table P , the number of permutations per row ci, prepro-

cessed matrix Â

1: for i← 0,m− 1 do

2: ci ← 0, sort← true, z̄ ← the number of nonzero elements left

3: while sort is true do

4: Ai ← the elements of Ai sorted in ascending order

5: zi ← index of first nonzero element

6: Pi,ci ← the permutation of the indices of the nonzero elements

7: if zi < (n− z̄) then

8: for j ← n− 1, zi + 1 do

9: Ai,j ← Ai,j − Ai,j−1

10: end for

11: ci ← ci + 1

12: else

13: sort← false

14: end if

15: end while

16: end for

17: Â← A

55

Table 5.1: An example for Algorithm 1
After Sorting After Subtraction

i ci Ai Ai zi Pi,ci Ai Âi
0 0

[
3 1 4

] [
1 3 4

]
0

[
1 0 2

] [
1 2 1

]
1

[
1 2 1

] [
1 1 2

]
0

[
0 2 1

] [
1 0 1

]
2

[
1 0 1

] [
0 1 1

]
1

[
0 2

] [
0 1 0

]
3

[
0 1 0

] [
0 0 1

]
2

[
1
] [

0 0 1
]

1 0
[
0 2 1

] [
0 1 2

]
1

[
2 1

] [
0 1 1

]
1

[
0 1 1

] [
0 1 1

]
1

[
1 2

] [
0 1 0

]
2

[
0 1 0

] [
0 0 1

]
2

[
1
] [

0 0 1
]

2 0
[
1 4 0

] [
0 1 4

]
1

[
0 1

] [
0 1 3

]
1

[
0 1 3

] [
0 1 3

]
1

[
1 2

] [
0 1 2

]
2

[
0 1 2

] [
0 1 2

]
1

[
1 2

] [
0 1 1

]
3

[
0 1 1

] [
0 1 1

]
1

[
1 2

] [
0 0 1

]
4

[
0 0 1

] [
0 0 1

]
2

[
1
] [

0 0 1
]

An example of a preprocessing stage is given in Table 5.1 for the inputs

m = n = 3, z̄ = 1 and A =


3 1 4

0 2 1

1 4 0

 .

The first column shows the indices of the rows of the matrixA and the second column

ci is the number of permutations produced for the row until the current step. When

the last sort is applied for a row then the total number of permutations i.e sorts will be

ci + 1. In the columns titled as After Sorting, the sorted row Ai, the index of the first

nonzero element zi and the resulting permutation Pi,ci are given. After Subtraction

column presents the ith row of A after consequent subtractions over the elements of

sorted Ai are applied.

For example, the first row of the table, A0 =
[
3 1 4

]
is sorted and the vector[

1 3 4
]

is revealed. The index of first nonzero element encountered in sorted Ai

is 0 thus zi = 0 and the permutation produced by sorting is
[
1 0 2

]
. Since the

required number of nonzero elements for ending the preprocessing of a row is z̄ = 1

56

and we have no nonzero elements then the subtraction step is applied. Beginning

with the last element, the previous element is subtracted. As a result A0 becomes[
1 (3 − 1) (4 − 3)

]
=
[
1 2 1

]
and the preprocessing continues with the next

sorting step. When c0 becomes 3, the A0 is reduced to the vector
[
0 0 1

]
and

the desired number of nonzero elements is reached. The each row of the matrix is

preprocessed in the same manner. The algorithm stops when the preprocessing of all

the rows is finished. If the number of sorts is desired to be limited then the required

number of nonzero elements can be decreased. The affect of the number of sorts to

the performance of the algorithm is analysed in Section 5.3

5.2 Permutational Matrix-Vector Multiplication Stage

Av = u is computed by successively permuting v according to permutation tables

Pi,ci constructed at preprocessing stage and adding the permuted elements consec-

utively. Algorithm 8 shows how PMVM stage works and an example of a PMVM

stage is given in Table 5.2.

Table 5.2: An example for Algorithm 2
Permutation Addition

i ci wi Pi,ci wi wi ui
0 0

[
4 10 8

] [
1 0 2

] [
10 4 8

] [
0 1 8

]
1

[
0 1 8

] [
0 2 1

] [
0 8 1

] [
9 9 1

]
2

[
9 9 1

] [
0 2

] [
∅ 9 1

] [
∅ 10 1

]
3

[
∅ 10 1

] [
1
] [

∅ ∅ 10
]

10
1 0

[
4 10 8

] [
2 1

] [
∅ 8 10

] [
∅ 7 10

]
1

[
∅ 7 10

] [
1 2

] [
∅ 7 10

] [
∅ 6 10

]
2

[
∅ 6 10

] [
1
] [

∅ ∅ 6
]

6
2 0

[
4 10 8

] [
0 1

] [
∅ 4 10

] [
∅ 3 10

]
1

[
∅ 3 10

] [
1 2

] [
∅ 3 10

] [
∅ 2 10

]
2

[
∅ 2 10

] [
1 2

] [
∅ 2 10

] [
∅ 1 10

]
3

[
∅ 1 10

] [
1 2

] [
∅ 1 10

] [
∅ 0 10

]
4

[
∅ 0 10

] [
1
] [

∅ ∅ 0
]

0

57

In the example, Av = u is calculated over F11 for v =
[
4 10 8

]T using permutation

tables coming from Table 5.1.The notation ’∅’ is used for unused vector entries. The

first and second column in Table 5.2 show the indices i and ci of the permutation

tables, the other columns show the permutations that will be applied to the vectors

and the state of the vectors after permutation and addition.

Algorithm 8 The PMVM Algorithm

Input: Preprocessed matrix Â, Permutation table P , the number of permutations

per row ci, n−vector v

Output: n−vector u = Av

1: for i← 0,m− 1 do

2: w ← v

3: Â← Preprocessed A

4: for j ← 0, ci do

5: w ← w is permuted according to Pi,j

6: for l← (n− 2), (n−(the number of elements in Pi,j) do

7: wl ← wl + wl+1

8: end for

9: end for

10: ui ← 0

11: for j ← 0, z̄ do

12: ui ← ui + (wn−1−jÂn−1−j)

13: end for

14: end for

For instance, the first permutation P0,0 =
[
1 0 2

]
is applied to vector

[
4 10 8

]
The

58

permuted vector is
[
10 4 8

]
. After adding the elements over F11 successively, the

vector w0 becomes
[
0 1 8

]
and it is assigned to w1. Similarly, w2 is obtained by

applying the second permutation P0,1 =
[
0 2 1

]
and successive additions to the vec-

tor w1. The algorithms stops when all of the permutations are applied consecutively.

The result of the product u =
[
10 6 0

]
is given at the last column of the Table 5.2.

5.3 Analysis of The Algorithm

The performance of the algorithm is highly affected by the total number of sorts

applied to the matrix. For each row of the matrix ci + 1 number of sorts are applied.

Every sorting operation runs over less elements than the previous one because of the

subtraction step that takes place after a sorting process. Therefore the number of sorts

is always less than the number of nonzero elements per row.

If the sorting algorithm chosen for the preprocessing stage involves comparing pairs

of values then the worst-case time complexity for sorting can not be better than

O(n log n). The matrices generated in the sieving phase of index calculus family

of algorithms have entries that are limited by the bit size of the prime for prime fields.

Therefore the entries of the matrix are all integers less than k ≤ n. Moreover, the

indices after sorting should be kept in order to use in the PMVM stage. Thus, the

counting sort algorithm with time complexity O(n) becomes the appropriate algo-

rithm. Besides, if the CSR format is used when storing the matrix then the run time

further decreases to O(z̄).

In its simplest form, the index calculus algorithm chooses a random a and then cal-

culates ga ∈ Fp. If ga can be written as the product of prime powers of a factor base

59

B = {p1, p2, · · · , pn} then exponents coming from the prime factorization constitute

a row of A. Thus each row in A is an exponent vector. Since a < p, the exponents

and consequently the entries of A are limited by the size of the prime p. If p is b-bits

in size and the dimension of the matrix A is n then it can be observed that n is always

much larger than b. Therefore the matrix A can be preprocessed efficiently by using

the counting sort algorithm.

At the worst case, (ci+1)n additions are computed in PMVM stage. However accord-

ing to the sparsity of the matrices only z̄ element of the n−vector will be affected in

first step and the number of elements that are affected decreases rapidly. As a result,

the performance of the PMVM algorithm becomes faster than classical matrix-vector

multiplication (CMVM) algorithm in which each row vector of the m × n matrix is

multiplied with the n-vector. Thus CMVM needs n multiplications and n − 1 addi-

tions per row.

60

CHAPTER 6

IMPLEMENTATION AND PERFORMANCE

In this chapter, implementation details of the proposed algorithm are explained. In

addition, the performance test results are given and they are compared against a classi-

cal method, the sparse matrix-vector multiplication using CSR storage format (CSR-

MVM) algorithm.

6.1 Implementation

In this section, the details about the development environment of the implementation

and the generation procedures of the input matrices, vectors, and prime numbers are

explained.

6.1.1 Development Environment

The code for the proposed algorithm is written in C++ language. MS Visual Studio

2017 environment is preferred for development. MS Visual Studio 2017 permits use

of compilers like Clang or GNU Compiler Collection (GCC) other than Microsoft

Visual C++ Compiler (MSVC) but since Windows operating system is targeted for

61

performance tests, MSVC is used as the compiler.

The preprocessing stage does not use multi-precision arithmetic but PMVM stage op-

erates over finite fields and big integer support is needed for modular arithmetic. C++

standard library does not include a big integer class but some useful multi-precision

arithmetic libraries can be found in open source. GMP [16] and MPIR [11] are two

of them.

GMP is one of the widely used free libraries for arbitrary precision arithmetic per-

forming operations on signed integers, rational numbers, and floating point numbers.

In order to provide the speed, full words as the basic arithmetic type, and fast algo-

rithms are used. In addition, the most common inner loops for variable CPUs are

highly optimized by using assembly code. GMP’s main target platforms are Unix-

type systems but it also is known to work on Windows in both 32-bit and 64-bit

mode.

The other portable library written in C for arbitrary precision arithmetic is MPIR that

performs the arithmetic on integers, rational numbers, and floating-point numbers.

The goal of MPIR is to provide high performance arithmetic for all applications en-

tailing higher precision. MPIR began as a fork of GMP so they have a lot of code in

common.

Although big integer libraries other than MPIR and GMP exist in open source, the

support and sustainability issues lead us to choose one of them. We prefer MPIR

over GMP in our implementation since it can be compiled by MS Visual Studio with

optimized assembly language support.

62

6.1.2 Input Data Generation

The proposed algorithm takes the matrix and the vector as input and outputs the

matrix-vector product. While generating the inputs, two decisions has to be made.

The first one is the selection of the size n of the matrices and vectors, and the sec-

ond one is the generation method. Since we desire to produce matrices such as those

generated in the linear algebra phase of the index calculus algorithm, we began by

implementing the sieving phase of the basic index calculus method for small prime

fields. At most 64-bit primes and factor base size of 1000 were used when generating

the relations. We observed that when the bit size doubles, the number of nonzero

elements nearly doubles.

However as the field gets larger, the factor base and, accordingly, the size of the

matrix grows too and the sieving phase for large finite fields becomes unaffordable in

a single machine. Therefore, we chose to generate the matrices synthetically by using

our observation for small fields as well as attempting to approximate the sparsity of

the matrices used in [24] and [23].

For this purpose, we generated 1024-bit and 2048-bit prime numbers p1 and p2. Then

random n-vectors for n = 10, 000 , 50, 000 and 100, 000 are generated over the fields

Fp1 and Fp2 . All of the multi-precision integers are generated using MPIR library

functions. n × n matrices with the number of nonzero elements z̄ = 200 and 400

are generated randomly using a pseudo random number generator. The values of the

entries of the matrices are limited by the bit size of the primes.

For each set of {n, z̄, b}, 25 matrices are generated and tested. After the generation

of the sparse matrices, the CSR format is used to store them.

63

6.2 Performance Results

Performance results are obtained on a single core of a 3.7 GHz Xeon E3-1281 pro-

cessor. PMVM with preprocessing algorithm is run on the matrices and the vectors

generated randomly as described in the previous section. It is tested against the CSR-

MVM method.

Figure 6.1 shows the increase in running time of PMVM with preprocessing algorithm

versus the increase in matrix dimension n. It is obvious from the figure that, the

running time of the algorithm grows with the dimension nearly in a linear trend.

Figure 6.1: The speed of PMVM with preprocessing

Table 6.1 shows the time (in seconds) required by PMVM with preprocessing and

CSRMVM for various n, z̄ and b. As used in earlier notation n represents the dimen-

sion of the matrix and the vector, z̄ is the number of nonzero elements per row and b

is the bit size of the primes used to generate prime fields. The time required by the

preprocessing stage and the PMVM stage is shown separately in the fourth and fifth

64

columns. The sixth column is the total time needed for the proposed algorithm. The

sparse matrix-vector multiplication using CSR format time requirement is given in

the seventh column. Finally the eight column shows the speed improvement gained

by the PMVM with preprocessing against CSRMVM.

As can be seen from Table 6.1, the PMVM with preprocessing algorithm is at least

34% faster than CSRMVM for all the matrices tested. It can be observed that as

the number of nonzeros increases, the algorithm performs better. While the speed

improvement for z̄ = 200 ranges between 34% and 61%, the interval is 56%-77% for

z̄ = 400.

In the linear algebra phase of the index calculus algorithm, either Lanczos or Wiede-

mann algorithms apply at least n iterative matrix-vector multiplications. According

to the results obtained by the proposed algorithm, for n = 100, 000 iterations nearly

47 days can saved when compared to CSRMVM. It should be noted that the prepro-

cessing stage is run only once even if the iteration count is bigger than 1.

Table 6.1: Time required by PMVM with Preprocessing and CSRMVM

n z̄ b

Running Time (s)

Preprocessing PMVM
PMVM with

CSRMVM
Preprocessing

10000
200

1024 0.2 2.7 2.9 4.7
2048 0.3 5.3 5.6 8.1

400
1024 0.2 4.5 4.7 8.2
2048 0.3 8.6 9 14.5

50000
200

1024 1.2 14.1 15.3 24.3
2048 2.3 26.8 29.1 41.8

400
1024 1.4 23.4 24.8 41.9
2048 2.3 44.5 46.9 73.5

100000
200

1024 2.4 28.3 30.8 48
2048 4.5 56.6 61.2 82.1

400
1024 2.6 47.2 49.9 88.4
2048 4.4 88.5 92.9 148.6

65

66

CHAPTER 7

CONCLUSION

In this chapter, the work reported in this thesis is summarized and the need for further

research in this area is described.

In this thesis, we proposed a new algorithm for computing large sparse matrix-vector

multiplications over finite fields. The main focus is the matrices that are involved

in the linear systems revealed by the basic index calculus algorithm. We began with

the preliminaries prior to the subject. The details of the discrete logarithm problem

and the basic index calculus method are provided. In addition, The basic knowledge

for sorting algorithms is given. In the third chapter, the characteristics of the linear

systems that are induced by index calculus algorithm are given and the two solvers

namely Lanczos and Wiedemann algorithms are explained.

The fourth chapter is devoted to the subject of the sparse matrix-vector multiplication.

the difficulties of the SpMVM operation on modern processors are described along

with the solutions.

In the fifth chapter we proposed new algorithm for matrix-vector multiplication over

finite-fields. The proposed algorithm, permutational matrix-vector multiplication with

67

preprocessing, consists of two stages. The first stage is the preprocessing stage. The

preprocessing sequentially sorts the rows of the matrix and applies addition on sorted

elements in order to reveal permutation tables which are used to permute the vector

elements in the second stage called permutational matrix-vector multiplication. The

algorithm has advantages over the classical method by means of computational per-

formance. The use of additions instead of multiplications and computing less modular

reductions make the algorithm more efficient. We obtained improvements between

7% and 61% in comparative performance results. The implementation details and the

performance results are detailed in chapter six.

Sparse matrix-vector multiplication is a basic kernel in many applications. It has

special importance in cryptographic computations since the security of many widely

used systems such as secure communication systems depends on the difficulty of

discrete logarithm problem and the best known method for solving discrete logarithm

problem, the index calculus algorithm, deals with many iterative sparse matrix-vector

multiplications. As a result, developing faster algorithms for sparse matrix-vector

multiplications can eliminate the difficulty of the linear algebra phase that takes place

in the index calculus algorithms.

For further research, both stages of the proposed algorithm can be parallelized using

CPUs and GPUs. For practical purposes, we imitate the index calculus matrices in

our performance test. Using more processors, the real life index calculus matrices

with bigger sizes can be generated and tested. Since our study targets the matrices

generated with index calculus algorithms, we focused on sparse matrices. But the

performance results showed us that the proposed algorithm can exhibit better perfor-

mance results for dense matrices as well. The PMVM with preprocessing algorithm

68

can also be adapted and tested against the algorithms developed for structured matri-

ces.

69

70

REFERENCES

[1] L. M. Adleman and J. DeMarrais, A subexponential algorithm for discrete log-
arithms over all finite fields, in Advances in Cryptology - CRYPTO ’93, 13th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 22-26, 1993, Proceedings, pp. 147–158, 1993.

[2] D. Coppersmith, Solving homogeneous linear equations over GF(2) via block
wiedemann algorithm, Math. Comput., 62(205), pp. 333–350, January 1994.

[3] D. Coppersmith, A. M. Odlzyko, and R. Schroeppel, Discrete logarithms in
GF(p), Algorithmica, 1(1), pp. 1–15, Nov 1986, ISSN 1432-0541.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algo-
rithms, MIT Press, 2nd edition, 2001, ISBN 0262032937.

[5] A. Das, Computational Number Theory, Chapman and Hall-CRC, 2013, ISBN
9781439866153.

[6] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) protocol version
1.2, in RFC 5246, 2008.

[7] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf.
Theor., 22(6), pp. 644–654, September 2006, ISSN 0018-9448.

[8] J. G. Dumas, T. Gautier, P. Giorgi, and C. Pernet, Dense linear algebra over
finite fields: the FFLAS and FFPACK packages, CoRR, abs/cs/0601133, 2006.

[9] T. ElGamal, A public key cryptosystem and a signature scheme based on dis-
crete logarithms, in G. R. Blakley and D. Chaum, editors, Advances in Cryp-
tology, pp. 10–18, Springer Berlin Heidelberg, Berlin, Heidelberg, 1985, ISBN
978-3-540-39568-3.

[10] P. Giorgi and B. Vialla, Generating optimized sparse matrix vector product over
finite fields, in H. Hong and C. Yap, editors, Mathematical Software – ICMS
2014, pp. 685–690, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, ISBN
978-3-662-44199-2.

[11] B. Gladman, W. Hart, J. Moxham, et al., MPIR: Multiple Precision Integers and
Rationals, 2017, version 3.0.0, http://mpir.org.

[12] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel, Solving a 6120-bit dlp
on a desktop computer, in T. Lange, K. Lauter, and P. Lisoněk, editors, Selected

71

http://mpir.org

Areas in Cryptography – SAC 2013, pp. 136–152, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014, ISBN 978-3-662-43414-7.

[13] D. M. Gordon, Discrete logarithms in GF(P) using the number field sieve, SIAM
J. Discrete Math., 6, pp. 124–138, 1993.

[14] R. Granger, T. Kleinjung, and J. Zumbrägel, Breaking ‘128-bit secure’ super-
singular binary curves, in J. A. Garay and R. Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, pp. 126–145, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014, ISBN 978-3-662-44381-1.

[15] R. Granger, T. Kleinjung, and J. Zumbrägel, On the discrete logarithm problem
in finite fields of fixed characteristic, volume 370, pp. 3129–3145, 2017.

[16] T. Granlund et al., GNU-multiple precision arithmetic library 6.1.2, December
2016, https://gmplib.org/.

[17] M. R. Hestenes and E. Stiefel, Method of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49, pp. 409–436, 1952.

[18] A. Joux, Algorithmic Cryptanalysis, Chapman & Hall/CRC, 1st edition, 2009,
ISBN 1420070029, 9781420070026.

[19] A. Joux, A. Odlyzko, and C. Pierrot, The Past, Evolving Present, and Future
of the Discrete Logarithm, pp. 5–36, Springer International Publishing, Cham,
2014, ISBN 978-3-319-10683-0.

[20] A. Joux and C. Pierrot, Technical history of discrete logarithms in small char-
acteristic finite fields, Designs, Codes and Cryptography, 78(1), pp. 73–85, Jan
2016, ISSN 1573-7586.

[21] E. Kaltofen, Analysis of coppersmith’s block wiedemann algorithm for the par-
allel solution of sparse linear systems, Math. Comput., 64(210), pp. 777–806,
April 1995, ISSN 0025-5718.

[22] C. Kerry and P. Gallagher, FIPS PUB 186-4: Digital Signature Standard (DSS),
NIST, 2013.

[23] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele, A. Timofeev,
and P. Zimmermann, Factorization of a 768-bit RSA modulus, in Advances in
Cryptology - CRYPTO 2010, pp. 333–350, 2010.

[24] T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke, Computa-
tion of a 768-bit prime field discrete logarithm, in Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, pp. 185–201, 2017.

72

https://gmplib.org/

[25] M. Kraitchik, Théorie Des Nombres, Paris : Gauthier-Villars, 1922.

[26] B. A. LaMacchia and A. M. Odlyzko, Computation of discrete logarithms in
prime fields, Des. Codes Cryptography, 1, pp. 47–62, 1991.

[27] C. Lanczos, Solution of systems of linear equations by minimized iterations, J.
Res. Natl. Bur. Stand, 49, pp. 33–53, 1952.

[28] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied
Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996, ISBN
0849385237.

[29] R. C. Merkle, Secure communications over insecure channels, Commun. ACM,
21(4), pp. 294–299, April 1978, ISSN 0001-0782.

[30] P. L. Montgomery, A block lanczos algorithm for finding dependencies over
GF(2), in Advances in Cryptology - EUROCRYPT ’95, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Saint-Malo,
France, May 21-25, 1995, Proceeding, pp. 106–120, 1995.

[31] A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic sig-
nificance, in Advances in Cryptology: Proceedings of EUROCRYPT 84, A Work-
shop on the Theory and Application of of Cryptographic Techniques, Paris,
France, April 9-11, 1984, Proceedings, pp. 224–314, 1984.

[32] L. Odlyzko, B. A. Lamacchia, and A. M. Odlyzko, Solving large sparse linear
systems over finite fields, pp. 109–133, Springer, 1991.

[33] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms
over and its cryptographic significance (corresp.), IEEE Trans. Inf. Theor.,
24(1), pp. 106–110, September 2006, ISSN 0018-9448.

[34] J. M. Pollard, Monte carlo methods for index computation (mod p), volume 32,
pp. 918–924, 1978.

[35] C. Pomerance, The quadratic sieve factoring algorithm, in Advances in Cryptol-
ogy: Proceedings of EUROCRYPT 84,, pp. 169–182, 1984.

[36] C. Pomerance, A tale of two sieves, volume 43, pp. 1473–1485, 1996.

[37] E. Rescorla, The transport layer security (tls) protocol version 1.3, in RFC 8446,
2018.

[38] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003, ISBN
0898715342.

[39] D. Shanks, Class number, a theory of factorization and genera, Proceedings of
Symposium of Pure Mathematics, 20, pp. 415–440, 1969.

73

[40] C. Studholme, Discrete logarithm problem, in Research paper requirement
(milestone) of the Ph.D. program at the University of Toronto, 2002.

[41] A. E. Western and J. C. P. Miller, Tables of indices and primitive roots., in
Royal Society Mathematical Tables, volume 9, Cambridge University Press,
Cambridge, 1968.

[42] D. H. Wiedemann, Solving sparse linear equations over finite fields, volume 32,
pp. 54–62, January 1986.

74

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Mangır, Ceyda

Nationality: Turkish (TC)

Date and Place of Birth: 16.10.1979, İstanbul

Marital Status: Married

EDUCATION

Degree Institution Year of Graduation

M.S. Institute of Applied Mathematics, METU 2007

B.S. Mathematics Engineering, Yıldız Technical University 2002

High School Üsküdar Fen Lisesi 1998

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2004- The Research and Development Institute, Ankara, TURKEY Specialist

75

PUBLICATIONS

International Conference Publications

C. Mangır, M. Cenk, M. Manguoğlu. An Improved Algorithm for Iterative Matrix-

Vector Multiplications over Finite Fields. In: Lanet JL., Toma C. (eds) Innovative

Security Solutions for Information Technology and Communications. SECITC 2018.

Lecture Notes in Computer Science, vol 11359. Springer, Cham, 2018

76

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Objectives
	Organization

	PRELIMINARIES
	Linear Algebra
	Matrices
	Vector Spaces
	Matrix Equations

	Algorithms and Complexity
	Order Notations and Time Complexities
	Sorting Algorithms
	Bucket Sort
	Counting Sort
	Radix Sort

	DISCRETE LOGARITHMS
	Cryptosystems Based on DLP
	Diffie-Hellman Key Exchange
	The ElGamal Encryption and Signature Scheme
	Digital Signature Algorithm

	Solving DLP
	Generic Algorithms
	Baby-Step-Giant-Step Algorithm
	Pollard's Rho Algorithm
	Pohlig-Hellman Algorithm

	Index Calculus Algorithms
	Basic Index Calculus Algorithm
	Linear Sieve Algorithm
	Gaussian Integer Algorithm
	Number Field Sieve Algorithm

	LARGE SPARSE LINEAR SYSTEMS
	Structured Gaussian Elimination
	Sparse Matrix Storage Formats
	Coordinate Format (COO)
	Compressed Sparse Row (CSR)
	Block CSR

	Iterative Methods
	Lanczos Algorithm
	Block Lanczos Algorithm

	Wiedemann Algorithm
	Block Wiedemann Method

	Sparse Matrix-Vector Multiplication
	Structured Matrices

	PERMUTATIONAL MATRIX-VECTOR MULTIPLICATION WITH PREPROCESSING
	Preprocessing Stage
	Permutational Matrix-Vector Multiplication Stage
	Analysis of The Algorithm

	IMPLEMENTATION AND PERFORMANCE
	Implementation
	Development Environment
	Input Data Generation

	Performance Results

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

