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ABSTRACT

ASPECTS OF CODING THEORY WITH TWO RECENT APPLICATIONS

Bodur, Şeyma

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2019, 34 pages

Coding Theory is a deep subject having a lot of applications in different areas. In this
thesis we explain some background for two recent applications: Code base Cryptog-
raphy, Entanglement Assisted Quantum Error-Correcting Codes (EAQECC).

Keywords: Code Equivalence, Entaglement-Assisted Quantum Error Correcting Codes,
Linear l-intersection pairs, Hulls, etc.
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ÖZ

SON GÜNLERDEKİ İKİ UYGULAMA İLE KODLAMA TEORİSİNİN YÖNLERİ

Bodur, Şeyma

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2019, 34 sayfa

Kodlama Teorisi, farklı alanlarda çok fazla uygulamaya sahip olan derin bir konudur.
Bu tezde, son günlerdeki iki uygulama alanı olan Kod tabanlı Şifreleme, Dolaşma
Destekli Kuantum Hata Düzeltme Kodları (EAQECC) için bazı arka planlar açıklan-
maktadır .

Anahtar Kelimeler: Kodların denkliği, Dolaşma Destekli Kuantum Hata Düzeltme
Kodları, Doğrusal l-kesişme kod çiftleri, Hulls vd.
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CHAPTER 1

INTRODUCTION

The beginning of the studies in Coding Theory is accepted in 1948 when Claude

Shannon wrote the article called "A Mathematical Theory of Communication".

The most important feature of the Coding Theory is that it ensures the data is trans-

mitted to the other party correctly. That is achieved by checking whether the data is

affected by external factors like environmental conditions, radio waves etc. In such

a case, the data can be corrected and transmitted. To illustrate, Coding Theory is

commonly used in CDs and Hard Disks. When a CD is scratched, the data in it can

be unreadable. In this case, Coding Theory is used for recovering the data since it

corrects the changes in the data and ensures that the data is read correctly.

For better understanding, usage of coding theory in search engines can be examined.

Search engines are used for finding the specific information about a specific subject.

However, most of the time, the information which is entered to the search engine is

not written correctly and contains many typographical errors. Despite all these, search

engines correct these mistakes and give the accurate results about the desired subject.

For instance, someone wants to find an information about Linear Codes and writes

“What is Linaer Code” to the Google’s search bar. However, as it can be seen in the

previous sentence, the spelling of the Linear is wrong. Despite the spelling mistake,

Google understands what should be written actually and gives the right search results

to the user. As can be understood from all these examples, coding theory is used for

detecting and correcting the errors in the data to be sent.
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Application areas of coding theory:

• Data compression,transmission and storage

• Error-correcting

• Cryptography

There are various of code types which are used in many different application areas

and one of the most common types is the linear code. Classification of linear codes is

an important problem in Coding theory. Therefore, code equivalence problem holds

an important place in Coding Theory.

Code equivalence problem can be expressed as, if the given generator matrices, i.e.

G and G′, belong to two equivalent codes, find invertible k × k matrix S and find

permutation matrix P . When private code is known, the code equivalence problem is

related to the McEliece cryptosystem. In McEliece cryptosystem, the private key is

(S,G, P ), where S is a k × k matrix whose determinant is different than zero, G is

a k × n generator matrix of the code, and P is a n × n permutation matrix. G′ is a

public key such that G′ = SGP . If G and G′ are known, obtaining S and P is related

to code equivalence problem .

Petrank and Roth showed that If an efficient algorithm is found to solve the problem

of code equivalence, an efficient algorithm is found to solve the graph isomorphism

problem. This means that there is a polynomial time algorithm that reduces the graph

isomorphism problem to the code equivalence problem [10]. In 1999, Senderier pre-

sented an algorithm which is called Support Splitting Algorithm(SSA) to find permu-

tation equivalence [12]. Leon found a technique to compute authomorphism groups

and this technique can also be used for finding equivalent codes [7].

Another important application of coding theory is quantum code. The use of Quantum

Error Correcting Codes (QECCs) has many purposes, but the most important goal is

to protect quantum information from decoherence and noise. Calderbank and Shor

[2] and Steane [13] showed the construction of quantum codes from classical linear

codes.
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If linear code is dual-containing, quantum codes could be constructed. Dual condition

has been relieved with EAQECC and it became easier to obtain EAQECC from linear

codes. If the code uses pre-shared entanglement it is called as Entanglement Assisted

Quantum Error Correcting Codes (EAQECC) [5] Thus, this problem was eliminated

and the quantum code was generated from the classical linear code without dual con-

dition. However, it was still difficult to find the number of pre-shared pairs. Guenda,

Jitman and Gulliver showed that this number can be calculated by dimension of hull

[6]. In this part of the thesis, a literature review is conducted.

This thesis organized as follows:

• Chapter 2 gives some definitions about Coding theory.

• Chapter 3 is about code equivalence problem. We focus on permutation version

of code equivalence problem and in order to facilitate this problem studies have

been made for codes of a certain length and size.

• Chapter 4 relates to some extra definitions of quantum codes. We mention

important theorem on which this thesis is based. Then by using this theorem,

some results obtained from literature review are given.

• In Chapter 5, we make a conclusion.
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CHAPTER 2

PRELIMINARY TO THE SUBJECT

In this section, some important definitions which are the basis of coding theory are

given.

Definition 1. (Code) Let C has a dimension k, length n and minimum distance d over

a finite field Fq, then C is called code and it is denoted by C : [n, k, d].

Definition 2. (Generator Matrix) Let G be a generator matrix of linear code C :

[n, k], then rows of G is a basis of C and G is a k × n matrix.

Definition 3. (Parity Check Matrix) Let H be a parity check matrix of linear code

C : [n, k], then H be a generator matrix of dual code C⊥ and H is a (n − k) × n
matrix.

Definition 4. (Hamming Distance) Let x = (x1, ..., x2), y = (y1, ..., yn)∈ Fnq . Ham-

ming distance is the number of places where x,y take different values.

Definition 5. (Hamming Weight) Let x = (x1, ..., xn) ∈ Fnq . Hamming weight is the

number of nonzero entries in x.

Definition 6. (Minimum Distance) If Hamming distance of two code words are mini-

mum then it is called as minimum distance

d(C) = min{d(x, y)|x, y ∈ C, x 6= y}.

Definition 7. (Dual Code) Let C be a code with parameters [n, k]. If

C⊥ = {a ∈ Fnq |a.c = 0,∀c ∈ C}

then C⊥ is called as dual code with parameters [n, n− k].

5



Definition 8. (Singleton Bound) Let C be a code with parameters [n, k]. Parameters

of C satisfies

d(C) ≤ n− k + 1.

Definition 9. Let α = (α1, α2, ..., αn) and β = (β1, β2, ..., βn) be two vector over

Fnq . The Euclidean inner product is defined as

< α, β >:=
∑
αiβi, where i ∈ {1, 2, ..., n}.

Definition 10. (Reed Solomon Code) Let Fq be a finite field. x = (x1, ..., xn) be a

code word in Fq and every element in x is different from each other. k-dimensional

Reed Solomon Code RS(x) is defined as

RS(x) = {f(x1), ..., f(xn)|f ∈ Fq[x], deg(f(x)) < k}

Generator matrix for RS[n,k] is

G =



1 1 . . . 1

x1 x2 . . . xn

x21 x22 . . . x2n
...

xk−11 xk−12 . . . xk−1n


(2.1)

Definition 11. (Generalized Reed Solomon Code) Let Fq be a finite field. x =

(x1, x2, ..., xn) is a code word in Fq where every element in x is different from each

other and every element in v = (v1, ..., vn) ∈ Fq is different than zero. k-dimensional

Generalized Reed Solomon Code GRS(x, v) is defined as

GRS(x, v) = {v1f(x1), ..., vnf(xn)|f ∈ Fq[x], deg(f(x)) < k}

Generator matrix of GRS(x, v) is

G =



v1 v2 . . . vn

v1x1 v2x2 . . . vnxn

v1x
2
1 v2x

2
2 . . . vnx

2
n

...

v1x
k−1
1 v2x

k−1
2 . . . vnx

k−1
n


(2.2)
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Definition 12. (Maximum Distance Separable Codes) Let C be a GRS code with

parameters [n, k, d]. If the minimum distance d is equal to n− k+ 1,d=n-k+1, the C

is called as Maximum Distance Separable Codes(MDS).

Definition 13. (Cauchy Matrices ) Let A = [aij]k,l be Cauchy matrix, entry of A is

defined as

aij =
cidj

xi + yj
, 0 ≤ i ≤ k, 0 ≤ i ≤ l (2.3)

where x0, ..., xk are distinct elements, y0, ..., yl are distinct elements and xi + yj , ci,

dj cannot be zero.

.
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CHAPTER 3

CODE EQUIVALENCE PROBLEM

Coding equivalence problem holds an important place in Coding Theory. If codes

have same dimension, length, Hamming weight and minimum distance, they are

called as equivalent codes. We study the code equivalence problem by using Gen-

eralized Reed Solomon(GRS) code. When the generator matrix of GRS code in the

linear code family is turned into standard form, it is known that the matrix remaining

from the unit matrix is the Cauchy matrix. However, even if the Cauchy matrix is

known, it is difficult to find that which code this matrix belongs to and at which point

this code is evaluated.

In this chapter, we work on the code equivalence problem to facilitate it and make

progress for codes of a certain length and dimension.

Definition 14. [11] MatrixA is as called super-regular matrix overFq if determinant

of every square submatrix in A is non-zero.

Proposition 1. [11] Let C be a code with parameters [n, k, d]q and G is a generator

matrix of C with standard form G = [I|A] . Code C is MDS if and only if A is

super regular. In addition to that, C is MDS code if and only if one of the following

conditions are satisfied :

• Every k columns of a generator matrix G is linearly independent.

• Every n− k columns of a parity-check matrix is linearly independent.
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Remark: Cauchy matrix is super-regular since the determinant of each sub-matrix of

the Cauchy matrix is nonzero. Therefore, if A ,i.e G = [I|A], is a Cauchy Matrix,

code C is an MDS code.

Definition 15. [1] Let C1 and C2 be two code with parameters [n, k]q over Fq. C1

and C2 are called as equivalent code if one of codeword which is element of code C1

is acquired by the other.

There are three types of the method of equivalent code :

(1) Permutation of the coordinate of the codeword digits.

(2) Scaler multiplication with non-zero elements in Fq.
(3) Applying field automorphism to all coordinates of the codeword digits.

Example 1: Let codeword of C1 is {0000, 1000, 0110, 1110}. If codeword of code

C2 is {0000, 0010, 1100, 1110}, then C1 and C2 are equivalent code since we changed

the position of coordinate 1 and 3 in C1 so that we obtained C2 .

Also, if codeword of codeC3 is {000, 120, 210} and codeword of codeC4 is {000, 220, 110},
C3 and C4 are equivalent code since we multiplied the first coordinates of C3 by 2 and

obtained C4.

Remark : Let C1 and C2 be two code with parameter [n, k, d]. Generator matrix of

C1 and C2 are G1, G2 respectively. Standard form of G1 and G2 are

G1 = [Ik×k|A]

G2 = [Ik×k|B]

whereA andB are k×(n−k) matrix. G1 andG2 are equivalent if and only if Cauchy

matrix A and B are equivalent.

Remark : Let G be a generator matrix of code C : [n, k] and row permutation of

G is G′ which is belongs to code C ′ : [n, k] such that permutation σ ∈ Sn, and

c = (c1, c2, ..., cn) is a codeword in C, so (cσ(1), cσ(2), ..., cσ(n)) ∈ C ′. Hence G 6= G′

but C and C ′ are equivalent code.
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Example 2: Let consider the code C : GRS[5,3](α, v) over the field F5, where evalu-

ation point α = (0, 1, 2, 3, 4) and v = (1, 1, 1, 1, 1) .

Generator matrix of C is

G=


1 1 1 1 1

0 1 2 3 4

0 1 4 4 1


If we do some elementary row operation to G, we obtain standard form of G such

that

G=


1 1 1 1 1

0 1 2 3 4

0 1 4 4 1

 =


1 0 0 1 3

0 1 0 2 2

0 0 1 3 1

 = [I|A] , and

A =


1 3

2 2

3 1

 is Cauchy matrix.

This example shows that how we can find the Cauchy matrix from the GRS code and

its evaluation point. However, it is not an easy task to find the points at which the

GRS code is calculated by using the Cauchy matrix.

Let’s try to find the evaluation point of C : GRS[5,3](α, v). Assume that the Cauchy

matrixA of codeC is known, but the evaluation point α is unknown. When we look at

Cauchy matrix A which has length 5 and dimension 3, we understand that evaluation

point has 5 element and each element in α must be different from each other.

Assumption 1: Let assume that evaluation point α = (α1, α2, α3, α4, α5) is:

α1 = x1 = 0, α3 = x3 = 2, α5 = y2 = 4,

α2 = x2 = 1, α4 = y1 = 3,

Using definition of Cauchy matrix, we can find matrix M which is generated from

evaluation point α . If the evaluation point of Cauchy matrixA is α = (α1, α2, α3, α4, α5),

then M must be equal to A.

11



Let’s try to see whether matrix M is equal to matrix A or not

M =



y1 y2

x1
c1d1
0− 3

c1d2
0− 4

x2
c2d1
1− 3

c2d2
1− 4

x3
c3d1
2− 3

c3d2
2− 4

 ?
=


1 3

2 2

3 1



Let’s define
1

d1
= d∗1 and

1

d2
= d∗2. If there are proper values of ci and dj , where

i ∈ {1, 2, 3} and j ∈ {1, 2}, Assumption 1 is correct.

For each entry of M , we have following six equations;

1.
c1d1
0− 3

?
= 1⇒ c1d1 − 3× 1 ≡ 2 mod (5) =⇒ c1 = 2d∗1

2.
c1d2
0− 4

?
= 3⇒ c1d2 = −4× 3 ≡ 3 mod (5) =⇒ c1 = 3d∗2

3.
c2d1
1− 3

?
= 2⇒ c2d1 = −2× 2 ≡ 1 mod (5) =⇒ c2 = d∗1

4.
c2d2
1− 4

?
= 2⇒ c2d2 = −3× 2 ≡ 4 mod (5)=⇒ c2 = 4d∗2

5.
c3d1
2− 3

?
= 3⇒ c3d1 = −1× 3 ≡ 2 mod (5) =⇒ c3 = 2d∗1

6.
c3d2
2− 4

?
= 1⇒ c3d2 = −2× 1 ≡ 3 mod (5)=⇒ c3 = 3d∗2

Equation 1 and 2 implies c1 = 2d∗1 = 3d∗2.

Equation 3 and 4 implies c2 = d∗1 = 4d∗2.

Equation 5 and 6 implies c3 = 2d∗1 = 3d∗2.

Therefore, pair of d∗1, d
∗
2 can take one of these values (1, 4), (2, 3), (3, 2) or (4, 1).

Let’s try to find if there are suitable c1, c2, c3 values for d∗1, d
∗
2

For (d∗1, d
∗
2) = (1, 4)⇒ c1 = 2 , c2 = 1 , c3 = 2

For (d∗1, d
∗
2) = (2, 3)⇒ c1 = 4 , c2 = 2 , c3 = 4

For (d∗1, d
∗
2) = (3, 2)⇒ c1 = 1 , c2 = 3 , c3 = 1

For (d∗1, d
∗
2) = (4, 1)⇒ c1 = 3 , c2 = 4 , c3 = 3

Hence evaluation point can be α1 = 0, α2 = 1, α3 = 2, α4 = 3, α5 = 4.

12



Assumption 2: Assume that elements of evaluating points are α1 = 0, α2 = 1,

α3 = 2, α4 = 4, α5 = 3.

N=


c1d1
0− 4

c1d2
0− 3

c2d1
1− 4

c2d2
1− 3

c3d1
2− 4

c3d2
2− 3

 =


1 3

2 2

3 1

 ,

Let’s define
1

d1
= d∗1 and

1

d2
= d∗2.

In the Assumption 1, we found the equations for each entry of M . Similarly, we have

following these equations for N ;

1.
c1d1
0− 3

?
= 1⇒ c1d1 − 3× 1 ≡ 2 mod (5) =⇒ c1 = 2d∗1

2.
c1d2
0− 4

?
= 3⇒ c1d2 = −4× 3 ≡ 3 mod (5) =⇒ c1 = 3d∗2

3.
c2d1
1− 3

?
= 2⇒ c2d1 = −2× 2 ≡ 1 mod (5) =⇒ c2 = d∗1

4.
c2d2
1− 4

?
= 2⇒ c2d2 = −3× 2 ≡ 4 mod (5)=⇒ c2 = 4d∗2

5.
c3d1
2− 4

?
= 3⇒ c3d1 = −2× 3 ≡ 4 mod (5) =⇒ c3 = 4d∗1

6.
c3d1
2− 3

?
= 1⇒ c3d2 = −1× 1 ≡ 4 mod (5)=⇒ c3 = 4d∗2

Since first four points are equal, we can obtain same results as in the first assumption.

From equation 5 and 6 ;

c3d1
2− 4

?
= 3⇒ c3 = 4d∗1

c3d2
2− 3

?
= 1⇒ c3 = 4d∗2

These equations show that d∗1 = d∗2 but this cannot be achieved since there are no such

d∗1 and d∗2, i.e 4d∗1 6= d∗1 . Hence assumption is wrong and there is no such evaluation

point.

13



Question: Which evaluation points provide the same Cauchy matrix?

In this thesis we find that in GRS[5,3](α, v) code over finite field F5, if one evaluation

point which provides Cauchy matrix A is found, all possible evaluation points can be

found easily.

In example 1, we find that (0,1,2,3,4) is an evaluation point. Other points are found

as follows

1. When we shift the (0,1,2,3,4), we get another evaluation point of matrix A such

that

(1,2,3,4,0) (2,3,4,0,1)

(3,4,0,1,2) (4,0,1,2,3).

2. When we multiply evaluation point (0,1,2,3,4) by scalar c, i.e c ∈ F5, we get

another evaluation point and also if this point is shifted then get another evalu-

ation point such that

If c = 2 then (0,2,4,1,3) is the evaluation point of A. From item 1, we can shift

(0,2,4,1,3). Therefore,

(2,4,1,3,0), (4,1,3,0,2),

(1,3,0,2,4), (3,0,2,4,1),

are also evaluation points of A.

In the following proof, if two elements of the evaluation point are fixed and the other

points are displaced, it is examined whether the obtained point can have the same

cauchy matrix.

Proof: Let C : GRS[5,3](α, v) be a code, α=(x1,x2, x3, y1, y2) be an evaluation point

and A be a Cauchy matrix of the code.

Assume that y1, y2 are fixed and xi, where i ∈ {1, 2, 3} can be replaced among

themselves. If the new point satisfies the matrixA, then this point is also an evaluation

point for the same Cauchy matrix.

14



A=


c1d1

x1 − y1
c1d2

x1 − y2
c2d1

x2 − y1
c2d2

x2 − y2
c3d1

x3 − y1
c3d2

x3 − y2

 ?
=


c∗1d
∗
1

x∗1 − y1
c∗1d
∗
2

x∗1 − y2
c∗2d
∗
1

x∗2 − y1
c∗2d
∗
2

x∗2 − y2
c∗3d
∗
1

x∗3 − y1
c∗3d
∗
2

x∗3 − y2


From first row, we have

c1d1
x1 − y1

?
=

c∗1d
∗
1

x∗1 − y1
c1d2

x1 − y2
?
=

c∗1d
∗
2

x∗1 − y2


c1d1
c∗1d
∗
1

=
x1 − y1
x∗1 − y1

,
c1d2
c∗1d
∗
2

=
x1 − y2
x∗1 − y2

. (3.1)

So, we get

c1d1
c∗1d
∗
1

c∗1d
∗
2

c1d2
=
x1 − y1
x∗1 − y1

x∗1 − y2
x1 − y2

. (3.2)

Similarly, From second and third row

c2d1
c∗2d
∗
1

c∗2d
∗
2

c2d2
=
x2 − y1
x∗2 − y1

x∗2 − y2
x2 − y2

,

c3d1
c∗3d
∗
1

c∗3d
∗
2

c3d2
=
x3 − y1
x∗3 − y1

x∗3 − y2
x3 − y2

. (3.3)

If equation (3.2) and (3.3) are combined, we can get

k =
d1
d∗1

d∗2
d2

=
x1 − y1
x∗1 − y1

x∗1 − y2
x1 − y2

=
x2 − y1
x∗2 − y1

x∗2 − y2
x2 − y2

=
x3 − y1
x∗3 − y1

x∗3 − y2
x3 − y2

, (3.4)

where k ∈ F5.

Let y1 = 0, y2 = 1 and substitute these values into the equation (3.4)

k =
x1(x

∗
1 − 1)

x∗1(x1 − 1)
⇒ x1x

∗
1 − x1 = k(x∗1x1 − x∗1).

Thus, we get

(1− k)(x1x∗1) + kx∗1 − x1 = 0.
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For k 6= 1, if we change variable, we get

x1 = β

x∗1 = γ

 (1− k)(βγ) + kγ − β = 0.

Since every element in the evaluation point different from each other, (β, γ) can be :

(2,3), (3,2), (2,4)

(4,2), (3,4), (4,3)

(2,2), (3,3), (4,4)

Let’s examine the point (2,3):

β = 2, γ = 3

(1− k)(βγ) + kγ − β = 0

(1− k)6 + k.3− 2 = 0

 k = 3

So (x1, x
∗
1) can be (2,3).

Now let’s try if there is an appropriate (x2, x
∗
2) value when (x1, x

∗
1) = (2, 3)

From equation (3.4),

x2(x
∗
2 − 1)

x∗2(x2 − 1)
= k = 3 =⇒ 3x∗2x2 − 3x∗2 = x2x2∗ − x2 (3.5)

Since y1 = 0, y2 = 1, x1 = 2 and x∗1 = 3⇒ (x2, x
∗
2) can be (3,2), (3,4), (4,2), (4,4).

Let’s examine possible evaluation points of (x2, x∗2) and (x2, x
∗
2):

Case 1.1 (x2, x
∗
2) = (3, 2)

Substitute (x2, x
∗
2) into equation (3.5),

3x∗2x2 − 3x∗2 = x2x2∗ − x2
3.2− 3.2 6= 3.2− 3,

so (x2, x
∗
2) 6= (3, 2).
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Case 1.2 (x2, x
∗
2) = (3, 4),

Substitute (x2, x
∗
2) into equation (3.5)

3x∗2x2 − 3x∗2 = x2x2∗ − x2
3.4.3− 3.4 = 3.4− 3,

so (x2, x
∗
2) can be (3,4).

Case 1.2.1 (x3, x
∗
3) can take only (4,2). But this point does not satisfy equation(3.5).

Therefore, (x2, x∗2) 6= (3, 4).

Case 1.3 (x2, x
∗
2) = (4, 2)

Substitute (x2, x
∗
2) into equation (3.5),

3x∗2x2 − 3x∗2 = x2x2∗ − x2
3.4.2− 3.2 6= 4.2− 4,

(x2, x
∗
2) 6= (4, 2).

Case 1.4 (x2, x
∗
2) = (4, 4)

Substitute (x2, x
∗
2) into equation (3.5),

3x∗2x2 − 3x∗2 = x2x2∗ − x2
3.4.4− 3.4 6= 4.4− 4,

so, (x2, x∗2) 6= (4, 4).

Hence Case 1.1 is wrong, (x, y) = (x1, x
∗
1) 6= (2, 3).

Doing the same operation for

(3,2), (2,4), (4,2),

(3,4), (4,3), (2,2),

(3,3), (4,4)

We see that none of them satisfy Equation (3.5). Hence if y1, y2 are fixed, this point

does not satisfy Cauchy matrix A.

17



Remark : In above example, we say that if one evaluation point is found, other

evaluation points which satisfy Cauchy matrix can be found, such that it will be the

shifted elements of known evaluation point or it will be multiplication of the elements

of known evaluation point .

In code C : [5, 3] , evaluation point α has 5 elements , so there will be 4 shift opera-

tions:

α = (α1, α2, α3, α4, α5)

Shift 1: (α2, α3, α4, α5, α1) Shift 2: (α3, α4, α5, α1, α2)

Shift 3: (α4, α5, α1, α2, α3) Shift4: (α5, α1, α2, α3, α4)

In F5, there are 3 constant multiplications since multiplying 0 and 1 would be mean-

ingless. Therefore, InGRS[5,3](α, v) overF5, all the following evaluation points have

the same Cauchy matrix.

• (0,1,2,3,4), (1,2,3,4,0), (2,3,4,0,1), (3,4,0,1,2), (4,0,1,2,3)

• (0,2,4,1,3), (2,4,1,3,0), (4,1,3,0,2), (1,3,0,2,4), (3,0,2,4,1)

• (0,3,1,4,2), (3,1,2,4,0), (1,2,4,0,3), (2,4,0,3,1), (4,0,3,1,2)

• (0,4,3,2,1), (4,3,2,1,0), (3,2,1,0,4), (2,1,0,4,3), (1,0,4,3,2)

Hence twenty evaluation points have the same Cauchy matrix. Five elements in eval-

uation point can take 5! = 120 different positions. Therefore code C : [5, 3] has six

different Cauchy matrices. These Cauchy matrices are:


1 3

2 2

3 1

,


2 2

1 3

3 1

 ,


3 1

2 2

1 3

,


1 3

3 1

2 2

,


2 2

3 1

1 3

,


3 1

1 3

2 2

.
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Remark : There are 120 different evaluation points in the code C : [5, 3] and it

takes time to find the right one. At the beginning of the above example, we said that

we could easily find other evaluation points when we find the evaluation point that is

provided by the Cauchy matrix. So, trying six different evaluation points will increase

the probability of finding the right point in the assumption.

Let’s try same shift and constant multiplication operations for code C : [7, 4] over

finite field F7.

Example 3: Let consider the code C : GRS[7,4](α, v) over the field F7 where α =

(0, 1, 2, 3, 4, 5, 6) and v = (1, 1, 1, 1, 1, 1, 1).

Generator matrix of C is

G =


1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 1 4 2 2 4 1

0 1 1 6 1 6 6


Standard form of G is

G =


1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 1 4 2 2 4 1

0 1 1 6 1 6 6

 =


1 0 0 0 6 3 4

0 1 0 0 4 1 1

0 0 1 0 1 1 4

0 0 0 1 4 3 6

=[I|A].

Cauchy matrix A is

A=


6 3 4

4 1 1

1 1 4

4 3 6


We want to find the evaluation points that satisfies the matrix A. By looking matrix

A, we can say that length of the code is 7 and dimension of the code is 4. Therefore,

evaluation point has seven elements.
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If the point (0, 1, 2, 3, 4, 5, 6) puts in the definition of the Cauchy matrix, it satisfies

the matrix A.

Let’s check if the shift and constant multiplication is valid in the code C : [7, 4].

Firstly, try to find Cauchy matrix of (1, 2, 3, 4, 5, 6, 0):

G =


1 1 1 1 1 1 1

1 2 3 4 5 6 0

1 4 2 2 4 1 0

1 1 6 1 6 6 0

 =


1 0 0 0 6 3 4

0 1 0 0 4 1 1

0 0 1 0 1 1 4

0 0 0 1 4 3 6

=[I|A] ,

So, evaluation point (1, 2, 3, 4, 5, 6, 0) has the same Cauchy matrix. If other shifting

points are tried, same Cauchy matrix is obtained. In addition to that multiplication of

constant c ∈ F7, i.e c 6= 0, 1 has the same Cauchy matrix. In addition, Since Cauchy

matrix A4×3 has 4 rows, there are 4! = 24 different Cauchy matrices.

It is said in the Example 2 that (0, 1, 2, 3, 4) and (1, 2, 3, 4, 0) have the same Cauchy

matrix in code C : [5, 3] over the field F5. The next example examines the same code

over the finite field F7.

Example 4: Let consider the code C : GRS[5,3](α, v) over the field F7 where α =

(0, 1, 2, 3, 4) and v = (1, 1, 1, 1, 1). Generator matrix of C[5,3] is

G1 =


1 1 1 1 1

0 1 2 3 4

0 1 4 2 2

 =


1 0 0 1 3

0 1 0 4 6

0 0 1 3 6

=[I|A1].

IfC : GRS[5,3](α, v) over finite fieldF7 where α = (1, 2, 3, 4, 0) and v = (1, 1, 1, 1, 1).

Generator matrix of C[5,3] is

G2 =


1 1 1 1 1

1 2 3 4 0

1 4 2 2 0

 =


1 0 0 1 3

0 1 0 4 4

0 0 1 3 1

=[I|A2].
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These codes have different Cauchy matrices, A1 6= A2. Therefore, if the length of

code smaller than number of field element, above rules,i.e. shifting evaluation point

and multiplication of constant number, are not satisfied.
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CHAPTER 4

ENTANGLEMENT ASSISTED QUANTUM ERROR

CORRECTING CODE (EAQECC)

Entanglement Assisted Quantum Error Correcting Code (EAQECC) is another im-

portant application area of coding theory. Before EAQECCs, in order to obtain a

quantum code from a linear code, the linear code had to be dual containing.

Definition 16. Let C be a linear code and C⊥ be a dual code of C. If C⊥ ⊂ C then

it is called dual containing.

If quantum code uses pre-shared entanglement then it is called Entanglement Assisted

Quantum Error Correcting Code (EAQECC) and it is denoted by [[n, k, d; c]]q where k

is a logical qudits, n is a physical qudits, c is a copies of maximal entanglement states.

Generalized Reed Solomon (GRS) codes are good codes for constructing EAQECCs.

The definition of Singleton bound for quantum code is different than the linear code.

Following theorem gave the bound for EAQECCs:

Theorem 1. [5] Let C be an EAQECC with parameter [[n, k, d; c]]q. Parameters of

C satisfies

n+ c− k ≥ 2(d− 1)

where 0 ≤ c ≤ n− 1 . This is the singleton bound for EAQECC.
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Hull of code makes easy to calculate pre-shared entanglement. The definition of Hull

is as follows:

Definition 17. Let C be a code over Fq. The Hull of C is

Hull(C) := C⊥ ∩ C

If Hull(C) = 0 then C is called Linear Complementary Dual (LCD).

Definition 18. Let C1 and C2 be two linear codes over Fq. The Hull is

Hull(C1, C2) := C⊥1 ∩ C2.

4.1 CONSTRUCTION Of ENTANGLEMENT ASSISTED QUANTUM ER-

ROR CORRECTING CODES

The following theorem shows that how to obtain EAQECCs from linear codes.

Theorem 2. [14] Let C1 : [n, k1, d1]q and C2 : [n, k2, d2]q are two linear codes with

parity check matrices H1 and H2, respectively. Then there exists an Entanglement

Assisted Quantum Error Correcting Codes(EAQECC) with parameters [[n, k1+ k2−
n + c,min{d1, d2}; c]]q where required number of maximally entanglement states is

c = rank(H1H
>
2 ) .

In this part, we did literature review about which article used this theorem and exam-

ined how they used it.

4.1.1 USING `-INTERSECTION PAIRS

Definition 19. [4] If two linear codes intersect and dimension of intersection equal

to ` then we say that these codes are linear `-intersection pair .

Theorem 3. [4] Let C1 = [n, k1]q and C2 = [n, k2]q are two linear codes, G1 and

G2 are their generator matrices and H1 and H2 are their parity check matrices, re-

spectively . If C1 and C2 dimension of intersection is ` then rank of H1G
t
2 and G1H

t
2

independent of H1, H2 , G1, G2 and equal to
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rank(G1H
t
2)= k1 − `,

rank(H1G
t
2)= k2 − `

where 0 ≤ ` ≤ min{k1, k2}.

Proof: If dimension of the intersection C1 , C2 is ` then

rank(G1H
t
2) = rank(H2G

t
1) = k1 − `,

rank(G2H
t
1) = rank(H1G

t
2) = k2 − `.

C1 = {xG1|x ∈ F k
q } ⊆ F n

q

C2 = {y ∈ F n
q |yHT

2 = 0 ∈ F n−k2
q }

G1 : k1 × n,G2 : k2 × n

H1 : (n− k1)× n,H2 : (n− k2)× n

 G1H
T
2 : k1 × (n− k2)

Let ψ is a map such that ψ : x→ xG1H
T
2 ∈ F n−k2

q

Claim: dim(Imψ) = k1 − l
Proof of claim: F k1

q

ψ1−→ F n
q

ψ2−→ F n−k2
q

ψ1 : x 7→ xG1

ψ2 : y 7→ yHT
2

ψ = (ψ1 ◦ ψ2)

Ker(ψ2) = C2 , Im(ψ1) = C1 = k1

Im(ψ) ∼= Im(ψ1)/(Im(ψ1) ∩Ker(ψ2))

dim(ψ) = rank(G1H
T
2 ) = k1 − dim(Im(ψ1) ∩ ker(ψ2)) = k1 − l

Remark: In addition to Theorem 3 :

Let C1 and C2 are linear `-intersection pair. Let C be a code which is equal to

C = C⊥1 : [n, k′1, d
⊥
1 ], where k′1 = n− k1.

Generator matrix of C is G. Since parity check matrix is generator matrix of dual

code, G is equal to parity check matrix of code C1, i.e G = H1 .

From Theorem 2 we know that rank(GHT
2 ) = k′1− l where H2 is parity check matrix

of C2 . Hence there is an EAQECC with parameter [[n, k2− l,min{d⊥1 , d2}; k′1− l]]q.
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The following theorem shows that when n ≤ q− 1, there exists an `-intersection pair

of code for all probable parameters.

Theorem 4. [4] Let q ≥ 3 be a prime power and C1, C2 are two code n, k1, k2, l be

non-negative integers such that k1 ≤ n ≤ q + 1. If l ≤ {k1, k2} and k1 + k2 ≤ n+ l

then there is a linear `-intersection pair of MDS codes with parameters [n, k1, n −
k1 + 1] and [n, k2, n− k2 + 1] .

Remark : Let combine Theorem 4 and previous remark, when q ≥ 3 there exists an

MDS EAQECC [[n, k2 − l,min{k1 + 1, n− k2 + 1}; k1 − l]].

If n = k1 + k2, we get following theorem:

Theorem 5. [4]. Let q be a prime power which is greater than 2 and 0 ≤ k ≤ n ≤
q+1 and 0 ≤ l ≤ min{k, n− k}. Then there is an [[n, n− k− l, k+1; k− l]]q MDS

EAQECC .

4.1.2 USING HULL OF CODE

Theorem 2 is about constructing EAQECC from linear code but it can be difficult to

calculate the required entanglement c = rank(H1H
t
2). With Lemma 1 thanks to the

hull we can find entanglement without calculating rank,

Lemma 1: [9] Let C1 and C2 be linear codes with parameters [n, k1, d1]q,[n, k2, d2]q,

respectively. H1 and H2 are parity check matrices of C1 and C2. Assume that

dim(Hull(C1, C2)) = l1 and dim(Hull(C2, C1)) = l2, then rank(H1H
T
2 ) = n −

max{k1 + l1, k2 + l2} .

Proof: Let C1 = {x ∈ F n
q |H1x

T = O(n−k1)×1}, C2 = {y ∈ F n
q |H2y

T = O(n−k2)×1}
be two linear codes. H1 : (n − k1) × n and H2 : (n − k2) × n are two parity check

matrices of these linear codes.

dim(Hull(C1, C2)) = l1⇒ dim(C⊥1 ∩ C2) = l1,

dim(Hull(C2, C1)) = l2⇒ dim(C⊥2 ∩ C1) = l2.
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Let assume that k1+l1 ≤ k2+l2. We want to show that rank(H1H
T
2 ) = n−(k2+l2) =

n − k2 − l2. Since H2 is generator matrix of dual of C2, α ∈ C⊥2 if and only if α in

row space of H2. We know that rank(H1) = n− k1. Let ψ1 and ψ(−1)
2 are two maps.

ψ1 : F
n
q −→ F n−k1

q

x 7−→ H1x
T

Ker(ψ1) = C1

ψ
(−1)
2 : F n−k2

q −→ F n
q

y 7−→ yH2

Im(ψ
(−1)
2 ) = C⊥2 , since

< yH2, c2 >= yH2c
T
2 = 0

rank(Ct
2) = n− k2

Consider, ψ : F n−k2
q

ψ
(−1)
2−−−→ F n

q

ψ1−→ F n−k1
q

y 7−→ H1H
>
2 y
>

So, Im(ψ) ∼= Im(ψ
(−1)
2 )/(Im(ψ

(−1)
2 ) ∩Ker(ψ1)).

Hence dim(ψ) = rank(H1H
T
2 ) = n−k2−dim(Im(ψ

(−1)
2 )∩Ker(ψ1)) = n−k2−l2.

Remark: In addition to Lemma 1:

If k1+l1 ≥ k2+l2 then there exist an EAQECC with parameter [[n, k2−l1,min{d1, d2};n−
k1 − l1]]q. Since c = rank(H1H

>
2 ) = n−max{k1 + l1, k2 + l2}, k1 + l1 ≥ k2 + l2

then we get c = rank(H1H
>
2 ) = n− (k1 + l1).

Corrollary 1: [9]C1 : [n, k1, d1]q,C2 : [n, k2, d2]q are two linear codes andHull(C1, C2) =

l1 = 0 and Hull(C1, C2) = l2 with k1 ≥ k2 + l2 . Using Theorem 3 we can easily

show that ,

k = k1 + k2 − n+ c = k1 + k2 − n+ (n− (k1 − l1)) = k2 − l1 = k2

then there exits an EAQACC with parameters [[n, k2,min{d1, d2};n− k1]].

Corrollary 2: [9] Assume that C : [n, k, d]q MDS LCD code then there exists and

MDS maximal entanglement EAQECC code with parameter [[n, k, d, n− k]]q .

From Corollary 2, If we have MDS LCD code, then MDS maximal entanglement

EAQECC can be constructed .
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Lemma 2: [3] Let c = (v1f(x1), v2f(x2), ..., vnf(xn)) be a codeword of k-dimensional

GRS(x, v) and c also codeword of dual of GRS(x, v), i.e GRS⊥(x, v), if and only

if there exists a polynomial g(x) ∈ Fq[x] with degree of g(x) is less than or equal to

n− k + 1 then

(v21f(x1), v
2
2f(x2), ..., v

2
nf(xn)) = (u1g(x1), u2g(x2), ..., ung(xn))

where ui =
∏

1≤j≤nj 6=i(xi − xj)−1 for i ≤ i ≤ n.

Proposition 2. [6] LetC be a linear code with parameters [n, k, d]q,G be a generator

matrix of C andH be a parity check matrix of C. Rank of (HHT ) and rank of (GGT )

are independent of H and G and equal to

rank(HHT ) = n− k − dim(Hull(C)) = n− k − dim(Hull(C⊥))

rank(GGT ) = k − dim(Hull(C)) = k − dim(Hull(C⊥)).

Proposition 3. [6] Let C be a linear code with parameters [n, k, d]q and dual of C is

C⊥ : [n, n− k, d⊥]q. There are

[[n, k − dim(Hull(C)), d;n− k − dim(Hull(C))]] and

[[n, n− k − dim(Hull(C)), d⊥; k − dim(Hull(C))]] EAQECC.

In addition, if C is MDS code then these two EAQECCare also MDS.

Article [8] gives the construction of some MDS codes using the hull of the code.

Theorem 6, Theorem 7, Theorem 8, Theorem 9, Theorem 10 are some of these con-

structions.

Theorem 6. [8] Let q be power of 2 which is greater than 2. Assume that 3 < n ≤ q

then there is an [n, k] MDS code which has `-dimensional hull for any 1 ≤ ` ≤ k .

Theorem 7. [8] Let q be an odd prime power which is greater than 3. Assume that

n > 3 and n divides (q − 1) then exists an [n, k] MDS code which has `-dimensional

hull for any 1 ≤ ` ≤ k − 1 .

Theorem 8. [8] Let q be an odd prime power which is sutisfy q ≡ 1 mod 4 and

let m be an integer number greater than 1 such that m divides (q − 1). Assume that

n = 2m < q − 1 , there is an [n, k] MDS code which has `-dimensional hull for any

1 ≤ ` ≤ k − 1 .
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Theorem 9. [8] Let q be an odd prime power which is greater than 3. Assume that

n > 3 and n divides (q) then is an [n, k] MDS code which has `-dimensional hull for

any 1 ≤ ` ≤ k .

Theorem 10. [8] Let q be an odd prime power which is sutisfied q ≡ 1 mod 4 and

let m be an integer number greater than 1 such that m divides (q). Assume that

n = 2m < q , there is an [n, k] MDS code which has `-dimensional hull for any

1 ≤ ` ≤ k .

If Theorem 6, Theorem 9, Theorem 10 are combined with Proposition 3 , following

MDS EAQECCs are obtained [8]:

For 1 ≤ s ≤ k and 3 < q

1. Combination of Theorem 6 and the Main theorem:

If q be a power of 2 which is greater than 2 and 1 ≤ n ≤ q then there are

[[n, k − s, n − k + 1;n − k − s]]q and [[n, n − k − s, k + 1; k − s]]q MDS

EAQECCs.

2. Combination of Theorem 9 and the Main theorem

If n is greater than 3 and n divides q then there are [[n, k−s, n−k+1;n−k−s]]q
and [[n, n− k − s, k + 1; k − s]]q MDS EAQECCs.

3. Combination of Theorem 10 and the Main theorem

Let m be an integer number which is greater than 1, and n = 2m. If q ≡
1 mod 4 and n < q then there are [[n, k − s, n − k + 1;n − k − s]]q and

[[n, n− k − s, k + 1; k − s]]q MDS EAQECCs.

If Theorem 7, Theorem 8 are combined with Proposition 3 , following MDS EAQECCs

are obtained [8]:

For 1 ≤ s ≤ k − 1 and 3 < q

1. Combination of Theorem 7 and the Main theorem

If n | q where n > 3 then there are [[n, k − s, n − k + 1;n − k − s]]q and

[[n, n− k − s, k + 1; k − s]]q MDS EAQECCs.
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2. Combination of Theorem 8 and the Main theorem

Let m be an integer number which is greater than 1, and n = 2m. If q ≡ 1

mod 4 and n < q − 1 then there are [[n, k − s, n − k + 1;n − k − s]]q and

[[n, n− k − s, k + 1; k − s]]q MDS EAQECCs.
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CHAPTER 5

CONCLUSION

In this thesis, we explain Code Equivalence Problem and Entanglement Assisted

Quantum Error Correcting Codes (EAQECCs) which are taken an important place

in Coding Theory.

In the first chapter, in order to understand what is coding theory , example from

daily life are given, its historical process and its application areas are mentioned.

We give some information about EAQECC and code equivalence problem which are

application areas of coding theory.

In Chapter 2, we give some definitions and their mathematical notation that are the

basis of coding theory, which will be used in all other chapters.

In Chapter 3, we study code equivalence problem using Generalized Reed Solomon

(GRS) Codes and we dwell upon permutation equivalence. We have shown an easy

way to find equivalent linear codes which have same Cauchy matrices in [5, 3] over

F5 and [7, 4] over F7 codes. We’ve seen that this easy way works for [5, 4] over

F5 and [7, 3],[7, 5],[7, 6] over F7 codes using SageMath. As future work, we plan to

generalize and prove this technique.

In Chapter 4, we do some literature review about quantum codes. At the beginning

of the chapter some definitions are given which are about quantum codes. EAQECC

allows us to obtain quantum code from linear code without dual containing condition.

We based on Theorem 3 and examined how some articles use this theorem. We give

the EAQECC parameters which construct using this theorem.
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