
INFLUENCE OF RENEWABLE ENERGY ON CARBON PRICES IN THE USA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

INFLUENCE OF RENEWABLE ENERGY ON CARBON PRICES IN THE
USA

ÇOŞKUN, HİLAL ESİN

M.S., Department of Financial Mathematics

Supervisor: Prof. Dr. A. Sevtap Selçuk-Kestel

Co-Supervisor
: Dr. Serdar Dalkır

DECEMBER 2019 , 65 pages

In this study, the decrease in carbon prices is explained with increasing incentives

to renewable energy sources and with economic growth, energy prices and carbon

permits. For this purpose, we analyze the carbon market prices in the US for energy

markets. Carbon prices are low in the US compared to other countries. The reason

behind the low price can be increasing incentives to renewable energy resources in

the USA. To explore the reasons and justifications, we employ econometric methods

on real life data from USA. In this context, linear regression, VEC model and panel

data analysis are performed according to their applicability and use. As a result, a

significant and negative relationship is observed between CO2 prices and renewable

portfolio standards and carbon allowances in the US CO2 market. Also, there is a

significant and positive relationship between CO2 prices and industrial production.

Finally, oil and natural gas prices have a negative effect on CO2 price while coal

price has a positive effect on CO2 price.
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Keywords: US Carbon Prices, Renewable Portfolio Standards (RPS), Regional Green-

house Gas Initiative (RGGI), VEC (Vector Error Correction Model), Energy Prices,

Panel Data, Industrial Production, Carbon Permits, USA.
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ÖZ

YENİLENEBİLİR ENERJİNİN ABD’DEKİ KARBON FİYATLARINA
ETKİSİ

ÇOŞKUN, HİLAL ESİN

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. A. Sevtap Selçuk-Kestel

Ortak Tez Yöneticisi
: Dr. Serdar Dalkır

Aralık 2019 , 65 sayfa

Bu çalışmada, yenilenebilir enerji kaynaklarına artan teşvikler ile ekonomik büyüme,

enerji fiyatları ve karbon kullanma izinleri ile karbon fiyatlarındaki düşüş açıklan-

maya çalışılmıştır. Bu çalışma, ABD’deki enerji piyasası için karbon piyasası fiyatla-

rını incelemeyi amaçlamaktadır. ABD’de karbon fiyatlarının diğer ülkelere göre dü-

şük olduğu görülmektedir. Düşük CO2 fiyatının arkasındaki neden ABD’de yenilene-

bilir enerji kaynaklarına yönelik teşviklerin artmasından kaynaklanabilmektedir. Bu

durumun sebelerini anlayabilmek için ABD verileri ekonometrik yöntemlerle ince-

lenmiştir. Bu bağlamda doğrusal regresyon, VEC modeli ve panel veri analizi ya-

pılmıştır. Sonuç olarak, ABD CO2 pazarında CO2 fiyatları ile yenilenebilir portföy

standartları ve karbon ödenekleri arasında anlamlı ve negatif bir ilişki olduğu göz-

lemlenmektedir. Ayrıca, CO2 fiyatları ile sanayi üretimi arasında anlamlı ve pozitif

bir ilişki vardır. Son olarak, petrol ve doğal gaz fiyatlarının CO2 fiyatı üzerinde negatif

etkisi olurken, kömür fiyatının CO2 fiyatı üzerinde pozitif bir etkisi bulunmaktadır.
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Anahtar Kelimeler: Yenilenebilir Portföy Standartları (RPS), Bölgesel Sera Gazı Gi-

rişimi (RGGI), VEC (Vektör Hata Düzeltme Modeli),Panel Veri,Enerji, Endüstriyel

Üretim, Karbon İzinleri, ABD.

viii



To my family

ix



ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis advisor Prof. Dr.

Sevtap Kestel and supervisor Dr. Serdar Dalkır for their patient guidance, enthusiastic

encouragement, and valuable advice during the development and preparation of this

thesis. Their willingness to give his time and to share their experiences has brightened

my path.

I would like to express my most grateful gratitude to my family for the precious

support and guidance.

Moreover, I would like to thank Prof. Dr. Gunther Schulze for his guidance and

support during my Erasmus period at Freiburg University.

Finally, I would like to thank Ahmet Tarhan for his understanding in the preparation

of my thesis.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Trading Scheme- Cap and Trade Program . . . . . . . . . . . . . . . 3

1.2 Renewable Energy Mechanism . . . . . . . . . . . . . . . . . . . . . 4

1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 THE RGGI PROGRAM - US EMISSION TRADING SCHEME . . . . . . 9

2.1 History of CO2 Prices in US Market . . . . . . . . . . . . . . . . . . 9

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Linear Regression Model . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xi



3.2.1 Vector Autoregression Model (VAR) . . . . . . . . . . . . . . 17

3.2.2 Vector Error Correction Model . . . . . . . . . . . . . . . . . 18

3.3 Panel Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Fixed Effects Model (FE) . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Random Effect Model (RE) . . . . . . . . . . . . . . . . . . . 20

4 EMPIRICAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Stationarity Checks . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Vector Error Correction Model Results . . . . . . . . . . . . . . . . 43

4.4.1 Granger Causality Test Result . . . . . . . . . . . . . . . . . . 46

4.5 Panel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 CONCLUSION AND POLICY IMPLICATION . . . . . . . . . . . . . . . 53

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

APPENDICES

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



LIST OF TABLES

TABLES

Table 2.1 Correlations of RPS Targets Between States . . . . . . . . . . . . . 14

Table 4.1 Descriptive Statistics of the Variables . . . . . . . . . . . . . . . . . 34

Table 4.2 Dependence Between Variables . . . . . . . . . . . . . . . . . . . . 34

Table 4.3 Linear Regression Results. . . . . . . . . . . . . . . . . . . . . . . 36

Table 4.4 Skewness/Kurtosis tests for Normality of Residuals . . . . . . . . . 36

Table 4.5 Skewness/Kurtosis tests for Normality of Residuals . . . . . . . . . 36

Table 4.6 Linear Regression Results. . . . . . . . . . . . . . . . . . . . . . . 37

Table 4.7 White’s Heteroscedasticity test results . . . . . . . . . . . . . . . . 39

Table 4.8 Breusch-Godfrey Serial Correlation LM Test. . . . . . . . . . . . . 40

Table 4.9 Newey-West Standard Errors . . . . . . . . . . . . . . . . . . . . . 40

Table 4.10 Augmented DF Test for the Variables . . . . . . . . . . . . . . . . . 41

Table 4.11 Lag- order selection statistics. . . . . . . . . . . . . . . . . . . . . . 42

Table 4.12 Johansen cointegration test results . . . . . . . . . . . . . . . . . . 43

Table 4.13 Granger causality Wald tests . . . . . . . . . . . . . . . . . . . . . 48

Table 4.14 Hausman test results. . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.15 Panel data analysis with fixed effect and robust standard errors . . . 50

xiii



Table 4.16 Panel data analysis with fixed effect and robust standard. . . . . . . 51

Table A.1 Vector Error Correction Model Results for CO2 price and ALQ . . . 62

Table A.2 Vector Error Correction Model Results for IP and CROP . . . . . . 63

Table A.3 Vector Error Correction Model Results for NGP and COP . . . . . . 64

Table A.4 Vector Error Correction Model Results for WA . . . . . . . . . . . . 65

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 Total Emission in 2014 by country.[8] . . . . . . . . . . . . . . 2

Figure 2.1 The Map of RGGI States . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 CO2 market prices in different carbon trading systems [32]. . . 10

Figure 2.3 CO2 price in US between 2009 and 2018 [6]. . . . . . . . . . . . 11

Figure 2.4 CO2 emissions for total electric power industry for years be-

tween 1990-2017 for all energy sources [10] . . . . . . . . . . . . . . . 11

Figure 2.5 Relation between carbon emission prices and renewable energy

subsidy [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.6 RPS targets across 7 RGGI states [8] . . . . . . . . . . . . . . . 14

Figure 4.1 CO2 monthly price in US between 2009 and 2018 in RGGI states 23

Figure 4.2 RGGI Allowances Offered, Sold, and Clearing Price between

2008-2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 4.3 RGGI Allowance Quantity between 2009-2018 [5] . . . . . . . . 25

Figure 4.4 montly industrial Production for years between 2009-2018 . . . 26

Figure 4.5 Electricity generation sources by States in 2017 [3] . . . . . . . 27

Figure 4.6 Annual Coal Generation in RGGI states [3]. . . . . . . . . . . . 28

Figure 4.7 Crude Oil monthly spot prices between 2009-2018. [9] . . . . . 29

xv



Figure 4.8 Natural gas monthly spot prices between 2009-2018 [37] . . . . 30

Figure 4.9 Average Monthly Coal Spot Price in Northern Appalachia(NAP)

between 2009-2018 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.10 Renewable Portfolio Standards of 9 states monthly between 2009-

2018 [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xvi



CHAPTER 1

INTRODUCTION

Climate change caused by human-made greenhouse gas increases; is extremely im-

portant for the natural ecosystems, the socio-economic structure, and the lives. Due

to the various gases in the atmosphere, the heating and insulation effect in the at-

mosphere called the greenhouse effect. Apart from the natural process, some of the

gases are generated by human activities like economic growth, population growth, a

decrease in agricultural land and forests, an increase in transportation and of environ-

mental wastes, change of consumption habits of people, increase in non-renewable

energy production and consumption. They increase the number of greenhouse gases

in the atmosphere and cause the natural greenhouse effect to become dangerous. In-

creasing the greenhouse effect leads to an increase in global warming, deterioration of

the ecological system and a change in the climate. It is foreseen that climate change

due to global warming can cause the melting of the glaciers, the rise of the sea level,

the occurrence of severe weather events, etc. and significant consequences that may

directly or indirectly affect human life and health, socioeconomic sectors and ecolog-

ical systems (IPCC-Intergovernmental Panel on Climate Change, 2013 [4]).

Assessments by the Intergovernmental Panel on Climate Change (IPCC) show that the

Earth’s climate heats up to 0.85C degrees (1.53 degrees Fahrenheit) between 1880 and

2012, and human activities affecting the atmosphere are probably an important factor.

The Fifth Assessment Report (Summary for Policy Makers) of the IPCC states, "In

warming the atmosphere, human influence has been detected. (EIA, 2018) [9].
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Figure 1.1: Total Emission in 2014 by country.[8]

From Figure 1.1, it can be seen that US emissions (6,319 MtCO2e) are the world’s

second-largest (after China which has the largest emission level as 11,601 MtCO2e

in 2014). Some of the consequences of the increasing CO2 emission can be listed as;

a) decrease in the yields in agriculture, b) increase in the forest fires c) increase in

disasters such as drought, erosion and desertification, d) reduction in living areas and

species, e) increase in the deaths due to heatwaves, f) thirst as a result of decrease in

freshwater resources g) inundated coastal countries islands as a result of the increase

in sea and ocean levels.

The global effort for climate change has begun with the negotiation of the United Na-

tions Framework Convention on Climate Change (UNFCCC). UNFCCC, whose aim

is to stop the atmospheric greenhouse gas accumulation at a level that will prevent

the dangerous human-induced impact on the climate system, is entered into force on

21 March 1994. The UNFCCC, which is the most important international step in cli-

mate change, includes 195 countries, including the European Union (EU) (UNFCCC,

2015a) [7]. On 11 December 1997, the Kyoto Protocol (KP) was implemented on

16 February 2005 to achieve the goal of the UNFCCC and increase its effectiveness.

192 countries, including the EU, are members of the Protocol (UNFCCC, 2015b) [7].

As in the first commitment period of the KP (Kyoto Protocol), the elasticity mech-

anisms (Joint Implementation-JI, Clean Development Mechanism-CDM, and Emis-

sion Trading) are established to achieve greenhouse gas decrease targets in the second
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commitment period, and their activities continue between 2013-2020.

As of 2015, 42 emission-trading systems operate in the scope of Emissions Trad-

ing. Markets are concentrated in these regions in parallel with the US, Canada, EU,

Australia, New Zealand, China and Japan, the main players in climate change nego-

tiations.

1.1 Trading Scheme- Cap and Trade Program

Reducing greenhouse gas emissions from human activities that cause climate change

at minimum cost has been the main target of regulations of governments. However,

the cost of unit reduction of greenhouse gas emissions varies by country. With the

flexibility mechanisms recognized in the KP, countries will be able to benefit from

low costs. The flexibility mechanisms defined in the Protocol are the technical and

economic tools to help their countries fulfill their obligations. One of them is the

emission trading (carbon market) mechanism. The carbon market refers to the market

in which carbon credits, in other words, carbon certificates obtained within defined

exchange rates and standards, are purchased and sold to prevent or reduce greenhouse

gases causing global climate change, especially carbon dioxide.

The carbon market is seen as an important tool in reducing emissions if it operates

following market rules. This market penalizes those who emit more than the limit

set to reduce emissions, while those that emit less are rewarding to ensure that the

available resources are used at the lowest cost. Besides, the carbon market makes it

possible to trade carbon all over the world by converting the pollution units it charges

into ownership rights. Thus, it encourages enterprises to use clean technology by

encouraging less greenhouse gas emissions. The emission trading system (ETS) sets a

limit (or upper limit) for greenhouse gas emissions arising from the facilities covered

by the system. Since the upper limit directly limits greenhouse gas emissions, this

tool provides policymakers with certainty about the number of emissions that will

take place over a period. This upper limit shall be gradually reduced over time by the

emission reduction objective of a jurisdiction.

The facilities under the ETS are obliged to use their appropriations to meet the total
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greenhouse gas emissions caused by the release. These allocations are distributed

free of charge or through an auction process. Allocations can also be obtained by

trade between other third parties, which determines the market price of all allocations.

Since there is a cost associated with greenhouse gas emissions under the ETS, there

is an incentive to reduce the emissions of plants. The theory of economics (unlike

command and control emission reduction policies), which is the basis of the emissions

trade, is to offer the option to trade despite the investments aimed at reducing, and thus

the lowest cost options for emission reduction by the market.

Cap and trade system consist of two parts. In the first part, the government determines

the maximum amount of emissions. The government sells, or exports permits for

greenhouse gas to emitters and each emitter needs a permit for each ton of greenhouse

gas they emit. In the second part, emitters can trade carbon permits among themselves

and create a price for permits in this market. This encourages everyone who is facing

with carbon price to reduce their CO2 emissions.

For the first time, ETS was able to limit greenhouse gas emissions. Since the im-

plementation in the EU in 2005, the number of ETSs has increased (Kossoy, Peszko,

2015) [32].

The Regional Greenhouse Gas Initiative (RGGI) is the first mandatory market-based

cap and trade program to reduce CO2 emissions from electricity generation in the

Northeastern US states. The RGGI framework is discussed in detail in Chapter 2.

1.2 Renewable Energy Mechanism

Increasing the use of renewable energy is one of the most accurate solutions to reduce

carbon emissions [13]. Because these energy sources are a renewable and less pol-

luting energy system which do not contain CO2 like fossil sources. Solar, wind,

biomass, geothermal and hydro energies are the main types of renewable energy

sources. The main advantage of them is that they can be found anywhere in the

world depending on their geographical and geopolitical situation. That means they

are natural energy sources. That is why, countries do not need to import them, these

sources alleviate the problem of energy dependency.

4



The level of atmospheric carbon dioxide has been constantly increasing since the

beginning of the industrial revolution and is predicted to increase even faster as the

global economy grows. Significant climate changes are associated with an increase

in the atmospheric density of certain gases, particularly CO2.

Renewable energy technologies produce very low or close to zero greenhouse gas

emissions compared to fossil fuels. They include hydro, wind, solar, geothermal

waste energy and biomass energy.

The International Energy Agency expects a %70 increase in oil demand and a %130

increase in carbon emissions by 2050 [11].

Most of the carbon dioxide emissions resulting in greenhouse effects are caused by

using fossil fuels in energy production and consumption. Therefore, a tax policy that

encourages the reduction of fossil fuel use and the use of renewable energy sources

that do not harm the environment instead of fossil resources will contribute to the

reduction of environmental externalities [28].

The main contributions of this research are to investigate the relationship between the

main drivers of the carbon price in the RGGI and to explain the relationship between

CO2 price and renewable energy policy. In our study, we use 3 econometric models

which are linear regression model, Vector Error Correction model, and Panel data

analysis. We anticipate observing a negative and statistically significant relationship

between CO2 prices and renewable energy portfolio targets for RGGI states (that

is the parameter we measured the renewable energy incentives in the US in RGGI

states). Also, we try to find a significant relationship between energy prices like coal,

oil and natural gas prices and CO2 prices. In addition, we try to find a significant

and negative impact of allowance quantity in the market (supply of CO2 permits) and

CO2 prices. Finally, we expect to find a strong and positive relationship between CO2

price and industrial production (or economic activity in the region). In our study, we

use Stata 14.2 as our statistical analysis program.
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1.3 Literature Survey

There is extensive research to investigate the carbon pricing mechanism literature,

solely on the EU. Many studies show that energy prices (oil, natural gas, coal and

electricity prices) are the main drivers of the carbon price in the allowance market.

Also, weather conditions (cold-warm temperature), policy options like the emission

target, renewable energy subsidies are the main determinants of EU-ETS carbon price

(Chevallier, 2012) [20]. In that respect, some authors such as Mansanet-Bataller et

al. (2007) [33], Aatola et al. (2013) [14], Reboredo (2013) [39] explain the determi-

nants of EU-ETS carbon price as energy prices like oil, natural gas, coal, electricity.

In addition to energy prices, Rickels et al. (2007) [40], Alberola et al., (2008) Rick-

els, et al. (2010) [41] find a significant additional effect of weather conditions like

unexpected temperature change on the EU-ETS carbon price.

Regarding some studies, Koch et al. (2014) [35] find the economic condition in the

country as an important factor that affects the EU-ETS carbon price. Moreover, Hin-

termann (2010) [17] Bergh et. al. (2013) [21] Abrell – Weigt (2008) [15] also research

the relationship between renewable energy deployment (like availability of hydroelec-

tric power or RES-E injections) and the carbon price in EU ETS; they observe that

using renewable energy in the electricity production decreases EU-ETS carbon prices.

In summary, various studies examining the carbon price drivers in the EU-ETS, fac-

tors like energy prices, weather conditions and policy instruments such as renewable

energy incentives affect EU-ETS allowance prices. Kim and Koo (2010) [30] exam-

ine the factors affecting the US carbon allowance market. They observe that the coal

price is a key factor affecting the carbon allowance trading volume. The changes in

the crude oil and natural gas prices and the coal price have significant effects on the

carbon allowance market. Besides, there is evidence that the temperature and eco-

nomic crisis in the US have significant impact on the carbon allowance trade volume.

Kim and Lee (2014) [31] investigate the relationship among the RGGI carbon price

and energy prices in the Northeastern USA, they find that the price of natural gas

has a positive effect on the carbon price of RGGI, but the price of natural gas is not
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affected by RGGI, and the price of carbon and the price of coal are negatively related.

We depict from the literature that economic activity, energy prices like coal, natural

gas and renewable energy impacts are the main drivers for carbon prices. To our

knowledge, early all literature entirely pay attention to the carbon allowance market

in the EU, since EU-ETS is the biggest and most important carbon trade market.

However, when we look at the US carbon allowance market, we see it as a small,

regional and non-Kyoto protocol market, and it has made relatively small and few

realizations. (Kim and Lee, 2015) [31].

Therefore, we question how the relationship between CO2 price and renewable en-

ergy incentives in the USA is.

1.4 Aim of the Study

The main contributions of this research are to investigate the relationship between

the main drivers of the carbon price in the US- RGGI and to explain the relationship

between CO2 price and renewable energy policy. Here, we choose to investigate US

market mainly because;

a) It is non-Kyoto CO2 market so it shows a unique market for our study,

b) Relative to the consumption, CO2 price is lower compared with other ETS markets,

c) There is limited literature related with US allowance market,

d) CO2 market price regulations are clear,

e) Pioneer in renewable energy source improvements.

The main components to analyze the study are carbon dioxide price and renewable

portfolio standards to measure the impact of incentives on CO2 price. Moreover, we

obtain renewable energy production to calculate the weighted average of renewable

energy targets of states. Besides, initial permit quantity (quantity offered to RGGI

states) is used to quantify the supply effect of permits on CO2 price. Coal, natural

and oil spot prices data are used to represent energy prices. Lastly, to measure eco-

nomic activity, we look at the industrial production index. Econometric models are

employed using Stata 14.2 as software.
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We anticipate observing a negative and statistically significant relationship between

CO2 prices and renewable energy portfolio targets for RGGI states (that is the param-

eter we measured the renewable energy incentives in the US in RGGI states). Also,

we aim to find a significant relationship between energy prices like coal, oil and nat-

ural gas prices and CO2 prices. Besides, we search a significant and negative impact

of allowance quantity in the market (supply of CO2 permits) and CO2 prices. Finally,

we expect to find a strong and positive relationship between CO2 price and industrial

production (or economic activity in the region).

The outcomes of this thesis can be useful for policymakers in determination related

to complementary environmental policies in reducing carbon emission in the US al-

lowance market.

The organization of the thesis is as follows; Chapter 1 provides background informa-

tion about climate change and gives information about the emission trading scheme.

Moreover, we explain the hypothesis of the thesis, previous work on this subject and

overview of the thesis. In Chapter 2, we give background information about the Re-

gional Greenhouse Gas Initiative (RGGI). In Chapter 3, we explain the methods used

briefly. The empirical analysis, the results and findings are presented in Chapter 4.

The conclusion and comments are given in Chapter 5.
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CHAPTER 2

THE RGGI PROGRAM - US EMISSION TRADING SCHEME

2.1 History of CO2 Prices in US Market

RGGI begin on January 1, 2009, for ten northeastern US states. As seen from the

Figure 2.1, these states are Connecticut, Delaware, Maine, Maryland, Massachusetts,

New Hampshire, New York, Rhode Island, Vermont, and New Jersey. In 2012, New

Jersey withdrew from the program.

Figure 2.1: RGGI States Map [29]

Compared with carbon allowance prices, for instance in EU ETS, the carbon al-

lowance price for the year 2018 is $17.80 while it is $4.94 for the same year in RGGI

states. Figure 2.2. shows the CO2 price based on different trading systems. The most

expensive price is observed in Alberta CCIR, followed by Korea ETS, whereas the

minimum occurred in Guangdong pilot ETS.
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The reasons behind low CO2 price in the US compared with other ETS system are:

a) RGGI is not an economy-wide system.

b) It implements only to carbon dioxide (CO2) emissions from electric power plants

with capacities to generate 25 megawatts or more- approximately to 168 facilities

(Ramseur, 2017) [38]. This is less compared with other ETS markets.

c) It has limited scope, only executed in 9 states.

d) It is a voluntary market.

Voluntary carbon markets are carried out voluntarily, regardless of the policies and

objectives set by the governments. Organizations that want to be carbon neutral buy

carbon certificates that are generated as a result of emission reductions provided by

a voluntary standard to reduce and offset their emissions by calculating their carbon

footprints. Regional Greenhouse Gases Initiative and RGGI Market are one of the

voluntary carbon markets.

Figure 2.2: CO2 market prices in different carbon trading systems [32].

We can see from Figure 2.3 that carbon price is low (around $2) between 2009 and

2012. Because in several auctions during these years, some allowances were left

unsold. After 2012, RGGI announced a 45 percent cap reduction yielding the demand

for CO2 allowances rise and carbon prices start to increase up to $8 per short ton

towards 2016. Following the publication of the Clean Energy Plan in 2015, bids

were offered more than three times the total number of RGGI amount of allowances.

This situation increases allowance prices. After 2016, the downward trend starts at

allowance price.
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Figure 2.3: CO2 price in US between 2009 and 2018 [6].

The aim of the RGGI program is to cap and reduce carbon dioxide (CO2) emissions

from the energy sector. The cap and trade program is projected to support the states

to decrease annual CO2 emissions of the power sector under 2005 levels by 2020.

.

Figure 2.4: CO2 emissions for total electric power industry for years between 1990-

2017 for all energy sources [10]

From Figure 2.4, it is seen that the emission in nine RGGI states decreases around 30

percent in 2009 which is the starting date of RGGI. After 2009, we see that the carbon

emission level starts to decrease. This is because of the transition from coal and oil to

natural gas, nuclear power, and renewables which are less emitting or zero-emitting
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resources. Theoretically, Figure 2.4 shows the effect of the cap and trade system on

CO2 price. Furthermore, it shows the impact of policy instruments like renewable

energy incentives on carbon price.

The complementary policies like renewable energy incentives can realize significant

emission reductions (Heindl and Löschel, 2012) [27]. However, they cause a surplus

of the number of allowances in the ETS market, which leads to downward pressure

on the carbon allowance prices.

.

Figure 2.5: Relation between carbon emission prices and renewable energy sub-

sidy [44]

To achieve emissions reductions, a cap and trading system is the most effective pro-

gram. Nevertheless, when a government combines the cap and trade system with

other policy measures, this efficiency can change severely [23].

For instance, when a government prepares a subsidy program to promote production

through renewable resources, the direct effect of these subsidies is the replacement of

electricity produced by fossil fuel power plants with electricity produced by renew-

able techniques. Consequently, CO2 emissions decrease. For this reason, electricity

producers save the CO2 permits they can sell in the permit market. As a result, the

price of CO2 permits decreases. External changes in emissions in Figure 2.5 result

from policies that complement the RGGI cap and trade programs. Some examples

that can cause to exogenous shifts in emission are:

i) Renewable portfolio standards (RPS) found in all 10 original RGGI states. RPS
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entails a certain part of the state energy to come from non-renewable sources

such as wind, solar, geothermal and biomass and thus creates emission reduc-

tion and MAC (it measures the cost of reducing one more unit of pollution)

curve shifts (marginal cost of additional decreases in pollution). This mecha-

nism imposes an obligation on electricity supply companies to generate a cer-

tain amount of electricity from a renewable energy source.

ii) Also, The RGGI program includes emission limits, such as the use of RGGI

auction revenues for energy efficiency, as well as additional measures to reduce

emissions. This means that the auction revenues in the RGGI program are used

for energy efficiency. RGGI states (collectively) allocate the auction revenues

as 64 percent for energy efficiency, 10 percent for electricity bill assistance,

4 percent for GHG abatement, 16 percent for clean and renewable energy, 6

percent for administration, and 1 percent for RGGI, Inc. in 2015.

iii) All the regulations of the Federal Clean Air Act on air pollutants such as sulfur

dioxide (SO2), nitrogen oxide (NOx) and mercury (Hg) introduces legal re-

quirements for coal-fueled production, which opts to replace appropriate alter-

natives such as natural gas and nuclear energy with renewable energy sources.

These policies are applied in these RGGI states.

In short, the decrease in the CO2 price can be due to policies that are complementary

to the RGGI cap-and-trade programs, such as Renewable portfolio standards (RPS),

RGGI program supplementary measures or Federal Clean Air Act, which exist in all

the ten original RGGI states. In the framework of this study, we consider Renew-

able portfolio standards (RPS) of seven states (except New York and Vermont) in

the USA. We use Connecticut [CT], Maine [ME], Rhode Island [RI], Massachusetts

[MA], New Hampshire [NH], Maryland [ML] and Delaware [DE] as a representation

of renewable energy incentives. Since these are the only states whose RPS parameters

are published and accessible. We expect that RPS requirements are strongly corre-

lated across states. Therefore, RPS requirements for one state should serve as a good

instrument for the RPS requirement for other states.

Figure 2.6 shows the Renewable Portfolio Targets across 7 states. All the targets of

the states except New Hampshire are increasing continuously. The reason behind the
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Figure 2.6: RPS targets across 7 RGGI states [8]

decrease in the target of New Hampshire is because the renewable energy requirement

of each class of energy for the state is modified.

Table 2.1: Correlations of RPS Targets Between States

Correlation CT DE ME ML MA NH

Connecticut [CT] 1.00

Delaware [DE] 0.99 1.00

Maine [ME] 0.99 1.00 1.00

Maryland [ML] 0.98 0.99 0.99 1.00

Massachusetts [MA] 0.99 1.00 1.00 0.99 1.00

New Hampshire [NH] 0.71 0.66 0.66 0.6 0.65 1.00

Rhode Island [RI] 0.99 0.99 0.99 0.99 0.99 0.7

We can see from Table 2.1 that during 2009 and 2018, those percentage targets are

highly correlated (ρ > 0.60) between states. It is remarkable also that there are perfect

positive correlation between some states such as (ME,DE), (MA,DE) and (MA,ME).

This is mainly because percent targets yearly by each state increase at the same rate.
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CHAPTER 3

METHODOLOGY

In this chapter, we summarize the methodology used in the empirical analysis. Most

of the studies in energy prices consider linear and non-linear models to capture the

influence of exogenous variables on the price.

3.1 Linear Regression Model

Multiple regression is the statistical procedure used to estimate the values of a re-

sponse (dependent) variable from a collection of predictive (independent) variable

values (Wooldridge, 2012) [41].

The general multiple linear regression model (also called the multiple regression

model) can be written in the population as

y = β0 + β1x1 + β2x2 + β3x3 + . . . + βkxk + u (3.1)

where β0 is the intercept, βi is the parameter associated with xi, xi=1,... k. Since there

are k independent variables and an intercept, equation (3.1) contains k +1 (unknown)

population parameters. Just as in simple regression, the variable u is the error term or

disturbance. It contains factors other than x1, x2, . . . , xk that affect y. No matter how

many explanatory variables we include in our model, there will always be factors we

cannot include, and these are collectively contained in u (Wooldridge, 2012) [43].

The assumptions of multivariate regression analysis is the normal distribution, linear-
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ity, freedom from extreme values and the absence of multiple bonds between inde-

pendent variables (Büyüköztürk, 2012) [18]. It is of great importance that the random

error, u satisfy the properties:

i) E (u) = 0

ii) σ2
u is constant

iii) ui’s are independent identically normally distributed.

3.2 Time Series Analysis

A time series is a set of sequential data points, typically measured at successive times.

Let mathematical representation x(t) be the vector t = 0, 1, 2, 3......n represents the

time elapsed. A time series containing records of a single variable is called univari-

ate. However, if the records of multiple variables are considered, they are called

multivariable. In a continuous-time series, observations are measured continuous in

time, whereas a discrete-time series includes observations measured at specific time

points. In the stationary time series, the covariance is independent of t for each h,

γx(Xt, Xt−h) = E[(Xt − µ)(Xt−h − µ)]. (3.2)

The mean is independent of t,

E (Xt) = µ. (3.3)

Stationary time series have the best linear predictor.

Stationary Models are classified as;

1. Auto Regressive (AR)

Xt = φtXt−1 + ...+ φp−1Xt−1 + Zt. (3.4)
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Zt ∼ WN(0, σ2). (3.5)

The equation 3.4 is the white noise.

2. Moving Average (MA)

Moving average model uses past forecast errors in a regression model;

Xt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q. (3.6)

where εt is white noise. MA(q) model is a moving average model of order q.

3. ARMA

Xt is an ARMA(p, q) process if Xt is stationary and if for every t

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q (3.7)

where Zt ∼ WN(0, σ2) and the polynomials (1 − φ1z − ... − φpz
p) and (1 +

φ1z + ...+ φpz
p) have no common factors.

3.2.1 Vector Autoregression Model (VAR)

Vector autoregression (VAR) is a model for two or more time series in which each

variable is modeled as a linear function of the historical values of all variables, and

also includes disturbances with zero means given in all historical values of the ob-

served variables. It is often used to estimate the systems of interrelated time series

and to analyze the dynamic effect of random distortions on the system of variables.

We can write a static, k-dimensional VAR (p) operation as follows:

yt = A1yt−1 + ...+ Apyt−p + Cxt + ut (3.8)

where, yt = (y1t, y2t, ..., yKt)
′ is a k x 1 vector of endogenous variables; xt =

(x1t, x2t, ..., xKt)
′ is a d x 1 vector of exogenous variables. The coefficients,A1, A2, ..., Ap

are a k x k matrices of lag coefficients to be estimated; C denotes exogenous variable
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coefficient and ut = (u1t, u2t, ..., uKt)
′ is a k x 1 white noise innovation process, with

the properties E(ut) = 0, and E(utu
′
s) = 0.

3.2.2 Vector Error Correction Model

A vector error correction (VEC) model is a limited VAR that is modeled to be used

with non-stationary arrays that are known to be cointegrated and have co-integration

constraints in the specification. The VEC specification limits the long-term movement

of endogenous variables in approaching cointegration relationships while allowing a

wide variety of short-term dynamics. The term cointegration is acknowledged as the

error correction term since the deviation from the long-term equilibrium is gradually

adjusted by a series of partial short-term adjustments. For example, assume the two-

variable system with a cointegration equation that does not have a delayed difference

term:

y2,t = βy1,t (3.9)

and the corresponding VEC is

∆y1,t = γ1(y2,t−1 − βy1,t−1) + ε1,t (3.10)

∆y2,t = γ2(y2,t−1 − βy1,t−1) + ε2,t. (3.11)

In this simple model, the only right side variable is the error correction term. In the

long term equilibrium, this term is zero. However, if y1 and y2 deviate from the long

term equilibrium of the previous period, the error correction term is not zero, and

each variable is set to partially restore the equilibrium relationship. The coefficients

γ1 and γ2 measure the speed of adjustment. If the two endogenous variables have no

trend and the cointegrating equations have an intercept, the VEC has the form

∆y1,t = γ1(y2,t−1 − µ− βy1,t−1) + ε1,t (3.12)

∆y2,t = γ2(y2,t−1 − µ− βy1,t−1) + ε2,t. (3.13)

18



Another VEC specification assumes that there are linear trends in the series and a

constant in the cointegrating equations so that it has the form

∆y1,t = δ1 + γ1(y2,t−1 − µ− βy1,t−1) + ε1,t (3.14)

∆y2,t = δ2 + γ2(y2,t−1 − µ− βy1,t−1) + ε2,t (3.15)

Similarly, there may be a trend in the cointegration equation, but there is no separate

trend in the two VEC equations.

3.3 Panel Data Analysis

Panel data analysis is a method of reviewing a subject within multiple dimensions

that is periodically observed over a defined period of time. The panel data includes

two dimensions: cross-sectional and time series, so a regression model for panel

data is different from an OLS regression because it provides information about both

dimensions, i.e. individuals and time. The general model of panel data can be defined

as:

yit = αi +
K∑
k=1

xit ∗ βkit + uit (3.16)

where i = 1, . . . , N , N is the number of cross-sectional dimension (or individuals),

T is the number of time dimensions (or periods), K is the number of independent

variables. There are many types of panel data models but the two most commonly

analyzed models are the fixed effects model and the random effects model.
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3.3.1 Fixed Effects Model (FE)

αi’s are individual intercepts (fixed for given N ). xit is the vector of parameters

[x1it . . . xKit], β is the vector [β1 . . . βK ]. Then,

yit = αi + x′it ∗ β + uit. (3.17)

No overall intercept is (usually) included in the model. Under FE, consistency does

not require that the individual intercepts (whose coefficients are the αi’s) and uit are

uncorrelated. Only E(xituit) = 0 must hold. There are N − 1 additional parameters

for capturing the individual heteroscedasticity. In our model we use, fixed effect in

panel data analysis according to Hausman test result. The effects of timeinvariant

variables with time invariant effects are controlled by fixed effects model.

3.3.2 Random Effect Model (RE)

Here, it is assumed that αi’s are independent and identical with mean zero and vari-

ance, σ2
α .

The model becomes

yit = β0 + x,itβ + αi + uit, uit ∼ iid
(
0, σ2

u

)
(3.18)

where αi ’s are random variables with the same variance. The value of αi is specific

for individual i. The α of the different individuals are independent, the mean is zero,

and the overall mean is captured at β0. αi is homoscedastic and does not change over

time between individuals.
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CHAPTER 4

EMPIRICAL ANALYSIS

To determine the influence of renewable energy incentives on CO2 prices, we con-

sider factors contributing to the price movements. Based on the nature of the research

question raised in this thesis, we employ three methodological approach, mentioned

in Chapter 3, to depict different aspects in the role of renewable energy on CO2 emis-

sion prices in selected states. The variables taken into account with their abbreviations

are: CO2 Price (CO2), CO2 Allowance Quantity (ALQ), Industrial Production (IP),

Crude Oil Price (CROP), Natural Gas Price (NGP), Coal Prices (COP), and Renew-

able Portfolio Standards (RSP).

As the first initiative, we use energy prices like oil prices, natural gas prices and coal

prices as main drivers to observe their impact on the CO2 market. Here, we ignore

electricity prices since natural gas, coal and oil prices are strongly linked to electricity

price resulting in multicollinearity. We expect a negative and significant relationship

between CO2 prices and energy prices. Also, we take CO2 allowance quantity which

means CO2 emission permits us to observe how CO2 supply affects CO2 demand and

consequently CO2 price. We expect a negative and strong relationship between CO2

price and quantity allowances. Additionally, we analyze the relationship between

renewable energy incentives and CO2 prices using Renewable Energy Portfolio Stan-

dards’ targets for RGGI states that is interrelated RE incentives for each state. We

also expect a negative and strong relationship between RE incentives and CO2 prices

since each states’ individual RE targets have a positive influence on energy consump-

tion and their energy consumption planning. We presume a decrease in the demand

for CO2 emitting resources and incline in more renewable energy opportunities and

investments. Finally, we measure the impact of economic activity on CO2 price. We

employ the industrial production index in the US and expect a positive and significant
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effect on CO2 price.

Each of these analyses is performed using appropriate methodology due to the na-

ture of the variables. We employ linear regression to estimate CO2 prices in terms of

its associated variables, VEC to capture the inter-related connection among variables

with respect to time and panel data analysis to depict the influence of Renewable

energy initiatives on the CO2 prices. Each variable contains totally 115 monthly ob-

servations representing the occurrences between January 2009 and July 2018. The

analyses are done using STATA (version 11) software.

4.1 Data

The variables considered in the framework of the analysis are, CO2 price, CO2 al-

lowance, industrial production index, energy prices, renewable portfolio standards.

To fit an appropriate model, it is vital to understand the dynamics of each variable.

For this reason, country and variable specific characteristics are summarized.

i) CO2 Price;

RGGI for each state is recorded by RGGI CO2 allowance monitoring system

(COATS) [5]. The RGGI CO2 Allowance Tracking Program (RGGI COATS)

is a platform on which each state archives and tracks data on the CO2 Budget

Trading Program. It also includes the transfer of CO2 allowances purchased

by winning bidders, which are open for sale by the states and won a quarterly

auction (RGGI, 2019) [5]. The auction for the first allowance was made in

September 2008 and the transactions were irregular since then.

CO2 price changes year by year, having the first auction to be held in 2008

and by mid-2010 RGGI allowances were sold at nearly the price floor, or min-

imum allowable bid and the price have stayed at that level for more than two

years. This is because of a decline in natural gas prices that were starting as

far back as 2007. The decline in the natural gas price led to a decrease in CO2

emissions because natural gas amount changes with coal amount, which was

a generation fuel in the Northeast region. Between 2010 and 2012, some auc-

tion’s allowances were not sold. Although the RGGI reduces its emissions cap,
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actual emissions stay under the cap. This causes an excess of allowances.

.

Figure 4.1: CO2 monthly price in US between 2009 and 2018 in RGGI states [5]

As seen from the Figure 4.1, in January 2013, RGGI stated its goal to reduce its

CO2 emissions limit by 45 percent starting from 2014. Due to the declaration

of the limit cut, CO2 prices rose above the base price, while CO2 prices traded

above $4. In February 2013, the RGGI announced the Cost Environmental

Protection Reserve (CCR). The CCR keeps the number of allowances until the

allowance price reaches a determined level. The CCR trigger price used to be

$4 and it was to increase annually by $2 (up to $10) by 2017, after that it would

increase by 2.5 percent each year. For 2014, a limit of 5 million allowance lim-

its and 10 million withdrawal limits were determined for all subsequent years.

In 2015 August, the Clean Energy Plan was announced. Here, more than three

times the total number of RGGI allowances offered provided. This increased

allowance prices. Since the beginning of 2016, the downward trend in clearing

prices shows a low demand for RGGI allowances.

Recently, for effectively determining the minimum allowance price adjustments,

a reserve price was added to the RGGI program. For the year 2017, this reserve

price was $2.15, which was higher than the $2.10 CO2 price in 2016. In March

2017, more than 14 million grants were sold with a clearing price of $ 3, the

lowest CO2 price for more than three years. The March 2017 auction won

$ 43.1 million and was used for many purposes, including supporting RGGI

states’ energy efficiency, renewable energy, direct energy bill assistance, and

greenhouse gas reduction programs.
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During the year of 2018, we see that CO2 allowance prices look constant ex-

cept toward the middle of the year there exists a small increase in the price.

Here, we use monthly data from January 2009 to July 2018. That equals 115

observations.

ii) CO2 Allowance;

CO2 allocations are provided by each RGGI state in the amount specified in the

respective laws and/or regulations of each state. All CO2 allocations distributed

by all RGGI states constitute the total limit of RGGI (the total cap). Most of the

allowances distributed by an auction can only be retained by a certain amount

in a given account and distributed according to government-specific programs

(RGGI, 2019) [5]. Many of the CO2 allowances provided by each RGGI state

are distributed quarterly through regional CO2 auctions (RGGI, 2019) [5].

.

Figure 4.2: RGGI Allowances Offered, Sold, and Clearing Price between 2008-2018

Figure 4.2 shows the allowance offered and sold quarterly by auction. The left

vertical axis is for allowance units and the right vertical axis shows the market

price of allowances. At the beginning of the RGGI cap and trade program, all

allowances that are offered were sold until the 3rd quarter of 2010. According

to the graph, the market price (clearing price) started to decrease in 2009. In

the third quarter of 2010, the price floor starts, and no allowances are sold at the

floor price, which is less than $ 2. It was the end of the first RGGI program of

2012. Between 2009 and 2012, more than 169 million tons of allowances were

not sold. This amount also equals 26 percent of the total allowance quantity in

that interval.

Some states like Connecticut, Massachusetts, New York, Delaware, Rhode Is-

land, and Vermont said in January 2012 that they will withdraw any allowances
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they could not sell in their auctions instead of keeping those excess allowances

for the next compliance period. After a review of the RGGI program in 2012,

because of the failure of the prior emission cap, 9 RGGI states dropped the

emission cap to 91 million short tons which were a 45 percent decrease. This

amount of decrease in this cap is divided into 2.5 percent decreases each year

between 2015 and 2020. Because of these changes in the emission cap, an al-

lowance shortage occurs; so, all the allowances can be traded in the auction and

CO2 prices increased beyond the floor in 2013. The change in CO2 allowance

quantity can also be seen in Figure 4.3.

.

Figure 4.3: RGGI Allowance Quantity between 2009-2018 [5]

The first allowance auction was held in September 2008.

• 1st period (2009-11), the emission cap was 188 million CO2 tons/year.

• 2nd period (2012-14), the cap of the program is 165 million CO2 ton-

s/year. Because of the ineffectiveness of this prior emission cap in the

RGGI region,

• 3rd period (2015-17), a new cap of 91 million CO2 tons/year is applied

by 2015.

• 4th period (2018-20), 78 million CO2 tons.

iii) Industrial Production Index;

As another indicator that affects the change in CO2 price, we look at the indus-

trial production index in the US. The Industrial Production Index (IND PRO) is
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an economic indicator, which measures the actual output for all facilities in the

USA, including those in manufacturing, mining, and electricity and gas facili-

ties (except those in the US territories) [36]. The index was compiled monthly

to draw attention to short-term changes in industrial production. It measures

the movements in production and emphasizes the structural developments in

the economy. Monthly growth in the production index is an indicator of the

growth in the sector [36].

Since the INDP index does not exist for each state separately, we use the total

industrial production index in the U.S.A. That’s why the Industrial production

index may be expected to be a weak explanatory factor in explaining CO2 prices

in the 9 original RGGI states.

Figure 4.4: Montly industrial Production for years between 2009-2018 [3]

In Figure 4.4, between January 2009 and June 2009, we see a fall in the Indus-

trial production index (87.49) which is the lowest index value of all the years.

This is mainly due to the effect of the economic recession in the country and

the RGGI states after 2008. This situation causes a decreasing in electricity

production. Because decreasing economic activity brings about a fall in energy

usage and this situation causes less consumption of CO2 and fewer emissions

and reducing demand for carbon allowances in the market. After 2009, in-

dustrial production increases steadily until November 2014. After this date, it

decreases significantly. Because of the serious winter weather over a great part
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of the country, manufacturing industrial production falls. After 2015, it begins

to increase again.

iv) Energy Prices;

Here, we use monthly data from January 2009 to July 2018 which yields 115

observations. When we choose the energy prices of the states, we firstly look

at the electricity production by different energy resources highly used and pro-

duced GHG emission in RGGI states. Secondly, when we choose energy prices

of states, we look at the relevant literature.

Figure 4.5: Electricity generation sources by States in 2017 [3]

A seen in the Figure 4.5, the electricity generation by each RGGI state in the

year of 2017 is dominated by the natural gas source within RGGI states. In

order to measure the effect of energy resources in RGGI states on CO2 price,

we use natural gas price in our model.

As seen in Figure 4.6, we can notice that in 2008, it has higher production, but

it has decreased over the years. Even if its share in overall energy production in

2017 is low, Coal production was an important resource in the energy market
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Figure 4.6: Annual Coal Generation in RGGI states [3].

during years, that’s why we also include coal prices to our regression model to

see its impact on CO2 price in the US market over the years.

We consider Natural Gas, Coal and Crude Oil spot prices monthly from Jan-

uary 2009 to July 2018. Mansanet-Bataller et al. (2007) [33] and Alberola et

al. (2008a) [16] is the first to reveal the relationships between the economics

of energy markets and the price of CO2. Based on data of spot and futures

prices, authors determine that carbon prices in the EU ETS are dependent on

the use of fossil fuels (eg. oil, gas, coal). Apart from the EU ETS market, we

can see limited research in the US ETS market. Hammoudeh, Nguyen, and

Sousa (2014) explain the impact of energy prices on CO2 emission allowance

prices with a quantile regression approach in the US. They find a negative rela-

tionship between crude oil prices and CO2 prices, also a negative relationship

between natural gas prices and CO2 prices when CO2 price is low. Finally, a

negative impact of coal prices on carbon prices was found. In summary, since

the increases in the energy prices cause a decrease in energy production and,

consequently decrease in CO2 emission, the demand for allowance and hence

allowance price decrease.

Depending on both the literature and the energy generation by sources by each

RGGI states, we consider coal spot prices, natural gas spot prices and crude oil

spot prices as our explanatory variables.

The relationship between energy prices depicts that crude oil price and the natu-

ral gas price has an inter-commodity spread. When one gets increasingly costly
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(hypothetically, assume oil price) on a historical basis, consumers have another

option of changing, in other words, switching to the other (natural gas here),

especially with regards to warming. It is usually related to the exploration and

production of natural gas and crude oil. The release and capture of natural gas

can happen during oil drilling. Oil, petroleum or hydrocarbon reserves are usu-

ally found in the depths of the earth’s crust. Drilling oil wells usually release

these natural gas reserves (Hecht, 2019) [26]. As relevant energy products, oil

and natural gas prices have a definite historical price relationship. Nevertheless,

this connection has altered in recent years due to the detection of new natural

gas reserves in the United States.

The major natural gas reserves in the Marcellus and Utica regions of the USA

have changed the price relationship between these two energy products. With

the decline in crude oil prices at the end of 2014 and 2015, the price relation-

ship between the two commodities reverted to the more normal historical levels

that have been known in the last twenty-five years. In the figures of 4.7 and 4.8

both fuel energy sources, it is seen that there is mostly a negative relationship

until 2014. While the crude oil price has an increasing trend between 2009 and

2014, natural gas price is decreasing in the beginning but at the beginning of

2010, it starts to increase. Between 2011 and 2012 it is decreasing again. After

2014, the crude oil price are increasing.

Figure 4.7: Crude Oil monthly spot prices between 2009-2018. [9]

29



The natural gas is the lowest fossil fuel that emits greenhouse gases, which ac-

counts for about 47 percent of carbon dioxide per coal (Moomaw et al. 2011)

[34]. In an assessment of the 2008 natural gas reserves in the USA, the Col-

orado Mineral School Potential Gas Committee has recorded a 40 percent in-

crease in existing gas reserves since its previous calculation in 2006. This un-

precedented improvement can be attributed to the detection of shale gas fields

that were previously unreachable. Companies are now developing a method

of hydraulic fracture where pressurized water, sand, and chemical mixtures are

affected by a fracture in rocks and shale rocks releasing gas.

The sudden development of this natural gas supply provided a 46 percent drop

in natural gas prices between 2005 and 2011, while the price of coal has in-

creased. Natural gas has maintained a large supply and this situation together

with the economic recession lowers its price. In 1990, natural gas is 12 percent

of electricity generation in RGGI states. However, the market share rises to

40 percent until 2011. For the moment, the coal market share decreases by 11

percent in 2011, compared to 25 percent of total production in 1990.

Figure 4.8: Natural gas monthly spot prices between 2009-2018 [37]
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As a last fuel variable, we use coal spot prices. From the different parts of

US coal commodity regions which are Central Appalachia (CAP), Northern

Appalachia (NAP) Illinois Basin (ILB), Powder River Basin (PRB), and Uinta

Basin (UIB), we choose Northern Appalachia coal prices. Because this is the

region closest coal-producing region to the 9 RGGI states. Between 2009-

2010, we see a sharp decrease in the coal price in the Appalachian Region.

After that, it starts to increase until September 2011. It has a decreasing trend

during the years between 2012 and 2017. The price of Northern coal increased

by 39 in 2018 due to strong international demand for both metallurgy and steam

coal.

Figure 4.9: Average Monthly Coal Spot Price in Northern Appalachia(NAP) between

2009-2018 [2]
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v) Renewable Portfolio Standard

The renewable portfolio standard (RPS) requires electricity services and other

retail electricity providers to provide a percentage (or absolute quantity) of

minimum customer demand, determined by appropriate renewable electricity

sources. By March 2015, 29 states and Washington, D.C. constituted manda-

tory RPS requirements. The percentage increase of target by each states are

represented in the Figure 4.10. Here, we use the weighted average of RPS tar-

gets of each 9 states. We give weight to the RPS in each state according to the

monthly electricity generation capacity in each province.State RPS’s are the

drivers for renewable energy development in RGGI states (CRS, 2017) [12].

To calculate the weighted average of RPS, we firstly find electricity generation

in 9 states in total electric power industry monthly. After that, we multiply

monthly electricity generation in each state with RPS rate. Later, we sum all 9

states’ weighted values and finally, we divide it by total electricity generation.

Here, we do not add the weather as another variable to our model to prevent

multicollinearity problems with RPS ratios. Because the price effects of ex-

treme weather conditions are indirectly related to the impact of energy de-

mand. It may be related in several ways. For example, cooling and heating

of homes and supply of carbon-free energy (rainfall, hours of sunlight, wind

speed). Using the renewable energy incentives provided to electricity produc-

ers, we achieve the supply/demand effects of the weather variable. Besides,

Alberola et al. 2008a [16] do not include high endogenous variables, such as

electricity prices and/or clean spark or dark sparks, as this could result in biased

estimates of price variables in our model. In the study of Fezii and Bunn (2009)

[22], carbon costs are often transferred to electricity prices in many countries,

and vice versa.
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Figure 4.10: Renewable Portfolio Standards of 9 states monthly between 2009-

2018 [1]

In our initial analyses, we employ OLS (ordinary least square) to estimate the

relation between carbon prices and our explanatory variables (coal price, nat-

ural gas price, coal price, the number of allowances, industrial production, re-

newable energy incentives using multivariate regression model.

4.2 Descriptive Statistics

The descriptive statistics of the variables used in this study over the years are summa-

rized in Table 4.1.

The the quantity of allowances (ALQ), crude oil price (CROP), natural gas price

(NGP), coal price (COP), Industrial production index (IP), Weighted average of RPS

of 9 RGGI states (WA) are yield the coefficients of variations are less than one.

Although CO2 price, allowance quantity, natural gas price, and weighted average

price have positive skewness value. None of them except COP is close to zero. On

the other hand, coal prices, crude oil prices, and industrial production have negative

skewness.
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Table 4.1: Descriptive Statistics of the Variables

Variable Mean Std. Dev. Min Max Skewness Kurtosis JB

CO2 3.52 1.42 1.88 8.22 0.69 2.92 0.00

ALQ 27.20 11.84 13.55 45.60 0.12 1.26 0.00

IP 100.15 5.23 87.07 107.79 -0.87 2.82 0.00

CROP 73.31 22.31 30.32 109.53 -0.12 1.63 0.00

NGP 3.45 0.87 1.73 6.00 0.44 3.00 0.13

COP 58.87 10.82 41.45 78.10 -0.04 1.76 0.00

WA 0.11 0.04 0.06 0.19 0.29 2.11 0.00

Table 4.2: Dependence Between Variables

Variable CO2 ALQ IP CROP NGP COP

CO2 1

ALQ -0.8072 1

IP 0.524 -0.6097 1

CROP -0.629 0.6618 -0.0922 1

NGP -0.4221 0.443 -0.3851 0.4661 1

COP -0.536 0.7451 -0.1694 0.7889 0.5147 1

WA 0.5818 -0.8026 0.8397 -0.45 -0.5049 -0.5795

From Table 4.2, we observe a negative and strong relationship between price and

allowance quantity (-0.81). There is a strong negative relationship between crude

oil price and CO2 price (- 0.62). The weighted average of RPS has a positive and

strong correlation with the CO2 price (0.58). Both the coal price and the natural gas

price have a negative correlation with CO2 price (-0.54) and (-0.42) respectively. The

industrial production index has a positive correlation with the CO2 price (0.52). As

the correlation coefficients are all greater than 0.50, we conclude that explanatory

variables have a strong relationship with CO2 price. Contrary to all other variables,

the weighted average of RPS and CO2 prices are shown in an unexpected association

direction.
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In our analysis, we derive out the size and importance of renewable energy subsidies

on carbon prices. Therefore, we use 3 different methodologies to measure this effect.

The first one is the linear regression model, we estimate at which the CO2 allowance

price as a function of the allowance amount, energy prices, economic variable, and

weighted average renewable energy targets. In our second model, we look at the time

series model and finally, in the panel data model, we look at the magnitude and the

significance of the effect of different renewable energy targets on CO2 price.

4.3 Linear Regression

In our first model, we test all the variables that may play a role in determining the ex-

plained variable. Our aim is to capture the information between price and other vari-

ables and obtain a prediction for CO2 Prices in terms of allowance quantity (ALQ),

industrial production (IP), oil price (CROP), coal price [COP] and WA denoting RPS

requirements expressed as a weighted average.

CO2t = β0+β1∗ALQt+β2∗IPt+β3∗CROPt+β4∗NGPt+β5∗COPt+β6∗WAt+ut

(4.1)

In the Table 4.3, natural gas prices and coal prices are insignificant in our model. That

is why we exclude those variables from the model and check at the normality of the

residuals resulting from the new regression model.

The Skewness/Kurtosis tests for Normality, show that residuals of the regression are

non-normal as illustrated in Table 4.4.
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Table 4.3: Linear Regression Results.

Variables Coef. Std. Err. t P > t

CO2_full

ALP -0.0919 0.0137757 6.67 0

IP 0.1673997 0.039696 4.22 0

CROP -0.0281162 0.0053376 5.27 0

NGP -0.0876129 0.1012992 0.86 0.389

COP 0.0128669 0.0154512 0.83 0.407

WA -27.69067 5.7612 4.81 0

_cons -6.056427 3.105596 1.95 0.054

Number of obs 115

Prob>F 0

R-squared 0.77

Adj R-squared 0.75

Table 4.4: Skewness/Kurtosis tests for Normality of Residuals

Data Obs. Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

Original 115 0.0197 0.0006 14.04 0.0009

Table 4.5: Skewness/Kurtosis tests for Normality of Residuals

Data Obs. Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

Log-transformed 115 0.8748 0.5594 0.37 0.83149

In the Table 4.5, the log- transformed variables are fit into the regression model whose

residuals with new transformed variables are normally distributed. Therefore, CO2

prices can be estimated with respect to the parameter estimates given in Table 4.6.

*: significant at 5 percent

The estimation results show us that there is a negative and statistically significant
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Table 4.6: Linear Regression Results.

Variables Coef. Std. Err. t P > t

ln_CO2_full

ln_ALP -0.72993 0.086404 -8.45 0*

ln_IP 5.458575 0.953595 5.72 0*

ln_CROP -0.40707 0.09046 -4.5 0*

ln_WA -0.99197 0.173966 -5.7 0*

_cons -22.12987 4.543216 -4.87 0*

Number of obs 115

Prob>F 0.7862

Adj R-squared 0.7785

(p<0.05) relationship between CO2 price and allowance quantity in the US. This is

consistent with the cap and trade system in the research of Trick and Benz in 2010

[16]. The CO2 price in the cap and trade system is mainly affected by the supply

of RGGI allowances. In our system, all the CO2 allowances issued by all the RGGI

states compose the RGGI cap. If RGGI states decrease the total cap in the system

or as a result of renewable energy incentives of the government in those states, a re-

duction in CO2 emission occurs, electricity producers or permit buyers try to sell the

extra permits in the market. Because of this, the CO2 price decreases when allowance

quantity increases. We can see from Table 4.6 that one short ton percent increase in

ALQ leads to 0.7 percent dollars decrease in CO2 price.

When looking at the relationship between CO2 price and economic activity by using

the industrial production index, it can be seen that it is significant and positively re-

lated to CO2 price. That is consistent with macroeconomic theory. When industrial

production increases, related CO2 emissions rise, and therefore electricity producers

in RGGI states need more CO2 allowances to cover their emissions. This economic

logic brings about carbon price increases ceteris paribus (Chevallier, 2011) [19]. We

can see from the table that a one percent increase in the IP will result in 5.4 percent

dollars increase in the CO2 price. Also, we can see that this relationship is the most
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important influence in magnitude. IP will result in 5.4 percent dollars increase in the

CO2 price. Also, we can see that this relationship is the most important influence in

magnitude.

The energy prices depict a negative and significant relationship between crude oil

prices and CO2 prices in our linear regression model. This is appropriate with the

theory (Hammoudeh, 2014) [24]. If there is a 1 percent increase in the crude oil

price, this causes an important drop in the CO2 price. We know that crude oil is the

second biggest source of greenhouse gas emissions after coal. Especially, we notice

that, when the latter is huge, a considerable drop of CO2 prices are brought about

rises in crude oil prices. This may be due to the strong effects of high oil prices at

the higher end of the carbon spectrum, but not substituting coal for oil (Hammoudeh,

2014) [25]. The reason behind the negative relationship between crude oil prices

and CO2 prices may be the strong positive correlation between oil prices and natu-

ral gas prices. In other words, the oil price coefficient in the above equation may be

measuring the impact of natural gas price on CO2 prices. One percent dollar per Btu

increase in the crude oil price will cause a 0.40 percent dollar decrease in the CO2

price. Finally, there exists a significant and negative relationship between CO2 price

and weighted average of RPS of 7 RGGI states. An increasing share in the renewable

energy incentives in these 7 RGGI states appears to be related to decreasing CO2

allowance prices. With the increasing renewable incentives, some portion of state

power will come from renewable energy resources like wind, solar, etc. This situa-

tion will cause a decrease in CO2 emission and energy companies will need fewer

permits to produce electricity. In that way, the demand for CO2 permits will decrease

and the CO2 price will fall.

We can see also from Table 4.6 that one-megawatt hours percent share increase in

WA (weighted average of RPS) will result in 0.99 percent dollars decrease in the

CO2 price.

In sum, firstly, we construct a linear regression model with the linear forms of the

variables. Because of the non-normality of the variables, we transformed the variables

by taking the logarithms. We find significant coefficients at 5 percent significance

level.
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To check the statistical availability of this model, we need to test the coefficients

jointly and individually. Explanatory variables which are allowance quantity, indus-

trial production, crude oil price, and weighted average are statistically significant at

0.05 level of significance. If we look at the collective significance of parameters, we

can see that F statistics are lower than 0.05 that is the equation is jointly significant at

a 5 percent level of significance. As a result, the regression has consistently estimated

parameters.

Approximately 78 percent of the variations in CO2 prices are explained by allowance

quantity, industrial production, crude oil price and weighted average of RPS rates of

states (R2 = 0.78). After theoretical reasoning and statistical significance tests, we can

conclude that the linear model is a valid model. However, estimated parameters by

using ordinary least squares may lead to inefficiency, biasedness, and inconsistency

problems if Gauss Markov assumptions are violated. Also tests have the assumption

of being identically and independent distributed. That means, if there is heteroscedas-

ticity or autocorrelation in the model, parameters are not the best linear predictors.

That’s why firstly we need to check if there is a heteroscedasticity problem or not.

After that, we will control whether there is an autocorrelation problem in our model.

Table 4.7: White’s Heteroscedasticity test results

Source chi2 p-value

Heteroskedasticity 38.45 0.0004

Skewness 11.07 0.2057

Kurtosis 0.12 0.7315

Total 49.65 0.0001

Chi2(1) 0.1

Prob>chi2 0.7513
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The Table 4.7 indicate that there is heteroscedasticity in the residuals(p<0.001). Be-

cause there is heteroscedasticity OLS will cause inefficient estimators. Furthermore,

we use the Breusch-Godfrey Serial Correlation LM Test for autocorrelation which

results in rejecting the null hypothesis on “no serial correlation” in the residuals as

can be seen from Table 4.8.

Table 4.8: Breusch-Godfrey Serial Correlation LM Test.

lags(p) chi2 df Prob > chi2

1 58.191 1 0

To handle the autocorrelation problem, we use Newey-West standard errors regres-

sion in the scope of time series analysis.

Table 4.9: Newey-West Standard Errors

Variables Coef. Std. Err. P > t

ln_CO2

ln_ALQ -0.7299 0.1371 0*

ln_IP 5.4585 1.2361 0*

ln_CROP -0.4070 0.1247 0*

ln_WA -0.9919 0.1908 0*

_cons -22.1298 5.9156 0*

Number of Obs. 115

f(4,110) 67.54

Prob>F 0
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The Newey-West standard errors in the context of a time series are resistant to random

autocorrelation (up to order of the chosen lag) and arbitrary heteroscedasticity. Stan-

dard errors that occur are called Heteroscedasticity and Autocorrelation Corrected

(HAC) standard errors. We test our explanatory variables with Newey-West standard

errors and find that all explanatory variables are significant at 5 percent level of signif-

icance.Also, when we look at the Skewness/Kurtosis test for Normality, the residuals

of the regression are normally distributed, Prob> chi2 is 0.83 which is higher than the

5 percent significance level.

4.3.1 Stationarity Checks

The last sufficient condition for obtaining BLUE estimators is the stationarity of vari-

ables. We use the Augmented Dickey-Fuller Test to determine the integration order

of variables

Table 4.10: Augmented DF Test for the Variables

Variables Level Suppress Constant First Difference

CO2 0.3435 insignificant 0*

ALQ 0.8175 insignificant 0*

IP 0.8175 significant 0*

CROP 0.4455 insignificant 0*

WA 0.9629 significant 0*

*: significant at p<0.001

As seen from the Table 4.10, all variables of the regression except the industrial pro-

duction index and the weighted average of RPS are found to have integration of order

1. Because of the nonstationary of variables, this model will not give BLUE esti-

mators even if there is no heteroscedasticity or autocorrelation. The non-stationary

variables may have a long term or short-term relationship. Therefore, these variables

may be cointegrated. As a result, it can cause the estimation of the stationary rela-
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tionship, we will look at the statistics results of the Johansen cointegration test with

all variables in Vector Auto Regression (VAR). As a first step, we will look at the lag-

order selection criteria.

As seen in Table 4.11, according to the number of lags we have different selection cri-

teria like Final Prediction Error (FPE), Akaike Information Criterion (AIC), Hannan

Quinn Information Parameters (HQIC) and Schwartz Information Parameters (HQIC)

and Schwartz Information Parameters (SBIC) and Final Prediction Error (FPE).

Table 4.11: Lag- order selection statistics.

lag LL LR df p FPE AIC HQIC SBIC

0 -973.774 36.8372 17.7959 17.8457 17.9186

1 -260.009 1427.5 25 0 .000134* 5.27289* 5.57161* 6.00938*

2 -238.153 43.712* 25 0.012 0.000143 5.33005 5.87771 6.68029

3 -226.617 23.072 25 0.573 0.000183 5.57485 6.37146 7.53884

4 -214.54 24.154 25 0.511 0.000235 5.80982 6.85536 8.38755

5 -203.169 22.742 25 0.593 0.000308 6.05762 7.3521 9.2491

To select parameters with optimal lags for VAR, we follow the “majority rule” among

the criteria. That means according to AIC, FPE, HQIC and SBIC test statistics, we

find the optimum lag as 1 as seen from the Table 4.11. As next step, we perform the

Johansen cointegration test.

Here we apply Johansen cointegration with the maximum eigenvalue and the trace

test. There are at least r cointegrating relationships and the maximum eigenvalue test

telling us there are at most r cointegrating relationships.

As Table 4.12 above shows, at a maximum rank of zero, the trace statistic (86.91)

is higher than the critical values (68.52). Therefore; the null hypothesis is rejected.

We can say that there is cointegration between variables. Also, when we look at max

statistics, the value 39.16 exceeds the critical value of 33.46 thus null hypothesis can

be rejected. Thus, as per maximum rank 0, our variables are cointegrated. For maxi-

mum rank two, we see that the trace statistic (22.51) is not more than the critical value
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Table 4.12: Johansen cointegration test results

maximum rank parm LL eigenvalue trace statistic 5% critical value

0 5 -314.6575 86.9145 68.52

1 14 -295.0768 0.29073 47.7531 47.21

2 21 -282.4568 0.19861 22.5131* 29.68

3 26 -274.0169 0.13763 5.6333 15.41

4 29 -271.2047 0.04814 0.0089 3.76

5 30 -271.2003 0.00008

maximum rank parm LL eigenvalue max statistics 5% critical value

0 5 -314.6575 39.1614 33.46

1 14 -295.0768 0.29073 25.24 27.07

2 21 -282.4568 0.19861 16.8798 20.97

3 26 -274.0169 0.13763 5.6244 14.07

4 29 -271.2047 0.04814 0.0089 3.76

5 30 -271.2003 0.00008

(29.68). Therefore, we cannot reject the null hypothesis. This proposes that there is

one cointegration relationship among the variables in the regression equation. Also,

for max statistics, the value 16.87 does not exceed the critical value of 20.97, thus

null hypothesis cannot be rejected. Thus, as per maximum rank two, all variables are

cointegrated into two-equation. When we look at from cointegration of equation 0

to cointegration of 4, vector error correction model (VECM) will be the appropriate

model to apply because there exists cointegration of variables. If there is cointegra-

tion, the AR representation of the initial differences is no longer valid. However,

the Engel-Granger representation theorem ensures that there is VECM representation

The VECM model considers the dynamics of long-term and short-term causality.

4.4 Vector Error Correction Model Results

In the model of VECM, we take the first difference of the variables of CO2, ALQ,

CROP, NGP, COP, IP, and WA. We use all the energy prices with linear forms con-

trary to linear regression model. Our aim is to capture time impact of the all variables
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with each other.

In the regression equations, we take D_CO2 as both dependent and lagged and the

rest as independent variables.

"ce1" and "ce2" show two cointegration equations. To understand the long-term rela-

tionship between the CO2 price and other variables, "ce1", "ce2", "ce4", "ce4", "ce5"

and "ce6" should show a negative coefficient and a significant p-value.

As Table A.1 indicates(see Appendix A), only the ce1 equation has a negative coeffi-

cient and has a significant p-value of 0.031 at the 5 percent level of significance. The

ce3 coefficient is positive and nearly significant at the 5 percent level. Moreover, ce4

is negative and very nearly significant at the 10 percent level. Thus, VECM does not

show a long-term causality between CO2 price and the other six variables.

Also, to analyze the short-term causality between variables, we look at individual lag

coefficients and p-values for each independent variable. Therefore, this describes the

lagged values of the explanatory variables for the CO2 price. the only second lag of

coal price (p< 0.005) is significant at 1 percent and the weighted average of RPS (p<

0.032) is significant at a 5 percent level of significance level. That means the only

second lag of coal price and weighted average of RPS have a short-term relationship

with CO2 price at the 5 percent level of significance.

When looking the relationship of the dependent variable related with supply of al-

lowances which is the allowance quantity and rest of the variables as our explanatory

variables, we see from Table A.1 (see Appendix A) that the only equation of ce2 has

a negative coefficient and a significant p-value of 0.012. This VECM does not show

long-term causality between allowance quantity and the other six variables. There is

no short-term relation between allowance quantity and any of the other variables at

the 5 percent level.

When we look at the other economic indices which is industrial production as de-

pendent variable and the rest of the variables as our explanatory variables, we see

from the Table A.2 (see Appendix A) that equations of ce3 and ce6 have a negative

coefficient and have a significant p-value as 0 and 0.041 respectively. Since only

two equations out of six satisfy the condition, this VECM does not show long-term

causality between industrial production and the other six variables at the 5 percent
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level. Also, while only the 1st lag of industrial production (p-value of 0.034), and the

weighted average of RPS (0.021) are significant at 5 percent, 1st lag of crude oil price

(p-value of 0.002) is significant at 1 percent significance level. That means the only

1st lag of industrial production, crude oil price and weighted average of RPS have a

short-term causality with industrial production at the 5 percent level.

In the results of first energy price which is crude oil price as the dependent variable

and the rest of the variables as our explanatory variables, we see from the Table A.2

(see Appendix A) that none of them has a negative coefficient and has a significant

p-value. That’s why, VECM does not show long-term causality between crude oil

prices and the other six variables. Also, 1st lag of allowance quantity (p-value of

0.000), is significant at 1 percent. That means the only 1st lag of allowance quantity

has a short-term causality with the crude oil price at the 5 percent level.

In the results of the second energy price which is natural gas price as dependent

variable and the rest of the variables as our explanatory variables, we see from the

Table A.3 (see Appendix A) that the only equation of ce6 has a negative coefficient

and has a significant p-value (0.010). That’s why, VECM does not show a long-term

causality between natural gas prices and the other six variables at the 5 percent level.

Also, 1st lag of allowance quantity (p-value of 0.003), is significant at a 1 percent

significance level. That means the only 1st lag of allowance quantity has a short-term

causality with natural gas price at the 5 percent level.

In the results of the last energy price variable which is coal price as dependent variable

and the rest of the variables as our explanatory variables, we see from the Table A.3

(see Apeendix A) that the only equation of ce6 has a negative coefficient and has a

significant p-value (0.000). That’s why, VECM does not show long-term causality

between natural gas prices and the other six variables at the 5 percent level. Also,

2nd lag of industrial production (p-value of 0.014), and 3rd lag of natural gas price

(p-value 0.048) are significant at a 5 percent significance level. That means the only

2nd lag of industrial production and 3rd lag of natural gas price have a short-term

causality with coal price at the 5 percent level.

When we look at the renewable energy incentives which is the weighted average as

dependent variable of RPS and the rest of the variables as our explanatory variables,
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we see from the Table A.4 (see Appendix A) that the only equation of ce4 has a neg-

ative coefficient and has a significant p-value (0.036). That’s why, VECM does not

show a long-term causality between natural gas prices and the other six variables at

the 5 percent level. Also, 1st lag of industrial production (p-value of 0.003), 1st lag

of natural gas price (p-value 0.007) and 3rd lag of weighted average of RPS (p-value

0.039) are significant at 5 percent significance level. That means the only 1st lag of

industrial production and natural gas price and 3rd lag of weighted average of RPS

have a short-term causality with a weighted average of RPS at the 5 percent level.

Also, when we look at the Skewness/Kurtosis test for Normality, the residuals of the

model are normally distributed, Prob> chi2 is 0.11 which is higher than the 5 percent

significance level.

4.4.1 Granger Causality Test Result

Granger causality is a method to investigate causality between two variables in a time

series. If X is affected by the delayed values of both X and Y, Y Granger causes X.

Likewise, if the change in Y is affected by the delayed values of X, X Granger causes

Y. When Y Granger causes X and X Granger causes Y, this bidirectional Granger is

known as causality. If only one Granger causes another, it is called one-way causality

(or one-way causality in the sense of Granger). If none of the variable Granger causes

another, there is no causality.

The most important point here is the one-way relationship between the CO2 price

and the weighted average of the RPS targets. In Table 4.13, there are seven sections

separated by horizontal lines. Each section is identified by a different equation named

under the first column. The first section (corresponding to the “CO2” equation) shows

that the lagged values of the WA cause CO2 at a 5 percent significance level because

the p-value of the WA is equal to 0.001, which is less than 0.05. In contrast, the last

section (corresponding to the “WA” equation) shows that the lagged values of CO2

do not cause weight loss at a 5 percent significance level because the CO2 p-value is

0.614 > 0.05. Therefore, at the 5 percent significance level, the causality direction is

from WA to CO2. Causality is unidirectional because there is no grace in the opposite
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direction (from CO2 to WA) at a 5 percent significance level.

According to the Granger Causality test; CO2 price is affected from IP and WA while

IP is effected from CROP, COP and WA . CROP and NGP are both significantly

related with ALQ. COP is impacted by ALQ and itself. Finally, WA is effected from

IP and CROP.
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Table 4.13: Granger causality Wald tests

Equation Excluded chi2 df Prob > chi2

CO2 ALQ 6.4071 2 0.041

CO2 IP 15.812 2 0

CO2 CROP 2.988 2 0.224

CO2 NGP 0.83839 2 0.658

CO2 COP 2.8325 2 0.235

CO2 WA 14.467 2 0.001

CO2 ALL 34.264 12 0.001

ALQ CO2 2.4052 2 0.3

ALQ IP 2.478 2 0.29

ALQ CROP 2.3574 2 0.308

ALQ NGP 1.5163 2 0.469

ALQ COP 4.3426 2 0.114

ALQ WA 0.03946 2 0.98

ALQ ALL 18.495 12 0.101

IP CO2 0.13831 2 0.933

IP ALQ 2.0373 2 0.361

IP CROP 23.543 2 0

IP NGP 0.55453 2 0.758

IP COP 6.8478 2 0.033

IP WA 12.935 2 0.002

IP ALL 55.185 12 0

CROP CO2 5.3815 2 0.068

CROP ALQ 8.0894 2 0.018

CROP IP 0.43665 2 0.804

CROP NGP 2.9864 2 0.225

CROP COP 0.84297 2 0.656

CROP WA 0.51008 2 0.775

CROP ALL 28.132 12 0.005

NGP CO2 1.5676 2 0.457

NGP ALQ 11.51 2 0.003

NGP IP 0.02116 2 0.989

NGP CROP 5.0816 2 0.079

NGP COP 4.3007 2 0.116

NGP WA 5.7239 2 0.057

NGP ALL 34.972 12 0

COP CO2 0.34566 2 0.842

COP ALQ 8.2722 2 0.016

COP IP 0.42158 2 0.81

COP CROP 7.9779 2 0.019

COP NGP 3.5023 2 0.174

COP WA 1.5962 2 0.45

COP ALL 34.948 12 0

WA CO2 0.97502 2 0.614

WA ALQ 1.3746 2 0.503

WA IP 9.304 2 0.01

WA CROP 6.7544 2 0.034

WA NGP 5.2722 2 0.072

WA COP 3.4531 2 0.178

WA ALL 24.305 12 0.018
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4.5 Panel Data

We perform Panel data analysis in order to understand the differences observed be-

tween each states. Based on the correlation matrix given in Table 2.1, we see RPS

requirements are strongly correlated across states. Therefore, the RPS requirement

for one state should serve as a pretty good instrument for the RPS requirements for

the rest of the states.

There are two common ways to conduct panel data regression; random-effects model

and fixed-effect model. In any case, having associations with the observed variables

are permitted to the unobserved variables in a fixed-effects model. The effects of time-

invariant variables with time-invariant effects are controlled by fixed-effects models

[42]. We conduct a Hausman test to determine whether a fixed effect model is appro-

priate more than a random-effects model. The null hypothesis is that the fixed effects

model is more appropriate. According to the result of the Hausman test result given

in the Table 4.14, our p-value is 0. That’s why we reject null hypothesis which is

"random effect model appropriate" instead we accept the alternative. That is the fixed

effect model is more appropriate.

Table 4.14: Hausman test results.

Variables FE(b) RE(b) difference(b-B) sqrt(diag(V_b-V_B)) S.E.

ALQ -0.0942292 -0.09613 0.0018969 .

CROP -0.258701 -0.02443 -0.0014365 .

NGP -0.1117885 -0.13919 0.0274063 .

COP 0.0356132 0.05044 0.0148263 0.0013089

IP 0.0765008 0.023073 0.0534283 0.0063023

WA -12.73541 -2.62114 -10.11428 1.269304

Table 4.15 shows panel data estimation results. The variables used include the quan-

tity of allowances (ALQ,) crude oil price (CROP), natural gas price (NGP), coal price

(COP), industrial production (IP) and Renewable Portfolio Standards (WA) across

states. All variables have been considered in linear values. The coefficient signs of

the variable’s quantity allowances, crude oil price, natural gas price, and RPS are, as

expected, negative. Also, the coal price and industrial production index are as ex-

pected positively related to the CO2 price. Also, all the variables are significant at the
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Table 4.15: Panel data analysis with fixed effect and robust standard errors

Variables Coef. P>t

ALQ -0,09 0,00

CROP -0,03 0,00

NGP -0,11 0,00

COP 0,04 0,00

IP 0,08 0,00

WA -12,74 0,00

constant -0,09 0,93

sigma_u 0,48

sigma_e 0,72

rho 0,31

Number of observation 805

Number of groups 7

Time periods 115

R squared 0,6606

F(6,792) 388,53

Prob > F 0

5 percent significance level.

The R square value also indicates the goodness of fit equals 66 percent which is sig-

nificantly large. The rho value is 0.31 which indicates the individual effects of cross-

sections are 0.3 percent. In the fixed effect regression model, Modified Wald test for

group-based heteroscedasticity, chi2 is 0.8873. Since the P values are higher than

the 0.05, we cannot reject the null hypothesis Thus, the above-fixed effects model is

homoscedastic.

When we control autocorrelation with Wooldridge test in panel data, the existence of

the first-order autocorrelation is significant.

To solve the problem of autocorrelation, we use Rogers or clustered standard errors

so that the standard errors in our new model are wholly robust to serial correlation.
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Table 4.16: Panel data analysis with fixed effect and robust standard.

Variables Coef. Robust Std.Err. P>t

ln_CO2P

ln_ALQ -0,71 0,014 0*

ln_CROP -0,36 0,005 0*

ln_COP 0,38 0,026 0*

ln_IP 1,69 0,218 0*

ln_RPS -0,26 0,042 0*

constant -4,98 0,970 0*

sigma_u -0,09

sigma_e 0,19

rho 0,18

Number of observation 805

Number of groups 7

Time periods 115

R squared 0,7560

F(6,792) 3125,19

Prob > F 0

In Table 4.16, we see the coefficients with robust standard errors that means the vari-

ables do not carry autocorrelation problems. We already test heteroscedasticity and

autocorrelation so we can interpret estimation results. In the panel data analysis, we

see ALQ has negative (-0.71) and significant relation with CO2 price, also CROP

is negatively (-0.36) related to CO2 price and significant at 5 percent level of sig-

nificance. However, COP is positively (0.38) and significantly related to CO2. We

expect COP to be negatively related to CO2. Moreover, IP is positively (1.69) and

significantly related to CO2. Lastly, WA is significantly and negatively (-0.26) related

to CO2 price. With panel data analysis, we can analyze the impact of the different

targets of the states on CO2. Also, when we look at the Skewness/Kurtosis test for

Normality, the residuals of the model are normally distributed, Prob> chi2 is 0.11

which is higher than the 5 percent significance level.

51



52



CHAPTER 5

CONCLUSION AND POLICY IMPLICATION

The end of the first decade of the 21st century provides a rare window of time to

determine how different policy, technology, and market issues affect US greenhouse

gas emissions. During this period, strategies at different government levels began to

reduce greenhouse gases directly or indirectly through complementary actions such

as renewable portfolio standards. Furthermore, technological advances in the field of

hydraulic fracture and horizontal drilling cause an increase in new accessible natural

gas reserves, lower prices and long-term use. The transition from high-emission coal

to low-emission gas has reduced the emission intensity of electricity generation.

In this thesis, one of our goals is to understand the effect of the RPS policy on the out-

come of the RGGI policy. We use the CO2 allowance price to measure the outcome

of the RGGI policy. We aim to establish a meaningful and quantitative relationship

between CO2 incentives and increased incentives for renewable energy sources in the

USA. For this reason, the energy prices (coal, crude oil and natural gas) that is used

in the literature, the industrial production index which reflects the economic situation

of the country, and the renewable portfolio standards showing the RGGI renewable

energy source incentive and also allowance quantity that is showing the supply of

permits in the cap and trade system are used as explanatory variables. In that sense,

we constructed, 3 different regression models. The first one, the linear regression

model captures the information between price and other variables. While we observe

a positive and significant relationship between CO2 price and industrial production

index, we find a negative and significant relationship between the price of CO2 and

crude oil price. We observe a negative and significant relationship with renewable en-

ergy targets. As a result, we explain 77 percent in CO2 price variation with industrial

production, several allowances, crude oil prices, and the weighted average of RPS.
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The second model is the vector error correction model to capture time effect. Results

from this model are that the CO2 price has not long-term causality with other inde-

pendent variables. Also, the CO2 price has short term causality with the lag of coal

price and the weighted average of RPS. This is consistent with the linear regression

model results.

We know that coal price has a higher magnitude in electricity production in produc-

ing electricity, that’s why we can expect a significant impact in explaining CO2 price.

Moreover, when we look at the weighted average of RPS, we see that it has not a

long-term relationship with other independent variables, also RPS targets have short

term relationships with a lag of industrial production and natural gas price and with it-

self. Although RPS programs help reduce carbon emission, the increase in renewable

energy displaces mostly natural gas which is less polluting than coal. While the price

of electricity and the renewable credits are expected to increase under an RPS, the

generation from both coal and natural gas sources should decrease. In general, RPS

programs are superior to alternative policies. In the case of industrial production, we

expect a positive interaction between RPS targets. When the economic activity in-

creases monthly or yearly within states, we expect to increase in renewable energy

production and/or Renewable Portfolio Standards targets.

And finally, panel data analysis results support our linear regression results in the

sense that they both show the same energy price signs. However, contrary to the the-

ory and literature, the sign of the coal price is positive. When we consider all these

three models, we can see that the rising incentives to renewable energy sources (wind,

solar, hydropower, etc.), which are the complementary policy RPS’s, actually have a

significant effect on CO2 prices. One of the reasons for the low CO2 price in the

US is that, due to the increased incentives, the CO2 price has fallen due to the com-

plementary policy. This study shows that renewable energy investments in countries

have a significant effect that reduces the amount of carbon market in the USA. Com-

plementary environmental policies should continue to be used as an auxiliary factor

in reducing carbon emissions in countries.

As seen in previous years, the price of carbon has remained low for many years due

to total allowances being determined as ineffective. However, there has been a signif-

icant increase in CO2 prices after the cut in the total cap. One reason for the decline

in the sales of allowance quantity is the improvements in the natural gas reserves.
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Thanks to the development of the hydraulic fracturing process natural gas reserves

increased. In this case, the natural gas price decreases and coal consumption to natu-

ral gas consumption has been in transition.This also causes a reduction in the amount

of CO2 emissions, which led to companies demanding less allowance. Perhaps the

strongest result of this study is that there is both a need and a potential for future

research on the questions that this thesis has addressed. This thesis also suggests a

possible direction for research to progress in the future.

Regrettably, this study has some limitations. Due to the limited and irregular financial

data generated by RGGI and the energy markets, a strong impulse analysis is diffi-

cult. Since RGGI is a new and young market, this is considered a problem that is

why should not be avoided in interpreting the results. Further research is needed to

determine the actual allowance price drivers and to understand how greenhouse gas

emissions change with the prices of natural resources and incentives for renewable

energy production.
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APPENDIX A

In this part, we present the detailed outputs of vector error correction models for each

variable. The interpretations of each case are presented in the related section.
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Table A.1: Vector Error Correction Model Results for CO2 price and ALQ

Variable Coef. Std.Err. z P>z

D_CO2

_ce1 L1. -0.2777 0.128959 -2.15 0.031

_ce2 L1. -0.00733 0.24374 -0.3 0.764

_ce3 L1. 0.131572 0.068834 1.91 0.056

_ce4 L1. -0.01865 0.011488 -1.62 0.104

_ce5 L1. 0.33635 0.233365 1.44 0.149

_ce6 L1. 0.005692 0.024171 0.24 0.814

CO2

LD. 0.043271 0.162215 0.27 0.79

L2D. -0.21792 0.152989 -1.42 0.154

L3D. 0.054976 0.142468 0.39 0.07

L4D. -0.03748 0.136409 -0.27 0.784

L5D. -0.14062 0.144512 -0.97 0.331

L6D. -0.0702 0.133746 -0.52 0.6

L7D. 0.010781 0.12099 0.09 0.929

ALQ

LD. 0.032447 0.027885 1.16 0.245

L2D. -0.02962 0.029856 -0.99 0.321

L3D. 0.034561 0.028566 1.21 0.226

L4D. -0.00624 0.028988 -0.22 0.83

L5D. -0.03394 0.030458 -1.11 0.265

L6D. 0.028773 0.028336 1.02 0.31

L7D. 0.008024 0.029003 0.28 0.782

IP

LD. -0.31621 0.147072 -2.15 0.032

L2D. -0.1022 0.153768 -0.66 0.506

L3D. -0.05045 -0.152549 -0.33 0.741

L4D. 0.071864 0.157633 0.46 0.648

L5D. -0.06775 0.151149 0.45 0.654

L6D. -0.004795 0.139913 -0.34 0.732

L7D. 0.079687 0.142794 0.56 0.577

CROP

LD. 0.005331 0.015779 0.34 0.735

L2D. 0.024273 0.014494 1.67 0.094

L3D. 0.010442 0.014702 0.71 0.48

L4D. 0.017365 0.014105 1.23 0.218

L5D. -0.00134 0.014199 -0.09 0.925

L6D. -0.00992 0.014045 -0.71 0.48

L7D. 0.023146 0.014236 1.63 0.104

NGP

LD. -0.37625 0.23109 -1.63 0.103

L2D. 0.036356 0.198846 0.18 0.855

L3D. -0.13787 0.183823 -0.75 0.453

L4D. 0.008366 0.192659 0.04 0.965

L5D. -0.007103 0.181696 -0.39 0.696

L6D. 0.154128 0.172905 0.89 0.373

L7D. 0.030131 0.158252 0.19 0.849

COP

LD. 0.066385 0.041826 1.59 0.112

L2D. -0.11898 0.042572 -2.79 0.005

L3D. -0.00021 0.041414 -0.001 0.996

L4D. -0.01667 0.0042557 -0.39 0.695

L5D. -0.05619 0.034287 -1.64 0.101

L6D. -0.01828 0.035975 -0.51 0.611

L7D. -0.05017 0.035099 -1.43 0.153

. WA

LD. 41.02013 17.11927 2.4 0.017

L2D. -38.0755 17.72382 -2.15 0.032

L3D. 34.22028 18.3731 1.86 0.063

L4D. 1.444153 18.58057 0.08 0.938

L5D. -16.7701 17.65457 -0.95 0.342

L6D. 7.488168 16.67151 0.45 0.653

L7D. -12.7922 17.03162 -0.75 0.453

_cons 8.99e-06 0.138798 0 1

Variable Coef. Std.Err. z P>z

D_ALQ

_ce1 L1. -1,004299 0,7250377 -1,39 0,166

_ce2 L1. -0,3435709 0,1370355 -2,51 0,012

_ce3 L1. -0,3670438 0,3869992 -0,95 0,343

_ce4 L1. 0,0184082 0,0645866 0,29 0,776

_ce5 L1. -2,03551 1,31203 -1,55 0,121

_ce6 L1. 0,0957072 0,1358925 0,7 0,481

CO2

LD. 0,951312 0,9120087 1,04 0,297

LD2. 0,7720238 0,8601385 0,9 0,369

LD3. 1,007318 0,80099 1,26 0,209

LD4. 1,264375 0,7669234 1,65 0,099

LD5. 1,616386 0,8124816 1,99 0,047

LD6. 0,8482 0,7519509 1,13 0,259

LD7. 0,5981749 0,6802349 0,88 0,379

ALQ

LD. 0,1612518 0,156778 1,03 0,304

LD2. -0,0612854 0,1678562 -0,37 0,715

LD3. 0,0506652 0,1606037 0,32 0,752

LD4. 0,1476786 0,1629755 0,91 0,365

LD5. 0,0702317 0,1712427 0,41 0,682

LD6. 0,1582616 0,1593094 0,99 0,321

LD7. 0,0918875 0,1630596 0,56 0,573

IP

LD. -0,6522963 0,8268713 -0,79 0,43

LD2. -0,249179 0,8645177 -0,29 0,773

LD3. -0,2781711 0,8576631 -0,32 0,746

LD4. 0,8783312 0,8862508 0,99 0,322

LD5. -0,1500452 0,849796 -0,18 0,86

LD6. 1,226325 0,7866212 1,56 0,119

LD7. -0,1819173 0,8028184 -0,23 0,821

CROP

LD. -0,076332 0,0887109 -0,86 0,39

LD2. -0,0193512 0,0814888 -0,24 0,812

LD3. 0,0245808 0,082655 0,3 0,766

LD4. 0,0281106 0,079303 0,35 0,723

LD5. 0,1138865 0,0798298 1,43 0,154

LD6. -0,09205 0,0789632 -1,17 0,244

LD7. 0,0058542 0,0800354 0,07 0,942

NGP

LD. 0,6973881 1,299243 0,54 0,591

LD2. 0,9965764 1,117959 0,89 0,373

LD3. 1,171109 1,033497 1,13 0,257

LD4. 1,58571 1,083175 1,46 0,143

LD5. 1,250711 1,021535 1,22 0,221

LD6. 1,015392 0,9721125 1,04 0,296

LD7. 0,687122 0,8897273 0,77 0,44

COP

LD. 0,3883546 0,2351566 1,65 0,099

LD2. 0,0838958 0,2393484 0,35 0,726

LD3. -0,0552702 0,2328402 -0,24 0,812

LD4. 0,0332115 0,2392647 0,14 0,89

LD5. -0,2184197 0,1927673 -1,13 0,257

LD6. 0,317732 0,2022598 1,57 0,116

LD7. 0,0380245 0,1973358 0,19 0,847

WA

LD. 11,48613 96,24851 0,12 0,905

LD2. -55,73055 99,64741 -0,56 0,576

LD3. -42,51368 103,2978 -0,41 0,681

LD4. 42,51858 104,4642 0,41 0,684

LD5. -39,70093 99,25808 -0,4 0,689

LD6. 72,52546 93,73105 0,77 0,439

LD7. 65,69958 95,75569 0,69 0,493

_cons -2,48E-06 0,7803517 0 162



Table A.2: Vector Error Correction Model Results for IP and CROP

Variable Coef. Std.Err. z P>z

D_IP

_ce1 L1. 0,003133 0,111857 0,03 0,978

_ce2 L1. 0,0090929 0,0211415 0,43 0,667

_ce3 L1. -0,2344123 0,0597053 -3,93 0

_ce4 L1. 0,0348127 0,0099643 3,49 0

_ce5 L1. 0,4878356 0,2024167 2,41 0,016

_ce6 L1. -0,0428057 0,0209652 -2,04 0,041

CO2

LD. -0,0864022 0,1407024 -0,61 0,539

L2D. -0,0152393 0,1327 -0,11 0,909

L3D. -0,0016659 0,1235747 -0,01 0,989

L4D. 0,2276638 0,118319 1,92 0,054

L5D. 0,0314336 0,1253476 0,25 0,802

L6D. 0,1318036 0,1160091 1,14 0,256

L7D. -0,1008755 0,1049449 -0,96 0,336

ALQ

LD. -0,0266146 0,0241873 -1,1 0,271

L2D. -0,0036175 0,0258964 -0,14 0,889

L3D. -0,009263 0,0247775 -0,37 0,709

L4D. 0,0282345 0,0251434 1,12 0,261

L5D. -0,0107514 0,0264189 -0,41 0,684

L6D. -0,0018814 0,0245779 -0,08 0,939

L7D. 0,0233342 0,0251564 0,93 0,354

IP

LD. -0,2700245 0,1275676 -2,12 0,034

L2D. -0,3364768 0,1333756 -2,52 0,012

L3D. -0,1472228 0,1323181 -1,11 0,266

L4D. -0,1976087 0,1367285 -1,45 0,148

L5D. -0,0738066 0,1311044 -0,56 0,573

L6D. ,0397781 0,1213579 0,33 0,743

L7D. 0,0607547 0,1238568 0,49 0,624

CROP

LD. -0,0415995 0,0136861 -3,04 0,002

L2D. -0,0177099 0,0125719 -1,41 0,159

L3D. -0,0065906 0,0127518 -0,52 0,605

L4D. -0,0194584 0,0122347 -1,59 0,112

L5D. -0,0081498 0,0123159 -0,66 0,508

L6D. -0,016703 0,0121822 -1,37 0,17

L7D. -0,0143625 0,0123477 -1,16 0,245

NGP

LD. -0,2542261 0,200444 -1,27 0,205

L2D. -0,26087 0,1724758 -1,51 0,13

L3D. 0,0527943 0,1594453 0,33 0,741

L4D. -0,1779556 0,1671095 -1,06 0,287

L5D. 0,0138033 0,1575999 0,09 0,93

L6D. -0,0085678 0,149975 -0,06 0,954

L7D. 0,0783388 0,1372649 0,57 0,568

COP

LD. -0,009158 0,0362794 -0,25 0,801

L2D. -0,048437 0,0369261 -1,31 0,19

L3D. -0,0595334 0,035922 -1,66 0,097

L4D. -0,0016329 0,0369132 -0,04 0,965

L5D. -0,0121925 0,0297396 -0,41 0,682

L6D. -0,0538514 0,0312041 -1,73 0,084

L7D. 0,0167068 0,0304445 0,55 0,583

WA

LD. -34,2792 14,84898 -2,31 0,021

L2D. -16,64189 15,37335 -1,08 0,279

L3D. -6,351088 15,93652 -0,4 0,69

L4D. -20,42981 16,11648 -1,27 0,205

L5D. -18,92849 15,31328 -1,24 0,216

L6D. -18,67013 14,46059 -1,29 0,197

L7D. -18,44138 14,77294 -1,25 0,212

_cons 2,95E-05 0,1203907 0 1

Variable Coef. Std. Err. z P>z

D_CROP

_ce1 L1. 0,0242521 1,337556 0,02 0,986

_ce2 L1. 0,6390475 0,2528042 2,53 0,011

_ce3 L1. -0,1459466 0,7139396 -0,2 0,838

_ce4 L1. -0,1722928 0,1191499 -1,45 0,148

_ce5 L1. 1,115585 2,420445 0,46 0,645

_ce6 L1. -0,3453482 0,2506957 -1,38 0,168

CO2

LD. -2,727415 1,682482 -1,62 0,105

L2D. 0,5010391 1,586791 0,32 0,752

L3D. 0,4885243 1,477674 0,33 0,741

L4D. 1,893847 1,414827 1,34 0,181

L5D. 0,8496105 1,498873 0,57 0,571

L6D. 0,8552132 1,387206 0,62 0,538

L7D. -0,7578142 1,254903 -0,6 0,546

ALQ

LD. -1,095294 0,2892254 -3,79 0

L2D. -0,5370049 0,3096625 -1,73 0,083

L3D. -0,678637 0,2962831 -2,29 0,022

L4D. -0,6417611 0,3006587 -2,13 0,033

L5D. -0,5153514 0,3159101 -1,63 0,103

L6D. -0,5560173 0,2938955 -1,89 0,059

L7D. -0,5404086 0,3008138 -1,8 0,072

IP

LD. 0,029879 1,525419 0,02 0,984

L2D. -0,6130337 1,59487 -0,38 0,701

L3D. 2,141808 1,582225 1,35 0,176

L4D. 0,3457377 1,634963 0,21 0,833

L5D. -0,426784 1,567711 -0,27 0,785

L6D. 0,3544477 1,451166 0,24 0,807

L7D. 1,533783 1,481046 1,04 0,3

CROP

LD. 0,1922822 0,1636546 1,17 0,24

L2D. -0,0537575 0,1503312 -0,36 0,721

L3D. -0,1407686 0,1524827 -0,92 0,356

L4D. -0,0029976 0,1462989 -0,02 0,984

L5D. 0,034691 0,1472708 0,24 0,814

L6D. -0,2455283 0,145672 -1,69 0,092

L7D. -0,0361299 0,14765 -0,24 0,807

NGP

LD. -1,169867 2,396856 -0,49 0,625

L2D. -0,0673412 2,06242 -0,03 0,974

L3D. 0,786176 1,906604 0,41 0,68

L4D. 0,4206201 1,998251 0,21 0,833

L5D. 0,420348 1,884538 0,22 0,823

L6D. -0,0840088 1,793362 -0,05 0,963

L7D. -1,421068 1,641377 -0,87 0,387

COP

LD. -0,1274191 0,433819 -0,29 0,769

L2D. 0,4003067 0,441552 0,91 0,365

L3D. -0,3092496 0,4295458 -0,72 0,472

L4D. 0,200504 0,4413977 0,45 0,65

L5D. -0,0498258 0,3556188 -0,14 0,889

L6D. 0,2373435 0,3731307 0,64 0,525

L7D. 0,400798 0,3640469 1,1 0,271

WA

LD. -206,508 177,5601 -1,16 0,245

L2D. -25,0457 183,8304 -0,14 0,892

L3D. -110,0743 190,5647 -0,58 0,564

L4D. -149,9152 192,7165 -0,78 0,437

L5D. -123,7073 183,1122 -0,68 0,499

L6D. -12,0111 172,9159 -0,07 0,945

L7D. -273,0244 176,6509 -1,55 0,122

_cons 3,11E-07 1,4396 0 163



Table A.3: Vector Error Correction Model Results for NGP and COP

Variable Coef. Std. Err. z P>z

D_NGP

_ce1 L1. 0,0041118 0,1011121 0,04 0,968

_ce2 L1. -0,002111 0,0191107 -0,11 0,912

_ce3 L1. 0,0089017 0,05397 0,16 0,869

_ce4 L1. 0,0164014 0,0090071 1,82 0,069

_ce5 L1. -0,297742 0,1829728 -1,63 0,104

_ce6 L1. -0,0487979 0,0189513 -2,57 0,01

CO2

LD. 0,0825737 0,1271867 0,65 0,516

L2D. 0,0737151 0,119953 0,61 0,539

L3D. 0,0218666 0,1117043 0,2 0,845

L4D. -0,0614325 0,1069534 -0,57 0,566

L5D. 0,0041583 0,1133069 0,04 0,971

L6D. -0,0396917 0,1048654 -0,38 0,705

L7D. -0,0168784 0,094864 -0,18 0,859

ALQ

LD. -0,0649731 0,0218639 -2,97 0,003

L2D. -0,0079562 0,0234088 -0,34 0,734

L3D. -0,0063974 0,0223974 -0,29 0,775

L4D. -0,0373948 0,0227282 -1,65 0,1

L5D. 0,0000256 0,0238811 0 0,999

L6D. -0,0161395 0,0222169 -0,73 0,468

L7D. -0,0075197 0,0227399 -0,33 0,741

IP

LD. -0,0016069 0,1153136 -0,01 0,989

L2D. -0,1800678 0,1205637 -1,49 0,135

L3D. 0,0241291 0,1196078 0,2 0,84

L4D. -0,1794129 0,1235945 -1,45 0,147

L5D. -0,1122051 0,1185106 -0,95 0,344

L6D. -0,0043695 0,1097004 -0,04 0,968

L7D. -0,1238664 0,1119592 -1,11 0,269

CROP

LD. -0,0175593 0,0123714 -1,42 0,156

L2D. -0,0035061 0,0113642 -0,31 0,758

L3D. -0,011294 0,0115269 -0,98 0,327

L4D. 0,0046872 0,0110594 0,42 0,672

L5D. -0,0148843 0,0111329 -1,34 0,181

L6D. 0,0065282 0,011012 0,59 0,553

L7D. 0,0044118 0,0111616 0,4 0,693

NGP

LD. -0,0143326 0,1811896 -0,08 0,937

L2D. 0,108647 0,155908 0,7 0,486

L3D. -0,1368937 0,1441291 -0,95 0,342

L4D. -0,0548402 0,1510572 -0,36 0,717

L5D. -0,0132361 0,142461 -0,09 0,926

L6D. -0,1189936 0,1355686 -0,88 0,38

L7D. -0,1348001 0,1240794 -1,09 0,277

COP

LD. 0,0415968 0,0327944 1,27 0,205

L2D. 0,0112227 0,033379 0,34 0,737

L3D. 0,0519336 0,0324714 1,6 0,11

L4D. 0,0455166 0,0333673 1,36 0,173

L5D. 0,0731057 0,0268829 2,72 0,007

L6D. 0,0430784 0,0282067 1,53 0,127

L7D. 0,0825502 0,02752 3 0,003

WA

LD. -19,53756 13,4226 -1,46 0,146

L2D. -13,81709 13,8966 -0,99 0,32

L3D. 13,41103 14,40568 0,93 0,352

L4D. -2,890256 14,56835 -0,2 0,843

L5D. 12,61543 13,84231 0,91 0,362

L6D. -2,202813 13,07152 -0,17 0,866

L7D. -0,1365028 13,35387 -0,01 0,992

_cons 1,12E-05 0,1088261 0 1

Variable Coef. Std. Err. z P>z

D_COP

_ce1 L1. -0,3260875 0,43064 -0,76 0,449

_ce2 L1. 0,1360826 0,0813929 1,67 0,095

_ce3 L1. 0,1145057 0,2298603 0,5 0,618

_ce4 L1. 0,0241406 0,0383615 0,63 0,529

_ce5 L1. 1,805531 0,7792875 2,32 0,021

_ce6 L1. -0,3174172 0,0807141 -3,93 0

CO2

LD. 1,020435 0,5416924 1,88 0,06

L2D. 0,3791365 0,5108838 0,74 0,458

L3D. 0,7670426 0,4757523 1,61 0,107

L4D. -0,2924295 0,4555182 -0,64 0,521

L5D. 0,7391827 0,4825778 1,53 0,126

L6D. 0,2909553 0,4466252 0,65 0,515

L7D. 0,1921486 0,4040291 0,48 0,634

ALQ

LD. 0,0265688 0,0931191 0,29 0,775

L2D. -0,0879212 0,0996991 -0,88 0,378

L3D. -0,0900439 0,0953914 -0,94 0,345

L4D. -0,1324679 0,0968002 -1,37 0,171

L5D. -0,0110759 0,1017105 -0,11 0,913

L6D. -0,064913 0,0946227 -0,69 0,493

L7D. 0,0766421 0,0968501 0,79 0,429

IP

LD. -0,791327 0,4911246 -1,61 0,107

L2D. -1,265477 0,5134849 -2,46 0,014

L3D. -0,9546569 0,5094136 -1,87 0,061

L4D. -0,6315105 0,5263934 -1,2 0,23

L5D. -0,4006897 0,5047409 -0,79 0,427

L6D. 0,0591763 0,4672178 0,13 0,899

L7D. 0,4318306 0,4768382 0,91 0,365

CROP

LD. -0,0604324 0,0526903 -1,15 0,251

L2D. 0,0265752 0,0484007 0,55 0,583

L3D. -0,0941013 0,0490934 -1,92 0,055

L4D. 0,0679254 0,0471025 1,44 0,149

L5D. -0,0300318 0,0474154 -0,63 0,526

L6D. 0,0907747 0,0469006 1,94 0,053

L7D. 0,0779047 0,0475375 1,64 0,101

NGP

LD. -0,8912087 0,7716925 -1,15 0,248

L2D. -0,5569134 0,6640175 -0,84 0,402

L3D. -1,214439 0,613851 -1,98 0,048

L4D. -1,05793 0,6433577 -1,64 0,1

L5D. -1,378285 0,6067464 -2,27 0,023

L6D. -0,2009451 0,5773914 -0,35 0,728

L7D. -1,313857 0,5284583 -2,49 0,013

COP

LD. 0,1134561 0,1396725 0,81 0,417

L2D. -0,1528804 0,1421622 -1,08 0,282

L3D. 0,1317107 0,1382967 0,95 0,341

L4D. 0,002802 0,1421126 0,02 0,984

L5D. 0,1669148 0,1144951 1,46 0,145

L6D. 0,0992186 0,1201333 0,83 0,409

L7D. 0,0626534 0,1172087 0,53 0,593

WA

LD. 38,38595 57,16731 0,67 0,502

L2D. -30,15847 59,18611 -0,51 0,61

L3D. 45,21256 61,35428 0,74 0,461

L4D. 5,222385 62,04708 0,08 0,933

L5D. 46,70293 58,95486 0,79 0,428

L6D. 5,879413 55,67206 0,11 0,916

L7D. 34,62229 56,8746 0,61 0,543

_cons -1,30E-06 0,463494 0 164



Table A.4: Vector Error Correction Model Results for WA

Variable Coef. Std. Err. z P>z

D_WA

_ce1 L1. -0,0001339 0,0011733 -0,11 0,909

_ce2 L1. -0,000252 0,0002218 -1,14 0,256

_ce3 L1. 0,0011796 0,0006263 1,88 0,06

_ce4 L1. -0,0002186 0,0001045 -2,09 0,036

_ce5 L1. -0,0041088 0,0021232 -1,94 0,053

_ce6 L1. 0,0004046 0,0002199 1,84 0,066

CO2

LD. -0,0002664 0,0014759 -0,18 0,857

L2D. 0,0007306 0,0013919 0,52 0,6

L3D. -0,0000299 0,0012962 -0,02 0,982

L4D. 0,0007782 0,0012411 0,63 0,531

L5D. -0,0006414 0,0013148 -0,49 0,626

L6D. 0,0006024 0,0012169 0,5 0,621

L7D. -0,0006409 0,0011008 -0,58 0,56

ALQ

LD. -0,0000351 0,0002537 -0,14 0,89

L2D. 0,0001087 0,0002716 0,4 0,689

L3D. -0,0001961 0,0002599 -0,75 0,45

L4D. 0,0003427 0,0002637 1,3 0,194

L5D. 0,00000225 0,0002771 0,01 0,994

L6D. 0,00000859 0,0002578 0,03 0,973

L7D. 0,0000972 0,0002639 0,37 0,713

IP

LD. 0,0032774 0,0013381 2,45 0,014

L2D. 0,0021106 0,001399 1,51 0,131

L3D. 0,0021466 0,0013879 1,55 0,122

L4D. 0,0009346 0,0014342 0,65 0,515

L5D. 0,0030666 0,0013752 2,23 0,026

L6D. 0,0008326 0,001273 0,65 0,513

L7D. -0,0014167 0,0012992 -1,09 0,276

CROP

LD. 0,000273 0,0001436 1,9 0,057

L2D. 0,0001967 0,0001319 1,49 0,136

L3D. 0,0001599 0,0001338 1,2 0,232

L4D. 0,0000777 0,0001283 0,61 0,545

L5D. 0,000213 0,0001292 1,65 0,099

L6D. 0,0000252 0,0001278 0,2 0,843

L7D. 0,00000506 0,0001295 0,04 0,969

NGP

LD. 0,0056305 0,0021025 2,68 0,007

L2D. 0,0012249 0,0018092 0,68 0,498

L3D. 0,0019949 0,0016725 1,19 0,233

L4D. 0,0023226 0,0017529 1,33 0,185

L5D. 0,0003856 0,0016531 0,23 0,816

L6D. 0,0000961 0,0015731 0,06 0,951

L7D. 0,0028895 0,0014398 2,01 0,045

COP

LD. 0,0003586 0,0003805 0,94 0,346

L2D. 0,0003822 0,0003873 0,99 0,324

L3D. 0,0003181 0,0003768 0,84 0,399

L4D. 0,000305 0,0003872 0,79 0,431

L5D. -0,0001475 0,000312 -0,47 0,636

L6D. 0,0002155 0,0003273 0,66 0,51

L7D. 0,0002437 0,0003193 0,76 0,445

WA

LD. -0,0421655 0,155757 -0,27 0,787

L2D. 0,0298617 0,1612574 0,19 0,853

L3D. -0,3443379 0,1671647 -2,06 0,039

L4D. -0,0505694 0,1690523 -0,3 0,765

L5D. -0,0377322 0,1606273 -0,23 0,814

L6D. -0,2154363 0,151683 -1,42 0,156

L7D. -0,0993199 0,1549595 -0,64 0,522

_cons 4,17E-03 0,0012628 3,3 0,001 65
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