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Director, Graduate School of Applied Mathematics

Prof. Dr. Sevtap Ayşe Kestel
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ABSTRACT

ANALYSES OF FACTORS OF MARKET MICROSTRUCTURE: PRICE IMPACT,
LIQUIDITY, AND VOLATILITY

Karasan, Abdullah
Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Esma Gaygısız

January 2020, 118 pages

First chapter of this thesis is an attempt to model the price impact by extending the
model proposed by Kyle [54]. It is assumed that the market is not perfectly efficient
so that it takes to time to adjust new equilibrium price. Thus, in order to model the
price impact, two new concepts are introduced which are market resiliency and speed
of price informativeness. It is showed that market resiliency and price impact tend to
raise as speed of price information increases which emphasizes the fact that speed of
information matters in financial markets and market resiliency is not a phenomenon
that can be neglected.

In the second chapter, it is tried to stress the importance of the liquidity which is con-
sidered as the neglected dimension of the financial risk. To do that, a new approach
called Liquidity Augmented Stochastic Volatility with Jump (LASVJ) model is in-
troduced and it is compared with the Stochastic Volatility with Jump (SVJ) model in
terms of stability and performance. This analysis includes both simulation and cali-
bration analysis. The simulation results suggest that LASVJ model outperforms SVJ
as it has lower bias and Root Mean Square Error. In the calibration part, ten compa-
nies listed in Dow-Jones 30 are used and it is found that the estimated probability of
default and credit spread with LASVJ model are higher than those with SVJ model.
The 2008 Crisis period is even aggravated this result. The findings imply that the
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probability of default and credit spread are underestimated if liquidity dimension of
risk is neglected and this partly accounts for why 2007-2008 financial crisis and its
full-scale effect could not be predicted.

In the third chapter, it is aimed to improve the volatility prediction which included
in the financial risk management. As a well-performing volatility prediction sheds
light on the uncertainty in the financial market, it is an important task to model it. To
this end, GARCH-type models as well as SVR-GARCH model are used to model the
volatility and the results are compared based on the performance metrics. In part of
empirical analysis thirty stocks listed S&P -500 are included and the period covered
is between 01/01/2010-09/01/2019. The finding indicates that SVR-GARCH outper-
forms the traditional models in predicting volatility and also produce more reliable
result in Value-at-Risk estimation based on Proportion of Failures and Basel’s Traffic
Light Backtesting approaches.

Keywords: Price Impact, Liquidity, Credit Risk, Volatility, Machine Learning, and
Risk Management
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ÖZ

MARKET MİKRO YAPISININ FAKTÖRLERİNİN ANALİZİ: FİYAT ETKİSİ,
LİKİDİTE VE OYNAKLIK

Karasan, Abdullah
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Esma Gaygısız

Ocak 2020, 118 sayfa

Bu tezin ilk bölümünde, Kyle[54] tarafından önerilen modeli genişletilerek fiyat etki-
sini modelleme çalışılmıştır. Yeni denge fiyatına ulaşılması zaman aldığında pazarın
tam etkin olmadığı varsayılmaktadır. Bu nedenle, fiyat etkisini modellemek için, iki
yeni kavram olan piyasa esnekliği ve fiyatın bilgilendiriciliği kavramları tanımlanmış-
tır. Sonuç olarak, fiyatın bilgilendiriciliği arttıkça piyasa esnekliği ve fiyat etkisinin
artma eğilimi göstermiştir. Bu bulgu ise, finansal piyasalarda bilginin hızının önemli
olduğu ve piyasa esnekliğinin ihmal edilebilecek bir olgu olmadığını vurgulamakta-
dır.

İkinci bölümde finansal riskin ihmal edilen boyutu olarak kabul edilen likiditenin
önemi vurgulanmaya çalışılmaktadır. Bunun için, Likidite Etkili Zıplamalı Stokas-
tik Volatilite Modeli (LASVJ) modeli tanıtılmış ve stabilite ve performans açısından
Zıplamalı Stokastik Volatilite Modeli (SVJ) modeli ile karşılaştırılmıştır. Simülasyon
sonuçları, LASVJ modelinin düşük sapma ve kök ortalama kare hatasına sahip olduğu
için SVJ modelinden daha iyi performans gösterdiğini ortaya koymuştur. Kalibrasyon
bölümünde Dow-Jones 30’da listelenen on şirket kullanılmıştır ve LASVJ modeliyle
tahmini temerrüt ve kredi marjı olasılığının SVJ modeline göre daha yüksek olduğu
bulunmuştur. Kriz dönemi bu sonuçlar daha net bir şekilde ortaya çıkmaktadır. Bul-
gular, riskin likidite boyutu ihmal edilirse temerrüt olasılığı ve kredi marjının olması
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gerekenden daha düşük olduğunu ortaya koymaktadır ve bu da 2007-2008 finansal
krizinin etkisinin tam olarak neden öngörülemediğini açıklamaktadır.

Üçüncü bölümde, oynaklık tahmin yöntemi geliştirilerek Riske Maruz Değer gibi
finansal risk araçlarının daha etkin bir şekilde kullanılması amaçlanmaktadır. İyi per-
formans gösteren bir oynaklık tahmini finansal piyasadaki belirsizliğe ışık tuttuğu
için bunu modellemek önemli bir görevdir. Bu amaçla oynaklığı modellemek için
GARCH tipi modeller ve bir Makine Öğrenmesi modeli olan SVR-GARCH mo-
deli kullanılmıştır ve sonuçlar performans ölçütlerine göre karşılaştırılmıştır. Ampirik
analizde, S&P-500 endeksinde yer alan otuz hisse ile 01/01/2010-09/01/2019 döne-
mini kapsanmıştır. Bulgular, SVR-GARCH’ın oynaklığı tahmin etmede geleneksel
modellerden daha iyi performans gösterdiğini ve ayrıca POF ve Basel Trafik Işığı
Geri Test yaklaşımlarına dayanan VaR tahmininde daha güvenilir sonuç verdiğini
göstermektedir.

Anahtar Kelimeler: Fiyat Etkisi, Likidite, Kredi Riski, Oynaklık, Makine Öğrenmesi
ve Risk Yönetimi
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CHAPTER 1

INTRODUCTION

The study of financial markets and how they operate are the subject of the Market

Microstructure, which primarily deals with the price formation processes, trading

behaviors, spreads and transaction costs. With the development, diversification and

deepening of the securities markets, microstructures of the markets have been attract-

ing the attentions of researchers. In this respect, a large body of literature in finance

seeks to understand price impact in financial markets. Incoming new information

and the process of information diffusion trigger the price changes, which cause price

impact, illiquidity problems, and volatility.

Moreover, devastating effects of 2008 crisis highlight the importance of market effi-

ciency, liqudity and volatility. Market Microstructure provides a framework to inves-

tigate the relationship between these structures and their nexus with financial market.

At this conjecture, revisiting of these concepts is thought to be necessary. Neglected

concepts like market resiliency, illiquidity, and volatility have gained importance.

Their links need to be investigated.

Market liquidity is defined as the depth of buy and sell orders having an impact on

price discovery processes. Liquidity and volatility go hand in hand in that the more

liquid the market, the more reliable financial patterns it has.

The market microstructure theory suggests that markets with higher volumes are less

volatile. Therefore, it can be derived from traditional market microstructure theories

that a liquid market has a higher volume of trading and, therefore, is less volatile.

A theoretically verified inverse relationship between liquidity and volatility can be
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established, indicating that greater volatility can lead to a reduction in the liquidity

of a stock market and vice versa. Based on this relationship, the literature suggests

that a serious liquidity bottleneck is accompanied by increased volatility and this led

to the global financial crisis as well as the spread of contagion effects on the markets

in 2007-2009. In this context, researchers try to capture the relationships between

liquidity, volatility and trading activity in different markets.

This thesis starts with price impact analysis in chapter two by focusing on the com-

ponents of price impact such as market resilience and price informativeness. By ap-

plying the Projection Theorem, the main variables, namely market resiliency, price

impact, informativeness of price, error variance of price, and trade intensity, affect-

ing price formation processes are derived as random variables. Besides, the effect of

informativeness of price on these variables are graphed and dicussed.

In the third chapter, liquidity is studied by developing a new model called Liquidity

Augmented Stochastic Volatility Model with Jumps. This new model is used to pre-

dict credit spreads and probability of defaults more accurately. A simulation analysis

is conducted to observe the stability of the proposed model compared to Stochastic

Volatility with Jump model and Stochastic Volatility model. Probability of default

and credit risk spread are estimated using selected ten Dow-Jones listed companies.

Fourth chapter aims at improving volatility prediction using Machine Learning model

called SVR-GARCH (Support Vector Regression GARCH). Accuracy of the SVR-

GARCH model predictions are much better than those of traditional models based

on Mean Absolute Error and Root Mean Squared Error. Using predictions obtained

in the previous part, Value-at-Risk model is estimated. Moreover, backtesting is ap-

plied to check the accuracy of the Value-at-Risk results. Proportion of Failures and

Basel Traffic Light Approach are used. It turns out that using SVR-GARCH model

improves Value-at-Risk calculations and hence provides better financial risk manage-

ment.

Chapter five concludes.
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CHAPTER 2

MODELING THE PRICE IMPACT

2.1 Introduction

The price impact is at the heart of modern finance not solely for its role in price

discovery mechanism but also for properly specifying execution cost of a trader. It

is, basically, about how much a transaction can alter the market prices and has been

intensively under scrutiny over the past two decades.

Despite the attention that the price impact has gained, market efficiency and speed of

price informativeness have remained not investigated. With the absence of perfectly

efficient market gives opportunity to investors to make profit up until equilibrium

price is fully emerged. However, the increase of the Informativeness of price de-

creases the profit of insider traders. More specifically, the higher the informativeness

of price, the quickier the insider traders respond and in turn the lower the profit.

The model suggested here extends the Kyle’s [54] model to take into account the

market resiliency and price informativeness accounting for market efficiency to some

extent. That is, if a market is not efficient then profit opportunites emerge due to

the irresiliency until price impact fully emerges. The other extension is to take into

account the speed of information by which insiders and noise traders adjust their trade

to gain profits.

As the resiliency amounts to market’s ability to bounce back from non-equilibrium,

it can be thought of a price recovery process. During this process, investors can gain

profit until the process completely dies out. Thus, generally speaking, in this setting,
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two different mechanisms are at work: Market resiliency and price impact.

In Kyle’s[54] model, the link between order flow and private information is estab-

lished by β, which indicates how intensive the insider trade based on the private

information she possesses. However, another question here is how informative the

price is. Therefore, the model is extended so as to include the informativeness of the

prices. Along with this, market marker is assumed to be risk neutral and traders are

price sensitive. At the time insiders trade, it takes some time for market maker to

adjust prices as it requires some time to reach market clearing prices, so insiders take

advantage of this and gain profits. In other words, insiders’ trade have an impact on

order flow which in turn lead to increases in prices and profits, then noise traders,

due to price sensitivity property, adjust their orders accordingly. Over time, as or-

der flows increase market maker sets higher prices and market clearing condition,

E(v|pI) = pI , where ν is liquidation value and pI is the price quoted by insiders, is

satisfied then profit opportunities disappear until the next private information arrives

into the market.

In order to fully understand the mechanism of the price formation process, two new

concepts, somewhat related to each other, are needed to be brought into light: Market

resilience and informativeness of prices.

The proposed model considers a market with noise traders and insider traders with

private information in a multiperiod context. The model includes main components

of price formation process, namely market resiliency, price informativeness, market

impact, trade intensity, and error variance of price, so that it becomes clearer to com-

prehend the market dynamics, in particular, in the presence of insider traders.

Thus, this chapter attemps to address the following questions:

• What happens if markets cannot incorporate information into the prices almost

instantenously?

• How deeply does informativeness of price affect the price formation process?

• What is the relationships between informativeness of price, price impact, mar-

ket resilience, trade intensity, and market efficiency?
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2.2 The Model

In this model, there are two types of traders: Insiders and noise traders. A trade occurs

in N sequential auctions given a certain time period.

0 = t0 < t1 < · · · < tN = 1 (2.1)

Assumption 1. Liquidation value, ν, has a normal distribution with mean p0 and

variance Σ0.

ν ∼ N (p0,Σ0) (2.2)

Assumption 2. Insiders know the liquidation value before trade takes place at time

0 but noise traders do not.

pn is the price of a security at nth auction. x represents the quantity traded by insiders

and u is the amount traded by noise traders. Xn is the total order flow of all agents at

nth auction.

X = x+ u (2.3)

Assumption 3. ∆un is the order flow submitted by noise traders at the nth auc-

tion. ∆un is serially uncorrelated and normally distributed with 0 mean and variance

σ2
ε∆tn where ∆t is the time interval between auctions.

∆u ∼ N (0, σ2
ε∆tn) (2.4)

∆un = un − un−1 (2.5)

∆tn = tn − tn−1 (2.6)

Assumption 4. Insiders know liquidation value ν. There are J insiders, j = 1, ..., J

each insider j knows the liquidation value at time 0 and maximizes the profit level π

at auctions 1,...,N.

5



πn =
N∑
i=1

(v − pi)xi (2.7)

Assumption 5. Let xn and pn denote the aggregate position of insiders and market

clearing price, respectively. At each auction, insiders maximize their profit based on

the liquidation value of the asset, which is already known by insiders. In addition,

∆xn represents the order flow of insiders at the nth auction and insiders know both ν

and past prices.

∆xn = xn − xn−1 (2.8)

Thus, insiders’ position at time n is given by:

xn = Xn(p1, ..., pn−1, v) (2.9)

where n=1,...,N and Xn is a measurable function.

Assumption 6. Insider traders’ expected profit function has the following quadratic

form:

E(πn|p1, ..., pn−1, ν) = αn−1(ν − pn−1)2 + δn−1 (2.10)

Assumption 7. There are two cases in one case there is instantenous equilibrium

with price impact. In the other case, equilibrium does not occur instantenously. Once

a trade is executed, market resiliency κ partially accounts for the deviation from

previous equilibrium price and speed of reversion to the new equilibrium price. In

the first case, the equilibrium is instantenous and price impact is permanent as in

[54]. In the second case, the equilibrium does not occur instantenously but price

impact is transient and we observe market resiliency.

The equation of price takes the following form:

P (x+ u) = p0 + λn(xn + un) (2.11)

for all n = 1, ...N and where n is the number of transactions, λ denotes the price

impact.

6



Insiders also know the pricing rule of market maker during market resiliency and

solve the following equation:

P (x+ u) = p0 + κn(ν − pn−1)(x[0,n) + u[0,n)) (2.12)

where κ represents the market resiliency.

Assumption 8. During sequential auctions, informativeness of price at the presence

of t insiders, τt, about ν is incorporated into prices and it affects the order flow by the

following equation.

∆Xn = τtβn(ν − pn−1)∆tn (2.13)

where τt is the informativeness of price, t is the number of insider traders, and

t=1,...,T.

Together with the market resiliency component, the speed of price informativeness

at which information is fully incorporated into prices is ignored in price formation

process. Inclusion of τ allows us to account for the price informativeness. The mech-

anism is as follows: Market marker sets prices based on the order book containing

both insiders and noise traders’ orders. As insiders have knowledge about ν, it gives

insiders an advantage. Market marker has noisy signal where information coming

from insiders is aggregated.

As the number of auctions increase price quotations become more predictable. To

this end, insiders try to exploit the profit as fast as possible. Thus, private information

is incorporated into prices fast and all this process is represented by τ .

Inclusion of the market resiliency term is one of the contributions of this study. It

enables us to distinguish the price impact and market resiliency. More specifically,

as the trade is executed, the assumption of instantenous market equilibrium set by

market maker is relaxed in a way to show that there is time lag to reach a new equilib-

rium. This assumption implies that market efficiency is closely related to the market

resiliency. Following [35], market efficiency is defined as the degree to which prices

reflect all available information and the adjustment to the new prices occurs almost

instantenously. However, in this study, by assuming the presence of market resiliency

on the price formation process, the idea of "almost instantenous" is relaxed.
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This idea is motivated by [15], who defines the efficient market as one in which price

is within a factor of two. Shortly, as trading activity increases by a factor of eight,

then market resilience increases by a factor of four and market efficiency increases by

a factor of two.

Market resiliency and market efficiency, therefore, go hand in hand. To this respect,

market resiliency defined as time elapsed to reach a new equilibrium after trade ex-

ecutions. This is modeled in a way to show the time elapsed to reach the full price

impact.

That is to say, as the price impact is fully emerged, the magnitude of deviation from

the previous equilibrium price and the speed of reversion to the new equilibrium are

accounted for the market resiliency. Shortly, in the process of new price formation,

price impact λ, market resiliency κ as well as informativeness of the price τ are the

main factors.

During market resiliency, there exists a unique solution for optimal number of order

x∗res of a typical insider given in equation 2.15

E(πn|p1, ..., pn−1, v) = E((v − pn(x+ u))x (2.14)

= E(v − hκ − κn(v − pn−1)(x+ u))x

where pn = κ(v − pn−1)(x + u) + hκ, hκ is the drift term, and, accordingly, α =

−hκ
2κ(v−pn−1)

and β = 1
2κ(v−pn−1)

.

x∗res = argmaxx∈RE(πn|p1, ..., pn−1, v) =
v − hκ

2κ(v − pn−1)
(2.15)

Similarly, at time n, when price impact is in effect, there exists a unique solution for

optimal number of order x∗impact of insiders given in equation 2.17

E(π|p1, ..., pn−1, v) = E((v − λn(xn + un)− hλ)xn) (2.16)

= (v − λnxn − hλ)xn
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x∗impact = argmaxx∈RE(π|p1, ..., pn−1, v) =
v − µ

2λ
(2.17)

where pn = λn(xn + un) + hλ. So, αn = −hλ
2λn

and βn = 1
2λn

.

As is known, p0 is the equilibrium price and pn−1 is the price at time n− 1.

v − pn−1 = θ + ε (2.18)

and

E(v − pn−1) = η (2.19)

where θ represents the information observable to insider and ε is observable to noise

traders. Both are random variables and θ ∼ Pois(δ) and ε ∼ N (0, σ2).

p = E(ν|X) (2.20)

E(ν|X) = E(ν) +
cov(ν,X)[(x− E(X))]

var(X)

where X = x+ u and pn = E(ν|x1 + u1, ..., xn + un)

E(v|v − pn−1, X) = E(v)+

cov(v, (v − pn−1)Xn)(v − pn−1 − E(v − pn−1)(Xn − E(Xn))

var((v − pn−1)Xn)

cov(v, (v − pn−1)X) = E[(v − p0)((v − pn−1)(αn + τtβnv))− E((v − pn−1)(αn + τtβnv))]

= E[(v − p0)(vαn + τtβnv
2 − pn−1αn − pn−1τtβnv)− (θn + εn)(αn + τtβnp0)]

= E[v2αn + vτtβnv
2 − vpn−1αn − pn−1τtβnv

2 − p0vαn − p0τtβnv
2 + p0pn−1αn

+ p0pn−1τtβnv − vθnαn − vτtβnθnp0 + θnp0αn + τtβnθnp
2
0]

= p2
0αn + p0τtβnE(v2)− p0pt−1αn − pt−1τtβnE(v2)− p2

0αn − p3
0τtβn + pn−1p0αn

+ p2
0pn−1τtβn − p0θnαn − βnθnp2

0 + θnp0αn + βnθnp
2
0

After cancelling out some of the terms,

9



cov(ν, (ν − pn−1)X)) = pnτtβnE(ν2)− pn−1τtβnE(ν2) + p2
0pn−1τtβn − p3

0τtβ

(2.21)

= −τtβnpn−1Σn + τtβnp0Σn

where Σn = var(v|∆x1 + ∆u1, ...,∆xn + ∆un)

var((v − pn−1)X) = (σ2
θ + σ2

ε )(β
2Σn + σ2

u) (2.22)

When market resiliency rules the market, the price equation is given by:

pn = pn−1 + κn(v − pn−1)(∆xn + ∆un) + hκ (2.23)

Market resiliency term turns out to be;

κn =
−τtβpn−1Σn + τtβp0Σn

(σ2
θ + σ2

ε )(τ
2
t β

2Σn ∆tn + σ2
u)

(2.24)

and

hκ = p0 + κ[(−α + βp0)(θ + ε)ηE(X)] (2.25)

As price reverts back to the new position at which market is efficient then only effect

that left out comes from order-related term represented by λn. Since, the effect of

market resiliency term dies out, expectation of ex-post liquidation value conditioning

only on order flow equals to price.

Assumption 9. The market maker sets the price according to following pricing rule

and earn zero profit. Depending on the market maker’s aggreagate order flow ∆xn +

∆un observation, she sets pn, the price at time n. Market marker does not observe

only current order flow rather she observes previous order flows, too. Market marker

solves recursive linear equilibrium in which λ1, ...λn exist for n = 1, ...N .

pn = pn−1 + λ(∆xn + ∆un) (2.26)

pn = pn−1 + κn(ν − pn−1)(∆x[0,n) + ∆u[0,n)) (2.27)
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So, the market marker should select best likely estimation of E(v|u + x) which is

equal to price. Market marker applies maximum likelihood estimation where ν and

X are normally distributed and β, λ, and κ are least square estimators obtained from

the solution of following problem.

E((v − p(X))2) (2.28)

Assumption 10. Price impact comes from the private information of the insider and

this widens the gap between the liquidation value and price. This gap, in turn, trans-

mits a signal to some of the insider traders’ about the value of ν conditional on the

order flow at that auction. However, due to the market inefficiency, some insider

traders react with a lag and this leads to a "sequential auction equilibrium".

Similar to [46], noise traders are risk-neutral and they have ratinal rational expecta-

tions. They adjust their ’ conditional on insiders’ action at each auction. In this setup,

profit is recursively determined by:

πn = (ν − pn)∆Xn + πn+1 (2.29)

So,

E(π|p1, p2, ..., ν) = max
∆x

E[(ν− pn)∆x+α(ν− pn)2 + δn|p1, p2, ...pn− 1, ν] (2.30)

When resiliency rules the market, the price equation is given by:

pn = pn−1 + κn(ν − pn−1)(∆xn + ∆un) + h (2.31)

From here, it is easy to derive βn,κn:

E(πn|p1, p2, ..., pn−1, ν) = max
∆x

{(ν − pn−1 − κn(v − pn−1)τt∆x − h)∆x + αn(ν − pn−1

(2.32)

− κn(ν − pn−1)τt∆x − h)2 + αnλ
2
nσ

2
u∆tn + δn}
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Maximization of the given problem above with respect to ∆x yields:

∆x =
(v − pn−1 − h)

(
1− 2α2

nκτt(v − pn−1

)
(2κτt(v − pn−1))

(
1− α2κτt(v − pn−1)

) (2.33)

λ and µ are derived by applying projection theorem.

pn = p0 +
τtβΣn

τ 2
t β

2Σn + σ2
u

((x+ u)− E(x+ u)) (2.34)

=
τtβΣn

τ 2
t β

2Σn + σ2
u

X +
−ατ 2

t Σn + ptσ
2
u

τ 2
t β

2Σn + σ2
u

Price impact, denoted by λ, and the constant term takes the following form:

λn =
τtβnΣn

τ 2
t β

2
nΣn∆tn + σ2

u

(2.35)

and

hλ =
−αnτ 2

t Σn + pnσ
2
u

τ 2
t β

2
nΣn + σ2

u

(2.36)

2.3 Equilibrium

Characteristics of the equilibrium is defined by αn, βn, δn, λn, τt, Σn, κn and they are

derived in the following proposition.

Proposition 1.

∆Xn = τtβn(ν − pn−1)∆tn (2.37)

∆pn = λn(∆xn + ∆un)+ (2.38)

∆pn = κn(ν − pn−1)(∆x[0,n) + ∆u[0,n)) (2.39)

Σn = var(ν|∆x1 + ∆u1, ...,∆xn + ∆un) (2.40)

E(πn|p1, ..., pn−1, ν) = αn−1(ν − pn−1)2 + δn−1 (2.41)

for all n = 1, 2, ...N and where n is the number of transactions, β shows the intensity

of the trade, κ represents the market resiliency, λ denotes the price impact, p is the

transaction price, ν is the liquidation value, and finally τ indicates the informative-

ness of price process.

Given Σ0, the constants, τt, βn, λn, κn, α, Σn, provide a unique solution to the system

of equations given in the Proposition 1.
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κn =
−τtβpn−1Σn + τtβp0Σn

(σ2
θ + σ2

e)(τ
2
t β

2Σ0∆t+ σ2
u)

(2.42)

λn =
τtβΣ0

τ 2
t β

2Σ0 + σ2
u

(2.43)

τt =
1

(1− ρ2)σ2
v

(2.44)

βn,κ =
1− 2καnτt(v − pn−1)

(2κτt(v − pn−1)[1− ακτt(v − pn−1)]
(2.45)

βn,λ =
1− 2λnαnτt

2λnτt[1− λnαnτt]
(2.46)

α =

(
1− 2α2

nκτt(v − pn−1

)
(2κτt(v − pn−1))

(
1− α2κτt(v − pn−1)

) (2.47)

pn = E(v|x1 + u1, ..., xn + un, v − pn−1) (2.48)

Σn = (1− I[0,n)]τtβκκn∆tn − τtβλλn∆n)Σn−1 (2.49)

At this point, it is worth discussing the other contribution of this study that is the in-

formativeness of price denoted by τ formulated by τ = [V ar(v|pI)]−1 which is pos-

terior variance of price informativeness. This concept is first introduced by Vives[74]

to formulate the speed of dispersed private information about the liquidation value.

2.4 Modeling the Price Informativeness

Informativeness of price, τ , is a latent variable. The task is to find the joint posterior

distribution of state, σ2
(v|pI,t), and related parameters. As stated by [45] modeling τ is

a partially observed process in which the density cannot be presented in an integrated

form. Thus, conditional likelihood of the process can be derived by conditioning on

parameters called hidden state of the process.

To estimate the informativeness of price, Bayesian approach is employed in that all

unobserved variables can be modelled by their joint probability distribution.

σ2
(v|pI) =

σ2
(pI |v)σ

2
v

σ2
pI

(2.50)
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Or similarly

σ2
(v|pI ,θ) =

σ2
(pI |v,θ)σ

2
(v|θ)

σ2
(pI |θ)

(2.51)

where σ2
v = Σ0, σ2

(pI) = ΣpI , and σ2(pI |v) = Σ[pI − E(pI |v)]2ρ(pI |v)

• σ2
(v|pI ,θ) observed posterior variance

• σ2
(pI |v,θ) variance of the state

• σ2
(v|θ) prior variance

As the model described above is linear, then Kalman Filter technique can be good

tool to employ. Kalman filter is an estimator in which parameters of interest can be

measured recursively. It is an optimal estimator in the sense that it minimizes the

mean square error of the estimated parameters.

To start with, all information of informed agents are pooled and labeled as ex-post

liquidation value v that is unknown and normally distributed with mean p0 and Σ0.

The ex-post liquidation value is an autoregressive process of order 1, AR(1), process.

State-space model (SSM) is employed to draw inference about the latent variable, i.e.,

price offered by insider. SSM is a useful tool for analyzing a dynamic system. The

main idea behind the SSM is to capture the dynamics of an observed variable in terms

of a latent variable known as a state vector. In these models, observed variables are

presumed to be related to the state vector via a system of equations [43].

SSM outweighs linear regression model in some aspects one of which is to rely on

the characteristics of state variables and the nexus between between observed and

state variables. Linear regression employs exogenous variables to disaggregate the

explained and unexplained variation.

A state–space model can be written in the following form:

νt = φνt−1 + σ2ηt where ηt ∼ N(0, Q) (2.52)
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pI,t = νt + ζI,twI,t + σ1εt where εt ∼ N(0, R) (2.53)

where pI,t is assumed to be conditionally independent given the state vt and its distri-

bution is p(pI,t|vt, θ). Parameter set is θ = (φ, σ2, σ1, ζ)

Kalman Filter algorithm is as follows:

Projection p̂′I,k+1 = φp̂′I,k

Update covariance Pk+1 = φPkφ
T +Q

Residual covariance Sk = ζkPk|k−1ζ
T
k +Rk

Kalman Gain Kk = P ′kζ
T (ζP ′kζ

T +R)−1

Update estimate p̂I,k = p̂′I,k +Kk(zk − ζp̂′I,k)

Update covariance Pk = (I −Kkη)P ′k

Briefly, Kalman filter has time and measurement updates. In the time update phase,

estimation is done based on the previous time step. As for the measurement updates,

estimate procedure is conducted based on the current time step.

In this study, Nelder–Mead simplex method is applied to the following likelihood

function:

f(θ) =
T∑
t=1

((νt+1 −HpI,t+1|t)
TS−1

t+1(νt+1 −HpI,t+1|t) + log|St+1) (2.54)

Before initating the simulation, initial values assigned to the parameters are:

(φ0, η0, Q0, R0, v0, P 0) = [2, 1, 0.2, 0.2, 5, 0.05]

(φ̂, η̂, Q̂, R̂, v̂, P̂ ) = [0.9873,−0.0789, 0.8336, 0.8613, 21.2571,−0.0437] (2.55)

By applying Kalman Filter, price offered by insider is measured. In order to calculate,

σ2
(v|pI), first σ2

(pI |v) should be obtained. By assumption, both price offered by the in-
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Figure 2.1: Simulation based on Kalman Filter and Comparison

sider and market value of the asset are normally distributed and therefore conditional

distribution of pI conditioning on the market liquidation value turns out:

PI |v ∼ N (µPI + ρ
σPI
σv

(v − µv), σ2(1− ρ2)) (2.56)

Proof.

σ2
PI |ν =

∫ ∞
−∞

(PI − µPI |ν)2g(pI |ν)dPI (2.57)

Substitute µPI |ν with µPI + ρ
σPI
σν

(ν − µν)

σ2
PI |ν =

∫ ∞
−∞

(PI − µPI + ρ
σPI
σv

(v − µν))2g(PI |ν)dPI (2.58)
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Multiply both sides by fv(v), then it turns out:∫ ∞
−∞

σ2
PI |vfν(ν)dν =

∫ ∞
−∞

∫ ∞
−∞

(PI − µPI − ρ
σPI
σv

(ν − µv))2g(PI |ν)fν(ν)dPIdν

σ2
PI |ν

∫ ∞
−∞

fν(ν)dν = E[(PI − µPI )− (ρ
σPI
σν

(ν − µν))]2

= E[(PI − µPI )2]− 2ρ
σPI
σv

E[(ν − µν)(PI − µPI )]

+ ρ2
σ2
PI

σ2
v

E[(ν − µν)2]

= σ2
PI
− 2ρ

σPI
σv

ρσvσPI + ρ2
σ2
PI

σ2
v

σ2
v

After simplification:

= σ2
PI

(1− ρ2)

Thus,

(σ2
(ν|pI))

−1 =
1

(1− ρ2)σ2
v

(2.59)

To sum up, price informativeness is affected by two factors: Correlation between

market liquidation value and price quoted by insider, that is variance of the market

liquidation value σ2
v . If correlation between market liquidation value and price offered

by insider is positive and increasing, this boosts the price informativeness or vice

versa. On the other hand, any increase in the variance of market liquidation value

diminishes the price informativeness.

These findings confirm [74]’s propositions in which ρ and ν are defined as positive

coefficient of risk aversion and ex-post liquidation value, respectively.

Information is revealed as soon as insider trades. Market maker observes the order

flow while noise traders observe price.

pn = E{ν|x1 + u1, ..., xn + un, p0 − pn−1} (2.60)

x(ν) = τtβn(ν − p0) (2.61)
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Figure 2.2: Reaction of Price Informativeness In the Presence of Correlation

where τt = var(ν|pI)−1∆t.

In the same vein,

Σn =
σ2
uΣn−1

τ 2
t β

2
nΣn−1∆tn + σ2

u

(2.62)

for all trades n=1,...,n, as provided by [46], one of the boudary conditions is αn =

0. Then it turns out we are able to iterate Σn by simply assuming Σ0 a exogenous

variable. Now, other boundary conditions are:

Σn = (
ν − pn−1 − 1

ν − pn−1

)Σn−1 where Σ0 = 1 (2.63)

βκ =
1

2κτt(ν − pn−1)∆tn

(2.64)
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κ =
[(−τtpn−1Σn + τtp0Σn)(2τt(ν − pn−1))− (τ 2

t Σn∆tn)(δ + σ2
e)

4τ 2
t (ν − pn−1σ2

u)

]1/2

(2.65)

βλ =
1

λ(τt + 1)
∆tn (2.66)

λ =
[τtΣn(τt + 1)− τ 2

t Σn∆tn

σ2
u(τt + 1)2

]1/2

(2.67)

2.5 Comparative Statistics

In this part of the study, how market resiliency, κ, price impact, λ, and error variance

of prices, Σ response to the changes in informativeness of price. The results and

illustrations are provided below.

• Given other parameters constant, price impact tends to increase as the informa-

tiveness of price decreases

• Given other parameters constant, trade intensity tends to decrease as the infor-

mativeness of price increase

• Given other parameters constant, error variance of price tends to increase as the

informativeness of price decreases

• Given other parameters constant, market resiliency tends to increase as the in-

formativeness of price increases

2.6 Illustrations of Comparative Analysis

Liquidation value as a business valuation is a controversial topic because there is a

lack of unified framework about how to value it. Thus, [27]’s approach is embraced

so that liquidation value is the book value of assets excluding intangible ones and it

is adjusted with inflation.
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Figure 2.6 exhibits the relationship between the informativeness of price, τt, and price

impact, λ. This figure shows that there is positive correlation between these two vari-

ables but the slope of the relationship varies. More specifically, as the informativeness

of price increases, the price impact raises about the same magnitude. However, the re-

action of price impact declines as the informativeness of price increases simply due to

the fact that the insider traders become very well informed with the high price infor-

mativeness and this, in turn, result in relative small change in prices. At the extreme,

the informativeness of price has very small impact on the price.

Figure 2.3: Price Impact and Price Informativeness

Figure 2.6 exhibits the nexus between the intensity of trade and the informativeness

of price. As the information becomes public it is quite natural to expect an increase in

the intensity of trade. More specifically, [37] states that if the focus is on the insider

traders, the news informativeness induces them to trade more aggresively. Eventually,

trading volume raises and the insider traders capture larger share of trading volume,

which in turn increases the trade intensity among speculators. However, in this setup,

trade intensity is defined as the intensity of insider’s trade depending on the private

information he has. Accordingly, an increase in price informativeness should result

in less trade intensity because it is priorly assumed that likelihood of insider traders
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trading ahead of news is not considered as suggested by [37].

Figure 2.4: Trade Intensity and Price Informativeness

Theoretically, it is expected that the price informativeness results in lower error vari-

ance in prices, Σ, in that as the information about new prices travel around, insider

traders revise her position, which led to a drop in error variance of price. Figure 2.6

confirms this observation and shows that as the price informativeness raises, error

variance first decreases slowly, then it begins to drop sharply and at the extreme level

of price informativeness, error variance of price becomes very low and so does the

reaction to the price informativeness.

The main reason behind this asymmetric reaction of error variance of price against the

informativeness of price may be the absorption of the information by insider traders.

In other words, at the low price informativeness level, not all insider traders have the

relevant information but as the number of insider traders endowed with the informa-

tion increases, eror variance decreases in a very fast way. At the high level of price

informativeness, due to the well endowed insider traders, the error variance reduces

to a very low level and the magnitude of the reaction of error variance of price to the

informativeness of price shrinks considerably.
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Figure 2.5: Error Variance of Price and Price Informativenesss

The informativeness of price is an indicator of market efficiency and as [55] denotes

market efficiency and market resiliency are two sides of the same coin in that re-

siliency is greater with higher pricing accuracy or lower error variance. Aside from

this indirect interpretation, intiuitively, market resiliency would be higher in a market

where information travel fast because every traders in that market quickly responds

to this public information.

In this regard, it is anticipated to have positive relationship between the informa-

tiveness of price and market resiliency. Figure 2.6 confirms this observation. Accord-

ingly, market resiliency is low at low level of the price informativeness and conversely

market resiliency is on the rise when price informativeness is high.
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Figure 2.6: Market Resiliency and Price Informativeness

2.7 Conclusion

To the best of my knowledge, the model developed this chapter is the first model

which takes into account both market resiliency and price informativeness together in

the framework of an asymmetric information model. This model considers a market

with insider traders and noise traders in a multiperiod context. The analyses of the

model provides market resiliency, price informativeness, market impact, trade inten-

sity, and error variance of price so that it becomes clearer to comprehend the market

dynamics, in particular, in the presence of insider trader.

The results suggest that the informativeness of price is positively related to the price

impact and market resiliency and negatively related to trade intensity and error vari-

ance of prices. However, the shape and the magnitude of these relationships vary and

none of them is linear.

As the results of this chapter show that asymmetric information plays an important

role in financial markets. When insiders dominate in financial markets they cause

inefficiencies with high price impacts. This affects the efficiency in the market.
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CHAPTER 3

CONSIDERING LIQUIDITY IN CREDIT SPREAD

PREDICTON

3.1 Introduction

Risk management is an evolving process requiring the optimal management of highly

complicated and challenging tasks in an uncertain dynamic environment. Identifying,

characterizing and modelling the risks that financial decision makers face is essential

in tackling with them. One of the most significant and prevalent risks that economies

encounter in micro and macro scales is the credit risk caused by companies’ defaults.

Hence qualitative and quantitative modelling and predicting credit risk is essential

to reduce this type of risk to its minimal levels. Besides, the recent financial crises

revealed the importance of the liquidity risk which can lead to detrimental price dis-

tortions even when firms are solvent. These two types of risks are not independent

from each other and in fact they are closely linked via multiple channels, see [71].

This study aims at modelling these risks together.

The standard asset pricing modelling is unrealistically characterized by perfectly liq-

uid markets where unlimited amounts of assets are traded at no cost between the price

taking financial decision makers [2]. However, the financial markets are very suscep-

tible to illiquidity problems and liquidity risk is prevalent as the global mortgage crisis

outbroken in 2007-2008 made it so visible. The debates about the lack of liquidity

risk in asset price modelling have been intensified with the long running effects of the

crises.
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The most widely used asset valuation model is the Black Scholes model [16] and its

improvements by Merton [61] led it to be also called Black Scholes Merton (BSM)

model. This prominent model does not take into account illiquidity problems and

hence liquidity risk. In this study we aim to tame the BSM model to incorporate the

liquidity risk. In this direction, first we model liquidity process using Cox, Ingersoll

and Ross [26] (CIR) model. Then we introduce a stochastic volatility jump model.

Finally we integrate the liquidity process modelled with CIR [26] to the stochastic

volatility jump model and we derive our Liquidity Augmented Stochastic Volatility

Jump (LASVJ) Model.

By completing this task, not only practitioners such as banks and credit rating agen-

cies, but also academics have a tool to estimate the probability of default and credit

spread which goes hand in hand with credit risk in that a raise in credit risk would

cause an increase in credit spread. Standard asset pricing models in which markets

are assumed to be perfectly liquid that is another way of saying that markets are fric-

tionless. Frictionless amount to trade at no cost and agents are price takers [76].The

model proposed in this study helps explain how asset prices are affected by liquidity.

To do that, liquidity augmented stochastic volatility with jump model is developed

and it is emprically tested both via simulation and calibration techniques.

Traditionally, to predict the probability of default and credit risk spread, first market

value of assets should be estimated which is done by the fair value of the assets at

the end of measurement period. However, inclusion of liquidity dimension provides

a tool to value an asset on a real time basis.

There have been numerous attempts to price an asset and some of them are frequently

used in finance literature. The most prominent pricing model is the Black Scholes

model[16] proposing easier way to pricing an option which is quite a complex task

due to the number of factors affecting the option pricing. The attraction of this model

lies in its usage in a broad range of areas in which credit risk is the central concern

of this study. Black Scholes model first came up with partial differential equation but

later on Merton [61] revisited and describe this model by stochastic calculus and the

model turns out to be known as Black Scholes Merton (BSM) model.

As in many models, BSM model employ interest rate to discount future prices. How-
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ever interest rate, to some extent, diverge from real market dynamics from time to

time and it takes some time to settle in. Together with this, uncertainty is the solely

source of risk in traditional asset pricing models however it is far from reality. To fill

the gap between financial models and real market dynamics, liquidity dimension is

introduced. Incorporating liquidity, model can adjust itself better to the developments

in the financial markets in that liquidity both affects the required returns of assets

and also the level of uncertainty. Thus, liquidity is quite an important dimension in

estimating probability of default.

The importance of the liquidity has been highlighted and has been gaining much at-

tention since global mortgage crisis outbroken in 2007-2008. During this crisis, most

of the financial institutions hit hard by liquidity pressures and this results in several

strict measures taken by regulatory authorities and Central Banks. Since then, de-

bates over the need of inclusion of the liquidity, originating from the lack of tradable

securities, have been intensified.

The remainder of this chapter is as follows. In the second part, literature review is

given. In the third and fourth part, asset valuation model and Stochastic Volatility with

Jump model are introduced. Liquidity is modeled via CIR process in the fifth part.

Subsequent to fifth part, Liquidity Augmented Stochastic Volatility with Jump model

is derived and discussed. In the seventh part, credit spread formula is derived based

on the probability of default. In the eighth part simulation analysis is done to show the

stability of the proposed Liquidity Augmented Stochastic Volatility with Jump model

and in the nineth chapter empirical analysis are conduced to estimate the probability

of default and credit spread both for Liquidity Augmented Stochastic Volatility with

Jump and Stochastic Volatility with Jump model. In the last part concludes.

3.2 Literature Review

Despite the importance of liquidity, it has been a neglected topic until mortgage crisis

hit in 2007-2008. Since then, liquidity has been gaining attention and ,thus, the liq-

uidity literature has yet to mature. Before modelling asset price and credit spread by

incorporating liquidity, it is worthwile discuss the concept of liquidity and how it has
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been employed in the literature.

As is known, liquidity enables investor to sell the asset at a competitive price. Though

the liquidity has only recently incorporated into models and has a better understand-

ing, it has been discussed over decades. [4] suggests that there is a positive rela-

tionship between price range and returns. However, this relationship is not linear

rather the rate of return expected by investors for a certain increase in the price range

increases as the holding periods of assets increase. [18] tries to establish the link be-

tween liquidity and return. They conclude that illiquidity of an asset and its return go

in tandem. This result still holds irrespective of the characteristics of the type of the

liquidity, that is variable and fixed components.

[63] examines the market microstructure of asset pricing and he states that the asset

pricing models need to be revisited so as to include transaction costs of liquidity as

well as the risk of price discovery. In this study, the effect of liquidity is defined in-

directly via idiosyncratic properties of the firms and microstructure of the markets.

More specifically, idiosyncratic properties of the firms and microstructure of the mar-

kets can affect the liquidity of the assets as long as the effect is high enough.

[28], by employing turnover rate, that is number of shares traded as a fraction of the

number of shares outstanding, attempts to measure the effect of liquidity in stock

returns. It is concluded that the liquidity has a role in stock returns.

Different from other researches, [1] focuses on the systematic sources of liquidity

risk. In their study, liquidity level and liquidity risk are disaggregated in their role on

stock return. The model called liquidity adjusted CAPM in which the level effect of

expected liquidity is found limited compared to liquidity beta.

The study of [64] is another attemp to model liquidity as a factor in price formation

process in CAPM. They find that average stock returns are sensitive to the market

wide liquidity. [75] finds that liquidity premium, that is premium requested as assets

cannot be converted into cash immediately, is correlated with the market cycles.

[67] contributes to the literature of liquidity risk and its relationship with the asset

price. He separates the liquidity risk as variable and fixed and it turns out that variable

component of liquidity risk is priced in return. [34] attempts to present the relation-
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ship between liquidity and credit risk. Finding of this study indicates that liquidity

spread goes hand in hand with the probability of default.

[59], have been published which discuss the liquidity risk. They find that the non-

default components is somewhat related to the bond-specific illiquidity. Finally, [2]

tries to model liquidity in fixed asset market. His model tries to capture both default

and liquidity risk.

In the following section, our approach for modeling the value of an asset is discussed.

Our starting point is stochastic volatility with jump model which, as its name sug-

gests, has an jump and stochastic volatility part making it superior to other valuation

models.

3.3 Modeling the Value of an Asset

Though Black-Scholes model has been widely used both by academics and practi-

tioners, this log-normal process is not able to capture three emprical phenomena [77]:

• The asymmetric leptokurtic property of the distribution, that is, the return dis-

tribution has higher peak and skewed to the left and, as a characteric part of

leptokurtic distribution, heavier tail compared to normal distribution.

• The volatility smile

• The large random fluctuation

Considering these deficiencies, [61] proposes a new model by using same Black-

Scholes formula but with different approach. In Merton model, equity value of a

company, ET , is a call option on asset value,ST , of the same company and the strike

price is the debt, DT at maturity which can be presented as:

ET = max(ST −D, 0) (3.1)
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Based on this, value of an equity at time t turns out to be:

Et = StN(d1)−De−r(T−t)N(d2) (3.2)

where

d1 =
log(St/D) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)
(3.3)

d2 =
log(St/D) + (r − 1

2
σ2)(T − t)

σ
√

(T − t)
(3.4)

In both of these models as well as other models built on these, such as among others

KMV-Merton model, [39] and [13], volatility is assumed to be constant and jump

component is ignored. These led the models to be unable to capture the real dynamics

of asset prices.

Many researches have been conducted to improve the accuracy of the asset models.

Of them, [9]’s model known as stochastic volatility with jump-diffusion stands out

with its strong empirical properties. [49], [36], [31], [48] are some of the researchers

who advocate the empirical supremacy of the Stochastic Volatility with Jump model.

Thus, in this study, model proposed in [9] is employed in estimating the value of an

asset, so that volatility and asset price formation mechanism can be decomposed and

moreover this volatility process allows to capture the systematic volatility risk.

3.4 Stochastic Volatility with Jump Model

The stochastic volatility with jump model (hereinafter, SVJ) can also analytically be

tractable and takes the form of:

dSt
St

= µdt+
√
VtdW

s
t + dZt (3.5)

dVt = κv(θ − Vt)dt+ σv
√
VtdW

σ
t (3.6)
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where St is the asset price at time t, µ is the return, Vt is the volatility at time t,

σv is the volatility of the volatility, W s
t is the Wiener process of asset value, W σ

t is

the Wiener process of volatility, Zt is the compound poisson process, κ is the mean

reversion parameter, and θ is the long term volatility.

The log-normal distribution of jump size, Jt, takes the form of:

log(1 + J) ∼ N (log(1 + J̄)− 1

2
σ2
j , σ

2
j ) (3.7)

where J̄ is the mean of jump size. As accounting identity suggests market value of

equity and debt give assets value of a firm.

St = Et +Dt (3.8)

In words, the sum of market value of equity and debt of firm amounts to asset value

of a firm. Following [21], equity value of a firm can be modelled as follows. Because

it is known that,

DT = min(ST , F ) (3.9)

and

ET = max(ST − F, 0) (3.10)

So, default occurs when assets are less than the face value of debt, that is F. Thus Et

is modelled by call option pricing formula given as:

Et = StP1 − Fe−r(T−t)P2 (3.11)

where

P1 =
1

2
+

1

π

∫ ∞
0

Re(
e−iulog(D)Φ1(log(St), Vt, τ, u)

iu
)du (3.12)

P2 =
1

2
+

1

π

∫ ∞
0

Re(
e−iulog(D)Φ2(log(St), Vt, τ, u)

iu
)du (3.13)
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Φ1(log(St), Vt, τ, u) = exp(A1 +B1Vt + i(u− i)log(St)) (3.14)

exp(λτ(1 + µ)(u−i)+1/2[(1 + µ)i(u−i)eσ
2
j ((u−i)2i+ (i(u−i))2

2
) − 1]

(3.15)

− λτµi(u− i))

Φ2(log(St), Vt, τ, u) = exp(A2 +B2Vt + iulog(St)) (3.16)

exp(λτ(1 + µ)u+1/2[(1 + µ)iueσ
2
j (u2i+

(iu)2

2
) − 1]− λτµiu)

A1 =(u− i)(r − λJ)τ +
τκv(u− i)(−(iρσvu− κv))

σ2
v

− (
2κv(u− i)

σ2
v

) (3.17)

log((
−(iρσvu− κv)

γ1,v

) sinh(
γ1,vτ

2
) + cosh(

γ1,vτ

2
))

A2 =u(r − λJ)τ +
τκvu(−(iρσvu− κv))

σ2
v

− (
2κvu

σ2
v

) (3.18)

log((
−(iρσvu− κv)

γ2,v

) sinh(
γ2,vτ

2
) + cosh(

γ2,vτ

2
))

B1 =
−((u− i)2 + (u− i))

−(iρσv(u− i)− κv) + γ1,v(
cosh(γ1,vτ/2)

sinh(γ1,vτ/2)
)

(3.19)

B2 =
−(u2 + u)

−(iρσvu− κv) + γ2,v(
cosh(γ2,vτ/2)

sinh(γ2,vτ/2)
)

(3.20)

γ1,v =

√
(iρσv(u− i)− κv)2 − 2σ2

v((u− i)2i− 1

2
(u− i)2) (3.21)

γ2,v =

√
(iρσvu− κv)2 − 2σ2

v(u
2i− 1

2
u2) (3.22)

where λ is the compound Poisson process intensity, τ is T-t, and µ is r-λJ.
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3.5 Modeling Liquidity

The ultimate aim of this study is to extend the asset pricing and probability of default

estimation by incorporating liquidity dimension into the model. So, to do that, SVJ

model is thought to be a baseline model and it is extended by liquidity.

As is briefly discussed in the previous parts, neoclassical asset pricing models does

not allow for individual effect to incorporate. Among others, liquidity is one of them.

Recent empirical findings confirm that return of an asset increases with its illiquidity.

This finding also holds both for stocks and bonds [52].

In modeling liquidity as a risk factor, the model proposed by Cox-Ingersoll-Ross

(CIR)[26] model is employed, an extended version of Vasicek model. CIR model is

designed so as not to have negative short term interest rate that is the main drawback

of the Vasicek model.

One of the main motivation in this part is to consider liquidity in estimating credit

spread and asset valuation. As in known, an illiquid asset has higher cost of imme-

diacy as well as opportunity cost, CIR model, however, providing an approximation

considers these two costs. In this respect, [52] denotes that modeling liquidity via

CIR model assumes that cost arising from illiquidity of an asset changes stochasti-

cally over time to represent bid-ask spread as well as changing repurchase rates.

Furthermore, the square root process of CIR model excludes negative values and fi-

nally, mean reversion characteristics imply that the cost of illiquidity oscillates around

some long-run mean, that is κ. lt refers to liquidity augmented discount of illiquid

asset and the liquidity-based CIR model is given as follows:

dlt = κL(β − lt)dt + σ
√
ltdWt (3.23)

where Wt is Wiener process, κ is the mean reversion parameter, β is the long run

interest rate, lt is the pay-off realized due to the illiquidity, and σ is the volatility of

the time change.
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At this point, the liquidity dynamics, L(t), is given in equation 3.23:

L(t) =

∫ t

0

l(u)du (3.24)

Following [45], the solution of Integrated CIR (ICIR) model is based on the charac-

teristic function which is:

E(eiuL(t)) = AICIR(t, u)eBICIR(t,u)L(0) (3.25)

where

AICIR(t, u) =
e( κ

2
Lβt

σ2 )

(coshγLt
2

+ κL
γL

sinhγLt
2

)2κLβ/σ
2

(3.26)

BICIR(t, u) =
2iu

κL + γLcoth(γLt
2

)
(3.27)

γL =
√
κ2
L − 2σ2iu (3.28)

If u is subsituted for -i, illiquidity model by one factor ICIR model is obtained:

ΦL(t, u) = AICIR(t, u)eBICIR(t,u)L(0) (3.29)

Needles to say, including the liquidity dimension enhances the complexity of the

SVJ model. So, to deal with thise complexity, liquidity of an asset is determined

exogenously by Principal Component Analysis, PCA for short , and uses as an input

in the model.

3.5.1 Liquidity Augmented Stochastic Volatility with Jump Model

Thus far, SVJ and CIR model are separately derived but in this part, these two models

are combined so that Liquidity Augmented Stochastic Volatility with Jump Model,

LASVJ for short, is characterized.
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It is assumed that the liquidity characteristics is independent of the dynamics of zero

coupon bond which is treated as to be fully liquid. As it is discussed, the former part

is modelled by CIR model and the latter part is modelled by the celebrated Stochastic

Volatility with Jump Model.

In order to reconcile these two different models, characteristic functions of these two

models are used which are derived in the previous sections. The characteristic func-

tion of SVJ is given in equation 3.4 and the characteristic function of CIR model

is:

ΦL(κ, β, σ, l(0), u, t) = AICIR(t, u)eBICIR(t,u)L(0) (3.30)

where j=1,2. Following the assumption of independence of liquidity generating mech-

anism from the asset pricing process, the multiplication of these two characteristic

functions give us the following:

ΦLASV J(u) = exp(Aj +BjVt + iu log(S)) exp(λτ(1 + µ)u+1/2

[(1 + µ)iueσ
2
j (u2i+

(iu)2

2
) − 1]− λτµiu)AICIR(t, u)eBICIR(t,u)L(t)

(3.31)

Complete version of liquidity augmented characteristic function of SVJ can be found

in the Appendix. Equation 3.31 is one of the main equations that is used to estimate

asset price and probability of default which is the basis of credit spread estimation. In

order to get P1L and P2L, Φ1 and ΦL are integrating with respect to u over 0 to∞:

P1L =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(D)

iu
Φ1(u)ΦL(u)du

)
(3.32)

P2L =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(D)

iu
Φ2(u)ΦL(u)du

)
(3.33)

Now, we are ready to derive credit spread that is the main aim of following part.
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3.6 Credit Spread Measurement

Credit spread estimation is thought to be the most attractive application of the Liq-

uidity Augmented Stochastic Volatility with Jump Model. The reason is two-fold:

Firstly, credit spread is of considerable importance for investors and decision-makers

in the process of portfolio allocation and policy decisions. The empirical literature on

the credit spreads, to some extent, agrees on shape of the term structure but not on the

corporate bond yield spreads which has led researchers to exert effort on this field as

stated by [11].

Secondly, as [68] stresses studying credit spread makes sense due to high volatility of

the assets’ spread after 2007-2008 crisis, models lacking liquidity dimension cannot

properly estimate the real asset spread.

Thus, the application of LASVJ model to the credit spread is believed to shed some

light on the level of credit spreads and allow researchers to gain insights on the credit

spreads. At this point, it is worthwhile to derive the credit spread. To start with, let’s

define the value of corporate bond at maturity:

BT = ST I{ST<D} +DI{ST≥D} (3.34)

with I is the indicator function showing that at maturity the firm’s corporate bond

payment corresponds either to face value of debt, D or to residual value of the firm’s

assets, ST .

BT = min(ST , D) = D −max(D − ST , 0) (3.35)

Here, we have two conditions listed below:

• If ST ≥ D at maturity, put option is not exercised and investor receives D only.

• If ST < D at maturity, D − ST is what the investors get.

As is discussed, pricing of the corporate bond is reduced to European option frame-

work. Hence, discounting the right hand side of the equation 3.35, the price of risky
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corporate bond is defined as follows:

Bt = De−r(T−t) − P Put
t (3.36)

where Bt is the price of risky corporate bond at time t, r is continuously compounded

yield to maturity, T-t is time to maturity, D is the face value of the bond, P Put
t repre-

sents the payoff of the put option on asset value St with strike price D. P Put
t can be

denoted as follows:

P Put
t = De−r(T−t)(1− P Put

2 )− St(1− P Put
1 ) (3.37)

The relationship between face value of a corporate bond and the price of it is:

e−r(T−t)D = Bt (3.38)

Taking logarithm of both sides gives us:

log(e−r(T−t)D) = log(Bt) (3.39)

Substituting Bt in equation 3.39 by Bt in equation 3.36, we have the following:

log(e−r(T−t)D) = log(De−r(T−t) − P Put
t ) (3.40)

Eventually, the credit spread takes the form of:

st = − 1

T − t
log(1− P Put

t

De−r(T−t)
) (3.41)

3.7 Simulation

Thus far, the derivation of LASVJ model and its theoretical background is discussed.

In this section, we conduct simulation analysis based on the LASVJ model and com-

pare its performance with the celebrated SV and SVJ models. In comparison, bias
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and root mean squared error (RMSE) are employed as performance metric.

Bias =
1

n

n∑
j=1

|yj − ŷj| (3.42)

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (3.43)

The initial parameters are taken from [38] with µ = 0.034, κ = 13.93, θ = 0.004,

σv = 0.263, ρ = −0.7, F = 40, λ = 0.032, J=0.0029, σj = 0.3274, S0 = 50, L = 1.

The simulation is design in a way to test and compare the sensitivity of the models.

First, a simulation is run by using these initial values and it is called baseline. Then,

the values of σv, λ, J, and finally L are changed and simulation exercise is repeated

to examine the model performance. These changes in parameters basically amount to

financial risk that firms are likely to expose.

Table 3.1 presents the values of old and new parameters. As is said, four main param-

eters are changed for the sake of sensitivity analysis.

Table 3.1: Old vs. New Parameters
Parameters Old Values New Values

σv 0.263 0.004
λ 0.0032 0.010
J 0.0029 0.010
L 1 0.5

where σv is the volatility of the volatility in stochastic volatility part, λ is the intensity

of the jump process, J is the jump component, and L is the liquidity dimension.

In the Table 3.2, the performance of different models are reported based on bias and

RMSE. To do that, first, stock price simulated based on the Geometric Brownian

Motion and 1000 observation is obtained and first 700 observations are kept for train-

ing purpose and the last 300 are retained for the test purpose. Three models are

utilized for comparison that are Stochastic Volatility and Stochastic Volatility with

Jump Model, and Liquidity Augmented Stochastic Volatility Model.

Accordingly, firstly, the performance of the model is compared based on the base-
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line values of the parameters provided above. According to bias and RMSE metrics,

LASVJ model has both lower bias and RMSE indicating that this model outweighs

the others in terms of model stability. To be more specific, bias of LASVJ model is

1.17e-06 but the same metric is 6.52e-06 and 6.52e-06 for SV and SVJ models, re-

spectively. Similarly, LASVJ model has a RMSE of 2.04e-05 and it is 0.002593989

for SV and 0.002593996 for SVJ model. Comparing to the SVJ and SV models, the

smaller bias in the Liquidity Augmented SVJ model confirms that it yields more ac-

curate prediction performance. Another observation is that SVJ is slightly superior to

SV model based on the model performance in terms of bias and RMSE.

Before going into more detail, some points needs to be highlighted. [21] states that if

models are almost identical then it is quite natural to have greater uncertainty in more

complex models. However, if the data generating process of the asset is not identical,

the more complex model, by and large, prevails. In this regard, it is anticipated to

have lower bias and RMSE in LASVJ compared to SV and SVJ.

At this stage, the effects of changes in σv, λ, J and L are discussed. To begin with,

σv is altered from 0.263 to 0.004, LASVJ model performs better than the other two

models in that LASVJ has smaller bias and RMSE which are 3.036e-10 and 4.68e-08,

respectively. The difference between SVJ and SV occurs in decimal points and SVJ

has lower bias and RMSE.

λ parameter is changed from 0.0032 to 0.010 and this lead to a bias of 1.16e-06 and

RMSE of 2.04e-05 in LASVJ model. LASVJ model has lower bias and RMSE and

the difference of the other models are by a quite narrow margin.

Now, jump intensity parameter is changed to 0.010 and it turns out that Liquidity

Augmented SVJ model is again superior than other models of interest. The bias and

rmse of LASVJ model are 1.17e-06 and 2.04e-05, respectively.

Finally, lliquidity term, L, is the last parameter to discuss in the sensitivity analysis.

Again, LASVJ model having lower bias and RMSE shows better performance com-

pared to SV and SVJ models. In a nutshell, the stability of LASVJ Model outperforms

other models in terms of bias and RMSE.
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Table 3.2: Model Performance Comparison
Parameters Criteria SV Model SVJ Model LASVJ Model
Baseline Bias 6.5201980e-06 6.5202132e-06 1.17683054e-06

RMSE 0.0025939 0.0025939 2.0470606e-05
σv=0.004

Bias 6.5162040e-06 6.5162068e-06 3.0362974e-10
RMSE 0.0025933 0.0025933 4.6808096e-08

λ = 0.010

Bias 6.5242445e-06 6.5242919e-06 1.1697261e-06
RMSE 0.0025973 0.0025972 2.0420319e-05

J = 0.01

Bias 6.5201980e-06 6.5202510e-06 1.1750408e-06
RMSE 0.0025939 0.0025939 2.0482782e-05

L = 0.5

Bias 6.5201980e-06 6.5202132e-06 1.1768305e-06
RMSE 0.0025939 0.0025939 2.0470606e-05

3.8 Empirical Analysis

After running simulation analysis, an empirical analysis based on real data is con-

ducted to assess and compare the LASVJ model’s ability in credit spread and proba-

bility of default prediction. In the calibration analysis, some selected companies listed

in Dow Jones Industrial Average (Dow Jones) Index are used. The data is gathered

from The Center for Research in Security Prices (CRSP) for the year of 2012. The

list of companies can be found below:

Table 3.3: Companies
3M General Electric

Microsoft Chevron Corp.
Intel Home Depot

Exxon Mobil Wal-Mart
McDonald’s AT&T

More specifically, in the empirical analysis part, firstly, it is aimed to estimate the

model parameters. To do that, real credit default spread (CDS) data and least square

optimization technique are utilized. CDS is a financial instrument designed to transfer

credit risk from one part to another. A CDS contract involves two parties that agree to

a contract that terminates at either maturity or credit event, whichever occurs earlier.
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In CDS contract setting, the protection buyer makes a regular payments, that is the

premium leg, to the protection seller until the earlier of maturity and credit event [65].

Figure 3.1: Credit Default Spread and Operations

As [21] states that CDS is appealing in modeling in that it tends to efficiently react to

reflect in changing credit conditions. CDS, by its nature, is a pure pricing of default

risk of the underlying company. Eventually, cds data is available publicly.

Before moving on, the descriptive statistics of 5-year credit default spread is provided

in the Table 3.4 This analysis includes Dow Jones listed companies and, due to CDS

data availability, ten companies are included in this study. Average of ten Dow Jones

listed companies CDS mean are taken based on the maturities. According to the

Table, mean values of CDS increase along with the maturities which is quite intitutive

in that as maturity increases, CDS raises, too. More specifically, if a company sells an

asset with a face value of $1000 and a 10-year maturity, it implies that a company is

agreeing to pay its debt back the $1000 at the end of the 10-year period. As the issuer

cannot guarantee to pay its debt back, all risks are on the investor which increases the

CDS over maturity.

Standard deviation of the CDS raises ove maturity as well because the value of CDS

becomes more volatile in longer maturities. Thus, as anticipated, minimum and max-

imum values of CDS behave in a similar fashion.

In the following part, market liquidity is attempted to estimate based on the Principal

Component Analysis (PCA) following [60] and cross-sectional mean of the estimated
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Table 3.4: Descriptive Statistics on CDS
6 month 1 year 2 year 3 year 4 year 5 year 7 year 10 year

Mean 1132.31 1503.31 2393.71 3155.635 3907.46 4662.91 5747.60 6746.89
Std. Dev. 769.11 1033.72 1901.31 2396.08 2630.31 2844.56 2854.23 2919.65
Minimum 500.07 646.03 1068.36 1533.22 2072.57 2595.91 3693.85 4584.20
Maximum 3166.89 4261.84 7638.48 9788.65 11104.83 12380.73 13398.19 14467.34

liquidity suggested by [23]. In order to estimate the liquidity, five different bid-ask

spreads are used which are Relative Bid Ask Spread, Buyer Initiated Bid Ask Spread,

Seller Initiated Bid Ask Spread, Quoted Spread, and Effective Spread. Based on these

bid ask spreads, PCA is conducted. As for the other liquidity measure proposed by

[23], the cross-sectional average of these five bid-ask spreads is calculated.

3.8.1 A Brief Introduction to Principal Component as Marketwide Liquidity

Measures

Measuring the liquidity has been long on the agenda in finance circle. [20] defines

the market liquidity as "the ease with which it is traded" while funding liquidity is

"the ease with which investors can obtain funding".

Here, in this study, the focus is on the market liquidity that varies between different

assets requiring an additional premium to invest in asset with low level of liquidity.

This, in turn, leads to lower asset price.

Liquidity is known as a latent variable, thus, it needs to be proxied to estimate. There

have been several attempts to measure the different dimensions of liquidity. Of them,

[60]’s and [23]’s approach are stood out. In[60]’s way of estimating liquidity, PCA

is employed based on the most common bid ask spreads. However, [23], after calcu-

lating bid ask spread, simply calculates the cross-sectional average of the related bid

ask spread to represents the market liquidity.

All liquidity proxies account for different aspects of liquidity. To take into account

all these aspects and to extract information across these proxies, PCA is widely rec-

ognized approach. More precisely, each principal component represents a liquidity

factor. Following [60], five liquidity measures are used in this study. These liquidity

measures are standardized and put in the 5 x T matrix, where T is the time horizon in
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our data.

As it is mentioned above, in applying PCA, five liquidity proxies are chosen to repre-

sent market liquidity. These are relative bid ask spread, buyer and seller initiated bid

ask spread, quoted bid ask spread, effective bid ask spread.

It is worth discussing the motivations in selecting these bid ask spread to estimate

the market-wide liquidity. Several celebrated studies (see, [18] Brennan and Subrah-

manyam, 1996 and [58]) prefers relative bid ask spread, a proxy of the trading cost

aspect of liquidity, in estimating liquidity. Moreover, [3] states that relative bid ask

spread support the predictions of the theoretical model. Thus, relative bid ask spread

has gained remarkable attention among researchers and practitioners.

[44] splits bid ask spread into three components: Order processing components1, in-

ventory component2, adverse-selection3. Morever, they stress that the most crucial

issue in estimating of the bid-ask spread across these three components is the distinc-

tion among the adverse-selection and inventory components. To do that, difference

between quoted bid ask spread and effective spread is highlighted.

The reason of making distinction between buyer-initiated and seller-initiated bid ask

spread lies in the asymmetry between ask and bid components of spread about the

efficient price as a function of the order flow. That is to say, an unanticipated excess

of buyers relative to sellers tends to increase the ask price more than the bid price or

vice versa [78].

Table 3.5: Liquidity Measures
Liquidity Measures Formulas

Relative Bid Ask Spread (PA − PB)/PM
Buyer Initiated Bid Ask Spread (P − PM)/PM
Seller Initiated Bid Ask Spread (PM − P )/PM

Quoted Spread PA − PB
Effective Spread 2(|P − PM |)

where P is the transaction price, PA is the ask price, PB is the bid price, and finally

PM is the mid price, that is (PA + PB)/2

1 A cost borne by market makers as they deliver market-making services.
2 this risk is on the market makers incurring the risk of undesired inventory.
3 This risk arises due to asymetric information the agent.
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Table 3.6 exhibits the descriptive statistics of liquidity measures utilized in this study.

It is denoted as nominal values on a daily basis. The sample data covers companies

listed in Dow Jones and spans the period of 04/01/2010-12/29/2017. Results reveal

that quoted bid ask spread has the highest mean and standard deviation that is simply

the difference between ask and bid quotes. Additionally, buyer and seller initiated

spread have the lowest spread in that these two spread is calculated as the difference

between transaction price and mid-price relative to mid-price. These findings are

quite intuitive in that quoted bid-ask spread and effective bid ask spread have no

denominator that makes it larger in value compared to other liquidity indicators.

Table 3.6: Descriptive Statistics
Statistics Rel. Buyer Init. Seller Init. Quoted Effective Cross-Section

Count 2013 2013 2013 2013 2013 2013
Mean 0.0156 0.0023 0.0020 1.2771 0.7072 0.3972

Std. Deviation 0.0041 0.0016 0.2980 0.6558 0.6136 0.4815

In the Table 3.7, the correlation among the bid ask spreads used as liqudity measure

are reported. It is readily observable that effective bid ask spread and quoted bid ask

spread are highly correlated. The correlation coefficient among these measures is

around %99 telling that there is almost one-to-one relationship between them. Con-

versely, the correlation coefficient of nearly %23.5 between quoted bid ask spread

and buyer iniatiated bid ask spread is the lowest correlation.

Table 3.7: Correlation Between Liquidity Measures
Rel. Buyer Init. Seller Init. Quoted Effective

Rel. 1.000000 0.808600 0.831070 0.273788 0.291015
Buyer Init 0.808600 1.000000 0.477220 0.235451 0.277372
Seller Init 0.831070 0.477220 1.000000 0.250365 0.289734

Quoted 0.273788 0.235451 0.250365 1.000000 0.989462
Effective 0.291015 0.277372 0.289734 0.989462 1.000000

In the below, the plots of the liquidity measures are given and it is observable that

some measures follow similar pattern. For instance, relative bid ask spread, buyer

and seller initiated spreads have same spikes at around 2014 however quoted bid ask

spread, effective bid ask spread and cross sectional mean proposed by Chordia have

spike at around 2011.

44



Figure 3.2: Bid-Ask Spreads Plots

PCA does not ignore the characteristics of the variables, instead, it shrinks the di-

mensionality which can be problematic. Principal components are the output of the

dimension reduction process. Principal components account for the variation of the

original data.

In the following figure, the biplot of obtained from PCA are exhibited. This figure

basically tells us that dimension 4 and 5, corresponding the quoted and effective bid

ask spread, have strong influence on Component 1 while, on the other hand, relative

bid ask spread, buyer and seller initiated spread have something to say on Component
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2. Accordingly, first two components are used to represent the market-wide liquidity.

Figure 3.3: Biplot

After obtaining the bid ask spreads, they are demeaned, standardized, and put in a

matrix with 5xT, where T is the days spanned in this analysis. As the the spreads are

standardized, it is higly likely that some of the spreads turn out to be negative.

The other approach used to measure liquidity is proposed by [23]. This approach

allows us to take advantage of the bid ask spreads as a liquidity measure by simply

taking the cross-sectional means of them. In this method, market-wide liquidity can

be estimated as:

LM , t =
1

N

N∑
j=1

Lj, t (3.44)

where Lj,t is the liquidity of the individual stock, LM,t is the market-wide liquidity,

and N is the number of stock considered.

After applying necessary preprocessing steps including standardization and demean-

ing, PCA can be employed. In the empirical application part, asset value of each

stocks considered is predicted after optimizing the paramaters. Based on the asset

values of the individual stocks, probability of default and credit spread are estimated.
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3.8.2 Parameter Estimation

In this section, parameter estimations of ten Dow Jones listed companies are done. To

do that, 5-year CDS data is used and the monthly sample period is 2012/01-2012/12.

Data is extracted from Thompson Reuters database. As for the balance sheet informa-

tion, the face value of debt of the companies together with the total asset and equity

values are obtained from the Wharton Research Data Services (WRDS) CRSP. In

order to calculate the face value of debt, total liabilities is employed. In the litera-

ture, lower bound of total liability, that is current liabilities and 0.5 long-term debt is

prefered but, in this case, since the huge difference between liabilities and total asset

might prevent convergence, total liability is chosen to proxy the face value of debt. In

WRDS database, the equity value can be computed as the multiplication of closing

price of equity by number of outstanding share of the same equity. The initial param-

eters used are θ, κ, σv, λ, σj , J, L are 0.05,1.00, 0.2, 0.32,0.08,0.02,0, where J and L

are jump and liqudity parameters.

In the Table 3.8 the parameter estimation of the ten selected Dow Jones listed com-

panies are provided. These parameters are the input to the asset valuation model

which is used to estimate the probability of default. The parameters estimated are

σt, κ, θ, σv, ρ, σj, J, λ.

Table 3.8: Parameter Estimation
Company σt κ θ σv ρ σj J λ

3M 0.016112683 1.000272707 0.003489919 0.224728369 0.698875723 0.248868945 0.106214472 0.265144209
Microsoft 0.006488108 1.021006035 -0.000771190 0.219509451 0.733171540 0.272756408 0.087935872 0.289219838

Intel 0.000500736 1.021773396 0.008107264 0.233721833 0.711406355 0.271229446 0.073795528 0.277627350
Exxon Mobil 0.006419183 1.019376067 0.001416090 0.228006643 0.752148963 0.253924404 0.094195244 0.277233655

General Electric 0.011317486 0.052301388 0.265762986 0.487116614 0.169196389 0.657656243 0.004255160 0.015118124
Chevron Corp. 0.002725939 1.023725809 0.003576732 0.220136924 0.736314112 0.255986654 0.083534668 0.286792819
Home Depot 0.001659094 1.010599729 0.007149109 0.233506999 0.721086937 0.251701329 0.070883688 0.324807601

Wal-Mart 0.008064077 1.010576117 0.007153164 0.224478982 0.717864356 0.256004934 0.080585424 0.284309271
McDonald’s 0.003727153 0.696718616 0.031214366 0.041140789 1.262384840 0.236662914 -0.053848939 0.091828159

AT&T 0.002758863 1.014970736 0.005310352 0.236865799 0.731147245 0.258661088 0.070322521 0.295225581

In the Figure 3.4, based on the initial parameters of 3M company, the behavior of

credit spread against maturity is provided. Accordingly, as time to maturity increases,

credit spread react almost one-to-one up to a certain maturity. Around 7 years, the

speed of increase in credit spread diminishes.

To compare, the probability of default is estimated based on the LASVJ and SVJ

models. The probability of default for SVJ model is estimated via following formula:
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Figure 3.4: Credit Spread vs. Time to Maturity

P2 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)

iu
Φ2(u)du

)
Finally, A and B are defined in the equation 3.26 and 3.27, respectively. The proba-

bility of default for LASVJ model is given as follows:

P2L =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(K)

iu
Φ2ΦL(u)du

)

Based on the above-given formulas, the probability of default for LASVJ and SVJ

are estimated and the results are shown below in the Table 3.9. The probability of

default after including the liquidity dimension increases considerably. For instance,

the probability of default for General Electric is 26.6% in LASVJ model but it de-

creases to 2.3% in SVJ model. In a similar vein, Chevron Corporation has 0.029% in

LASVJ model but this probability shrinks to 0.010% in SVJ model. LASVJ reveals

that AT&T, a well-known telecomunicaton company, has a probability of default of

1.5% whereas it is only 0.46% in SVJ model.

The differences between probability of defaults are even exaggerated over maturity.

At 10-year maturity, for instance, the difference between probability of defaults of

3M is nearly 63%. Except for General Electric, the difference of the probability of
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default of the companies are higher in LASVJ and SVJ models over maturity.

Thus, in all companies, the probability of default are higher in LASVJ model than

that of SVJ model confirming the importance of the liquidity dimension in estimation

probability of default. These differences in probability of defaults suggest that models

ignoring liquidity dimension underestimate the probability of default which in turn

lead to some adverse situation such mispricing and deteoriorated credit ratings.

Table 3.9: Probability of Default in LASVJ Model
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 0.001137604 0.010861888 0.241979034 0.620303886 0.740949856 0.781511690 0.780718685 0.715481153
Microsoft 0.000961137 0.008054338 0.086346236 0.266602598 0.385459483 0.450054487 0.498078528 0.480062040

Intel 0.0001244475 0.0014920139 0.0289789722 0.1781420032 0.3709948705 0.4791671698 0.5447811738 0.5033872499
Exxon Mobil 0.00184648 0.01493410 0.26312577 0.65852602 0.76761206 0.79685080 0.79871468 0.72246298

General Electric 0.269830478 0.881924604 0.956994030 0.966605545 0.968500319 0.967264748 0.958476634 0.928617944
Chevron Corp. 0.0002969209 0.0034097753 0.0606221646 0.3334666667 0.5364702972 0.6193498505 0.6501774805 0.5926497511
Home Depot 0.008399570 0.048348369 0.616931176 0.806128643 0.854171533 0.866826150 0.860736044 0.789334395

Wal-Mart 0.012451694 0.075341447 0.747696469 0.857179443 0.890202411 0.899591466 0.886677872 0.820258164
McDonald’s 0.004467926 0.024144307 0.463354254 0.692410162 0.762177119 0.780950856 0.762176808 0.671397189

AT&T 0.015021209 0.075432610 0.772958396 0.868992723 0.897573912 0.906014637 0.891617653 0.822169228

Table 3.10: Probability of Default in SVJ Model
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 0.000204138 0.000673440 0.002553724 0.005974097 0.011269151 0.018705058 0.033442645 0.082231807
Microsoft 0.000219652 0.000661276 0.001890162 0.002221516 0.002465093 0.003156215 0.005381695 0.034693204

Intel 0.00006245471 0.00010669877 0.00052839569 0.00144068568 0.00301343700 0.00538840657 0.01555679828 0.03407392408
Exxon Mobil 0.00035967 0.00105738 0.00361927 0.00793746 0.01424813 0.02157772 0.05081320 0.08966156

General Electric 0.023192135 0.059300251 0.127867534 0.199051766 0.271326652 0.341564791 0.464914476 0.593031195
Chevron Corp. 0.0001019413 0.0001939191 0.0008920542 0.0022785364 0.0045539789 0.0077921340 0.0123060952 0.0410178295
Home Depot 0.002124143 0.005567631 0.016862873 0.034164676 0.056981096 0.082620646 0.145728562 0.246155841

Wal-Mart 0.003662867 0.009113872 0.025237681 0.048025536 0.076627642 0.110038966 0.173176672 0.302109014
McDonald’s 0.001195598 0.002891324 0.008476639 0.017414801 0.032541682 0.053195473 0.097292259 0.151649908

AT&T 0.004675550 0.010942910 0.028526794 0.052100009 0.080544218 0.114393506 0.172183715 0.284227644

The estimation of probability of default is an intermediate step in calculating the credit

spread estimation. Credit spread estimation is conducted for different maturities. The

credit spread is estimated via the formula provided in equation 3.41.

Similar to estimation of probability of default, this analysis also starts from the 6-

month maturity and extends to 10-year maturity. As theory suggests, the longer the

maturity, the larger credit spread is. For example, in LASVJ model, 3M has credit

spread of 9.10 for 6-month maturity and of 337.14 for 10-year maturity. Similarly,

credit spread of Exxon Mobil is 14.77 and 341.06 for 6-month and 10-year maturity,

respectively.

After estimating probability of default, credit spread can be predicted. In the Fig-

ure 3.5, credit spread of 3M company estimated by LASVJ model, raises quickly to

a level of 600, then, it becomes declining as the maturity increases. This findings

conforms to the finding of [56].
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Table 3.11: Credit Spread Estimation with LASVJ
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 9.102904344 43.542208761 509.009905238 950.602031926 878.791898142 749.691434195 534.834811751 337.141906424
Microsoft 7.690572413 32.269359635 175.745239176 375.889357561 418.632981289 396.955035883 317.404681025 213.223933625

Intel 0.995604798 5.969837389 58.296475258 246.410020066 401.589841506 425.562026491 351.126590234 224.838612093
Exxon Mobil 14.77725832 59.91555483 556.05635860 1019.08135826 916.97490406 767.62344655 549.86671244 341.06202296

General Electric 2284.26260968 4350.53315972 2412.79144797 1629.35618730 1225.10823297 978.47369235 690.74229344 464.33520918
Chevron Corp. 2.375508328 13.648410941 122.738552799 477.207946734 603.867523642 569.346381216 430.287189677 270.575757256
Home Depot 67.309699868 195.287992402 1416.939662610 1297.580262574 1045.117117425 851.530926215 602.919140109 379.408194300

Wal-Mart 99.862452475 306.000204500 1776.797531500 1399.587050562 1100.455704387 892.063602919 625.707493433 397.650619411
McDonald’s 35.775389675 97.046611449 1024.932596616 1080.987849667 909.144049066 749.038834269 519.510629822 312.738547996

AT&T 120.532143211 306.376192996 1849.404214016 1423.643155247 1111.929865425 900.106668737 630.088301776 398.788979788

Figure 3.5: Credit Spread vs. Time to Maturity Based on LASVJ

Likewise, the credit spread is estimated for SVJ model. Due to the lack of liquidity

dimension, SVJ model is assumed to have lower credit spread. Table 3.6 confirms the

initial assumption by producing lower credit spread compared to LASVJ. To compare,

at 6-month maturity, the credit spread of Microsoft is 1.75 in SVJ model whereas it is

7.69 in LASVJ model. Besides, the SVJ suggests a credit spread of 13.97 and LASVJ

estimates a credit spread of 213.22 for the same company at 10-year maturity.

By and large, the difference between credit spreads are even higher over maturity

between LASVJ and SVJ models implying that disregarding liquidity dimension un-

dermines the sound functioning of the financial markets. To be more specific, aside

from General Electric, Home Depot, and Wal-Mart, the credit spread grows at faster

pace over maturity. This contradict with the claim of [34] whose idea based on the the

positive correlation between liquidity and credit risk, that is to say, the relationship
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between liquidity and credit risk tends to be a decreasing function of time to maturity.

Table 3.12: Credit Spread Estimation with SVJ
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 1.633172229 2.694121334 5.110058433 7.974995281 11.294626744 15.020307772 19.239052764 33.445851507
Microsoft 1.757290310 2.645453807 3.781753416 2.963338472 2.466309581 2.526567008 3.078568858 13.974471313

Intel 0.499643911 0.426804201 1.056903073 1.921467933 3.015254617 4.315377533 8.917373037 13.723304904
Exxon Mobil 2.87755094 4.23039553 7.24377498 10.60012240 14.28888252 17.33710701 29.33525869 36.52356074

General Electric 186.40303599 240.05951323 262.50703248 276.56472715 287.21058703 293.81442640 293.93269586 270.77576333
Chevron Corp. 0.815546720 0.775706340 1.784426742 3.039433782 4.558131735 6.243442188 7.049418850 16.543219366
Home Depot 17.000368968 22.295359703 33.840002828 45.867026043 57.640504215 67.213380085 85.799172080 103.653458290

Wal-Mart 29.324426003 36.522101280 50.731865644 64.657094413 77.826563439 90.027339572 102.552532970 128.792474006
McDonald’s 9.567075167 11.571987540 16.982084185 23.300985669 32.755330020 43.015667011 56.706292971 62.577738862

AT&T 37.439423260 43.867720109 57.381596580 70.200737682 81.870251116 93.674689435 101.943029212 120.689695826

In the Figure 3.6, unlike others, the speed of increase of credit spread is getting even

larger as maturity increases based on the SVJ model.

Figure 3.6: Credit Spread vs. Time to Maturity Based on SVJ

At this point, same analysis is done via the approach of [23]. From this starting point,

[23] investigate total market bid-ask spreads, depths and transaction movements since

there is, back then, no study examining why aggregate market liquidity changes over

time . They come up that market-wide liquidity and trading movements were influ-

enced by a variety of factors.

In order to fully capture the market-wide liquidity, differently from the Principal
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Component Analysis, the analysis proposed by [23] is employed that is based on,

given a measure of bid ask spread, daily liquidity given in equation 3.44 which is

called cross-section averaging.

The probability of default and credit spread estimation are conducted based on the

cross-section averaging and the result is given in the Table 3.13 and Table 3.14.

Table 3.13 exhibits the estimation result of probability of default and similar to the

finding based on the PCA, the findings of the cross-sectional averaging approach con-

firms that the probability of default in LASVJ model is higher than that of SVJ model.

Home Depot, for instance, has a probability of default of 0.85% in LASVJ and 0.21%

in SVJ models at 6-month maturity. At 10-year maturity, the probability of default

for the same company is 96% and 24% in LASVJ and SVJ models, respectively. Ad-

ditionally, in LASVJ model, McDonald’s has a probability of default of 0.4% and

92% at 6-month and 10-year maturity and, in the SVJ model, it is 0.2% and 15% at

the same maturities. Hence, same conclusion can applies here which is, by and large,

the difference between probability of default is getting larger among LASVJ and SVJ

over maturity.

Table 3.13: Probability of Default in LASVJ Model
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 0.001127131 0.011065507 0.275836714 0.768488635 0.870609712 0.915550670 0.944089405 0.948163168
Microsoft 0.000000183 0.001471758 0.235920469 0.557912261 0.716661834 0.792509658 0.850784420 0.860686075

Intel 0.00012029976 0.00150994844 0.03165547476 0.21834700147 0.54664343888 0.70457441082 0.81337676853 0.83864475757
Exxon Mobil 0.001830874 0.015235566 0.292000040 0.811666962 0.890924399 0.926843505 0.953344464 0.953105701

General Electric 0.258645552 0.898371222 0.966718619 0.977795126 0.982478691 0.984936600 0.986814640 0.985690511
Chevron Corp. 0.0003021356 0.0036774733 0.0675567463 0.5042803456 0.7645860076 0.8473221055 0.9020516864 0.9128029328
Home Depot 0.008590501 0.051298915 0.758293408 0.888327577 0.937618589 0.956678757 0.970341845 0.966448668

Wal-Mart 0.012707572 0.075299693 0.819313561 0.918307306 0.954265700 0.968667618 0.977204136 0.973813976
McDonald’s 0.004564990 0.024320930 0.561814921 0.817508731 0.893158223 0.921247558 0.935976312 0.923722661

AT&T 0.004675550 0.010942910 0.028526794 0.052100009 0.080544218 0.114393506 0.172183715 0.284227644

In Table 3.14 , credit spread estimation with LASVJ models is provided. Analysis

based on cross sectional averaging yields similar result with the previous analysis

conducted based on the PCA. To be more specific, the estimated credit spreads in

LASVJ model are higher than those in SVJ model for every company considered

in this study. Other than the General Electric whose estimated credit spread poses

thread to its financial sustainability, the rest of companies are deemed to be low risky

companies.

In cross-sectional averaging method, the difference between estimated credit spread

gets larger over maturity which is another way of saying that the difference in es-
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Table 3.14: Credit Spread Prediction with LASVJ
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 9.019084099 44.360275810 584.549691363 1224.320278230 1070.212109007 912.107621445 677.471094204 476.851449387
Microsoft 56.431100207 154.797846679 1551.161533617 1412.483980872 1146.670968734 949.550659766 693.592146181 481.643590235

Intel 0.962421201 6.041618465 63.715193183 304.635174122 616.853814158 662.097282001 562.231842385 408.657051484
Exxon Mobil 14.652354482 61.128721543 621.018108280 1308.496859872 1101.577196110 926.413248429 685.994072841 480.041489090

General Electric 2184.207686056 4452.696344795 2444.402999517 1653.769577558 1248.031114476 1001.666891410 717.248276141 501.331179871
Chevron Corp. 2.417230697 14.720722734 136.972627214 750.953391826 912.611836449 827.787586412 639.386042151 454.321122128
Home Depot 68.842355084 207.330173220 1807.126496283 1463.394399282 1175.198822034 964.707972553 701.780642115 488.704554016

Wal-Mart 101.919829573 305.827999501 1985.442136109 1525.983776886 1201.979147739 980.305074586 708.203860648 493.518903473
McDonald’s 36.553306959 97.760019434 1272.693614540 1320.050462160 1105.050271664 919.311581135 670.041348802 461.224779517

AT&T 122.913460638 308.587097586 2050.713340903 1543.671559686 1209.648259529 984.880553583 710.382339916 494.630676492

timated credit spread between LASVJ and SVJ models is an increasing function of

maturity. Again the sole exception to this is General Electric.

In this method, the behavior of credit spread for 3M company is quite similar to

previous findings in that credit spread raises in a fast way up to nearly 3-year maturity

then it starts to decline after this point.

Figure 3.7: Credit Spread vs. Time to Maturity Based on LASVJ in Cross-Sectional
Averaging Method

3.8.3 Credit Spread In the Presence of Crisis

The effect of the liquidity can be much more pervasive and observable during eco-

nomic turbulence period in which bid ask spread might be wildly volatile. The mort-

gage crisis hit hard the global economy between 2007-2009 is a vivid example of this
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kind of situation. Hence, to fully capture the liquidity effect on asset pricing as well

as credit spread, liquidity estimation analysis is extended as to cover the mortgage cri-

sis period. With this aim, same five difference bid ask spreads are calculated for this

period. To be more precise, the period declared by National Bureau of Economic Re-

search. Accordingly, the crisis starts at 2007/12 and ends at 2009/06. So, the analysis

spans this whole period.

Table 3.15 shows the descriptive statistics about the liqudity measure, that is bid ask

spread. Similar to findings for the period of 04/01/2010-12/29/2017, this statistic im-

ply, as expected, that quoted and effective bid ask spread have higher mean values

indicating that these two spreads dominate that liquidity measure. The standard de-

vation showing the volatility of the measures are high in these two spreads as well

meaning that these two measure spans wide range.

Table 3.15: Liquidity Measures

Statistics Rel. Buyer Init. Seller Init. Quoted Eff. Cross-Section
Count 378 378 378 378 378 378
Mean 0.0156 0.00235 0.0019 1.5082 0.8550 0.4766

Std. Dev. 0.0041 0.0037 2.6757 1.8965 1.3450 0.3815

Table 3.16 gives the correlation table showing the commonality between bid ask

spreads. Accordingly, focusing on the correlation above 90%, the correlation coeffi-

cient between quoted bid ask spread and effective bid ask spread and seller initiated

bid ask spread and relative bid ask spread come forward. That is to say, the corre-

lation coefficient between quoted bid ask spread and effective bid ask spread is 98%

and it is 93% for seller initiated bid ask spread and relative bid ask spread. The rest of

the correlation is lower than 90% level but they are still high as the lowest correlation

coefficient is nearly 28% between quoted bid ask spread and seller initiated spread.

Table 3.16: Correlation Between Liquidity Measures During Crisis
Rel. Buyer Init. Seller Init. Quoted Eff. Bid Ask

Rel. 1.000000 0.887999 0.933357 0.368576 0.391670
Buyer Init. 0.887999 1.000000 0.743946 0.399085 0.449743
Seller Init. 0.933357 0.743946 1.000000 0.281591 0.332334

Quoted 0.368576 0.399085 0.281591 1.000000 0.981629
Eff. 0.391670 0.449743 0.332334 0.981629 1.000000
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As discussed before, liquidity during crisis becomes much more important and there-

fore its effect turns out to be more visible. As a stylized fact, it is expected to

have even higher difference in probability of default as well as credit spread between

LASVJ and SVJ models at the time of crisis.

The parameters estimated during this period and based on these parameters, proba-

bility of default and then credit spread are predicted.

The probability of default estimations are given in the Table 3.17. The estimated

probability of default is higher for all companies in LASVJ model compared to SVJ

model. To interpret, General Electric seems to have highest likelihood of default but

conversely Intel has the lowest. Compared to the probability of default presented

in the Table 3.9, except for Wal-Mart and McDonald’s, the probability of default is,

unsurprisingly, found higher during crisis at 6-month maturity. For instance, Gen-

eral Electric’s estimated the probability of default is 50% in the crisis period which

is around 2.3% between 04/01/2010-12/29/2017. In addition to that, Intel has an

estimated probability of default of 0.17% according to LASVJ model whereas it is

0.0062% in SVJ model.

Thus, in LASVJ model, the estimated probability of default is even much higher

during crisis period compared to SVJ model estimation. However, this effect vanishes

over maturity along with the diminishing effect of crisis. In this regard, as of 1-year

maturity, the estimated probability of default is higher during post-crisis period.

Table 3.17: Probability of Default in LASVJ Model
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 0.001599927 0.017763688 0.393328329 0.627324198 0.684843496 0.685059213 0.611355653 0.433218869
Microsoft 0.008994660 0.057005526 0.609359841 0.753102894 0.772346116 0.753593117 0.669829525 0.459890276

Intel 0.00017548507 0.00259769512 0.06814588054 0.27131929611 0.39179339403 0.43347881807 0.41323272293 0.29670669078
Exxon Mobil 0.002542180 0.023132372 0.428094434 0.656213869 0.705716875 0.696547042 0.627441641 0.438681440

General Electric 0.507424633 0.918957531 0.960994698 0.962292197 0.955665384 0.943398365 0.900890117 0.780960121
Chevron Corp. 0.0004278782 0.0059412395 0.1516054836 0.4132557680 0.5169580945 0.5391649958 0.4907641606 0.3460235309
Home Depot 0.010845199 0.083644521 0.679305159 0.792492473 0.808739981 0.792740409 0.727716605 0.547752428

Wal-Mart 0.012153099 0.081687453 0.600643851 0.718221274 0.731785703 0.710849961 0.613648485 0.398245948
McDonald’s 0.004355294 0.025688757 0.362092372 0.525776568 0.560683477 0.547231964 0.461933429 0.286057485

AT&T 0.018552634 0.206515913 0.794846653 0.855591027 0.858728121 0.842721880 0.769590449 0.583225620

In parallel with the probability of default estimation, credit spread prediction is ex-

pected to be higher during crisis at early maturities. Naturally, all companies have

higher credit spread prediction in comparison with the period without crisis.

Figure 3.8 suggests that, during crisis, credit spread finds its peak at 2-year maturity,

then the speed of this increase gets slower and after 4-year maturity, credit spread
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Table 3.18: Credit Spread Prediction with LASVJ During Crisis
Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years

3M 12.803517211 71.308392702 855.907184050 963.074711426 800.297599094 640.475777911 400.616338675 190.298344127
Microsoft 72.087034240 230.662016739 1396.876257204 1194.832000572 923.815950468 717.460528939 445.545162198 203.287138977

Intel 1.403929797 10.396182641 138.183766724 382.936446930 426.132738942 380.848253623 258.106601062 126.337532100
Exxon Mobil 20.347789016 92.960231393 939.109924129 1014.898648950 829.212907908 653.175189046 412.835899749 192.944876281

General Electric 4537.255514270 4582.063116841 2425.772159756 1619.992879467 1204.243959572 947.571452488 638.347972493 374.524807024
Chevron Corp. 3.423318292 23.793241575 312.794108538 602.285547408 579.146875470 485.840653647 312.194659248 148.975077461
Home Depot 86.950326891 340.303273958 1585.362615562 1270.853370410 977.042267745 762.802449919 491.459947564 247.309422117

Wal-Mart 97.461879264 332.207297378 1373.878860932 1128.928607086 865.801416035 669.100126636 402.351690917 173.5184729958
McDonald’s 34.872735279 103.286603325 782.315624722 787.052032178 634.887821268 494.085720003 291.841618083 121.515862264

AT&T 148.974534300 862.186350893 1913.178428571 1396.365663226 1052.048136828 822.228324473 525.618023604 265.646969221

shrinks very fastly. Thus, crisis period present another characteristics between credit

spread and time to maturity.

Figure 3.8: Credit Spread vs. Time to Maturity Based on LASVJ During Crisis

In the following part, cross-sectional averaging method is applied to the crisis period.

The probability of default estimation in LASVJ and SVJ models based on the param-

eters obtained are provided in the Table 3.8. Differently, the estimated probabilities

of default is higher in LASVJ model than that of SVJ model for all companies at

6-month maturity. Moreover,similarly, the difference between probability of default

in LASVJ and SVJ model is even larger than the difference in PCA application. The

reason is that cross-sectional averaging has higher liquidity measure value.

To interpret, Home Depot have probability of default of 1.06% and 0.21% in LASVJ

and SVJ models, respectively. Exxon Mobil, an oil company, has an estimated proba-

bility of default of 0.24% and 0.035% in LASVJ and SVJ models, respectively. Even
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though Home Depot and Exxon Mobil is far from default and the probability of de-

fault at 6-month maturity, it turns out that probability of default is underestimated

when liquidity dimension is neglected.

Table 3.19: The Probability of Default Estimation with Cross-Sectional Averaging in
LASVJ During Crisis

Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years
3M 0.001562957 0.017208871 0.464199206 0.756678756 0.828906678 0.848868926 0.830354473 0.745184236

Microsoft 0.00887777968 0.05241867850 0.72363908683 0.86096924708 0.89131956599 0.89509666202 0.87044438296 0.76426551445
Intel 0.00017099690 0.00251695287 0.06115460650 0.33485148940 0.52711696900 0.60638326316 0.63206531444 0.55435534058

Exxon Mobil 0.002489312 0.022864640 0.510952364 0.789948427 0.849996125 0.861502211 0.845338984 0.750263002
General Electric 0.502489662 0.931961450 0.971837253 0.977452816 0.978113466 0.976415585 0.967324790 0.935243191
Chevron Corp. 0.0004162459 0.0057868266 0.1470670258 0.5272169582 0.6797454305 0.7280223688 0.7246679655 0.6363931753
Home Depot 0.010691908 0.071589255 0.770841503 0.877537183 0.905257012 0.908884373 0.892762842 0.811296992

Wal-Mart 0.015357357 0.185281850 0.840372453 0.909855083 0.929128164 0.931791933 0.913079057 0.838882358
McDonald’s 0.005581037 0.053085959 0.638811241 0.804581463 0.843446306 0.847194943 0.813534127 0.705643189

AT&T 0.018362006 0.176061731 0.859380821 0.918328521 0.934608207 0.936694872 0.917193103 0.840623921

Table 3.20 gives the result of credit default prediction in LASVJ model via cross-

sectional averaging. Similar to previous findings, the LASVJ model produces higher

credit spread prediction compared to SVJ model. For example, Wal-Mart has credit

spread prediction of 97.4 and 173.5 at 6-month and 10-year maturity with LASVJ

model. Looking at Table 3.6, it can be observable that the credit spread prediction of

29.3 and 128.7 at the same maturities with SVJ model. Thus, in the cross-sectional

averaging model, the credit spread prediction is higher in all maturities with LASVJ

model indicating that credit spread which can be used as an proxy for credit risk is

far from being fair when liquidity is overlooked.

Table 3.20: Credit Spread Prediction with Cross-Sectional Averaging in LASVJ
model During Crisis

Companies 6 months 1 year 2 years 3 years 4 years 5 years 7 years 10 years
3M 12.507565118 69.073495006 1027.007398716 1201.662257267 1007.031590264 829.660359220 576.684838895 353.926857978

Microsoft 71.148640713 211.904106519 1708.619455381 1407.285563554 1102.191237854 886.454405330 611.404831154 364.860073446
Intel 1.368022014 10.072882945 123.830019741 479.339255507 591.986978595 555.604228124 416.367653687 250.697365286

Exxon Mobil 19.924417910 91.879359494 1143.173912638 1265.890673742 1038.782738554 845.021784769 589.563668747 356.825241834
General Electric 4487.783158939 4664.652249437 2461.122683486 1653.020068794 1240.850064711 990.450010348 698.965743245 468.5603137047
Chevron Corp. 3.330244414 23.174137784 303.140539006 789.484914922 793.285918018 688.389006504 489.004663924 293.7769687925
Home Depot 85.718691912 290.537030560 1843.279298723 1441.151599061 1123.945362117 903.710619484 631.105825815 392.329948696

Wal-Mart 123.237761996 770.028014070 2048.487620452 1508.218589882 1161.649893073 932.714245738 649.278724291 408.800078002
McDonald’s 44.698209740 214.630762256 1475.376651899 1294.536990401 1028.878438306 827.633705409 562.365131146 331.644096671

AT&T 147.438167249 730.274554953 2106.085066699 1526.028486998 1170.386481334 938.976959865 652.987062359 409.849056142

Figure 3.9exhibits very similar pattern to previous LASVJ model output. Accord-

ingly, after a rapid increase in credit spread against time to maturity, a sudden drop

follows indicating that the effect of crisis disappears.
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Figure 3.9: Credit Spread vs. Time to Maturity Based on LASVJ During Crisis by
Cross Sectional Averaging Method

3.9 Conclusion

Liquidity has remained long as a controversial issue until the morgage crisis broke

out. Since then, researchers try to incorporate liquidity in asset pricing and credit risk

models among with others. It is, however, a formadible task to accomplish in that

liquidity is an unobservable phenomenon. This study is an attemp to fulfill this task

both theoretically and empirically.

By including liquidity into the SVJ model, model is able to capture liquidity dimen-

sion in the market by which it is expected to have more realistic estimation of proba-

bility of default and credit spread. Because, ignoring liquidity dimension during crisis

period leads to some adverse situations such as mispricing the assets, misallocation

of credit, and underestimation of credit risk. All these cases are likely to undermine

the financial market and pave the way of a new financial crisis.

After theoretical derivation of the Liquidity Augmented Stochastic Volatility with

Jump model, short for LASVJ, empirical analyses indicate that probabilities of default

estimation are larger with LASVJ model indicating that ignoring liquidity dimension

might lead to underestimation of risk in the market which in turn might trigger other
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key estimations in the financial markets as well.

Besides, credit spreads, calculated based on the probability of default, are, naturally,

estimated larger with LASVJ model, too. Additionally, the gap between LASVJ and

SVJ model is, generally, even more dramatic at longer maturities.

As empirically shown, crisis periods, during which liquidity drough prevails, the

probability of default and credit spread estimation become even larger with LASVJ

model compared to periods without crisis at early maturities but this effect dies out

over maturity as the crisis period closes to an end.

In short, liquidity is an indispensable dimension and ignoring it might lead unreal-

istic and unfair financial estimations. Liquidity shocks or illiquidity shocks reflect

themselves as volatile prices in markets. In this respect the next chapter provides

comparative results of volatility models.
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CHAPTER 4

VOLATILITY PREDICTION AND RISK MANAGEMENT: A

MACHINE LEARNING APPROACH

4.1 Introduction

Increased integration of financial markets has led to a prolonged uncertainty in finan-

cial markets, which in turn stresses the importance of volatility. Volatility is used in

measuring the degree of risk, which is one of the main engagements of the area of

finance.

There is a large and growing body of literature regarding the volatility estimation that

is used for assessing the various types of risks. After the ground-breaking studies of

[14], [6], [29], [30], and [66], volatility estimation gained a great importance. The in-

creasing significance of fluctuations in financial markets together with the availability

rich data necessitate more accurate and reliable estimation, prediction and forecast-

ing of volatility. This challenging task calls for new techniques to be integrated to

volatility estimation. In this respect, this study incorporates Machine Learning (ML)

approach and introduces a Support Vector Regression- GARCH (hereinafter SVR-

GARCH) method.

The long tradition of GARCH-type models application, which quantitative model-

based forecasts can provide financial institutions with a valuable assessment of fu-

ture market trends. First quantitative model called Autoregressive Conditional Het-

eroskedasticity (ARCH) proposed by [32] and. This model was generalized by [17]

and named as Generalized Autoregressive Conditional Heteroskedasticity (GARCH).
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This model assumes a functional form of data generating process, error term, and

moreover has low forecasting performance. Different variations of GARCH have

been introduced to overcome the drawback by proposing improvement on the func-

tional form, volatility proxy, and accuracy metrics [12].

In particular, volatility in financial assets returns can be affected differently from pos-

itive and negative news. Thus, volatility of financial assets returns can give asym-

metrical responses to positive and negative shock and the timing of news might not

be a surprise enabling more robust estimation of volatility. ARCH/GARCH models

are not sufficient for modeling asymmetric reactions. In order to deal with these,

Exponential GARCH (EGARCH) and Fractionally Integrated GARCH (FIGARCH)

models are proposed.

Volatility does not only provide important insights about financial phenomena but

also has a significant usage in risk management along with other areas such as pric-

ing. Therefore, it is quite important to forecast the volatility in order to have solid

risk management. As traditional models have empirically low forecast performance,

it is expected that SVR-GARCH does not only boost the predictive performance but

also improves the risk management. To apply volatility models in risk management,

volatility predictions are used as an input in Value-at-Risk method and based on the

backtesting of Value-at-Risk, it is expected to have improved risk management per-

formance. In a nutshell, volatility prediction with high accuracy provides better risk

management by shedding light on uncertainties of the future path of financial risks as

well as increasing awareness about the risks that have yet to come.

To this end, in this thesis, traditional ARCH-type models in estimating and predicting

volatility are employed and compared with a Machine Learning-based model. The re-

sults are compared using Root Mean Square Error and Mean Absolute Error metrics.

From this point on, these volatility predictions serve as input in the Value-at-Risk as

well as its backtesting.

The remainder of this chapter is as follows. In the second section, theoretical intro-

duction of the volatility models are provided. In the third section, Machine Learning

approach to volatility modeling are discussed. In the fourth section, volatility estima-

tions with traditional and Machine Learning model are provided with the performance
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comparisons. In the fifth section, VaR applications of these models along with their

backtesting are tested. The final chapter concludes this study.

4.2 Traditional Volatility Models

In this part, firstly the theoretical foundations of the GARCH model and its extensions

are introduced.

4.2.1 GARCH Model

ARCH model proposed by [32] and improved by [17] and [72] by adding p number

of delayed past conditional variance and it is called GARCH (p, q) model. GARCH

models can be expressed as autoregressive moving average models for conditional

variance [19].

Mathematically, ARCH models depends on the realized values of the squared error

terms in previous time periods. The model has the following form:

yt = ut (4.1)

ut ∼ N (0, σ) (4.2)

σ2
t = α0 +

q∑
i=1

αiu
2
t−i (4.3)

This model is known as ARCH(q) where q amounts to order of the lagged squared

errors. As an extension, the structure of the GARCH model implies that conditional

variance is determined by historical information implying market inefficiency. The

term ut in equation 4.3 is accepted as return and as the amount of news at time t so

that positive ut means good news or vice versa. In the GARCH model, the conditional

variance of return is determined by the square of the error term and its lagged values.

σ2
t = ω + βσ2

t−1 + αε2t−1 (4.4)
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where ω, β, and α are parameters and have restrictions: ω > 0, β ≥ 0, and α ≥ 0.

Moreover, in order for GARCH to be consistent, [47] states that β + α < 1.

The main reasons that GARCH are applied to financial phenomenon are returns are

well fitted by GARCH model partly due to the volatility clustering and GARCH does

not assume that the returns are independent that allows modeling the leptokurtic prop-

erty of returns. Despite these useful properties and intuitiveness, GARCH is not

able to asymmetric response of the shocks. Therefore, GJR-GARCH, or extended

GARCH, is proposed by [40] to account for this asymmetric response to the shocks.

Conversely, the effect of a negative shock indicates that the firm is more leveraged

[10].

4.2.2 GJR-GARCH Model

As is discussed, GJR-GARCH tries to capture the asymmetry in the news impact

function and to do that γ is included into the GARCH equation and it turns out:

σ2
t = ω + βσ2

t−1 + γε2t−1I(εt−1 < 0) (4.5)

If γ=0, the response to the past shock is the same. If γ is greater than zero then

the response to the past negative shock is stronger than that of a positive one. Thus,

GJR-GARCH is designed to capture the asymmetric news impact curve, which is a

function of εt−1.

4.2.3 EGARCH Model

GJR-GARCH model is not the only model proposed to capture the asymmetry in

the news impact curve. Rather, [62] develops EGARCH model to account for this

asymmetry and it takes the following form:

log(ht) = ω +

p∑
j=1

βjlog(ht−j) +

q∑
i=1

αi
|ui−1|√
ht−i

+

q∑
i=1

γi
ut−i√
ht−i

(4.6)
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According to equation 4.6 , while ω grasps the asymmetric shocks of volatility and

α capture the volatility clustering. Thus, similar to GJR-GARCH model asymmetric

shocks of volatility and volatility of clustering are overcame by the EGARCH model.

In a nutshell, the reasons why EGARCH is superior model over GARCH model are

as follows:

• EGARCH never gets negative values in that the conditional variance equation

takes the logarithmic form. Thus, non-negativitiy condition of the GARCH

model is no longer needed.

• As EGARCH allows us to take into account the positive and negative shocks, it

is possible to examine the leverage effect with EGARCH model as opposed to

GARCH model.

GARCH model and its extensions are insufficient to evaluate the long memory prop-

erty defined as the hyperbolic rate decrease in the autocorrelation functions of the high

frequency financial time series, long term dependence and tendency to slow reversion

to return. Such time series exhibit hyperbolic decreasing autocorrelations and, if long

memory is concerned, the impact of a shock on financial markets persists for a long

time. The long memory process is therefore characterized by a fractional degree of in-

tegration rather than an integer degree of integration. Fractionally Integrated GARCH

(FIGARCH) model is introduced by [7] and discussed in the following part.

4.2.4 FIGARCH Model

[33] first introduces the Integrated GARCH model known as IGARCH to model the

long-term persistence. As stated by [69], any shocks to the conditional variance per-

sist into the future and this property can be modeled by Integrated GARCH but it

turns out IGARCH without drift converges to zero. Thus, the IGARCH model is

considered as short-term volatility model.

In literature, many researchers, among others, [5], [41], and [42], have demonstrated

that long memory features can be modeled by extending an integrated process into a

fractional integrated process. If the stock market return volatility has a long memory

65



characteristics, it is no longer a random process and can be predicted via historical

data.

The derivation of FIGARCH is provided below. To start with, GARCH (1,1) can be

written as:

σ2
t = ω + β(L)σ2

t−1 + α(L)ε2t−1 (4.7)

where α(L) = α1L
1 + α2L

2 + ...+ αqL
q and β(L) = β1L

1 + β2L
2 + ...+ βpL

p

Once υ ≡ ε2t − σ2
t , then it is possible to define GARCH(p,q) as follows:

[1− α(L)− β(L)]ε2t = ω + [1− β(L)]υ (4.8)

The FIGARCH model can be written as:

φ(L)(1− L)dε2t = ω + [1− β(L)]υ (4.9)

where φ(L) = [1− α(L)− β(L)](1− L)−1

Equation 4.9 can be converted to the following equation, which is the standard repre-

sentation of FIGARCH model:

[1− β(L)]σ2
t = ω + [1− 1− β(L)− φ(L)(1− L)d]ε2t (4.10)

4.2.5 SVR Model

Support Vector Machine (SVM) is a well-known machine learning algorithms based

on convex optimization that operates according to the structural risk minimization

principle and it is distribution-free learning algorithm [70]. Besides, the SVM is a

controlled learning method used in classification and regression analysis that analyzes

data and learns from samples. The SVM was first proposed by [73].

Both linearly distinguishable and non-distinguishable data sets can be classified with

SVM. The disticntion feature of SVM lies in its n-dimensional application. With a

nonlinear mapping, the n-dimensional data set is converted to a new d-size data set
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with d>n. With a suitable transformation, the data can always be divided into two

classes with a hyperplane.

In this study, Support Vector Regression-based GARCH (SVR-GARCH) modeling

is applied. SVR nonlinearly maps the input space into a high dimensional feature

space and employs the linear regression in a high dimensional feature space. To show

the theoretical background of SVR, let xt and yt be training dataset where xt ∈ Rp,

yt ∈ R1.

As the dataset used has a time-series structure, xt can be considered as lagged values

of yt. Data is generated from a function

yt = f(xt) + εt (4.11)

At this point, it is needed to define a decision function f(x) as follows:

f(xt) = wTφ(xt) + b =
n∑
i=1

wiφi(x) + b (4.12)

where φ(x) = [φ1(x), ..., φn(x)]T and w = [w1, ..., wn]T is a non-linear transfor-

mation to a higher dimension space. [73] suggests a ε-insensitive loss function,

Lε(x, y, f(x)) and it is defined by:

Lε =

|y = f(x)| − ε, |y = f(x)| ≥ ε

0, otherwise

As [24] denotes that the loss function does not penalize errors below ε. In this case,

error is ignored and no loss occurs. This implies that f(x) is obtained through data-

point located on or outside the εproximity. This is called ε-insensitivity.

At this point, ξ and ξ∗ are introduced as slack variable to describe the ε-insensitivit

loss and ε-SVR is provided as:

min
w,b,ξ,ξ∗

[
1

2
||w||2 + C

n∑
t=1

(ξ + ξ∗)] (4.13)
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subject to

yt − w′φ(xt)− b ≤ ε+ ξ∗t (4.14)

w′φ(xt) + b− yt ≤ ε+ ξ∗t (4.15)

ξt, ξ
∗
t ≥ 0 (4.16)

In equation 4.13, 1
2
||w||2 measures the function flatness and the second term relates to

ε-insensitive loss function. This problem can be solved using Langrangian approach.

Lp =
1

2
||w||2 + C

n∑
t=1

(ξ + ξ∗) (4.17)

−
n∑
t=1

αt(ε+ ξt − yt + w′φ(xt) + b)−
n∑
t=1

µt + ξt (4.18)

−
n∑
t=1

α∗t (ε+ ξ∗t − yt + w′φ(xt) + b)−
n∑
t=1

µ∗t + ξ∗t (4.19)

Karush-Kuhn-Tucker condition makes it possible to have following equations:

∂dLp
∂dw

= w −
n∑
t=1

(αt − α∗t )φ(xt) = 0 (4.20)

∂dLp
∂db

=
n∑
t=1

(αt − α∗t ) = 0 (4.21)

∂dLp
∂dξt

= C − αt − µt = 0 (4.22)

∂dLp
∂dξ∗t

= C − α∗t − µ∗t = 0 (4.23)

where the parameters αt, µt, α∗t , µ
∗
t ≥ 0. Additionally, the kernel function is of con-

siderable importance role in forecasting performance of the SVR model. There are

three types of kernel function, which are:
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• Linear Kernel: xtx

• Polynomial: (xtx+ 1)d

• Gaussian: e
−||x−xt||

2

2σ2

4.2.6 SVR-GARCH Model

As it is discussed, SVM is a state-of-the-art method and can be applied in a wide range

of areas. In this thesis, SVM is employed to model the volatility using the GARCH

model. The main motivation of this rests upon the fact that SVR has no probability

density function over returns [73].

SVR-GARCH equips researcher with a very powerful tool which is forecasting the

volatility and in turn employing it in modeling risk. Traditional risk models such as

VaR, for instance, uses standard deviation to account for the volatility in returns and

then feeds the model. However, aside from the traditional volatility model, there is no

many other tools to forecast volatility to be utilized in forecasting the risk. The SVR-

GARCH model produces better-suited approach and provides more robust results.

Following structure specifies the SVR-GARCH process:

rt = log(Pt/Pt−1) (4.24)

where Pt and rt are price and return at time t, respectively. In order to find the squared

residuals, the conditional mean estimation is used and it is given by:

rt = g(rt−1) + at (4.25)

where g is the estimation function for mean equation estimated by SVR as suggested

by [12].

Following [22], a volatility proxy is used due to the unobservability of the volatility.

σ2
t = (rt − r)2 (4.26)
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where σt is the conditional variance.

σ2
t = f(r2

t−1, σ
2
t−1) (4.27)

where f is the SVR decision function.

4.3 Empirical Application

In this part, empirical application is conducted over 30 stocks listed in S&P-500 be-

tween 2010/01-2019/01 corresponding to 2268 days. The first 90% of the data is

allocated to the training set and the rest 10% is reserved for test set. The stock em-

ployed in this analysis is shown in the Table 4.1.

Table 4.1: Companies
Companies Tickers Companies Tickers
Amgen Inc. AMG Lockheed Martin Corporation LMT

Amazon.com Inc. AMZN Macy’s Inc M
AutoZone Inc. AZO Mettler-Toledo International Inc. MTD

Booking Holdings Inc. BKNG Mylan N.V. MYL
BlackRock Inc. BLK NIKE Inc. Class B NKE

Duke Realty Corporation DUK O’Reilly Automotive Inc. ORLY
Consolidated Edison Inc. ED People’s United Financial Inc. PBCT

Ford Motor Company F Prologis Inc. PLD
Freeport-McMoRan Inc. FCX Regions Financial Corporation RF

General Electric Company GE Raymond James Financial Inc. RJF
Alphabet Inc. Class C GOOG Sherwin-Williams Company SHW

Gap Inc. GPS TransDigm Group Incorporated TDG
Huntington Bancshares Incor. HBAN Under Armour Inc. UAA
Intercontinental Exchange Inc. ICE V.F. Corporation VFC

Leidos Holdings Inc. LDOS WEC Energy Group Inc. WEC

Using this data, return volatilities are modeled by GARCH, GJR-GARCH, E-GARCH,

FIGARCH, and SVR-GARCH.

In SVR-GARCH application process, parameter optimization is conducted and based

on this optimization, best parameters setting is found and used for each stocks. To

do that C, ε, γ parameters spanned between 0 and 10. Based on the Akaike Infor-
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mation Criteria (AIC), the best model is chosen so that volatility is modeled by these

parameters. Then, RMSE and MAE are calculated to compare the performance of the

model.

Before moving forward, the returns of the stock considered along with the histograms

and autocorrelation functions are depicted in Figure 4.1, 4.2, and 4.3, respectively.

Return plots of the stocks included in the study are provided in Figure 4.1, by eye-

balling, it indicates that returns oscillate around zero as anticipated though some

stocks such as WEC Energy, Regions Financial Corporation, BlackRock show greater

extent of volatility.

In the Figure 4.2, it is checked whether the returns are normally distributed and more-

over normality test is run and its result revealed in the Table 4.2. Normality test

indicates that stock returns are not normally distributed at conventional levels.

In the Table 4.3, p-values suggest all stock returns are stationary because p-values are

less than 0.05. In the volatility estimation, autocorrelation function (ACF) plays an

important role as it exhibits volatility clustering. Autocorrelation does not require that

linear increases or decreases in returns be independent of each other. Rather, inde-

pendence of any non-linear function of returns requires autocorrelation. In practice,

simple nonlinear functions of returns show significant autocorrelation or persistency.

This is the so-called volatility clustering. In the Figure 4.3, ACF of all stocks are

provided, it is observed that autocorrelation coefficients, in almost all cases, remain

outside the confidence interval implying that there exists volatility clustering.

4.3.1 Volatility Prediction Assessment

In this part of the study, volatility estimation via proposed models are conducted

and these results are used as an input in the Value-at-Risk estimation. The proposed

volatility models used in the out of sample evaluation are GARCH, GJR-GARCH,

EGARCH, FIGARCH, and SVR-GARCH. Aside from SVR-GARCH, normal distri-

bution, student-t and skewed distributions are employed in the model. In the SVR-

GARCH, linear, Gaussian, and Polynomial extensions are utilized.

Data used are extracted from yahoo finance for the period of 01/01/2010-09/01/2019.
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Figure 4.1: Returns

The returns are calculated by using closing price and 90% of the total reserved for

training data and the remaining 10%, corresponding to 253 data points, belongs to test
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Figure 4.2: Histograms

data. According to the performance metrics of MAE and RMSE, SVR-GARCH mod-

els produces the best result compared to other traditional volatility models. To be in-
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Table 4.2: The Results of the Normality Test
Companies p-values Companies p-values

AMG 4.77e-47 LMT 8.85e-50
AMZN 1.159e-74 M 4.32e-137
AZO 1.9e-173 MTD 5.79e-45

BKNG 3.37e-105 MYL 2.43e-91
BLK 5.69e-49 NKE 6.74e-99
DUK 1.77e-45 ORL 6.76e-213
ED 2.41e-62 PBCT 2.54e-66
F 3.49e-64 PLD 4.50e-69

FCX 9.75e-67 RF 9.99e-53
GE 2.13e-54 RJF 6.16e-51

GOOG 1.58e-119 SHW 1.21e-77
GPS 1.10e-183 TGD 6.05e-99

HBAN 2.02e-45 UAA 2.59e-129
ICE 2.97e-30 VFC 1.23e-108

LDOS 1.35e-251 WEC 9.26e-49

Table 4.3: Stationarity Test
Companies p-values Companies p-values

AMG 2.66e-17 LMT 0.0000
AMZN 0.0000 M 0.0000
AZO 0.0000 MTD 0.0000

BKNG 0.0000 MYL 0.0000
BLK 0.0000 NKE 0.0000
DUK 0.0000 ORLY 0.0000
ED 0.0000 PBCT 0.0000
F 0.0000 PLD 0.0000

FCX 4.21e-16 RF 0.0000
GE 4.66e-13 RJF 4.42e-21

GOOG 0.0000 SHW 0.0000
GPS 0.0000 TDG 6.45e-22

HBAN 1.08e-17 UAA 0.0000
ICE 0.0000 VFC 0.000000e+0

LDOS 0.0000 WEC 0.0000

terpret, SVR-GARCH-linear model has an MAE of 0.009 which is nearly one-fifth of

the remaining traditional models. For instance, GARCH, GJR-GARCH, EGARCH,

and FIGARCH with normal distribution have an MAE of 0.0052, 0.0054, 0.0057, and

0.0057, respectively. Similarly, SVR-GARCH-linear and EGARCH have the lowest
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Figure 4.3: Autocorrelation Function

and highest RMSE, respectively.
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Besides, the second and third best models in terms of performance metrics is SVR-

GARCH-RBF and SVR-GARCH-Polynomial. These findings highlight that SVR-

GARCH model outperforms the GARCH-type models at every confidence levels.

Visualization based on these findings can be found in the Appendix B.

Table 4.4: Out-of-Sample Evaluation
Models MAE RMSE

SVR-GARCH-linear 0.0009 0.0013
SVR-GARCH-RBF 0.0013 0.0025

SVR-GARCH-Polynomial 0.0014 0.0029
GARCH-Normal 0.0052 0.0068

GARCH-Student t 0.0052 0.0068
GARCH-Skewed 0.0052 0.0068

GJR-GARCH-Normal 0.0054 0.0070
GJR-GARCH-Student t 0.0054 0.0070
GJR-GARCH-Skewed 0.0053 0.0070

EGARCH-Normal 0.0057 0.0075
EGARCH-Student t 0.0053 0.0071
EGARCH-Skewed 0.0053 0.0071
FIGARCH-Normal 0.0057 0.0075

FIGARCH-Student t 0.0053 0.0071
FIGARCH-Skewed 0.0053 0.0071

4.4 Risk Management

Risk management is an indispensable of the financial management that makes it pos-

sible to properly price the assets and helps institutions prepare the unexpected. In

financial institutions, risk management is conducted by these four risks types: Market

risk, liquidity risk, credit risk and operational risk.

In recent years, financial globalization, subsequent increase in competition, diversity

in financial products and increasing transaction volumes have led institutions to form

a complex and interconnected financial system. In such an environment, especially

financial institutions have become more open to the risks arising from price move-

ments in markets. To this end, institutions have intensified their efforts to identify,

measure, control and update their risks and have been in search of an effective risk
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management system.

These developments have, therefore, even increased the importance of risk manage-

ment and its tools. Over decades, financial risk measurements process which started

with basic risk measurements, continued with the development of an internal model

for the measurement of risks by many financial institutions. In a higly evolving and

complex risk environment, the fact that institutions are exposed to diverse and inten-

sified risks has led regulatory authorities to establish a standard and intuitive method-

ology. JP Morgan addresses this need by introducing the Riskmetrics system in 1994,

which enables to calculate of Value at Risk (VaR).

4.4.1 Value-at-Risk Application

VaR is defined as a financial instrument that measures the expected and unexpected

loss that can occur in a given time period in a given confidence interval as shown in the

Figure [?] [50]. VaR method can be measured on a security and on a portfolio basis.

Risks arising from different positions and risk factors may occur in the portfolio and

it is calculated in terms of monetary basis. VaR can be computed as follows:

Figure 4.4: Value-at-Risk Representation

VaR = Vt ∗ σ ∗
√
t ∗ α (4.28)
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whereVt is the value of the portfolio, σ is the standard devation of portfolio, t is the

holding period, α is the confidence interval. In this regard, it can be concluded that in

the VaR estimation, four parameters are important:

• Portfolio diversification

• Distribution of the portfolio returns

• Holding time period

• Confidence interval

Differently, the standard VaR definition is [8]:

P(P (T )− P (t) < −V aRP/L
α (t, T )) = 1− α (4.29)

where P(T) represents the price of the portfolio. Using CDF of log-returns, it turns

out:

P(r(t, T ) < −V aRr
α(t, T )) = 1− α (4.30)

Given that P (T ) = P (t)er(t,T ), VaRr and VaRP/L can be redefined as:

VaRr
α(t, T )) = − ln(1− VaRP/L

α (t, T )

P (t)
) (4.31)

VaRP/L
α (t, T )) = P (t)(1− e−VaRrα(t,T )) (4.32)

Thus,

VaRP/L
α (t, T ) ≈ P (t)VaRr

α(t, T ) (4.33)

In this thesis, a parametric method of VaR called as Variance-Covariance VaR method

is used. Using this method, VaR is calculated by multiplying the significance level,

α value corresponding to the confidence level and the standard deviation (σ) by the

market value (M) of the portfolio. This method is advantageous in terms of ease of

calculation and computational efficiency compared to other methods.
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4.4.2 Backtesting

Several models have been developed to calculate VaR estimates. Due to the high

diversity of the VaR models, it is of considerable importance to test the validity of the

method applied. The main reason why VaR is questioned is the various shortcomings

of VaR models. VaR models are only strong when they have strong predictive power.

Thus, it has become common practice to test the performance of VaR models called

backtesting.

Backtesting is a statistical procedure where the deviations between the losses realized

and the estimated losses during the backtesting process are calculated. For instance,

if the confidence level set for calculating daily VaR is 90%, it is expected to occur ten

exceptions in every 100 days on average. In addition, if the confidence level is 99%,

one exception in every 100 days is expected on average. In a nutshell, in backtesting,

it is statistically checked whether the frequency of exceptions over some specified

time interval agrees with the related confidence level. This procedure is called as

unconditional coverage tests [51]. Some well-known backtests can be listed as:

• Binomial test

• Traffic light test

• Kupiec’s tests

• Christoffersen’s tests

• Haas’s tests

In this thesis, POF-Test (Proportion of Failures) proposed by [53] is applied and it

measures whether the number of exceptions is in line with the confidence level. So,

the test hypotheses can be stated as:

H0 : p = p̂ =
E

T

H0 : p 6= p̂ =
E

T
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where E is the number of exception and T is the number of observations. This test

assumes that the number of exceptions follows binomial distribution given below:

f(E) =

(
T

E

)
pE(1− p)T−E (4.34)

Hence, POF-test tries to find out whether there is statistically significance between

observed failure,f̂ , and the failure rate proposed by confidence level and likelihood

ratio (LR) test is employed to decide the correctness of the model.

LRPOF = −2 ln

[
(1− p)T−EpE

(1− E
T

)T−E(E
T

)E

]
(4.35)

LR test asymptotically follows χ2 with one degree of freedom and model is true under

null hypothesis of this test. The Table 4.5 shows the acceptance and rejection regions

of the POF test.

Figure 4.5: Acceptance-Rejection Regions for POF Test

Based on the number of fails obtained via POF test, it is possible to run Traffic Light

backtest which is suggested by Basel Committee and this backtest is used as robust-

ness test. According to the Traffic Light backtest, accuracy of a VaR forecast is as-

sessed based on the number of VaR breaches using POF test. For example, according

to the recommendations of the Basel Committee in Basel II, VaR values at 99% con-

fidence level of the previous year are compared daily with actual losses. The Basel

Committee tolerates up to 4 deviations per year and defines this level as a green zone.

If the VaR violation exceeds 4 and remain lower than 10, it corresponds to yellow

zone and finally violations at and over 10 defines red zone.
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The VaR violation can be defined as follows:

Ei
VaR(α) := ILi≤VaRi(α) =

1 if Li ≤ Vari(α)

0 if Li > Vari(α)
(4.36)

where Ei
V aR(α) : [0, 1] → {0, 1}. Here, in this setup, X stores the violations hap-

pened within a trading day i. When it is generalized over the period under examina-

tion, it turns out [25]:

EN
VaR(α) :=

N∑
i=1

ILi≤VaRi(α) (4.37)

where EN
V aR(α) : [0, 1] → {0, 1, 2, 3, ..., N}. In addition, E[EN

VaR] = Nα. At this

point, it is necessary to introduce cumulative probability to count the number of vio-

lation over a defined period of time. For given α and N, the cumulative probability of

having a number of violation can be defined as [25] :

Φα,N
VaR (e) := P(EN

VaR(α) ≤ e) (4.38)

In summary, three color zones can be formulated via cumulative probability given

below:

• Green zone if Φα,N
VaR (e) < 95%

• Yellow zone if 95% < Φα,N
VaR (e) < 99%

• Red zone if Φα,N
VaR (e) < 99.99%

Figure 4.6 shows these zones and number of corresponding violations[25]. Based

on these violation, the performance of the VaR application and the corresponding

volatility method is decided. Accordingly, if the number of VaR violations is less than

5, then backtesting suggest that VaR application performs well. If the VaR violations

are greater than 4 and less than 10, it implies that the VaR approach should be treated

with caution. Eventually, when the VaR violation is greater then 10, it implies that

VaR method does not working well.
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Figure 4.6: Basel Traffic Light Approach

In the light of these two approaches, Kupiec’s POF test and Basel Traffic Light, the va-

lidity of the VaR result incorporating volatility estimated via different models are dis-

cussed in the next part. First, failure rate and total number of violation are compared

and then these violations are assessed considering Basel’s Traffic Light approach.

4.4.3 Interpreting the Backtesting Result

After calculating VaR based on variance-covariance method, Kupiec’s POF backtest-

ing and Basel’s Traffic Light Approach are embraced so that it is possible to compare

the performance of the VaR application, which varies depending on the volatility

model incorporated.

Table B.4 shows the POF test and the corresponding number of VaR violations based

on the models used. To save space, only the name of the volatility models are kept

in the Table B.4. As is known, the hypothesis testing of the POF test is conducted by

LR test which can be found in the Appendix B.2.

Table B.4 reveals that VaR applications based on the SVR-GARCH models outper-

forms those with traditional models. To be interpret, when SVR-GARCH models

are incorporated into the VaR application as a volatility model, it turns out that fail-
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ure rate and corresponding number of violation significantly diminish compared to

the traditional models. LR test also suggests that null hypotheses empirically deter-

mined probability (p̂) is equal to the expected probability (p) for every single stock

included is accepted at 1% level. This observation confirms the fact that Machine

Learning models not solely increase the volatility prediction performance but also

provide more consistent and reliable risk management application.

As for the VaR violation of traditional models, even if VaR estimation with FIGARCH

is appeared to have better performance, LR test result of 10.17 in skewed and Student-

t distributions tell that empirical probability is not equal to expected one. However,

LR test suggests accepting the null hypothesis for the rest of the models at 1% level.

In this case, Based on the failure rate, VaR application with EGARCH-Student-t dis-

tribution and with EGARCH-skewed distribution are second best performing model.

Table 4.5: Failure Test and Number of Violations
Volatility Models Failure Rate Total Number of Violations

SVR-GARCH-linear 0.0000 0
SVR-GARCH-RBF 0.0027 21

SVR-GARCH-Polynomial 0.0026 20
GARCH-Normal 0.0111 85

GARCH-Student t 0.0111 85
GARCH-Skewed 0.0114 87

GJR-GARCH-Normal 0.0090 69
GJR-GARCH-Student t 0.0125 95
GJR-GARCH-Skewed 0.0122 93

EGARCH-Normal 0.0092 70
EGARCH-Student t 0.0084 64
EGARCH-Skewed 0.0086 66
FIGARCH-Normal 0.0092 70

FIGARCH-Student t 0.0000 0
FIGARCH-Skewed 0.0000 0

Table 4.6 indicates the VaR performance based on the Regulatory Framework which

is called Basel Traffic Light Approach. According to this approach, if a company

falls into a green zone, it is highly unlikely that inaccurate model is accepted. Again,

results imply that VaR application with SVR-GARCH volatility performs much better

performance that those with traditional models. Because, 21 VaR violations of the

total 30 stocks fall into the green zone whereas there is no other VaR violation falling
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into other categories, namely yellow and red.

Conversely, there are violations both in the green and yellow zones in the rest of

the models. For instance, VaR violations in the green zone with GARCH-normal,

Student-t, and Skewed distrubutions are 77, 76, and 80, respectively and the violations

in the yellow zone of the some models are 8, 9, and 7, respectively. Similarly, when

GJR-GARCH models are applied as volatility model, VaR violations in the green

zone are 65, 86, and 84, respectively and violations in the yellow zone are 4, 9, and

90, respectively. Based on the results, there is no VaR violations falling into the red

zone.

Thus, considering the VaR violations falling into the yellow categories, Basel Com-

mittee would suggest monitoring and the model is considered to be more inaccurate

than being accurate and moreover VaR measures need to be more heavily weighted in

calculating required capital. Even if there is no violation falling into the red category,

it provides a clear signal to the Regulatory Committe that the model is not working

well and needs to be improved and investigated.

Table 4.6: Assesing the Violations Based on Basel Traffic Light Approach
Models Violations in Violations in Violations in

Green Zone Yellow Zone Red Zone
SVR-GARCH-linear 0 0 0
SVR-GARCH-RBF 21 0 0

SVR-GARCH-Polynomial 20 0 0
GARCH-Normal 77 8 0

GARCH-Student t 76 9 0
GARCH-Skewed 80 7 0

GJR-GARCH-Normal 65 4 0
GJR-GARCH-Student t 86 9 0
GJR-GARCH-Skewed 84 9 0

EGARCH-Normal 67 3 0
EGARCH-Student t 63 1 0
EGARCH-Skewed 64 2 0
FIGARCH-Normal 67 3 0

FIGARCH-Student t 0 0 0
FIGARCH-Skewed 0 0 0
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4.5 Conclusion

As the volatility is a phenomenon that partly explains the value of financial assets,

it is an indispensable part of pricing and risk management. However, it is equally

important to have prediction as accurate as possible. Hence, this study is an attempt to

improve the volatility prediction technique so that more accurate volatility prediction

and forecasting can be incorporated which in turn enable researchers/practitioners

conduct solid risk management as well as value an asset.

To do that SVR-GARCH approach is introduced as a Machine Learning algorithm

and compare its performance with the traditional GARCH-type volatility models,

namely GARCH, GJR-GARCH, EGARCH, and FIGARCH. Results suggest that

SVR-GARCH outperforms the traditional models in terms of RMSE and MAE per-

formance metrics.

Afterwards, volatility prediction obtained from the above-given models are incorpo-

rated into the Value-at-Risk model which is a frequently used financial risk manage-

ment tool. As a VaR model, variance-covariance method is applied and the prediction

obtained from volatility models are replaced by standard deviation of return. As a

final step, in order to check the validity of the VaR results backtesting is conducted.

Kupiec’s POF test and Basel Traffic Light Approach are the test applied as backtest-

ing. Again, the findings suggest that VaR applications with SVR-GARCH volatility

model performs much better than those with traditional models in that failure rate of

SVR-GARCH is quite lower and the VaR violations fall into the green zone in Basel’s

Traffic Light Approach.

Thus, this study hightlights the importance of application of Machine Learning model

to further increase the performance of the volatility prediction as well as risk manage-

ment. As the volatility gives insight about many phenomena in the field of finance,

it is of considerable importance to have sound volatility prediction. So, the method

introduced here is an attempt to accomplish this task.
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CHAPTER 5

CONCLUSION

Market Microstructure is at the center of intricate relationships. Unfolding the rela-

tionships between price impact, liquidity, and volatility allow researchers to under-

stand better the Market Microstructure.

This thesis addresses three prominent Market Microstructure components in three

different chapters. In the second chapter, price impact is considered in the context

of Kyle’s model [54] . Another dimension of market impact is considered in terms

of market resiliency and this dimension is not investigated in the literature well. Al-

though it is an important deteminant of market efficiency. In all these considerations

informativeness of price is the focus. In order to analyze informativeness of price

State Space Models, specifically Kalman-Filter, are employed. This chapter ana-

lyzes price formation components: Market resiliency, price impact, informativeness

of price, trade intensity, and error variance of prices. Furthermore, in the final part

of this chapter, using graphs I look at comparative statistic characteristics of informa-

tiveness of price.

This chapter highlights the importance of informativeness of price in the price forma-

tion process. In addition to that, having derivations of these five variables pave the

way for future research avenue.

The other neglected dimension Market Microstructure is liquidity. Disregarding the

liquidity dimension in modeling financial issues might lead to severe consequences

such as misvaluation and underestimating the risk. Even though liquidity proxied

by bid-ask spread is at the heart of the third chapter, it has an important role in price
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formation process in the form of informativeness of price in the second chapter. Third

chapter develops a new model in order to incorporate illiquidity riskand this new

model is called "Liqudity Augmented Stochastic Volatility with Jump Model". In

terms of credit spread models incorporating liquidity produces better result.

It turns out that probability of default and credit risk spread without liquidity dimen-

sion underestimate the risk. However, once liquidity is included in the model, both

probability of default and credit risk spread are increased and during the crisis peri-

ods, it is even larger. Thus, the newly proposed model used in the third chapter enable

us to consider liquidity in probability of default and credit risk spread estimations and

this makes these estimations reliable and stable.

In the fourth chapter of this thesis, another component of Market Microstructure,

namely volatility, is tried to be estimated using traditional and Machine Learning

models. The aim is to improve the accuracy of the volatility estimation so that highly

accurate volatility prediction can be used as an input in various models. To do that,

after applying GARCH-type models, a new Machine Learning model called Support

Vector Regression-GARCH model is proposed and it turns out that the Support Vector

Regression-GARCH model outperforms the GARCH-type models.

In the subsequent phase, these volatility prediction used as a proxy of standard de-

viation in one of the well-known risk management tools named Value-at-Risk. Pro-

portion of Failures and Basel Traffic Light Approach indicates that Support Vector

Regression-GARCH model has way better Value-at-Risk calculation.
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APPENDIX A

EXTENSION OF THE BATES MODEL

In the presence of financial distress, it is important to reconsider the pricing of any

asset having the stock price as the underlier. This modification might also be reflected

in credit spread and probability of default. To model this phenomenon, it is assumed

that liquidity behaves like ICIR process as assumed in [52] for bond prices.

L(t) =

∫ t

0

l(u)du (A.1)

dlt = κ(β − lt)dt + σ
√
ltdWt (A.2)

Then our microstructure corrected asset price could be defined:

S̃t = e−L(t)St

So, illiquidity adjustment is used to discount the stock price since illiquidity is con-

sidered as a compensation factor in order to avoid loss or reduction in profits caused

by thin trading [52]. At this stage, we revisit the option pricing model of stochastic

volatility with jumps and option payoff for corrected asset price takes the form of:

Et = E(e−r(T−t)(S̃T −D)|Ft)+ (A.3)

Under different measures which are PS and risk neutral measure, P, liquidity adjusted

price is derived.

Ps(S̃T > D) = F1, P(S̃T > D) = F2.

Using liquidity adjustment Lt term and setting x = log(L) we have:

F1L =
1

2
+

1

π

∫ ∞
0

∫ ∞
0

Re

(
e−iu(log(D)−x)Φ1(u)f(x)

iu
dudx

)
(A.4)
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F2L =
1

2
+

1

π

∫ ∞
0

∫ ∞
0

Re

(
e−iu(log(D)−x)Φ2(u)f(x)

iu
dudx

)
. (A.5)

where f(x) is the density of L(t) and Φ1 represents the characteristic function of Bates

model that can be defined as:

Φ1 = eA1,SV J (τ)B1,SV J (τ)Vt+i(u−i) log(St)λτ [(1µ)i(u−i)+1exp(
σ2j (i(u−i)−(u−i)2)

2
)−(1+µ)] (A.6)

A1 = (u−i)(r−λJ)τ+
τκ((u− i)− i)(−x)

σ2
v

−(
2κ((u− i)− i

σ2
v

)log((
−x
γ1

) sinh(
γ1τ

2
)+cosh(

γ1τ

2
))

(A.7)

B1 =
−((u− i)2 + u− i)

−(iρσv(u− i)− κ) + γ1( cosh(γτ/2)
sinh(γ1τ/2)

)
(A.8)

As theLt is a ICIR process, Fourier inverting charateristic function allows us to obtain

the density. Applying Fubini theorem, we have the following:

F2,L =
1

2
+

1

π

∫ ∞
0

eiuxf(x)dx

∫ ∞
0

Re

(
e−iu log(D)

iu
Φ2(u)

)
du

First element in the above-given double integral is actually the characteristic function

of x = log(Lt) which is defined to be ΦL(u). Further we can write the formula

for probabilities as the product of two characteristic functions and Fourier inversion

component as

F2,L =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(D)

iu
Φ2(u)ΦL(u)du

)
and

F1,L =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu log(D)

iu
Φ1(u)ΦL(u)du

)
.

The option price becomes:

Et = StF1,L −De−r(T−t)F2,L
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APPENDIX B

VISUALIZATION OF PREDICTION RESULTS AND POF LR

TEST RESULT

B.1 Visualization of Prediction Results

Following figures exhibit the prediction result of the each model used in this study.

Thus, for every single model, 30 figures representing 30 stocks included are shown.
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Figure B.1: GARCH-Normal Prediction Results

98



Figure B.2: GARCH-Student t Prediction Results
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Figure B.3: GARCH-Skewed Prediction Results
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Figure B.4: GJR-GARCH-Normal Prediction Results
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Figure B.5: GJR-GARCH-Student t Prediction Results
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Figure B.6: GJR-GARCH-Skewed Prediction Results
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Figure B.7: EGARCH-Normal Prediction Results
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Figure B.8: EGARCH-Student t Prediction Results
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Figure B.9: EGARCH-Skewed Prediction Results
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Figure B.10: FIGARCH-Normal Prediction Results
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Figure B.11: FIGARCH-Student t Prediction Results
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Figure B.12: FIGARCH-Skewed Prediction Results
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Figure B.13: SVR-GARCH-Linear Prediction Results
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Figure B.14: SVR-GARCH-RBF Prediction Results
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B.2 POF LR Test Results

Table B.1: LR Test Result for GARCH

Companies Normal Dist. Student- t Dist. Skewed Dist.
0 AMG 5.085470 5.085470 5.085470
1 AMZN 5.085470 1.212888 1.212888
2 AZO 5.085470 0.083240 0.083240
3 BKNG 0.733245 1.212888 1.212888
4 BLK 0.083240 0.083240 0.083240
5 DUK 0.083240 0.083240 0.083240
6 ED 0.733245 0.733245 0.733245
7 F 0.120832 1.896624 3.470779
8 FCX 1.896624 1.896624 1.896624
9 GE 5.085470 5.085470 5.085470

10 GOOG 3.470779 3.470779 3.470779
11 GPS 1.896624 1.896624 0.733245
12 HBAN 5.085470 5.085470 5.085470
13 ICE 5.085470 1.212888 1.212888
14 LDOS 0.733245 5.085470 5.085470
15 LMT 0.083240 1.896624 0.733245
16 M 0.083240 0.083240 0.083240
17 MTD 3.470779 1.896624 1.896624
18 MYL 0.083240 0.120832 0.120832
19 NKE 1.212888 0.083240 0.083240
20 ORLY 1.896624 1.896624 1.896624
21 PBCT 1.896624 0.083240 0.083240
22 PLD 5.085470 5.085470 0.120832
23 RF 1.896624 1.896624 1.896624
24 RJF 0.083240 0.083240 0.733245
25 SHW 0.083240 5.085470 5.085470
26 TDG 1.212888 1.212888 1.212888
27 UAA 0.120832 0.733245 0.733245
28 VFC 0.733245 0.733245 0.733245
29 WEC 1.896624 1.896624 1.896624
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Table B.2: LR Test Result for GJR-GARCH

Companies Normal Dist. Student- t Dist. Skewed Dist.
0 AMG 1.212888 5.085470 5.085470
1 AMZN 1.212888 5.085470 5.085470
2 AZO 5.085470 0.120832 0.120832
3 BKNG 3.470779 0.120832 0.120832
4 BLK 0.083240 0.083240 0.083240
5 DUK 0.083240 0.083240 0.083240
6 ED 0.083240 0.733245 0.733245
7 F 1.212888 0.083240 0.083240
8 FCX 3.470779 0.733245 1.896624
9 GE 1.212888 5.085470 5.085470
10 GOOG 0.733245 3.470779 3.470779
11 GPS 1.896624 0.733245 0.083240
12 HBAN 5.085470 5.085470 5.085470
13 ICE 5.085470 5.085470 5.085470
14 LDOS 1.212888 0.120832 0.120832
15 LMT 0.083240 0.733245 0.733245
16 M 0.733245 0.120832 0.120832
17 MTD 0.083240 0.083240 0.083240
18 MYL 1.212888 5.085470 5.085470
19 NKE 1.212888 1.212888 1.212888
20 ORLY 0.733245 0.083240 0.083240
21 PBCT 0.120832 1.212888 0.083240
22 PLD 5.085470 5.085470 5.085470
23 RF 0.083240 0.733245 0.733245
24 RJF 0.733245 0.733245 0.733245
25 SHW 1.212888 5.085470 5.085470
26 TDG 5.085470 5.085470 5.085470
27 UAA 1.212888 1.212888 1.212888
28 VFC 0.733245 0.733245 0.733245
29 WEC 0.733245 0.733245 0.733245
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Table B.3: LR Test Result for EGARCH

Companies Normal Dist. Student- t Dist. Skewed Dist.
0 AMG 5.085470 5.085470 5.085470
1 AMZN 5.085470 5.085470 5.085470
2 AZO 0.083240 1.896624 1.896624
3 BKNG 0.120832 0.083240 0.083240
4 BLK 0.083240 0.083240 0.083240
5 DUK 0.083240 0.083240 0.083240
6 ED 1.896624 3.470779 3.470779
7 F 0.733245 3.470779 3.470779
8 FCX 1.896624 1.896624 1.896624
9 GE 1.212888 0.120832 0.120832

10 GOOG 1.212888 0.733245 0.733245
11 GPS 0.083240 7.599894 7.599894
12 HBAN 5.085470 5.085470 5.085470
13 ICE 5.085470 5.085470 5.085470
14 LDOS 0.733245 0.733245 0.733245
15 LMT 1.896624 3.470779 3.470779
16 M 0.120832 1.896624 1.896624
17 MTD 0.083240 0.083240 0.083240
18 MYL 0.120832 1.896624 1.896624
19 NKE 5.085470 0.733245 0.733245
20 ORLY 1.212888 0.083240 0.083240
21 PBCT 1.212888 5.085470 5.085470
22 PLD 5.085470 5.085470 5.085470
23 RF 0.733245 1.896624 1.896624
24 RJF 0.120832 0.120832 0.120832
25 SHW 0.733245 0.120832 0.120832
26 TDG 5.085470 1.212888 1.212888
27 UAA 0.120832 0.120832 5.085470
28 VFC 0.733245 0.733245 0.733245
29 WEC 1.896624 0.733245 0.733245
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Table B.4: LR Test Result for FIGARCH

Companies Normal Dist. Student- t Dist. Skewed Dist.
0 AMG 1.212888 10.17094 10.17094
1 AMZN 1.212888 10.17094 10.17094
2 AZO 5.085470 10.17094 10.17094
3 BKNG 3.470779 10.17094 10.17094
4 BLK 0.083240 10.17094 10.17094
5 DUK 0.083240 10.17094 10.17094
6 ED 0.083240 10.17094 10.17094
7 F 1.212888 10.17094 10.17094
8 FCX 3.470779 10.17094 10.17094
9 GE 1.212888 10.17094 10.17094
10 GOOG 0.733245 10.17094 10.17094
11 GPS 1.896624 10.17094 10.17094
12 HBAN 5.085470 10.17094 10.17094
13 ICE 5.085470 10.17094 10.17094
14 LDOS 1.212888 10.17094 10.17094
15 LMT 0.083240 10.17094 10.17094
16 M 0.733245 10.17094 10.17094
17 MTD 0.083240 10.17094 10.17094
18 MYL 1.212888 10.17094 10.17094
19 NKE 1.212888 10.17094 10.17094
20 ORLY 0.733245 10.17094 10.17094
21 PBCT 0.120832 10.17094 10.17094
22 PLD 5.085470 10.17094 10.17094
23 RF 0.083240 10.17094 10.17094
24 RJF 0.733245 10.17094 10.17094
25 SHW 1.212888 10.17094 10.17094
26 TDG 5.085470 10.17094 10.17094
27 UAA 1.212888 10.17094 10.17094
28 VFC 0.733245 10.17094 10.17094
29 WEC 0.733245 10.17094 10.17094
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