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Mathematics, METU

Assoc. Prof. Dr. Oğuz Yayla
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ABSTRACT

SECURE MESSAGE AUTHENTICATION PROTOCOL FOR CAN
(CONTROLLER AREA NETWORK)

Mertol, Sarp

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assoc. Prof. Dr. Fatih Sulak

January 2020, 34 pages

The widespread communication of vehicles with each other and road infrastructure
has raised concerns about how to ensure network security of the electronic control
units (ECUs) in the vehicle. The fact that networks such as the Controller Area Net-
work (CAN), which is commonly used in in-vehicle communications, will also be
connected to external networks (e.g. 3G / 4G mobile networks) will allow malicious
adversaries to benefit from the vulnerability of the CAN. The authentication of mes-
sages of ECUs in the vehicle is required to ensure that in-vehicle communications are
secured. However, the cryptographic algorithms and protocols that can be used for
this message verification process should be selected considering the real-time com-
munication requirement in the vehicle.

Keywords: Controller Area Network, Message Authentication Protocol, Message Au-
thentication Code, Network Security, Replay Attack
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ÖZ

CAN (CONTROLLER AREA NETWORK) İÇİN GÜVENLİ MESAJ
DOĞRULAMA PROTOKOLÜ

Mertol, Sarp

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Doç. Dr. Fatih Sulak

Ocak 2020, 34 sayfa

Araçların birbirleriyle ve karayolu altyapısı ile haberleşmesinin yaygınlaşacak ol-
ması, araç içerisinde bulunan birimlerin ağ güvenliğinin nasıl sağlanacağı ile ilgili
endişeleri de beraberinde getirdi. Araç içi haberleşmede yaygın olarak kullanılan De-
netleyici Alan Ağı (CAN) gibi ağların aynı zamanda harici ağlara (örn. 3G/4G mobil
ağları) bağlanacak olması, kötü niyetli kullanıcıların CAN’in güvenlik konusundaki
zayıflıklarından yaralanmasına olanak verecektir. Araç içi haberleşmenin güvenli hale
gelmesi için araç içerisinde bulunan elektronik kontrol birimlerinin (ECU) mesajla-
rının doğrulanması gerekmektedir. Ancak bu doğrulama işlemi için kullanılabilecek
kriptografik algoritma ve protokollerin, araç içerisindeki gerçek zamanlı haberleşme
gereksiniminin göz önünde bulundurularak seçilmesi gerekir.

Anahtar Kelimeler: Denetleyici Alan Ağı, Mesaj Doğrulama Protokolü, Mesaj Doğ-
rulama Kodu, Ağ Güvenliği, Tekrarlama Saldırısı
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Definition of the Problem

Today’s modern vehicles include dozens of Electronic Control Units (ECUs) that

perform many essential functions such as braking, shifting gears and steering. Be-

sides, the functionalities including autonomous driving, Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) communication are expected to be fulfilled by

ECUs. Various protocols such as Local Interconnect Network (LIN) [5], Controller

Area Network (CAN) [7] and FlexRay [6] have been defined and implemented for

connecting ECUs in the vehicle. CAN is the most widely used in-vehicle communi-

cation protocol in the automotive industry.

When the CAN protocol was first developed, security requirements were not consid-

ered as it would be used in a closed environment. However, the connection of the

in-vehicle network to external networks through various interfaces as illustrated in

Figure 1.1 brings security needs. These external interfaces allow malicious adver-

saries to access the vehicle system. In this way, they can compromise the safety of

the driver and passengers by sending messages that may adversely affect the opera-

tion of the vehicle. Broadcast-based communication in the vehicle and the lack of an

authentication mechanism in the CAN protocol cause the attacker to exploit the vul-

nerability by sending spoofed messages. Studies [10] have shown that vehicles can be

easily targeted by malicious adversaries. The authors of [15] have demonstrated se-

curity vulnerabilities that can arise when the CAN is connected to the external world.

Further studies [14] have shown that CAN is also vulnerable to DoS (Denial of Ser-

1



Figure 1.1: Typical in-vehicle network

vice) attacks.

1.2 Challenges in Security Solutions

Due to the nature of in-vehicle networks, there are many challenges that make it

difficult to implement security solutions. First of all, ECUs in the in-vehicle network

have limited processing power. Therefore, when proposing a security solution, it is

necessary to consider the need for real-time communication, which is essential for

in-vehicle networks. Since ECUs have limited storage space, the storage of keys and

software required for cryptographic operations is another challenge. Moreover, it can

be said that due to the low data rates of the CAN bus, the bus utilization should also

be considered. Finally, the last challenge that must be overcome is that timestamps

used to prevent replay attacks are not included in the in-vehicle network.

1.3 Related Work

This section discusses the solutions and different approaches that researchers have

made to improve the security of the in-vehicle network. Lin et al. [11] proposed

an authentication based security mechanism as a precaution against the masquerade
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Figure 1.2: Attacker model [11]

and replay attack in the CAN. They defined an attacker model which is illustrated in

Figure 1.2. While N1 and N2 are legitimate nodes, control of N3 that stores critical

data (e.g., shared secret keys) andN4 that does not store any critical data is taken over

by malicious software. N3 and N4 are called strong and weak attackers respectively.

Fabrication is possible for N3 since N3 has access to shared secret keys and it can

send a message to N2, pretending to be N1. On the other hand both strong and weak

attackers (N3 and N4) are able to read a message that is sent by N1 and then send

the same message. N2 will accept the message by considering it was sent by N1.

Therefore, both attackers can successfully perform a masquerade/replay attack unless

the messages sent by nodes are verified without the message authentication protocol.

Each node in the network stores ID table, the pair-wise symmetric key, and message

counters in the security mechanism they proposed. ID table contains identifications

of messages, node ID of the sender and the list of the node IDs of the receivers.

Each node sends the counter information of related message and the authentication

codes calculated for each receiver along with the message. The main problem with

the approach that is mentioned above is the increase of the bus load if the message is

received by a large number of nodes.

Siddiqui et al. [17] proposed a method for secure communication over CAN which

requires hardware modifications for each ECU. The security solution is based on

client-server architecture. During the manufacturing phase, each client authenticates

with the server and is registered in a trusted environment. A physical layer cryp-

tographic primitive which is called physical unclonable function (PUF) is embedded

3



into each node. During the registration process, PUF receives bit-string as a challenge

and computes unique reproducible secret r as shown in the Figure 1.3. This secret

and configuration parameters are used to generate a public-private key pair for Ellip-

tic Curve Cryptography (ECC). The public key of each ECU is stored in a database of

the server and each client node stores the public key of the server in their non-volatile

memory. Each session starts with the turning on the ignition of the vehicle. At the

beginning of the session, Shared Key Generation Block generates shared symmetric

encryption key Shab by using the private key of the node and public key of the server.

Elliptic Curve Diffie-Hellmann (ECDH) algorithm is used for secret shared key ex-

change. After that, the encrypted public key of the node with the shared key is sent to

the server. The server decrypts the message and checks whether the public key of the

transmitter node is in the database of the server. If the server finds received public key

in the database, it then considers the transmitter node as authorized for the rest of the

session. The server shares public key information of all registered nodes with each

client nodes by encrypting it using the related shared keys. Finally, each client node

communicates with other nodes and generates a session key using its private key and

other nodes’ public key. The fact that private keys are only stored in volatile memory

during the session and are reproduced at each session, provides a significant advan-

tage in terms of security. Furthermore, this time-consuming authentication process in

each session raises a question about whether the method is practical or not. The hard-

ware improvements required at each node to implement this methodology, appear to

be a major drawback in the automotive industry, where a cost-effective solution is a

priority.

Kang et al. [8] presented a lightweight source authentication protocol in their study.

The attacker model that they consider is that adversaries perform replay attacks or

masquerade attacks by listening to the bus and inserting CAN data frames. As shown

in the Figure 1.4 their proposed protocol allows ECUs to use a one-way hash chain

to prevent these types of attacks. Source authentication protocol consists of three

phases: initialization, transmission and seed value sharing. At the initialization phase,

the sender ECU constructs a one-way hash table using the first seed that is securely

shared with other nodes. At the same time, the receiver ECUs compute the last hash

value ((n + 1)th value where n is the maximum number of hash values in the hash

4



Figure 1.3: Secure block implemented at each client node [17]
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Figure 1.4: Source authentication protocol [8]

table) of the chain by using the same seed and the identifier of the sender ECU. At

the transmission phase, the sender ECU sends the last hash value (nth for the first

message) from its hash table along with the message. Receiver ECUs perform a hash

operation to the received hash value to compare it with the stored one (n + 1th for

the first message). In the seed value sharing phase, the next hash chain begins to

be formed in parallel, taking into account the exhaustion of all hash values in the ta-

ble. The proposed security mechanism has significant advantages over Keyed-Hashed

Message Authentication Code (HMAC) based authentication protocol proposed by

Samuel et al. [20] in terms of authentication time, response time, and service delay

according to experimental results. On the other hand, due to the fact that CAN con-

troller filters are used to receive certain messages from the sender, a synchronization

issue between the sender and the receiver nodes associated with the use of hash values

seems likely to occur.

In another study, the authentication for verifying the identity of ECUs was performed

using Message Authentication Code (MAC) based security framework that is pre-

sented by Wang et al. in [19]. They separate ECUs by categorizing them as the

low-trust group and the high-trust group. Since ECUs with external interfaces, such

as OBD-II port and telematics are easily targeted by attackers as the attacker can ex-

ploit their exposed interfaces remotely, they become a part of the low-trust group.

The remaining ECUs are included in the high-trust group. ECUs in a high trust group

6



Figure 1.5: The message verification process at the receiver [19]

have the secret symmetric key required to authenticate messages unlike those in the

low trust group. Nodes on the network send the data frame that contains the au-

thentication message as well as the message that they originally want to send. Each

authentication message contains 1-byte node ID, 2-byte message counter, 4-byte mes-

sage authentication code and 1-byte authentication marker (0xFF). Since timestamp

is inapplicable to vehicular systems, the message counter is used to uniquely identify

a CAN message to resist replay attacks. The authentication marker serves to differ-

entiate that the frame contains an authentication message. As shown in the Figure 1.5

to reduce the computational delay that occurs immediately before the data is sent,

the digest that is independent of the data is pre-calculated. Using this digest and the

Binding, Extraction and Mapping function called BME, which was described in detail

in the relevant study, in authentication code generation and verification significantly

improves computational performance. On the other hand, sending the authentication

message for each data frame has a negative impact on the bus load of the CAN.
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CHAPTER 2

CAN (CONTROLLER AREA NETWORK) PROTOCOL

CAN is a serial communication protocol that is widely used in in-vehicle communi-

cation. The CAN protocol was developed by Bosch in the early 1980s to meet the

need for real-time communication between ECUs in vehicles. Although it was ini-

tially developed by the vehicle industry, today it is used in different areas such as

industrial automation, management of medical equipment available in the operating

room. In 1993 the CAN protocol was standardized as ISO 11898-1. A CAN bus with

four nodes is demonstrated in Figure 2.1. In the CAN, the ECUs in the vehicle can

be connected to each other by a single pair of wires instead of connecting each ECU

with separate wires. This method provides an advantage in terms of weight, cost, and

complexity.

CAN is a multi-master, broadcast-based communication system. Each node in the

network broadcasts short messages that contain data obtained through sensors or

other nodes. Because CAN is a carrier sense multiple access/collision avoidance

(CSMA/CA) protocol, each node monitors whether the network is busy before send-

ing messages to avoid a collision. The communication rate of the CAN can be up to

Figure 2.1: Four nodes connected through a CAN bus.
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1 Mbps.

2.1 Message Frames

The original ISO standard CAN message have an 11-bits identifier. However, this

standard was modified and the message identifier is extended to 29-bits which is

called Extended CAN later on. Standard CAN messages are capable of having 211, or

2048 different identifiers, while Extended CAN messages can have 229, or 537 million

different identifiers. Message identifiers include message priorities that allow arbitra-

tion. Data frames with 11-bits and 29-bits identifiers are shown in the Figure 2.2 and

Figure 2.3, respectively.

CAN message frame starts with a dominant start-of-frame (SOF) bit that indicates the

start of a message. It is followed by an 11-bits identifier which identifies the message

and indicates the message’s priority. The single remote transmission request (RTR)

bit serves to distinguish whether the frame is a remote frame. A dominant RTR bit

indicates a data frame while recessive RTR bit indicates a remote frame. Identifier

extension (IDE) bit is dominant when a message with a standard CAN identifier is

transmitted otherwise, IDE bit is recessive. The number of bytes that the data field

contains is indicated in the 4-bits data length code (DLC). Up to 8 bytes of data in

the data field can be transmitted. A 15-bit cyclic redundancy checksum (CRC) field

allows the receiver to check the integrity of the received message. Every receiver in

the network sends an ACK bit at the end of the message if they receive the message

correctly. If ACK bit remains recessive, the sending node repeats the message. A 7-bit

end-of-frame (EOF) field signifies the end of the CAN message. The interframe space

(IFS) field provides the time required by the CAN controller to move the received

message into its buffer.

There are four different types of CAN frames, including the data frame, the error

frame, the remote frame, and the overload frame. The data frame consists of the

identifier, the data, the data length code, the cyclic redundancy check, and the ac-

knowledgment bits. RTR bit is dominant in the data frame. If any node detects an

error in a message, it transmits an error frame. As a result, all the other nodes in the

10



Figure 2.2: Standard CAN: 11-Bit Identifier [4]

Figure 2.3: Extended CAN: 29-Bit Identifier [4]

network transmit error frames as well. In this case, the node that sends the erroneous

message retransmits the message. Nodes in the network use a remote frame to re-

quest data from another node. The remote frame is similar to the data frame except

that there is no data in it and the RTR bit is recessive. The overload frame is trans-

mitted when a node does not have enough time to process the received message. This

ensures that the receiving node has sufficient time to process the message.

2.2 Arbitration

One of the important characteristics of the CAN bus is the opposition in terms of logic

states between the bus, and the driver input and the receiver output. The recessive

level is associated with a logic one while the dominant level is associated with a

logic zero on the CAN bus. As shown in Figure 2.4, the CAN controller sends the

’010’ bitstream and complementary of this bitstream takes place on the CAN-H line.

CAN-L line’s logic state is inverse of CAN-H line’s logic state on the CAN bus.

Since all nodes on the network share the same physical communication bus, a colli-

sion may occur when two or more nodes attempt to access the bus simultaneously.

This situation may cause undesirable effects, such as message destruction or corrup-

tion. Therefore CAN uses a bit-wise arbitration mechanism to avoid data collisions.

The message identifier determines which node gains access to the bus during the ar-

bitration phase. The message with the highest priority has a message identifier that

consists entirely of zeros. During the arbitration phase, each transmitting node trans-

mits its identifier and compares it with the level monitored on the bus. If these levels

are equal, the unit continues to transmit. If the unit detects a dominant level on the

11



Figure 2.4: The inverted logic of a CAN bus

bus, while it was trying to transmit a recessive level, then it stops transmitting and

switches to the listening mode.

Figure 2.5 shows an example where three nodes node A, node B and node C attempt

to access the bus simultaneously. Message identifiers of each node are given below.

IdA = 10110100110 IdB = 10101101001 IdC = 10100100110

After all three nodes send the SOF bit, they start transmitting their message identifiers.

When node A transmits the fourth bit of its message identifier as recessive bit and

detects that bus state is dominant because of other node’s message identifier, node A

stops transmitting and starts listening. Node B also detects that its message identifier’s

recessive eighth bit is overwritten by node C and halts transmission. Therefore node

C wins arbitration and continues sending the remaining part of the message. Nodes

that lost arbitration starts a new arbitration as long as the bus is free to access again.

Thus, non-destructive bus arbitration is provided by CAN.

2.3 Error Checking

The CAN protocol uses multiple error detection mechanisms to detect errors on the

bus. The first of these mechanisms which is called bit monitoring is used by transmit-

ter node by monitoring the signal on the bus. If there is any inconsistency between

12



Figure 2.5: CAN bus arbitration example

the transmitted signal and the observed signal on the bus, the transmitter node sends

an error frame. Thus the sender node is aware of an error as quickly as possible and

alerts other nodes on the network. This operation is not performed during the arbitra-

tion phase. On the other hand, the data in the CRC field of the message is verified by

the CRC which is calculated by each node in the network. A receiver that receives a

valid message correctly, notifies a transmitter node by overwriting the ACK bit of a

message and making it dominant. When the transmitter does not detect a dominant

level on the bus during ACK transmission, it will notice that an error occurred during

the transmission of the message. The sender can not send more than five same bits

in a row somewhere between SOF and the end of CRC. After sending five identical

bits, the transmitter sends a bit with the opposite value which is called the stuffed bit.

Stuffed bits are ignored by the receiver nodes. Bit stuffing is also used for error detec-

tion. SOF, EOF, ACK delimiter, and the CRC delimiter bits are checked by receivers

whether the values of these fields are consistent with the CAN specification.

13
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CHAPTER 3

PROPOSED SECURITY PROTOCOL

In order to implement our proposed security solution, some prerequisites must first

be met. Each ECU in the network stores a key encryption key and initial authenti-

cation key in their protected area. In the manufacturing phase, these keys are loaded

through a secure channel. ECUs have a message ID table that contains the iden-

tification of received and transmitted messages. Since ECUs use message filtering

functionality, the received messages that are not included in this table are ignored.

The session counter and the counters of messages sent and received are kept in the

volatile memory of each ECU to deal with the replay attacks. Because of their limited

sizes, when transmitted and received message counters reach their maximum limits,

they overflow. In order to avoid this situation, a session key is generated to be stored

in a volatile memory of ECUs at the beginning of each session which is defined as

turning on the vehicle’s ignition. Each case the session key is generated, ECUs reset

their received and transmitted message counters. The counter overflow which may

occur due to the long duration of the session is prevented by updating the session key

before the overflow occurs.

The notation list regarding our study is given in 3.1. Our proposed security mecha-

nism consists of several phases such as initialization of ECUs, distribution of session

keys, authentication of CAN messages and periodic update of session keys.

15



Table 3.1: Notation for proposed security mechanism
Notation Description
ECUk kth ECU in the network
ECUm Master ECU that is responsible for distribution

of session key
SIDk Source identifier of kth ECU
MIDi Message identifier of ith message
KEnc Key encryption key
KAut Initial authentication key
KSes Session key
TMCMIDi

Transmitted message counter of ith message
RMCSIDk,MIDi

Received message counter of kth ECU and ith
message

SC Session counter

Figure 3.1: Session key message consisting of four data frames

3.1 Generation and Distribution of Session Keys

One of the ECUs in the network which is called master ECU is responsible for gener-

ating the session key and sharing it with other ECUs at the beginning of each session.

This sharing process is easily completed by taking advantage of the CAN’s broadcast-

based communication by sending a total of four data frames, two of which contain

the encrypted session key and the other two containing the authentication tag for the

encrypted session key as shown in Figure 3.1. In this way, the session key is deliv-

ered to all ECUs as quickly as possible. As described in Algorithm 1, generation, and

distribution of session key take place in a few steps. ECUm;

i Generates a random number.

ii Using key derivation function obtains the session key.
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iii Encrypts the session key with the key encryption key.

iv Calculates MAC of ciphertext by using the session counter and the initial authen-

tication key.

v When the message is successfully transmitted, starts using a new session key and

resets all transmitted and received message counters.

Algorithm 2 describes how ECUs in the network verify received session key message.

ECUs except ECUm;

i Calculate MAC of ciphertext obtained from received message by using its session

counter and initial authentication key.

ii Compare received MAC with the calculated one.

iii If the verification is successful, start using the session key obtained by decrypting

the ciphertext and reset all transmitted and received message counters.

Algorithm 1: Preparation of the session key message
Output: Session key message M

1 Generate a random number r.

2 With r as the input to the key derivation function, generate KSes.

3 Obtain ciphertext C = EKEnc
(KSes).

4 Calculate MAC = HKAut
(C||SC)

5 Send cipher text C and MAC

6 Use the KSes for future communications.

7 Reset all TMCMIDi
and RMCSIDk,MIDi

The session counter is stored by all ECUs in order to measure the replay attack that

can be done during the sharing of the session key. Because the value of the session

counter is incremented per session, even if the adversary copies one of the session key

message sent before, this session key message will not be valid for another session.

Renewal of the session key at each session ensures that the session key’s usage time

is limited even if it is obtained by an attacker. In addition, since the session key is

stored in the volatile memory, the attacker has a limited time to obtain the key.

17



Algorithm 2: Verification of the session key message
Input: Session key message M

1 Calculate MAC2 = HKAut
(C||SC).

2 if MAC2 is equal to MAC from received M then

3 Obtain session key KSes = DKEnc
(C).

4 Use the KSes for future communications

5 Reset all TMCMIDi
and RMCSIDk,MIDi

6 else

7 Ignore the message M .

3.2 Authentication of CAN Messages

After the session key is distributed, all ECUs within the network begin to send their

messages together with a MAC. The study on how this MAC can be calculated most

efficiently on the platform where we make our own implementation is described in the

next chapter. But here it is worth noting that encryption and hash-based algorithms are

used in order to calculate the MAC. Algorithm 3 describes what actions are performed

on the sender’s side before and after sending a message. The sender ECU;

i Finds transmitted message counter of the related message by using its identifier.

ii Concatenates message and its transmitted message counter. Also concatenates

session key if it uses a hash-based algorithm.

iii Encrypts the result with session key or generate the digest of the result to obtain

MAC depending on which algorithm it uses.

iv Sends a message and it’s MAC.

v Monitors the CAN bus to determine whether the message was sent successfully.

vi Increments transmitted message counter if the transmission is successful

Algorithm 4 describes what actions are performed on the receiver’s side to verify the

received message. The receiver ECU;
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Algorithm 3: Transmission of a message with an authentication tag
Input: Message m with identifier MIDi

1 Calculate MAC = EKSes
(m||TMCMIDi

) or

MAC = H(m||TMCMIDi
||KSes)

2 Send the data frame with the message m and the MAC

3 if Transmission is successful then

4 Increment TMCMIDi

5 else

6 Resend the data frame

i Finds received message counter of the related message by using it’s identifier and

source address.

ii Concatenates message and it’s received message counter. Also concatenates ses-

sion key if it uses a hash-based algorithm.

iii Encrypts the result with session key or generate a digest of the result to obtain

MAC depending on which algorithm it uses.

iv Compares received MAC with the calculated one.

v If they are equal, increments related received message counter.

Algorithm 4: Verification of the received message
Input: Message m with message identifier MIDi and source identifier

SIDk and MAC of message m

1 Calculate MAC2 = EKSes
(m||RMCSIDk,MIDi

) or

MAC2 = H(m||RMCSIDk,MIDi
||KSes)

2 Compare the received MAC with the calculated MAC2

3 if MAC is equal to MAC2 then

4 Increment RMCSIDk,MIDi

5 else

6 Authentication error
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Figure 3.2: The stored data at the end of the initialization phase

Figure 3.3: Data frame structure of the proposed protocol

Nodes do not receive every message shared on the network because they filter incom-

ing messages. Therefore, when each node uses a common counter, there will be a

synchronization problem between the nodes. The same type of messages within the

network can be sent by multiple sources. Besides, a node may be receiving multi-

ple types of messages from another node. For all these reasons, each node stores a

transmitted message counter for each type of message it sends, and a received mes-

sage counter for each type of message received from different sources, as shown in

Figure 3.2.

The data frame used in the proposed security mechanism is as shown in Figure 3.3.

The MAC calculated for each sent message is located within the data field. Fig-

ure 3.4 demonstrates a secure sharing of the message with the MID1 identifier be-

tween ECU1 and ECU2.
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Figure 3.4: Authentication of a CAN data frame

3.3 Update of Session Keys

When any node in the network notices any of the message counters is approaching

overflow, it requests the master node to generate a new session key. After the master

node increases the value of the session counter by one, it generates a new session

key, encrypts it, calculates the MAC required for the message, and broadcasts the

new session key message. The nodes receiving the message, verify the authentication

code of the message, then decrypt the corresponding part of the incoming message

and start using the session key they obtained as shown in Figure 3.5.
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Figure 3.5: Session key update procedure
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CHAPTER 4

IMPLEMENTATION AND PERFORMANCE ANALYSIS

In this chapter, we examined how the protocol we proposed is implemented and how

the implementation we have done has the impact on the network along with the exper-

imental results. When performing performance analysis, bus utilization and message

latency on the bus were taken into consideration.

The software was developed on the 32-bit Arm Cortex-M4 based STMicroelectronics

STM32F423ZH [18] microcontroller to obtain ECUs operating in accordance with

the security protocol. To ensure communication between ECUs, bxCAN CAN con-

troller which is included in the microcontroller was used. The Microchip CAN Bus

Analyzer [13] was used to simulate the CAN bus environment and monitor the mes-

saging traffic on the bus.

Different experiments were conducted by changing the number of ECUs in the net-

work and the number of messages they send and receive. In addition, the performance

of cryptographic algorithms used to obtain MAC was examined in two different cat-

egories such as hash-based ones and block cipher based ones.

In the protocol we propose, the payload length will be 6 bytes instead of 8 bytes since

each data frame contains a MAC with a length of 2 bytes. The MAC length is limited

due to the concern that the utilization of the CAN bus would increase considerably.

Performance evaluation was performed using block ciphers with a block size of 16

bytes such as AES [2], RC6 [16], Serpent [1], Twofish [9], Camellia [12], and Seed

[3]. In this way, obtaining MAC by encrypting only one block has shortened the pro-

cessing time. The 6-bytes message concatenated with the 4-bytes transmitted mes-
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Figure 4.1: Authentication speed in clock cycles using different block ciphers

sage counter and then the 6-byte padding was applied to prepare the block to be

encrypted. Figure 4.1 shows how much time it takes to prepare the block and create

the MAC as a result of encryption. Besides, the speed of the message verification

process at different operating frequencies of the processor is shown in the Figure 4.2.

When the MAC was created by using hash algorithms, a 6 byte message, a 4 byte

transmitted message counter and a 16 byte session key were given as input to the hash

function. The 2 bytes of the output of the hash function was used as MAC. Since the

desired MAC size is 2 bytes, while hash functions produce larger output, in addition

to speed measurements with specific hash algorithms, another speed measurement

was made by determining the parameters of Keccak algorithm in accordance with

the selected 32-bit CPU and the size of the desired output as shown in Figure 4.3.

Figure 4.4 shows the message verification speeds of the processor with different op-

erating frequencies when obtaining MAC using hash algorithms.

Table 4.1: Speed evaluation conditions
CAN Bus Speed 1 Megabits per second
Algorithm AES-128
Sent Message Time Interval 10 ms.
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Figure 4.2: Authentication speed in µs using different block ciphers for different
operating clock frequencies of processor

Figure 4.3: Authentication speed in clock cycles using different hash algorithms
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Figure 4.4: Authentication speed in µs using different hash algorithms for different
operating clock frequencies of processor

Experiments performed in the rest of the thesis are based on the values in Table 4.1.

In the Figure 4.5, the operating frequency of the receiving ECU’s processor is 80

Mhz. Channel 4 of the logic analyzer is connected to the CAN bus, while channel

number 3 is connected to a pin where the receiver ECU changes its state in certain

cases. Channel 4 shows a CAN data frame sent in accordance with the proposed CAN

protocol. On the other hand, channel 3 shows that the receiving ECU changed its pin

state as soon as the message arrives and completes the verification process. The time

for the sent message to reach the receiving node is 143 µs, while the verification time

of the message is 16.8 µs. These times are indicated by timing marker pairs A1-A2

and B1-B2, respectively. Similarly, the results obtained by changing the operating

frequencies of the receiving node are shown in Figure 4.6 and Figure 4.7. When the

CPU clock rate is 60 Mhz, in another study [20], the authentication time is approx-

imately 150 µs, whereas in the proposed study, this time is 22.4 µs. Furthermore,

even if the CPU clock rate is 16 MHz, the authentication time is 83 µs, which is a

significant improvement compared to the proposed method in the [20].

To measure round trip time, we connected another ECU with the same hardware
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Figure 4.5: Time to receive and verify the message sent when the CPU is running at
80 Mhz

Figure 4.6: Time to receive and verify the message sent when the CPU is running at
60 Mhz
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Figure 4.7: Time to receive and verify the message sent when the CPU is running at
16 Mhz

characteristics as the receiver ECU to the CAN bus. A large number of threads which

is called virtual sender ECUs were executed on the ECU we connected. Each of

these threads has the role of sending messages in 10 ms intervals. When the receiving

ECU receives a message, it verifies this message and sends a response message with

a MAC. In this way, the receiving ECU performed cryptographic calculations both

when verifying the incoming message and sending the response message. Round trip

time was calculated by adding up the time it takes to send a message and the time

it takes to receive a response message. In Figure 4.8, the timing marker pair A1-A2

shows the total time it takes for a message to be sent and a response to be received, and

the timing marker pair B1-B2 shows the time it takes to verify the incoming message

and generate a verifiable response message. The number of threads was increased to

see if the receiving ECU missed any messages. While receiving ECU was operating

at a frequency of 16 MHz, there was no message loss when 25 virtual ECUs were

sending messages at intervals of 10 milliseconds. However, it should be noted that

the CAN controller of the receiving ECU has 2 receiver buffer. A message loss occurs

if the number of senders exceeds 2 or 3 in 40 and 60 Mhz clock rate in the study of

Samuel et al. [20], respectively according to study in [8]. Figure 4.9 shows that

25 different threads acting as 25 different ECUs send messages in 10 milliseconds

intervals.
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Figure 4.8: The round trip time when the CPU is running at 16 Mhz

Figure 4.9: The CAN bus load when 25 senders send messages at 10 ms intervals
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Figure 4.10: Session key update time when the CPU clock rate is 16 Mhz

We also measured the session key update time. Two ECUs are connected, one re-

sponsible for generating and distributing the session key, the other responsible for

verifying the incoming key update message. Changing the number of receiver ECUs

had no effect on the duration of the key update process, as all receiver ECUs would

verify the incoming key update message at the same time. The process of updating

the session key involves generating the session key, distributing the encrypted session

key and authentication tag within four data frames and verification of the received

data frames by receiver ECUs. Therefore, the session key update time is the sum of

the duration of these processes. As shown in the Figure 4.10, the session key genera-

tion process starts when the state of the channel referred to as GPIO1 is logical high.

Then the generated key is encrypted, the authentication tag is calculated and the four

prepared data frames are written into the transmit buffers of the CAN controller. The

GPIO state is set as logical low, as can be seen in the channel referred to as GPIO1.

Receiver ECU changes the state of the line expressed in GPIO2 immediately after

receiving and verifying the incoming message. The duration of the session key update

process is 708 microseconds while the CPU clock rate is 16 Mhz, as shown by the

A1-A2 timing marker pair.
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CHAPTER 5

CONCLUSION

In this thesis, a secure communication protocol was developed to prevent masquerade

and replay attacks for the security of the vehicle network, which has become increas-

ingly important with the opening of vehicles to the outside world. We proposed a

software solution that is easy to implement and does not require any changes to the

CAN protocol. The protocol was implemented using different types of cryptographic

algorithms on a platform which is used intensively in IoT (Internet of Things) de-

vices. The performance of the proposed protocol was evaluated considering different

criteria. The effect of the time required for the generation and verification of the mes-

sage authentication code on the ECUs was minimized. The proposed protocol was

demonstrated to be efficient in terms of authentication time, response time and round

trip time.
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