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ABSTRACT

MATHEMATICAL COUNTERMEASURES AGAINST IMPLEMENTATION
ATTACKS

Çomak, Pınar

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

Co-Supervisor : Prof. Dr. Vincent Rijmen

January 2020, 68 pages

The rapid growth of the usage of connected devices demands strong methods to pro-
vide the security. In a black-box model with a trustworthy internal design, usage of se-
cure cryptographic algorithms seems to protect the devices that stores a cryptographic
key. However, the physical leakage of these devices has been shown to cause the ex-
traction of the key or other sensitive information, in the so called gray-box model, fo-
cusing on the implementation of the cryptographic algorithms in hardware instead of
the algorithms themselves. These physical leakages can be any side-channel informa-
tion such as timing of an execution, power consumption or electromagnetic radiation.
If the leakage is related to all or a part of the sensitive information stored in the device,
it is called side-channel information. The most successfully exploited side-channels
is the power consumption of the cryptosystem which can be analyzed by differen-
tial power analysis (DPA). The aim of a DPA attack using the power consumption
is to extract the key or any other sensitive information from a device, through mea-
surement and analysis of the different power consumption of different plaintext and
key inputs in the cryptographic system. The attacker seeks to find a correlation be-
tween the information leaked from the side-channel and the intermediate results of a
cryptographic algorithm.

Due to the wide-ranging impact of the attacks over the last two decades, preventing
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Side-Channel Analysis (SCA) attacks has been the subject of a large body of research,
and many countermeasures have been developed to foil these attacks. Rekeying lim-
its the number of iterations of an algorithm using the same key, hiding changes the
behavior of a device rather than the algorithm to make it consume equal amount of
power for any values of sensitive information, and masking, which we study, avoids
or reduce the correlation between information leaked through a side-channel and sen-
sitive data, on which SCA attacks depends. Masking conceals all sensitive intermedi-
ate values by randomizing them with well-known secret sharing schemes. Different
masking schemes have been proposed, one of which is Threshold Implementation
(TI) [35]. It carries a proof of security against DPA even in the presence of glitches,
while it requires smaller area and uses much less randomness compared to the other
secure masking methods.

TI is based on secret sharing and multi-party computation in which each bit of the
sensitive data is probabilistically divided into shares so that any proper subset of
shares is independent of the data itself. TI relies on four properties; uniformity of
the unmasked variables, correctness, dth-order non-completeness and uniformity of
the shared functions. The early works of TI provide the fact that TI is invariant under
the affine transformation.

We present the contributions of this thesis in two-folds. In the first part, we ex-
amine the behavior of TI-sharing of S-boxes under a nonlinear transformation and
we showed TI is not invariant under inverse transformation except for a subset of
classes. In the second part of the thesis, one of the efficient method to share higher
degree S-boxes which is the decomposition is studied. We examine when the S-boxes
of higher degree can be decomposed into the lower degree ones. In order to find
the conditions, we target the decomposition of permutations into quadratic or cubic
permutations by considering the power permutations and their parities. We finally
give the decomposition results about the finite fields and corresponding lower degree
power permutations.

Keywords: Side-channel analysis, countermeasures, masking, the threshold imple-
mentations, Boolean functions, permutations, decomposition.
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ÖZ

GERÇEKLEME ATAKLARINA KARŞI MATEMATİKSEL TEDBİRLER

Çomak, Pınar

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ortak Tez Yöneticisi : Prof. Dr. Vincent Rijmen

Ocak 2020, 68 sayfa

Bağlantılı cihazların kullanımındaki hızlı gelişmeler, güvenliği sağlayan güçlü me-
totlara ihtiyaç doğurmuştur. Güvenilir bir iç dizayna sahip olan kara kutu modelinde,
güvenilir kriptografik algoritmaların kullanımı, kriptografik anahtar depolayan cihaz-
ları koruyor gibi görünür. Ancak, bu cihazların fiziksel kaçaklarının, anahtarın ya
da diğer hassas bilgilerin sızmasına sebep olduğu gösterilmiştir. Gri kutu denilen bu
model, algoritmanın kendisinden ziyade kriptografik algoritmanın donanımdaki ger-
çeklenmesine odaklanır. Bu fiziksel sızıntılar bir programın çalışma süresi, harcadığı
güç ya da yaydığı elektromanyetik radyasyon gibi yan-kanal bilgileri olabilir. Eger
bu sızıntı, cihaz içinde saklanan gizli bilginin tamamıyla veya bir parçasıyla iliski-
liyse, yan-kanal bilgisi olarak adlandırılır. En başarılı şekilde kullanılan yan-kanallar,
diferansiyel güç analizi (DPA) ile çözümlenebilen kriptosisteminin güç tüketimidir.
Güç tüketimini kullanan bir DPA saldırısının amacı, kriptografik sistemdeki farklı düz
metin ve anahtar girişlerinin farklı güç tüketiminin ölçümü ve analizleriyle, cihazdaki
anahtarı veya diğer hassas bilgileri çıkarmaktır. Saldırgan, yan-kanaldan sızan bilgiler
ile kriptografik algoritmanın ara sonuçları arasında bir korelasyon bulmaya çalışır.

Son yirmi yılda saldırıların geniş çaplı etkisi nedeniyle, Yan-Kanal Analizi (SCA)
saldırılarının önlenmesi büyük bir araştırma konusu olmuştur ve bu saldırıları engel-
lemek için birçok önlem geliştirilmiştir. Yeniden anahtarlama, aynı anahtarı kullana-
rak bir algoritmanın yineleme sayısını sınırlar; gizleme, herhangi bir hassas bilgiden
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bağımsız olarak, her girdi için eşit miktarda güç tüketmesini sağlamak amacıyla algo-
ritmadan ziyade aygıtın davranışını değiştirir; ve bizim çalıştığımız tedbir olan mas-
keleme ise bir yan-kanaldan sızan bilgiler ile hassas veriler arasındaki ilişkiyi önler
veya azaltır, ki SCA saldırıları da bu korelasyona bağlıdır. Maskeleme, tüm hassas
ara değerleri, iyi bilinen gizli paylaşım şemalarıyla rastgele hale getirerek gizler. Biri
Eşik Gerçeklemesi (TI) [35] olan farklı maskeleme şemaları önerilmiştir. Küçük tek-
nik problemlerin varlığında bile DPA’ya karşı güvenli olduğu kanıtlanmıştır, aynı za-
manda diğer güvenli maskeleme yöntemlerine kıyasla daha küçük bir alan gerektirir
ve çok daha az rastgelelik kullanır.

TI, hassas verilerin her bir bitinin eşit olasılıkla paylaşımlara ayrıldığı gizli paylaşım
ve çok partili hesaplamaya dayanır, böylece herhangi bir paylaşım alt kümesi, verile-
rin kendisinden bağımsızdır. TI dört özelliğe, maskelenmemiş değişkenlerin tekdüze-
liğine, doğruluğa, d. seviyeden tamsızlığa ve paylaşılan fonksiyonların tekdüzeliğine
dayanır. TI’nin ilk çalışmaları, TI’nin afin dönüşüm altında değişmez olduğunu gös-
termiştir.

Bu tezin katkılarını iki bölümde sunuyoruz. İlk bölümde, S-kutularının doğrusal ol-
mayan bir dönüşüm altında TI paylaşımının davranışını inceledik ve S-kutularının
bazı sınıfları haricinde TI’nin ters dönüşüm altında değişmez olmadığını gösterdik.
Tezin ikinci bölümünde, yüksek dereceli S-kutularını paylaşmanın etkili yöntemle-
rinden biri olan ayrışma yöntemi çalışılmıştır. Yüksek dereceli S-kutularının hangi
şartlar altında daha düşük dereceli olanlara ayrıştırılabileceği incelendi. Bu koşulları
bulmak için, güç permütasyonları ve pariteleri dikkate alınarak, permütasyonların ku-
adratik veya kübik permütasyonlara ayrılması hedeflenmiştir. Son olarak, sonlu cisim-
ler ve bunlara karşılık gelen düşük dereceli güç permütasyonları hakkındaki ayrışma
sonuçlarını sunuyoruz.

Anahtar Kelimeler: Yan-kanal analizi, tedbirler, maskeleme, alt sınır gerçeklemeleri,
Boolean fonksiyonlar, permütasyonlar, ayrışım.
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CHAPTER 1

INTRODUCTION

The number of Internet-connected devices has been increasing globally. It is expected

to be more than 75 billion Internet of Things (IoT) devices worldwide by 2025, so 60

times more connected devices than people!

At the same time, security concerns are becoming more concrete in parallel with the

rapid growth of digitization, with the threat of adversaries stealing our data without

authorization.

Cybercrime damages are anticipated to cost $6 trillion annually by 2021, according

to Cybersecurity Ventures. Knowing that even Google and Facebook lost more than

$100 million to phishing attack makes it possible to believe such estimations. For

example, a ransomware attack, WannaCry alone costs The National Health Service

(NHS), U.K.’s Department of Health and Social Care, totaled over $100 million, and

NHS was not the only target. WannaCry hit thousands of organizations in over 150

countries in 2017. It took over infected computers and encrypted their hard drives,

decrypted them in return for a payment in Bitcoin.

Mostly the lack of properly implemented cryptographic algorithms has shown to be

devastating. However, on the other hand, choosing default usernames and passwords

equals to giving gifts for thieves. In 2016, the Mirai botnet, one of the most significant

DDoS attacks, nearly brought down the internet along the entire eastern seaboard of

the U.S.

Here cryptography gets involved in the game more seriously with the security and

privacy needs, although it has a long-standing and also glorious history. The security
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concerns make the public conscious and aware of how important it is and have raised

cryptography on the list of top priorities. Mark Ward, the technology correspondent of

BBC News [1], says that encryption makes the modern world go round to emphasize

how important the cryptography is for everyone.

1.1 Brief Background of Cryptography

Cryptography takes its name from Greek words "kryptos" meaning hidden secret and

"graphein" meaning writing. Cryptography is the practice and study of hiding infor-

mation. The art or science is encompassing the principles and methods of transform-

ing an understandable message, known as the plaintext, into one that is incompre-

hensible/meaningless, ciphertext, by a function that takes a key as a variable, and

then re-transforming that message back to its original form. It can be shown as

C = EKe(P ) to mean that the encryption of the plaintext P using encryption key

Ke gives the ciphertext C. The output of the encryption process, the cipher is a

character-for-character or bit-for-bit transformation, regardless of the linguistic struc-

ture of the message. Similarly, P = DKd(C) represents the decryption of C using the

decryption key Kd to get the plain text again.

The adversary, or anyone other than the intended recipient, is accepted to hear and

copy the full ciphertext precisely. Unlike the intended recipient, however, he does

not know what the key for decryption is and cannot easily decrypt the ciphertext.

Sometimes the adversary can not only read the information from a communication

channel (passive adversary) but also record and replay the messages later, inject his

own messages, change or delete the original message before transmitting it to the

receiver (active adversary).

The growth of computers and communications systems brought with it a demand to

protect the information in digital form and to provide security services. At that point,

the importance and necessity of cryptography came into our modern-day lives. It

enables people to communicate on the Internet, transferring crucial and confidential

information securely. Cryptography is essential because it empowers all processes,

transactions and communications to be safely performed electronically. It is espe-
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cially important in communicating personal information that is vulnerable to distor-

tion over any public and private network.

Cryptography, then, not only protects data from enemy or alteration, but can also be

used for

• user authentication, the process of proving one’s identity,

• user privacy/confidentiality, keeping information secret from all but those who

are intended to see it,

• the data integrity, ensuring information has not been altered in any way from

the original,

• non-repudiation, which is the mechanism to prove that the sender really sent

this message.

Of many the information security objectives such as signature, authorization, vali-

dation, anonymity and more, these four core objectives provide a framework from

which others can be derived, as stated in the Handbook of Applied Cryptography [31]

with more details.

1.1.1 Cryptographic Algorithms

Generally, in order to accomplish different aspects of fulfilling the objectives men-

tioned above, cryptographic schemes fall into a number of basic categories: Symmet-

ric Key Cryptography, Asymmetric Key Cryptography and Hash Functions.

Symmetric/Secret Key Cryptography uses a single key for both encryption and

decryption, or it is computationally easy to calculate decryption key d, knowing only

encryption key e. The sender uses the key to encrypt the plaintext and sends the

ciphertext to the receiver. Since the key must be kept secret from all unintended

parties to keep the encrypted message secret, it is called as secret key cryptography.

In most practical symmetric key encryption schemes, in order to decrypt the message

to recover the plaintext, the receiver uses the same key, which gives it the alternative

name "symmetric key cryptography."
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Symmetric-key cryptography schemes are commonly categorized as being either block

ciphers or stream ciphers.

• A block cipher is so-called because the scheme breaks up the plaintext into

blocks of a fixed length and encrypts one block at a time using the same key on

each block. A block cipher encrypts plaintext in fixed-size blocks. For larger

messages, the easy approach is to break up the plaintext into fixed-size blocks

and encrypt each separately. Block ciphers can operate this encryption in one of

several modes for different applications such as Electronic Codebook, Cipher

Block Chaining, Cipher Feedback and Output Feedback with varying advan-

tages and disadvantages. Different modes of operations can provide different

security guarantees. Further information can be found in [31, 36].

• Stream ciphers can be seen as block ciphers having block length equal to one.

They operate on a single bit at a time and implement some form of feedback

mechanism so that the key is constantly changing. In contrast to block ciphers,

they tend to simultaneously encrypt groups of characters of a plaintext mes-

sage using a fixed encryption transformation. Further information can be found

in [36].

Since there is only one key used in encryption and decryption in Symmetric Key

Cryptography, both sender and receiver must have it to communicate. Therefore, the

identical key needs to be distributed securely. The concern of exchanging the key

leads to public key cryptography because people do not need to transmit their private

keys to the others, which reduces cybercriminals’ chances of accessing the private

key during transmission. This scheme helps with exchanging the secret keys in an

encrypted way.

Asymmetric/Public-Key Cryptography (PKC) differs from symmetric key by using

one key for encryption and another for decryption, allowing secure communication

where there has been no opportunity to safely distribute keys beforehand.

In PKC, each receiver needs to publish a public key for encryption, while keeping the

corresponding private key secret for decryption. Trusted third party which certifies

that a particular public key belongs to a specific person or entity only is generally
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needed for assurance of the authenticity. In secure systems, computing the private

key given public key should be computationally infeasible though private and public

key pair is mathematically related.

Three well-known Public Key Encryption schemes are:

• RSA Algorithm is based on the difficulty of factorization problem of a large

integer n. So if somebody can factorize the large number, the private key is

compromised.

• El Gamal Encryption Algorithm is based on the difficulty of finding discrete

logarithm in a cyclic group that is even if ga and gb are known, computing gab

is difficult, which is so called Diffie-Hellman problem.

• Elliptic Curve Cryptography (ECC) is based on difficulty of special versions of

the discrete logarithm problem. It provides efficient computation with shorter

keys which ease of key management with an equivalent security level.

Hash Function is a mathematical function that converts a numerical input value into

another compressed numerical value irreversibly. Hash function takes a data of arbi-

trary length as input and converts it into a fixed length output. Hash functions provide

protection to password storage and data integrity check.

1.1.2 Brief Background of Side-Channel Analysis

A cryptographic device is an electronic device that implements a cryptographic al-

gorithm and stores a cryptographic key. Using that key, it is able to perform crypto-

graphic operations. There are a variety of attacks aiming to extract the key. Attacks

can be categorized based on an attacker’s knowledge about the cryptosystem and lead

to the black-box, the grey-box and the white-box adversary models.

Traditionally, cryptographic implementations were considered as a black box with

a trustworthy internal design in which an attacker can only observe the behavior of

the inputs and outputs. In the late 90s, Kocher, Jaffe, and Jun [27] pointed out real-

world attacks circumventing this model by focusing on the implementation of the
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cryptographic algorithms in hardware instead of the algorithms themselves. This

initiated a field of research on so-called Side-Channel Analysis (SCA) attacks where

implementations are considered as a grey box. In this grey-box adversary model, the

attacker is able to access additional side-channel information in the form of some

physical parameter (e.g., the timing of an operation or its power consumption).

The aim of an SCA attack using the power consumption side channel is to extract

the key or any other sensitive information from a device, through measurement and

analysis of the different power consumption of different plaintext and key inputs in the

cryptographic system. The attacker, as an observant only, seeks to find a correlation

between the information leaked from the side channel and the secret key. Detecting

and catching such attackers is made difficult by the fact that they generally do not

leave traces of their attacks.

Lastly, in the white-box adversary model, an attacker is allowed full access of the

internal structure of the system [11]. This type of attacker is out of the scope of this

thesis.

SCAs are further subdivided depending on which physical parameter, or which side

channel is exploited. Timing analysis attacks use the execution time of each operation,

power analysis attacks use the dynamic power consumption, electromagnetic analysis

attacks exploit the electromagnetic radiation, and acoustic attacks, the sound coming

out of the cryptographic device when the operations are being performed.

1.1.2.1 Power Analysis Techniques

One of the most successfully exploited side channels is the power consumption of the

cryptosystem, which can be analyzed using simple, differential or correlation power

analysis techniques. The target, or the sensitive variable, of the SCA, is the cryptosys-

tem’s secret key.

Simple Power Analysis (SPA). To launch an attack, an adversary measures the power

consumption of a cryptosystem during a cryptographic operation as a function of

time. The resulting set of instantaneous power consumption samples is called a trace.

In a Simple Power Analysis attack, an attacker collects only one trace. The follow-
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ing example illustrates how this can be successful. During an execution of an RSA

implementation, the device consumes different quantities of power in a multiplica-

tion and a squaring operations. In RSA, we decrypt by raising the ciphertext to the

power of the decryption key, d. Multiplication and squaring are chosen according to

the bits of the binary form of the exponent, which is the secret key, as follows: if

the bit equals 1, multiply then square, if the bit equals 0, only take the square. In

the power consumption trace, the attacker can distinguish between the power con-

sumption corresponding to a multiplication (often high) and the power consumption

corresponding to a squaring (often low). The alternating sequences of high and low

power consumption regions in the trace can be easily interpreted and translated to the

RSA key. Therefore, when conditional branching operations depend on the sensitive

data, SPA can be used to break the cryptographic system.

SPA is less of a threat in symmetric-key cryptography as the type of operations in

the algorithm often do not depend on the key. An attacker can, however, collect

more than one trace and perform a Differential Power Analysis (DPA) attack [27] or

a Correlation Power Analysis (CPA) attack [15].

Differential Power Analysis (DPA). The attacker collects a large number of power

consumption traces corresponding to a cryptographic operation under a fixed key and

different plaintexts. The traces need to be correctly aligned, meaning fixed points of

the trace always correspond to the power consumption of exactly the same sequence

of operations [29]. DPA is based on a divide-and-conquer strategy, where smaller

subsets of the key are attacked separately. When attacking AES, the key is often

attacked byte by byte. For each key byte, a guess is made and the output of its cor-

responding S-box is calculated using the known plaintext. The S-box output value is

then interpreted using a leakage model, or an abstraction of how the device’s power

consumption behaves. The Hamming Weight (HW) of the S-box output can for in-

stance be chosen and corresponds to the abstraction that a byte of high HW leads to

a higher power consumption then a byte with a low HW. The HWs resulting from the

key guess and each plaintext is then correlated to the values in the power consumption

trace corresponding to that plaintext and the highest correlation leads to the correct

key byte. When the Pearson correlation coefficient is used for correlation, this type

of attack is referred to as a Correlation Power Analysis (CPA) attack [15].
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1.1.2.2 Countermeasures against SCA Attacks

Hardening symmetric-key cryptosystems against the latter class of attacks forms the

topic of our research. Due to the wide-ranging impact of these attacks over the last

two decades, preventing side-channel attacks has been the subject of a large body of

research, and many countermeasures have been developed to foil these attacks. We

give a brief overview of successful mitigation strategies below.

Rekeying. Since the attacker needs a large number of power traces if the same key

to mount DPA successfully, one can consider to limit the number of iterations of

an algorithm using the same key as a countermeasure. Nevertheless, the additional

challenges in key management make this method impractical.

Since SCA attacks depend on the relationship between information leaked through a

side-channel and sensitive data, a popular approach of countermeasures is to avoid or

reduce this dependency. The following two categories are successful examples of this

strategy.

Hiding. Hiding aims to break the correlation between the leaked information and the

processed data values and operations by changing the behavior of device rather than

the algorithm. The hardware on which the algorithm is implemented could be made

to consume an equal amount of power for all values, regardless of their Hamming

Weight. A drawback of this approach is the high cost of the resulting hardware and a

long design time [29].

An alternative class of countermeasures relies on adapting the algorithm rather than

the device on which it is implemented. The effort of an attacker to retrieve the key

can be increased by randomizing the order of executions of the cryptographic oper-

ations or by inserting dummy operations [29]. Recent research has shown that these

algorithmic alterations are easily defeated using machine learning, and are therefore

not sufficient to protect devices against DPA.

Masking. An effective countermeasure against DPA is found in another data ran-

domization technique known as masking. Masking is a way of securing cryptosystem

even if the attacker obtains and analyzes a large number of power traces. Instead
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of randomizing the order of operations, masking randomizes the intermediate values

using well-known secret sharing schemes [42]. Each bit of the sensitive data is prob-

abilistically divided into shares so that any proper subset of shares is independent of

the data itself. In our DPA example, an attacker trying to retrieve a key byte now has

to make guesses on all shares of that key byte to succeed. The more shares a key is

shared with, the harder the attack becomes. This leads us to concept of higher-order

DPA which we illustrate informally as follows. An unmasked implementation can be

broken using a guess on a single intermediate value, which is what we referred to as

DPA earlier, and which we here generalize as first-order DPA. To thwart first-order

DPA, we can share the key over two shares. An attacker guessing a single interme-

diate value can not retrieve the secret key anymore. However, if the attacker makes

a guess on the two shares, or when the attacker launches a second-order DPA, the

key can be retrieved. To thwart this second-order DPA, the key can be shared over

three shares, requiring an attacker to make a guess on the three shares. In a dth-order

masking scheme, dth-order DPA attacks are thwarted by using at least d+1 random-

ized shares of data. Higher-order DPA attacks become exponentially more difficult

to mount with each order putting a practical limit on the number of shares needed

for a secure implementation. For a rigorous study of (higher-order) DPA we refer the

reader to the work of Mangard et al. [29].

The generic principle of masking consists in randomly splitting all intermediate vari-

ables processed during the execution of the cipher into s shares such that X =

X1�X2� · · · �Xs−1�Xs. The operators corresponds to a group operation in clas-

sical examples are Boolean masking based on the exclusive-or (XOR) and arithmetic

masking based on modular addition. One of the most common masking techniques

is the Boolean masking which randomizes key-dependent intermediate values of an

algorithm. The first masked implementations of DES and RSA were given in [24],

and independently, Chari et al. [20] proposed a generic masking technique to create

provably resistant implementations against DPA.

The designer of a cryptosystem has to tailor the masking scheme to the implementa-

tion target. When the algorithm is to be executed on a general-purpose processor, for

instance a Central Processing Unit (CPU), a software-based masking scheme is used.

Several software masking schemes have been proposed and implemented [3, 24, 23],
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and have shown to offer provable security in a leakage model [39, 40, 41]. The in-

creasing complexity of many processors and their common lack of transparency has

made it harder for programmers to approximate the correct leakage model and there-

fore harder to correctly mask the algorithm. Additionally, masking an algorithm in

software results in very high overheads in terms of program memory and execution

time.

In many cryptosystems, a dedicated co-processor is responsible for the cryptographic

operations. This co-processor is specifically designed in hardware for high secu-

rity and its implemented algorithms are therefore secured with hardware masking

schemes. Similar to software masking schemes, it is important for a designer to be

able to approximate the leakage model of the hardware correctly. The first generation

of hardware masking schemes [26] required a strict adherence to the execution order

of intermediate values, which in hardware was not trivial to achieve due to the pres-

ence of so-called glitches. Glitches are temporary values that are present in the circuit

due to different arrival times of input signals to various transistors. As glitches con-

sume power, they can reveal additional side-channel information and can degrade the

level of order of the implemented masking scheme [30]. Enforcing the correct execu-

tion order on hardware masking schemes has shown to increase the execution time,

the power consumption, the size and the cost of the resulting implementation. As

designing countermeasures with limited impact on these parameters is key for their

adoption in cryptosystems, a new masking scheme called Threshold Implementations

(TI) was introduced in 2006 [35]. It carried a proof of security against first-order DPA

needing minimal assumptions on the hardware, which directly lead to its security in

the presence of glitches at lower implementation costs. In 2014, TI was generalized

to be secure against higher-order DPA [6].

1.2 Research Questions

In 1949, for a secure cryptographic algorithm, Claude Shannon [43] gave two prop-

erties that a secure cryptosystem should have: confusion and diffusion. Confusion

means that the key does not relate to the ciphertext in a simple way while diffusion

means that one bit change in plaintext should spread over the entire ciphertext. The
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simplest way to achieve both confusion and diffusion is a substitution-permutation

network (SPN) on which many modern block ciphers are constructed based. Con-

fusion is achieved by Substitution Boxes (S-box), generally the only nonlinear part

of cryptographic algorithms while Permutation Boxes (P-box) mixes the sub-blocks

linearly and provide diffusion of the system.

Unlike the TI-sharing of any linear/affine function, TI of an S-box can be challeng-

ing [5]. Fortunately, though, an affine transformation of any S-box can be shared

easily by affine transformation of the TI-sharing of the original S-box. Using the

equivalence classes listed by De Canniere [16], several efficient methods to have first-

order TI-sharings of small S-boxes (3× 3 and 4× 4) with different number of shares

have been provided in [8, 9]. Then in [6] provable security of TI is extended from

resisting first-order DPA to higher-order DPA.

The fact that TI is invariant under the affine transformation raises our first question

addressed by the thesis research:

Research Question 1: Can we do the same with a nonlinear transformation? For

example can we take the inverse of a TI-sharing of an S-box and obtain the sharing

of the inverse of the original S-box? Or is there a relation between them?

This question has spawned an exploratory search. TI-sharing with different number

of shares (3, and partially 4 and 5) is applied not only to the representative S-box

(3-bit, 4-bit and partially 5-bit) of each equivalence class but also to each S-box in

every class in order to find the answer of this question.

It is showed that the number of shares is increasing with the degree of function to-

gether with the order of the TI [5]. One of the efficient method to share a higher

degree S-box is the decomposition of it into lower degree ones. The (cubic) S-box of

the block cipher PRESENT [10] is decomposed into two quadratic S-boxes in [37].

In order to limit the area increase of the protected implementations, it is important to

keep the number of shares as low as possible. This observation brings the following

research question:

Research Question 2: Under which conditions can we decompose the S-boxes of
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higher degree into the lower degree S-boxes?

In this thesis, we target the decomposition of permutations into quadratic or cubic

permutations to be able to use fewer shares. Stafford’s Theorem [44] has made us

consider the power permutations and their parities in order to investigate when a per-

mutation over a finite field can be decomposed into permutations of lower degree.

1.3 Organization of the Thesis

This thesis is made up of four chapters. Below is a brief description of each chapter’s

content and the contribution within each. They are divided according to the research

question they answered.

Chapter 1. The first chapter, i.e., this chapter, briefly introduces the importance of

cryptography in modern life with the increasing number of devices and the issues

about their security. It is mentioned shortly that security objectives that are needed to

protect the information in digital form and to provide security. In order to fulfill these

objectives, different cryptographic systems are summed up. Then some background

for SCA attacks and TI masking scheme is given. This chapter ends with our research

questions together with this section, which provides an overview of the content.

We present our answers across two chapters.

Chapter 2. In the second chapter called “Threshold Implementation”, firstly, the

related notations used during the work are given. Then the properties of TI masking

and some methods to have an efficient one are provided with varying examples for

each. One of them, the decomposition method, is given more detail since it is one of

our focus in the thesis. The concept of Substitution boxes is described, then behavior

of TI-sharing of S-boxes under affine and inverse transformation are examined. The

chapter is concluded with our results.

Chapter 3. In the third chapter called “Decomposition of Permutation”, firstly the

related notations used during the work and some well-known theorems are mentioned.

How the parity of a power permutation is related to its decomposition is established.

A special case of a power permutation xk over a finite field Fq is stated with its proof.
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For a more general acquisition, we delve into the cycle decomposition of permutations

and we explore the relations between its disjoint cycles. Then, we count them and give

the results in a lemma before giving a toy example to be given to clarify. Finally, the

main theorem is presented and applied for varying power permutations over different

finite fields. The comparison with a previous method is given. The chapter ends with

our experimental and remarkable results.

Chapter 4. In the fourth and last chapter, we sum up what we did during this work.

We conclude this thesis by listing open questions for future research.
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CHAPTER 2

THRESHOLD IMPLEMENTATION

In this chapter, the properties of a Threshold Implementation (TI) of any function

which is used to prevent any device that leaks the intermediate values against dth-

order Differential Power Analysis (DPA) are given.

In the following we will give some basic background information, notations which

are needed.

In (s, n) secret sharing schemes, a secret X is distributed partly among n players

such that at least s players of all n, are needed in order to recover the secret uniquely.

Therefore, in a perfect (s, n) secret sharing scheme, knowledge of up to s− 1 shares

does not give any additional information on the secret value.

We use the upper-case characters to represent elements in GF (2n) or Fn2 for some

positive integer n, where F2 is the finite field with two elements. In order to spec-

ify each bit of an element X , we will use the n-tuple form with lower-case charac-

ters X = (x, y, z, w, . . . ) ∈ Fn2 , where x, y, z, · · · ∈ F2, as the input of a multi-

output, or more generally vectorial, Boolean function F which is defined from Fn2
to Fm2 . In block cipher designs, those functions are used in the substitution layer,

as Substitution boxes, shortly S-boxes. Similarly, to specify each coordinate func-

tion, called single-output Boolean functions corresponding to the case m = 1, of

the vectorial Boolean function F , and we will use the m-tuple of Boolean func-

tions (f(X), g(X), h(X), r(X), . . . ), which are called the coordinate functions of

F , where f(X), g(X), . . . are defined from Fn2 to F2.

There are several different ways to represent a vectorial function, the one which is
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the most commonly used in cryptography is the Algebraic Normal Form (ANF) rep-

resentation.

Each coordinate Boolean functions f, g, h, . . . of a vectorial Boolean function F is

uniquely written as a polynomial depending on n variables, say x, y, z, w, . . . , whose

degrees are at most one, and with coefficients from F2. Similarly F is uniquely written

in the same form but with coefficients aI from Fm2 such as

F (X) =
⊕

I∈P(N)

aIX
I

where P(N) denotes the power set of N = {1, . . . , n}. This polynomial is called the

algebraic normal form of F . Here one can observe that

aI =
⊕

X∈Fn2 /supp(X)⊆I

F (X)

and conversely

F (X) =
⊕

I⊆supp(X)

aI

where supp(X), the support of the binary vector X , is the set of coordinate positions

in which X has nonzero entries, i.e., for X = (1, 0, 0, 1) we have supp(X) = {1, 4}.

The algebraic degree of the function is the global degree of its ANF by doF =

max{|I||aI 6= (0, . . . , 0), I ∈ P(N)} as defined in [17]. Therefore, it is the maximal

algebraic degree of the coordinate functions of F , usually denoted by t. Note that if

the function F is a permutation of F2n , then deg(F ) ≤ n− 1.

In block ciphers design, one can see that they consist two different building blocks;

small non-linear components, called S-boxes, which are typically used to obscure the

relationship between the key and the ciphertext to satisfy Shannon’s confusion prop-

erty [43], and large linear diffusion layers, called Permutation boxes, which diffuse

this non-linearity over the complete block, which yields the substitution-permutation

network (SPN).

In the following, although the properties of TI are considered for the functions defined

as F : Fn2 → Fm2 where n not necessarily equal to m, in this thesis we consider the

TI of the permutation function F : Fn2 → Fn2 , so n-bit permutations, some of which

define n × n invertible Substitution boxes (S-boxes) that are used in cryptographic
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algorithms. They can be seen as (n, n) vectorial Boolean functions defined over a

vector space Fn2 .

2.1 Properties of Threshold Implementation

There are four properties of a TI. Two of these, uniform masking and correctness,

which means that all input shares are chosen from an independent and identically

distributed uniform random source and the output of an unshared function is equal to

XOR of the output of the shared function, respectively, are common in all the masking

schemes algorithms to compute on masked data. The third property is dth-order non-

completeness, where d is the order of side-channel resistance. In a dth-order non-

complete sharing, any combination of d component functions must be independent

of at least one input share. The last property, uniform sharing states that the output

shares of the component functions should be uniform.

2.1.1 Uniform Masking

First we split a variable X ∈ Fn2 into s shares, we will use sin to distinguish it is an

input share, Xi ∈ Fn2 such that X =
⊕
i

Xi which satisfying (sin, sin) secret sharing

schemes, i.e., all sin shares are required to recover the secret. We denote the shared

vector of the sin shares Xi by the bold character as X = (X1, X2, · · · , Xsin), where

X ∈ Fnsin2 , the masking or the sharing of the unmasked variable X . Without loss of

generality the shares X1, · · · , Xsin−1 are randomly chosen variables from a uniform

distribution and the last share Xsin is calculated such that X =

sin⊕
i=1

Xi holds. Hence,

the knowledge of up to sin − 1 shares does not reveal any information on X .

Let Sh(X) denote the set of valid share vectors X ∈ Fnsin2 for X ∈ Fn2 such that

Sh(X) = {X | X1 ⊕X2 ⊕ · · ·Xsin = X}.

Property 1: A masking X is uniform if and only if for allX the corresponding vectors

X ∈ Sh(X) with masked values occur with the same probability, actually with the

probability p = |F|n(1−sin).

17



Uniformity of a masking implies the independence of the combination of any sin − 1

shares from the unmasked value hence, satisfying an (sin, sin) secret sharing scheme [5].

In [17], it is defined that the sharing of F is balanced. In other words, a vectorial

Boolean function F : Fn2 → Fm2 is balanced if each A ∈ Fm2 has 2n−m preimages.

Moreover, if the unshared function is a permutation, the shared function should also

be a permutation.

2.1.2 Correctness

In order to implement a function A = F (X) defined from Fn2 to Fm2 , the TI method

requires a set of sout functions Fi which together compute the output(s) of F .

The function F : Fn2 → Fm2 , that takes X as an input and gives A as an output,

is also split into s shares; we will use sout to distinguish it is an output share, as

Fi : Fnsin2 → Fmsout2 , which are called component functions. We denote the shared

function of the sout shares Fi by the bold character again as F = (F1, F2, · · · , Fsout).
The sharing F must satisfy the following property for a correct implementation.

Property 2: A sharing F is correct if and only if for all A ∈ Fm2 , A = F (X) implies

that A =
sout⊕
i=1

Ai =
sout⊕
i=1

Fi(X) for all X satisfying X =

sin⊕
i=1

Xi and X ∈ Fn2 .

Hence the output of an unshared function equals the sum of shared output of a shared

function. In the figure 2.1, we give an example with sin = 3 and sout = 3 to be

correct.

𝑋1 = (𝑥1, 𝑦1, … )

𝑋2 = (𝑥2, 𝑦2, … )

𝑋3 = (𝑥3, 𝑦3, … )

𝐹1

𝐹3

𝐹2 (𝑎2, 𝑏2, … ) = 𝐴2

⊕

⊕

(𝑎1, 𝑏1, … ) = 𝐴1

(𝑎3, 𝑏3, … ) = 𝐴3

(𝑎, 𝑏, … ) = 𝐴

= 

⊕

⊕

= 
X  =  (𝑥, 𝑦, … )

Figure 2.1: Correctness of a masking
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The uniform masking of the input and correctness of a sharing are common properties

for all masking schemes. For higher-order DPA security on hardware in the presence

of glitches, the sharing needs two other properties given in the following sections.

2.1.3 dth-order non-completeness

Most of the masking schemes, all sin input shares are being used in at least one of

their component functions. It implies when an attacker probes the corresponding

wire, he can observe all the information about sensitive data, which implies solving

the (sin, sin) secret sharing. Therefore, it is desired to have the component functions

implemented in such a way that their leakages are independent of each other.

Unlike other masking schemes, the threshold implementation provides d wires which

are depended on at most sin − 1 shares, which are independent of the sensitive infor-

mation. Hence, probing d wires can only give the information from at most sin − 1

shares, i.e., for the first-order non-complete TI, ith output share Fi is independent of

one input share, without loss of generality, say the ith input share Xi, then it implies

that the power consumption of Fi is also independent of Xi. This property together

with uniform masking makes the dth-order DPA infeasible.

Property 3: A sharing is called dth-order non-complete if any combination of up to d

component functions Fi of F must be independent of at least one input share.

𝑋1 = (𝑥1, 𝑦1) 𝐹1

𝐹3

𝐹2

𝐴1 = 𝑥2𝑦2⊕ 𝑥2𝑦3 ⊕ 𝑥3𝑦2

𝐴2 = 𝑥3𝑦3 ⊕𝑥3𝑦1 ⊕ 𝑥1𝑦3

𝐴3 = 𝑥1𝑦1⊕ 𝑥1𝑦2⊕ 𝑥2𝑦1

𝑋2 = (𝑥2, 𝑦2)

𝑋3 = (𝑥3, 𝑦3)

Figure 2.2: First-order non-completeness of a masking

This property of TI provides the combination of leakages resulting from the process of

d component functions to be independent of the sensitive variable X given a uniform

sharing X.
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In [5], it is proved that for a shared function F, if the input masking is uniform and

F satisfies the correctness and the dth-order non-completeness, then probing d or less

wires of the circuit implementing F, one can not reveal the unmasked input value X ,

at least one independent input share of the input, even in the presence of glitches or

delayed inputs. Therefore, this enables security on demanding non-ideal circuits.

Hence, this implies that a TI of a function F , which satisfies uniform masking, cor-

rectness and non-completeness properties is secure against dth-order DPA, so there is

no leakage of information in this circuit.

2.1.4 Uniform sharing of a function

In 2.1.1, we see that a sharing F requires the input X to be uniform. However, the

uniformity of the input X does not imply that the output a is also uniform. In the case

that the outputs are not uniform, and if the output is used as the input of a second

function, let say G, used in the following rounds, then it might leak information since

the second masking A is not uniform, and A should also be uniform for the second

one to be secure, where A = (A1, A2, · · · , Asout).

Therefore, in order to guarantee the uniformity of the input sharing on the following

rounds, we need to make sure that the input of the second sharing G, is also uniform,

as in first property 2.1.1. This is equivalent to say that the first sharing F should be a

uniform sharing of the function F .

Property 4: The dth-order sharing F = (F1, · · · , Fsout) is uniform if and only if

∀X ∈ Fn2 , ∀A ∈ Fm2 such that F (X) = A, ∀A ∈ Sh(A) and sout ≥ d+ 1,

|{X ∈ Sh(X)|F(X) = A}| = |F|n(sin−1)

|F|m(sout−1)

where F(X) = (F1(X), · · · , Fsout(X)) = (A1, · · · , Asout) = A.

In the case sin = sout = s, we have, for all (A1, A2, · · · , As) satisfying
⊕

Ai = A,

the number of valid sharing X ∈ Fnsin2 for which Fj(X) = Aj , 1 ≤ j ≤ s, is equal to

2(s−1)(n−m) times the number of X ∈ Fn2 for which A = F (X).

It follows, in the case sin = sout = s and n = m, there is one valid sharing and also in
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𝑋1

𝐹1 𝐹3𝐹2

𝑋2 𝑋3

𝐺1 𝐺3𝐺2

𝐴1 𝐴2 𝐴3

synchronization

Figure 2.3: Uniform Sharing

this case a uniform sharing F is a permutation on Fns2 if and only if F is a permutation

on Fn2 .

To preserve dth-order security we require the outputs of F’s component functions to

be stable at their final value before forwarding them to G’s component functions. We

impose this by using a synchronization layer between the component functions of F

and G [38] which can be seen in the Figure 2.3. In many implementations this layer

takes the form of registers.

This property is the least trivial one to be achieved. In order to achieve uniformity,

several methods are given in [8, 9]. However, the sharings which do not satisfy this

property can also be used in TI. In the case one does not have a uniform sharing, it

can be used the re-masking, also known as adding fresh randomness, proposed in [4,

7, 32], one can increase the number of shares or the function can be decomposed,

some of them will be detailed in the end of the following section.

2.2 Sharing Examples with Different Number of Shares

It has been shown in [6], that there always exists a dth-order non-complete sharing

of a degree t function f with sin ≥ td + 1 input shares. This implies that given a

security order together with the degree of the function increases the required number
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of shares. Since more shares cause an increase in required resources such as area, we

need to keep the number of shares as low as possible. Fortunately, any permutation

of high degree can be written as a combination of quadratic or cubic functions, with

details in the Chapter 3.

In the same work, a method for generating the component functions with sin = td+1

input and sout =
(
sin
t

)
is provided. However, a TI using these number of shares is

not the only possible sharing and also it does not guarantee that sout or the number

sin + sout is minimum.

For an adequate explanation of various methods for the TI-sharings of functions with

various degrees, we have provided the following examples taken from the work [5].

In the light of the above findings, an affine function F (X) = A can be implemented

with s ≥ d+ 1 component functions to thwart dth-order DPA.

1. As an example, for the affine function F (X) = 1 + X , we can implement as

follows: F1(X1) = 1 + X1, F2(X2) = X2, · · · , Fs(Xs) = Xs with s input

and output shares. Clearly if Xi’s are chosen randomly where
⊕s

i=1Xi = X ,

uniform masking property 2.1.1 is satisfied, since
⊕s

i=1 Fi = F , correctness

property 2.1.2 is satisfied and also the non-completeness property 2.1.3 is sat-

isfied with s = d + 1, since every component function depends on only one

share. Xi’s are uniform, so the outputs of the component functions. therefore it

has also the fourth property 2.1.4.

The fact that higher degree of the function causes the higher number of shares can

be seen in the following examples, for the function F : F3
2 → F2 and the variables

x, y, z ∈ F2.

2. As a quadratic example, consider A = F (X) = F (x, y, z) = 1⊕ y ⊕ xz. The

following sharing is a first-order TI with sin = 2 and sout = 4, if the inputs

x, y and z are independent of each other, since each function gives information

from at most one share of each input.

A1 = 1⊕ y1 ⊕ x1z1
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A2 = y2 ⊕ x1z2

A3 = x2z1

A4 = x2z2.

3. As another quadratic example, consider A = F (x, y, z) = 1⊕ x⊕ xy ⊕ xz.

(a) The first order sharing of this function will be similar with sin = 2 and

sout = 4 in the following

A1 = 1⊕ x1 ⊕ x1y1 ⊕ x1z1

A2 = x1y2 ⊕ x1z2

A3 = x2 ⊕ x2y1 ⊕ x2z1

A4 = x2y2 ⊕ x2z2.

(b) The second order sharing of the function with sin = 3 and sout = 9 is as

follows

A1 =1⊕ x1 ⊕ x1y1 ⊕ y1z1

A2 =x1z2 ⊕ y1z2

A3 =x1z3 ⊕ y1z3

A4 =x2z1 ⊕ y2z1

A5 =x2 ⊕ x2z2 ⊕ y2z2

A6 =x2z3 ⊕ y2z3

A7 =x3z1 ⊕ y3z1

A8 =x3z2 ⊕ y3z2

A9 =x3 ⊕ x3z3 ⊕ y3z3.

4. The following examples show the ways that one can share the same function

with different number of input and output shares. Consider the quadratic func-

tion A = F (x, y, z) = 1⊕ y ⊕ xy ⊕ xz ⊕ yz.

(a) with sin = 2 and sout = 6 is

A1 = 1⊕ y1 ⊕ x1y1 ⊕ x1z1 ⊕ y1z1

A2 = x1z2 ⊕ y1z2

A3 = y2 ⊕ x2z1 ⊕ y2z1

A4 = x2y2 ⊕ x2z2 ⊕ y2z2

A5 = x1y2

A6 = x2y1.

Since this sharing causes an undesired increase in the number of output

shares, one can increase the number of input shares to have less number

of output shares which can be seen in the following.
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(b) with sin = sout = 3, which satisfy sin = td + 1 input and sout =
(
sin
t

)
output shares, the first order sharing is as follows

A1 =1⊕ y2 ⊕ (x2y2 ⊕ x2y3 ⊕ x3y2)⊕ (x2z2 ⊕ x2z3 ⊕ x3z2)

⊕ (y2z2 ⊕ y2z3 ⊕ y3z2)

A2 =y3 ⊕ (x3y3 ⊕ x3y1 ⊕ x1y3)⊕ (x3z3 ⊕ x3z1 ⊕ x1z3)

⊕ (y3z3 ⊕ y3z1 ⊕ y1z3)

A3 =y1 ⊕ (x1y1 ⊕ x1y2 ⊕ x2y1)⊕ (x1z1 ⊕ x1z2 ⊕ x2z1)

⊕ (y1z1 ⊕ y1z2 ⊕ y2z1).

This sharing is an example for first-order direct sharing with three shares

for a quadratic function. The linear terms including the indices i, i.e., yi,

the quadratic terms including the indices i and i+ 1 together, i.e., xiyi+1,

and finally the ones including the indices only i, i.e., xiyi, appear in the

component function Fi−1 in a cyclic manner.

(c) The previous sharing of the function A = F (x, y, z) = 1 ⊕ y ⊕ xy ⊕
xz ⊕ yz does not satisfy the uniform sharing property 2.1.4, while the

following sharing gives the TI-sharing with same number of shares using

the Correction Terms which is detailed in 2.2.1.

A1 =1⊕ y2 ⊕ (x2y2 ⊕ x2y3 ⊕ x3y2)⊕ (x2z2 ⊕ x2z3 ⊕ x3z2)

⊕ (y2z2 ⊕ y2z3 ⊕ y3z2)⊕ y2 ⊕ y3

=1⊕ y3 ⊕ (x2y2 ⊕ x2y3 ⊕ x3y2)⊕ (x2z2 ⊕ x2z3 ⊕ x3z2)

⊕ (y2z2 ⊕ y2z3 ⊕ y3z2)

A2 =y3 ⊕ (x3y3 ⊕ x3y1 ⊕ x1y3)⊕ (x3z3 ⊕ x3z1 ⊕ x1z3)

⊕ (y3z3 ⊕ y3z1 ⊕ y1z3)⊕ y3 ⊕ y1

=y1 ⊕ (x3y3 ⊕ x3y1 ⊕ x1y3)⊕ (x3z3 ⊕ x3z1 ⊕ x1z3)

⊕ (y3z3 ⊕ y3z1 ⊕ y1z3)

A3 =y1 ⊕ (x1y1 ⊕ x1y2 ⊕ x2y1)⊕ (x1z1 ⊕ x1z2 ⊕ x2z1)

⊕ (y1z1 ⊕ y1z2 ⊕ y2z1)⊕ y1 ⊕ y2

=y2 ⊕ (x1y1 ⊕ x1y2 ⊕ x2y1)⊕ (x1z1 ⊕ x1z2 ⊕ x2z1)

⊕ (y1z1 ⊕ y1z2 ⊕ y2z1).
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5. The following is another first-order direct sharing example with four shares of

the cubic function A = F (x, y, z) = 1⊕ x⊕ xy ⊕ xyz with sin = sout = 4

A1 =1⊕ x2 ⊕ (x2y2 ⊕ x2y3 ⊕ x2y4 ⊕ x4y3)⊕ (x2y2z2 ⊕ x2y3z2 ⊕ x2y2z3

⊕ x2y3z4 ⊕ x2y4z3 ⊕ x2y2z4 ⊕ x2y4z2 ⊕ x2y4z4 ⊕ x2y3z3 ⊕ x4y3z2

⊕ x3y4z2 ⊕ x4y2z3 ⊕ x3y2z4 ⊕ x4y3z3 ⊕ x4y4z3 ⊕ x4y3z4)

A2 =x3 ⊕ (x3y3 ⊕ x3y4 ⊕ x3y1 ⊕ x1y4)⊕ (x3y3z3 ⊕ x3y4z3 ⊕ x3y3z4

⊕ x3y4z1 ⊕ x3y1z4 ⊕ x3y3z1 ⊕ x3y1z3 ⊕ x3y1z1 ⊕ x3y4z4 ⊕ x1y4z3

⊕ x4y1z3 ⊕ x1y3z4 ⊕ x4y3z1 ⊕ x1y4z4 ⊕ x1y1z4 ⊕ x1y4z1)

A3 =x4 ⊕ (x4y4 ⊕ x4y1 ⊕ x4y2 ⊕ x2y1)⊕ (x4y4z4 ⊕ x4y1z4 ⊕ x4y4z1

⊕ x4y1z2 ⊕ x4y2z1 ⊕ x4y4z2 ⊕ x4y2z4 ⊕ x4y2z2 ⊕ x4y1z1 ⊕ x2y1z4

⊕ x1y2z4 ⊕ x2y4z1 ⊕ x1y4z2 ⊕ x2y1z1 ⊕ x2y2z1 ⊕ x2y1z2)

A4 =x1 ⊕ (x1y1 ⊕ x1y2 ⊕ x1y3 ⊕ x3y2)⊕ (x1y1z1 ⊕ x1y2z1 ⊕ x1y1z2

⊕ x1y2z3 ⊕ x1y3z2 ⊕ x1y1z3 ⊕ x1y3z1 ⊕ x1y3z3 ⊕ x1y2z2 ⊕ x3y2z1

⊕ x2y3z1 ⊕ x3y1z2 ⊕ x2y1z3 ⊕ x3y2z2 ⊕ x3y3z2 ⊕ x3y2z3).

6. Consider the function A = F (x, y) = xy.

(a) The first-order direct TI-sharing with sin = sout = 3 is as follows.

A1 =x2y2 ⊕ x2y3 ⊕ x3y2

A2 =x3y3 ⊕ x1y3 ⊕ x3y1

A3 =x1y1 ⊕ x1y2 ⊕ x2y1.

Note that the direct sharing method does not guarantee that it satisfies the

property 2.1.4 which can be seen in the following table for this function.

It is a relatively easy example to form the table here for the function with

less shares and variables.
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(A1, A2, A3)

(0,0,0) (0,1,1) (1,0,1) (1,1,0) (0,0,1) (0,1,0) (1,0,0) (1,1,1)

(x, y)

(0,0) 7 3 3 3 0 0 0 0

(0,1) 7 3 3 3 0 0 0 0

(1,0) 7 3 3 3 0 0 0 0

(1,1) 0 0 0 0 5 5 5 1

Table 2.1: Number of times that a sharing (A1, A2, A3) occurs for a given input (x, y)

If the input masking (x, y) is uniform, then the sharing of F is distributed

as shown in Table 2.1. For example, for the pair (x, y) = (1, 0), there

are 16 uniform 3-sharings; and seven of these sharings gives the value

(0, 0, 0), the values (0, 1, 1), (1, 0, 1) and (1, 1, 0) occur three times for

each, and the others does not occur under the calculation with the direct

sharing of F stated above. However, as stated in 2.1.4, in order to have

a uniform sharing of F for a given A, the number of sharing X must be

4, i.e., |{X ∈ Sh(X)| F(X) = A}| = 22(3−1)/21(3−1) = 4, which is not

satisfied for this sharing, since the table contains elements different from 0

and 4. If the outputs of this function is used as the input of a second circuit,

it might leak the sensitive information because now the input masking is

not uniform.

(b) If one increase the number of shares, we have a first order TI-sharing

satisfying all the properties which can be seen in the following.

A1 =(x3 ⊕ x4)(y2 ⊕ y3)⊕ y2 ⊕ y3 ⊕ y4 ⊕ x2 ⊕ x3 ⊕ x4

A2 =(x1 ⊕ x3)(y1 ⊕ y4)⊕ y1 ⊕ y3 ⊕ y4 ⊕ x1 ⊕ x3 ⊕ x4

A3 =(x2 ⊕ x4)(y1 ⊕ y4)⊕ y2 ⊕ x2

A4 =(x1 ⊕ x2)(y2 ⊕ y3)⊕ y1 ⊕ x1.

(c) Also by decreasing the number of input shares, one can have a uniform

sharing with sin = 2 and sout = 4 as follows.

A1 = x1y1

A2 = x1y2

A3 = x2y1

A4 = x2y2.

(d) Increasing the number of input variables of the function F , i.e., adding
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extra variable z to F without influencing the output of the function as a

virtual variable, may make a sharing uniform. The shares of this variable

are called as virtual shares. The sharing with the variable z which is

also uniform, one can re-define the sharing of F as if the function is now

F = F (X) = F (x, y, z).

A1 = x2y2 ⊕ x2y3 ⊕ x3y2 ⊕ x2z2 ⊕ x3z3 ⊕ y2z2 ⊕ y3z3

A2 = x3y3 ⊕ x1y3 ⊕ x3y1 ⊕ x3z3 ⊕ x1z1 ⊕ y3z3 ⊕ y1z1

A3 = x1y1 ⊕ x1y2 ⊕ x2y1 ⊕ x1z1 ⊕ x2z2 ⊕ y1z1 ⊕ y2z2.

(e) We have a uniform sharing in this example by varying the number of

shares. The previous examples have less number of input shares than

the outputs. It is also possible to have a sharing with sin > sout, satisfying

the all TI properties.

A1 =(x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y4

A2 =(x1 ⊕ x3)(y1 ⊕ y4)⊕ x1y3 ⊕ x4

A3 =(x2 ⊕ x4)(y1 ⊕ y4)⊕ x1y2 ⊕ x4 ⊕ y4.

2.2.1 Achieving Uniform Sharing

There is no straightforward method to share a function so that the uniformity property

holds. Hence, each dth-order non-complete sharing, should be checked explicitly in

order to assure the uniformity property 2.1.4. Fortunately, the sharings which do not

satisfy this property can also be used in TI.

In order to achieve uniformity, several methods are given in [8, 9]. However, the

sharings which do not satisfy this property can also be used in TI.

In the case one does not have a uniform sharing by these methods, it can be used

the correction terms, re-masking, also known as adding fresh randomness, proposed

in [4, 7, 32], one can vary the number of shares or the function can be decomposed.

• One can use the correction terms to have a uniform sharing which can be seen

in the example 4c. The correction terms can be added in pairs to more than
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one share in a way that they still satisfy the non-completeness property. Since

the terms in a pair cancel each other, the sharing does not break the correct-

ness property. However, to find a term that corrects the sharing is challenging

because of the huge amount of possible choices of sharing with different cor-

rection terms.

• One can increase the number of shares which can be seen in the example 6b.

However, since the area requirements of an implementation of an algorithm

increase with the number of shares, this method should not be considered as an

efficient way. Also note that this is an example that the boundaries for sin and

sout, i.e., sin = td+ 1 and sout =
(
sin
t

)
, are not the optimal ones.

• Decreasing the number of input shares makes the sharing uniform which can

be seen in the example 6c. However, although it has 4 output shares, it is secure

against only first-order DPA.

When d > 1, it can be seen that the number of output shares is greater than

the number of input shares. Since this causes an undesired increase in area, we

need to decrease the number of shares. One can find some methods given in [6]

for this aim.

• In the example 6e, we can see that varying the number of shares makes the

sharing uniform. It does not decrease the number of elements used, but it has

other advantages [5].

• To make a nonuniform sharing of a function uniform, one can use re-masking

by introducing extra fresh randomness in the circuit with details in [32].

If the output A = (A1, A2, A3) of the nonuniform sharing F is followed by the

re-masking operation r that uses two random masks m1,m2, then the output

sharing A′ = (A
′
1, A

′
2, A

′
3) is uniform without breaking the other properties of

TI.

A
′

1 =r1(A1,m1) = A1 ⊕m1

A
′

2 =r2(A2,m2) = A2 ⊕m2

A
′

3 =r3(A3,m1,m2) = A3 ⊕m1 ⊕m2.
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However, since finding good masks may not be easy, and also due to the un-

desired cost increased of high throughput fresh random number generation, it

should not be considered as straightforward method to make a nonuniform shar-

ing uniform, [4].

This technique is used in the first and second order TI of the Advanced Encryp-

tion Standard’s (AES) S-box in order to guarantee the uniformity in [21].

Another technique called using virtual variable and virtual shares as in the ex-

ample 6d makes the sharing uniform. Since it can be seen as a kind of adding

randomness to the shared function, we can place this technique under this sec-

tion.

• Together with having a uniform sharing, we also need to keep the number of

shares as low as possible. Since the numbers are increasing with the degree of

the function and security order, we can decompose the nonlinear functions into

lower degree ones having a uniform TI-sharing with less shares. The following

example is more detailed since we focus on this method in the Chapter 3. It can

be considered as a background information for the next chapter.

An example of the decomposing functions for the lightweight encryption algo-

rithm PRESENT S-box is given in [37]. In the substitution layer of PRESENT,

the S-box, denoted by S(X), which is composed of four Boolean functions,

three of which are cubic and one is quadratic, with the following truth table is

used:

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2.2: The truth table of the PRESENT S-box S(X).

The block cipher PRESENT is described in [10] with its design and the analyses

of its security and detailed performance.

The ANF of S(X) : F4
2 → F4

2 is as follows. Here X = (x, y, z, w) is the

input of S(X) and S = (s, t, u, v) is the output, where s, t, u and v are Boolean

functions.

s = 1 + x+ z + w + yz + xyw + xzw + yzw,
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t = 1 + x+ y + xz + xw + zw + xyw + xzw,

u = x+ z + xy + xz + xyw + xzw + yzw,

v = x+ y + w + yz.

It can be seen that the algebraic degree of the S-box S(X) is three, i.e., the

maximum number of variables in any term that appears in the component func-

tions is three, for example f contains the term xyw of three variables. It is

decomposed into two S-boxes F (X) and F ′(X) with degree two such that

S(X) = F (F ′(X)), where S, F, F ′ : F4
2 → F4

2, and F ′(0) is considered as

0 in order to speed up the search. Note that since S is a bijection, so permuta-

tion, both F and F ′ are also bijections.

The quadratic S-boxesF (X) andF ′(X) for a decomposition satisfying S(X) =

F (F ′(X)), which are used in [37] for the experiment, have the following truth

table:

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

F[x] 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

F’[x] 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F

Table 2.3: Truth tables of the S-boxes F (X) and F ′(X).

One can calculate the algebraic normal forms of F (X) and F ′(X) which are

given by

F (x,y, z, w) = (f, g, h, r),

f = y + z + w + xw

g = x+ zw

h = y + z + xw

r = z + yw.

F ′(x,y, z, w) = (f ′, g′, h′, r′)

f ′ = y + z + w

g′ = 1 + y + z

h′ = 1 + x+ z + yw + zw

r′ = 1 + w + xy + xz + yz.

For the first order TI-sharings of the functions F and F ′, the input is split into

three shares such that X = X1+X2+X3 where X,Xi ∈ F4
2, where i = 1, 2, 3

and the output is also split into three shares as F (X1+X2+X3) = F1(X2, X3)+

F2(X1, X3) + F3(X1, X2) where Fi : F8
2 → F4

2. The same sharing, which can

be seen in the following figure, can be observed for the other function F ′:
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Figure 2.4: Decomposition of PRESENT S-box

It is a correct and non-complete sharing, i.e., F = F1 + F2 + F3 and the

shared function Fi is independent from the variable Xi for all i, respectively.

In order to have a uniform masking and uniform sharing, we can say that

(X1, X2, X3) 7→ (F1(X2, X3), F2(X1, X3), F3(X1, X2)) is a 12-bit permuta-

tion. If the inputX and its sharesXi’s are denoted by the 4-bit vectors (x, y, z, w)

and (xi, yi, zi, wi) for i = 1, 2, 3, respectively, we have the sharing as follows

(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4) 7→

(F1(x2, y2, z2, w2, x3, y3, z3, w3), F2(x1, y1, z1, w1, x3, y3, z3, w3),

F3(x1, y1, z1, w1, x2, y2, z2, w2)

Since the output of the nonlinear function F ′ is used as an input to the nonlinear

function F , the output of F ′ is stored in the registers. The authors of [37] choose

the decomposition that gives the most efficient hardware implementation in

terms of area, among 907,200 possible decompositions of S(X) that satisfy all

properties of TI.

They shared the functions according to the direct sharing method stated in the

example 4b. This sharing satisfy the uniformity condition, so they do not need

to use any methods given in the section 2.2.1, such as re-masking or correction

terms, in order to make it uniform. The sharings with the ANFs of the shared

functions are as follows:

F1(x2, y2, z2, w2, x3, y3, z3, w3) = (f1, g1, h1, r1)

f1 = y2 + z2 + w2 + x2w2 + x2w3 + x3w2,

g1 = x2 + z2w2 + z2w3 + z3w2,

h1 = y2 + z2 + x2w2 + x2w3 + x3w2,
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r1 = z2 + y2w2 + y2w3 + y3w2.

F2(x1, y1, z1, w1, x3, y3, z3, w3) = (f2, g2, h2, r2)

f2 = y3 + z3 + w3 + x3w3 + x1w3 + x3w1,

g2 = x3 + z3w3 + z1w3 + z3w1,

h2 = y3 + z3 + x3w3 + x1w3 + x3w1,

r2 = z3 + y3w3 + y1w3 + y3w1.

F3(x1, y1, z1, w1, x2, y2, z2, w2) = (f3, g3, h3, r3)

f3 = y1 + z1 + w1 + x1w1 + x1w2 + x2w1,

g3 = x1 + z1w1 + z1w2 + z2w1,

h3 = y1 + z1 + x1w1 + x1w2 + x2w1,

r3 = z1 + y1w1 + y1w2 + y2w1.

F ′1(x2, y2, z2, w2, x3, y3, z3, w3) = (f ′1, g
′
1, h
′
1, r
′
1)

f ′1 = y2 + z2 + w2,

g′1 = 1 + y2 + z2,

h′1 = 1 + x2 + z2 + y2w2 + y2w3 + y3w2 + z2w2 + z2w3 + z3w2,

r′1 = 1 + w2 + x2y2 + x2y3 + x3y2 + x2z2 + x2z3 + x3z2 + y2z2 + y2z3 + y3z2.

F ′2(x1, y1, z1, w1, x3, y3, z3, w3) = (f ′2, g
′
2, h
′
2, r
′
2)

f ′2 = y3 + z3 + w3,

g′2 = y3 + z3,

h′2 = x3 + z3 + y3w3 + y1w3 + y3w1 + z3w3 + z1w3 + z3w1,

r′2 = w3 + x3y3 + x1y3 + x3y1 + x3z3 + x1z3 + x3z1 + y3z3 + y1z3 + y3z1.

F ′3(x1, y1, z1, w1, x2, y2, z2, w2) = (f ′3, g
′
3, h
′
3, r
′
3)

f ′3 = y1 + z1 + w1,
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g′3 = y1 + z1,

h′3 = x1 + z1 + y1w1 + y1w2 + y2w1 + z1w1 + z1w2 + z2w1,

r′3 = w1 + x1y1 + x1y2 + x2y1 + x1z1 + x1z2 + x2z1 + y1z1 + y1z2 + y2z1.

One can observe that the sharing of one of the component functions of F ,

without loss of generality consider the first component Boolean function f =

y + z + w + xw, is:

f1 = y2 + z2 + w2 + x2w2 + x2w3 + x3w2

f2 = y3 + z3 + w3 + x3w3 + x1w3 + x3w1

f3 = y1 + z1 + w1 + x1w1 + x1w2 + x2w1.

In [37], one can find the details about hardware architectures of five different

profiles that are used to attack, yielding different levels of side-channel resis-

tance, and the corresponding implementation results. To achieve the perfect

resistance against first order DPA, they combine the data masking with the key

masking.

So far, several methods are provided to generate a sharing that satisfies the uniform

masking, correctness, non-completeness and uniform sharing properties together, of

which the last one is not trivial. Then some methods are given to obviate this problem.

More TI-sharing examples can be found in [5] with different number of input and

output shares for the functions of different degrees and with different security orders

with more details.

2.3 On Substitution Boxes

In this thesis we consider the TI of the permutation function F : Fn2 → Fn2 , so

n-bit permutations or n × n invertible S-boxes. In order to find the TI-sharing of

the permutations, we need to classify all permutations; however, since classifying

all n-bit permutations is a challenging problem even for small values of n and it is

getting harder exponentially, because for example the number Boolean functions of n

variables is 22n , an equivalence relation is needed.
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2.3.1 Affine Equivalence of Permutations

The need to avoid examining all permutations brings with it the need to find an equiv-

alence relation in which the relevant properties are invariant. Therefore, we will con-

sider the concept of affine equivalence of the permutations in the following.

Definition 2.3.2. Consider two n× n permutations S1(X) and S2(X). If there exists

a pair of affine mappings Al(X) and Ar(X) such that S1 = Al ◦S2 ◦Ar, the S-boxes

S1 and S2 are said to be affine equivalent.

Note that the algebraic degree, parity (odd/even number of transpositions to repre-

sent the permutation), linearity and differential uniformity are invariant within the

equivalence class.

By the definition, since every affine permutation A(X) can be written as A×X ⊕ a
where a is an n-bit constant and A is an n×n invertible matrix over F2, one can write

S1(X) = Al×S2(Ar×X⊕ar)⊕al whereX ∈ Fn2 . Therefore, it can be seen that the

number of affine permutations is 2n times the number of nonsingular Boolean n× n
matrices; hence, it increases exponentially with the increase of n.

A classification based on the affine equivalence of permutations is described in [16] to

reduce the search area. According to the Canniere’s work, the numbers of equivalence

classes for the corresponding permutations with the given values of n are given.

Since all 2-bit permutations are affine, there is only one class, and it contains the affine

permutations defined in F22 . For 3-bit permutations, there are 4 equivalence classes

with an affine class and 3 classes with quadratic permutations. For 4-bit permutations,

there are 302 equivalence classes containing 1 class of affine, 6 classes of quadratic

and the remaining 295 classes of cubic permutations. Then in [14], for 5-bit quadratic

permutations it is showed that there exist 75 affine equivalence classes.

After these classifications, a technique to find TI-sharing of small S-boxes are pro-

vided in [8].

Theorem 2.3.3. [5] If a uniform dth-order TI-sharing of a permutation F which is a

representative of an affine equivalence class is known, a uniform dth-order TI-sharing

of any permutation from the same equivalence class can be derived.
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Therefore, the TI-sharing of an affine transformation of an S-box can be derived easily

by affine transformation of the TI-sharing of the original S-box. With the technique

provided in [5] and the help of the theorem 2.3.3, TI-sharing of all 3 × 3 and 4 × 4

invertible S-boxes, with 2,3 and 4 shares, and TI-sharing of 5× 5 invertible S-boxes,

with 3 shares, are provided.

This theorem raised a question: "Can a sharing of a nonlinear transformation of an

S-box satisfy the properties of TI-sharing". As an example, we consider the inverse

operation in our work. Hence now the question is: "can we take the inverse of a

TI-sharing of an S-box and obtain the sharing of the inverse of the original S-box".

2.3.4 Inverse S-boxes

The aim of this chapter is to examine the relation between inverse of TI-sharings of

S-boxes and TI-sharings of inverses of the corresponding S-boxes. Note that S−1, the

inverse of an S-box S, and the S-box itself are not necessarily in the same equivalence

class, which may imply that they do not have the same algebraic degrees. With the

help of the following lemma, we can provide some information about their degrees.

Lemma 2.3.5. [13] Let F be a permutation in F2n , then deg(F−1) = n − 1 if and

only if deg(F ) = n− 1.

The inverse of an affine permutation is also affine for any n. It implies that the per-

mutation and its inverse are in the same class since there is only one affine class for

permutations in F2n for any n. So, the affine permutations are affine equivalent to

their inverses. In the case n = 3, by the Lemma 2.3.5, the inverse of a quadratic

permutation is also quadratic. Furthermore, each permutation belongs to the class of

its inverse for 3× 3 S-boxes. Such permutations are called self-inverse, or involution.

Again by the lemma above, for n = 4, the inverse of a cubic and a quadratic per-

mutation is also cubic and quadratic, respectively, but not necessarily self-inverse. In

this case, 172 classes are self-inverse while the other 130 classes are not, and these 65

pairs of inverse classes, which consist an S-box in the first class and its inverse in the

second class, are listed in [8]. Many examples that a function and its inverse function

have different algebraic degrees can be given for n = 5.
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For a given TI-shared S-box, its inverse sharing exists because of the uniformity,

however it might not be a TI-sharing since non-completeness might not be satisfied.

In other words the TI inverse might not be a TI-sharing of the inverse.

In this study, we have focused on the question that investigate the conditions which

guarantee that the inverse of the TI-shared S-box is still a TI-sharing.

We are trying to determine when the inverse of the TI-shared S-box is a TI-sharing of

an inverse S-box. We implement our algorithm using C++. We used the CONDOR

system provided by COSIC/KU Leuven and TRUBA system by TÜBİTAK because

we can conclude our search only if we use a system which gives us opportunity to

execute our program in parallel.

We are using the following algorithm:

loop over a set of chosen S-boxes, denoted by S

i. Find the TI uniform sharing with k shares of n×n S-box S, denoted by kn×kn
SS with same algebraic degree t.

ii. Then we check for uniformity of SS. Note one way is to use the "inverse" and

check whether it is a permutation. Namely using the fact: SS−1 is a permuta-

tion if and only if the TI-sharing of SS is uniform. If it is not uniform we go

back to the step i. Otherwise continue to iii.

iii. Find the inverse SS−1 and inverse of S, i.e., S−1. Note that SS−1 should be

still uniform and correct sharing of S−1.

iv. Compute the algebraic degree t1 of S−1 and t2 of SS−1. If t1 = t2 continue

to the step v below, else stop since SS−1 cannot be a TI sharing of S−1. Main

problem is how to check the non-completeness of SS−1 and whether it is cor-

rect masking of S−1.

v. A way to do this is to use the ANF of SS−1, i.e., get the coefficients of the ANF.

For each coordinate function (there are kn such Boolean functions) verify on

how many variables it depends. Record/remember which coordinate function

from which variables it depends. Note that if the non-completeness is satisfied

then each such function should depend of max (k − 1)n variables. If there is a
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coordinate function which depends on more than (k − 1)n variables then stop

SS−1 cannot be a TI-sharing of S−1, otherwise go to vi. Note that the check is

not finished yet.

vi. The question is how to choose the tuples of k variables of SS−1 which will be

the shares of 1 variable in S−1. And at the same time how to choose the tu-

ples of k coordinate functions of SS−1 which will be the shares of 1 coordinate

function in S−1. The remembered/recorded in step v relations between coor-

dinate functions and variables come at help to reduce the exhaustive search.

Namely there should be at least k coordinate functions of SS−1 which do not

depend of a particular tuple of at least k variables. These set of at least k co-

ordinate functions are the candidates, as well as the corresponding tuple of at

least k variables. In other words the set of kn coordinate functions and the set

of kn variables are split on such subsets among which we look for exactly k

tuples.

This search is exhaustive, i.e., we choose n tuples of size k for the coordinate

functions and at the same time we choose n tuples of size k for the variables.

For each such choice we obtain the pre-shared version of SS−1 denoted by

S1 then verify whether S1 = S−1. Record/remember those solutions (if any)

which result in S1 = S−1 and finish the exhaustive search step.

vii. If there are no solutions, finish. In other words, SS−1 can’t be a TI-sharing of

S−1.

viii. For each of the found "solution" we are now sure we have both "correctness"

and "non-completeness". So, collect the cases when this happens.

end loop

The algorithm above is for a single S-box. Then we extend this by applying it for each

S-box in a given affine class. When applied inside a class, we know how the proper

sharings can be obtained from the first one in the class using the affine permutations.
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2.4 Research results

The search of 3-bits S-boxes with 3,4 and 5 shares is completed in approximately 1,

3 and 10 hours respectively while the search of 4-bits S-boxes with 3 shares seems

to be completed more than 4 months. We have stored the results which have taken a

couple hundred gigabytes in space.

We searched for all possible 3-bits S-boxes, we shared them with 3,4 and 5 shares,

and all possible 4-bits S-boxes are shared with 3-shares.

Note that 3-bit S-boxes have 4 different classes, the affine class, named Class 0, has

1344 S-boxes; and the classes including quadratic S-boxes, Class 1 has 9408 S-boxes,

Class 2 has 18816 S-boxes and Class 3 has 10752 S-boxes. 4-bit S-boxes have an

affine class, Class 0 has 329280 S-boxes, the classes including quadratic S-boxes

Class 4 has 3628800, Class 12 has 270950400, Class 293 has 270950400 S-boxes,

Class 294 has 203212800 and the Class 299 has 232243200 S-boxes.

Our experimental results are as follows.

i. According to the search about TI-sharing of S-boxes with 3-shares, the inverse

of TI-sharing of 3-bits S-box is also a TI-sharing of an inverse S-box if and only

if it lies in Class 0 or Class 1. The inverses of the TI-sharings of the S-boxes

in Class 2 are not TI-sharing. The TI-sharing of the S-boxes in Class 3 do not

exist with 3-shares.

ii. The search about TI sharing of 3-bits S-boxes with 4 and 5-shares shows that

the inverse of TI sharing of 3-bits S-box is also a TI sharing of an inverse S-box

if and only if it lies in Class 0 or Class 1. The inverses of the TI sharings of the

S-boxes in Class 2 and in Class 3 are not TI sharing.

iii. According to the search about TI-sharing of 4-bits S-boxes with 3-shares, TI-

sharings of the S-boxes in the Classes 0, 4, 12, 293, 294 and 299 exist. The

inverse of TI-sharing of an S-box is also a TI-sharing of an inverse S-box if

and only if it lies in Class 0 or Class 4. The inverses of the TI-sharings of the

S-boxes in Class 12, in Class 293, in Class 294 and in the Class 299 are not

TI-sharing.
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These results shows that TI-sharing is not invariant under the inverse transformation

except for a subset of classes.
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CHAPTER 3

DECOMPOSITION OF PERMUTATION

The goal of this chapter is to analyze the nonlinear components of symmetric crypto-

graphic algorithms. As mentioned in previous chapters 1, 2, it is crucial to minimize

the area of the protected implementation of mostly symmetric key cryptographic al-

gorithms. It is shown that the decrease in number of shares has a direct impact in the

area requirements. Achieving this goal motivates us to investigate the conditions to

decompose the substitutions boxes, with focus being on Boolean permutations i.e. in-

vertible S-boxes, of high algebraic degree into the ones of lower degree. The parities

of power permutations help us to determine whether the higher degree permutations

are decomposable into those power permutations or not.

In this chapter, we focus on the decomposition method 2.2.1, one of those to have an

efficient TI-sharing described in [5]. With the aim of decomposition of high degree

permutations into the lower ones, in [34], it is determined the conditions to obtain

quadratic and cubic permutations over the finite fields F2n for values of n between

3 and 16 using Carlitz’s Theorem. Then in [19] it is investigated the decomposition

of permutations in Sym(F2n) for 3 ≤ n ≤ 31 into quadratic or cubic permutation

using Stafford’s Theorem, which is stated below, in the Section 3.1. Also, the de-

composition process of permutation is reduced to a modular arithmetic problem as

well as this work. In order to investigate when a permutation over a finite field can

be decomposed into permutations of lower degree, we studied the parities of power

permutations. In the Section 3.3, we provide many lemmas and corollaries that we

presented our techniques leading us to find the cycle structures and parities of permu-

tations. The cycle structure of power permutation was also studied in [2]. We give the
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results in a different point of view, which is much better in computational complexity

than the previous ones.

3.1 Preliminaries

Let Fq be the finite field GF (q) with q = 2n elements and Sym(Fq) denote its sym-

metric group. We find the values of n such that permutations in Sym(Fq) can be

written as a composition of permutations of lower algebraic degree. For the defini-

tion of algebraic degree and for detailed study on symmetric groups, we refer the

reader to the works [17] and [25], respectively.

A polynomial f ∈ Fq[x] is called a permutation polynomial of Fq if the mapping

f : Fq → Fq given by c 7→ f(c) is a permutation, i.e f is 1-1 and onto. Given a per-

mutation ψ in Sym(Fq), there exists the unique permutation polynomial representing

ψ, which can be seen in the following lemma. We refer the reader [17], [28] and [33]

for a rigorous information.

Lemma 3.1.1. [28] For any function ψ : Fq → Fq there exists a unique polynomial

f ∈ Fq[x] of degree at most q − 1 such that the associated polynomial function

f : c 7→ f(c) satisfies ψ(c) = f(c) for all c ∈ Fq.

Proof. f(x) can be written by the Lagrange and then by the Carlitz interpolation

formulas as following:

f(x) =
∑
c∈Fq

ψ(c)
∏
ci∈Fq
ci 6=c

(x− ci
c− ci

)
=
∑
c∈Fq

ψ(c)(1− (x− c)q−1).

For uniqueness, suppose that f and g are two different polynomials in Fq[x] of degrees

at most q − 1, satisfying f(c) = g(c) for all c ∈ Fq. Since f 6= g, it follows that

their difference f − g is a nonzero polynomial that vanishes at all q elements of Fq.

But deg(f − g) ≤ q − 1, so f − g can have at most q − 1 roots in Fq, which is a

contradiction.

Consequently, all permutations considered in this work are of degrees ≤ q − 1. We

recall the following well-known theorem.
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Theorem 3.1.2. [28] The monomial xk is a permutation polynomial of Fq if and only

if gcd(k, q − 1) = 1.

Proof. (2) Since 0n = 0, the monomial xn is onto if and only if the function

f : F∗q → F∗q

x 7→ xn

is onto. Let g be a primitive element of the cyclic group F∗q . Then the image of F∗q
under f is the cyclic subgroup generated by gn, which equals F∗q if and only if gn is a

primitive element. This is equivalent to the statement gcd(n, q − 1) = 1.

We will refer to permutations induced by monomials xk as power permutations. The

(algebraic) degree of a power permutation xk is defined to be equal to wt(k), where

wt(k) denotes the Hamming weight of the n-bit vector corresponding to the binary

expansion of k in [17], or equivalently 2− adic notation of the number k.

Any permutation can be represented as a composition of disjoint cycles. A cycle

is a set of elements in a permutation which switch an element with one another. A

cycle with 2 elements is called a transposition. Any permutation can be written as

a product of such transpositions. There is no unique way to express a permutation

using transpositions; however, the number of them is either always odd or always

even, depending on the permutation. This number corresponds the parity or the sign

of the permutation.

Recall that Euler’s totient function φ(q − 1) which counts the number of positive

integers up to q − 1 that are relatively prime to q − 1.

3.1.3 Composition of permutations

The permutations τa,b defined by x 7→ ax+ b for a ∈ F∗q and b ∈ Fq are called affine

permutations. The set Aff(Fq) = {τa,b | a ∈ F∗q, b ∈ Fq} is clearly closed under

composition and inversion, hence it is a subgroup of Sym(Fq).

If there exists a permutation ϕ, such that ϕ and Aff(Fq) together generate Sym(Fq),
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then every element ψ of Sym(Fq) is of the form

ψ = τ1 ◦ ϕ ◦ τ2 · · · ◦ ϕ ◦ τk

for some affine permutations τ1, τ2, . . . , τk. If ϕ can be decomposed as

ϕ = Q1 ◦Q2 ◦ . . . Qm,

where Qi’s are permutations of degree d, then ψ is a composition of permutations of

degree d

ψ = (τ1◦Q1)◦Q2◦. . . Qm◦(τ2◦Q1)◦Q2◦. . . Qm◦· · ·◦(τk−1◦Q1)◦Q2◦. . . (Qm◦τk).

Thus, in order to show that every permutation in Sym(Fq) can be decomposed into

permutations of degree d, it is sufficient to show

i. that there exists a permutation ϕ, which can be decomposed into permutations

of degree d, and

ii. that ϕ generates Sym(Fq) together with Aff(Fq).

It was shown that every permutation could be written as a composition of affine per-

mutations and the power permutation xq−2, for q = 5 by Betti and for q = 7 by

Dickson [22]. Later on, Carlitz proved that, for any q, every transposition (0α) can

be generated by affine polynomials and the monomial xq−2, where α denotes a fixed

non-zero number in Fq, by considering the polynomial:

g(x) = −α2
((

(x− α)q−2 + 1

α

)q−2 − α)q−2
where g(0) = α, g(α) = 0 and g(β) = β for β 6= 0, β 6= α. Explanations how the

polynomial is constructed are given in [45]. Since every permutation can be written

as a composition of transpositions, we have the following.

Theorem 3.1.4. [18] The group Sym(Fq) is generated by the affine permutations

and the power permutation xq−2.

In [34], the authors investigated when the power permutation xq−2 = x−1 for 3 ≤
n ≤ 16 can be decomposed into quadratic (or cubic) permutations and found those
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with a minimum decomposition length. The authors proved that every permutation in

Sym(Fq) can be decomposed into quadratic permutations whenever n is not divisible

by 4 and into cubic permutations when n is divisible by 4.

In this thesis, we extend this result for larger n due to the following generalization

of Carlitz’s result. In [44], Stafford generalized the previous result to all power maps

with the following result. Namely, instead of using power permutation xq−2 (i.e.

inverse map), it suffices to use any power permutation xk under some conditions.

Theorem 3.1.5. [44] Let Fq be the finite field where q = 2n and let 1 < k < q−2 be

an integer relatively prime to q − 1. If k is not a power of 2 and the power permuta-

tion xk is an odd permutation, then Sym(F) is generated by the affine permutations

Aff(Fq) and the power permutation xk.

If we can write a power permutation xk, which satisfies Stafford’s conditions, as a

composition of quadratic (or cubic) permutations, then every permutation in Sym(Fq)

can be written as a composition of quadratic (or cubic) permutations.

Our aim is to find low degree odd permutations xk over a finite field F2n using

Stafford’s result.

3.2 Parity

Recall that a transposition is a cycle of length 2. A transposition is odd and so is any

cycle of even length, as it can be written as a product of odd number of transpositions.

3.2.1 Analytic Approach

In this section, we show how to determine analytically the parity of a power permu-

tation. Let α be a primitive element of the finite field Fq. Then we can write

Fq = {0, α, α2, α3, . . . , αq−2, αq−1 = 1} = {0} ∪ < α >
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Consider the power permutation xk in Sym(Fq). That is,

xk :

 0 α1 α2 α3 . . . αq−2 1

0 αk α2k α3k . . . αk(q−2) 1


In order to determine whether or not the power permutation xk is odd, it is sufficient

to determine its cycle structure. Notice that the elements 0 and 1 are fixed points of

xk and we discard them. We begin writing xk as a composition of disjoint cycles. The

first cycle is of the form

[α] = (α1, αk, αk
2

, . . . , αk
N1−1

)

where the length of cycle decomposition N1 is the least positive integer such that

kN1 ≡ 1 (mod q − 1).

That is, N1 is the order of k in the multiplicative group Z∗q−1. For the second cycle, if

exists, we take the first αj not included in this cycle and consider (αj, αkj, αk2j, . . . ).

We repeat this procedure until we exhaust all elements.

Since a cycle is even if and only if its length is odd, we should count how many

disjoint cycles there are of even length to determine if xk is odd. Notice that this idea

reduces the problem of checking the parity of xk to a problem in modular arithmetic.

3.2.2 Special case

The idea in 3.2.1 reveals a direct theorem below:

Theorem 3.2.3. Let xk be a power permutation in Sym(Fq) of degree d. Assume that

q − 1 is an odd prime number and k is a primitive root of the multiplicative group

Z∗q−1. Then every permutation in Sym(Fq) can be decomposed into permutations of

degree d.

Proof. Since k is a primitive root of Z∗q−1, the least positive integer i such that ki ≡
1 (mod q − 1) is q − 2. Therefore, the cycle decomposition of xk is

(α1, αk, αk
2

, . . . , αk
q−3

)
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Since the length of this cycle is even, the permutation xk is odd and hence it generates

Sym(Fq) together withAff(Fq) by Theorem 3.1.5. Consequently, every permutation

in Sym(Fq) can be decomposed into permutations of degree d.

The specific instances of this theorem can be seen for the permutations defined over

the finite fields Fq, where q = 2n and n = 3, 5, 7, 13, 17, 19, . . . (i.e. the exponents of

some Mersenne primes) with k = 3.

3.3 Cycle Decomposition of Permutations

Assume that, using the exhaustive procedure described previously in the Section

3.2.1, the permutation xk can be written in cycle decomposition notation, with disjoint

cycles as

(α1, αk, αk
2

, . . . , αk
N1−1

)︸ ︷︷ ︸
N1-many elements

. . . (αm, αmk, . . . , αmk
Nm−1

)︸ ︷︷ ︸
Nm-many elements

. . .

under the assumption that αm is not included in the previous cycles.

Notation 3.3.1. We shall denote the length of the cycle [αm] by Nm. Equivalently,

Nm is the minimum positive integer such that mkNm ≡ 1 mod (q − 1). In addition,

in the case m is a proper divisor of q − 1, Nm is the order of k in the multiplicative

group (Zq−1/m)× . Throughout the chapter, the subscripts are from {1, 2, · · · , q − 2}
and unless otherwise indicated, ’divisor’ is used instead of ’proper divisor’ in these

cases.

3.3.2 On the length of the cycles

In this section, to show some relations between the lengths of certain cycles of some

elements in Fq in cycle decomposition of the power permutation xk, we have a useful

lemma:

Lemma 3.3.3. Nms|Ns for all m, s.
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Proof. Recall that Ns is the minimum positive integer satisfying αskNs = αs. So, if

we take the mth-power of both sides, we get that

αmsk
Ns

= αms

On the other hand, αms is in the cycle (αms, αmsk, αmsk
2
, . . . , αmsk

Nms−1
) and so

αmsk
Nms

= αms

where Nms is the minimum positive integer satisfying this. Let Ns = qNms + r for

some integers q, r with 0 ≤ r < Nms. Assume that r 6= 0. Then we have that

αmsk
Ns

= αms

αmsk
qNms+r

= αms

αmsk
qNmskr = αms(

αmsk
qNms

)kr
= αms((

. . .
(
αmsk

Nms
)kNms

. . .

)kNms)kr

= αms

where we iteratively exponentiate q times to the power kNms . However, since we have

αmsk
Nms

= αms, one obtains that αmskr = αms, which contradicts the minimality of

Nms. Thus r = 0 and so Nms|Ns.

The following corollary follows immediately from Lemma 3.3.3.

Corollary 3.3.4. Nm|N1 for all m.

The next lemma gives us a stronger result under some conditions.

Lemma 3.3.5. Let ρ be a divisor of q − 1 and suppose that gcd
(
t, q−1

ρ

)
= 1. Then

Nρt = Nρ.

Proof. Recall that, by the definition of Nρ, we have that αρk
Nρ

= αρ. It follows that

αρ(k
Nρ−1) = 1 in Fq. As the order of α in the multiplicative group F∗q is q − 1, we

have that

q − 1|ρ(kNρ − 1).
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Moreover, Nρ is the least positive integer satisfying this relation. Similarly, we

know that αρtk
Nρt

= αρt and so αρt(k
Nρt−1) = 1 in Fq. As before, we have that

q − 1|ρt(kNρt − 1) and so q−1
ρ
|t(kNρt − 1). Since gcd

(
t, q−1

ρ

)
= 1, one can see

q − 1|ρ(kNρt − 1).

By the minimality of Nρ, we have that Nρ|Nρt. Otherwise, after applying the division

algorithm to Nρt and Nρ as before, and we would obtain 0 < r < Nρ such that

αρk
r
= αρ which is equivalent to q − 1|ρ(kr − 1). By Lemma 3.3.3, we also know

that Nρt|Nρ. Hence

Nρt = Nρ.

Again we present an immediate corollary which follows from the Lemma 3.3.5.

Corollary 3.3.6. If gcd(t, q − 1) = 1, then Nt = N1.

As one can deduce from the Lemma 3.3.5, the Euler totient function defined above in

the Section 3.1, is needed in order to be able to count the number of a part of elements

within the cycle of the same length.

3.3.7 The number of distinct cycles

Let ρ be a divisor of q−1. In this subsection, it will be proven that for a given divisor,

the corresponding cycles are all distinct and the counting of elements appearing in the

cycle decomposition of a permutation is completely done.

Notation 3.3.8. SetKρ = φ
(
q−1
ρ

)
. LetWρ denote the set of asWρ = {t : gcd

(
t, q−1

ρ

)
=

1 and 1 ≤ t < q−1
ρ
}. Note that |Wρ| = φ

(
q−1
ρ

)
= Kρ. We enumerate the elements

of Wρ as Wρ = {t1, t2, . . . , tKρ}. Then, for a divisor ρ of q − 1, we define the list Lρ

of cycles as the following list:

[αρt1 ] = (αρt1 , αρt1k, αρt1k
2

, . . . , αρt1k
Nρ−1

)

[αρt2 ] = (αρt2 , αρt2k, αρt2k
2

, . . . , αρt2k
Nρ−1

)
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... (?)

[αρtKρ ] = (αρtKρ , αρtKρk, αρtKρk
2

, . . . , αρtKρk
Nρ−1

)

Observe that each of these cycles has length Nρ, since gcd(t, q−1
ρ
) = 1 implies that

the length of [αρt] is the same as the length of [αρ], as stated in the Lemma 3.3.5.

Some of the cycles in (?) may be identical. Let Uρ denote the number of distinct

cycles in this list. In the following lemma we determine Uρ.

Lemma 3.3.9. Let ρ be a divisor of q− 1 and Uρ denote the number of distinct cycles

in the list (?), which is the list determined by ρ as explained above. We have

Uρ =
Kρ

Nρ

where Kρ and Nρ is defined in Notation 3.3.8 and 3.3.1, respectively.

Proof. Since gcd(k, q − 1) = 1 and gcd
(
ti,

q−1
ρ

)
= 1, following from ∀ti ∈ Wρ,

we have that gcd
(
tik,

q−1
ρ

)
= 1, which implies that tik mod ( q−1

ρ
) is also in the set

Wρ. Hence, one can see that αρti is counted in at least Nρ different cycles in the list

?. As this holds for any t ∈ Wρ, we conclude that Nρ|Kρ and

Uρ ≤
Kρ

Nρ

We claim that Uρ ≥ Kρ
Nρ

for every divisor ρ of q − 1. Assume to the contrary that, for

some divisor ρ of q − 1, we have that Uρ <
Kρ
Nρ

. Then, since every element of F∗q is

contained in some cycle of this form for some divisor ρ of q − 1, we would have

|F∗q| ≤
∑
ρ|q−1

UρNρ <
∑
ρ|q−1

Kρ

Nρ

Nρ =
∑
ρ|q−1

φ

(
q − 1

ρ

)
= q − 1

which is a contradiction. Hence, Uρ =
Kρ
Nρ

for every divisor ρ of q − 1.

Remark 3.3.10. Note that it is possible to have two distinct divisors ρ1 and ρ2 of

q − 1 such that Nρ1 = Nρ2 . Therefore, Uρ1 might be strictly less than the number of

all cycles of length Nρ1 .
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In order to make it more precise, the following toy example is given for a power

permutation defined in a finite field F2n with a small value of n because of the cycles

being easy to compute.

Example 3.3.11. Consider the power permutation x5 over F26 . So q− 1 = 63 = 327.

Let ρ1 = 1, ρ2 = 3, ρ3 = 7, ρ4 = 9 and ρ5 = 21, the proper divisors of 63.

– For ρ1 = 1,W1 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, 22, 23, 25, 26, 29, 31, 32,

34, 37, 38, 40, 41, 43, 44, 46, 47, 50, 52, 53, 55, 58, 59, 61, 62}, i.e. the numbers

coprime to 63. The distinct cycles in L1 by computing the cycles of αti where

ti ∈ W1 are:

- [α] = (α, α5, α25, α62, α58, α38)

- [α2] = (α2, α10, α50, α61, α53, α13)

- [α4] = (α4, α20, α37, α59, α43, α26)

- [α8] = (α8, α40, α11, α55, α23, α52)

- [α16] = (α16, α17, α22, α47, α46, α41)

- [α19] = (α19, α32, α34, α44, α31, α29)

Note that it is not necessary to compute the cycle [α5] separately since it is

nothing but [α]. Clearly it is seen that all elements αti satisfying ti ∈ W1 are

spanned above. 36 elements of F26 \ {0, 1} are located in a cycle. There are

6 different cycles, which confirms with Lemma 3.3.9 as the values of the total

number of elements, K1 = φ(63) = 36, the number of elements in one cycle

N1 = 6 and the number of distinct cycles U1 = 6 in the list L1.

– For ρ2 = 3, W3 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. Check the cycles of

α3ti where ti ∈ W3.

- [α3] = (α3, α15, α12, α60, α48, α51)

- [α6] = (α6, α30, α24, α57, α33, α39)

Again all elements αti satisfying ti ∈ W3 are spanned. Another 12 elements of

F26 \ {0, 1} are located in a cycle.

We continue to apply the same procedure to the rest of divisors with less details.
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– For ρ3 = 7, W7 = {1, 2, 4, 5, 7, 8} and the only cycle is:

- [α7] = (α7, α35, α49, α56, α28, α14)

– For ρ4 = 9, W9 = {1, 2, 3, 4, 5, 6} and there is again one cycle:

- [α9] = (α9, α45, α36, α54, α18, α27)

– For ρ5 = 21, W21 = {1, 2} and the cycle:

- [α21] = (α21, α42)

One can see that each element of F26 appears exactly once in the distinct cycles listed

above. The values of Kρ, Nρ and Uρ are given together with the divisors ρ, in the

following table:

Kρ = φ
(
q−1
ρ

)
Nρ, order of k in (Zq−1/ρ)× Uρ =

Kρ
Nρ

ρ = 1 36 6 6

ρ = 3 12 6 2

ρ = 7 6 6 1

ρ = 9 6 6 1

ρ = 21 2 2 1

Table 3.1: The Kρ, Nρ and Uρ values for the given divisors ρ

The cycle structure of the power permutation x5 over F26 can be represented as [<

6, 10 >,< 2, 1 >], which means there are 10 different cycles of length 6 and there is

1 cycle of length 2. The cycles of the elements 0 and 1 are not listed in this notation.

In brief, we can give a summary of lemmas and some corresponding examples specific

to x5 defined over F26 . By the Lemma 3.3.3, N9|N3 and N21|N7 etc, where N9 = 6,

N3 = N7 = 6, N21 = 2. By the Corollary 3.3.4, Nρ|N1 = 6 for all divisors ρ. By the

Lemma 3.3.5, N18 = N9 since gcd(2, 7) = 1, i.e. gcd
(
t, q−1

ρ

)
= 1. By the Corollary

3.3.6, N2 = N1 since gcd(2, 63) = 1. Also as mentioned in the Remark 3.3.10, one

can see that there are some cycles of same length for the elements placed in different

lists, for example N3 = N7. By the Lemma 3.3.9, we cover all elements in F26 .

From its cycle structure, one can say that x5 defined over F26 has odd parity since

there are odd many cycles of even length. Afterwards, we will decide the parity of a

permutation without computing the cycle structure of it.
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Corollary 3.3.12. If N1 is odd, then permutation is even.

Proof. N1 is odd implies Nm’s are all odd, for any 1 ≤ m ≤ q − 2, since Nm|N1 by

Corollary 3.3.4. Hence regardless of their number of cycles, it forms a even permuta-

tion.

Therefore using Lemma 3.3.5 and the Lemma 3.3.9, we arrive at our main Theorem.

Theorem 3.3.13. Let k be a positive integer less than q − 2 and relatively prime

to q − 1. Let d be the algebraic degree of k, where xk is a power permutation in

Sym(Fq). For a divisor m of q − 1, let Nm be the order of k in (Z q−1
m
)×, where

(Z q−1
m
)× is the multiplicative group consisting of invertible elements of Z q−1

m
. Then,

xk is odd if and only if N1 is even and |S| is odd where S := {m | Nm is even}.

By the help of this theorem we can determine the parity of a given power permutation

as well as its cycle structure. In the literature, the cycle structure of power permutation

ψk was also given by Ahmad, in [2] as follows:

Theorem 3.3.14. Let m be any positive integer. Then xk has a cycle of length m if

and only if q− 1 has a divisor t such that k belongs to the exponent m modulo t. The

exact number Tm of such cycles is

Tm =
∑
e∈Cm

φ(e)

whereCm = {t : t|dm and k belongs to m modulo t, where dm = gcd(km−1, q−1)}
and φ is Euler’s totient function.

By using our method, in a different point of view than the one in [2], which is de-

scribed in Section 3.3 and which will be described in the following algorithms in

details, one can obtain the cycle structure of a power permutation with a better com-

putational complexity. Moreover, our method give information also about the parity

of the permutation faster.
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3.4 Algorithms

In order to determine that a permutation is even or not, we provide the following

algorithm:

Result: The parity of a power permutation xk

Inputs: k, q − 1

N1 ← ordZ×q−1
(k)

if N1 is odd then
Print "The permutation is even"

Stop
else

while ρ is a proper divisor of q − 1 do
Nρ ← ord(Zq−1/ρ)

×(k)

if Nρ is even then
Uρ ← φ( q−1

ρ
)/Nρ

if Uρ is odd then
count← count + 1

end

end

end

end
Algorithm 1: The parity of a power permutation xk

By this algorithm, we can determine that the permutation is odd if the count is odd,

otherwise it is even.

54



In addition, in order to write also the cycle structure of a monomial using our method

we provide the following algorithm:

Result: The cycle structure of a power permutation xk

Inputs: k, q − 1

List[a][2]← 0 . where a is the number of divisors

count← 0

while ρ is a divisor of q − 1 do
Nρ ← ordZ×q−1/ρ

(k)

Uρ ← φ( q−1
ρ
)/Nρ

for i← 0 to count do

if Nρ in List[i][0] then
List[i][1]← List[i][1]+Uρ

break i
else

count← count + 1

List[count][0]← Nρ

List[count][1]← Uρ

end

end

end

for i← 0 to count do

for j ← 0 to 1 do
Print List[i][j]

end

end
Algorithm 2: The cycle structure of a power permutation xk

3.4.1 Complexity Comparison

In this section, it is given the complexities of our method and the one of Ahmad [2]

in detail.

Since q = 2n, the number of digits of q, equally log(q) or log(q − 1) when required,

equals to n. First we need to find the divisors of the number q − 1. This can be
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done by factorizing having the complexityO(exp((64/9)1/3n1/3(ln(n))2/3)) with the

Generalized Number Field Sieve. The number of divisors are bounded from above

with n1/3. Then, it will be computed the order of k in Z×q−1/ρ, having the complexity

O(
√
Nρ) < O(2n/2) with Pollard’s Rho algorithm. To calculate the Euler totient

value of a number, we can use the factorization which is previously computed, there-

fore there is no additional complexity for these steps, and dividing it by Nρ for each

divisor ρ has relatively small complexity.

In total, both Algorithm 1 and 2 have the complexity:

O(exp((64/9)1/3n1/3(ln(n))2/3))+O(n1/32n/2) ≈ O(exp((64/9)1/3n1/3(ln(n))2/3)).

In Ahmad’s method, there are q − 1, i.e. 2n − 1, many choices in the beginning. The

method firstly calculates the greatest common divisor of km − 1 and q − 1 which has

complexity O(log(n)) and finds a divisor of that number with the same complexity

as integer factorization which is O(exp((64/9)1/3n1/3(ln(n))2/3)). Then finds the

order of k in Z×t which has O(2n/2) complexity and finally calculates Euler totient

r times, where r is the number of elements of Cm with no additional complexity as

stated above and the sum which has relatively small complexity. In overall it has the

following complexity:

O
(
(2n − 1)(exp((64/9)1/3n1/3(ln(n))2/3) + log(n) + 2n/2)

)
which approximately equals to

O((2n − 1)exp((64/9)1/3n1/3(ln(n))2/3)).

Hence, Ahmad’s method is (2n − 1) times more complex than ours.

3.5 Experimental Results

In this section, before stating our experimental result, it is given in [34] that the fol-

lowing lemma which helps us in omitting the search for quadratic power permutations

in some finite fields.

Lemma 3.5.1. No quadratic power permutations exist for n = 2m in Fq with q = 2n.
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Proof. For a quadratic power permutation xk, k should be of the form k = 2j+i + 2j

for some integers i, j with i > 0, i.e. the binary representation of quadratic k is

(0 · · · 010 · · · 010 · · · 0) where 1’s are in the (j + i)th and jth positions from right.

Clearly k = 2j(2i + 1). By Theorem 3.1.2, xk being a permutation is equivalent to

gcd(k, q − 1) = 1. So we check whether gcd(2j(2i + 1), 22
m − 1) = 1. It is easily

seen that gcd(2j(2i+1), 22
m − 1) = gcd(2i+1, 22

m − 1) and moreover, we have that

• If gcd(2i − 1, 22
m − 1) = 1, then

gcd(2i + 1, 22
m − 1) = gcd(22i − 1, 22

m − 1) = 2gcd(2i,2
m) − 1 6= 1.

• If gcd(2i − 1, 22
m − 1) 6= 1, then

gcd(2i + 1, 22
m − 1) =

gcd(22i − 1, 22
m − 1)

gcd(2i − 1, 22m − 1)
=

2gcd(2i,2
m) − 1

2gcd(i,2m) − 1

= 2gcd(i,2
m) + 1 6= 1.

In both cases, since gcd(k, q − 1) 6= 1, no quadratic power permutations exists in Fq
with q = 22

m .

In this thesis, we performed a search for quadratic and cubic power permutations for

the values 3 ≤ n ≤ 141 using the Algorithm 1 which follows from the Theorem

3.3.13, and also by the help of the Lemma 3.5.1.

We now state our experimental results.

Theorem 3.5.2. Let n be an integer such that 3 ≤ n ≤ 141.

– If n is not divisible by 4, then every permutation in Sym(F2n) can be written

as a composition of quadratic and affine permutations.

– If n is divisible by 4, then every permutation in Sym(F2n) can be written as a

composition of cubic and affine permutations.

- Moreover, if n is a power of 2, then every permutation in Sym(F2n) can

be written as a composition of x13 and affine permutations.

- Sym(F2n) cannot be generated by the quadratic power permutations and

the affine permutations.
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One can find these decomposition results to any permutation in GF (2n) in [34] for

the values 3 ≤ n ≤ 16, and in [19] for the values 3 ≤ n ≤ 31.

We performed a search for quadratic and cubic power permutations for various val-

ues of n, using C and MAGMA [12]. Based on the computational evidences, we

conjecture the following:

Conjecture 3.5.3.

– For all integers n ≥ 1, the power permutation x3 is odd in Sym(F22n+1).

– For all integers n ≥ 1, the power permutation x5 is odd in Sym(F24n+2) and

Sym(F24n+3).

– For all integers n which is a multiple of 4 and not a power of 2, all quadratic

permutations of F2n are even.

For some small values of nmultiple of 4, the odd but cubic permutations are provided:

• For n = 4, there exists no quadratic power permutation and the cubic power

permutation x7 is odd, in total there are 4 cubic permutations with odd parity.

• For n = 8, there exists no quadratic power permutation and the cubic power

permutation x13 is odd, in total there are 8 cubic permutations with odd parity.

• For n = 12, the all 12 quadratic power permutations are even and the cubic

power permutation x11, one of the 36, is odd.

• For n = 16, there exists no quadratic power permutation and the cubic power

permutation x7 is odd, in total there are 160 cubic permutations with odd parity.

• For n = 20, the all 40 quadratic power permutations are even and the cubic

power permutation x13, one of the 280, is odd.

• For n = 24, the only quadratic power permutation is x257, which is even; and

the cubic power permutation x11 is odd.

• For n = 28, the only quadratic power permutations are x17, x257 and x4097,

which are even; and the cubic power permutation x7 is odd. with odd parity.
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We note that the permutations in the list above are not necessarily the unique ones.

For example, for n = 4, the power permutation x13 is also odd and hence, generates

Sym(F2n) together with affine permutations.
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CHAPTER 4

CONCLUSION

Throughout this thesis, we elaborated the process that led us to our main results/

conclusion.

The thesis contains four chapters. Below is a brief summary of each chapter and the

contribution within each. Then we propose directions for future research.

We introduced the importance of cryptography in the modern life in the Introduction

Chapter. We briefly mentioned the cryptographic systems, Side-Channel Analysis

and countermeasures, and attempted to draw the path of reaching Threshold Imple-

mentation and the decomposition method. Then we stated our research questions.

We presented our answers across two chapters. In the second chapter, we recalled

the properties of Threshold Implementation and gave various examples. To be able

to give an answer to our first question, we examined the behavior of TI-sharing of

S-boxes under inverse transformation and we showed that the answer of our first

research question proves to be negative except for a subset of classes.

The third chapter was the most theoretical one. We presented several lemmas and

corollaries to arrive at our main theorem. Finally, we apply our method for various fi-

nite fields and we obtained some remarkable experimental results. We gave an answer

to our second question.

We left a conjecture 3.5.3 containing “3 different open questions” to be solved.

Under the assumption that the third item of the conjecture holds, “Can we find a

power permutation over F2n such that it is cubic and odd for all n multiple of 4.”
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In this dissertation, we focused on only the power permutations. We can suggest

another future investigation: “Can we find a permutation, rather than power permuta-

tions, that is used to generate Sym(F2n) for n multiple of 4?”
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