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ÖZET 

“3D CAMERA İLE ROBOT HAREKETLERİNİN UZAKTAN 

KONTROLÜ” 

Endüstride birçok zaman zor koşullarda çalışması için insan gücü yerine robot gücü 

kullanılmaktadır. Özellikle kaynak yapmak, yük taşımak ya da montaj yapmak için robot 

sistemleri kullanılmaktadır. Robotu kullanmak içinse uzaktan kontrol sistemleri 

geliştirilmiştir. Kinect Kamera gibi 3 boyutlu kameralar uzaktan kontrol sistemlerinde iyi 

bir alternatif sunmaktadırlar. Çünkü kamera ile yapılan robot kontrolünde kullanıcının 

robotu kontrol etmesi için kumanda gibi cihazlar kullanmasına gerek yoktur.  

Bu çalışmada da Kinect kamera kullanılarak robot kol için bir uzaktan kontrol sistemi 

tasarlanmıştır. İlk önce Kinect kamera kullanıcının iskelet izlemesini yaparak, tüm 

eklemler için koordinatları tespit etmektedir. Bu iskelet izlemesi Microsoft’un resmi 

yazılım kütüphanesi kullanılarak elde edilmiştir. Bu tespit edilen noktalar eklemler 

arasındaki açıların hesaplanması için kullanılmıştır. Daha sonrada bu hesaplanan açı 

değerleri 4 eksenli robotik kola gönderilmiştir. Böylece uzaktan kontrol sistemi 

sağlanmıştır. Bu uzaktan kontrol sistemi temelde üç aşamadan oluşmaktadır. İlk aşamada 

kullanıcının eklem bilgileri geliştirilen bilgisayar programıyla alınır. İkinci aşamada bu 

alınan veriler nokta çarpımı ve ters kinematik metotları ile ayrı ayrı işlenir. Üçüncü 

aşamada ise metotlar sonucu hesaplanan açı değerleri robot kola gönderilir.  

Bu aşamalar sırasında bir adet Kinect kamera, bir adet bilgisayar, bir adet Arduino Uno 

mikro kontroller ve son olarak da 3 boyutlu yazıcı yardımıyla yapılan bir adet robot kol 

kullanılmıştır. Kinect kamera daha öncede söylediğimiz gibi kullanıcının eklem 

koordinatlarını bulmak için kullanılmıştır. Bilgisayar ise ara yüz programını oluşturmak 

için kullanılmıştır. Bu program C# programlama dilinde Visual Studio 2015’de 

geliştirilmiştir. Ayrıca açı hesaplamaları da bu programın arka planında 

gerçekleşmektedir. Arduino Uno hesaplanan açıları robot kola göndermek için 

kullanılmaktadır. Bu yüzden bilgisayar ve robot kol arasında bir köprü görevi 

görmektedir. Robot kol (EEZYbotARM MK2, EEZYRobotsTM), tüm parçaları açık 

kaynak kodlu olan ve 3 boyutlu yazıcıda bastırılıp birleştirilmiştir.  

Geliştirilen projenin amacı Kinect kamera yardımıyla robot kol için uzaktan kontrol 
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sistemi geliştirmektir. Geliştirilen sistem uygun fiyata mal olmuştur. Ayrıca endüstri veya 

eğitim için kolayca değiştirilerek kullanılabilmektedir. 

Anahtar Kelimeler: Hareket Algılama, İnsan-robot etkileşimi, Kinect, Robot Kol 
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ABSTRACT 

“MOTION CONTROL OF ROBOT BY USING 3D CAMERA” 

In industrial applications, the operatives have to use robots which are in a risky 

environment. Tele-control represents a good solution to control the robot from distant 

places (for example during handling, welding or assembling operations) maintaining the 

right level of safety. An innovative solution can be the use of Time-Of-Flight (TOF) 

cameras (for example Kinect camera, Microsoft TM) to remote control the robotic system 

without using other types of wearable or holding controllers. 

In the current work, the movement of the human body is captured with Kinect Camera by 

measuring 3D point clouds. The human body skeleton is then tracked by using skeleton 

tracking developed thanks to the Microsoft Kinect Software Development Kit (SDK). 

Furthermore, the measured joints are used in order to calculate the angles between the 

human limbs. All these data are finally used for the remote control of a four axis robotic 

arm. All parts of the robotic arm were made and reconstructed using a 3D printer. 

A remote control system is created for a 3D printed robotic arm by using Kinect Sensor. 

The system is composed of three parts. The first part aims to find the upper limb’s joints 

by using the point clouds acquired by the Kinect Sensor; the second part calculates the 

dot product method and the kinematics equations of the robot arm; the last part sends the 

processed data to the robot to control the movement. 

The system is composed of the Kinect Camera, a computer for creating a program, a 

microcontroller and a Robotic arm. The Kinect Camera, which is a kind of TOF camera 

is able to measure the 3D coordinate of the scene. It can be used to track the human body 

skeleton and to recognize the human gesture. 

The computer is used as a bridge to receive data from Kinect sensor and to send the 

processed data to the microcontroller. The visual interface program is developed in Visual 

Studio 2015 with C# language to calculate the angles between limbs. 

Arduino Uno, which is a kind of microcontroller, is used in the present project. The 

purpose of the microcontroller is to drive the servo motors of the robotic arm. 

A four axis open source 3D robotic arm is used in this work (EEZYbotARM MK2, 
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EEZYRobotsTM). All parts of the robotic arm are printed by a 3D printer and 

reconstructed completely.  

In the following, the logic of the system will be explained more in detail. The data 

processing starts to capture the user joint coordinates by using Kinect camera. The Data 

is sent to the computer in order to calculate the upper limb joints angles by using the 

developed software. In the background of the program two methods, which are the dot 

product method and the inverse kinematics method, are used. Afterwards, the calculated 

angles are sent to the Arduino Uno microcontroller via an USB-cable. The motors are 

controlled by using the Pulse-Width-Modulation (PWM) technique. 

The aim of this project is to create a remote control system for a robotic arm based on the 

Kinect sensor. The human movements were recorded and transferred to the robotic 

device. A well-priced control system was created which can be used for industrial 

purposes as well as for educational applications. 

Keywords: Motion Capture, Human-Robot Interaction, Kinect, Robotic Arm 
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SYMBOLS 

Ti
i-1

 : The matrix between two adjacent joints 

α : Angle between two vectors 

x̅ : Mean Value 

σ : Standard Deviation 

A : The length of the Robotic arm’s joints 

θ : Angle 
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ABBREVIATIONS 

3D : Three dimensional 

OPENNI : Open Natural Interaction 

DOP : Degree of freedom 

UDMI : Ultrasonic distance measurement instrument 

2D : Two dimensional 

IR : Infrared 

CMOS : Metal oxide semiconductor 

RGB : Red-Green-Blue 

FPS : Frames per second 

BST : Breakaway support technology 

PWM : Pulse with a modulation 

IDE : Integrated development environment 

SDK : Software Development Kit 

WPF : Windows presentation foundation 

XAML : Extensible application markup language 

  



x 

 

LIST OF FIGURES 

Figure 3.1: Microsoft Kinect Camera .............................................................................. 8 

Figure 3.2: (a) Color Image (b) Depth Image.................................................................. 9 

Figure 3.3: The coordinate frame for Kinect ................................................................. 11 

Figure 4.1: The part hole is covered with support material ........................................... 12 

Figure 4.2: (a) The parts of robot after printing (b) The parts of robot after extraction 

from support material ..................................................................................................... 13 

Figure 4.3: Assembling of the base ............................................................................... 15 

Figure 4.4: (a) robot’s base with main arm (b) the parts of the robot’s gripper ............ 16 

Figure 4.5: Completed Robotic Arm ............................................................................. 17 

Figure 4.6: (a) a servo motor (b) servo motor internal structure in detail[16]............... 18 

Figure 4.7: Control circuit for the robotic arm .............................................................. 19 

Figure 4.8: Arduino Uno pin structure .......................................................................... 21 

Figure 4.9: Arduino IDE and Serial monitor interface .................................................. 22 

Figure 4.10: Top bar of the Arduino IDE ...................................................................... 22 

Figure 4.11: Twenty joints of user body ....................................................................... 27 

Figure 4.12: (a) Skeleton tracking of the standing user (b) Skeleton tracking of the seated 

user ................................................................................................................................. 28 

Figure 4.13: Angle between the vectors ........................................................................ 29 

Figure 4.14: The interface of the program for dot product method ............................... 30 

Figure 4.15: Geometric notation of the robotic arm ...................................................... 32 

Figure 4.16: Geometric notation of robotic arm in z-r coordinates ............................... 33 

Figure 4.17: The interface of the program for inverse kinematics method ................... 35 

Figure 5.1: (a) the user arm is in 90 degree position (b) The user arm is 180 degree 

position (c) The user arm is flexed as much as possible ................................................ 36 

file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233076
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233077
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233084
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233081
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233079
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233082
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233066
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233072
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233082
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233088
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233088
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233075
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233086
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233083
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233085
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233072
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233078
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233087
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233065
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233073
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233067
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233074
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233080
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233071


xi 

 

Figure 5.2: Graph of the elbow angles .......................................................................... 37 

Figure 5.3: Experimental Setup for inverse Kinematics method .................................. 39 

Figure 5.4: Accuracy and repeatability of the robotic arm ............................................ 39 

 

 

 

  

file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233091
file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233090


xii 

 

LIST OF TABLES 

Table 5.1: Mean, Standard Deviation and Median for three different Elbow Angles ... 38 

 

 

file:///C:/Users/Yussuf/Desktop/Thesis/THESIS%20Last%20Version/FBE_Thesis(Motion_Control_of_Robot_by_using_3D_camera)_12.docx%23_Toc497233043


1 

 

1. INTRODUCTION 

In the recent times the research about human robot interaction, which hold the attention 

of many researchers, is a contemporary issue because of the difficulties to build a system 

for interaction with robot. 

There are some techniques to develop a control system for human robot interaction. For 

example image processing methods and voice recognition methods are ways to interact 

with a robot. 

Industrials robots are used instead of the people in many applications such as handling, 

assembling and packaging of objects. Because Robots are able to perform these tasks 

more quickly than humans and they can easily transport and move objects that are often 

heavy or in a dangerous area. 

Beside the area of industrial robots it is a significance in the bio-medical area as well. The 

topic of robotics engineering is getting more important with the target to support 

handicapped people in the daily life.  In general, the topics of robotics is always connected 

with the idea to make the life easier for the humans in many different contexts. 

In this way the control system of the robot should be simple in order to control the robot 

easier. Most of time the hand controllers such as joysticks are used for this and usually 

the user needs knowledge about the robotic system in this kind of controller.  On the other 

hand the remote control systems by using a 3D camera is a simple application for users 

without knowledge about robotic systems because the user doesn’t need to use an 

additional controller. The only necessary thing is that the user is situated in front of the 

camera. For this reason the remote control system of a 3D camera is developed in this 

project. 

In present project and the developed system are planned to be well-priced, user friendly 

and the flexible in order to implement it to the other projects easily. Thus the well-priced 

microcontroller is chosen and the robotic arm is printed in this project. As well the 

methods, which are the dot product and the inverse kinematics, can be changed easily 

according to the project’s desires. 

To realize the following work the thesis is divided into three main parts. Firstly the 

theoretical foundations and the current state of research will be presented, in order to have 
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a first overview about the topic. Therefore, the fundamental principles of forward 

kinematics and inverse kinematics are explained more in detail are part of the theoretical 

assumptions. 

Furthermore the control system within the scope of the project will be explained more in 

detail. Especially the 3D camera with its individual components, the robot and the 

microcontroller will be presented. 

The second major part of this thesis includes the implementation of the project. The main 

focus will be the implementation and the interaction of the individual parts such as the 

robot arm and the software. In the last part of the thesis the experimental results are 

presented and evaluated. 

1.1.  Literature review 

Many projects in the past have used the imitation of gesture to control robots. In the paper 

“Motion Control of Robot by using Kinect Sensor” published in the Research Journal of 

Applied Sciences, Engineering and Technology, the researchers studied about the motion 

of the remotely controlled robotic arm by using the Kinect camera to take information 

about the human body joints data and by using a Arduino microcontroller to control the 

servos motor of the robot [1]. This project is using the software Open Natural Interaction 

(OPENNI) which is an open source software development kit (SDK) including special 

libraries for developing 3D image processing applications. 

Another paper about the “Gestural Interaction for Robot Motion Control” is dealing with 

the topic of the implementation of the remote control robot system [2]. A mobile robot, 

which has eight degree of freedom (DOP) for the forearms and two wheels for mobility, 

are controlled by Kinect tracking skeleton data. 

In the other research, “Implementation of Gesture Control in Robotic Arm using Kinect 

Module”, the Microsoft Kinect SDK includes an official Microsoft library for Kinect 

sensor, is used to build the frame of the skeleton image [3]. In the research published in 

quotation “Teleoperation Humanoid Robot Control System Based on Kinect Sensor”, a 

teleportation humanoid robot control system is designed, adapted from Kinect sensor [4]. 

The author of this paper developed the ultrasonic distance measurement instrument 

(UDMI) which is an effective and non-contact distance measuring instrument. Two 
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Kinect and the UDMI are used firstly to take the joints of the skeleton data from the user 

to receive secondly a feedback from the humanoid robot in order to reduce the missing 

operation.  

The last two interesting papers, which are “Motion Control System for a Humanoid Robot 

based on Motion Capture using Kinect” and “Kinect-Based Humanoid Robotic 

Manipulator for Human Upper Limbs Movements Tracking”, are dealing with the real 

time motion control systems which are designed for using Kinect upper limbs body 

tracking. In these projects, after the calculation of the angles which are between the upper 

limbs, one of them is calculated with cosine interpolation for the manipulation of the robot 

[5]. However, to receive better results for the imitation of human gestures this calculation 

is not sufficient. The other one is calculated with the method of inverse kinematics model 

to manipulate the robot and there is problem when the users move their arm in front of 

any part of the body, the tracked joints of accuracy is not good in this research [6]. 
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2. THEORETICAL PART 

2.1. KINEMATICS 

In this chapter, theoretical information on the topics of kinematics of robots and control 

of robots will be treated in detail.  

The field of kinematics is a very important topic for robot systems. Components such as 

the robot end effector or the robot joint angles are determined by kinematics equations. 

Particularly in the industrial sector the robot manipulator systems must be very precise in 

order to complete the task of the system, such as assembly, handling and welding [7].  

The field of kinematics is divided in two approaches, which are Forward Kinematics and 

Inverse Kinematics. These two approaches are used to determine different joint variables 

for the robot manipulator. Forward and inverse kinematics equations are based on the 

calculation of the joint coordinates and the joint angles.  

In the present project, the kinematics equations are favored to calculate the joint angles 

of the robotic arm, because the kinematics allows the calculation to find the unknown 

variables of the robotic arm by using very few data and in the same time it provides a 

high precision in the movement of the robotic arm. 

2.1.1. Forward kinematics 

The principle of Forward kinematics is going to be explained generally at this point. On 

the contrary, the principle of inverse kinematics was used and implemented in the present 

case to the control system due to the unknown variables.  

The end point coordinates of the robot such as gripper can be determined by using forward 

kinematic equations if the robot’s joint angles and the robot’s pieces length are known. 

While solving the kinematics equation there are also different solutions based on the robot 

configurations which are the Cartesian, cylindrical and spherical coordinates.   

The robotic arm, which is used in this project, is able to move in cylindrical coordinates. 

Rotation in the base of the robotic arm and the movement in the joints of the robot can be 

given as an example. 

The robotic arms are formed by various joints such as revolute, prismatic or slightly more 
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complex joints as socket or spherical. The degree of freedom of the robotic arm is 

determined by considering all joints together. In the forward kinematics calculation all 

joints of the robot has to be considered piece by piece to provide the all movement of the 

robot in the calculation [8].  

A coordinate system is placed for each joints in order to find the transformation matrixes 

that is the important to find the relations between the adjacent joints. Because the end 

effector position and the orientation depends on the relations between the joints which are 

mathematically given by the transformation matrix. The matrix between two adjacent 

joints can be shown by matrix 𝑇𝑖
𝑖−1 that describes the transformation from the coordinate 

system “i” to coordinate system “i-1”. For example the transformation matrix for the first, 

second and third joint are respectively T1
0, T2

1 and T3
2. If all adjacent matrixes are 

multiplied with each other the final matrix will denote the forward kinematics which 

expresses the position and the orientation of the end frame in respect to the base frame 

which is shown in equation 2.1 [9]. 

 TN 
0 = T1

0T2
1T3

2…TN
N-1 (2.1) 

The equation 2.1 is the transformation matrix for N joints of the robot. In addition the 

position and the orientation of the end effector can be described by three vectors 𝑜𝑁
0  which 

identify the origin of the end effector frame with respect to the base frame and the rotation 

matrix 𝑅𝑁
0 . Thus the matrix, which includes the rotation and the origin coordinate of the 

end effector, define the homogenous transformation matrix. 

 TN
0  = [RN

0 oN
0

0 1
]  (2.2) 

In equation 2.2, the forward kinematics is defined by using a homogenous transformation 

matrix. 

 RN
0  = R1

0R2
1…RN

N-1 (2.3) 

 oN
0  = oN-1

0 + RN-1
0 oN

N-1 (2.4) 

The equations 2.3 and 2.4 are the formulas to calculate the rotation matrix 𝑅𝑁
0  and the 

coordinate vectors 𝑜𝑁
0 . 
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The forward kinematics can be calculated by using the above principles. First the 

homogenous matrix is calculated for each frame and then the calculated matrix is 

multiplied with each other.   

2.1.2. Inverse kinematics 

In forward kinematics the end effector position and the orientation can be calculated 

according to the joint variables which are known before the calculation. On the other hand 

the inverse kinematics finds the joint variables according to the end effector coordinate 

which is known before the calculation. Most of the time the approach of inverse 

kinematics is more difficult than the approach of forward kinematics, due to the fact that 

there can be more than one or no solution available by calculating with the principle of 

inverse kinematics. 

The solution of the homogeneous transformation matrix, which is given in equation 2.5, 

shows the joints variables for the desired coordinates for the end effector. The joint 

variable “q” represents an angle if the joint type is revolute. if the joint type is prismatic,  

it represents the length of the robot parts [8].  

 TN 
0 = T1

0(𝑞1)T2
1(𝑞2)T3

2(𝑞3)…TN
N-1(𝑞𝑁) (2.5) 

For example the robotic arm, which has N joints, the position and the orientation of the 

fourth joint frame depends on only first fourth joints variables.  

The mathematical notation, which shows the relation between the fourth joint and the 

initial frame, is given by equation 2.6. The end effector coordinates according to the 

fourth joint is expressed by equation 2.7 [10].  

 Tfourth=T1T2T3T4 (2.6) 

 Tk=T4
-1T3

-1T2
-1T1

-1Tfourth (2.7) 

The equation 2.6 and 2.7 can be used in order to find the desired joint variables for the 

end effector. Thus the solution of the inverse kinematics starts with the equation 4. 

 T1
-1Tfourth = T2T3T4 (2.8) 
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By solving equation 2.8, the first joint angle can be calculated and then the other desired 

angles can be found with the use of a similar approach to provide the end effector’s 

coordinates. Unfortunately this method for inverse kinematics sometimes needs a 

complex mathematical calculation. For this reason the other method, which is geometric 

approach, is preferred in the inverse kinematics problem because the solution of inverse 

kinematics needs less mathematical calculation. 
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3. 3D CAMERAS 

In daily life the camera and its technology can be seen in lots of devices such as personal 

computer and mobile phones. The big usage area of the camera get the people and 

researcher excited. The user can easily take an image and record a video by using the 2D 

cameras. Especially in the research area the 3D camera, which can sense the depth of the 

environment beside of the normal RGB image, is a very popular device in order to use it. 

The 3D camera can be used for a lot of applications such as object recognition, 3D 

reconstruction of the environment, object tracking, human detection and gesture 

recognition. Moreover the applications of the 3D camera can be implemented to other 

applications like robotic.  

There are different companies which develop 3D camera technologies and the Microsoft 

Kinect camera is the most preferred one in the 3D camera technology area because it is 

well-priced in comparison to other cameras and it is providing official libraries and 

documents with instructions while developing a software.  

3.1.  Kinect sensor 

Until a few years ago the computers had a limited way to communicate with the 

environment; as well the users did not have many possibilities to give an input to the 

computer without touching any hardware. The most common ways are to use camera or 

a sound equipment system for taking data with a computer. This data could be saved or 

opened in the computer but the computer was not able to understand and to process these 

data to an active application.  For example the distance can be estimated with sound 

 

Figure 3.1: Microsoft Kinect Camera  
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information by using a microphone or the object recognition can be done by using camera. 

However it is quite difficult to analyze a picture exactly because this data is only a 

reflection from a 3D space to a  2D space [11]. 

The solution of this issue has been provided by Microsoft Kinect Camera with the 

recognition of objects and humans in 3D space.  

The Kinect Camera is formed with two cameras, one light source and four microphones 

in itself. It is shown in figure 3.1. The three-depth image is constructed by both, Infrared 

(IR) projector and IR Camera that consist of a Monochrome complementary metal oxide 

semiconductor (CMOS) sensor. This technology is taken the license by Prime Sense 

Company [12]. Beside of the 3D motion capture, the other possibility is the voice 

recognition with the microphones based on properties of waves like reflection and 

refraction.  

The fundamental of the 3D depth sensing system is based on optics principles. The 

infrared light, which comes from the IR project of the Kinect device, is reflected from 

objects in the environment and then the reflected light is detected by IR camera. Thus, 

the distance between the camera and the object can be calculated by using the traveling 

duration of light in the air. 

3.2.  Color stream and Depth Stream  

The Kinect camera provides some features to take images with the two main possibilities 

of color image taking and depth image taking. Many cameras as Kinect camera support 

the fundamental function which is RGB video format. The Kinect camera is able to 

 

(a)                                               (b) 

Figure 3.2: (a) Color Image (b) Depth Image 
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capture the video in RGB format with 640x480 resolution at 30 frames per second (FPS) 

and also 1280x960 resolution at 12 FPS. The image, which is shown in 3.2(a), is captured 

with 640x480 resolution at 30 FPS. Furthermore the captured image or video can be used 

to create skeleton of the human body on the top of the image as shown in Figure 3.2(a).  

Another characteristic of Kinect Camera is to take depth image and depth video which 

include the distance information of the object from frame of the Kinect Camera. The 

example of the depth image is shown in figure 3.2(b). The depth sense of the environment 

is the most important characteristic feature of Kinect Camera. Because the depth 

information of the environment allows the user to make many applications such as 3D 

reconstruction and object tracking. 

There are 3 different available resolution to record a video by using depth feature of 

Kinect Camera. The all available resolutions which are 640x480, 320x240 and 80x60, 

use 30 FPS.  In addition there are two possible range modes in order to compute the depth 

value. By the way the distance between Kinect Camera plane and the location of the object 

is given in millimeters by taking the Kinect Camera as a reference. 

The first one is the standard mode which allow to compute depth value between 800mm 

and 4000mm properly and besides the second one, which is near mode, allows to compute 

the depth value in the range of 400mm and 3000mm. The out of range has to be considered 

to create the applications correctly. For example the depth value is unknown under 

400mm or over 8000mm. The Kinect Camera refers the value too far between 4000mm 

and 8000mm for standard mode and as well the depth value is too far in the range of 

3000mm and 8000mm for near mode. In addition the depth value is too near between 

400mm and 800mm in the range mode [13]. 

The possibilities in the resolution and FPS for both RGB video and depth video and also 

the possibilities of the modes for depth video has to be chosen according to the demands 

in the application. Furthermore the available settings of the Kinect Camera shows the 

range of precision and accuracy. 
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3.3.  Coordinate spaces 

The coordinate frame of the Kinect is important to understand correctly the depth data 

which comes from inside of the Kinect Camera’s vision area. If the Kinect Camera is 

considered as a human eye, the “z” direction is located to forward and back from the 

Kinect’s eye and the “y” direction is located along to up and down from the eye point of 

the Kinect and lastly the “x” direction is located along to right and left from the eye point 

of the Kinect. The xyz coordinates can be seen in figure 3.3 clearly. Thus the correctly 

detected data by using the Kinect can be used in order to analyze this data.  

Especially the Kinect coordinate system have importance while using the skeleton 

tracking because the distance of the skeleton points from Kinect Camera is captured based 

on the coordinate system of the Kinect Camera which is shown in figure 3.3. 

  

 

Figure 3.3: The coordinate frame for Kinect 

x

y
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4. IMPLEMENTATION 

4.1.  ROBOT ARM  

The parts of the robot arm, which are used in the present project, were printed by using 

3D printing technology and it is designed by Carlo Franciscone [14]. The robotic arm is 

an open source and can be downloaded as free software.  

This robot arm is designed by considering the ABB IRB460 model industrial robot arm. 

In addition, the robot arm has 4 degree of freedom. 

4.1.1. Printing all parts  

The robot arm consists of the both 19 robot’s parts for 3D printing and the other 

components such as servo motors, screws and nuts. In order to print the parts of the robot, 

Dimension BST 1200es model 3D printer, which has 254 x 254 x 305 mm volume for 

building, was used. The first thing is to upload the robot’s parts to CatalystEX 4.1 

software of the 3D printer in STL file format. The part list of the robot arm is shown in 

the appendix A and the non-printed parts of the robots arm is shown in Appendix A as 

well.  

Before starting the printing, some parts of the robot has to be changed due to fact that 

some parts are not convenient to print. The main reason of this transformation are the 

printer properties that are based on a breakaway support technology (BST) instead of a 

soluble support technology. 

 

Figure 4.1: The part hole is covered with support material 
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While the parts are under construction in the printer the modeling material which is 

ABSplus™ is melted to create the main material and in the same time the support material 

is used fix the main material in some points such as holes and girders.  

The support material has to be extracted after the printing process such as figure 4.1. The 

extraction of the support material can cause a problem sometimes because the extraction 

of the support material is difficult in some points. The other reason of change the robot 

parts is the layer thickness availability of the 3D printer. The most thin available layer 

thickness is 0.254 mm [15]. This available layer thickness means that the part thickness 

cannot be thinner than 0.254 mm. 

The diameter of a hole in the lower base part of the robot was changed from M3 screw’s 

diameters to M2 screw’s diameters due to the fact that the hole was disallowing the 

spheres way. In addition two holes in the main base part were changed. Before starting to 

print, unless the holes are changed, the extraction of the support material will be really 

difficult after printing. For this reason the holes depth was extended along the parts to 

extract the support material easily after printing. In addition the design program 

Solidworks CAD was used in order to change the robot’s parts and then the changed parts 

were saved as STL file format as a condition for the printing process. 

The software of the 3D printer which is CatalystEX 4.1 provide to simulate the printing 

process before printing the parts. Thus some information such as how many material will 

be used and how many hours the printing process will take can be estimated.  

As well the position of the robot’s components has to be in special order at the board of 

the 3D printer. The biggest part has to be in the right-up corner of the board and the 

smallest part has to be left-down corner of the board according to the beginning position 

 

(a)                                                                      (b) 

Figure 4.2: (a) The parts of robot after printing (b) The parts of robot after extraction 

from support material 
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of the 3D printer’s head in order to decrease the printing process duration.  

In the first printing process 13 parts of the robot were completed in 21 hours and in the 

second printing process 6 parts of the robot were completed in 9 hours. Totally 416 cm3 

model material and 79 cm3 support material was used in the present project. 

The main material is attached to the support material and the printer’s plate when the 

printing process finish. Thus the support material has to be extract from the main parts. 

The support material is highly fragile by using a small screwdriver and pinchers. Shortly 

after the printing, the main material, the support material and the printer’s plate are shown 

in figure 4.2(a). The same parts which are divided from each other are shown in figure 

4.2(b).  

Unfortunately, separating the parts from one to another is difficult and there may be 

problems in pulling out the material. The first problem came up while extracting the leg 

of the main base cover from the support material. The main base cover’s leg didn’t have 

enough thickness to print strongly due to the fact that the printer’s layer thickness is not 

sufficient to print materials in an appropriate thickness. The leg consists of two layer main 

material that means 0.5 mm main material. Thus the leg of the main base cover is fragile 

even if the pushing force to the leg is slight broken leg was glued to the main base cover. 

In addition there was the extraction of the support material problem in both, one of the 

claw finger and the main base. 

4.1.2. Assembly of parts 

After printing all parts of the robot, the non-printed parts which are shown in Appendix-

A, for the robot has to be supplied in order to start the construction of the robot arm. 

Unluckily some of the non-printed parts couldn’t be supplied and they were replaced with 

the other materials which are able to do the same work as the original material. 

Firstly 6.3 mm diameter spheres were used instead of 6 mm spheres in order to provide 

the rotation in the base part of the robot arm. Normally 25 spheres were planned to use 

but more than 25 spheres were used to fill the spheres path. In addition the other part, 

which is 6x17 mm bearing in normal design, was changed with 4x16 mm bearing in this 

project. Because the necessary bearing couldn’t find and this replacement was 

implemented to solve the problem quickly. 
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The replacement in the bearings caused another problem due to the difference in the size 

between the two bearings. In the normal design of the robot, the main base flat part and 

the swivel element part is kept with each other by using the M6 nut and M6 screw. 

However the 4x16 bearing is not compatible with the M6 screw. Thus the M4 screw and 

M4 nut was used to assemble the main base flat part and the swivel element part. The 

problem was to use the M4 nut because the hole in the swivel element part was 

constructed for a M6 nut and when the M4 nut was used, M4 nut could move inside of 

the hole and also it was not possible to interfere to the hole due to the fact that the nut 

place in the swivel part was closed with other part.  

For this reason it was difficult to find the M4 nut when the M4 screw was tried to fix to 

the nut. Eventually the M4 screw and the M4 nut was fixed each other after some trying. 

The other problem which came up was the construction of the horns of the servo motor, 

which are providing the movement in the arm. The arm parts have a smaller space to fix 

than the horns of the servo motors. For this reason the servo motor’s horns were made 

suitable for the parts of the arm of the robot by cutting and rubbing them with emery 

according to the size of the hole in the parts.  

After preparing all parts of the robot the assembling of the parts started as following the 

steps are showing: 

 First of all one servo motor has to be attached to the main base. Then the plate of 

the main base is attached to its place with 30 spheres on the path of the plate. In 

 

Figure 4.3: Assembling of the base 
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addition the drive plate of the servo motor and the gear are put together to the 

servo motors head. The assembled base is shown in figure 4.3. 

 The base part and the gear part are fixed to each other by using two M3 screws 

and nuts in order to attach this part to the main base. Thus the base part of the 

robotic arm is completed. 

 The main arm and the vertical arm part are put to their place in the base part and 

these three parts are attached to each other by using a 33 mm long M4 rod. Then 

the second servo motor is attached to the sides of the base part as shown in figure 

4.4(a). Thus the rotation in the main base part is provided basically. 

 The 135 mm link part is attached to the vertical arm part according to the end and 

the beginning point of the 135 mm link part. The other 13mm link with angle is 

attached to its place in the base part.  

 The unattached side of the 135 mm link and the 135mm link with angle are 

attached to the horizontal arm part and the triangle link part respectively by using 

a M3 screw. In the same time the horizontal arm, the triangle link and the main 

arm are attached to each other by using a M4 rod.  

 The 147 mm link part is attached to the triangle’s hole which is available after 

attaching the other parts. Then the triangle part for the front of the robotic arm is 

attached to the end of the 147 mm link part and the horizontal arm part by using a 

M3 screw. 

   

(a)                                                   (b) 

Figure 4.4: (a) robot’s base with main arm (b) the parts of the robot’s 

gripper 
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 Lastly the MG90s servo and the gripper part, which is shown in figure 4.4(b), are 

attached to each other and the created gripper is attached to the frontal triangle 

part of the robotic arm. 

After following all steps for creating the robotic arm, the robotic arm, which is shown in 

figure 4.5, is completed and it is ready in order to use it in this project. 

4.1.3. Servo motors for the robot 

Servo motors, which are electronic devices to provide the motion, can be used in many 

areas such as robots, small cars and home electronics in order to adjust the object position 

with high precision [16]. For example in the daily life the servos are used in DVD players, 

radio devices, computer fans and coffee machines.  

Servo motors are particularly popular in research projects, because of their favorable price 

and they are easy to obtain via the internet. In this project the servo motors Tower Pro 

MG995 and MG90s were used in order to control the movement in the joints of the robotic 

arm. The functional principle of servomotors can be learned with a view to the internal 

structure of the servos. Generally the internal structure of the servo motor is formed with 

the help of a motor, potentiometer, control circuit and gears. One servo motor external 

view and detailed internal structure can be seen Figure 4.6(a) and 4.6(b) respectively.  

 

Figure 4.5: Completed Robotic Arm 
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Servo motors are controlled by sending an electrical pulse with a modulation (PWM) 

signal from the control wire which is frequently the yellow one. Servo motors can be 

brought into the desired position by changing the pulse duration in the signal. 

In this project the Arduino microcontroller is used and programed to give this signal to 

the servo motors. In addition the servo motor is able to turn 180° from the initial point to 

the end of the servo motor.  

 In the present project, three MG995 servomotors are used to ensure robot-based rotation 

and robotic arm joints. Further, a servomotor MG90 is used to control the movement of 

the gripper of the robot. 

4.1.4. Control Circuit 

In order to control the robotic arm and to provide the communication between the robot 

and the computer, Arduino Uno microcontroller was used.  

Before the entire system was started, a single servo motor test was performed to simplify 

the control at the beginning without adding any additional hardware. This was done in 

order to recognize all possible errors in the system immediately. During the test run no 

errors occurred, so that the commissioning of the whole system could be started. 

The second step for creating the system was to add the second servo motor in order to 

check the working conditions of two servo motors running at the same time.  When the 

second servo motor was connected to the Arduino microcontroller, the servomotors and 

the Arduino began to behave strangely. The reason for this misbehavior was that the 

 

(a)                                               (b) 

Figure 4.6: (a) a servo motor (b) servo motor internal 

structure in detail[16]  
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Arduino microcontroller received the necessary working voltage via a USB cable from 

the Computer and the servo motors via the Arduino 5v pin. 

The servo motors can behave extraordinary when the Arduino is plugged to the computer, 

because the servo motors draw high current when the servo motors started initially.  

This high power request can cause the dropping of the voltage on the Arduino board and 

so the Arduino resets itself [17].  In the present project, this problem has been solved by 

adding a high value capacitor between the ground and the 5 V pin of the Arduino. Also, 

an 820 Ohm resistor was placed in parallel with the capacitor to discharge the capacitor 

after the loading 

While using servo motors more than two, the Arduino is not able to give the necessary 

voltage to the all servo motors, because the Arduino has only 5 volts in spite of the fact 

that generally servo motor’s operating voltage is between 4.8 volts and 6 volts. Thus 

external power supply was used to provide the necessary voltage for four servo motors.  

Another important point is to connect the Arduino ground and the external power supply 

ground in the common ground, using an external power supply. 

The control circuit in this project, shown in Figure 4.7, consists of a breadboard, four 

servomotors, a capacitor, a resistor, an Arduino microcontroller and some connecting 

cables to unite the components together.  

 

Figure 4.7: Control circuit for the robotic arm 
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The external power supply, which is not shown in figure 4.7, should be such that the 

ground of the external power supply matches the ground of the Arduino. The voltage line 

of the external power supply may be connected to only three power cables of the 

servomotors presented by the red cables. Only the gripper servo motors were powered 

with an Arduino 5V-pin. The system requirement is respected for each connection. Thus 

the control circuitry of the system is ready to write the code to the Arduino and to use the 

servomotors for our needs. 

4.2.  SOFTWARE  

In this project, Microsoft Visual Studio 2015 is used in C# computer language to develop 

the software, which is for controlling the robotic arm. Besides of Microsoft Visual Studio, 

Arduino software, based on C/C++ programming language, is used in order to program 

Arduino microcontroller. 

4.2.1. Arduino (Robot software) 

Arduino is a microcontroller that controls analog and digital systems. Nowadays, this is 

often used because it is inexpensive and it is an open source. 

The programming of Arduino is also quite simple, if the user can use one of the 

programming languages C or C ++. In addition, there are several Arduino boards available 

for specific applications. In this project, Arduino Uno, the most widely used with many 

documentaries and sources, has been chosen as controller for these reasons [18]. 

To install the Arduino, first the requirements tools, an Arduino Uno card and an A-to-B 

connector USB cable must be available. Then the integrated Arduino development 

environment (IDE) can be downloaded from the official Arduino website. When 

downloading, the IDE is carefully selected based on the operating system of the computer. 

In this project the version 1.6.4 Arduino IDE for Windows OS is used. After the Arduino 

IDE has been installed, the Arduino hardware must be connected to the computer with a 

USB cable, and the port name of the Arduino hardware can be checked via the Device 

Manager, right-clicking on the computer icon. 

The Arduino Microcontroller should be displayed in the "Ports (COM & LPT)" list, as all 

the devices currently plugged in are visible for the user. As soon as the name appears in 
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the device list, the same name must be recognizable and selected under the Arduino IDE 

tool part. In addition it is important to select the correct name in the port, the board name 

of Arduino must also be selected correctly to identify the Arduino board in the computer. 

All these installations and identification steps make it possible to write and execute the 

code to use the Arduino applications. 

Figure 4.8 shows the Arduino Uno pin structure with a USB port. Furthermore, the DC 

(DC) jacks, the 14x digital IN / OUT pins and the 6x analog IN pins are visible. 

Although the Arduino is ready for programming, a startup cable, a USB cable, a resistor 

and some capacitors are required to create a whole working application. The reason for 

the additional components is that Arduino is a board, which cooperates with software and 

hardware. 

Arduino is used in order to control especially the servo motors and to communicate with 

the computer in the control system of the present project. Therefore, it can be considered 

as a bridge to transfer the data from the computer to the servo motors of the robotic arm.  

The communication between the servomotors and the computer is carried out by means 

of the Arduino microcontroller by means of a serial communication method. For this 

reason, only one servomotor was initially controlled with the serial monitor, which is 

responsible for writing inputs or reading the output. As shown in Figure 4.9, this is 

 

Figure 4.8: Arduino Uno pin structure 
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available in the additional Arduino IDE monitor. 

The angles which are in the limited range of 0 to 180 degrees can be written as input due 

to the operating range of the servomotor. To write the inputs, the values that come from 

the connected tools to the Arduino are also visible. At this point, the Arduino can read 

data from the external environment. For the present project, this point can be regarded as 

significant since the aim of the project is to use the Arduino as the communication channel 

between the computer and the servomotors of the robot. 

To open the additional serial monitor, the serial monitor must be clicked from the top bar 

of the Arduino IDE, shown in Figure 4.10 marked with number 6. In addition, Figure 4.10 

shows the first button for compiling the Arduino code and check the code. The second 

button is used to upload the code to the Arduino hardware. The third button opens a new 

page for writing a new code. The fourth key is used to open an existing code from the 

computer, and the fifth key is used to store the code that is currently open in the work 

area. 

The baud rate, which is the change in the number of symbols per second, must be selected 

 

Figure 4.9: Arduino IDE and Serial monitor interface 

 

Figure 4.10: Top bar of the Arduino IDE 

1 2 3 4 5 6
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from both sides of the Arduino and the computer to establish the correct connection. The 

available baud rate values are 2400, 4800, 9600, 19200. In this project a baud rate of 

19200 was used. In the Arduino code, the serial connection must be started as the serial 

connection code with the selected baud rate is written into the Arduino IDE. 

After the connection between the computer and Arduino has been made, the path must be 

found to obtain the angles for the joints of the robot, and then the recorded angles must 

be sent to the servomotors to provide the desired movement in the robot. The Arduino 

code written in Appendix B can receive both the angles from the computer and send the 

angles to the servomotors. 

In the following, the Arduino code is explained in detail in order to understand the logic 

behind the program. The code can be divided into three parts and is explained step by 

step. 

The first part of the program contains the necessary libraries, the variables and the 

identification of the variable type, such as string, integer. Servomotors can also be 

specified with servo command. 

The second part of the program contains the "Setup" function, which is delivered with 

Arduino by default. The code written inside the "Setup" function is executed only once. 

This happens when the Arduino board starts to work. 

The third part of the program contains the standard function of the Arduino, which is 

called the "loop" function. It is a cycle that can be understood from its name of the 

function. The "loop" function allows the repeated execution of the code in the "loop" 

function. After general information about the program parts, the code lines can be 

explained, quasi, what the code assignment is exactly. 

At the beginning of the Arduino code shown in Appendix B begins with library codes 

required to write certain codes. In contrast to other programming tools, Arduino IDE 

generally helps the user to write simple codes, such as reading data entered from the 

computer screen or printing data on the computer screen without adding a library head to 

the Arduino codes. 

In order to control the servo motors, only the library associated with the servo motor is 

added in this way. The "Servo" library is also included in Arduino IDE packages. In 
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addition to the "Servo" library, the “ServoEaser” library is added because of the servo 

control. The reason for this is that the servo movement is so fast that the robot arm cannot 

be controlled improperly without the servo motors being relieved. The open source library 

"ServoEaser" is an additional library. The "ServoEaser" library is downloaded [19]. 

Therefore, this library must be added to the Arduino IDE to define the library. To add the 

library, you must copy and paste the downloaded “ServoEaser” folder into the Arduino 

library folder, where ~ \ Documents \ Arduino \ libraries are the default location on 

Windows. After you have added all necessary libraries, you must define the variables at 

the beginning of the Arduino code. The most important variables are angles, which are 

defined as string and servo motors, which are defined as servo. 

The second part of the program, which includes the "Setup" function, starts with the code 

of the serial port, which starts the serial connection between the Arduino and the computer 

with a baud rate of 19200. The "Setup" function executes the code only once as described 

above. The pin numbers of the servomotors connected to the Arduino hardware must be 

defined in this section with the "attach" code. In this way, the Arduino will be able to 

understand which servo motor is connected where. The servo motor initial value is 

defined in the "Setup" function. In addition, the servo bucket function for each servo 

motor is activated in this section. 

After explaining the "setup" function part, the most important part of the "loop" function 

is the function "loop" contains the codes that perform the actual tasks of the program. The 

"loop" function begins with the codes that update the servo bucket function in each cycle. 

Then there is the statement “if ...” with which the condition can be controlled. When the 

serial connection is available, the program reads the data coming from the computer over 

a serial connection in the present state and stores the recorded data as characters. 

Inside of the “if serial connection is available” statement, there is another “if…else…” 

statement. The second “if” condition is used to divide the data which includes the angles 

due to the fact that the angles comes all together in one string. The “if” condition finds 

the star “*” figure in the beginning of the string and then the string is divided by using 

the slash “/” figure to find the angles. For example the string format is like this 

“*angle1/angle2/angle3/angle4”. Thus the angles are ready to write on the servomotors. 

In order to write the servo motor’s angles there is additional function in the end of the 
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Arduino Code. Actually the code for writing angles to the servo motors includes the 

easing codes which provide the movement of the robot smoothly. 

Lastly inside of the “loop” function there is another code that allow to map the calculated 

angles to desired angles for servo motor. Because the limit of the human joint’s angle is 

different than the limit of the robotic arms joint’s angles. For this reason the range of the 

calculated human joint’s angles has to be mapped to the range of the robotic arm joint’s 

angles. For example the elbow of the human joint’s angle is calculated in the range of 50 

and 170. However the same possible angle for robotic arm is in the range of 20 and 154. 

In this example the range is transformed from 50-170 to 20-154. 

In the present project the robotic arm is controlled with two method that are dot product 

of the vectors and inverse kinematics of the robotic arm. The Arduino code is almost same 

for these two different method. The only changing part in the code is the range of the 

angles for mapping. 

4.2.2. Microsoft Visual Studio (Kinect software) 

The program Microsoft Visual Studio was used to write the code in the C # programming 

language and also to control the user interface. The user interface not only serves to 

visually follow the process but also contains the algorithms and libraries in the 

background of the program. This allows the robot arm to be controlled and the Kinect 

camera functions can be used. 

4.2.2.1. Configuration for Kinect camera 

First, some adjustments has to be made to use the Kinect camera in our applications. The 

Kinect has to be on a stable surface without any vibration or noise. After allocating the 

position of the camera, the hardware and the libraries will be downloaded. The libraries 

can be downloaded in the Microsoft Official Library and as well as an open source library. 

In the present project the Microsoft Kinect SDK 1.8 is used for the setting of the 

application. Furthermore, the operating system Windows 10 is used during the whole 

project. 

Microsoft Kinect SDK version 1.8 is downloaded from the official Microsoft Web site. 

Before starting the installation, make sure that the Kinect camera is not connected to one 

of the USB ports on the computer. After the installation of Kinect SDK v1.8 has been 
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successfully completed, the Kinect sensor can be connected to a USB port of the computer 

and to an external power source. Now the Kinect should work properly. In addition, the 

status of Kinect can be checked by checking the device list in Device Manager. 

After installing and connecting the device, the program "Kinect for Windows Developer 

Toolkit v1.8" is downloaded and installed. This includes sample source code, tools, and 

other resources for the user. 

The applications in this work are developed with Microsoft Visual Studio 2015. 

Therefore, the installed Kinect libraries must add Visual Studio references to use these 

libraries in the source code. First of all, a new Windows Presentation Foundation (WPF) 

application is created, as it is more suitable for 2D and 3D visual applications. 

After creating WPF, the xaml, which is more used for the design of the visual diagram of 

the program, appears. In addition, the libraries can be added to the references written at 

the under of the Solution Explorer menu. 

To add libraries to references, just click on the right mouse button while the "References" 

and "Add References" button is selected. The reference list is then displayed, and 

Microsoft.Kinect.dll must be selected to add it to the library. Now the Kinect libraries are 

available, but it is still not possible to write a code. In addition, these libraries must be 

written at the beginning of the code, which contains all necessary libraries 

4.2.2.2. Skeleton tracking 

The Microsoft Kinect camera provides the ability to capture the depth information of the 

environment. However, the depth data do not automatically contain the joint coordinates 

of the human body. In order to take over the joint coordinates of the human body, the 

Kinect camera's skeleton tracking function must be activated by using the Microsoft 

Kinect SDK.  

The Kinect Camera with SDK v1.8 is able to detect six people and is as well able to track 

one or two people in the same time. In other words there are two possible functions which 

can be described as “tracking” and “taking the position only” to take information about 

the user. The tracked user data contains the skeleton of the user which represent 20 joints 

of the human body such as head, hand and foot that are shown in figure 4.11 [20]. The 

joints of the user are represented in a 3D coordinate space of the Kinect Camera. In 
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skeletal tracking, the joints are expressed in meters, instead of millimeters, which are 

indicating the depth. 

The Kinect Camera is taken as a reference point (0, 0, 0) and in this way one of the twenty 

joints is shown point (x, y, z). According to the Kinect Camera, “z” value increase. In 

addition, the user must be in the area of the Kinect vision so that the joint data can be 

clearly recorded. The user can be in a standing or sitting position to be recognized by 

Kinect Camera. In the sitting position, however, only the upper body with 10 joints, the 

upper limbs and the head is recorded. The user must move easily to be recognized by 

Kinect Camera. 

After the all adjustments which are expressed in the configurations for the Kinect camera, 

some code has to be written to the code block in the WPF application in order to use the 

skeleton tracking feature of the Kinect Camera. It should be noted that the WPF 

application has two code blocks. One code block is used to develop the interface of the 

program and another code block, which includes the most important part of the program, 

is used to utilize the Kinect Camera feature, to calculate the joint angles of the user and 

to provide the serial connection between the computer and the Arduino. In addition the 

programming language of one code block is C# and the other one is XAML. 

 

Figure 4.11: Twenty joints of user body 
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In the beginning of the code, which is shown in Appendix C, the variables are defined for 

the skeleton tracking. Then the Kinect Camera’s features such as skeleton tracking are 

tried to activate in the program [21]. The condition of the activation of the Kinect Camera 

depends on the configuration of the Kinect Camera. If the Kinect camera is ready to take 

an image, the skeleton stream can be enable. In the same time the depth image and color 

image can enable in order to show in the interface of the program. After the color image, 

the depth image and the skeleton stream enables.  The program is able to detect the user 

which is in the field of Kinect Camera’s vision. Thus, the user's joint points are recognized 

to produce the skeleton in the interface program.  

To describe the skeleton drawing in detail, first the lines are generated from one detected 

joint point to another recognized joint point, with respect to the natural skeletal figure of 

the human body and using the "CreatFigure" code. Then, the created lines are added to 

the "grid" on the XAML side to display them in the program window. The XAML code 

of the program is given in Appendix D. 

 The created skeleton is shown in Figure 4.12 (a) for the standing user and in Figure 4.12 

(b) for the sitting user. By default, skeleton tracking is enabled for the standing user in 

the current project. 

A "checkbox" is added to the program's interface to allow skeleton tracking for the seat 

position. When "Checkbox" is selected, skeletracking is active for the seated position. 

The skeletal tracking of the standing position makes it possible to draw the whole skeleton 

of the user, which is limited by 20 joints. However, the sitting position allows only the 

upper extremities and the head, which is limited by 10 joints. 

 

(a)                                                         (b) 

Figure 4.12: (a) Skeleton tracking of the standing user (b) Skeleton 

tracking of the seated user 
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4.2.2.3. Hand Pointer 

The skeleton tracking, which is provided by using Microsoft SDK, allows to find the hand 

coordinates of the user but it doesn’t allow to detect the hand movement such as an open 

or closed position of the hand. Detecting an open or closed position of the hand it is 

necessary to control the robotic arm’s gripper. For this reason the example, which is 

published by Microsoft, is used to provide the recognition of the hand movement [22]. 

In order to use the hand detection, first the library “Microsoft.Kinect.Toolkit” is added in 

the beginning to the program which is given in Appendix C. In addition the file 

“KinectInteraction180_64.dll” is downloaded and added to the folder which includes the 

source files of the program. After the configuration of the libraries, the grip and release 

of the “hand pointer” function is added to the “KinectRegion” which is a XAML code 

part. The button, which is put completely transparent in the interface of the program, is 

used to detect the movement of the user hand’s movement. When the hand of the user is 

closed, the button is clicked. Two functions which are “button_click” and 

“button_notclick” are implemented to the program. When the hand is closed, the function 

“button_click” is active. Then it sets the gripper’s angle of the robotic arm to 10 degrees. 

Otherwise the gripper of the robotic arm servo motors sets 80 degrees. In conclusion this 

method is used in order to detect the movement of the hand and it is implemented to the 

both inverse kinematics program and dot product program.  

4.2.2.4. Calculation of the joint angles 

The calculated joints, which are showing the joints of the human body in the range of the 

camera, are used to calculate the angle that are shown in figure 4.13. Point A is the joint 

of the right wrist, point B is the joint of the right elbow and point C is the joint of the right 

 

Figure 4.13: Angle between the vectors 
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shoulder.  

These joints are taken with the help of the skeleton tracking and then they are shown in 

the program’s display screen in real time. In the present case, actually two vectors can be 

created and then the angle can be calculated easily by using the dot product of two vectors. 

Dot product is given with equation 4.1. 

 BA⃗⃗⃗⃗  ⃗∙BC ⃗⃗⃗⃗⃗⃗ = |BA⃗⃗⃗⃗  ⃗|∙|BC⃗⃗⃗⃗  ⃗|∙ cos α (4.1) 

In three dimensional space, BA⃗⃗⃗⃗⃗⃗  and BC⃗⃗ ⃗⃗  ⃗ vectors are calculated by using A, B and C points, 

which are taken from the skeleton tracking and then the vectors length is calculated. Now 

we have all information to take the angle from the equation. All these mathematical 

calculations are executed in the background of the program in real time.  

First the vectors are created as vector 1, 2, 3, 4. Vector 1 is from right the wrist to the 

right elbow, vector 2 is from the right elbow to the right shoulder and vector 3 is from the 

right shoulder to the shoulder center and vector 4 is from the right shoulder to the right 

hip. By using these four vectors, the angles, which are the right elbow angle, the right 

armpit and the right shoulder are calculated by using the function called “Angle”. The 

angle function, which is given in Appendix C, is developed in this project to calculate the 

angle from two vectors.  

 

Figure 4.14: The interface of the program for dot product method 
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The calculated joint angles are shown in the interface of the program which is created by 

using XAML code which is given in Appendix D. The interface program is created to 

give the possibility to the user to follow the angles and to control the serial connection 

between the computer and the Arduino. The created program is shown in figure 4.14.  

The interface program includes a big RGB image, which can change optionally to depth 

image taking (in left side of the program’s interface).  

Below the image, there are three “labels” to show the coordinates of the right wrist, the 

right elbow and the right shoulder of the user. In the right corner of the program there are 

two “buttons” to connect or disconnect the serial connections and as well the sending and 

receiving angles are tractable from the label that is located close to the connection buttons. 

The four labels are showing the calculated angles of the joints and the position of the hand 

that is closed or open. 

4.2.2.5. Calculation of the robot’s kinematics 

In this method, only hand coordinates were used, which were recorded using skeleton 

tracking to calculate the inverse kinematics. Using only one hand coordinate causes a high 

work of the calculations in the background of the program. The program, which was 

developed in the present project is able to both calculate the joints angles of the robot 

according to the user’s right hand coordinate and send the calculated angles to the robot 

by using the Arduino microcontroller in real time.  

While making the inverse kinematics calculation of the robot the geometric approach was 

used to find the angles in the robot’s joints. When the calculated angles were used to move 

the robotic arm the gripper of the robotic arm would move the desired coordinate. Thus 

the gripper of the robotic hand would track the user’s right hand in its workspace area. 

The robot’s workspace area acts like a mirror of the user’s right hand workspace area. 

However the difference between the robot’s workspace limit and the user’s hand 

workspace limit has to be considered. 
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In order to start the calculation of the inverse kinematics based on the geometric approach, 

the geometric notation of the robotic arm has to be created. The geometric notation of the 

robotic arm, shown in figure 4.15, includes the joint angles and the point P(x, y, z), which 

shows the gripper coordinates. Thus the inverse kinematic equations of the robotic arm 

can be created by using the geometric notation. In addition while creating the equations, 

a Polar coordinate system is used and then the coordinate system is switched to the 

Cartesian coordinate system.  

 x = Rcosθ1 (4.2) 

 y = Rsinθ1 (4.3) 

 z = A2sinθ2+A3sinθ3  (4.4) 

 R = A2cosθ2+A3cos(θ2+θ3)  (4.5) 

The inverse kinematics equations based on geometric approach are created by using a 

geometric notation of the robotic arm in order to find the angles which are ϴ1, ϴ2 and ϴ3. 

The known variables are point P(x, y, z) and the lengths of the robot parts to calculate the 

angles. The Equation 4.2, 4.3, 4.4 and 4.5 are used to leave alone the joint angles of the 

robotic arm. In addition the equations have to be transformed from polar coordinate to 

Cartesian coordinate.  

While making these calculations, the aim is to find the angles type of the variables x, y 

 

Figure 4.15: Geometric notation of the robotic arm 

z

y

x

P
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and z. Thus in order to find ϴ1, the equations 4.2 and 4.3 are used to leave alone the ϴ1.  

The equation for ϴ1 is shown in equation 4.6. 

 θ1 = tan-1
y

x
 (4.6) 

In figure 4.16, the geometric notation of the robotic arm is shown in detail to create more 

trigonometric equations for decreasing the unknown variables. Especially the figure 4.16 

is important to find ϴ3.   

 c2 = R2+z2 (4.7) 

 c2 = A2
2
+A3

2
-2A2A3cosα (4.8) 

The equations 4.7 and 4.8 are created by using the geometric notation of the robotic arm. 

The cosine theorem is used to find the equation 4.8 and then α is left alone due to the fact 

that ϴ3 and α complete the 180 degree that is explained in equation 4.9. After finding the 

cosα from equation 4.8, the solution of α can be located to the equation 4.9 and so ϴ3, 

which is shown in equation 4.10, is gotten.  

 θ3 = 180-α (4.9) 

 

Figure 4.16: Geometric notation of 

robotic arm in z-r coordinates 
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θ3 = 180- cos-1 (

A2
2
+A3

2
-(x2+y2+z2)

2A2A3

) (4.10) 

In this way, ϴ1 and ϴ3 are found by using the geometric principles. The ϴ2, which is the 

only missing angle, can be found by using the same principles that have been used already 

for ϴ1 and ϴ3.  

 
z = A2 sin θ2 -A3 (

A2
2
+A3

2
-(x2+y2+z2)

2A2A3

) (4.11) 

 θ2 =  sin
-1

[
 
 
 
 z+A3 (

A2
2
+A3

2
-(x2+y2+z2)

2A2A3
)

A2

]
 
 
 
 

 (4.12) 

The calculated ϴ3 is put in the equation 4.4 to find ϴ2 as can be seen in the equation 4.11 

and then the ϴ2, which is shown in equation 4.12, is left alone. Thus, all angles for the 

robotic arm are provided to implement them in the software.  

The interface of the program developed for the inverse kinematics method is very similar 

to the interface program for the dot product method. As well, the background of the 

program, which includes the code that provides the skeleton tracking, has the same 

appearance. Only the function, which includes the inverse kinematics solutions, is 

different than the program of the dot product method. 

Three functions, which are inverse kinematics 1, 2 and 3, are created in the program in 

order to calculate ϴ1, ϴ2 and ϴ3. The inverse kinematics functions are given in Appendix 

C. After the calculation of the angles, the angles are converted to “string” and then all of 

them are put in a label. In addition for the position “open hand” it is defined with 80 

degrees and for the position “closed hand” it is defined with 10 degrees. As well the 

defined hand position is put close to the other angle values in one label. In the end the 

created label will be “teta3 + "/" + teta1 + "/" + teta2 + "/" + handStatus + "*"”. In the 

chapter of the Arduino software it will be explained more in detail why the label should 

be like this. Thus the main objective of the inverse kinematics is provided. 



35 

 

In addition while sending the label to the Arduino, a “DispatcherTimer” which is the 

default timer function in the Visual Studio, is added. The function of the timer is to send 

the label in a controlled manner. The timer is set in a rhythm of 2 seconds. Then the serial 

port’s sending function is implemented to the timer function. In this way the angles will 

be send in every 2 seconds to the Arduino. 

After the inverse kinematics functions other desired functions are implemented to the 

program. The interface of the program, which is shown in figure 4.17, is showing this. In 

the right side of the interface program, the right hand’s x, y and z coordinates are 

expressed according to the frame of the Kinect Camera. The calculated angles from the 

right hand’s coordinates can be seen under of the RGB image. The other features in the 

interface program are the same as explained in the interface program of the dot product 

method.  

  

 

Figure 4.17: The interface of the program for inverse kinematics method 



36 

 

5. EXPERIMENTAL RESULT 

The experimental part expresses the performance of the systems which is made in the 

present project. While doing the experiment to analyze the system and to take data, the 

whole system has to be considered with all pieces. Namely these pieces are the Arduino 

microcontroller, the programs for the systems and the robotic arm since all parts have an 

interaction with each other and influence each other. 

The target of the first experiment is to detect the performance of the program which is 

written in order to find the joint angels of the human body by using the dot product 

method. The experiment is done by using three different arm positions which have 

presented by three different elbow angles. The user arm is fixed to a stick to decrease the 

error which is caused by the user. The user’s elbow is taking a position of 90°, 180° and 

a position where the arm is flexed as far as possible and is pulled up to the upper arm. 

The user’s elbow positions are shown in figure 5.1. 

The user remains in front of the camera and aligns his arm clearly in the direction of the 

Kinect camera. The program calculates the angles using the dot product method. The arm 

of the user is moving in the area of the Kinect Camera’s vision for each specified elbow 

angle in order to record the angles from different region of the Kinect Camera’s vision. 

The angles are recorded to the text file in the computer by using the same program which 

calculates the angles. 900 values are saved for each elbow position. The graph of the 

   

(a)                                       (b)                                       (c) 

Figure 5.1: (a) the user arm is in 90 degree position (b) The user arm is 180 

degree position (c) The user arm is flexed as much as possible 
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elbows angles are shown in figure 5.2. 

In some points the failures can be seen in the graph due to the fact that the arm stays in 

front of the user or behind the user. Thus the taken angle values are different than the 

expected angles values which are 90° and 180° at some points in the graph.  

 

Figure 5.2: Graph of the elbow angles 

The mean value, the standard deviation and the median of the taken angle values, which 

are shown in table 1, are calculated in order to analyze the data set more in detail. 

Basically the mean value can be explained as an average value of the data set and the 

formula of the mean value is shown in equation 5.1. The median is the middle value when 

the data set is made ascending sort. The standard deviation, which is shown in equation 

5.2, measures the variance for the data set [23]. The standard deviation is an important 

element for the consistency of the system. For this reason the standard deviation is an 

expected small value in the present project.   

 x̅ = 
∑ x

n
 (5.1) 

 σ = 
∑ (x-x2)

n-1
 (5.2) 

“x̅” represents the median value in  equation 1 and “x” represents each angle value in 

equation 5.1 and 5.2. “σ” represents the standard deviation value in equation 5.2 and “n” 

shows the total number of the angle values in equation 5.1 and 5.2.   
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The angle for the position where the elbow is closed is found 58°±11. Thus the closed 

elbow can be from 47 to 69. The reason of the inconsistency is that the user’s closed 

elbow occupies a small area in the vision of the Kinect camera and makes the program 

unable to make a correct skeleton detection. 

The expected angle values are calculated with the values of 103°±7 and 174°±4 instead 

of 90° and 180° respectively. This inconsistency is due to the same reason as it was for 

the closed elbow, namely that the elbow occupies a small area in the Kinect camera vision 

and the program is not able to perform a correct skeleton recognition. 

However the standard deviation of the elbow position of 180° is not as big as the standard 

deviation which occurs for the position of the closed elbow. This result shows that a better 

skeleton detection is obtained by using the skeleton tracking program, if the user’s arm is 

shown more clearly in the vision of the Kinect Camera. In addition the error between the 

expected angle values and the taken angle values is 6° for a 90° elbow position and 4° for 

a 180° elbow position. This error is not so small but it is acceptable and it can be 

considered chronic error. 

The dot product method, which is used to calculate directly the joint angles by using the 

right arm’s joint coordinates, is tested with the calculation of the mean, the standard 

deviation and the median values. Unfortunately, the inverse kinematics method cannot be 

tested by using the same test for the dot product because in the inverse kinematics method 

the angles are not calculated in the same way like in the dot product method. For this 

reason, the inverse kinematics method is tested with creating an experimental 

environment, which is shown in figure 5.3, to verify the repeatability and accuracy of the 

Table 5.1: Mean, Standard Deviation and Median for three different 

Elbow Angles 

 Mean Standard Dev. Median 

Elbow(Closed): 57,87 10,99 56,32 

Elbow(90): 103,39 6,95 102,57 

Elbow(180): 174,41 3,78 175,44 
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remote control system.  

The user is standing in front of the Kinect Camera in a particular distance. The A, B and 

C distance is 162 cm, 15 cm and 31 cm respectively in figure 5.3.  While the program is 

working, the user moves the right hand between the papers which are shown with the 

distance of C. The camera is detecting the movement the user’s right hand. In the same 

time the inverse kinematics method program is calculating angles and sending these 

angles to the servo motors by using the Arduino. Finally the robotic arm moves in the 

field of distance B according to user movement.  

While making this experiment, a pen is attached to the gripper of the robotic arm. The 

pen is drawing a point to the paper, which is located in the field of B, when the user put 

his right hand to the paper, which is located in the field of C. 

 

Figure 5.3: Experimental Setup for inverse Kinematics method 

 

Figure 5.4: Accuracy and repeatability of the robotic arm 
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The experiment is repeated eleven times. The taken points, which are shown in figure 5.4, 

represents the accuracy and the repeatability of the robotic arm. The expected point is 

shown with cross sign in the figure 5.4. The results express the acceptable accuracy and 

the repeatability because the robotic arm’s movement has 1 degree accuracy due to its 

design. In the background of the program is a 5 degree waiting time to decrease the robot’s 

vibration.  
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6. CONCLUSION 

The remote control system was developed successfully in the present project by using 

two different methods which are the dot product method and the inverse kinematics 

method. The main object was to develop the program in order to provide the motion 

control of the robotic arm remotely.  

First of all the Kinect Cameras features were trained to start to take information about the 

user’s joints. Then by using the feature of skeleton tracking of the Kinect Camera the joint 

coordinates of the user were provided in real time. After receiving successfully the data 

from the Kinect camera, the robotic arm’s parts were built in a 3D printer. The robotic 

arm was built by using the printed parts and also the non-printed parts such as the servo 

motors and the screws.  

In this way the data which was taken with the Kinect camera has to be sent to the robotic 

arm in order to control the robotic arm’s movement by the user’s movement. Thus the 

Arduino microcontroller was used to provide the connection between the computer and 

the robotic arm. 

The dot product method and the inverse kinematics method were used to calculate the 

angles in order to move the robotic arm according to the user’s movement. These methods 

were implemented to the program which was developed in Visual studio. In the same time 

the Arduino software was developed to send the calculated angles from the computer to 

the servo motors of the robotic arm.  

The control system was created by the following the steps. Then some experiment were 

applied to the created control system in order to verify how successful the control system 

works. The results of the experiment showed that the inverse kinematics method is better 

than dot product method in order to control the robotic arm remotely because the accuracy 

of the inverse kinematics method was showing better results. As well the program of the 

inverse kinematics method is user-friendly because the user is using the only the right 

hand instead of the right arm’s joints.  

In the end of the present project the developed system came to the same level of the 

literature in this field. The implementation of the inverse kinematics to the remote control 

system and dot product method was applied in the same project. Thus the present project 
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gave the possibility to compare the two different methods with each other. 

In addition the present project was developed with well-priced unites and the control 

system can be implemented to an industrial robot system easily.  

For future work, the robotic arm can be changed by an industrial robot to provide more 

accuracy in the movement of the robotic arm. Especially the second version of the Kinect 

Camera can be used because it provides almost 10 percent more camera vision which 

means a brighter view in detecting. It is able to track as well 26 joints instead of 20 joints. 

The second version of the Kinect Camera can detect the hand movement such in an open 

and closed hand position. In addition it can be used in order to improve the detection of 

the joint points of the user. 
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APPENDICES 

APPENDIX A 

Printed parts of the robot 

 

1. Part1_base 

2. Part2_MainArm 

3. Part3_Varm 

4. Part4_link135 

5. Part5_link135Angle 

6. Part6_horarm 

7. Part7_trialink 

8. Part8_link147 

9. Part9_trialinkfront 

10. Part10_gearservo 

11. Part11_gearmast 

12. Part12_mainbase 

13. Part13_lowerbase 

14. Part14_clawbase 

15. Part15_clawfinger_dx 

16. Part16_clawgeardrive 

17. Part17_clawfinger_sx 

18. Part18_clawgeardriven 

19. Part19_drivecover 

Non-printed parts of the robot 

 

1. Three MG995 servo motors 

2. One MG90s servo motor 

3. 30 spheres at 6.3 mm diameter 

4. One 4x16 bearing 

5. Some amount M3 screw 

6. Some amount M4 screw  

7. Two M4 threated rod 

8. Some amount M4 nuts 
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APPENDIX B (Arduino) 

#include <Servo.h> 

#include "ServoEaser.h" 

 

String readString; 

String angle1; // angles 

String angle2; 

String angle3; 

String angle4; 

 

int servoFrameMillis = 100;  // minimum time between servo updates 

 

Servo myservo1, myservo2, myservo3, myservo4; // servo motors 

ServoEaser servoEaser1, servoEaser2, servoEaser3, servoEaser4; 

 

int ind1, ind2, ind3, ind4; // , locations 

int oldn1, oldn2,oldn3, oldn4; 

int n1, n2, n3, n4; 

 

// 

void setup() 

{ 

  Serial.begin(19200); //baud rate value 

 

  myservo1.attach(9); //Elbow 

  oldn1=87; 

  myservo1.write(oldn1); 

   

  myservo2.attach(10); //ShoulderUp //Rotation 

  oldn2=90; 

  myservo2.write(oldn2); 

   

  myservo3.attach(11); //ShoulderDown 

  oldn3=127; 

  myservo3.write(oldn3); 

 

  myservo4.attach(12); //HandStatus //Grip 

  oldn4=80; 

  myservo4.write(oldn3); 

   

   

  // begin with a framerate, no starting position, we don't know 

  servoEaser1.begin( myservo1, servoFrameMillis ); //Elbow 

  servoEaser2.begin( myservo2, servoFrameMillis );  //ShoulderUp 

  servoEaser3.begin( myservo3, servoFrameMillis ); //ShoulderDown 

  servoEaser4.begin( myservo4, servoFrameMillis ); //Hand 
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} 

 

// 

void loop() 

{ 

  servoEaser1.update(); 

  servoEaser2.update(); 

  servoEaser3.update(); 

  servoEaser4.update(); 

 

   

 if (Serial.available())  { 

    char c = Serial.read();  //gets one byte from serial buffer 

    if (c == '*') { 

      //do stuff 

      

            

      ind1 = readString.indexOf('/');  //finds location of first , 

      angle1 = readString.substring(0, ind1);   //captures first data String 

      n1 = angle1.toInt(); 

      n1 = map(n1, 50, 170, 20, 154); //Elbow 

       

      ind2 = readString.indexOf('/', ind1+1);   //finds location of second , 

      angle2 = readString.substring(ind1+1, ind2+1);   //captures second data String 

      n2 = angle2.toInt(); 

      n2 = map(n2, 120, 156, 15, 165); //ShoulderUp 

       

      ind3 = readString.indexOf('/', ind2+1 ); 

      angle3 = readString.substring(ind2+1, ind3+1);   

      n3 = angle3.toInt(); 

      n3 = map(n3, 40, 126, 95, 160); //ShoulderDown 

       

      ind4 = readString.indexOf('/', ind3+1 ); 

      angle4 = readString.substring(ind3+1);   

      n4 = angle4.toInt(); //HandStatus 

 

      Servowrite(n1,n2,n3,n4); 

    Serial.print("Last pos. of servos: ");     

    Serial.print(myservo1.read()); 

    Serial.print(myservo2.read()); 

    Serial.print(myservo3.read()); 

    Serial.println(myservo4.read()); 

      

      readString=""; //clears variable for new input 

      angle1=""; 

      angle2=""; 

      angle3=""; 

      angle4=""; 
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    }  

    else {      

      readString += c; //makes the string readString 

    }   

 } 

 oldn1=n1; 

 oldn2=n2; 

 oldn3=n3; 

 oldn4=n4; 

} 

 

void Servowrite(int n1,int n2, int n3, int n4){ 

  if(-7<n1-oldn1<7){ 

  //if(n1 != oldn1){ 

    servoEaser1.easeTo( n1, 1800); 

  } 

  if(-7<n2-oldn2<7){ 

  //if(n2 != oldn2){ 

    servoEaser2.easeTo( n2, 1800); 

  } 

  if(-7<n3-oldn3<7){ 

  //if(n3 != oldn3){ 

    servoEaser3.easeTo( n3, 1800); 

  } 

 

  if(n4 != oldn4){ 

    servoEaser4.easeTo( n4, 1800); 

  } 

     } 
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APPENDIX C (Visual Studio) 

using Microsoft.Kinect; //kinect libraries 

using System.IO; 

using System.IO.Ports; //serialport libraries 

using Microsoft.Kinect.Toolkit; // for kinect status kinectsensorchooser 

 

namespace Kinect_arduino_interaction 

{ 

    /// <summary> 

    /// Interaction logic for MainWindow.xaml 

    /// </summary> 

    public partial class MainWindow : Window 

    { 

        SerialPort sp = new SerialPort(); //FOR SERIALPORT 

 

        private KinectSensor kinectDevice; 

        private readonly Brush[] skeletonBrushes; 

 

        private WriteableBitmap depthImageBitMap; 

        private Int32Rect depthImageBitmapRect; 

        private Int32 depthImageStride; 

        //private DepthImageFrame lastDepthFrame; 

 

        private WriteableBitmap colorImageBitmap; 

        private Int32Rect colorImageBitmapRect; 

        private int colorImageStride; 

        //private byte[] colorImagePixelData; 

 

        private Skeleton[] frameSkeletons; 

        public string str_angle_1; 

        public string str_angle_2; 

        public string str_angle_3; 

        public string handStatus = "80"; 

 

        System.Windows.Threading.DispatcherTimer dispatcherTimer = new 

System.Windows.Threading.DispatcherTimer(); 

 

        private KinectSensorChooser sensorChooser; 

 

 

        public MainWindow() 

        { 

            InitializeComponent(); 

 

            // initialize the sensor chooser and UI 

            this.sensorChooser = new KinectSensorChooser(); 

            //this.sensorChooser.KinectChanged += SensorChooserOnKinectChanged; 
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            this.sensorChooserUi.KinectSensorChooser = this.sensorChooser; 

            this.sensorChooser.Start(); 

 

            skeletonBrushes = new Brush[] { Brushes.DarkTurquoise }; 

 

            KinectSensor.KinectSensors.StatusChanged += KinectSensors_StatusChanged; 

            this.KinectDevice = KinectSensor.KinectSensors.FirstOrDefault(x => x.Status 

== KinectStatus.Connected); 

            dispatcherTimer.Tick += new EventHandler(dispatcherTimer_Tick); 

            dispatcherTimer.Interval = TimeSpan.FromSeconds(1); 

            dispatcherTimer.Start(); 

 

            KinectRegion.AddHandPointerGripHandler(this.button, this.button_Click); 

            KinectRegion.AddHandPointerGripReleaseHandler(this.button, this.buttonnot); 

            var regionSensorBinding = new Binding("Kinect") { Source = this.sensorChooser 

}; 

            BindingOperations.SetBinding(this.kinectRegion, 

KinectRegion.KinectSensorProperty, regionSensorBinding); 

 

        } 

 

        //Timer 

        private void dispatcherTimer_Tick(object sender, EventArgs e) 

        { 

            // code goes here 

            if (sp.IsOpen & str_angle_1 != null) 

            { 

                string stringtotal = str_angle_1 + "/" + str_angle_2 + "/" + str_angle_3 + "/" + 

handStatus + "*"; 

                sp.Write(stringtotal); 

                if (sp.BytesToRead > 0) 

                { 

                    LabelOutput.Content = "Sending angles :" + stringtotal + 

Environment.NewLine + sp.ReadExisting() + Environment.NewLine + 

LabelOutput.Content; 

                } 

 

            } 

 

        } 

 

        public KinectSensor KinectDevice 

        { 

            get { return this.kinectDevice; } 

            set 

            { 

                if (this.kinectDevice != value) 

                { 
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                    //Uninitialize 

                    if (this.kinectDevice != null) 

                    { 

                        this.kinectDevice.Stop(); 

                        this.kinectDevice.SkeletonFrameReady -= 

kinectDevice_SkeletonFrameReady; 

                        this.kinectDevice.ColorFrameReady -= kinectDevice_ColorFrameReady; 

                        this.kinectDevice.DepthFrameReady -= 

kinectDevice_DepthFrameReady; 

                        this.kinectDevice.SkeletonStream.Disable(); 

                        this.kinectDevice.DepthStream.Disable(); 

                        this.kinectDevice.ColorStream.Disable(); 

                        this.frameSkeletons = null; 

                    } 

 

                    this.kinectDevice = value; 

 

                    //Initialize 

                    if (this.kinectDevice != null) 

                    { 

                        if (this.kinectDevice.Status == KinectStatus.Connected) 

                        { 

                            this.kinectDevice.SkeletonStream.Enable(); 

                            

this.kinectDevice.ColorStream.Enable(ColorImageFormat.RgbResolution640x480Fps3

0); 

                            

this.kinectDevice.DepthStream.Enable(DepthImageFormat.Resolution640x480Fps30); 

                            this.frameSkeletons = new 

Skeleton[this.kinectDevice.SkeletonStream.FrameSkeletonArrayLength]; 

                            this.kinectDevice.SkeletonFrameReady += 

kinectDevice_SkeletonFrameReady; 

                            this.kinectDevice.ColorFrameReady += 

kinectDevice_ColorFrameReady; 

                            this.kinectDevice.DepthFrameReady += 

kinectDevice_DepthFrameReady; 

                            this.kinectDevice.Start(); 

 

                            DepthImageStream depthStream = kinectDevice.DepthStream; 

                            depthStream.Enable(); 

 

                            ColorImageStream colorStream = kinectDevice.ColorStream; 

                            colorStream.Enable(); 

                             

                            DepthImage.Source = this.depthImageBitMap; 

                        } 

                    } 

                } 
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            } 

        } 

 

        void kinectDevice_DepthFrameReady(object sender, 

DepthImageFrameReadyEventArgs e) 

        { 

            using (DepthImageFrame depthFrame = e.OpenDepthImageFrame()) 

            { 

                if (depthFrame != null) 

                { 

                    short[] depthPixelDate = new short[depthFrame.PixelDataLength]; 

                    depthFrame.CopyPixelDataTo(depthPixelDate); 

                    depthImageBitMap.WritePixels(depthImageBitmapRect, depthPixelDate, 

depthImageStride, 0); 

                } 

            } 

        } 

 

        void kinectDevice_ColorFrameReady(object sender, 

ColorImageFrameReadyEventArgs e) 

        { 

            using (ColorImageFrame frame = e.OpenColorImageFrame()) 

            { 

                if (frame != null) 

                { 

                    byte[] pixelData = new byte[frame.PixelDataLength]; 

                    frame.CopyPixelDataTo(pixelData); 

                    this.colorImageBitmap.WritePixels(this.colorImageBitmapRect, pixelData, 

this.colorImageStride, 0); 

                } 

            } 

        } 

 

        void kinectDevice_SkeletonFrameReady(object sender, 

SkeletonFrameReadyEventArgs e) 

        { 

            using (SkeletonFrame frame = e.OpenSkeletonFrame()) 

            { 

 

                if (frame != null) 

                { 

                    Polyline figure; 

                    Brush userBrush; 

                    Skeleton skeleton; 

 

 

                    LayoutRoot.Children.Clear(); 

                    frame.CopySkeletonDataTo(this.frameSkeletons); 
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                    for (int i = 0; i < this.frameSkeletons.Length; i++) 

                    { 

                        skeleton = this.frameSkeletons[i]; 

 

                        if (skeleton.TrackingState == SkeletonTrackingState.Tracked && 

kinectDevice.SkeletonStream.TrackingMode == SkeletonTrackingMode.Default) 

                        { 

                            userBrush = this.skeletonBrushes[i % this.skeletonBrushes.Length]; 

 

                            //draw head and shoulders 

                            figure = CreateFigure(skeleton, userBrush, new[] { JointType.Head, 

JointType.ShoulderCenter, JointType.ShoulderLeft, //JointType.Spine, 

                                                                            // JointType.ShoulderRight, 

JointType.ShoulderCenter, JointType.HipCenter 

                                                                             }); 

 

                            LayoutRoot.Children.Add(figure); 

 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderCenter, JointType.ShoulderRight, }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-body 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderCenter, JointType.Spine, JointType.HipCenter, }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-hip line 

                            figure = CreateFigure(skeleton, userBrush, new[] { JointType.HipLeft, 

JointType.HipRight }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-left leg 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.HipCenter, JointType.HipLeft, JointType.KneeLeft, JointType.AnkleLeft, 

JointType.FootLeft }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-right leg 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.HipCenter, JointType.HipRight, JointType.KneeRight, 

JointType.AnkleRight, JointType.FootRight }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-left arm 
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                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderLeft, JointType.ElbowLeft, JointType.WristLeft, 

JointType.HandLeft }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-right arm 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderRight, JointType.ElbowRight, JointType.WristRight, 

JointType.HandRight }); 

                            LayoutRoot.Children.Add(figure); 

 

                        } 

                        else if (kinectDevice.SkeletonStream.TrackingMode == 

SkeletonTrackingMode.Seated) 

                        { 

                            userBrush = this.skeletonBrushes[i % this.skeletonBrushes.Length]; 

 

                            //draw-head and shoulders 

                            figure = CreateFigure(skeleton, userBrush, new[] { JointType.Head, 

JointType.ShoulderCenter, JointType.ShoulderLeft, }); 

                            LayoutRoot.Children.Add(figure); 

 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderCenter, JointType.ShoulderRight, }); 

                            LayoutRoot.Children.Add(figure); 

                            //draw-left arm 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderLeft, JointType.ElbowLeft, JointType.WristLeft, 

JointType.HandLeft }); 

                            LayoutRoot.Children.Add(figure); 

 

                            //draw-right arm 

                            figure = CreateFigure(skeleton, userBrush, new[] { 

JointType.ShoulderRight, JointType.ElbowRight, JointType.WristRight, 

JointType.HandRight }); 

                            LayoutRoot.Children.Add(figure); 

 

 

                            /* // get the joint 

                             Joint rightHand = skeleton.Joints[JointType.HandRight]; 

 

                             // get the individual points of the right hand 

                             rightX = rightHand.Position.X; 

                             rightY = rightHand.Position.Y; 

                             rightZ = rightHand.Position.Z; 

                             labelrightHandX.Content = rightX;*/ 

                        } 

                    } 
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                    if (frame != null) 

                    { 

                        if (this.frameSkeletons == null) 

                        { 

                            // Allocate array of skeletons 

                            this.frameSkeletons = new Skeleton[frame.SkeletonArrayLength]; 

                        } 

 

                        // Copy skeletons from this frame 

                        frame.CopySkeletonDataTo(this.frameSkeletons); 

 

                        // Find first tracked skeleton, if any 

                        skeleton = this.frameSkeletons.Where(s => s.TrackingState == 

SkeletonTrackingState.Tracked).FirstOrDefault(); 

 

                        if (skeleton != null) 

                        { 

                            // Obtain the right Wrist joint; if tracked, print its position 

                            Joint WristRight = skeleton.Joints[JointType.WristRight]; 

                            Joint ElbowRight = skeleton.Joints[JointType.ElbowRight]; 

                            Joint ShoulderRight = skeleton.Joints[JointType.ShoulderRight]; 

                            Joint ShoulderCenter = skeleton.Joints[JointType.ShoulderCenter]; 

                            Joint HipLeft = skeleton.Joints[JointType.HipLeft]; 

 

                            double[] vector1 = new double[] { WristRight.Position.X - 

ElbowRight.Position.X, WristRight.Position.Y - ElbowRight.Position.Y, 

WristRight.Position.Z - ElbowRight.Position.Z }; 

                            double[] vector2 = new double[] { ShoulderRight.Position.X - 

ElbowRight.Position.X, ShoulderRight.Position.Y - ElbowRight.Position.Y, 

ShoulderRight.Position.Z - ElbowRight.Position.Z }; 

                            double[] vector3 = new double[] { ShoulderRight.Position.X - 

ShoulderCenter.Position.X, ShoulderRight.Position.Y - ShoulderCenter.Position.Y, 

ShoulderRight.Position.Z - ShoulderCenter.Position.Z }; 

                            double[] vector4 = new double[] { ShoulderRight.Position.X - 

HipLeft.Position.X, ShoulderRight.Position.Y - HipLeft.Position.Y, 

ShoulderRight.Position.Z - HipLeft.Position.Z }; 

                            double angle_calc_1 = Angle(vector1, vector2); 

                            double angle_calc_2 = Angle(vector2, vector3); 

                            double angle_calc_3 = Angle(vector2, vector4); 

 

                            //labelAngle1.Content = "Angle = " + angle_calc.ToString("#.##"); 

 

                            labelAngle1.Content = "Elbow = " + angle_calc_1.ToString("#.#") + 

"°"; 

                            labelAngle2.Content = "ShoulderUp = " + 

angle_calc_2.ToString("#.#") + "°"; 

                            labelAngle3.Content = "ShoulderDown = " + 

angle_calc_3.ToString("#.#") + "°"; 
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                            str_angle_1 = angle_calc_1.ToString("#"); 

                            str_angle_2 = angle_calc_2.ToString("#"); 

                            str_angle_3 = angle_calc_3.ToString("#"); 

 

 

 

                            //sp.Write(angle_calc.ToString("#")); 

 

                            // WristRight coordinates 

                            if (WristRight.TrackingState == JointTrackingState.Tracked) 

                            { 

                                labelWristRight.Content = "WristRight: " + "x=" + 

WristRight.Position.X + ", " + "y=" + WristRight.Position.Y + ", " + "z=" + 

WristRight.Position.Z; 

 

                            } 

                            else 

                            { 

                                labelWristRight.Content = "WristRight: " + ", " + "x=Not_Tracked" 

+ ", " + "y=Not_Tracked" + ", " + "z=Not_Tracked"; 

                            } 

                            // ElbowRight coordinates 

                            if (ElbowRight.TrackingState == JointTrackingState.Tracked) 

                            { 

                                labelElbowRight.Content = "ElbowRight: " + "x=" + 

ElbowRight.Position.X + ", " + "y=" + ElbowRight.Position.Y + ", " + "z=" + 

ElbowRight.Position.Z; 

 

                            } 

                            else 

                            { 

                                labelElbowRight.Content = "ElbowRight: " + ", " + 

"x=Not_Tracked" + ", " + "y=Not_Tracked" + ", " + "z=Not_Tracked"; 

                            } 

                            // ShoulderRight coordinates 

                            if (ShoulderRight.TrackingState == JointTrackingState.Tracked) 

                            { 

                                labelShoulderRight.Content = "ShoulderRight: " + "x=" + 

ShoulderRight.Position.X + ", " + "y=" + ShoulderRight.Position.Y + ", " + "z=" + 

ShoulderRight.Position.Z; 

 

                            } 

                            else 

                            { 

                                labelShoulderRight.Content = "ShoulderRight: " + ", " + 

"x=Not_Tracked" + ", " + "y=Not_Tracked" + ", " + "z=Not_Tracked"; 

                            } 

                        } 
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                    } 

                } 

            } 

        } 

 

        private Polyline CreateFigure(Skeleton skeleton, Brush brush, JointType[] joints) 

        { 

            Polyline figure = new Polyline(); 

 

            figure.StrokeThickness = 6; 

            figure.Stroke = brush; 

 

            /* for (int i = 0; i < joints.Length; i++) 

             { 

                 figure.Points.Add(GetJointPoint(skeleton.Joints[joints[i]])); 

             } 

             */ 

            for (int i = 0; i < joints.Length; i++) 

            { 

                figure.Points.Add(GetJointPoint2(skeleton.Joints[joints[i]])); 

            } 

 

            return figure; 

        } 

 

        /*private Point GetJointPoint(Joint joint) 

        { 

            CoordinateMapper cm = new CoordinateMapper(kinectDevice); 

 

            DepthImagePoint point = cm.MapSkeletonPointToDepthPoint(joint.Position, 

this.KinectDevice.DepthStream.Format); 

            //ColorImagePoint point2 = cm.MapSkeletonPointToColorPoint(joint.Position, 

this.KinectDevice.ColorStream.Format); 

            point.X *= (int)this.LayoutRoot.ActualWidth / 

KinectDevice.DepthStream.FrameWidth; 

            point.Y *= (int)this.LayoutRoot.ActualHeight / 

KinectDevice.DepthStream.FrameHeight; 

 

            return new Point(point.X, point.Y); 

        }*/ 

 

        private Point GetJointPoint2(Joint joint) 

        { 

            CoordinateMapper cm = new CoordinateMapper(kinectDevice); 

 

            //DepthImagePoint point = cm.MapSkeletonPointToDepthPoint(joint.Position, 

this.KinectDevice.DepthStream.Format); 

            ColorImagePoint point = cm.MapSkeletonPointToColorPoint(joint.Position, 
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this.KinectDevice.ColorStream.Format); 

            point.X *= (int)this.LayoutRoot.ActualWidth / 

KinectDevice.ColorStream.FrameWidth; 

            point.Y *= (int)this.LayoutRoot.ActualHeight / 

KinectDevice.ColorStream.FrameHeight; 

 

            return new Point(point.X, point.Y); 

        } 

 

 

        private void WindowClosing(object sender, 

System.ComponentModel.CancelEventArgs e) 

        { 

            this.sensorChooser.Stop(); 

        } 

 

        private void Depth_Image_Checked(object sender, RoutedEventArgs e) 

        { 

            DepthImage.Visibility = Visibility; 

        } 

 

        private void Depth_Image_Unchecked(object sender, RoutedEventArgs e) 

        { 

            DepthImage.Visibility = Visibility.Hidden; 

        } 

 

        private void CheckBoxSeatedModeChanged(object sender, RoutedEventArgs e) 

        { 

            if (null != this.kinectDevice) 

            { 

                if (this.checkBoxSeatedMode.IsChecked.GetValueOrDefault()) 

                { 

                    this.kinectDevice.SkeletonStream.TrackingMode = 

SkeletonTrackingMode.Seated; 

                } 

                else 

                { 

                    this.kinectDevice.SkeletonStream.TrackingMode = 

SkeletonTrackingMode.Default; 

                } 

            } 

        } 

        // 

        private static double Angle(double[] vec1, double[] vec2) 

        { 

            if (vec1 == null) 

                return 0; 

            if (vec2 == null) 
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                return 0; 

            if (vec1.Length != vec2.Length) 

                return 0; 

 

            double vec1Lenght = 0; 

            double vec2Lenght = 0; 

            double dot = 0; 

 

            for (int x = 0; x < vec1.Length; x++) 

            { 

                dot += vec1[x] * vec2[x]; 

                vec1Lenght += vec1[x] * vec1[x]; 

                vec2Lenght += vec2[x] * vec2[x]; 

            } 

 

            double vecLenght = Math.Sqrt(vec1Lenght) * Math.Sqrt(vec2Lenght); 

            double angle = Math.Acos(dot / vecLenght) * 180 / Math.PI; 

 

            return angle; 

        } 

 

        /*////////////////////// THE BELOW CODE IS FOR SERIAL COMMUNICATION 

///////////////////////*/ 

 

        private void degree_nine_Click(object sender, RoutedEventArgs e) 

        { 

            //sp.Write(str_angle); 

            sp.Write("110/138/83/80*"); 

        } 

        private void degree_three_Click(object sender, RoutedEventArgs e) 

        { 

            sp.Write("50/120/40/80*"); 

        } 

        private void degree_twelve_Click(object sender, RoutedEventArgs e) 

        { 

            sp.Write("170/156/126/80*"); 

        } 

 

        private void Connect_Click(object sender, RoutedEventArgs e) 

        { 

 

            try 

            { 

                String portName = comportno.Text; 

                sp.PortName = portName; 

                sp.BaudRate = 19200; 

                sp.Open(); 

                status.Text = "Connected"; 
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                TextBox1.Clear(); 

            } 

            catch (Exception) 

            { 

 

                MessageBox.Show("Please give a valid port number or check your 

connection"); 

            } 

        } 

 

        private void Disconnect_Click(object sender, RoutedEventArgs e) 

        { 

            try 

            { 

                sp.Write("110/138/83/80*"); 

                /* if (sp.BytesToRead > 0) 

                 { 

                     System.Threading.Thread.Sleep(1000); 

                     LabelOutput.Content = "Sending angles: 110/140/80*" + 

Environment.NewLine + sp.ReadExisting(); 

                 }*/ 

                sp.Close(); 

                status.Text = "Disconnected"; 

            } 

            catch (Exception) 

            { 

 

                MessageBox.Show("First Connect and then disconnect"); 

            } 

        } 

 

        private void TextBox1_TextChanged(object sender, TextChangedEventArgs e) 

        { 

 

        } 

        private void OnKeyDownHandler(object sender, KeyEventArgs e) 

        { 

            if (e.Key == Key.Return) 

            { 

                sp.Write(TextBox1.Text); 

                LabelOutput.Content = TextBox1.Text + Environment.NewLine + 

LabelOutput.Content; 

                TextBox1.Clear(); 

            } 

        } 

 

        /* private string Send(string data,int waitForReplayMS=2000) 
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         { 

 

             try 

             { 

                 sp.Write(data); 

                 System.Threading.Thread.Sleep(waitForReplayMS); 

 

             } 

             catch (Exception ex) 

             { 

                 throw ex; 

             } 

         }*/ 

        ///////////////////////////////////*SERIAL COMMUNICATION*////////////////////////// 

        //////////////////////////////The Below Code for Using Hand Data////////////////////////////// 

 

        private void button_Click(object sender, RoutedEventArgs e) 

        { 

            labelAngle4.Content = "Hand = Closed"; 

            handStatus = "10"; 

        } 

        private void buttonnot(object sender, RoutedEventArgs e) 

        { 

            labelAngle4.Content = "Hand = Open"; 

            handStatus = "80"; 

 

        } 

    } 

} 

 

/////////////////////////////////////////inverse kinematics///////////////////////////////// 

private static double inverse_kinematic1(double x, double y) 

        { 

            //double t = y / x ; 

            double radians = Math.Atan2(y,x); 

            double angle = radians * (180 / Math.PI); 

            return angle; 

        } 

 

        private static double inverse_kinematic2(double x, double y, double z) 

        { 

            double a2 = 0.147 * 6; 

            double a3 = 0.240 * 6; 

            double s3, c3; 

            c3 = ((a2 * a2) + (a3 * a3) - ((x * x) + (y * y) + (z * z)) ) / (2 * a2 * a3); 

            s3 = Math.Sqrt(1 - (c3 * c3)); 

            double radians = Math.Atan2( z, Math.Sqrt((x * x) + (y * y))) - Math.Atan2((a3 * 

s3), (a2 + (a3 * c3))); 
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            double angle = radians * (180 / Math.PI) + 90; 

            return angle; 

        } 

 

        private static double inverse_kinematic3(double x, double y, double z) 

        { 

            double a2 = 0.147 * 6; 

            double a3 = 0.240 * 6; 

            double s3, c3; 

            c3 = ((a2 * a2) + (a3 * a3) - ((x * x) + (y * y) + (z * z))) / (2 * a2 * a3); 

            s3 = Math.Sqrt(1 - (c3 * c3)); 

            double radians = Math.Atan2(s3, c3); 

            double angle =180 - radians * (180 / Math.PI); 

            return angle; 

        } 
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APPENDIX D (XAML) 

<Window x:Class="Kinect_arduino_interaction.MainWindow" 

        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

        xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 

        xmlns:k="http://schemas.microsoft.com/kinect/2013" 

        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 

        xmlns:local="clr-namespace:Kinect_arduino_interaction" 

        mc:Ignorable="d" 

        Title="MainWindow" Height="734" Width="1160"> 

    <Grid Margin="0,0,2,0"> 

 

        <Grid Height="480" Width="640"  Margin="26,71,2.303,0"> 

            <k:KinectRegion x:Name="kinectRegion" Margin="-24,-70,-489,-150" > 

                <Grid> 

                    <Button x:Name="button" Click="button_Click" 

HorizontalAlignment="Center" VerticalAlignment="Center" Width="1151" 

Height="703" HorizontalContentAlignment="Left" BorderBrush="{x:Null}" 

Foreground="{x:Null}" Margin="2,0,0,-3"> 

                    </Button> 

                </Grid> 

            </k:KinectRegion> 

            <Image x:Name="ColorImage" VerticalAlignment="Top" 

HorizontalAlignment="Left" /> 

            <Image x:Name="DepthImage" Visibility="Hidden" VerticalAlignment="Top" 

HorizontalAlignment="Left"/> 

            <Grid Height="480" Width="640" x:Name="LayoutRoot" 

Background="Transparent"/> 

        </Grid> 

        <Grid HorizontalAlignment="Left" Height="48" Margin="26,4,0,-8" 

VerticalAlignment="Top" Width="640" Grid.Row="2" Grid.RowSpan="2"> 

 

            <CheckBox x:Name="Depth_Image" Content="Depth Image" Height="28" 

VerticalAlignment="Center" HorizontalAlignment="Left" Width="145" 

Checked="Depth_Image_Checked" RenderTransformOrigin="0.524,1.095" 

FontFamily="Tahoma" FontSize="14" Cursor="Hand" BorderThickness="2" 

Unchecked="Depth_Image_Unchecked" Margin="10,9,0,10" Grid.Row="1"/> 

            <CheckBox Content="Seated Mode" Height="28" VerticalAlignment="Center" 

Margin="207,9,325,10" x:Name="checkBoxSeatedMode" 

Checked="CheckBoxSeatedModeChanged" 

Unchecked="CheckBoxSeatedModeChanged"  FontFamily="Tahoma" FontSize="14" 

Cursor="Hand" BorderThickness="2" RenderTransformOrigin="0.492,1.206" 

Grid.Row="1"/> 

        </Grid> 

        <Grid Margin="3,71,0,76" Grid.Column="1" Grid.RowSpan="2" > 

            <Button x:Name="degree_nine" Content="Middle" HorizontalAlignment="Left" 

Margin="135,530,0,-86" VerticalAlignment="Top" Width="112" Height="36" 
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Click="degree_nine_Click"/> 

            <TextBlock x:Name="status" HorizontalAlignment="Left" Margin="373,84,0,0" 

TextWrapping="Wrap" Text="Disconnected" VerticalAlignment="Top" Height="29" 

Width="94"/> 

            <TextBox x:Name="comportno" HorizontalAlignment="Left" Height="23" 

Margin="341,10,0,0" TextWrapping="Wrap" Text="COM3" VerticalAlignment="Top" 

Width="126"/> 

            <Button x:Name="Connect" Content="Connect" HorizontalAlignment="Left" 

Margin="341,38,0,0" VerticalAlignment="Top" Width="60" Height="40" 

Click="Connect_Click"/> 

            <Button x:Name="Disconnect" Content="Disconnect" 

HorizontalAlignment="Left" Margin="406,38,0,0" VerticalAlignment="Top" 

Width="70" Height="41" Click="Disconnect_Click"/> 

            <TextBox x:Name="TextBox1" HorizontalAlignment="Left" Height="23" 

                 Margin="10,10,0,0" TextWrapping="Wrap" Text="Write the position of servo 

motor here and Press ENTER" VerticalAlignment="Top" Width="315" 

                 TextChanged="TextBox1_TextChanged" 

KeyDown="OnKeyDownHandler"/> 

            <Button x:Name="degree_three" Content="Down Limit" 

HorizontalAlignment="Left" Margin="12,530,0,-86" VerticalAlignment="Top" 

Width="118" Height="36" Click="degree_three_Click"/> 

            <Button x:Name="degree_twelve" Content="Up Limit" 

HorizontalAlignment="Left" Margin="252,530,0,-86" VerticalAlignment="Top" 

Width="107" Height="36" Click="degree_twelve_Click"/> 

            <Label Name="LabelOutput" Content="" HorizontalAlignment="Left" 

Height="257" Margin="12,38,0,0" VerticalAlignment="Top" Width="315"/> 

        </Grid> 

        <Label x:Name="labelWristRight" Content="WristRight: x=***,y=***,z=***"  

HorizontalAlignment="Left" Margin="26,10,0,0" VerticalAlignment="Top" 

Height="22" FontFamily="Arial" FontWeight="Bold" Width="400" Grid.Row="1"/> 

        <Label x:Name="labelElbowRight" Content="ElbowRight: x=***,y=***,z=***" 

HorizontalAlignment="Left" Margin="26,40,0,0"  VerticalAlignment="Top" 

Height="22" FontFamily="Arial" FontWeight="Bold" Width="400" Grid.Row="1"/> 

        <Label x:Name="labelShoulderRight" Content="ShoulderRight: 

x=***,y=***,z=***" HorizontalAlignment="Left" Margin="26,70,0,0"  

VerticalAlignment="Top" Height="22" FontFamily="Arial" FontWeight="Bold" 

Width="400" Grid.Row="1"/> 

        <Label x:Name="labelAngle1" Content="Elbow = ***" 

HorizontalAlignment="Left" Margin="2.697,381,0,0" VerticalAlignment="Top" 

Width="314" Height="52" FontSize="36" FontFamily="Arial" Grid.Column="1"/> 

        <Label x:Name="labelAngle2" Content="ShoulderUp = ***" 

HorizontalAlignment="Left" Margin="2.697,438,0,0" VerticalAlignment="Top" 

Width="332" Height="46" FontSize="36" FontFamily="Arial" Grid.Column="1"/> 

        <Label x:Name="labelAngle3" Content="ShoulderDown = ***" 

HorizontalAlignment="Left" Margin="2.697,489,0,0" VerticalAlignment="Top" 

Width="398" Height="52" FontSize="36" FontFamily="Arial" Grid.Column="1"/> 

        <Label x:Name="labelAngle4" Content="Hand = ***" 

HorizontalAlignment="Left" Margin="3,539,0,0" VerticalAlignment="Top" 
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Width="398" Height="52" FontSize="36" FontFamily="Arial" Grid.RowSpan="2" 

Grid.Column="1"/> 

        <k:KinectSensorChooserUI HorizontalAlignment="Center" 

VerticalAlignment="Top" Name="sensorChooserUi" Margin="553,0,75.303,0"/> 

        <k:KinectUserViewer k:KinectRegion.KinectRegion="{Binding ElementName = 

kinectRegion}" 

                             PrimaryUserColor="Violet" UserColoringMode="HighlightPrimary" 

HorizontalAlignment="Left" 

                             VerticalAlignment="Bottom" Height="66" Width="100" 

Margin="291,0,0,485"/> 

 

    </Grid> 

</Window> 
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