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ABSTRACT

IMPROVEMENT ON BIT DIFFUSION ANALYSIS OF π-CIPHER

Bozdemir, Beyza

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Asist. Prof. Dr. Fatih Sulak

September 2016, 39 pages

π-Cipher, a sponge-based algorithm designed by Gligoroski et al. [20], is a second
round algorithm of the CAESAR competition. The designers of π-Cipher analyzed
the bit diffusion of the parts, ∗ operation and 1 round π-function for all variants of
π-Cipher [20]. They showed the results with graphics; yet, they did not give any
conclusion about these results.

We improve this analysis by applying Strict Avalanche Criterion (SAC) Test in the
package of Cryptographic Randomness Testing designed by Doğanaksoy et al. [16] to
∗ operation for all w values and reduced round versions of π-function for π16-Cipher.
We obtain that ∗ operation for all word sizes fails SAC Test whereas reduced round
versions of π16-function pass the test.

Keywords : The CAESAR competition, π-Cipher, bit diffusion analysis, Strict Ava-
lanche Criterion (SAC) test.
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ÖZ

π-CIPHER ALGORİTMASININ BİT YAYILIM ANALİZİNİN GELİŞTİRİLMESİ

Bozdemir, Beyza

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Fatih Sulak

Eylül 2016, 39 sayfa

Sünger tabanlı bir algoritma olan π-Cipher, Gligoroski ve ekibi tarafından tasarlanan
CAESAR yarışmasının ikinci tur algoritmalarından biridir. π-Cipher algoritmasının
tasarımcıları, ∗ operasyonunu ve 1 turluk π-fonksiyonunu bütün π-Cipher çeşitleri için
incelemiş olup, iki yapıya ait bit yayılım analizini gerçekleştirmişlerdir [20]. Elde
edilen analiz sonuçlarını grafiklerle göstermişler, fakat bu grafiklere dair açıklamalar
ortaya koymamışlardır.

Doğanaksoy ve ekibi tarafından tasarlanan Kriptografik Rastgelelik Test Paketi içeri-
sinde bulunan Katı Çığ Etkisi Testi yardımıyla biz bu analizi, ∗ operasyonunun bütün
w = 16, 32, 64 değerlerine göre ve π-fonksiyonunun w = 16 değerine göre 1, 2 ve 3-
turluk bütün zayıflatılmış versiyonlarına uygulayarak geliştirdik. ∗ operasyonu bütün
w değerlerine göre Katı Çığ Etkisi Testinden kalırken, 1, 2 ve 3-turluk w = 16 için
incelenen π-fonksiyonu testten geçmiş ve rastgele olduğu gösterilmiştir.

Anahtar Kelimeler : CAESAR yarışması, π-Cipher, bit yayılım analizi, Katı Çığ Etkisi
Testi.
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CHAPTER 1

Introduction

In the simplest sense, cryptography enables two or more parties to provide the privacy
and secrecy of the information when there is an adversary who can access their com-
munication channel. In the more general sense, cryptography is a science that is about
providing the trustworthy information, building secure and robust cryptosystems with
guaranteeing the systems implemented and embedded into devices.

Cryptography which is a cornerstone of mathematics, computer science and commu-
nication security implies that a meaningful message, the plaintext, is converted to a
meaningless message, the ciphertext, using the algorithms having mathematical back-
ground. The communicating parties, Alice and Bob, choose and share a secret key
k = (e, d) where e is encryption key and d is decryption key in the key space K before
the communication to send messages each other in a secure way. After sharing the key,
Alice encrypts the messagem such that Ee(m) = c where E is the encryption function
and c is the ciphertext and delivers c to Bob. After receiving c from Alice, he decrypts
c such that Dd(c) = m where D is the decryption function, and so he recovers the
message m. Therefore, they can safely send and take messages.

Cryptographic algorithms have to accomplish following goals [30]:

1. Confidentiality: The message is protected from the unauthorized parties. To keep
the plaintext in secret, it is read by only the right person who has the decryption
key.

2. Data integrity: The message is ensured to be unchanged from the unauthorized
parties. Encryption scheme provides that the message is not proceeded any dele-
tion, substitution or insertion.

3. Entity authentication and data origin authentication: Data origin authentication
provides the data integrity while entity authentication means that communicators
should identify each other during communication; that is, message sender must
be authentic.

4. Non-repudiation: Sender should not deny the sent message by own, the commu-
nication, etc.

According to The Codebreakers [22], the traces of cryptography has been found about
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4000 years ago in the time of Egyptians. Cryptography provides people to commu-
nicate securely over an insecure channel that an opponent, namely attacker can find
the conversation between parties meaningless. Generally, cryptography is divided into
two main categories.

1. Symmetric Key Cryptography,

2. Asymmetric Key (or Public Key) Cryptography.

In public key cryptography, there exist two different keys: private key and public key
for encryption and decryption, respectively. The user generates public key and secret
key for its own sake. Public key is available for the usage of anyone to encrypt the
message while the private key is known only by the user to decrypt the ciphertext, and
it is hard to derive from public key.

Public key cryptography is mainly used in two areas: public key encryption and digital
signatures. In the digital signature schemes, the sender, Bob, signs the message with
his private key, then anyone, Alice, can verify that the message is from Bob with using
his public key. With digital signature schemes, Alice ensures that the message comes
from Bob. That is, digital signature schemes provide the authentication of the message
and the integrity of unmodified message in transfer at the same time. Moreover, Bob
does not deny the message which is sent by himself. Therefore, digital signature pro-
vides the integrity, authentication and non-repudiation [34]. The public key encryption
scheme is performed as follows [46]. User Bob generates his private and public keys,
and then tells anyone including the attacker Eve his public key. Then, if Alice wants
to send a message to Bob, she uses his public key to encrypt message, and sends the
encrypted message to him. Even if Eve obtains the ciphertext, she would not be able
to decrypt the ciphertext because she does not know Bob’s private key. Therefore, the
confidentiality of message is provided. After receiving the ciphertext from Bob, he can
decrypt it via his private key, and obtain the message. Therefore, Alice and Bob can
communicate in an insecure channel without meeting each other.

The important matter in the public key cryptography that the algorithms are based
on the difficult mathematical problems such as one-way functions whose inverses are
infeasible to compute. That is, while the encryption scheme of algorithms is easy to
compute, the cryptanalysis of the decryption is computationally hard. For example,
the factorization of integers, discrete logarithm problem and elliptic curves are the
hard problems [34], and also they have no efficient solutions for big integers. Due to
being hard problems, confidential message transmission, authentication, key exchange,
bit commitment, secret sharing, e-voting, etc. are carried out with well-known public
key cryptosystem examples such as RSA in 1977 [37], Zero-Knowledge Proof, Diffie-
Hellman Key Exchange in 1976 [13], elliptic curve cryptography in the mid 1980s
etc.

In contrary to public key, symmetric key cryptosystem has a single key, secret (or
private) key, which is agreed and shared when two parties meet before the conversation.
To encrypt or decrypt a message, they use the same key. Due to using same key and
the algorithms, symmetric key cryptosystem is faster than asymmetric key algorithms.
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Therefore, symmetric key cryptography is preferred more in the daily life operations
like using bluetooth, social networks or online shopping. For example, AES [12] is
determined as a standard to encrypt the data in the electronic environments.

If Alice wants to use the symmetric key cryptosystem, she needs to choose the follow-
ing ciphers:

• Block Ciphers,

• Stream Ciphers,

• Hash Functions,

• Message Authentication Codes (MAC),

• Authenticated Encryption Schemes.

Block ciphers are widely used encryption schemes that proceed on the blocks such that

EK(P ) := E : {0, 1}k × {0, 1}n → {0, 1}n, and

E−1K (C) := D : {0, 1}k × {0, 1}n → {0, 1}n

where K is key, k is the key size, P is plaintext, C is ciphertext and n is the input
and output size. The enciphering scheme divides the plaintext into the fixed length
blocks and then encrypts or decrypts one block at a time. That is, a block cipher
takes an n-bit block of plaintext with encrypting k-bit secret key and produces n-bit
ciphertext. To be a unique decryption map, there exists a bijection map from {0, 1}k×
{0, 1}n to {0, 1}n. Actually, the encryption/decryption is n-bit permutation since every
plaintext is proceeded into ciphertext vice versa for every key in {0, 1}k. Due to the
encryption/decryption on block by block, it provides an advantage. For example, if
there is a mistake in one block, it does not affect the other blocks. However, it also
provides disadvantages such that identical blocks are encrypted to identical blocks. To
get rid of the disadvantages, one solution is to use the modes of operations. Block
ciphers are generally based on an iterated product cipher [41] which combines two or
more transformations such as substitution (S-box), permutation (P -box) or modular
arithmetic with multiple similar rounds and different subkeys getting from the master
key for each round to be more secure against the cryptanalysis.

The known block ciphers are Feistel ciphers, substitution-permutation networks, Lai-
Massey ciphers. The well-known examples of block ciphers are DES [21], AES [12],
IDEA [28], RC5 [36].

Stream ciphers [34] are encryption schemes on bits that plaintext bit is encrypted with
the keystream bit at a time where plaintext bits m0m1m2 . . . are the string of plaintext
space P , and keystream bits k0k1k2 . . . in the key space K are the randomly gener-
ated string of the defined alphabet. In other words, the encryption is that the plaintext
bits are XORed with keystream bits, and so produces the ciphertext bits such that
Eki(mi) = ci where ci ∈ C, the ciphertext space. Moreover, the decryption of ci-
phertext is that Dki(ci) = mi. Briefly, the decryption D and encryption E functions
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can be said that they are same because the operation is XOR. Because of the easiest
encryption and decryption, the security of it depends on only keystream. However,
the keystream bits are not directly the key bits. The construction of keystream is so
important that key is used to generate it via keystream generator.

The stream ciphers are two types: synchronous and non-synchronous. While a non-
synchronous stream cipher is that each keystream element depends on the previous
plaintext or ciphertext bits as well as the key bits, synchronous stream cipher depends
on only the key bits, but it is independent from the plaintext bits [46]. A synchronous
stream cipher can be represented as a linear recurrence of degree l where the last term
of keystream depends on the previous l terms. The best example of synchronous stream
cipher is Linear Feedback Shift Register (LFSR). LFSRs are implemented efficiently
in hardware due to XOR. Yet, the output of LFSRs has a linear recurrence relations.
Due to the fact that the output of LFSRs or a keystream generator should look like
a random sequence. Otherwise, the opponent Eve can guess the keystream bits so
random keystream is crucial for the security of stream ciphers.

Hash functions h : {0, 1}l → {0, 1}n where n < l such that h(x) = y are functions
not using any keys to squeeze arbitrary length of input message and produce a fixed
length of output called as a hash value or message digest. These functions provide
the integrity of information rather than confidentiality. That is, they guarantee that the
data is not tempered. They are not invertible and reversible, i.e., they are one-way
functions. Hash functions which construct a short fingerprint of input must have some
properties:

1. Preimage Resistance: Given any hash value y, it should be computationally in-
feasible to find any input value x such that h(x) = y where h is a hash function.
This property is related to be one-way function.

2. Second Preimage Resistance: Given x, it should be infeasible to find x 6= x′ in
the domain of h with h(x) = h(x′) where h is a hash function.

3. Collision Resistance: It should be infeasible to find two distinct values x and x′
in the domain of h such that h(x) = h(x′) where h is a hash function.

There are various hash function algorithms in the literature. Some are not used any-
more due to the shown weaknesses. Hash functions can be undermined by apply-
ing successful attacks, not exactly to be broken. However, the shown weaknesses
are enough to need more strengthened one. Because of that, SHA (Secure Hash
Algorithm)-3 Competition is arranged to supply the need of a new hash function as
a standard hash function. The winner of the last SHA Competition, SHA-3, is Keccak
on October 2, 2012 [9].

Message Authentication Code (MAC) is a keyed cryptographic hash function. MAC
takes inputs namely a secret key and an arbitrary length of message, and so produces an
output called as a MAC value or tag. The differences of MACs from the hash functions
are that firstly MACs use key, and secondly they provide not only data integrity but also
data authenticity. MACs work into three parts: the random key generation, the sign of
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the given key and message, and the verification of the authenticity of the given key and
message.

The foremost for MAC function to be secure is that MAC is hard to compute a valid
tag of the given message without key. Therefore, MAC function should have some se-
curity requirements. For example, MAC have to be secure against existential forgery.
Moreover, MAC is different from digital signature because a tag generation and veri-
fication is done by the same secret key while digital signature uses two different keys.
Also, MAC does not guarantee the aim of non-repudiation.

1.1 Authenticated Encryption Scheme

Confidentiality and authentication are two important security goals to be basically pro-
vided. With technological developments especially developments on the Internet, some
applications need confidentiality and authenticity at the same. The application systems
use symmetric key encryption schemes such as block ciphers and hash functions for
confidentiality, and they use one-way functions, hash functions, keyed and unkeyed
hash functions such as MAC, MDC to provide the authenticity.

Authenticated encryption is a block cipher based mode of operation which achieve the
security in terms of confidentiality and authenticity, i.e., AE provides confidentiality,
integrity and authentication on the data will be proceeded, and also it enables to the
verification in the decryption part. To give details of AE, the encryption scheme of
AE algorithm takes a plaintext, a key and a initialization vector (IV) or a nonce (N)
and then it outputs a ciphertext and maybe a tag in the processes of encryption and
tag generation. Given a ciphertext, a key, a tag and IV or N, the decryption process
of algorithm takes the ciphertext, the key, the tag and IV or N, and it returns either
the plaintext or INVALID, a invalidation symbol ⊥ in the decryption and verification
stages. If in the verification process, given tag is invalid, then decryption of ciphertext
is meaningless and outputs ⊥.

Generic approaches on AE that use AE as a black boxes having two different keys Ke

and Km were suggested as follows [4]:

1. MAC-then-Encrypt (MtE): The first of MtE is the generation tag T of message P
with Km, the second phase is that newly generated tag is appended the message,
and then new message P ||T is encrypted with using Ke and produced C. The
decryption of MtE is that C is decrypted with Ke to get concatenated message
P ||T . After separation of P and T , the sent tag and newly created tag are com-
pared each other. This decryption method is Decrypt-then-Verify. MtE is used
in SSL/TLS.

2. Encrypt-and-MAC (E&M): The Encryption and MAC proceed in parallel; yet,
two are occurred separately, and they are concatenated at the end of AE. In the
process, the message is encrypted with Ke producing ciphertext C, and the tag
T of message is generated with using Km. Then the result of E&M looks like
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C||T . The reverse side of AE is proceeded like decrypting the ciphertext C, and
verifying the sent tag T with a new created tag T ′, i.e., it is Decrypt-then-Verify.
This approach is used in SSH protocol.

3. Encrypt-then-MAC (EtM): First of all, the message is encrypted with Ke to pro-
duce C, and then the encrypted message with Km is used for the generating the
tag T . After that, C and T are concatenated each other. The reverse side of this
approach is different from the formers. It is Verify-then-Decrypt that firstly T
andC are separated, and new tag is generated to compare the sent one. If the ver-
ification is valid, then message is decrypted with Ke; otherwise, the decryption
outputs an invalid symbol, ⊥. EtM is used in the protocol IPSec.

All three approaches were examined by Bellare and Namprempre [6], and they have
showed that among three of them, Encrypt-then-MAC has more secure in all cases such
as IND-CPA, IND-CCA, INT-PTXT and INT-CTXT. EtM scheme [4] is efficient in the
respect of verification and decryption that save the unnecessary cost of decryption.

1.1.1 Authenticated Encryption with Associated Data

Authenticated encryption with associated data (AEAD) scheme is an extended version
of AE scheme. It is represented firstly by Rogaway [38]. In this scheme, the difference
from AE is that there is an additional data called as Associated Data (AD) or Header
(H) which is not required the need of encryption; yet, AD is important to provide the
authenticity [4]. AEAD is encryption scheme that provides authenticity and privacy
using AD. Moreover, AEAD provides a robust definition. Encryption and decryption
of AEAD scheme shown as follows:

EN,AD
K (M) = EK(N,AD,M) = C and T ,

and
DN,AD,T
K (C) = DK(N,AD, T, C) = M or error,⊥

where M : message, N : Nonce, AD: Associated Data, K: key, C: ciphertext, T : tag.

Two ways are existed to transform AE to AEAD [38]:

• Nonce stealing: AD is a part of Nonce (N). If the length of Nonce is 128 bit in
the AE scheme, in the nonce stealing case, |N | = 32 ⇒ |AD| = 96 where N
is like a counter. Sometimes, the length of AD is 32-bit for IPv4 addresses for a
specific need.

• Ciphertext translation: AD is authenticated with the help of a function family,
F : K ′ × AD → {0, 1}τ such that ∆ : FK′(AD) and EN

K (M) = C where C is
the XOR in ∆ to the last τ -bit.

In the generic composition [38], there are two considered methods: Nonce-based with
AD in the EtM and Nonce-based with AD in the MtE. The former one is that anyone
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encrypts the message with using N, and produces the ciphertext. Then its MAC is
computed with using AD, N, ciphertext to obtain the tag T. Its output isC||T . The latter
method is that with using AD, N, message the tag T is computed, and it is encrypted
using N, message and T.

1.2 Recent Projects

Recent projects AES, NESSIE, CRYPTREC, eSTREAM, SHA-3 and PHC are open
and transparent to decide the winner algorithms since these projects are known by
all over the world, and all algorithms in the projects are analyzed. Therefore, some
algorithms are eliminated from the stages of projects, and robust and secure algorithms
are efficiently determined as the winners. The details of projects are given as follows.

The Advanced Encryption Standard (AES) competition [1] was a three-year competi-
tion to find a standard for encrypting the electronic data. The competition was orga-
nized by NIST. During years 1997-2000, 15 algorithms was presented as AES candi-
dates, and designs was evaluated in terms of the security and the performance. Rijndael
was selected as the winner of AES competitions among 5 finalists MARS, RC6, Ser-
pent, Twofish, Rijndael on October 2, 2000. What distinguishes Rijndael from the
others is that it has an efficient software and hardware performance, and it keeps less
memory space. To use as a standard, some properties of Rijndael were modified, and
it has been called as AES.

New European Schemes for Signatures, Integrity and Encryption (NESSIE) [32] was a
project to manifest reliable cryptographic primitives in year between 2000 and 2003. In
several categories such as block ciphers, public key encryption, etc. the cryptographic
primitives were examined for the security claims. 42 algorithms were submitted the
project. Among 42, 12 submissions were announced as “selectees”. Some selectees
are MISTY1, Camellia, Rijndael as block cipher, RSA-KEM as public key encryption,
CBC-MAC as MAC algorithm and hash functions,etc.

Cryptography Research and Evaluation Committees (CRYPTREC) [11] is set by Japa-
nese government to propose and investigate cryptographic primitives for the need of
government and industries on 2000. The committee consists of Japanese academia,
industry and government. The committee created “e-Government” in 2003. Similar to
NESSIE, they selected some algorithms in some categories.

The ENCRYPT Stream Cipher Project (eSTREAM) [18] aimed to find a new stream
cipher on the worldwide application in the years 2004-2008. eSTREAM was orga-
nized by the EU ECRYPT network. Algorithms on the competition were expected to
be suitable for hardware or software applications. Moreover, they were permitted to be
authenticated ciphers by producing output which is tag with ciphertext. In the competi-
tion eSTREAM, 7 algorithms with 4 software and 3 hardware based, were announced
as portfolio. The portfolio algorithms were HC-128 (HC-256), Rabbit, Salsa20/12
(Salsa20/8, Salsa20), SOSEMANUK, Grain, MICKEY and Trivium.

The signal of SHA-3 competition [40] was given out by NIST with Cryptographic
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Hash Workshop on 2005, and the second Cryptographic Hash Workshop on 2006. In
2007, SHA-3 was arranged to create a new hash function as a standard. The finalists,
BLAKE, Grφst, JH, Keccak and Skein were announced on 2010. The winner of com-
petition was Keccak designed by Guido Bertoni, Joan Daemen, Michaël Peeters and
Gilles Van Assche, and it ended a five-year competition. The standardization of SHA-3
was released on 2015.

Password Hashing Competition (PHC) [35] was announced in 2013 to construct pass-
word hash functions, and gave a standard password hash algorithm. The aim of compe-
tition answered the question of modern world applications which are protected towards
the attackers. It was modeled similar to AES and SHA competitions. The PHC winner
was revealed as Argon2.

1.3 CAESAR Competition

In recent years, successfully finished competitions like AES [1], eSTREAM [18],
SHA-3 [40] have been organized to answer the demands of the industry and interests in
the research community. Similarly, the CAESAR competition [7] has been initiated in
2014 in order to boost the design for the authenticated encryption tool which provides
the privacy and authenticity together. The CAESAR competition is different from the
previous competitions AES [1] and SHA-3 [40] done to determine the standard algo-
rithm since the winner is going to be determined by the competition committee being
created with the prominent academicians [7] not by NIST [33]. In addition, the com-
petition allows the designers to tweak their algorithms. These features are similar to
the competition of eSTREAM [18].

In the competition, most of algorithms are shown the traces of the construction of
algorithms in the competitions AES and SHA-3. According to the construction of
algorithms, the functions of AES are used directly or indirectly. Likewise, some algo-
rithms are used the stream cipher based system or a sponge based construction like in
the Keccak.

Nowadays, authenticated encryption is used almost everywhere such as online shop-
ping, smart cards, social networks, etc. It is a hot topic that some cryptographic algo-
rithms are in used to provide the authenticated encryption. The intensive cryptographic
studies such as design and cryptanalysis of algorithms result a standard algorithm that
does not provide the privacy and authenticity simultaneously. Because of that, some
algorithms were designed to provide AE. Yet, the cryptanalysis of algorithms was not
investigated in detail so the security of them are created the question marks. To solve
the questions, the competition CAESAR was organized. CAESAR is the acronym of
Competition for Authenticated Encryption: Security, Applicability, and Robustness.

The CAESAR competition has three-round elimination and the final round. Through-
out three rounds of the competition, a number of candidates will be eliminated at the
end of each round. Therefore, the security analysis of candidates is very important for
the CAESAR competition. Having passed all three rounds, the algorithms are going to
be determined by the votes of committee, and then they will be announced as the final
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portfolio.

There are 57 submissions for the first round of the CAESAR competition in terms of
block based, sponge based, permutation based and compress function. However, some
are withdrawn. Moreover, 19 of them are eliminated from the competition at the end
of the first round. Therefore, there are 29 algorithms left for the second round of the
CAESAR competition, and the third round started at the August, 2016 [8] with 17
algorithms. The final portfolio will be announced in December 2017 [7].

1.4 Random Numbers

1.4.1 Randomness

In statistics, an item from a set is random if each item of the set has an equal probability
to be chosen. The key, IV or Nonce in an encryption session must be random to avoid
predictability. Moreover, an encryption process is supposed to hide the redundancies
in the plaintext space. That is, the resulting ciphertexts should be appearing random to
avoid any obvious statistical cryptanalysis.

To test randomness, a random variable is defined over the space of binary sequences.
Then depending on the distribution function of this random variable, a sequence or a
set of sequences is accepted or rejected for being random.

In the 20th century, science and its outcome, technology, has developed over and over,
randomness is emerged to be so important. It has been understood that it has a relation
with statistics, physics, probability theory, information theory, cryptology, and like the
like. For example, in physics, thanks to the idea of random motions of molecules,
statistical mechanics is developed, and it explains phenomena in thermodynamics and
properties of gases [30]. The security of cryptographic systems depends heavily on the
randomness of keys.

In cryptology, random numbers are used for the applications of private keys in sym-
metric systems, IV and nonce in the initialization step of algorithms, pin-password
generation, key for MAC algorithms, RSA, banking or GSM process [30]. Random
numbers are so important that they are the sign of the security criteria of these kinds of
cryptographic systems. Therefore, the system having a high qualified random number
generator is thought to be unbreakable. The systems need to ensure random number,
namely key, due to attacks, privacy, authenticity or anonymity. The designers of an
algorithm should give its security strength in bits which are guessed by attacker to
break the system. If the ciphertext doesn’t look like random bits, i.e., ciphertext has
some clues about plaintext, then an opponent, Eve, will use them to get the key, or
whole message. Thus, it can be said that algorithms must hide the statistical properties
of ciphertext since sometimes it is not enough to be large key space without durable
encryption function. The another need of random numbers in cryptology is to pro-
vide the privacy that requires uniform randomness. In addition to the importance of
randomness on the key generation, it is important for many cryptographic algorithms,
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especially encryption algorithm. An encryption algorithm need to have a rule that is
adequate to permit work to be random, and so ciphertext of that algorithm is indistin-
guishable from the random mapping. Moreover, the reasons for random numbers make
cryptographic systems unpredictable and fresh. The freshness of systems are provided
with help of using nonce, counter, IV or AD. The other reasons for randomness are
noise and efficiency. While noise provides to hide the properties of input, efficiency
can makes the system speed up.

Generating, storage or transmission of good random numbers [42] is a crucial problem.
The problem of generation of random numbers may be overcome with rolling an ideal
dice or tossing an ideal coin. However, a million times of experiment on dice or coin
are not efficient. The other way to get random numbers is using the natural phenom-
ena such as the sound from the environmental noise, elapsed time in the radioactive
decay, mouse motions, etc. However, the generation of random numbers with these
kinds of methods is also inefficient. The reason for this, using Pseudorandom Number
Generators (PRNGs) is the most option to get random numbers that have long length
with using small length of seed which has true randomness. For example, full round
AES is a PRNG with the given plaintext and key. PRNGs are based on the determin-
istic systems, and so they have a big period. Due to the determinism of generators
with using seed from these natural phenomena, an attacker can guess some proper-
ties of generators, even s/he can get whole numbers which were produced or will be
produced.

To ensure that PRNGs are reliable, they must be subjected to randomness tests which
are designed to detect the property of randomness [30]. If a generator passes tests as
many as possible, generator is thought that it proved to be confidential.

When deciding whether an algorithm is random, we need to investigate or test the
randomness of produced sequences from the algorithm. If these sequences pass the
randomness tests, i.e., sequences generated from the algorithm are random, then the
algorithm can be accepted as random.

1.4.2 Random Sequences and Random Numbers

Given a binary sequence, if each term in that sequence has an equal probability, namely
1/2 for being 1 and 0, then the sequence is a binary random sequence.

A process which produces an integer between (0, n− 1) is random if at each instance

its outcome can take any value with an equal probability
1

n
. Any outcome of such a

random process is called a random number.

Random numbers have the following properties [42]:

1. Unpredictability: Given any t bits of a binary sequence, it is computationally
hard to predict the next bit of sequence.

2. Uniformity: In a random binary sequence, the numbers of 1′s and 0′s are al-
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most same, i.e., zeros and ones spread uniformly throughout the random binary
sequence.

3. Independence: Any two distinct terms of the sequence are equal with probability
1
2
.

1.4.3 Randomness Tests

Randomness tests are functions taking an input sequence and outputting a real value
which are so important to seek the randomness of PRNGs [17]. There are two kinds
of randomness tests: Statistical randomness tests and Cryptographic randomness tests.
Each statistical test measures whether algorithms show the randomness property or
not. Each statistical test has a distribution function which produces a value called
as, p-value in [0, 1]. If p-value of any test applied on a sequence is resulted over a
pre-determined threshold value, then it is concluded that the sequence is random. On
the contrary, if the result is below this decided value, the sequence is labeled as non-
random. In terms of results of statistical randomness test, cryptographic randomness
tests are the same. However, cryptographic randomness tests search the weaknesses
of algorithms in term of cryptographic primitives. During search on the randomness
of cryptographic algorithms, they are seemed as PRNGs as mentioned before, and like
PRNGs, they are investigated by using randomness tests. The reason for this, output
of algorithms should be random looking and give no clue about the plaintext or key;
therefore, when analyzing the output, guessing the algorithm could not be possible
[49]. Algorithms could not be identified from a random mapping so analyzing the
algorithms with randomness tests is important.

If the algorithm fails in many of randomness tests, then algorithm is seemed non −
random. However, if algorithm fails any one of them, while someone takes the al-
gorithm non-random, the others accept the algorithm random looking after checking
its randomness with further tests. Nonetheless, if an algorithm passes all randomness
tests, the algorithm is approved as random. That means the algorithm produces se-
quences having significant characteristics like a random generator [30].

When searching on a short sequence to be applied to randomness tests, it wouldn’t be
right to mention that it is applicable to be random since the definition of randomness
on the short is not easy. However, it is more precise to investigate the long sequences
for randomness to apply randomness tests [42].

It is important that tests are applied on the reduced round versions of algorithms since
analyzing the reduced round versions of algorithm is an important role on the design
of the algorithms. If the algorithm shows a deviation from randomness in the first
rounds, the designer(s) of algorithm need to increase the number of rounds, or if an
algorithm is non-random in the last rounds, it can be thought that the algorithm must
be non-random, and also it can be breakable in a simple cryptanalysis technique. Thus,
finding which round the algorithm shows non-random properties is so crucial.

There are various test packages and statistical randomness tests in the literature [2, 5,
14, 15, 23, 25, 26, 29, 39, 47, 48].
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1.5 Motivation

In this thesis, we study on the algorithms in the CAESAR Competition and the sta-
tistical randomness testing, especially cryptographic randomness testing designed by
Doğanaksoy et al [16]. We analyze π-Cipher that is one of the second round algorithms
in the CAESAR Competition. π-Cipher has a permutation function which is π-function
consisting of ∗ operation. There is two consecutive transformations E1 and E2 in the
π-function. These transformations use the ∗ operation [20]. We examine ∗ operation
and π-function and analyze the bit diffusion analysis of the ∗ operation and π-function
given by designers [20]. The authors gave the method of ∗ operation for all w word
sizes and 10000 random inputs. The results of this method were shown only with the
graphics. They did not give any conclusion about what the graphics indicate or what
the given results mean. The second method they gave is for one round of π-function for
all w variants with 1000 random inputs. In the same way, the results were shown only
with the graphics and no conclusion about them. Because of the insufficient inputs and
no conclusion about the obtain results, we analyze the parts of π-Cipher, ∗ operation
for all w = 16, 32, 64 values and the reduced rounds of π-function for w = 16, and
apply the SAC Test on these parts. We improve the bit diffusion analysis with using
220 random inputs on ∗ operation for all w variants and reduced round versions (1, 2
and 3 rounds) of π-function for w = 16 to apply SAC Test and using the different
interpretation technique for the obtained results.
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CHAPTER 2

Cryptographic Randomness Testing

In this chapter we will introduce the cryptographic randomness tests package in which
especially the Strict Avalanche Criterion Test. We use the SAC Test defined in the
recent package is designed by Doğanaksoy et.al [16] to evaluate block ciphers and
hash functions via cryptographic randomness tests. This package consists of 4 tests;
SAC Test, Linear Span Test, Collision Test and Coverage Test.

2.1 Cryptographic Randomness Testing

Although random numbers play an important role in the cryptographic systems, the
generation of random numbers is difficult. To generate a true random number, we can
use the true number generators (TRNGs). Although these sources are nondeterminis-
tic to produce random numbers, the generation with these sources, storage and transfer
of random numbers are problematic. The solution to this problem is to use the de-
terministic algorithms that are pseudorandom number generators (PRNGs). PRNGs
take a random binary sequence of length k and produce a periodic random looking
binary sequence of length l >> k [30]. The outputs of these sources are pseudoran-
dom. Because of pseudorandomness, the outputs must be checked whether they have
certain non-randomness properties. They are subjected to the statistical tests which
are designed to detect the characteristics expected from a random sequence. With that
aim, NIST published a suite of randomness tests [5] which are used to evaluate the
sequences to compare a truly random sequence via its probability; that is, the output
of generator should not be distinguishable from the random sequence, that is, it should
be random looking. Soto et al. apply NIST randomness tests suite to the candidate and
finalist algorithms in AES competition [44, 45].

Cryptographic algorithms are constructed on the generation of quantities which are not
easily predictable to provide the security of algorithms. Since an adversary does not
have a clue to catch the leakage of the system or even to break the system, the gen-
erated quantities must have an adequate length and size or have randomness property,
etc. Although the randomness property is needed to generate a key for asymmetric
or symmetric systems, the keys generated from a deterministic source may cause the
system to be broken if they show nonrandom properties [30].
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Cryptographic primitives are indiscriminate from a random function. Block ciphers,
hash functions or the other ciphers need to behave like a random mapping. Because of
that, all cryptographic algorithms must satisfy cryptographic criteria. The nonlinearity
of Boolean functions, collision resistance of hash functions are some criteria. For
example, on the block cipher, one of the cryptographic primitives is Strict Avalanche
Criterion. The criterion Strict Avalanche is that if one input of cipher is changed, then
the ciphertext bits need to be affected by changing with the probability one half .

In short, the tests in the cryptographic randomness testing package designed by Do-
ğanaksoy et.al [16] are as follows:

1. The Linear Span Test evaluates the linear dependence of ciphertext of the algo-
rithm resulted from the encryption of highly linear dependent input set.

2. The Collision Test examines the collisions of some portions of ciphertext corre-
sponding to a random subset of input set.

3. The Coverage Test looks for the size of ciphertext resulting from a random subset
of input.

4. The SAC Test searches the SAC property of algorithms.

We use the Sac Test in this thesis. The details of the SAC test are the following section.

2.2 Strict Avalanche Criterion (SAC) Test

According to Claude Shannon [41], there exist two important principles: confusion
and diffusion for all modern block ciphers to get strong ciphers. Diffusion is a criteria
that one plaintext bit change affects on the almost all ciphertext bits without any shown
statistics of a changed plaintext bit. In other words, each bit of plaintext and key should
influence many ciphertext bits [24]. Confusion is the other important criteria that there
is no evidence in the relation between key and ciphertext. The relation between the
statistics of ciphertext and key must be as complex as possible. That is, the ciphertext
depends on the plaintext statistics in a complicated manner to be broken by cryptana-
lyst [24]. In the block cipher, the confusion is provided by substitution layer, S-boxes;
on the other hand, diffusion is provided by permutation layer, P -boxes. With using
iterated substitution and permutation layers in a round, also using multiple rounds, the
secure and efficient block cipher based algorithms are basically produced.

Ciphertext should not give any clue about plaintext, i.e., Pr(P = m|C) = 2−n where
n is the length of key which means that any chosen plaintext m corresponding to ci-
phertext C should spread randomly in P , and the other side of argument should be
provided.

Similar to the importance of diffusion and confusion for block ciphers, collision resis-
tance is one of desirable cryptographic properties for hash functions. If cryptographic
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algorithms do not have these kinds of properties with significant degree, then they are
considered to have poor randomization. Infact, this situation is sufficient to break the
algorithms. Hence, cryptographic randomness testing is crucial for the algorithms to
determine security levels [49].

SAC Test is primarily recommended for S-boxes by Webster and Tavares in 1986 [51].
For an S-box, S : Fn2 → Fm2 satisfies Strict Avalanche Criterion (SAC) if for all
i ∈ 1, · · · , n and j ∈ 1, · · · ,m flipping the ith input changes the output j with the

probability
1

2
; therefore, the bias is 0.

Furthermore, SAC Test is defined in test package designed by Doğanaksoy et. al [16].
SAC test measures whether one input bit change affects any output bit changes with

probability
1

2
or not. To test SAC property, SAC Matrix is formed using 220 different

random inputs and corresponding outputs.

A sample of SAC Matrix for 220 trials looks like as follows:

524288 525371 . . . . . . . . . . . . . . . . . . . . . 526291
523478 524270 . . . . . . . . . . . . . . . . . . . . . 522365

... . . . . . . . . . . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . . . . . . . .
...

523781 524376 . . . . . . . . . . . . . . . . . . . . . 524661


n×n

When applying SAC test, random inputs plaintext, key or AD are generated, and key is
fixed. The aim of SAC test is to control the property of SAC of algorithms. To control
SAC property of plaintext and key, SAC Matrix is constructed, and if the values on the
matrix are approximately equal to the half of 220, it will be assumed that the algorithm
has the SAC property, and also it will be concluded that it looks like a random mapping.

If we take K as the number of hits which an entry gets, then the probability of it [50]

Pr(K = k) =

(
n
k

)
2n

The value of the n × n SAC matrix is evaluated with using χ2 Goodness of Fit Test
with the probabilities derived from 2.1.

The one evaluation method of the cryptographic randomness test is χ2 Goodness of Fit
Test which we have used in the evaluation of SAC Test results. The test is used for
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Table 2.1: SAC Test Ranges and probabilities for 220 trials

Bin Range Probability
1 0-523447 0.100067
2 523448-523633 0.100039
3 523634-523759 0.100490
4 523760-523859 0.100400
5 523860-523944 0.099425
6 523945-524021 0.100249
7 524022-524092 0.099741
8 524093-524160 0.100666
9 524161-524225 0.099447

10 524226-1048576 0.099476

evaluating the categorical distribution of each entry of n × n SAC Matrix [49]. With
the test, we can compare the observed data with the theoretical expected data in the
distribution. Therefore, we can determine whether the observed values are consistent
with the expected values, or if the χ2 statistic results a large value, then we can interpret
that the observed and the expected data are not close, and also this model is not suitable
fit to the data. The details of the evaluation method on the application of SAC Test is
as follows [49]:

• Divide the interval [0,1] into 10 equal subintervals,

• Apply a Goodness of Fit Distribution Test.

χ2 =
10∑
i=1

(Fi −m · pi)2

m · pi
and p-value = igamc

(
9

2
,
χ2

2

)

where Fi: the number of p-values in subinterval i, m: the number of subsequences, pi:
the probability of subinterval i, igamc: the incomplete gamma function.

If the p-value is less than 0.01, then it is assumed that the algorithm is non− random.

SAC test is done as follows:

1. Set the n× n SAC Matrix entries to 0.

2. Get a random plaintext and compute the corresponding ciphertext (original out-
put).

3. For each 1 ≤ i ≤ n:

• Flip the ith bit of the input and get the corresponding output.
• XOR the original output with the corresponding output.
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• Write the XOR result of the original output with the corresponding output
on the ith row of SAC Matrix.

4. Repeat this process for 220 different random inputs.

We use 220 different random inputs and corresponding outputs sets. After this process,
SAC Matrix is obtained. Using χ2 Goodness of Fit Test, SAC Matrix is evaluated and
p-value is obtained. Then the algorithm behaves like a random mapping is acquired,
according to the corresponding p-value which helps us to estimate the security level of
the algorithms [43].

The algorithm of SAC Test is as follows [50]:

Algorithm 2.2.1: SAC TEST(n)

Construct n× n integer arrays SAC[][];
for i← 1 to n

dofor j ← 1 to n
do{
SAC[i][j]← 0;

for i← 1 to 220

do

Take a random n− bit binary array a[];
output1[]← f(a[]); where f is the algorithm
for j ← 1 to n

dob[i]← a[i]⊕ 1;
output2[]← f(b[]);
SAC[i][j]← SAC[i][j] + (output1[j]⊕ output2[j]);

Apply χ2 of Goodness of F it test to all entries of SAC[][];

return (p− value)

If there is a difference on any entry (i, j) of n × n SAC matrix for an input, or there
also exists a difference on the same entry of the obtained SAC matrix for other input,
the difference will show that there is a signal of the relation between plaintext and
ciphertext on that entry.
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CHAPTER 3

π-Cipher

In this chapter, we will introduce our main algorithm π-Cipher which was a second
round algorithm of the CAESAR Competition and the 3rd round announced at August
2016. Moreover, we will express bit diffusion analysis given by designer, and attack
done by others.

3.1 π-Cipher

πw-Ciphern which is an AEAD cipher provides w-bit word sizes and n-bit security
which is the length of key. π-Cipher has general design properties such as

• parallel,

• incremental,

• provably secure,

• Nonce based AEAD.

π-Cipher is an Encrypt-then-MAC algorithm; in fact, it is a stream OAE2+ algo-
rithm. Its parallel and incremental design is similar to counter based XOR-MAC. It
uses a counter based sponge based component, namely triplex component. The triplex
component uses π-function which is a permutation on ARX operations.

Table 3.1: π-Cipher Variants

π-Cipher
variants

w
word size

klen
in bits

SMN
in bits

PMN
in bits

N
Chunk

T
in bits

π16-Cipher096 16 96 0 or 128 32 4 ≤ 128
π32-Cipher128 32 128 0 or 256 128 4 ≤ 256
π64-Cipher128 64 128 0 or 512 128 4 ≤ 512
π64-Cipher256 64 256 0 or 512 128 4 ≤ 512
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π-Cipher has a flexible block size. Encryption/Authentication part of it uses a fixed-
length key, message and AD in bytes; also, it accepts the fixed-length PMN and SMN.
Moreover, its output is the ciphertext and a fixed-length tag in bytes.

π-Cipher has 4 different variants in the version v2.0:

• π16-Cipher96,

• π32-Cipher128,

• π64-Cipher128,

• π64-Cipher256

which is designed by Gligoroski et al., and the size of internal state varies according to
the word w and N = 4 so it can be 256, 512 or 1024 bits respectively w = 16, 32 and
64. Moreover, it consists of three rounds [20].

Figure 3.1: π-Cipher process of initialization, secret message number, associated data
and plaintext; also, generation of tag.

As shown in Figure 3.1, the encryption scheme is divided into four parts: initialization,
associated data processing, secret message number processing, processing plaintext
with generation of tag.
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Figure 3.2: The triplex component for encryption (e-triplex).

Moreover, the encryption/authentication and decryption/verification of the algorithm
have a new construction namely triplex component which is related to the dublex
sponge as in the Figure 3.2.

Figure 3.3: The triplex component.

The triplex component takes the internal state, counter and input string as inputs, and
then it always outputs the authentication tag as in the Figure 3.3.

The 4 parts of π-Cipher use a permutation which proceeds the π-function. π-function
is an ARX based permutation and is the core part of the algorithm. It consists of three
rounds. Each round has two consecutive transformations called E1 and E2. These
transformations are based on ∗ operation given in Figure 3.4. In other words,

Z = X ∗ Y ≡ σ(µ(X) �4 ν(Y ))

where �4 is the component-wise addition of two vectors of 4 dimensions in Z4
2w , w=

16, 32, 64, andX, Y and Z in Z4
2w have different word sizes for types of π-Cipher [20].

21



Figure 3.4: Graphical representation of ∗ operation.

Details of the transformations σ, µ, ν that provide the diffusion of nonlinear mixing of
input variables can be found as follows:

• The transformation σ : Z4
2w → Z4

2w is a permutation such that

σ(X0, X1, X2, X3) = (X3, X0, X1, X2)

where (X0, X1, X2, X3) ∈ Z4
2w .

• The transformation µ : Z4
2w → Z4

2w is a permutation such that

µ(X) = A2(ROTL(A1X �4 C))

where A1 and A2 are 4 × 4 matrices over Z2, ROTL is a rotation and C is a
constant defined in [20].

• The transformation ν : Z4
2w → Z4

2w is a permutation such that

ν(Y ) = A4(ROTL(A3Y �4 C
′))

where A3 and A4 are 4 × 4 matrices over Z2, ROTL is a rotation and C ′ is a
constant defined in [20].

The π-function has two consecutive transformation E1 and E2 for each round. In the
figure 3.5, the definition of E1 is

E1 : (Z4
2w)N+1 → (Z4

2w)N

such that
E1(C1, I1, ..., IN) = (J ′1, ..., J

′
N)
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where
J ′1 = C ′′ ∗ I1,
J ′i = J ′i−1 ∗ Ii

for i = 2, ..., N andC ′′ is a 4-tuple ofw-bit constant defined in [20] while the definition
of E2 is

E2 : (Z4
2w)N+1 → (Z4

2w)N

such that
E2(C2, J

′
1, ..., J

′
N) = (J1, ..., JN)

where
JN = J ′N ∗ C ′′′,

JN−i = J ′N−i ∗ JN−i+1

for i = 1, ..., N − 1 and C ′′′ is a 4-tuple of w-bit constant defined in [20].

Figure 3.5: Graphical representation of E1 and E2 transformations in 1-round π-
function

π-function is defined as follows for one round:

π(I1, ..., IN) = E2(C2, E1(C1, I1, ..., IN))

where N is taken the value 4 [20]. In version 2, the round number is reduced from 4 to
3. Thus, with this light, the π-function with 3 rounds is defined as
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π(I1, ..., IN) = E2(C6, E1(C5, E2(C4, E1(C3, E2(C2, E1(C1, I1, ..., IN))))))

where Ci’s are 4-tuple of w-bit constants for i = 1, 2, 3, 4, 5, 6 defined in [20].

3.2 Bit Diffusion Analysis of π-Cipher

The designers of π-Cipher give the bit diffusion analysis of ∗ operation ofw=16, 32, 64
and one round π-function for π16-Cipher, π32-Cipher and π64-Cipher. They construct
two experimental settings to evaluate the bit diffusion in the analysis. The first one of
settings for ∗ operation is that they take 10000 randomly generated right and left inputs
of ∗ operation, and then they analyze the propagation of one bit difference for 10000
inputs as follows:

1. Compute Z = X ∗ Y where X and Y are inputs and Z is output of ∗ operation.

2. Evaluate Z ′ = X ′ ∗ Y where X ′ is an input of ∗ operation such that

HammingDist(X,X ′) = 1.

3. Measure the Hamming distance between Z and Z ′.

They repeat the same process for Y . After doing these, they represent the results in
figures for X and Y in the values of w = 16, 32, 64 without any conclusion [20]. The
second setting for one round π-function is that they take 1000 randomly generated
inputs for IS of π-function, and then they examine the bit difference propagation for
1000 inputs as follows:

1. Compute the output of one round π-function of IS.

2. Evaluate the output of one round π-function of IS ′ where is an input of one bit
change in IS.

3. Measure the Hamming distance between π(IS) and π(IS ′).

Do this on all of π16-Cipher, π32-Cipher and π64-Cipher. Then they give the results
in figures in terms of minimum, average and maximum avalanche effect of one bit
difference of π16-Cipher, π32-Cipher and π64-Cipher without any conclusion [20].

3.3 Cryptanalysis of π-Cipher

3.3.1 Cryptanalysis given by Leurent

In the cryptanalysis paper of π-Cipher [27], an extra property of algorithm is supposed
to the tag second preimage resistance. The problem of the second preimage tag is a
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kind of Knapsack problem. The attack done by Leurent is applied with the efficient
solution of the generalized birthday attack of Wagner since the word-wise addition,
�8, is used in the π-Cipher. This attack is against the m-sum problem that is found
the values l1 ∈ L1, l2 ∈ L2, . . . , lm ∈ Lm where m lists given L1, L2, . . . , Lm of n-bit
such that ⊕mi=1li = 0. Similar to this, π-Cipher algorithm has the generation of tag of
m-block message, i.e.,

T = T ′′ �8 e(1,M1) �8 e(2,M2) �8 . . .�8 e(m,Mm)

where e means e-triplex, �8 is a component-wise addition of 8-element vectors in Z2w

and T ′′ is the associated data tag.

A tag second-preimage attack is done by building a message obtaining a fixed tag
T with the assumed information of T ′′ = 0 and T = 0. The obtained results are
represented in the table [27].

3.3.2 Cryptanalysis given by Fuhr et al.

Fuhr and Leurent discover the forgeries because of π-Cipher padding process [19]. In
the padding process, if the length of last block of plaintext or AD is inadequate, then
10 . . . 0 byte string is added to it; however, the padding function is supposed not to be
injective. The fact that this causes the forgery attack is not applicable to the principle
of nonce-based AEAD scheme. They claim that the forgery attack can be applied in
the ciphertext by dropping some ciphertext bytes, and it can be successful with the
probability 2−8 in the ciphertext only attack scenario.

3.3.3 Cryptanalysis given by Mihajloska et al.

In this work [31], the authors mentioned a new design of mode of operation with
intermediate tags for π-Cipher which permits the tag verification of a long message
on the device having less memory without giving unverified message. The mode of
operation has such properties: parallelism, online encryption, and also nonce misuse
resistance in the intermediate level for decryption. This level makes cipher robust with
using SMN as a part of nonce. This mode of operation does not make the inverse
primitive calls. That allows a single implementation of permutation for E/A and D/V.
They give the security proof of privacy and authenticity with intermediate tags with
the result of min{2k, 2c, 2b/2}.

3.3.4 Cryptanalysis given by Alley et al.

Alley and Pieprzky show the state recovery attacks in [3] where is up to three rounds.
In the bitrate of internal state, the known values used by the state recovery attack plus
obtained values from exhaustive search are used for getting the rest in the internal state.
With these attacks, one round of any variants of π-Cipher can be broken. Moreover,
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these attacks including divide-and-conquer attack can break two and three rounds of
some variants faster than exhaustive search on the key for the version 1 of π-Cipher.
In the version 2.0, the padding rule was changed; however, this attack works for one
round of version 2.0 submission with the given distinguisher.

3.3.5 Cryptanalysis given by Boura et al.

The attack [10] is that authors propose a guess and determine attack on some variants
of π-Cipher. They show the key recovery against 2.5-round of π-Cipher with time
complexity approximately 24w where w is the word size and low data complexity.
For example, the time complexity of attack for π16-Cipher96 with 2.5-round is 272.
They mentioned that the security claims given by designers is very limited. Their
attack complexity for 2 full rounds is 272 while the designers claim that the security
margin 96 and 128 bits for π16-Cipher96 and π16-Cipher128, respectively. Moreover,
according to the first submission paper, it provides 128 and 256 bits of security for
π16-Cipher128 and π32-Cipher256 in the 4 rounds; yet, the key recovery attack for
2.5 rounds is 272 and 2137, respectively. They claim that they exploit a weakness in the
π-function.
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CHAPTER 4

SAC Test Application on π-Cipher

Our contribution is that we improve the bit diffusion analysis of π-Cipher carried out
by designers [20] with using more random inputs, the different technique, SAC Test,
and the interpretation of the obtained results. In this chapter, we give the details of
the application of SAC Test on the parts ∗ operation and π-function of π-Cipher. We
use ∗ operation for w = 16, 32, 64 and π-function of one, two and three rounds for
π16-Cipher, reduced round versions of π-function for w = 16, to apply our method
and get output sets. We explain how SAC Test is applied on ∗ operation and π-function
and interpret the obtained results.

We use two ways to apply SAC Test on ∗ operation and π-function:

4.1 SAC Test Application on ∗ operation and its Results

In this section, we mention applying SAC Test to ∗ operation for w = 16, 32, 64 and
interpreting the achieved results.

First, the diffusion property of the ∗ operation is analyzed since ∗ operation is the main
operation of π-Cipher permutation. For this analysis, the below steps are followed.

1. Firstly choose a random Y and fix this value.

2. Choose a random X and compute the output of ∗ operation such that Z = X ∗Y .
For each i where i = 0, ..., n− 1.

3. Generate Xi by flipping the ith bit of X and compute Zi = Xi ∗ Y .

4. Increment the (i, j)th entry of the n× n SAC matrix if jth bit of Z ⊕ Zi is 1.

5. Repeat the steps 2 to 4.

The procedure is carried out for 220 different values of X . Also, the same steps are
repeated for Y with fixed X as well. This way is pursued on ∗ operation for w =
16, 32, 64. We apply a χ2 Goodness of Fit Test to the SAC matrix with the subinterval
probabilities stated in the section of SAC Test [16].
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We observe that the applications of SAC Test on ∗ operation forw = 16, 32, 64 for both
inputs X and Y give the values of p < 0.01. Therefore, ∗ operation is non-random for
the word sizes w = 16, 32, 64. The results for these bits are presented in Table 4.1 and
Table 4.2.

Table 4.1: Results of SAC Test for X for w = 16

Position of the flipped bit Avg. number of output bit changes
2 15.26

50 16.24
17 16.35
18 16.40

Table 4.2: Results of SAC Test for Y for w = 16

Position of the flipped bit Avg. number of output bit changes
33 15.86
34 15.86
49 16.18
50 16.37

The fall in some bits such as 2, 17 and 33 shows that the difference in these bits does
not spread out less than other points throughout the output 4.1. The results indicate
that if there is a difference in the 2nd bit of X , then 15.26 output bits change in average
and this may be the starting point of a cryptanalysis.

Figure 4.1: Bit diffusion of ∗ operation of input X and Y for w = 16 [20].

The only nonlinear part of the ∗ operation is the modular addition: the diffusion layer
consists of two simple permutations and one rotation. Experimental result indicates
that a single bit difference in the input affects 18 bits on average instead of the ex-
pected 32. Furthermore, we know that the difference in the leftmost bits of each mod-
ular addition results less number of bit changes in the output due to the differential
characteristics of modular addition.
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Similar to ∗ operation for w = 16, ∗ operation for w = 32 and w = 64 have the same
drastic fall in the figures 4.1, 4.2 and 4.3 given by designers [20] in every 32-bit and
64-bit respectively.

Figure 4.2: Bit diffusion of ∗ operation of input X and Y for w = 32 [20].

Figure 4.3: Bit diffusion of ∗ operation of input X and Y for w = 64 [20].

4.2 SAC Test Application on π-function and its Results

The second analysis method of the cipher using SAC Test is the statistical examination
on the bit diffusion analysis of π-function, the internal state (IS). Similar to the first
method, the procedure of first step is to take an input and compute its output, also the
second step is to observe the examination the XOR of output corresponding the input
which has the only one bit difference and the original output. To put in mathematical
terms:

1. Take an input I in (Z4
2w)N such that π(I0, . . . , Ib−1) = J where b = N × 4× w

and N = 4, so b = 4× 4× w.
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2. Change the input bit Ii for i = 0, . . . , b − 1 and compute the corresponding
output, i.e., π(¬I0, . . . , Ib−1) = J1,. . . , π(I0, . . . ,¬Ib−1) = J b.

3. XOR the corresponding output of one bit change input and the original output,
i.e., J i ⊕ J for i = 1, . . . , b.

4. Write the result of XOR into ith row of the b× b SAC matrix.

The procedure is performed for only one input, so we need to try it for 220 different
inputs due to the more random or non-random evaluation of diffusion of π-function
from 1 to 3 round of π16-Cipher.

Table 4.3: SAC Test for π-function for w = 16

SAC Test results for π16-Cipher
1 round 2 rounds 3 rounds

p-value 0.969954 0.429349 0.774130

We apply SAC Test for the reduced round versions of π-function for π16-Cipher. We
observe that all p-values obtained from the test are 0.969954, 0.429349 and 0.77413
for 1, 2 and 3 rounds of π-function, respectively. Since all p-values are greater than
0.01, we conclude that all versions of π-function for π16-Cipher are random.

Figure 4.4: Bit diffusion of π-function for w = 16 in [20]

There are drastic falls in the last bits of one round π16-function in the figure 4.4 since
π-function has two consecutive transformations E1 and E2 in the figure 3.5. Transfor-
mations E1 and E2 consist of ∗ operation which is ARX. The right part of the input is
subjected to five ∗ operations whereas the left part of input is processed with eight ∗
operations as it can be seen from figure 3.5. That is, the differences in the last bits of
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IS for π-function deal with less ∗ operations, and so there are certain decline at these
output bits of π-function. Despite all, π16-function is random for all reduced rounds.
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CHAPTER 5

Conclusion

In this thesis, we study on the topic of Authenticated Encryption algorithms in the
CAESAR Competition and the statistical randomness testing, especially cryptographic
randomness testing designed by Doğanaksoy et al [16]. We choose π-Cipher that is
one of the second round algorithms in the CAESAR Competition, and then we study
on it. We catch some points of algorithm which will have been improved. π-Cipher
has a permutation π-function consisting of ∗ operation which is ARX operation. In
the π-function, there is two consecutive transformations E1 and E2. These transfor-
mations use the ∗ operation with the defined constants in [20]. Firstly, we examine
the working principles of ∗ operation and π-function. Then, we analyze the method
of bit diffusion analysis of ∗ operation and π-function given by designers [20]. They
gave the method for X and Y parts of ∗ operation with using all w word sizes and
10000 random inputs. The results of this method were shown only with the graphics
for all w variants. They did not give any conclusion about what the graphics indicate
or what the given results mean. In the same way, they gave the method for one round
of π-function for all w variants with 1000 random inputs. The results were shown
only with the graphics; yet, they gave them without any conclusion. Because of this,
we decide to improve the methods given by designers and represent what the obtained
results are. Therefore, we apply Strict Avalanche Criterion (SAC) Test to all versions
for ∗ operation and π16-Cipher for reduced round versions of π-function where SAC
Test is one of the cryptographic randomness test proposed in the recent test package
designed by Doğanaksoy et al. [16], and SAC test determines the number of rounds
that algorithm behaves like a random mapping by analyzing the relation between in-
puts and outputs. With this method, it is aimed to get a single p-value related with the
data set under consideration through a large set of p-values produced by SAC test. Fi-
nally, we analyze the parts of π-Cipher, ∗ operation and π-function, and apply the SAC
Test on these parts. We improve the evaluation methods of bit diffusion analysis for
∗ operation and π-function given by the designers of the algorithm. According to the
corresponding test results given in the Table 4.1, 4.2, 4.3 in Section 4, we determine
that the algorithm behaves random up to how many rounds, and explain the diffusion
of ∗ operation and π-function in further details. We explain that why ∗ operation has a
non-random behavior, and show the results of random π-function for all reduced round
versions according to the cryptographic randomness test, SAC Test.
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APPENDIX A

The bin values of ∗ operation for w = 16, 32, 64 and π-function for
w = 16

Table A.1: SAC Test ranges and probabilities for ∗ operation of w = 16

Bin Range Probability
1 0-26 0.0843215
2 27-28 0.106545
3 29-30 0.163124
4 31-31 0.093362
5 32-32 0.0993468
6 33-33 0.0963362
7 34-34 0.087836
8 35-35 0.075288
9 36-37 0.106545
10 38-64 0.0843215

Table A.2: SAC Test ranges and probabilities for ∗ operation of w = 32

Bin Range Probability
1 0-55 0.0663124
2 56-59 0.146907
3 60-61 0.116131
4 62-62 0.0661531
5 63-63 0.0693032
6 64-65 0.139689
7 66-67 0.127369
8 68-69 0.102666
9 70-72 0.146907

10 73-128 0.0923413

39



Table A.3: SAC Test ranges and probabilities for ∗ operation of w = 64 and π-function
of w = 16

Bin Range Probability
1 0-112 0.0262358
2 113-119 0.117759
3 120-122 0.101927
4 123-125 0.131444
5 126-128 0.147544
6 129-130 0.0977251
7 131-131 0.0464489
8 132-133 0.084995
9 134-138 0.151298

10 139-256 0.0946239
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