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ABSTRACT

UNCERTAINTY QUANTIFICATION OF PARAMETERS IN LOCAL
VOLATILITY MODEL VIA FREQUENTIST, BAYESIAN AND

STOCHASTIC GALERKIN METHODS

Animoku, Abdulwahab
Ph.D., Department of Financial Mathematics
Supervisor : Prof. Dr. Ömür Uğur

September 2018, 134 pages

In this thesis, we investigate and implement advanced methods to quantify un-
certain parameter(s) in Dupire local volatility equation. The advanced methods
investigated are Bayesian and stochastic Galerkin methods. These advanced
techniques implore different ideas in estimating the unknown parameters in
PDEs. The Bayesian approach assumes the parameter is a random variable
to be sampled from its posterior distribution. The posterior distribution of the
parameter is constructed via “Bayes theorem of inverse problem”. Stochastic
Galerkin method involves propagating uncertainty into a deterministic input
parameter and then quantifying the randomness in the solution. In addition,
the performance and numerical analysis of each approach are studied.

Keywords: Local volatility, Bayesian analysis, Stochastic Galerkin method, Tikhonov
regularization
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CHAPTER 1

INTRODUCTION

In the last two decades, there have been significant improvements in developing
financial instruments for investment and hedging purposes. Due to the impor-
tance of these instruments for the stability of the economies of countries around
the world, it is imperative to correctly price them to avoid arbitrage opportu-
nities. The most recent, infamous 2008 financial crisis is on a large part due
to mismanagement and exploitation of financial instruments for arbitrage op-
portunities. Therefore, active research are being held in the field of Financial
Mathematics to capture the behavior of the underlying market processes of these
instruments with more exhaustive and sophisticated models. Typically, an agent
chooses a model and calibrate it to the observable market prices as a benchmark
to avoid mis-pricing. However, due to uncertainty in the calibration procedure
and model type, different agents would obtain varied prices. A small mis-pricing
among these agents could lead to other market agents making risk-less profits
off this mis-pricing.

Today, one of the most commonly used derivative instruments are options. An
option can either be a call or put. A call (put) option gives the buyer the
right but not the obligation to buy (sell) an underlying at an agreed upon price.
An option of the European type only allows exercising of the option at maturity
while the American type option allows exercising anytime until maturity. Option
as an instrument is widely used as a calibration and hedging instruments. Pric-
ing options involve some set of input parameters, such as, interest rate, volatility,
strike price, and maturity date of the option. Among these input parameters,
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only volatility is unobservable in the market. Several models such as Black-
Scholes, local volatility, and stochastic volatility models that exist in literature
try to capture the uncertainty of the underlying asset’s volatility. Within these
models exist different assumptions around the volatility that create model un-
certainty. For example, Black-Scholes model assumes an asset dynamics where
the volatility is taken to be constant. This is the simplest form of all the models
taken computational time and model complexity into account. Although in this
model, the market is complete, it does not explain the volatility smile inherent
in the implied volatility of the market option prices.

On the other side, there are the stochastic and jump diffusion volatility models
that introduce new sources of randomness into the asset’s dynamics. With this
additional stochasticity, these models do not replicate every contingent claim in
the market. Therefore, in order for these models to reproduce the market prices
accurately to a certain degree, there is a trade-off between incompleteness and
complexity with numerical accuracy.

In between these two extreme ends is local volatility that operates under the
completeness of the market and reproduces a deterministic volatility that ex-
plains the smile effect. Thus, local volatility gives the right balance between
model complexity and representation of reality.

Other sophisticated models exist, one of which, for instance, the so called hybrid
models that synergize the features of two or more models to create a new one.
Examples of these are stochastic-local volatility and stochastic-jump diffusion
models [2, 47, 50, 53].

Furthermore, calibration of the above financial models does not accurately re-
produce all market prices. This can lead to inconsistencies and mis-pricing
discussed earlier. On the flip side, there might not be enough observable prices
to determine the calibration parameters uniquely from the model. Also, there
is a question of stability for a calibrated model–as small change in observable
prices can lead to large change in the calibrated parameter. This leads to pa-
rameter uncertainty which can create difficulty in hedging risk if the parameter
is not properly quantified.
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In the current literature, despite the above calibrated problems, most of the
efforts are geared towards finding the single unique parameter that reproduces all
the prices in the market. Little work is done in checking for the robustness of the
calibrated parameter. The stability of the calibrated parameter is important for
two reasons, since a disproportionate change in the parameter for a small change
in market price can lead to greater risk for any investment made that depends on
such parameter. First, it enables proper risk management and other quantitative
measures associated with such investments. Second, it gives confidence on the
calibration results based on the data set.

In this thesis, we will concentrate on handling these fairly common calibration
problems for local volatility model. We do this in two ways: first, we restructure
the inverse problem into Bayesian framework to obtain a whole distribution
for the calibrated parameter; second, we optimize for the distribution of the
parameter using stochastic Galerkin approach.

The Bayesian approach provides a natural way of assigning probabilities to
points in the parameter space by combining a set of prior information with
likelihood function. The so called posterior density constructed via this method
can be used for subsequent pricing and hedging of financial instruments such
as exotic options. The Bayesian method is a powerful approach since it allows
updating of the model as new prices are observed anytime in the market. This
creates consistency for the calibrated parameter through time.

For the stochastic Galerkin approach, we quantify the parameter uncertainty by
using polynomial chaos expansion as a natural way to represent the observable
prices treated as random variables. In this approach, the coefficients of the
orthogonal polynomials are first determined through a discretization scheme.
Then, by an error minimization procedure, the model parameters are estimated.

1.1 Motivation and Goals

In the previous section, we have already established the importance of the volatil-
ity parameter used in pricing of options and other instruments that are used as
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investment and hedging tools. The volatility as a calibrated parameter should
also exhibit volatility skewness (or sneer) if model is correctly calibrated. One
motivation for choosing local volatility model in our study is that it reproduces
volatility surface with skewness. On the other hand, the choice of the numerical
techniques in handling the inverse problem associated with characterizing the
volatility function is also important. In this thesis, we focus on two advanced nu-
merical techniques, namely: Bayesian analysis and stochastic Galerkin method.

In the last decade, there have been few contributions to the literature regard-
ing the use of Bayesian analysis, especially in application to financial prob-
lems [25, 26, 45, 46]. Our work is among the few that highlights the impor-
tance of formulating and solving a financial problem, especially one with a non-
parametric parameter estimation . More uniquely, we have incorporated the use
of Markov chain Monte Carlo (MCMC) in sampling the volatility estimates from
the posterior distribution. The advantages of having a distribution for volatility
via Bayesian analysis is wide and enormous. For example, having a distribution
of parameters with each having assigned probabilities allows for construction
of volatility surfaces with different confidence levels. Therefore, an agent can
subsequently price the financial instruments like options with the estimates in
these surfaces with their corresponding confidence levels. Instead of one true
parameter value that could lead to a large loss in wealth, the investors choose
from several prices corresponding to multiple parameter values with assigned
probabilities and confidence levels. We would explore more on this in Chap-
ter 4.

Another goal of this thesis is to add to a growing literature on uncertainty quan-
tification via spectral methods. Dupire local volatility equation can be reformat-
ted into a constrained (parabolic) partial differential equation (PDE). We then
solve this PDE constraint via a stochastic Galerkin approach in an optimization
procedure that involves, for instance, the use of Levenberg-Marquardt algorithm.
Also, not much work has been done in using such an advanced and powerful nu-
merical technique in solving financial problems. Therefore, we will explore some
theoretical understanding of this methodology from uncertainty quantification
perspective. We will also give some insights in applying the concepts to obtain
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the calibrated volatility surface.

This thesis is focused on estimating the volatility via Dupire local volatility
model by employing various statistical and advanced numerical techniques. The
theoretical frameworks of the model and the numerical techniques used will be
discussed in details. Consequently, the distribution of volatility surfaces accord-
ing to each method used will be obtained. In addition, the implications of the
results for financial agents and investors will be analyzed and recommendations
will be proposed.

1.2 Literature Review

In this section, firstly, we will discuss the developments of various volatility
models in the literature. Secondly, we will give a more elaborate understanding
of the literature regarding the numerical techniques used throughout this thesis.

One of the earliest analytical models proposed in finance to price a financial
instrument (option) is Black-Scholes model [14]. Since then, the variety of fi-
nancial models has grown more and more. One of the major reasons for this
growth can be attributed to the financial crisis that made investors demand more
accurate pricing models. In the context of derivative pricing, volatility models
were developed to avoid mis-pricing of the financial instruments. Specifically, in
1994, Dupire [33] published his paper on local volatility model. In his model, the
volatility is assumed to be a function of asset value S and time t. This produces
a more consistent result with the market volatility smile. Therefore, the local
volatility model reproduces a more realistic volatility surface when compared to
the Black-Scholes model. Furthermore, Derman and Kani [28] also contributed
independently to the foundation of local volatility model. More on this will be
presented later in Chapter 2.

In addition, more complex volatility models have also been proposed. For ex-
ample, Hull and White [53] introduced the stochastic volatility model, in which
a new source of randomness called volatility of volatility is introduced. Over
time, different variations of this model have been introduced into the literature,
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for example, Heston and SABR models [50, 47]. The use of stochastic volatility
models in explaining the smile effect is detailed in [29, 47].

Another important form of volatility model that has been established in litera-
ture with far outreach is the jump diffusion model. In such a model, a Lévy or
various forms of Poisson processes are used to model the jump sizes. Several au-
thors have studied on the calibration of jump diffusion processes to the market.
The works of Merton [69], Zhou [90], and Hilberink et al. [52] highlight these
applications.

Meanwhile, we review some of the existing results in literature on the use of
Bayesian approach to estimate parameters in a parametric and non-parametric
models. The books by Ralph [75], Fitzpatrick [38], and Gelman et al. [40] have
been used as the basis of references throughout this thesis. As mentioned earlier,
the Bayesian inference have only gained popularity in the last two decades. One
of the earlier work dates back to 2002 by Jacquier et al. [57]. The authors
showed that the Bayes’ estimators of a stochastic volatility model performed
better than moments and quasi-likelihood estimators. In the case of interest
rate modeling, Bhar et al. [12] have used dynamic Bayesian approaches to
calibrating instantaneous spot interest rates.

More recently, the work of Gupta & Reisinger [45, 46], Darsinos & Satchell
[25, 26] show the application of Bayesian method to local volatility modeling.
The first paper [45], reformats the Dupire local volatility equation into Bayesian
inference by constructing a set of posterior estimators for the calibrated volatility
parameter. The consistency of the Bayesian estimates of the volatility surfaces
were constructed. In [46], the authors measured the risk uncertainty of the
Bayesian estimates and the use of these estimates in hedging. In [25], a joint
prior distributions for the asset price St and the constant implied volatility σ in
Black-Scholes model were formed. Therein, the posterior distribution consists of
a joint density for asset price St and Black-Scholes European call option prices.
The marginal density of the option prices are computed from the joint posterior
density. Subsequently, in [26], the authors use this marginal density to predict
the call option prices for a day ahead. More details can be found in the articles
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highlighted so far and the references therein.

On the other hand, we discuss some of the literature that extensively explain the
application of spectral methods in solving PDEs. In this thesis, we have made
use of the books [65, 75, 87] and the references therein as basic tools for un-
derstanding the mathematical concepts behind the stochastic Galerkin method.
Furthermore, the articles [21, 88] are very helpful in understanding the numer-
ical application of stochastic Galerkin method. However, to the best of our
understanding, this method has not been adopted in solving the Dupire local
volatility nor has it been used to construct volatility surfaces for other volatil-
ity models. Hence, our work will be one of the first application of stochastic
Galerkin method in estimating the local volatility surfaces through an optimiza-
tion approach. However, other methods such as Finite Difference method and
Finite Element method have been used in solving volatility models and pricing
strategies. The books by Mikhailov et. al. [70] and Hilber et. al. [51] highlight
the use of these methods respectively.

1.3 Outline

The objective of this thesis is to make practical contribution to the calibration
of non-parametric financial problem using Bayesian and stochastic Galerkin ap-
proaches.

In Chapter 2, we seek to understand the calibration problem. Firstly, we set
up the calibration equation as an inverse problem. Furthermore, we discuss the
conditions necessary to have a well-posed inverse problem. Consequently, the
regularization techniques in handling the ill-posedness of the inverse problem
are analyzed. Secondly, we reformat the Dupire local volatility as an inverse
problem. Here, we focus on setting up the assumptions guiding the local volatil-
ity model as well as the challenges facing the solution of the model. Finally,
we give some literature review on different regularization techniques in handling
the ill-posedness of the Dupire local volatility.

Chapter 3 focuses on the frequentist approach to parameter estimation. Firstly,
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we show the mathematical derivation of the sampling distribution under linear
regression model. Secondly, the sampling distribution under the nonlinear para-
metric model is explained. Finally, in this chapter, we discuss the numerical
implementation of frequentist approach in constructing local volatility surfaces.

In Chapter 4, we focus on understanding the theoretical and practical applica-
tion of Bayesian analysis. Firstly, we discuss the Bayes’ formula and different
Bayesian estimators. Also, the advantages and challenges using this method
are also analyzed. Secondly, we concentrate on the theoretical framework of
establishing the consistency of Bayes’ estimators. Thirdly, we discuss Markov
Chain Monte Carlo method of sampling estimates from a posterior distribu-
tion obtained via Bayesian method. Here, we start with the basics of Markov
Chains and Metropolis Hasting Algorithm. We give a holistic view on Markov
chains and give some theorems regarding the convergence of MCMC estimates.
Moreover in this chapter, we highlight the mathematical tools regarding the ap-
plication of Bayesian method in deriving posterior densities for local volatility
parameter via different statistical models and error distributions. Finally, we
give numerical examples and interpret the results obtained. The convergence
of the MCMC estimates is analyzed and some discussion is made based on the
results.

In Chapter 5, we consider the use of stochastic Galerkin method in solving the
local volatility model. Firstly, we give details on expressing random variables
using polynomial chaos expansion. We also give some examples in understand-
ing this concept using various distributions. Secondly, we discuss the general
approach of solving partial differential equations using stochastic Galerkin ap-
proach. Moreover in this chapter, we give the mathematical formulation of
solving the local volatility model with the numerical results and volatility sur-
face given. Here, we compare the results obtained via the stochastic Galerkin
method to Bayesian as well as the surface constructed via Monte Carlo method.

In the final chapter of the thesis, Chapter 6, we summarize the main results of
our findings and make some discussions. We also give insight to possible ways
to improve our work and outlook for further studies.
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CHAPTER 2

CALIBRATION OF LOCAL VOLATILITY

In this chapter, we set up the local volatility as an inverse problem. Here, we
discuss the conditions under which the solution of the local volatility model
is well-posed. In addition, Tikhonov regularization used in obtaining smooth
volatility surface is explained. Furthermore, we mention the various forms of
local volatility equations and their practical usage. Finally, we discuss in greater
details some existing literature on different methods of solving the local volatility
model.

As explained in the previous chapter, the pricing of financial security (for ex-
ample options) involves an underlying asset process and some input parameters.
One of such input parameters is volatility, which measures the fluctuations in
the return of the asset price process. This parameter is also termed as the stan-
dard deviation of the asset’s returns. The volatility is significant in that it is
the only input parameter that can not be measured directly from the market,
hence, it has to be estimated via a realistic financial model. In the past couple
of decades, many of such models have been proposed in the literature. In this
thesis, we focus on the Dupire local volatility model. This model characterizes
the volatility as a function of asset price level St and time t. Given that the
motivation behind this model is to find a realistic way of modeling the volatility
skewness that Black Scholes model fails to address, the volatility function can be
derived in terms of strike price K and maturity T. Therefore, for a single asset,
the volatility surface can be obtained to price variety of options with different
strike prices and maturities.
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However, in order to characterize the local volatility function non-parametrically,
we need to calibrate the local volatility model to a market data of option prices.
This procedure is an inverse problem. This is so, since we know analytically how
to get to the option prices via the Dupire local volatility model but not from the
prices to the model parameters. Hence, the calibration problem is an inverse
problem of moving from the market prices to the parameter that fit the data. In
addition, since the market data is given up to a bid-ask spread, the calibrating
parameter should be determined accordingly to avoid arbitrage opportunities.

Most of the calibration methods proposed in the literature use a best fit approx-
imation analysis by running a minimization algorithm over the squared errors
constrained by the parameter space. For example, in [1, 3, 63], the authors use
the minimization approach to finding the best fit solutions in L2 space. We
explore a probabilistic approach of solving this non-parametric inverse problem
through Bayesian framework. This approach allows us to assign probabilities
to the volatility values obtained at the discretized points on each volatility sur-
face. Furthermore, we can also compute the surfaces using confidence intervals
to characterize the risk of each surface. Thus, the Bayesian approach we have
adopted in this thesis no longer needs to find the best model that replicates
the prices observed in the market. Rather, we solve an entire class of models
by obtaining probable class of volatility surfaces that can replicate the market
option data within the bid-ask spread.

This chapter is structured as follows: In Section 2.1 and Section 2.2, we formal-
ize the inverse problem set up and discuss the properties of well-posedness and
regularization methods. In Section 2.3, we present the local volatility model in
different functional forms. Furthermore, in Section 2.4, the error minimization
procedure for solving the Dupire equation will be explained. Finally, in Sec-
tion 2.5, we give some literature review on different methods of calibrating local
volatility function.
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2.1 Inverse Problem

In this section, we give the general inverse problem set up for parameter esti-
mation. We also discuss the ill-posedness of inverse problem and conditions for
a well-posed problem. Furthermore, we highlight the regularization techniques
used in solving an ill-posed problem.

Many problems in nature are often modeled as an inverse problem. Many sci-
entists and engineers generally desire to relate some set of observations from
measurements or experiments to some physical parameters q, characterizing a
model. Consider the following equation

F (q) = d, (2.1)

where d is the set of physical observations, F is a function relating q and d, and
q is the set of parameters. There is a distinction in interpretation of (2.1) for
physicists and engineers as compared to applied mathematicians. For physicists
and engineers, they refer to F as the forward operator and q as themodel. On the
other hand, applied mathematicians refer to F (q) = d as a mathematical model
and q as the model parameters. For our purpose, we adopt the interpretation of
the applied mathematicians to (2.1).

In practice, d can be a discrete observation or a function of time and/or space.
Furthermore, F can be a function or an operator depending on the characteri-
zation of q and d. In addition, the mathematical model in (2.1) is often modeled
with errors. There are two ways to account for the errors in such model. Ei-
ther the errors arise as a result of un-modeled influences on the observations or
they arise due to numerical round off. Thus, given the set of observations d, we
assume the data consists of “perfect” measurements dtrue and additional noise
term η,

d = F (qtrue) + η

= dtrue + η,
(2.2)

where dtrue satisfies (2.1) given qtrue, assuming that the forward mathematical
model is exact.
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The forward problem involves finding the values of d given model parameters q.
In many cases, computing F (q) involves solving an ODE or PDE. However, we
are interested in solving the inverse problem of estimating q given d.

For a discreet inverse problem or parameter estimation problem, we determine a
finite number of parameters, p, to define a model. As in many cases, we represent
the parameters to be estimated as a set of p element vector. Similarly, if there
is a finite set of observations n, then we can represent the data as an n element
vector. Therefore, we can represent the statistical model in (2.1) as a system of
equation given by

F (q) = d. (2.3)

For more detailed information on this subject, interested readers should see [6,
72, 74]. Here, we emphasize inverse problems with finite dimensional parameter
space. However, this can be extended to problems with infinite-dimensional
parameter space. We restrict our study to finite-dimensional parameter space
for practical purpose. Thus, the local volatility function, σLV will be assumed
to be a finite-dimensional vector σ ⊂ RM , for M ∈ N. This approximation
is justifiable, since we have to discretise the function in order to numerically
approximate.

2.2 The Problem Setup

In this section, we set up the inverse problem corresponding to solving non-
parametric financial model. Suppose we have a complete market where every
contingent claim, h, can be replicated by a self financing portfolio. Suppose
further that the contingent claim h is a function of the asset price, S. Further-
more, suppose S follows a price process S = (St)t≥0 that is a function of time t,
a stochastic process W = (Wt)t≥0, and volatility parameter σ, that is,

St = S (S0, t, (Wu)0≤u≤t;σ) ,

where S0 is the initial value of the price process at time t = 0. Consequently,
S is an F -adapted process given the filtration F = (Ft)t≥0, generated by the
sigma algebra of the price process.
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Therefore, at maturity T of the claim, let the pay-off of the claim be given
as h(S(σ)). For specificity, consider an option contract with payoff function
h written on S(σ) over the time horizon [0, T ]. The value of the claim at an
arbitrary time, t ∈ [0, T ], with respect to the risk neutral probability measure
Q is given by

ft(σ) = EQ [B(t, T )h(S(σ)) | Ft] ,

where B(t, T ) is a discount factor over the interval [t, T ]. Depending on the
model and its assumptions, B(t, T ) can be deterministic or stochastic.

In the context of this thesis, the option prices ft(σ) are obtained via local volatil-
ity model. Therefore, the forward problem would involve specifying σ in order
to compute the prices.

Theorem 2.1 ( [45], Remark 1.2). Suppose we observe a set of prices {V (i)
t :

i ∈ It}, at time [0, T ] with noise {e(i)
t : i ∈ It}, where It is an index set. We can

represent the inverse problem as reconstructing σ such that

V
(i)
t = f

(i)
t (σ∗) + e

(i)
t , (2.4)

where σ∗ is regarded as the true parameter that reproduces the market prices
from the model.

Remark 2.1. The calibration problem involves finding the value of σ that
best reproduces the observed prices {V (i)

t : i ∈ It}. Note, however that there
are several methods in literature that have been proposed to solve this prob-
lem [48, 49, 63, 35, 27, 23]. Here, we seek such reconstruction using Bayesian
and stochastic Galerkin methods.

In the next section, we specify the conditions that render feasibility and stability
of solutions for such inverse problem.

2.2.1 Well-Posedness

Here, we first discuss the Hadamard’s criteria (see [36, 74] for example) for a
well posed problem.
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Definition 2.1. We say a mathematical problem is well-posed if it satisfies the
following properties: for all admissible data

(a) a solution exists (existence),

(b) the solution is unique (uniqueness),

(c) the solution depends smoothly on the given data (regularity).

Given the above conditions, if a mathematical problem violates any of the above
criteria we call it an ill-posed problem. More often, parameter estimation prob-
lems are ill-posed. Specifically, reconstructing local volatility function is an
ill-posed problem for the following reasons: First, there is not enough option
data in the market. This inhibits the construction of a volatility surface that
continuously depends on the data; secondly, the observed option prices are over
dispersed. As a consequence, small changes in the prices can lead to large er-
rors in the partial derivatives of the local volatility equation. To handle the
above challenges, there is need to regularize the solution so that condition (c)
is satisfied.

For the local volatility calibration problem to satisfy property (a), we assume
that we can find a solution fitting the observable prices within a specific tolerance
level. Since option prices are often given within a bid-ask spread, we assume the
true solution lies within this spread. In this context, the spread can be thought
of as the given tolerance level.

A major drawback with the calibration of local volatility as mentioned earlier is
the insufficient market prices available for the calibration. This limitation allows
for more than one parameter to produce model prices that fit the market data.
This type of inverse problem is called underdetermined inverse problem. On
one hand, choosing the wrong parameter can lead to mis-pricing and incorrect
hedging of financial instruments. This can often lead to costly losses for a trading
agent. On the flip side, if a unique solution is found and it does not continuously
depend on the observed market prices, then a small error in one of the market
prices can lead to large error in the calibrated parameter. This will lead to mis-
pricing again as well as hedging of other instruments. To resolve these challenges,
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care should be taken on the numerical method chosen for the estimation process.
We have shown that the Bayesian and stochastic Galerkin methods can correctly
estimate the calibrated parameter as illustrated in Chapter 4 and Chapter 5
respectively.

Next, we turn to regularization methods to discuss how to overcome the chal-
lenges above to ensure the solution follows properties (b) and (c).

2.2.2 Regularization methods

Regularization involves the process of finding an approximating solution to an
ill-posed problem by transforming it to a well-posed problem. The most docu-
mented method of regularization is the Tikhonov regularization. In the literature,
a vast documentation of this regularization technique exists, see [84, 72, 6] for
example. As a consequence, most ill-posed inverse problems in literature are
solved using the Tikhonov regularization. Specifically, most of the literature on
solving local volatility model use this mothod or a modified version of it. In
Chapter 4 and Chapter 5, we propose new approaches to regularize and solve
the same problem.

Now, we give the general mathematical structure to regularizing the solution
to an ill-posed problem. Consider the general forward problem in (2.1); we are
interested in finding the inverse function F−1. Suppose that we can only observe
a noisy approximation dα for the data d, such that ||dα − d||D ≤ α, d ∈ D. We
are instead interested in solving the equivalent problem F−1(dα) = qα, q ∈ Q.
Assume further that F−1 does not satisfy the Hadamard’s conditions (b) and/or
(c) listed in Section 2.2.1. A common approach is to introduce a regularization
operator F−1

λ to replace F−1 where λ > 0 is the so called regularization parameter
which depends on the data dα and/or α. The operator and parameter are chosen
such that the dα → d as λ→ 0.

This can be restated succinctly as

λ = λ(α, dα) > 0, F−1
λ : D → Q; lim

λ→0
sup

{
||F−1

λ (dα)− F−1
λ (d)||

}
Q

= 0.
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Since it is not always practical and easy to solve F−1
λ (dα) = qα, we instead

resolve to solve a more tractable function Gλ(qα) = Fλ(qα)− dα. Therefore, we
find qα that minimizes the functional Gλ(qα) given by

qα = argmin
qα

||Gλ(qα)||D. (2.5)

It now remains to find the appropriate regularization parameter and operator.
There are several methods proposed in literature on how to do this. For exam-
ple, the operator F can be found by using Fourier, Laplace, and other forms
of integral transformations [6]. Also, the regularization parameter can be de-
termined by using L-curve [6, 36]. Most commonly, in the case of Tikhonov
regularization scheme, a smoothening function g : Q → D is constructed and
added to the original operator. Hence, the regularization operator becomes

Gα
λ = Gλ + λgλ. (2.6)

Usually, gλ is chosen as a Tikhonov functional. In practice, the second order
Tikhonov functional is chosen for most problems [85]. Thence, (2.5) is trans-
formed to finding qα that satisfies

qα = argmin
qα

||Gα
λ(qα)||D. (2.7)

It is worth noting that Tikhonov functional is weighted Sobolev norm associated
with the Sobolev space W p

2 . Therefore, finding qα involves looking for solutions
that minimize the Sobolev norm of the functional Gα

λ(qα).

2.3 Modeling and Formulation of Local Volatility

In this section, we discuss the local volatility model in greater detail. We start
off with the Black-Scholes model which gives an analytical formula to calculating
European option prices. Subsequently, we will discuss some of the assumptions
of the Black-Scholes model that do not hold in the real markets. So, we intro-
duce the local volatility model as an alternative model to relax some of those
assumptions to reflect market reality. Furthermore, several forms of local volatil-
ity equation that are well documented will be given. Also, the assumptions and
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properties needed for the calibration of the local volatility model will be high-
lighted. Consequently, we will give a more detailed analysis of the challenges
facing the calibration of local volatility model.

Consider the model proposed by Fischer Black and Myron Scholes [14] for pricing
European options. Let (Ω,F , (Ft)(t≥0),P) be a filtered probability space such
that Ft is the natural filtration for Wt over the sample space Ω. Consider an
asset S whose dynamics is driven by a geometric Brownian motion (Wt)(t≥0)

under the objective probability measure P. Then, the asset price S satisfies the
stochastic differential equation (SDE) given by

dSt = µStdt+ σStBt, (2.8)

where µ is the drift term of the asset price movement, and σ is the diffusion
coefficient representing the volatility. The coefficients µ and σ are taken to be
constant in the original Black-Scholes model. However, their results have been
extended for the case where µ and σ are taken to be deterministic functions of
time.

For the model to be useful in the market with non-arbitrage opportunities,
there is need to transform the above SDE to follow a Brownian process driven
by the risk-neutral probability measure Q. This transformation is done using
the Girsanov theorem which can be found in standard Stochastic Calculus text-
books (for example see [64, 81]). The new filtered probability space is given by
(Ω,F , (Ft)(t≥0),Q) while the asset S follows the SDE

dSt = rStdt+ σStWt, (2.9)

where r is the risk-free rate in the market. Given (2.9), the option price V
written on an asset S over time t satisfies the Black-Scholes partial differential
equation (BS-PDE)

∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2 + rS
∂V

∂S
− rV = 0, (2.10)

with zero dividends. Solving the above PDE gives the European price of the
option. Black and Scholes analytically solve (2.10) to give the famous Black
Scholes formula given in the theorem below:
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Theorem 2.2. Given the assumptions and the dynamics imposed on S in (2.9)
the European call option price in the time horizon t ∈ [0, T ] is given by

CBS(t, St;T,K, σBS, r) = StN(d1)−Ke−r(T−t)N(d2), (2.11)

with d1 = ln(St
K

)+
σ2
BS

T

2
σBS
√
T

and d2 = d1 − σBS
√
T , where K is the strike price and T

is the maturity of the option.

For a full proof of Black-Scholes model, readers should refer to [54]. As shown
in (2.11), to price an option, the parameters S0, K, T, r, σ have to be specified.
However, in practice all the other parameters except σ can directly be observed
from the market. Therefore, in order to specify a volatility σ to the model, two
approaches are often used. First approach uses the historical information of the
asset price movements to estimate the volatility. The second approach involves
inversion of the Black-Scholes price to find the unique volatility, the so called
implied volatility which we have denoted as σBS. The latter approach is more
suitable for calibration purposes because it is forward looking compared to the
former.

We also note that the implied volatility for different options written on an asset
S0 at time t = 0, varies for each option price V (K,T ) specified by strike K and
maturity T (see for example [73, 77]). This creates a one-to-one relationship
between the option’s implied volatility and its price. However, this contradicts
the assumption that the volatility for the asset S0 is unique for all options
written on it. This leads to the conclusion that the volatility must be dependent
on the strike K and maturity T of the option. We call this new volatility,
the local volatility denoted by σLV (K,T ). The dependence of volatility on the
strike K is called the volatility smile or skew while the variation with respect to
maturity T is regarded as the term structure of volatility. Without accounting
for skewness in the structure of the volatility as in the case of Black-Scholes
model, it would suggest that every option price, Vt, t ≥ 0, written on an asset,
St, follows a different price process, which is clearly not the case. Furthermore,
it would suggest that when building binomial trees for option pricing, different
trees would need to be constructed for the asset process each time.

As explained by Animoku et al. [5], the local volatility model among all other
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models tries to model volatility skewness in a less computationally intensive way.
In the next section, we turn our attention to describing different forms of local
volatility models proposed in the literature.

2.3.1 Dupire Local Volatility Equation

In the original paper by Dupire [33], he showed that the local volatility surface of
an asset can be uniquely specified given observable market prices for European
options for all strikes and maturities. Ever since, several forms of the original
local volatility equation have been derived in the literature. In this section,
we set up the local volatility model and its various functional forms, see for
example [5, 39]. First, we setup the model as follows: let (Ω,F, (Ft)t≥0,Q), be a
given filtered probability space where Q is the risk neutral probability measure
defined on the given probability space. Consider a local volatility model, in
which the risky asset price, St, follows the dynamics

dSt = µtStdt+ σ(t, St)StdWt, (2.12)

where µt = rt − qt, and Wt is the Brownian motion under the risk-neutral
probability measure Q. Furthermore, µ : R+ → R, and σ : R+ × R → R are
continuous functions such that for t ≥ 0, and (x, y) ∈ R2,

|xσ(t, x)− yσ(t, y)| ≤M |x− y|

holds for any (t, x) ∈ R+ × R and σ(t, x) ≥ m, where m and M are positive
constants. The natural filtration of (Wt)t≥0 is denoted by F = (Ft)t≥0.

Here, we focus on local volatility equations derived under European option
prices. Although we start off with a volatility of the form σ(t, St), which depends
on time and asset level, we pass to a more convenient way of characterizing the
volatility, specifically σ(T,K), depending on maturities and strike prices. Note
that we have restricted the notations for the parameters of the option prices to
include only maturity T and strike K for simplicity.

Next, we present the fundamental theorems in the literature on characterizing
the local volatility function. Proofs are omitted and we refer to, for instance,
[39].
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Theorem 2.3 (Dupire Local Volatility Equation). Let S be the dynamics of the
asset defined in (2.12) and C(T,K) be the European call option with strike K
and maturity T . Then, we have

σ2(T,K) =

(
2
[
∂C(T,K)

∂T
+K(rT − qT )∂C(T,K)

∂K
+ qTC(T,K)

])
(
K2 ∂2C(T,K)

∂K2

) (2.13)

for T > 0 and K > 0.

For computational efficiency, we work with Dupire equation under the forward
price rather than spot prices. Therefore, we present the local volatility under
the forward price as well. Let C(T,K) = C(FT , T,K, σLV (T,K)) and Ft =
F (t, T ) = Ste

∫ T
t
µsds so that FT = ST . Writing the SDE in (2.12) under the

dynamics of the forward price yields

dFt = e
∫ T
t
µsdsdSt − µtSte

∫ T
t
µsdsdt

= e
∫ T
t
µsds (µtStdt+ σ(t, St)StdWt)− µtFtdt

= σ̃(t, Ft)FtdWt,

(2.14)

where σ̃(t, x) = σ(t, xe−
∫ T
t
µsds).

Theorem 2.4 (Local Volatility in terms of Forward Price). Let Ft be the dy-
namics of the forward price of the asset given in (2.14) for t ≥ 0 and C(T,K)
be the European call option with strike K and maturity T expressed in terms of
forward price. Then, the following equation holds:

σ2(T,K) =
∂C(T,K)

∂T
1
2K

2 ∂2C(T,K)
∂K2

. (2.15)

Equations (2.13) and (2.15) are termed as the Dupire local variance under spot
and forward price dynamics, respectively.

Finally, we present the local volatility equation in terms of implied volatilities.
This is necessary since in some financial markets, implied volatilities are quoted
rather than the option prices themselves.

Lemma 2.5. Let the Black-Scholes total variance be

w(S0, T,K) = σ2
BS(S0, T,K)T
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and y = log
(
K
F

)
. Then, the Black-Scholes price in terms of w and y is

CBS(F,w, y) = FN(d1)− FeyN(d2)

with d1 = −y√
w

+
√
w

2 and d2 = −y√
w

+
√
w

2 −
√
w.

Theorem 2.6 (Local Volatility as a Function of Implied Volatility). If the
call option written on an asset is described by the Black-Scholes formula in
Lemma 2.5, then the local variance of the asset can be obtained in terms of w
and y as

σ2(T,K) =
∂w
∂T[

1− ( y
w

)∂w
∂y

+ 1
4

(
−1

4 −
1
w

+ y2

w2

)
(∂w
∂y

)2 + ∂2w
2∂y2

] . (2.16)

Immediate corollary of the theorem is given when ∂w
∂y

= 0:

σ2(T,K) = ∂w

∂T
, or equivalently, w(T ) =

∫ T

0
σ2ds

for maturity T .

For the proofs of the above theorems, interested readers should see [39] for
example, and the references therein.

2.3.2 Properties of Local Volatility Model

In order to calibrate the various forms of local volatility model presented in the
previous section, we need to specify some properties that the surfaces should
exhibit. These properties will be important when calibrating under the Bayesian
framework as they will be incorporated in to the prior distribution. These
properties include:

(a) Positivity: In order to implement Dupire’s equation, we adopt σLV > 0.

(b) Asymptotic: The local volatility values at time t0 = 0 should be fitted to
the implied volatilities σimp for quoted European options. Thus, the im-
plied volatilities at t0 = 0 determine the local volatility surface completely
in R3; see [10].
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(c) Smoothness: We also ensure smoothness of the local volatility surfaces.
This regularizes the surfaces so that spikes or troughs are not observed.
Since it is not justified to expect a volatility surface to predict abrupt
movements in future volatility [55, 45].

2.3.3 Challenges of Local Volatility Model

With the various forms of local volatility equation shown in Section 2.3.1, local
volatility surfaces can be constructed from the option prices and implied volatil-
ities observed in the market. A crucial assumption is that the option price
C(T,K) is considered to be of class C1,2. That is, the map (T,K) 7→ C(T,K) is
continuously differentiable with respect to the first argument T and twice con-
tinuously differentiable with respect to the second variable K. However, even if
this assumption holds, there is still a problem with option price function being
unknown analytically which causes problems when taking partial derivatives.
Therefore, the partial derivatives of the call function have to be estimated nu-
merically. Due to the imperfect nature of numerical methods, the algorithm used
in estimating local volatility function may be unstable. That is, small changes
in the input data may result in large error in the function values. Observe that
in the denominator of (2.13), small errors in the partial derivative can be mag-
nified by the square of the strike price. This can lead to negative values of local
volatility, which is unacceptable.

On the other hand, the continuity assumption of option prices is unrealistic.
In practice, limited number of option values are known for finite number of
maturities and strike prices which makes the local volatility equation ill-posed.
To solve this problem, one can smoothen the option price data using Tikhonov
regularization or by minimizing the function’s entropy [24, 48]. Another viable
method is to use smoothing cubic spline interpolation to obtain arbitrage-free
option prices [37]. These methods should be able to guarantee the convexity
of the option prices in the strike direction which adds extra complexity to the
model. Also, the call option function must be monotonically decreasing in strike
and increasing in maturity to avoid calender arbitrage. This way, arbitrage-free

22



prices can be ensured.

2.4 Error Minimization Method of Solving Dupire Local Volatility

In this method, let V (S, t;T,K, σ) be the option price at time t and σ(t, S) be
the choice of volatility function, then the option prices, V , follow the stochastic
Black-Scholes PDE in (2.10). Thus, given the initial and boundary conditions of
(2.10), the option prices, V (S0, 0;T,K, σ), can be solved uniquely. Since we are
dealing with standard European options, the appropriate initial and boundary
conditions are;

V (S, T ;T, T, σ) = max(ST −K, 0) for S ≥ 0,

V (0, t;T,K, σ) = 0 for 0 ≤ t ≤ T ,

∂V
∂S

(S, t;T,K, σ) = e−q(T−t) as S →∞ for 0 ≤ t ≤ T .

(2.17)

In the general setup above, market calibration involves finding a local volatility
function σ that solves the PDE in (2.10) such that the obtained option prices
fall in between the corresponding bid and ask spread. That is,

V b
ij ≤ V (S0, 0;T,K, σ) ≤ V a

ij ,

for i = 1, 2, 3, . . . , N denoting the sets of maturities, Ti’s and j = 1, 2, 3, ...,M
denoting the sets of strike prices, Kj’s, for each maturity. Satisfying these
inequality constraints, a function G(σ) is to be minimized with respect to σ

and possibly making it approach zero:

G(σ) = min
σ∈Q

N∑
i=1

Mi∑
j=1

[V (S0, 0;Ti, Kij, σ)− Ṽij]2, (2.18)

where Ṽij = 1
2(V a

ij + V b
ij) is the average of the bid and ask prices. To this ex-

tent, minimizing the function G over a general space of admissible functions is
ill-posed, essentially because we have a finite and discrete number of observable
option prices. Hence, the function σ can not be uniquely determined with guar-
anteed continuous dependence on market option prices. As a consequence, a
small perturbation in price data can lead to a large change in the minimizing
function.
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To overcome this challenge, a Tikhonov regularization scheme is specified in the
literature. For more details on the application of Tikhonov regularization in
solving Dupire local volatility equation, interested readers should see [1, 34, 48,
63] to mention a few.

2.5 Local Volatility Calibration: Literature review

In the literature several authors have proposed different error minimization tech-
niques in solving the Dupire local volatility equation. Most commonly used
methods involve the use of Tikhonov regularization in solving the non-linear
problem. However, according to our best knowledge little work has been done
in the use of Bayesian technique to characterize the distribution of the calibrated
local volatility parameter. Herewith, we give comprehensive literature review on
the results obtained so far on local volatlity modeling and the numerical methods
used in its implementation.

First, we discuss some of the literature involving the use of parametric methods
in constructing the local volatility surface. Cerrato [17] uses the Dumas et al
parametrization [32] of the implied volatility in calibrating the local volatility
parameter. Here, the author uses the original form of Dupire local volatility
equation in (2.13). Although the computational procedure used in [17] is quite
efficient and fast, the numerical accuracy is lacking. The local volatility surface
contains spikes and is generally flat which suggests the resultant surface is lacking
robustness. Moreover, the model prices at some discretized points are negative,
which poses serious confidence on the accuracy of the numerical procedure.

More recently, Animoku et al. [5] similarly used parametric method in construct-
ing local volatility surfaces. However, their implementation is different from [17]
in two ways. First, the choice of implied volatility parametrization involves the
use of moneyness instead of strike price, which provides alternative interpreta-
tion for the volatility surfaces. Secondly, the authors use the local volatility
function in (2.13) for their numerical implementation, in addition to (2.16) used
in [17].
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In the remainder of this section, we discuss the non-parametric methods of ob-
taining the local volatility surfaces that have been implemented in the literature.
First, we discuss the method used by Lagnado & Osher [63]. In their method-
ology, the gradient of the local volatility functional (in the form of (2.7)) is
minimized in L2 norm over an appropriate space of smooth or cost functions
subject to constraints that ensure the solution of the pricing PDE are within
the bid-ask spread of the observed prices. The authors use the error minimiza-
tion approach explained in the previous section, however to ensure an optimal
solution that do not violate the Hadamard conditions, Tikhonov regularization
is used. Therefore, the authors minimized the following functional

G1(σ) = G(σ) + λ ‖|5σ|‖2
2 , (2.19)

where the regularizing parameter λ is a constant chosen by trial and error in or-
der to optimize the convergence rate of the minimization procedure. The authors
obtained an optimal solution that is numerically robust and close to minimizing
G(σ). However, their optimal solution to (2.19) is not proven analytically but
shown to give good calibrated result for the market data taken from S&P 500.

The authors used gradient descent scheme to find the optimal σ, where they solve
the Black-Scholes PDE (2.10) via finite difference method at each iteration.
There are some drawbacks to the authors’ computational procedure and the
implementation results. On the computational aspect, their numerical procedure
involves solving the PDE in (2.10) at every iteration which is computationally
expensive. On the numerical result side, the resultant local volatility surface
σ(t, S) is only estimated for some specified discretized points which makes it
difficult to price options out of this range.

Chiarella et al. [19] proposed a more computationally efficient method to reduce
the complexity of the algorithm used in [63] by estimating the parameter σ using
the Black-Scholes formula in (2.11). The authors’ method is computationally
fast and involves few iterations at each step. However, the surfaces produced
using their numerical scheme still lacks the details necessary for pricing exotic
options that depend on out-of-the money volatility values.

Jackson et al. [55] presented a more direct approach of minimizing the error
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functional in (2.19) which avoids the computation of variational derivatives.
The authors first represent the local volatility surface by discretizing the param-
eter space into a set of nodes, which are later interpolated using natural cubic
splines. In their calibration, greater weights are chosen for at-the money options
compared to out-of-the money options so that the contributions of each option
to the volatility surface is reflected. The authors use a quasi-Newton algorithm
for the optimization procedure and a piecewise quadratic finite element method
for solving the Black-Scholes PDE (2.10) at each iteration.

This procedure reduces the computational time drastically, however, it has a
number of drawbacks. First, the regularization parameter λ is still chosen ar-
bitrarily by trial and error. Even though λ is chosen to improve the conver-
gence of the algorithm, it lacks financial interpretation. Secondly, the volatility
parameter is only calibrated for relatively few node points (15 nodes) for 10
option prices. However, in practical applications, we usually expect to cali-
brate for more than 100 prices, which can not be easily done with the authors
proposed numerical scheme. Thirdly, the method presented is vulnerable to
over-regularization as they seek to obtain a unique solution. That is why we ob-
serve that the pricing errors in their article are relatively high; for option values
between 4 to 7 basis points.

Now, we turn to some of the theoretical results that have been obtained con-
cerning stability and convergence analysis in minimizing the error functional
presented in (2.19). For example, Crepey [23] has used Tikhonov regularization
to prove the stability and convergence of the local volatility estimates. In his
approach, he specifies a deterministic prior function σ0 together with a regular-
ization term and seeks to minimize the difference between this and the calibrated
σ. It is worth noting that the prior guess in his method is not in a probabilis-
tic sense as demonstrated by the Bayesian method. Therefore, the author’s
proposed error functional is given by

G2(σ) = G(σ) + λ
(
‖σ − σ0‖2

2 + ‖|5σ|‖2
2

)
. (2.20)

Furthermore, authors such as Egger & Engl [34] have also minimized the func-
tional (2.20) by specifying a different prior guess for σ.
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Egger et al. [35] uses a much different approach to the methods we have discussed
so far by decoupling the volatility into the smile and term structure, so that we
can express the local volatility as

σ(t, S) = σ1(t)σ2(S). (2.21)

Although, the authors approach is quite unique, it is numerically challenging
to use as a general framework in finding the local volatility function. This is
because the method is not practical for market data whose volatility smile is
inconsistent over time.

Coleman et al. [20] used a bicubic spline to approximate the local volatility
surface by matching the spline knots to coordinates (K,T ) of the observable
market prices. In order to reduce the space of solutions, they placed a bound
on the volatility values at each knot. The computational cost of the authors
method is considerable given that they calibrated 70 spline knots to 70 market
prices.

Now, we discuss some of the recent work on the use of Bayesian analysis in con-
structing local volatility surfaces. In a more recent study, Gupta & Reisinger [45]
reformats the inverse problem of calibrating local volatility parameter into a
Bayesian framework where a distribution of surfaces for the calibrated param-
eter were obtained. Consequently, the convergence of the procedure was also
monitored for the MCMC chains. In the authors’ methodology, the errors from
the statistical model are modeled as additive and normally distributed. The con-
sistency of the volatility surfaces over time were also examined. The drawback
in their method is of statistical nature. The additive errors from the authors’
method, when graphed shows some dependency on the market option prices
which suggest a multiplicative error statistical model is more suitable for the
calibration. Not withstanding, the results from their numerical procedure shows
good calibrated volatility surfaces that are robust and consistent.

As a follow up work on [45], Animoku et al. [5] explored both additive and
multiplicative statistical models in the volatility parameter calibration using
Bayesian framework. The errors were modeled as both normal and student-t
distributions for each statistical model. The numerical result from the authors’
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implementation, shows a smooth and robust volatility surface with expected
skewnees at maturities close to t = 0.
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CHAPTER 3

FREQUENTIST APPROACH TO PARAMETER

ESTIMATION

As discussed in the previous chapters, most inverse problem involves parameter
estimation in a robust manner given some noisy observations. From frequentist
perspective, such parameters are assumed to be unknown but not random unlike
the Bayesian setting treated in Chapter 4. This involves estimating a calibrated
parameter in a deterministic way. Thus, we consider the statistical model

Υ = f(q0) + ε, (3.1)

where Υ = [Υ1, . . . ,Υn]T is a random vector representing the observations or
measurements from experiment whose realization is υ = [υ1, . . . , υn]T . The ran-
dom vector ε = [ε1, . . . , εn]T represents the measurement errors. The errors are
additive, that is, the errors represent the addition of the model and measurement
errors.

The aim of the frequentist approach is to estimate the parameter q so that
the model response fits the data in some optimal sense. This can be done by
constructing an estimator q̂ such as ordinary least squares (OLS) and maximum
likelihood estimators that statistically estimate q0 in a reasonable sense. For
example, the OLS estimator is given by

q̂ = argmin
q∈Q

n∑
i=1

[Υi − fi(q)]2 .

Furthermore, since the estimator q̂ is a random variable or random vector it has
statistical properties such as the mean, covariance and distribution termed as
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the sampling distribution. Thus, using the expectation and sample covariance of
the estimator, one can quantify the variability of the errors in order to validate
the assumptions.

The sampling dstribution however does not provide a distribution for the model
parameters since q0 is not random in frequentist inference. However, in certain
applications the sampling distribution can coincide with the posterior distribu-
tion from Bayesian techniques.

The rest of the chapter is setup as follows: In Section 3.1, we focus on de-
riving the sampling distribution under linear regression model. Consequently
in Section 3.2, the sampling distribution under the non-linear case is studied.
Finally, the numerical implementation of frequentist approach in constructing
local volatility surfaces is discussed in Section 3.3.

3.1 Linear Regression

We highlight some fundamental results regarding linear regression here to mo-
tivate similar theoretical results for the nonlinear least squares case. For more
details, we refer the reader to [44, 75]. We summarize the main results here.

Consider the statistical model

Υ = Xq0 + ε, (3.2)

where Υ = [Υ1, . . . ,Υn]T , ε = [ε1, . . . , εn]T , and n× p design matrix X is deter-
ministic and known. Let q0 denote the vector of true but unknown parameters
and let υ = [υ1, . . . , υn]T denote observations of an experiment of which the
errors are ε = [ε1, . . . , εn]T . We assume n > p.

First, we specify the assumptions around the distribution of the errors for the
statistical model in (3.2).

Assumption 3.1 ([75], Assumption 7.2). Assume that the errors are unbiased
and i.i.d. with fixed but unknown variance σ2

0; then, for i = 1, . . . , n,

• E[εi] = 0;
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• Var[εi] = σ2
0, Cov[εi, εj] = 0 for i 6= j.

The assumptions above are in accordance with the frequentist approach. Next,
we construct the unbiased estimators q̂ and σ̂2 for unbiased parameters q0 and
σ2

0. To construct an unbiased estimator q̂ for q0, we seek to find q which minimizes
the OLS functional

J (q) = (Υ−Xq)T (Υ−Xq).

Taking the gradient and equating to zero gives

5q J (q) = 2
[
5q(Υ−Xq)T

]
[(Υ−Xq)] = 0, (3.3)

where 5q(Υ − Xq)T = − 5q q
TXT = −XT . This leads to the least squares

estimator
q̂OLS = (XTX)−1XTΥ, (3.4)

and its realization
qOLS = (XTX)−1XTυ. (3.5)

Proposition 3.2 (Properties of the Estimators, [75], Results 7.4). The param-
eter estimator q̂ has the mean and covariance matrix as shown below:

1. E[q̂] = q0, which can easily be shown by

E[q̂] = E
[
(XTX)−1XTΥ

]
= (XTX)−1XTE [Υ] = q0.

Thus, q provides an unbiased estimate for the true parameter q0.

2. Var[q̂] = σ2
0(XTX)−1. For the covariance relation, let A = (XTX)−1XT ,

then,

Var[q̂] = E
[
(q̂ − q0)(q̂ − q0)T

]
= E

[
(q0 + Aε− q0)(q0 + Aε− q0)T

]
since q̂ = AΥ = A(Xq0 + ε)

= E
[
(Aε)(Aε)T

]
= AE

[
(εεT )

]
AT

= σ2
0(XTX)−1,

with σ2
0 assumed to be fixed as noted earlier.

31



3. For the variance estimator, we have

σ̂2 = 1
n− p

R̂T R̂, (3.6)

where R̂ = Υ−Xq̂.

We omit the proof for the covariance estimator here, interested reader should
check [75, 44].

Given the results above, we can determine the sampling distribution for the pa-
rameter q.With this distribution, one can also construct the confidence intervals
and compute some meaningful statistics for this distribution.

Assumption 3.3. The sampling distribution q̂ can be specified for problems with
errors assumed to have properties shown in Assumption 3.1.

Corollary 3.4 (Sampling Distribution for q̂, [75], Property 7.8). For ε
iid∼

N (0, σ2
0), the sampling distribution for q̂ is given as,

q̂ ∼ N
(
q0, σ

2
0(XTX)−1

)
.

Furthermore, if we let the δk, k = 1, · · · , p denote the kth diagonal element of
(XTX)−1 and q0k denote the kth element of the true parameter vector q0, then

q̂k ∼ N
(
q0k , σ

2
0δk
)
.
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Algorithm 3.1 Algorithm for the Frequentist approach to parameter estimation
Model:

Υ = Xq0 + ε, q ∈ Rp,

υ = Xq0 + ε (realization).

Assumptions: E(εi) = 0, εi is i.i.d. with V(εi) = σ2
0.

Least Squares Estimator and Estimate:

q̂ = (XTX)−1XTΥ, = E[q̂] = q0, V(q̂) = σ2
0(XTX)−1,

q = (XTX)−1XTυ.

Error Variance Estimator and Estimate: R̂ = Υ−Xq̂, R = υ −Xq

σ̂2 = 1
n− p

R̂T R̂, σ̂2 = 1
n− p

RTR.

Covariance Matrix Estimator and Estimate:

V(q̂) = σ̂2(XTX)−1, V = σ2(XTX)−1.

Sampling Distribution: Requires ε ∼ N(0, σ2
0) or sufficiently large n

• q̂ ∼ N
(
q0, σ

2
0(XTX)−1

)
;

• (1− α)× 100% Confidence Intervals: δk = [(XTX)−1]kk

qk − tn−p,1−α/2σ
√
δk, qk + tn−p,1−α/2σ

√
δk.
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3.2 Non-linear Regression

Non-linear problem takes the following statistical form:

Υ = f(q0) + ε, (3.7)

where f(q0) is the model response and q0 is the true but unknown parameter
to be quantified. As before, we assume that there are more observations than
parameters, that is, n > p. Let Q be the support for the parameter q̂ from the
admissible parameter space Q.

Similar to the construction of the OLS estimate in Section 3.1, we also minimize
the functional

J (q) =
n∑
i=1

[υi − fi(q)]2 (3.8)

subject to q ∈ Q.

Unlike the results obtained in Section 3.1, it is quite difficult to obtain an analyt-
ical expression for the minimizer in (3.8). Instead, we seek a numerical estimate
that minimizes the least squares functional. The algorithm for the nonlinear
case is similar to that of Algorithm 3.1 with some adjustments. We replace the
statistical model in the linear case with (3.7) and the variance of the estimator
q̂ with

V(q̂) = σ2
0

[
X (q0)TX (q0)

]−1
≈ σ̂2

[
X (q)TX (q)

]−1
.

X (q) denotes the n× p sensitivity matrix whose entries are

Xik(q) = ∂fi(q)
∂qk

.

Note that the variance is constructed here by linear approximation around q0.

There are three methods that can be used to construct the sensitivity matrix,
namely: finite difference approximations, solution of sensitivity equations, and
automatic differentiation. For further details on how to use these methods to
construct sensitivity matrices, see [75]. We should note that we have used the
finite difference approximations in constructing the sensitivity matrix used in
approximating the variance-covariance matrix for the local volatility parameter.
For more details on non-linear regression, interested readers should see [7, 8, 60].
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3.3 Implementation of Frequentist approach in Constructing Local

Volatility Surfaces

In this section, we focus on estimating the local volatility parameter via the
frequentist approach. Since we are dealing with a non-linear model, we seek
non-linear estimates from the sampling distribution of the parameter σLV . At
time t = 0, we expect the sampled estimates of the parameter to converge to the
implied volatility. Furthermore, the variance-covariance (sensitivity) matrix of
the parameter is numerically computed via the method explained in Section 3.2.
As a result, the sampling distribution of the parameter is given by

σLV ∼ N (σimp, C) , (3.9)

where σimp is the implied volatility and C is the sensitivity matrix of the param-
eter. The estimates of the parameter, σLV , can be sampled from its sampling
distribution by

σ̂LV = σimp +Rz,

where R is the Cholesky decomposition of the covariance matrix C, and z is
standard normal random variable. Using the set of data specified in Appendix B
together with Algorithm 3.1, we compute the local volatility surface shown in
Figure 3.1 from the estimates computed in (3.9).

Here, we take a sample of 10000 estimates of σ̂LV and compute its expectation.
The expected value is then used to construct the volatility surface. The result
shows that the sums of squared errors for the local volatility surface under the
frequentist approach is 1701.7.
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Figure 3.1: Local volatility surface via frequentist approach
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CHAPTER 4

BAYESIAN MODELING OF LOCAL VOLATILITY

In this chapter, we introduce the theory as well as numerical implementation of
Bayesian inference in parameter estimation. Bayesian method involves finding
a probability distribution for an uncertain parameter in a statistical model.
The so called posterior distribution of the parameter. An important aspect
of constructing the Bayesian posterior distribution is incorporating a prior set
of beliefs about the parameter to be estimated. These prior information are
incorporated mathematically into the prior density, π0(Q), where Q is the set of
parameter we wish to estimate.

Most advocates for Bayesian learning argue that omitting prior information in
some significant amount of statistical problems often leads to inaccurate conclu-
sions. However, the critics of this method have pointed out the importance of
using accurate prior information to justify the use of Bayesian analysis. To that
extent, it is unclear if the general adoption of Bayesian reasoning is justified.
Although, from the Bayesian viewpoint, it is far more likely to recognize when
a prior information is reliable and important in estimating a parameter, thus, it
makes a totally sensible action to utilize such information rather than not. We
will discuss the full implications of using Bayesian framework in Section 4.1.2.

Furthermore, there is need to construct the likelihood function, L(υ|q) under
which the sampled data υ are more likely to be observed given the parameter.
The posterior density can then be constructed by combining the prior distribu-
tion and the likelihood function. This is demonstrated by the Bayes’ rule.
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The posterior density of the parameter reflects the best probability distribu-
tion of the parameter values based on the sampled data. In most applications,
sampling parameter estimates from the posterior density is often difficult using
the standard quadrature techniques. This is mostly due to the large number of
parameters to be estimated in most inverse problems. A more useful technique
is to sample these estimates as a Markov chain via a Metropolis Hastings al-
gorithm. Due to the nature of the financial problem we seek to solve, we have
employed this method judiciously in estimating the local volatility parameter
via Bayesian framework.

The Bayesian method allows us to recast the inverse problem into a Bayesian
framework. Thus, we compute estimates of the volatility by sampling from the
posterior distribution. These estimates can then be used to obtain the entire
volatility function using various interpolation techniques.

On one hand, the prior distribution involves a set of prior beliefs about the
parameter to be estimated; and these prior knowledge are incorporated into
the posterior distribution of the parameter. On the other hand, the likelihood
function is constructed from the error distribution of the statistical model used
in calibrating the model to the market prices.

The error distribution is chosen suitably to reflect the properties of the financial
model used. In this thesis, we focus on two types of error distributions namely:
normal and student-t distributions. We have assumed the model errors are dis-
tributed as normal or student-t for two reasons. First, these error distributions
are very convenient to use in financial applications as many market parameters
like logarithm of asset returns are normally distributed [18]. Second, given that
the volatility of an asset is dependent on the asset return, it is natural to use
normal error distributions in its calibration. In the case of a small sample size,
student-t distribution is statistically preferable to normal distribution, thereby
making the student-t distribution an appropriate choice for such case.

In this regard, we have tested the Bayesian method in estimating the local
volatility parameter using four different statistical models involving both addi-
tive and multiplicative error models. In most engineering and financial applica-
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tions, parameter estimation problems are often modeled as additive error given
in the following statistical form

Υi = fi(Q) + εi, i = 1, . . . , n, (4.1)

where Υi, εi, and Q are random variables representing measurements, mea-
surement errors, and parameters respectively; fi(Q) denotes the parameter-
dependent model response. In addition, the errors are modeled as additive
and mutually independent from Q. In most applications, the errors are usu-
ally modeled as normal and additive, see [45] for instance. We have shown in
this work that such general statistical representation is often unreliable. This is
collaborated by the fact that the plot of the errors shows a pattern indicating
that the errors depend on the market data. Hence, we have extended the work
in [45] to the multiplicative case where the errors depend on the magnitude of
the sampled data. We expand on this in the later sections.

The remainder of this chapter is set up as follows. In Section 4.1, we give the
theoretical set up for the Bayesian method in the context of parameter estima-
tion. Here, we discuss the Bayes’ rule and the various forms of Bayes’ estimators.
We conclude this section by identifying the advantages as well as the challenges
of Bayesian inference in parameter estimation. In Section 4.2, we discuss the
consistency of Bayes’ estimators. Markov chains and convergence analysis for
the Markov chain Monte Carlo method is explained in further details in Sec-
tion 4.3. We formally present the four statistical models studied in Section 4.4.
Furthermore, the mathematical constructions of the posterior densities for each
statistical model are presented. Finally, in Section 4.5, we give some numerical
results and recommendation based on the parameter estimates sampled from
the posterior densities in Section 4.4.

4.1 Bayesian Framework

We recall that in constructing the posterior distribution of the parameter to
be estimated, we need both the prior density π0(q) and the likelihood function
L(υ|q). The prior density contains information that is previously known about
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the parameter to be estimated. This information could be from previous exper-
iments or observations. However, it is advised that caution be taken in choosing
which prior knowledge to be incorporated. If the prior information is of ques-
tionable accuracy, it is advised that a non-informative prior, π0(q) = 1(0,∞)(q),
be taken for positive parameters.

Furthermore, the likelihood function, π(υ|q) = L(q|υ), contains the information
that informs the posterior distribution given the sample observations. It also
quantifies the conditional probability of obtaining the observed samples Υ given
the values of the parameter Q. More mathematically, if π(q, υ) denotes the joint
density of Υ and Q, then the likelihood is given by

π(υ|q) = π(q, υ)
π0(q) .

For some observations υ = υobs, we can write the conditional probability above
as

π(υobs|q) = π(q, υobs)
π0(q) .

Furthermore, the conditional probability of q given υ, which is termed as the
posterior density can be written as

π(q|υobs) = π(q, υobs)
π(υobs)

,

where we have assumed that

π(υobs) =
∫
Rp
π(q, υobs)dq =

∫
Rp
π(υobs|q)π0(q)dq 6= 0.

Therefore, in the context of inverse problem, we seek to quantify the posterior
density π(q|υobs) given the set of observed data υobs.

The formal formulation of the inverse problem above depends on the Bayes’
theorem of inverse problems which is explained in more details in [59]. We
summarize the discussion in [59] below.

Theorem 4.1 (Bayes’ Theorem of Inverse Problems, [75], Result 8.1). Suppose
we have p random parameter variable Q with a known prior density π0(q). Sup-
pose further that we have a set of observations υobs from the random observation
Υ. Then, the posterior density of Q given the observed values υobs is

π(q|υobs) = π(υobs|q)π0(q)
π(υobs)

= π(υobs|q)π0(q)∫
Rp π(υobs|q)π0(q)dq . (4.2)
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In general, construction of the likelihood function depends on the distribution
of the errors. For instance, following the statistical model in (4.1), if we assume
that the errors are i.i.d. and εi ∼ N (0, σ2), where σ2 is fixed, then the likelihood
function can be specified as:

π(υ|q) = L(q, σ2|υ) = 1
(2πσ2)n/2 e

−SSq/2σ2
, (4.3)

where SSq = ∑n
i=1 [υi − fi(q)]2 is the sum of squared errors. It is worth noting

that the construction of the likelihood here uses the probability density function
of normally distributed random variable coupled with the i.i.d. property of the
errors.

4.1.1 Bayes’ Estimators

We have established that the Bayesian inference can be very useful in estimating
an unknown parameter. These estimates are obtained via the probability distri-
bution of the parameter. We seek the statistical properties of this distribution.
For example, one can compute the point estimates of the parameter values such
as the mean, median and mode. These Bayes’ estimates can be constructed by
attaching different loss functions to the posterior density.

Next, we define what a loss function is and various forms of Bayes’ estimators.
A function H : Rp → R is a loss function if and only if

H(q, q′) =


0, if q′ = q,

> 0, if q′ 6= q,

where q, q′ ∈ Rp.

We expect the loss function to penalize estimates that are further from the
true value compared to the ones closer to it. Thus, the larger the norm of the
estimated value is from the true value the larger the loss function. So, we assume
H is an increasing function of

∥∥∥q − q′∥∥∥ for some norm ‖.‖ in Rp. We now apply
the loss function to the posterior distribution obtained in (4.2) to estimate values
from the posterior density.
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Definition 4.1. Given the loss function H, and the sample observations υ, the
Bayes’ estimator qH(υ) constitutes the value of q that minimizes the expected
loss with respect to the posterior. This is expressed mathematically as

qH(υ) = argmin
q′

{∫
H(q, q′)π(q|υ)dq

}
.

Remark 4.1. 1. The minimizer qH(υ) is not necessarily unique

2. H1(q, q′) =
∥∥∥q − q′∥∥∥2

2
gives the mean of the Bayes’ estimator q̄ = qH1(υ) =

E[q|υ], with respect to the posterior density π(q|υ).

3. The uniform loss function H2(q, q′) = 1 − 1q=q′ , the Bayes’ estimator
qMAP = qH2(υ) = max{π(q|υ)}; is called themaximum a posteriori (MAP)
estimator, which is the mode of the distribution.

4. If π0(q) is uniform on R, then qMAP is equivalent to themaximum likelihood
estimate qMLE given by

qMLE = argmax
q

π(υ|q) = argmax
q

π(υ|q)π0(q) = qMAP .

Once the parameter estimates have been sampled from a posterior distribution,
one can perform some useful statistical analysis to further understand the cali-
brated parameter:

1. A confidence interval can be constructed around the maximum a poste-
riori estimates to understand the local behavior of the posterior using a
Guassian or t-distribution. Suppose, we obtain q0 as an estimate with
standard deviation s, then [q0− zα/2s, q0 + zα/2s] and [q0− tα/2s, q0 + tα/2s]
are the (100 − α)% confidence interval assuming normal and student-t
distributions, respectively.

2. Marginal distributions of each component of the parameter qi, i = 1, . . . , p,
can be constructed from the joint densities. This can be easily done when
using Markov Chain Monte Carlo method in sampling the estimates as the
chain for each component of the parameter can be used to visualize the
marginal distributions. Constructing the marginal distribution for each
component is important in analyzing the contribution and sensitivity of
each component to the joint distribution.
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3. Inferences based on the behavior of another quantity of interest, that is a
function of q, can be measured.

4.1.2 Advantages and Disadvantages of Bayesian Method

Here, we summarize the advantages and challenges of using Bayesian approach in
parameter estimation in comparison to other regularization methods (Tikhonov
regularization) discussed in Chapter 2.

First, the Bayesian method offers a natural way of choosing the regularization
parameter λ as will be seen in Section 4.4. This is a crucial point because in
Tikhonov regularization, λ is chosen ad-hoc through trial and error. In addition,
the Bayesian framework gives a financial meaning to the λ as it is obtained
through the market data rather than being selected arbitrarily [5, 45]. This gives
financial interpretation to λ unlike other regularization methods. The resultant
MAP estimate gives an equivalence estimates for the functional minimization of
(2.7) explained in Section 2.2.2.

Second, the Bayesian method offers a consistent way of incorporating all known
and available information into the prior density, thereby distinguishing between
prior information and observed market data. This gives more correctness and
meaning to the Bayesian estimators qH1(υ) and qH2(υ). In fact, the Bayesian
approach allows a coherent way of attaching weights and confidence level to
point estimates making it easier to interpret them.

Third, as mentioned in the introductory section of this chapter, some Bayesian
critics who oppose the use of a prior information argue that this methodology
often leads to preconceived bias and may dominate the result [11, 40]. They
contend that this can cause the Bayesian estimates to reflect more of the prior
information than the observed data. However, in the context of this thesis, the
parameter we wish to estimate is of financial nature, therefore, the Bayesian
approach offers a natural way of incorporating financial assumptions about this
parameter. These assumptions have been summarized in Section 2.3.2. It is
also important to note that financial concepts such as no-arbitrage conditions

43



and market completeness are crucial to pricing and hedging financial instru-
ments. These financial concepts should carefully be incorporated into the fi-
nancial model. The Bayesian method offers a unique way to do this through
its prior density. For example, the no-arbitrage conditions can be incorporated
into the prior density by attaching a zero prior probability to parameters that
violate the arbitrage conditions for the calibrated instrument.

Furthermore, the critics of Bayesian method of data analysis argue that an
unknown model parameter should not be treated as a random variable by con-
structing a distribution for it [11]. These opponents explain that although the
parameter is unknown, it does not have uncertainty. An argument against this
is that it is equally important to measure the uncertainty of a calibrated pa-
rameter as it is to find the model parameter. Therefore, treating the unknown
parameter as a random variable allows for measuring the potential model errors.

Finally, some opponents also argue that assignment of probabilities (weights) to
different parameter candidates are too arbitrary, therefore, it is difficult to un-
derstand the accuracy of such assignments. However, in the context of financial
model studied in this thesis, we argue that it is in fact natural to assign prior
weights to different candidates of model parameters. This can be tacitly done by
assigning these probabilities via a prior density. Therefore, using a prior density
becomes imperative and inevitable as these probability assignments give a form
of regularization to the ill-posed problem. Although, authors such as Cont [22]
argues that it is quite sophisticated to assign these weights, the Bayesian tech-
nique is very robust to inaccurate specifications of the prior weights.

As we have demonstrated in this section, Bayesian methodology has a very
robust structure that allows regularization to be done with meaningful inter-
pretation rather than arbitrary assignment of the smoothening parameter. For
more details on the Bayesian inference and applications, we refer [11, 40, 46, 82]
to the readers.
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4.1.3 Literature Review on the Financial Applications of Bayesian
method

In the last three decades, there have been an increased amount of research in
applying Bayesian learning to calibrate parameters in financial models. Some
of the recent literature on the application of Bayeisan method in parameter es-
timation were mentioned in Section 2.5. Here, we summarize the rest of the
unmentioned literature on Bayesian application to financial problems. One of
the earliest research on this subject dates back to early 1990s when Jacquier et
al. [57] showed that Bayes’ estimators for a specific class of stochastic volatil-
ity model outperforms moments and quasi-maximum likelihood estimators in
hedging. More recently, Animoku [4] showed that Bayesian approach performs
better than frequentist approach in determining the macroeconomic factors that
indicate high level of non-performing loans in the banking sector.

Bhar et al. [12] have used dynamic Bayesian approach in estimating instanta-
neous spot interest rates. Jacquier & Jarrow [56] used the Black-Scholes model
to study the effect of Bayesian estimators on parameter uncertainty and model
errors. With their approach, they assessed the non-normality of the posterior
distributions by inferring the option price values using Bayesian estimators. Fur-
thermore, Monoyios [71] studied the effects of uncertainty of drift parameter of a
traded asset on hedging a correlated non-traded asset in an incomplete market.
The author obtained a very large hedging errors. Furthermore, Jobert et al. [58]
attempted to explain the consistently excess return observed for a risky asset
over T-bills using Bayesian analysis. By replacing the assumptions on dividend
parameters with prior a information, the authors showed that the excess rate of
return observed is expected.

For Bayesian applications on parameter calibration using local volatility model
are the works of Animoku et al. [5] and Gupta & Reisinger [45] whose work have
been explained in Section 2.5. There are other works that are closely related to
Bayesian study on local volatility as well. For example, Gupta et al. [46] studied
the model and parameter uncertainty for local volatility model. Using Bayes’
estimates, the model hedging errors are checked for different risk measures. The
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authors conclude from their results that derivative pricing is very sensitive to
model and parameter uncertainty. In addition, Darsinos & Satchell [25] con-
structed a posterior distribution for asset price St and Black-Scholes European
call price CBS by setting a prior density for St and Black-Scholes implied volatil-
ity σIMP . The posterior density is then updated whenever there are newly ob-
served prices. Using the posterior density they have constructed, the authors
computed the marginal probability distribution for the call option price CBS.
Subsequently, in [26], the same authors used the density obtained in [25] to fore-
cast one day ahead European call option prices. Their results showed smaller
hedging errors and improved hedging profits when compared to procedures that
involve proxies for the implied volatility.

4.2 Consistency of Bayes’ Estimators

In this section, we will prove the consistency of Bayes’ estimators. Consistency
in this context answers the question of whether a posterior density gives more
accurate results as more and more observations are observed. In other words,
does new knowledge improves the preciseness of the posterior density when up-
dated. As noted by [42, 45], it is crucial to ascertain this property for posterior
densities as inconsistent densities can not guarantee inferences made based on
them. In this respect, one may expect that as more data values Υ are observed
through time, the parameter estimator converges to the true value in some sense.
For definitions regarding different forms of convergences, we refer the reader to
Appendix A.

Also, consistency is important as prior distribution can sometimes dominate the
posterior and possibly lead to inconsistent estimates. Therefore, for call option
prices that are independent but not necessarily identically distributed, we prove
the consistency of the Bayes’ estimators. For the coming sections, we establish
the consistency for a single price observation and a scalar parameter, multiple
price observations and a scalar parameter; for both additive and multiplicative
error models. We further generalize the assertions for the non-scalar parameters.

Definition 4.2 (Consistency). A sequence of estimators q̂n of an unknown pa-
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rameter q over a defined sample space (Ωn,Bn) is said to be consistent if it
converges to q in probability (written as q̂n P→ q ∀q ∈ Ω), i.e.,

∀q ∈ Ω ∀δ > 0 Pq [|q̂n − q| ≥ δ]→ 0 as n→∞, (4.4)

where Pq denotes the probability measure for parameter q.

According to Definition 4.2, as more data is collected over time, the Bayes’ esti-
mator of the unknown parameter should get closer to the true parameter value.
This is important as inferences made based on inconsistent posterior distribu-
tion casts serious doubts on the results [42]. Therefore, it becomes necessary
that we prove the consistency of the Bayes’ estimators. Here with, we show the
consistency under the assumption that the observed data are independent but
not necessarily identically distributed.

4.2.1 Literature Review on Consistent Bayes’ Estimators

Most of the literature on the consistency of Bayes’ estimators assume the ob-
served data are independent and identically distributed (i.i.d.). More recently,
[46] has proven for the case where the observations are independent but not
necessarily identically distributed. We briefly review some of the findings on the
consistency of the Bayesian estimators.

Doob [31] showed the consistency for the Bayes’ estimators for every prior dis-
tribution π0(q) and a convex loss function, except possibly for q contained in a
null sets with respect to the prior. Doob’s result in 1949 was one of the ear-
liest breakthroughs in studying consistent Bayes’ estimators. Consequently, in
1965 Schwartz [79] extended the work in [31] to non-convex loss functions. In a
more recent work, Fitzpatrick[38] has derived the consistency for the maximum
likelihood estimators in the case of Gaussian noise.

There are also some extensive research on the inconsistency of Bayesian estima-
tors for some choices of prior. For example, Diaconis & Freedman [30] showed
that the use of Dirichlet prior can lead to inconsistent Bayes’ estimates. Fur-
thermore, Wasserman [86] showed that for some posterior density with infinite
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dimensional parameter, the Bayes’ estimators are inconsistent and suggested a
frequentist approach instead.

Further research has been done by Le Cam [66] in establishing the conditions for
a Bayes’ estimator to be consistent given a suitable prior distribution. The au-
thor proved that under certain conditions the consistency of the maximum like-
lihood estimator implies the consistency of the Bayes’ estimator. Strasser [83]
improved the work of [66] by proving that every condition that implies consis-
tency for the maximum likelihood estimator also implies the consistency of the
Bayes’ estimator for a large class of prior distributions. Furthermore, in [13],
Bickel & Yahav showed that the results in [66] can be applied to a larger class
of loss functions.

Barron et al. [9] proved the consistency of Bayes’ estimators by showing that as
more data is observed, the probability of the posterior density lying within an
ε-neighborhood of the true density tends to 1. As an extension, authors such
as Shen & Wasserman [80] and Ghosal et al. [43], have investigated the rates of
convergence of the posterior distributions with respect to the true parameter for
non i.i.d. observations.

All the literature discussed so far are research done for the case of i.i.d. observa-
tions. In a more recent work, Gupta & Reisinger [45] have shown the consistency
for the Bayes’ estimators (for additive normally distributed error model) where
observations are independent but not identically distributed. We have summa-
rized the key results from [45] with some adjustments to their proofs in the next
couple of sections. Furthermore, we have improved the theoretical results ob-
tained in [45] by proving the consistency of Bayes’ estimators for multiplicative
normally distributed error model.

4.2.2 Consistency of Bayes’ Estimator for Additive Error Model:
Single Price Observation and Scalar Parameter

Consider the following statistical model

Vt = ft(σ) + et, (4.5)
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where Vt is the market option price; ft(σLV ) is the model response from the local
volatility model parametrized by σ and et ∼ N (0, ε2t ), the market noise. Suppose
we have only one volatility parameter to estimate from the local volatility model.
Also, let’s assume we have one observation of the option price V (1)

t (σ) at each
time t. At time tn, we have a total of n observations. Further assume that the
market noise at each time period is distributed as

e
(1)
t = N (0, (ε(1)

t )2)

for ε(1)
t > 0, ∀t ∈ {t1, t2, . . . , tn} that are independent but not necessarily iden-

tically distributed.

Definition 4.3. Define
Gtn = σ({es : s ∈ Υ})

to be the sigma algebra generated by the errors where

Υn = Υn([0, T ]) = {ti, i = 1, . . . , n : 0 = t1 < t2 < . . . < tn = T}.

Then, assuming the independence of the price process and random error process,
i.e Ftn ⊥ Gtm ∀ (n,m), we have the posterior density using Bayes’ formula as:

π(σn(V )) = πn(σ|V ) = πn(V |σ)π0(σ)
πn(V )

= π(Vt1|σ) · · · π(Vtn|σ)π0(σ)
πn(V )

=
∏
t∈Υn

1√
2πεt

exp
{
− 1

2ε2t
(Vt − ft(σ)2)

}
π0(σ)
πn(V ) ,

where ft(σ) is the model process from solving the local volatility equation.

Given the loss function H(σ, σ′), we define the sequence of Bayes’ estimators σ̂
by

σ̂n(V ) = argmin
σ′∈Q

{g (σn(V ), σ′)} , (4.6)

where

g (σn(V ), σ′) = E [H (σn(V ), σ′)] =
∫
σ
H (σn(V ), σ′)πn(σ|V )dσ,

Q is the support for the parameter σ under the prior density π0(σ), and πn(V )
is the posterior density described by (4.2). Note that σ̂n(V ) is not necessarily
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unique. We are interested in showing that the estimator σ̂n(V ) converges in
probability to some true value σ∗.

Assumption 4.2 ([45], Assumption 2.3). The prior density π0(σ) and its sup-
port Q satisfy:

• π0(σ) is continuous at σ∗;

• π0(σ) > 0;

• π0(σ) is finite on Q;

• Q is compact.

Assumption 4.3 ([45], Assumption 2.4). There exists a finite k > 0 such that
for all σ, σ∗ ∈ Q, |σ − σ∗| > 0, for every t, the functions ft(σ) and noise
standard deviations εt conditional on Ft and Gt respectively, satisfy

1
εt

|ft(σ)− ft(σ∗)|
|σ − σ∗|

≥ k.

Note that Assumption 4.2 gives the properties of the prior density and specifi-
cally the fourth property ensures that the parameter space is closed and bounded.
Furthermore, Assumption 4.3 implies that all the ft are strictly monotone, which
is reasonable since Black-Scholes model satisfies this property for European call
price functions. Also, εt, the noise standard deviation is expected to be finite in
the case of Black Scholes model.

Lemma 4.4 ([45], Lemma 2.5). σn(V ) = σ(Vtn) P→ σ∗ as n→∞.

Proof. Consider a fixed ft, ∀t ∈ Υn. This means that the stock price process is
fixed up to time tn and all prices are Ft measurable. Therefore, P refers to only
the randomness caused by the market noise identified as et. So, we can write the
posterior distribution at time tn as

π(σ|V ) = γn(V )e− 1
2φn(σ,V ),

50



where γn(V ) is the normalization constant with respect to σ and

φn(σ, V ) = −2 log(π0(σ)) +
∑
t∈Υn

1
ε2t

(Vt − ft(σ))2

= −2 log(π0(σ)) +
∑
t∈Υn

(
Vt − ft(σ∗)

εt
− ft(σ)− ft(σ∗)

εt

)2

= −2 log(π0(σ)) +
∑
t∈Υn

(
Zt −

ft(σ)− ft(σ∗)
εt

)2

.

Zt are taken to be independent standard Gaussian random variables. Using the
first and second properties of Assumption 4.2, there exists η0 > 0 such that for
every σ ∈ [σ∗ − η0, σ

∗ + η0], π0(σ) ≥ d > 0. Also, by the fourth property of
Assumption 4.2, we specify the support Q ⊂ [σ, σ] for the posterior density for
some constants σ, σ ∈ R.

We aim to show that the probability distribution function over the support of
the parameter σ accumulates its mass at σ∗ as n→∞. That is, we need to show

∫ σ

σ
πn(σ|V )dσ =

∫ σ∗+η

σ∗−η
πn(σ|V )dσ = 1 (4.7)

for η0 > η > 0 as n→∞.

First, we will establish that∫ σ∗−η

σ
πn(σ|V )dσ =

∫ σ

σ∗+η
πn(σ|V )dσ = 0 (4.8)

as n→∞. Now, for all η > 0 such that η0 > η,
∫ (σ∗−η)

σ
πn(σ|V )dσ =

∫ (σ∗−η)

σ
γn(V )e− 1

2φn(σ,V )dσ

≤ [(σ∗ − η)− σ] γn(V )e− 1
2φn(αn,V ), (4.9)

where αn = argmax[σ,σ∗−η] e
− 1

2φn(σ,V ). Also, observe that

γn(V ) = 1∫ (σ∗−η)
σ e−

1
2φn(σ,V )dσ

≤ 1
[(σ∗ − η)− σ]e

1
2φn(βn,V ),

with βn = argmin[σ,σ∗−η] e
− 1

2φn(σ,V ). Thus, substituting αn and βn into (4.9)
yields ∫ (σ∗−η)

σ
πn(σ|V )dσ ≤ e−

1
2 [φn(αn,V )−φn(βn,V )],
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where

φn(αn, V )− φn(βn, V ) = −2 log(π0(αn)) + 2 log(π0(βn))

+
∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2
 . (4.10)

By the third property of Assumption 4.2, π0(βn), π0(αn) < ∞. Therefore, we
can bound the first two terms of (4.10) by some constant, that is,

−2 log(π0(αn)) + 2 log(π0(βn)) > −∞.

Now, expanding the remaining terms in (4.10), and using βn < αn ≤ σ∗ with ft
strictly increasing give

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2


= 2
∑
t∈Υn

Zt

(
ft(βn)− ft(αn)

εt

)
+
∑
t∈Υn

(ft(αn)− ft(σ∗)
εt

)2

−
(
ft(βn)− ft(σ∗)

εt

)2


≥ 2
∑
t∈Υn

Zt

(
ft(βn)− ft(αn)

εt

)
+
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

= Xn,

(4.11)

where Xn is a normally distributed with mean

E[Xn] =
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

+ 2
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)
E[Zt]

=
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

,

and variance

V[Xn] = 4
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

V[Zt]

= 4
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

.

Here, Zt ∼ N (0, 1) for all t ∈ Υn. Thus, Xn ∼ N (sn, 4sn), with

sn =
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

=
∑
t∈Υn

(
ft(αn)− ft(βn)

εt

)2

.
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Furthermore, note that |αn − βn| ≥ ε > 0 by using the definitions of αn and βn.
Assumption 4.3 implies that

sn ≥
∑
t∈Υn

k2|αn − βn|2 ≥ nk2ε2 → +∞.

Also, observe that for any r ∈ R+, the probability

P[e− 1
2Xn ≥ r] = P[Xn ≤ −2 log r] =

∫ −2 log r

−∞

1√
8πsn

e−
1

8sn
(x−sn)2

dx

=
∫ −2 log r−sn√

4sn

−∞

1√
8πsn

e−
1

8sn
(y
√

4sn)2√4sndy

=
∫ −2 log r−sn√

4sn

−∞

1√
2π
e−

1
2y

2
dy

= Φ
(
−2 log r − sn√

4sn

)

→ Φ (−∞)

= 0 as n→∞,

where Φ is the cumulative distribution function for a standard normal random
variable. Thus, e− 1

2Xn
P→ 0 and

0 ≤
∫ (σ∗−η)

σ
πn(σ|V )dσ ≤ e−

1
2 [φn(αn,V )−φn(βn,V )] ≤ e−

1
2Xn

P→ 0 (4.12)

as n→∞. By squeeze theorem,we conclude (4.8).

By a similar line of reasoning we can also show that∫ σ

σ∗+η
πn(σ|V )dσ = 0,

for η0 > η > 0. We conclude that the assertion in (4.7) is true and σn(V ) =
σ(Vtn) P→ σ∗ as n→∞.

Theorem 4.5 ([45], Theorem 2.6). For a function H that is bounded and con-
tinuous on Q, the Bayes’ estimator σ̂n(V ) is consistent.

Proof. Observe that we can write H(σ, σ′) = hσ(σ − σ′) for a fixed σ and some
function hσ : R→ R. For δ > 0,

Pσ∗ [|σ̂n(V )− σ∗| ≥ δ] ≤ Pσ∗ [|σ̂n(V )− σn(V )|+ |σn(V )− σ∗| ≥ δ]

≤ Pσ∗
[
|σ̂n(V )− σn(V )| ≥ 1

2δ
]

+ Pσ∗
[
|σn(V )− σ∗| ≥ 1

2δ
]
,
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where Pσ∗ represents the probability with respect to the model with param-
eter σ∗. We know from Lemma 4.4 that σn(V ) P→ σ∗, which implies that
Pσ∗

[
|σn(V )− σ∗| ≥ 1

2δ
]
→ 0 as n→∞. Also,

Pσ∗
[
|σ̂n(V )− σn(V )| ≥ 1

2δ
]

≤ Pσ∗
[
H (σ̂n(V ), σn(V )) ≥ min

{
hσ̂n(V )(

1
2δ), hσ̂n(V )(−

1
2δ)

}]
≤ Eσ∗ [H (σ̂n(V ), σn(V ))]

min
{
hσ̂n(V )(1

2δ), hσ̂n(V )(−1
2δ)
} (Use of markov property)

≤ Eσ∗ [H (σ̂n(V ), σ∗)]
min

{
hσ̂n(V )(1

2δ), hσ̂n(V )(−1
2δ)
} → 0 (By minimality of σ̂n(V ))

as n → ∞. In the last line we have used the fact that H is bounded and
continuous with σn(V ) D→ σ∗. as n→∞.We conclude that the Bayes’ estimator
is consistent since for δ > 0, Pσ∗ [|σ̂n(V )− σ∗| ≥ δ]→ 0 as n→∞.

Remark 4.2. For the case where we have several price observations V (i)
t at

each time t, that is |It| > 1, we have similar conclusions as in Lemma 4.4
and Theorem 4.5. The proof is analogous giving the assumption that market
noises are independent and normally distributed as before, including the prices
corresponding to the same time t. We follow this with a corollary.

Corollary 4.6. For multiple price observation set |It| > 1 and all loss functions
H that is bounded and continuous on Q, the Bayes’ estimator σ̂(V ) is consistent.

Proof. The proof is analogous to those of Lemma 4.4 and Theorem 4.5 except
that the sigma-field generated by all market errors up to time tn is now

Gtn = σ
(
{e(i)

s : s ∈ Υn, i ∈ It}
)

and all the rest of the notations should be replaced as follows:

∑
t∈Υn

by
∑

t∈Υn,i∈It
, Vt by V

(i)
t , ft by f

(i)
t , εt by ε

(i)
t .
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4.2.3 Consistency of Bayes’ Estimator for Additive Error Model:
Non-Scalar Parameter

Here, we consider the parameter σ ∈ Rp to be finite dimensional but non-scalar
with dimension p. Suppose the norm ‖·‖ associated with the parameter space,
Rp, is finite. We extend the results of the previous sections to the case of non-
scalar parameter. The assumptions in Section 4.2.2 hold with some modifications
to Assumption 4.3.

Assumption 4.7 ([45], Assumption 2.10). For each σ ∈ Q, ∃n(σ) ∈ N and
K, k ∈ R+ such that

K2 >
1
n

∑
t∈Υn

1
ε2t

|ft(σ)− ft(σ∗)|2

‖σ − σ∗‖2 > k2, ∀n ≥ n(σ).

Assumption 4.7 simply states that the average computed squared error is bounded
by non-zero constants. For the scalar case n(σ) = 1, ∀σ ∈ Q.

Theorem 4.8 ([45], Theorem 2.6). For all H bounded and continuous functions
on σ, the non- scalar Bayes’ estimator σ̂n(V ) is consistent under the additive
normally distributed error model.

Proof. The proof is analogous to the proof of Lemma 4.4 with some adjustments
for the higher dimensionality of σ. Here with, instead of integrals on real line, we
take the integrals in p-dimensional space. So, we need to show the probability
distribution function πn(σ|V ) over the support of the parameter σ accumulates
its mass on a ball in a p-dimensional space centered around σ∗, as n → ∞.
Mathematically, we should show that∫

B(σ∗,η)c
πn(σ|V )dσ = 0 as n→∞, (4.13)

for all η0 > η > 0 such that ‖σ − σ∗‖ ≤ η0, and π0(σ) ≥ d > 0. Here, ‘c’
denotes the complement of a set in Rp. Again, by similar computation in the
proof of Lemma 4.4, we can bound (4.13) by

∫
B(σ∗,η)c

πn(σ|V )dσ ≤ e−
1
2 [φn(αn,V )−φn(βn,V )],
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where αn, βn ∈ Q are defined similarly as

αn = argmax
B(σ∗,η)c

e−
1
2φn(σ,V ) and βn = argmin

B(σ∗,η)c
e−

1
2φn(σ,V ).

Again, writing the expression for φn(αn, V )− φn(βn, V ) and using the fact that
π0(βn), π0(αn) < ∞ by the third property of Assumption 4.2 together with
n ≥ n(αn), n(βn) yields

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2


= 2
∑
t∈Υn

Zt

(
ft(βn)− ft(αn)

εt

)
+
∑
t∈Υn

(ft(αn)− ft(σ∗)
εt

)2

−
(
ft(βn)− ft(σ∗)

εt

)2


≥ 2
∑
t∈Υn

Zt

(
ft(βn)− ft(αn)

εt

)
+ nη2

1(k2 −K2) = Xn, (Using Assumption 4.7)

(4.14)

where η2
1 = ‖αn − σ∗‖2 and Xn ∼ N (nη2

1(k2 − K2), 4sn) is a random variable;
sn is bounded by

sn =
∑
t∈Υn

(
ft(βn)− ft(αn)

εt

)2

=
∑
t∈Υn

(
ft(αn)− ft(βn)

εt

)2

≥
∑
t∈Υn

k2‖αn − βn‖2 ≥ nk2ε2 −→ +∞.

We have used Assumption 4.7 in the second line. Hence, we can also show as
before that for any r ∈ R+, P[e− 1

2Xn ≥ r]→ 0. The rest of the arguments follows
from the remaining proofs of Lemma 4.4 and Theorem 4.5.

Example 4.1. Let’s consider the Black-Scholes model and its framework where
σ is the volatility parameter associated with the model. The observed option
prices under this model are analytically given as

ft(σ) = e−r(T−t)E
[
(ST (σ)−K)+|Ft

]
.

We know that the ft is differentiable everywhere on [σmin, σmax] for 0 < σmin <

σmax <∞, and the vega, which is the derivative of the option price with respect
to the volatility, is given by

f
′

t (σ) = St
√
T − tN ′

(
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

)
,
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for a non-dividend paying stock S where N ′(x) = 1√
2πe
−x2/2. The vega is posi-

tive for all combinations of St and K, making ft a monotone increasing function
bounded below by ft(σmin) on the interval [σmin, σmax]. Thus, assuming finite
market noise, the Black-Scholes European call option prices satisfy Assump-
tion 4.3. So, we can justifiably construct consistent Bayes’ estimators for the
volatility using the theoretical framework outlined in this thesis.

4.2.4 Consistency of Bayes’ Estimator for Multiplicative Error Model:
Single Price Observation and Scalar Parameter

Consider the settings in Section 4.2.2 where we have a single price observation at
each time t ∈ Υn and a single parameter (in this case volatility) to be estimated.
Furthermore, replace the statistical model (additive normally distributed error)
considered in Section 4.2.2 with the multiplicative normally distributed error
model below:

Vt = ft(σLV ) (1 + et) ,

where the market noise et is distributed as before. Unless stated otherwise, the
set of assumptions and definitions used in Section 4.2.2 are also applied here.
Thus, the posterior density over the n period can be written as

π(σn(V )) = πn(σ|V ) = πn(V |σ)π0(σ)
πn(V )

= π(Vt1|σ) · · · π(Vtn|σ)π0(σ)
πn(V )

=
∏
t∈Υn

1√
2πet

exp
{
− 1

2e2
tft(σ)2 (Vt − ft(σ)2)

}
π0(σ)
πn(V ) .

(4.15)

Lemma 4.9. σn(V ) = σ(Vtn) P→ σ∗ as n → ∞ for the multiplicative normally
distributed error model.

Proof. Again, we consider a fixed ft, for all t ∈ Υn such that the only randomness
is coming from the market noise et. We can then write the posterior density at
time tn as

π(σ|V ) = γn(V )e− 1
2φn(σ,V ),
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where γn(V ) is the normalization constant with respect to σ and φn(σ, V ) given
by

φn(σ, V ) = −2 log(π0(σ)) +
∑
t∈Υn

1
ε2tft(σ)(Vt − ft(σ))2

= −2 log(π0(σ)) +
∑
t∈Υn

(
Vt − ft(σ∗)
εtft(σ) − ft(σ)− ft(σ∗)

εtft(σ)

)2

= −2 log(π0(σ)) +
∑
t∈Υn

(
Zt −

ft(σ)− ft(σ∗)
εt

ft(σ)
)2

.

Zt is taken to be independent standard Gaussian random variables.

We aim to show that the probability distribution function over the support of
the parameter σ accumulates its mass at σ∗ as n → ∞. That is, we need to
establish that ∫ σ∗−η

σ
πn(σ|V )dσ =

∫ σ

σ∗+η
πn(σ|V )dσ = 0, (4.16)

as n→∞. Again, by similar computation as shown in the proof of Lemma 4.4,
we can bound (4.16) by

∫ (σ∗−η)

σ
πn(σ|V )dσ ≤ e−

1
2 [φn(αn,V )−φn(βn,V )],

where αn, βn ∈ Q are defined similarly as

αn = argmax
[σ,σ∗−η]

e−
1
2φn(σ,V ) and βn = argmin

[σ,σ∗−η]
e−

1
2φn(σ,V ).

and

φn(αn, V )− φn(βn, V ) = −2 log(π0(αn)) + 2 log(π0(βn))+

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εtft(βn)

)2
 . (4.17)

Again, by bounding the first two terms and using βn < αn ≤ σ∗ with ft strictly
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increasing, we can expand (4.17) by

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εtft(βn)

)2


= 2
∑
t∈Υn

Zt
εt

(
ft(βn)− ft(σ∗)

ft(βn) − ft(αn)− ft(σ∗)
ft(αn)

)

+
(ft(αn)− ft(σ∗)

εtft(αn)

)2

−
(
ft(βn)−ft(σ∗)

εtft(βn)

)2


≥ −2
∑
t∈Υn

Zt

[
ft(σ∗)
εt

(
1

ft(βn) −
1

ft(αn)

)]

+
∑
t∈Υn

[
ft(σ∗)2

ε2t

(
1

ft(βn)2 −
1

ft(αn)2

)]
= Yn,

(4.18)

where Yn ∼ N (rn, 4mn) is a random variable with

rn =
∑
t∈Υn

[
ft(σ∗)2

ε2t

(
1

ft(βn)2 −
1

ft(αn)2

)]
,

and
mn =

∑
t∈Υn

[
ft(σ∗)
εt

(
1

ft(βn) −
1

ft(αn)

)]2

.

Now, observe that since ft(σ∗) ≥ ft(αn),

mn =
∑
t∈Υn

[
ft(σ∗)
εt

(
ft(αn)− ft(βn)
ft(αn)ft(βn)

)]2

≥
∑
t∈Υn

[
1
εt

(
ft(αn)− ft(βn)

ft(βn)

)]2

≥
∑
t∈Υn

[
1
εt

(
ft(αn)
ft(βn) − 1

)]2

> nk2 →∞ as n→∞.

(4.19)

In line four we have used the fact that
1
εt

(
ft(αn)
ft(βn) − 1

)
> k

for constant k ∈ R+. For βn < αn, we have that ft(αn)
ft(βn) − 1 > ζ > 0. Since the

market noise εt is finite, we can find such k that satisfies
1
εt

(
ft(αn)
ft(βn) − 1

)
>
ζ

εt
= k.

Furthermore, we can also show as before that for any r ∈ R+, P[e− 1
2Xn ≥ r]→ 0.

The rest of the arguments follow from the remaining proofs of Lemma 4.9.
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Theorem 4.10. For all H bounded and continuous functions on σ, the scalar
Bayes’ estimator σ̂n(V ) is consistent under the multiplicative normally dis-
tributed error model.

Proof. The proof is analogous to the proof of Theorem 4.10.

Remark 4.3. For the case where we have several price observations V (i)
t at

each time t, that is |It| > 1, we have similar conclusions as in Lemma 4.9 and
Theorem 4.10. The proof is analogous given the assumption that the market
noises are independent and normally distributed as before, including the prices
corresponding to the same time t. We follow this with a corollary.

Corollary 4.11. For multiple price observation, set |It| > 1 and for all loss
functions H that are bounded and continuous on Q, the Bayes’ estimator σ̂(V )
is consistent.

Proof. The proof is analogous to those of Lemma 4.9 and Theorem 4.10 except
that the sigma-field generated by all market errors up to time tn is now

Gtn = σ
(
{e(i)

s : s ∈ Υn, i ∈ It}
)
.

The rest of the notations should be replaced as follows:
∑
t∈Υn

by
∑

t∈Υn,i∈It
, Vt by V

(i)
t , ft by f

(i)
t , εt by ε

(i)
t

in order to complete the proof.

4.2.5 Consistency of Bayes’ Estimator for Multiplicative Error Model:
Non-Scalar Parameter

Consider the settings in Section 4.2.3 where we take the parameter σ ∈ Rp to be
finite dimensional but non-scalar. We extend the results of that section to the
case of multiplicative normally distributed error model described in Section 4.2.4.

Theorem 4.12. For all H bounded and continuous functions on σ, the non-
scalar Bayes’ estimator σ̂n(V ) is consistent under the multiplicative normally
distributed error model.
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Proof. The proof is analogous to the proof of Theorem 4.8 with some adjust-
ments. Using the same notation again, we should show that∫

B(σ∗,η)c
πn(σ|V )dσ = 0 as n→∞, (4.20)

for all η0 > η > 0 such that ‖σ − σ∗‖ ≤ η0 and π0(σ) ≥ d > 0. Again, ‘c’
denotes the complement of a set in Rp. Note that πn(σ|V ) has been defined in
(4.15). Again, by similar computation as in the proof of Lemma 4.9, we can
bound (4.20) by ∫

B(σ∗,η)c
πn(σ|V )dσ ≤ e−

1
2 [φn(αn,V )−φn(βn,V )],

where αn, βn ∈ Q are defined similarly as

αn = argmax
B(σ∗,η)c

e−
1
2φn(σ,V ) and βn = argmin

B(σ∗,η)c
e−

1
2φn(σ,V ).

Again, writing the expression for φn(αn, V )− φn(βn, V ) and using the fact that
π0(βn), π0(αn) < ∞ by the third property of Assumption 4.2 together with
n ≥ n(αn), n(βn) yields

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2


= 2
∑
t∈Υn

Zt
εt

(
ft(βn)− ft(σ∗)

ft(βn) − ft(αn)− ft(σ∗)
ft(αn)

)

+
(ft(αn)− ft(σ∗)

εtft(αn)

)2

−
(
ft(βn)−ft(σ∗)

εtft(βn)

)2


≥ −2
∑
t∈Υn

Zt

[
ft(σ∗)
εt

(
1

ft(βn) −
1

ft(αn)

)]

+
∑
t∈Υn

η2
1

(
k2

ft(αn)2 −
K2

ft(βn)2

)
= Yn,

(4.21)

where η2
1 = ‖αn − σ∗‖2 and Yn ∼ N (rn, 4mn) is a random variable with mn

bounded by

mn =
∑
t∈Υn

[
ft(σ∗)
εt

(
ft(αn)− ft(βn)
ft(αn)ft(βn)

)]2

≥
∑
t∈Υn

k2ε2
1

ft(βn)2 (by Assumption 4.7, and ft(σ∗) ≥ ft(αn))

≥ nk2ε2
1

ft(βn)2 →∞ as n→∞,
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where ‖αn − βn‖2 = ε > 0, and

rn =
∑
t∈Υn

η2
1

(
k2

ft(αn)2 −
K2

ft(βn)2

)
.

We have used Assumption 4.7 in the fourth line of (4.21).

Hence, we can also show as before that for any r ∈ R+, P[e− 1
2Xn ≥ r] → 0.

The rest of the arguments follow from the remaining proofs of Lemma 4.9 and
Theorem 4.10.

4.3 Markov Chain and Markov Chain Monte Carlo (MCMC) Meth-

ods

We have discussed so far how to obtain the posterior distribution under Bayesian
framework and the Bayes’ estimators based on a loss function attached to the
posterior density. However, we have not specified the numerical techniques used
in sampling the parameter values from the posterior density. In this section, we
study the theoretical framework on how to do so. In most practical applications,
physical systems are often modeled as Markov chains. This is because most
stochastic systems often exhibit the Markov property, such that the prediction
of the future state is only dependent on its present state. This property of
stochastic processes was first studied in the 1900s by Andrey Markov[67].

Herewith, we regard the sampling of the stochastic parameter (local volatility)
from its posterior density as a Markov process. By using Markov Chain Monte
Carlo (MCMC) technique, we aim to simulate the realizations of this process.
Furthermore, to simulate the chain via MCMC, we have used the Metropolis
Hasting Algorithm.

The rest of this section is arranged as follows: First, we develop the fundamental
theory and properties of Markov chains as well as the detailed balance equation
in Section 4.3.1. In Section 4.3.2, we discuss the importance and motivation
behind the use of Markov Chain Monte Carlo technique in sampling parameter
values from the posterior density. Consequently, in Section 4.3.3, we explain the
Metropolis Hasting Algorithm used in the construction of the Markov chains.
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Finally, Section 4.3.4 gives analytical result on the convergence criteria for the
MCMC chains.

4.3.1 Markov Chains

A stochastic process Xn satisfies a Markov property if the probability of the
future states is independent of its history except the current state. In other
words, a Markov process has a memoryless property such that past events are
not required to make future predictions. Markov chains are defined for both
discrete and continuous stochastic processes. For our purpose, we focus only on
the Discrete time Markov chains.

Definition 4.4 (Markov Chain). A sequence of S-valued random variables X =
{Xi, i ∈ Z} is a Markov Chain if it satisfies the Markov property, that Xn+1

depends only on Xn, that is,

P (Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) ,

where xi is the state of the chain at time i.

We can characterize a Markov chain by three components namely: a state space
S = {x1, . . . , xk}, containing all the possible states Xn can take, an initial dis-
tribution p0, quantifying the distribution of the starting point of the chain, and
a transition probability or Markov kernel P, which details the probabilities of
transitioning from a state xi to xj. Therefore, the transition probability P estab-
lishes the evolution of the Markov chain. For the rest of this section, we assume
that the Markov chain is homogeneous, meaning that the transition probabilities
are the same for all time period.

Thus, if we denote pij as the transition probability from state xi to state xj in
one time step, then we can write pij as

pij = P (Xn+1 = xj|Xn = xi) .

When we write the above probabilities for all the different choices 1 ≤ i, j ≤ k,
the resulting transition matrix is given by

P = [pij], 1 ≤ i, j ≤ k.
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If we are interested in the probability of moving from a state xi to state xj in
m-time steps, then, we denote this transition probability by

p
(m)
ij = P (Xn+m = xj|Xn = xi) ,

with the corresponding m-time step transition probability matrix

Pm =
[
p

(m)
ij

]
= Pm.

The initial density p0 is given by

p0 =
[
p0

1, . . . , p
0
k

]
,

where p0
i = P (X0 = xi) , i = 1, . . . , k. In addition, the entries of p0 and P are

non-negative since they contain probabilities. Thus, the elements of p0 and rows
of P must sum to unity.

Example 4.2. On a given day, Deeyah is either happy (H) or sad (S). Assume
if she is happy today, the probability that she will be happy tomorrow is 0.7,
whereas if she is sad today the chance of her being sad tomorrow is 60%. Thus,
the probability of her being happy or sad on any particular day depends solely
on whether she is happy or sad the previous day.

We can model her emotional state (Happy or Sad) as a two-state Markov chain
where the state space is

S = {Happy, Sad},

with resulting transition probability matrix

P =

 0.7 0.3
0.4 0.6

 .
Furthermore,

p0 =
[
p0
h p0

s

]
, p0

h + p0
s = 1

is the percentage of time Deeyah is happy on any given day. To illustrate, assume

p0 =
[

0.8 0.2
]
.

The probability that she will be happy tomorrow is given by

p1 =
[

0.8 0.2
]  0.7 0.3

0.6 0.4


=
[

0.64 0.32
]
.
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Table 4.1: Distribution of π in Example 4.2

n P n n P n n P n

0
[

0.8000 0.2000
]

4
[

0.5720 0.4267
]

8
[

0.5714 0.4286
]

1
[

0.6400 0.3600
]

5
[

0.5720 0.4280
]

9
[

0.5714 0.4286
]

2
[

0.5920 0.4080
]

6
[

0.5716 0.4284
]

10
[

0.5714 0.4286
]

3
[

0.5776 0.4224
]

7
[

0.5714 0.4285
]

Thus, the distribution after n days is

pn =
[

0.8 0.2
]  0.7 0.3

0.6 0.4


n

.

The distribution for n = 0, 1, 2, . . . , 10 have been compiled in Table 4.1. The
table shows that the distribution, π, is converging to a stationary value. The
limiting distribution π can be solved by using

π = πP,
∑

πi = 1

⇒
[
πhappy πsad

]  0.7 0.3
0.6 0.4

 =
[
πhappy πsad

]
, πhappy + πsad = 1,

to obtain
π =

[
0.5714 0.4286

]
.

We remark that in general we cannot always solve explicitly, for the stationary
values of a Markov chain. Consider a Markov chain that converges in distribution
to π, that is,

lim
n→∞

P n = π.

Given that this limit exists, we must have that

π = lim
n→∞

p0P n = lim
n→∞

p0P n+1 =
(

lim
n→∞

p0P n
)
P = πP.

Definition 4.5 (Stationary Distribution). A Markov chain Xn with transition
probability P and distribution π, is said to be stationary if it satisfies

π = πP,
∑

πi = 1.
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Remark 4.4. Every finite Markov chain has at least one stationary distribu-
tion. However, this distribution might not be unique and may not be equal to
limn→∞ P

n.

Remark 4.5. In order to construct a Markov chain that has stationary distribu-
tion, we need to establish that the Markov chains are irreducible and aperiodic.
We do not cover these concepts in details here. Interested readers should check,
for instance [62, 78]. However, it is often difficult to solve for the stationarity of
the chain using Definition 4.5, instead, we present the detailed balance equation,
an alternative approach of establishing the stationarity of Markov chains.

Definition 4.6 (Detailed Balance Condition). A chain with transition matrix
P = [Pij] and distribution π = [π1, . . . , πk] is reversible if the detailed balance
equation

πiPij = πjPji

is satisfied for all i, j.

Since ∑i πiPij = ∑
i πjPji = πj

∑
i Pji = πj, it follows that πP = π, so the re-

versibility implies stationarity. We also observe that if the chains are irreducible
and aperiodic, they will uniquely converge to a specific stationary distribution.
Using Definition 4.6, it is clear that πk−1Pk−1,k = πkPk,k−1 is sufficient but not
a necessary requirement for the MCMC chains to be stationary.

Theorem 4.13 ([75], Section 8.4). The MCMC chain of the local volatility
parameter σLV is stationary.

Proof. Let the posterior density at the k-th step be πk = π(σkLV |V ) and Pk−1,k =
P
(
Xk = σkLV |Xk−1 = σk−1

LV

)
to be the transition probability from σk−1

LV to σkLV .
To show stationarity, by Definition 4.6, we need to prove that

π
(
σk−1
LV |V

)
Pk−1,k = π

(
σkLV |V

)
Pk,k−1.

Since Pk−1,k = P
(
proposing σkLV

)
P
(
accepting σkLV

)
. It then follows from the

definition of proposal density and acceptance probability α, that

Pk−1,k = J
(
σkLV |σk−1

LV

)
α
(
σkLV |σk−1

LV

)
= J

(
σkLV |σk−1

LV

)
min

1,
π
(
σkLV |V

)
J
(
σk−1
LV |σkLV

)
π
(
σk−1
LV |V

)
J
(
σkLV |σk−1

LV

)
 . (4.22)
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Note that if the jumping density is symmetric, that is, J
(
σk−1
LV |σkLV

)
= J

(
σkLV |σk−1

LV

)
,

then α
(
σkLV |σk−1

LV

)
= min

(
1, π(σ

k
LV |V )

π(σk−1
LV |V )

)
. To further simplify (4.22), we need the

following relation whose proof can be found in Appendix A. For x, v ∈ R,

vmin(1, x/v) = min(x, v) = xmin(1, v/x). (4.23)

Using (4.23), it follows that

π
(
σk−1
LV |V

)
Pk−1,k

= π
(
σk−1
LV |V

)
J
(
σkLV |σk−1

LV

)
min

1,
π
(
σkLV |V

)
J
(
σk−1
LV |σkLV

)
π
(
σk−1
LV |V

)
J
(
σkLV |σk−1

LV

)


= π
(
σkLV |V

)
J
(
σk−1
LV |σkLV

)
min

1,
π
(
σk−1
LV |V

)
J
(
σkLV |σk−1

LV

)
π
(
σkLV |V

)
J
(
σk−1
LV |σkLV

)


= π
(
σkLV |V

)
Pk,k−1.

(4.24)

Hence, the detailed balance condition is satisfied for the Metropolis Hastings
algorithm and the posterior density is the stationary distribution.

4.3.2 Markov Chain Monte Carlo (MCMC) Methods

In most parameter estimation problems, the posterior joint density of the param-
eters is defined in Rp. The evaluation of this posterior distribution for moderate
dimensionality p involves the use of quadrature techniques (especially sparse
grid quadrature) [75]. For large dimensionality p, Monte Carlo integration tech-
niques are often used. The challenge with using Monte Carlo approach is that
the support of the density is often part of the information that we are seeking.
Therefore, instead of specifying some parameter values and evaluating the pos-
terior density at those values, we instead seek a better alternative in exploring
the geometry of the density by specifying parameter values using the properties
of the density.

So, we construct a Markov chain whose stationary distribution coincides with
the posterior density of the parameter. The idea behind the MCMC techniques
involves simulating the realizations of the Markov chains from the posterior
density. These chains give the parameter values that are sampled from the
parameter density given the observed data samples.
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4.3.3 Metropolis Hasting Algorithm

We now turn to the strategy by which we simulate the Markov chains. Recall
that the next state of a Markov chain only depends on the present state. Given
this information, we construct the Markov chain as follows:

Strategy 4.1. Consider the parameter σk−1
LV ∈ Rp has been specified.

1. Assign the current chain realization to σk−1
LV , that is, Xk−1 = σk−1

LV .

2. Propose a new value σ∗LV ∼ J
(
σ∗LV |σk−1

LV

)
based on the jumping or proposal

distribution J. So, we specify the next value σ∗LV of the chain based on the
previous value σk−1

LV , but this should not be understood as a conditional
density.

3. With probability α
(
σ∗LV |σk−1

LV

)
computed by using the posterior distribu-

tion, accept σk−1
LV and assign it to Xk; i.e., Xk = σ∗LV . Otherwise, take

Xk = σk−1
LV . Also, α

(
σ∗LV |σk−1

LV

)
should not be interpreted as a conditional

probability but rather as a probability of accepting σ∗LV generated from
the previous value σk−1

LV .

4. Establish that the stationary distribution for the chain is the posterior
density.

From the strategy above, we construct a Metropolis Hasting Algorithm. An-
other variation of this algorithm which utilizes this strategy is Random Walk
Metropolis, see [75] for more details. In the context of the work presented in
Section 4.4, we consider the case where the proposal or jumping density is taken
to be symmetric such that J

(
σk−1
LV |σkLV

)
= J

(
σkLV |σk−1

LV

)
. In this respect, we

consider two possibilities for the jumping distribution:

J
(
σ∗LV |σk−1

LV

)
= N

(
σk−1
LV , V

)
, and J

(
σ∗LV |σk−1

LV

)
= N

(
σk−1
LV , D

)
. (4.25)

Here, V andD represent the variance-covariance and variance matrices for σLV ∈
Rp respectively. By the symmetric property of the proposal density, it follows
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that

J
(
σ∗LV |σk−1

LV

)
= 1

(2π)p|V |e
− 1

2 [(σ∗LV −σk−1
LV )V −1(σ∗LV −σk−1

LV )]

= 1
(2π)p|V |e

− 1
2 [(σk−1

LV −σ
∗
LV )V −1(σk−1

LV −σ
∗
LV )]

= J
(
σk−1
LV |σ∗LV

)
.

(4.26)

Replacing V with D in (4.26) gives the same result. In addition, one can
also use t-distributed proposal density for smaller sampled observations. The
t-distribution is also a symmetric distribution. To see this, assume T ∼ tr is
t-distributed random variable with r degrees of freedom, then,

T = Z√
χ/n

,

where Z and χ are independent standard normal and chi-squared random vari-
ables respectively. If T is symmetric, then P (T > c) = P (T < −c). Thus,

P (T > c) = P

 Z√
χ/n

> c


= P

(
Z > c

√
χ/n

)
= P

(
Z > c

√
χ/n|X

)
P (X)

= P
(
Z < −c

√
χ/n|X

)
P (X)

= P
(
Z < −c

√
χ/n

)

= P

 Z√
χ/n

< −c


= P (T < −c),

(4.27)

where in line three and five, we have used the property of conditional probability;
in line four the symmetric property of normal distribution.

Next, we present the Metropolis Hasting Algorithm and discuss the motivation
behind the use of symmetric proposal density in sampling the local volatility
parameter.

We remark some key observations of Algorithm 4.1.
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Algorithm 4.1 Metropolis Hasting Algorithm in Bayesian framework

1. Choose initial parameter ~σ0 such that π (~σ0|V ) > 0; dim(~σ0) = p.

2. For k = 1, . . . ,M

(a) for z ∼ N (0, Ip), construct the candidate

~σ∗ = ~σk−1 +Rz,

where RRT = V (Cholesky decomposition) for the covariance matrix
V of the parameter ~σ. Sometimes V is replaced with the diagonal
matrix D whose elements contains the variances of each parameter
in ~σ.

(b) ~σ∗ ∼ N (~σk−1, V ).

(c) Compute the probability r(~σ∗|~σk−1) such that

r(~σ∗|~σk−1) = π(~σ∗|V )
π(~σk−1|V ) = π(V |~σ∗)π0(~σ∗)

π(V |~σk−1)π0(~σk−1) ;

i. set ~σk = ~σ∗ with probability α = min(1, r);

ii. Otherwise ~σk = ~σk−1.
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Remark 4.6. 1. First we note that, by taking the ratio of the posterior den-
sity, we eliminate the normalization constants in the acceptance probability
of Algorithm 4.1, thereby reducing the computation.

2. Using the likelihood function of the normal distributed errors and similarly
for t-distributed errors in Section 4.4, we eliminate the potential numerical
0
0 evaluation.

3. A candidate value σ∗LV that yields π(V |~σ∗) > π(V |~σk−1) leads to a smaller
sums of squared errors allowing such candidate to be accepted with prob-
ability one.

4. If σ∗LV is selected such that the sums of squared errors is increased, i.e.,
π(V |~σ∗) < π(V |~σk−1), then we accept this candidate with probability α.

4.3.4 Convergence Analysis of MCMC

Theorem 4.13 ensures that if the MCMC chains are run sufficiently long enough,
they will produce samples from the posterior density. However, there is still
question of determining how long to run the chain for this to happen. In other
words, how long is sufficient to run the chain so that it converges and adequately
samples from the posterior density. In general, this is quite difficult to answer as
analytic convergence and stopping criteria are lacking for this procedure. In fact,
some authors have noted that the convergence or burn-in of MCMC algorithms
can be falsified but in general, not completely verified, see [15] for instance.

We now turn to answer the second question. Below, we list some numerical
methods that can be used to test for the convergence of the MCMC chains.
These are taken from several monographs such as [15, 45, 75].

1. One can visually observe that the marginal chains of the MCMC for each
parameter is stationary after running for sufficiently long period of time.
However, this raises a question in the case where the MCMC chain initially
samples from a local minimum before determining another step with a
lower residual. In fact, there is no way to guarantee this is the global
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minimum and if the chain will transition again if a new lower minimum is
found.

2. For moderate number of parameters, the MCMC chains can be compared
with sample estimates from using quadrature techniques. We might add
that using quadrature rule is not suitable for the local volatility model due
to the higher dimensionality of the calibrated parameter.

3. From a statistical point of view, the acceptance ratio, α, can be used to
determine if the chain is adequately sampling from the posterior density.
The optimal acceptance ratio ranges from 0.1 to 0.5.

4. The use of autocorrelation between different component in the chain that
are k-iterations apart can be of importance in determining covergence.
The autocorrelation is given by

R(k) =
∑M−k
i=1 (σiLV − σ̄LV )(σi+kLV − σ̄LV )∑M

i=1(σiLV − σ̄LV )2 = Cov(σiLV , σi+kLV )
Var(σiLV ) .

Since adjacent components are likely correlated due to markov property,
autocorrelation is used to determine if the chain is producing i.i.d. samples
from the posterior density. In fact, low autocorrelation is often indicative
of fast convergence [16].

5. Convergence can also be monitored to check if the MCMC has run long
enough by checking the Potential Scale Reduction Factor (PSRF) of the
estimates of call option prices [40, 45].

To calculate PSRF, we consider the following procedure. Suppose we have
run the MCMC for m chains with lengths n (i.e length of each chain) after
the burn in period. For each calibration, denote Vij the option price of
the ith parameter of the jth simulated chain, where i = 1, . . . , n and j =
1, . . . ,m. Furthermore, we define the between variances, B, and within-
sequence variances, W , as follows:

B = n

m− 1

m∑
j=1

(V̄.j − V̄..)2 and W = 1
m

m∑
j=1

s2
j ,

where

V̄.j = 1
n

n∑
i=1

Vij, V̄.. = 1
m

m∑
i=1

V̄.j, s2
j = 1

n− 1

n∑
j=1

(Vij − V̄.j)2.
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With the above given definitions, we compute PSRF as follows:

PSRF(V ) =
√

1− 1
n

(
1− B

W

)
. (4.28)

The convergence of the chain is observed by assessing the scale factor by
which the current distribution for V might be reduced as the length of
the chain gets large. Notice that PSRF → 1 as n → ∞. If PSRF is
high, then it means continuing simulation would improve convergence. In
otherwords, it signifies that convergence can not be yet ascertained.

The PSRF estimate works because B which represents the between se-
quence variances usually overestimates posterior variance, whereasW usu-
ally underestimates the posterior variances. Moreover, as we run the chain
for longer period, B gets closer to W, hence, the ratio B/W gets closer to
1. So, the PSRF estimate for V given by (4.28) goes to 1 too. See [41, 40]
for further references on PSRF values. It is noted that a good estimate
range for PSRF is between 0.9 to 1.1.

4.4 Bayesian Modeling

In this section, we explore the calibration of volatility parameter via four dif-
ferent statistical models, namely: additive normally distributed error, additive
student-t distributed error, multiplicative normally distributed error, and multi-
plicative student-t distributed error models. In the context of Bayesian learning,
the previous literature on extracting local volatility surface are very much min-
imal. More recently, [45] worked on Bayesian method of sampling the volatility
parameter from its posterior distribution. However, their implementation differs
from the work presented here in two ways. First, we compute local volatility
from four different statistical models without restricting to only normally dis-
tributed additive error model as in [45]. Second, our choice of the prior density
for the local volatility parameter σLV which is incorporated into the Bayesian
framework of the four statistical error models under investigation, differs from
theirs, and hence, the posterior distribution of σLV differs. Furthermore, we
reformats the calibration problem into Bayesian framework by seeking to obtain
the posterior distribution for the local volatility parameter via these models.
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Thus, in this section, we develop mathematical tools necessary for the calibra-
tion of the statistical models in estimating the unknown parameter σLV that
is consistent with the dynamics of the asset prices by treating it as a random
variable for each exercise price and maturity.

To begin with, we give a general set up for the additive error model. Consider

Υi = f(ti, q0) + εi, i = 1, 2, 3, . . . , n, (4.29)

where Υi are random variables whose realizations υi are the sets of measurement;
f(ti, q0) is the model response parametrized by q0 at the corresponding times
ti. There are various ways one can quantify q0 such that the model response
and the set of observations are as close as possible within a given tolerance level.
Here, we quantify such q0 by obtaining its distribution. The so-called “posterior”
density for the parameter involves the probability density under which the υi
are the most likely to be observed. We denote it by π(q|υ). In the context of
parameters that are to be quantified based on observations, the posterior density
can be characterized completely by applying the Bayes’ rule:

π(q|υ) = π(υ|q)π0(q)
πΥ(υ) , (4.30)

where π0(q) represents the prior density and π(υ|q) is the likelihood function
that describes how likely the observations are, given the parameter q. The
denominator πΥ(υ) in (4.30) is a normalizing constant given by

πΥ(υ) =
∫
Rp
π(υ|q)π0(q)dq,

which in practice is not calculated.

Now, consider a financial derivative (specifically a European option) whose value
depends on the prices of the underlying asset over time. The dynamics of the
asset prices are assumed to be dependent on an unknown parameter σLV from
the prescribed local volatility model. Suppose that, at time t ∈ Υn([0, T ]) =
{0 ≤ t1, t2, . . . , tn ≤ T} we have a set of observed European option prices across
different strikes Ki and maturities Ti, where i ∈ It is an index set. Hence,
the objective is to quantify the volatility parameter that is consistent with the
observed option prices Vt = {V (i)

t , i ∈ It, t ∈ Υn} under local volatility modeling.
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To simplify the framework, we use an average of the quoted bid-ask spread

V
(i)
t = 1

2
(
V

(i)bid
t + V

(i)ask
t

)
, (4.31)

for each i ∈ It.

In order to obtain a complete representation for the posterior density π(q|υ),
one needs to completely express the likelihood function π(υ|q) and the prior
distribution π0(q). We incorporate the set of prior beliefs in Section 2.3.2 into
the prior density of the parameter.

To set up the likelihood function, we model the noise from a normal distribution
with mean zero and fixed but unknown variance δ2

0. For a set of option prices
V

(i)
0 for every i ∈ I0 = {1, . . . , n} as in (4.31) observed today at time t = 0, we

define δi = 1
2

∣∣∣V (i)bid
0 − V (i)ask

0

∣∣∣ to be the basis point bid-ask spread for the ith
option at time zero. Here δi can be interpreted as the deviation from the mean
zero. Having defined the sum of squares

SS(σLV ) =
n∑
i=1

∣∣∣V (i)
0 − fi(σLV )

∣∣∣2

for the quoted values V (i)
0 and the theoretical values fi(σLV ) from the local

volatility model, we assign positive likelihood under σLV only if

∣∣∣V (i)
0 − fi(σLV )

∣∣∣ ≤ δi, for all i = 1, . . . , n. (4.32)

In order to propose a more efficient and robust numerical procedure, we choose
δ such that all the option prices at time zero fall within this tolerance level.
Specifically,

SS(σLV ) ≤ δ2 =
n∑
i=1

δ2
i . (4.33)

In the remaining part of this section, we derive a mathematical formula for
computing local volatilities based on various statistical models. These mod-
els include: normally distributed additive error, student-t distributed additive
error, normally distributed multiplicative error, and student-t distributed mul-
tiplicative error models.
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4.4.1 Normally distributed additive error model

First, we explore the statistical model with normally distributed additive errors.
The model is given as:

Vi = fi(σLV ) + εi, i = 1, 2, 3, . . . , n, (4.34)

with εi ∼ N (0, δ2) for i = 1, . . . , n and δ2 = ∑n
i=1 δ

2
i . Here, the δi are chosen as

δi = 1
2

∣∣∣V (i)bid
0 − V (i)ask

0

∣∣∣ .
Under the i.i.d. assumptions for the error, the likelihood function π(V |σLV , δ2)
is given by

π(V |σLV , δ2) ∝ 1{SS(σLV )≤δ2} exp
{
− 1

2δ2SS(σLV )
}
, (4.35)

where 1 represents the indicator function under which the likelihood function
is positive and SS(σLV ) = ∑n

i=1

∣∣∣V (i)
0 − fi(σLV )

∣∣∣2. Furthermore, the likelihood
function is constructed via the densities of the i.i.d. errors. For more details on
the construction of the likelihood function, we refer the reader to [76, Section
8.1]. Using the prior density constructed in [45] we have

π0(σLV ) ∝ exp
{
−1

2‖log(σLV )− log(σimp)‖2
κ

}
, (4.36)

where the norm ‖·‖κ is defined as

‖u‖2
κ = (1− κ) ‖u‖2

2 + κ ‖|∇u|‖2
2 .

Here, ∇ =
(
∂
∂T
, ∂
∂K

)
is the gradient operator with |∇u| =

(
∂u
∂T

)2
+
(
∂u
∂K

)2
and

‖·‖2 is the standard L2-norm of the square integrable functions; κ ∈ (0, 1) is a
pre-specified constant.

Combining the likelihood function and prior density gives the posterior density

π(σLV |V ) ∝ 1{SS(σLV )≤δ2}

× exp
{
− 1

2δ2

[
SS(σLV ) + λ̃ ‖log(σLV )− log(σimp)‖2

κ

]}
, (4.37)

where λ̃ = δ2 is the penalty parameter.

In the next section, we propose the use of student-t distribution for the errors,
especially for the case where we have few observations (n < 30) in the market.
We also recommend the use of student-t for the error distribution when working
with sampled covariance matrix rather than known population covariance [68].
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4.4.2 Student-t distributed additive error model

Second, we consider the statistical model:

Vi = fi(σLV ) + τi, for i = 1, 2, 3, . . . , n, (4.38)

where the τi are i.i.d. t-distributed random variables with n − p degrees of
freedom. Note that p is the size of the parameter q while n is the number of
observed option prices. Note that the degrees of freedom for this error modeling
depends on the number p of parameters σLV chosen on the surface to estimate.
The value of p is estimated based on the trade-off between model accuracy and
computational time. This could also be estimated via Bayesian framework by
treating it as an unknown and assuming a reasonable prior. However, a suitable
range of values for p satisfy the conditions above and provides a smooth surface.
Here, we assume for simplicity that p = 89 as a pre-estimated value. This yields
a fixed number of degrees of freedom (n− p) for the random variable τ . Within
the model, the density of τ with k = n− p is given by

πk(τ) =
Γ
(
k+1

2

)
Γ
(
k+1

2

)√
πk

(
1 + 1

k
(V − f(σLV ))2

)− (k+1)
2
.

Therefore, the likelihood function can be constructed by using the i.i.d. property
as well as the densities of the errors:

π(V |σLV , k) =
 Γ

(
k+1

2

)
Γ
(
k+1

2

)√
πk

n n∏
i=1

(
1 + 1

k
(Vi − fi(σLV ))2

)− (k+1)
2

∝
n∏
i=1

(
1 + 1

k
(Vi − f(σLV ))2

)− (k+1)
2

∝ exp


n∑
i=1

log
(

1 + 1
k

(Vi − fi(σLV ))2
)− (k+1)

2


∝ exp

{
−(k + 1)

2

n∑
i=1

log
(

1 + 1
k

(Vi − fi(σLV ))2
)}

.

(4.39)

Combining the prior distribution and the likelihood gives the posterior distribu-
tion as

π(σLV |V, k) ∝ exp

−(k + 1)
2

 n∑
i=1

log
(

1 + 1
k

(Vi − fi(q))2
)

+ λ̃

∥∥∥∥∥log
(
σLV
σimp

)∥∥∥∥∥
2

κ

 ,
(4.40)
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where λ̃ = 1
k+1 .

In the next two sections, we pass to multiplicative statistical models. For a
structural model, the distribution of the residuals from additive error models
are highly dependent on the magnitude of the observations even though the
model provides accurate fit to the data. So, for this case, a multiplicative error
distribution is more appropriate as the variance of the observation will depend
on the magnitude of the model response.

The local volatility model exhibits the properties of a structural model, hence,
the motivation for its application here.

4.4.3 Normally distributed multiplicative error model

Third, we impose the following statistical model for estimating local volatility
parameter:

Vi = fi(σLV ) (1 + εi) , i = 1, 2, 3, . . . , n, (4.41)

where the model errors are i.i.d. and

εi ∼ N (0, δ2), i = 1, 2, 3, . . . , n.

Therefore, it follows from (4.41) that

Vi ∼ N
(
fi(σLV ), fi(σLV )2δ2

)
.

By using the i.i.d. property and densities of the errors, the likelihood function
in this setting is given by

π(V |σLV , δ2) ∝ 1{SS(σLV )≤f(σLV )2δ2} exp
{
− 1

2f(σLV )2δ2SS(σLV )
}
. (4.42)

With this likelihood function and the initial prior in (4.36), we obtain the pos-
terior distribution as

π(σLV |V ) ∝ 1{SS(σLV )≤f(σLV )2δ2}

× exp

− 1
2f(σLV )2δ2

SS(σLV ) + λ̃

∥∥∥∥∥log
(
σLV
σimp

)∥∥∥∥∥
2

κ

 , (4.43)

where λ̃ = f(σLV )2δ2 is again a penalty parameter.
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4.4.4 Student-t distributed multiplicative error model

Finally, we use the following statistical model:

Vi = fi(σLV ) (1 + τi) , i = 1, 2, 3, . . . , n, (4.44)

where the τi are i.i.d. t-distributed random variables with n − p degrees of
freedom. The reason behind the choice of the degrees of freedom here is similar to
the discussion in student-t distributed additive error model. Hence, the density
of τ with k = n− p is given as

πk(τ) =
Γ
(
k+1

2

)
Γ
(
k+1

2

)√
πkf(σLV )

1 + 1
k

(
V − f(σLV )
f(σLV )

)2
−

(k+1)
2

.

The likelihood function is then obtained as

π(V |σLV , k) =
 Γ

(
k+1

2

)
Γ
(
k+1

2

)√
πk

n n∏
i=1

1
fi(σLV )

1 + 1
k

(
Vi − fi(σLV )
fi(σLV )

)2
−

(k+1)
2

∝
n∏
i=1

1
fi(σLV )

1 + 1
k

(
Vi − fi(σLV )
fi(σLV )

)2
−

(k+1)
2

∝ exp
{
−

n∑
i=1

log(fi(σLV ))

+
n∑
i=1

log
1 + 1

k

(
Vi − fi(σLV )
fi(σLV )

)2
−

(k+1)
2


∝ exp

{
−

n∑
i=1

log(fi(σLV ))

−(k + 1)
2

n∑
i=1

log
1 + 1

k

(
Vi − fi(σLV )
fi(σLV )

)2
 .

(4.45)

Combining (4.45) with the initial prior in (4.36) yields the posterior distribution

π(σLV |V, k) ∝ exp

−
n∑
i=1

log(fi(σLV ))− 1
2

∥∥∥∥∥log
(
σLV
σimp

)∥∥∥∥∥
2

κ

−(k + 1)
2

n∑
i=1

log
1 + 1

k

(
Vi − fi(σLV )
fi(σLV )

)2
 . (4.46)

Remark 4.7. In all the four statistical error models we have discussed, one may
choose a flat prior

π0(σLV ) = 1σLV ≥0 (4.47)
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and compute the posteriors respectively.

4.5 Numerical Example

Having built the mathematical tools necessary to obtain the local volatility
surfaces, we now analyze and compare the results from each model. The data
used to test the algorithms is taken from [2]: it is a collection of bid-ask spreads
of European call options on S&P 500 stock index. The spread consists of 163
observations across 18 strikes and 12 maturities. The raw data is refined by
averaging the bid and ask implied volatilities for each strike K and maturity T.

4.5.1 Results and Analysis

Now, we introduce the MCMC algorithm for sampling the local volatility pa-
rameter from the posterior distribution. The generic procedure is given in Algo-
rithm 4.1. For the MCMC algorithm, we run a chain of 10000 surfaces including
a burn-in period of 500. Estimates of σ at the discretized points are sampled
at each iteration of the algorithm. These points are chosen across all strikes
and maturities from the observed 163 market option prices. The number of dis-
cretized points for the volatility parameter is assumed to be less than the number
of observed option prices used (for more details, see [76, Section 7.2]). Here, we
choose 89 as the pre-estimated number of parameters. Consequently, an increase
in the number of discretized points improves the stability of the method; how-
ever, it also slows down the procedure. Therefore, a trade-off between robustness
and computational efficiency has to be taken into account.

In the following, we present the local volatility surfaces and relative norms of
the MCMC chain. Figure 4.1 is constructed using Algorithm 4.1 in the Bayesian
framework. The volatility surfaces obtained are modeled from the normally dis-
tributed additive error model, the student-t distributed additive error model, the
normally distributed multiplicative error model, and the student-t distributed
multiplicative error model. Since changes only appear at the beginning including
the burn in period of the MCMC, we depict Figure 4.1 (right column) restricting
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the x-axis to 500 iterations. In particular, after the 500th iteration, there are no
significant changes in either the relative norms of the errors in the MCMC chain
or the surfaces obtained at each iteration. However, we continued the MCMC
until the 10000th iteration and depict the surfaces in Figure 4.1 (left column).
The discretization of the parameter space σLV (T,K) can be found in [45].

To start with, we discuss the properties of the volatility surfaces via the Bayesian
method. Unlike the classical methods [17, 5], we do not encounter negative
local volatility in the Bayesian framework due to a suitable choice of the prior
density for the parameter σ. Also, we ensure smoothness in the local volatility
surfaces obtained under the Bayesian method. This is done by incorporating
the smoothness property (c) on page 14 into the prior density of the parameter
σ. By construction, the values of the tolerance levels δi for the replication of
model prices fi(σLV ) are directly proportional to the value of δ. So, as the δi get
smaller, δ (that is, higher resolution of volatility surface) gets small; hence, the
value of δ is dependent on the data sample. This is crucial as the smoothness
parameter for the normally distributed error models, λ̃ depends on the value
of δ. Hence, as p (the number of chosen points in the parameter space) gets
large, the value of δ increases. This makes sense since the more points chosen
in the parameter space means a higher resolution for the resultant volatility
surface (as discretization is a form of regularization); hence, a bigger value of
δ becomes a good choice. Similarly, for the student-t distributed error models,
the smoothness parameter λ̂ = 1

n−p+1 also depends on the value of p. Therefore,
as the number of points chosen on the parameter grid increases, the value of
the smoothness parameter increases. Converse is also true for small values of
p. Furthermore, we can easily see the volatility frown (sneer) produced under
the Bayesian framework in Figure 4.1 at low maturities and strike prices. For
normally distributed additive error model, the volatility skewness can be seen
clearly in Figure 4.2 for different strike and maturity values.

Next, we compare and contrast the surfaces obtained via the four models dis-
cussed in Section 4.4. Here, we first discuss the pros and cons of the additive
error models. The volatility surface obtained from normally distributed addi-
tive error model is similar to that of student-t distributed additive error model.
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(b) relative norms of MCMC chain
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(d) relative norms of MCMC chain
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(f) relative norms of MCMC chain
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Figure 4.1: Local volatility surface via Bayesian framework; the dots on the
surfaces represent the estimates at the chosen points for the local volatility
parameter: 82
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(b) Local volatility skew for K = 50 and
K = 100.

Figure 4.2: Local volatility smile and frowns for normally distributed additive
error model

However, in the context of student-t distributed additive error model, the use of
sample covariance matrix in place of unknown population covariance matrix of
the parameter σ is statistically accurate compared to the normally distributed
additive error model. In addition, the relative norms of the MCMC chains con-
verge to zero quickly in both additive error models. Also, student-t distributed
additive error model has higher sums of squared error of 1642.3 compared to
1585.2 of normally distributed additive error model.

On the other hand, we also analyze the surfaces obtained via the multiplicative
error models. The normally distributed multiplicative error model has the fastest
convergence of relative norms of its MCMC chain among all the four models.
However, normally distributed multiplicative error model also has the worst sum
of squared error of 2242.9 among the four models, while student-t distributed
multiplicative error model has 1633.7 sum of squared errors.

In the case of Bayesian approach, it may not be possible to distinguish be-
tween the volatility surfaces in order to propose to a practitioner. However,
within a prescribed confidence interval, a distribution of volatility surfaces can
be selected. This confidence interval can be constructed using the estimated
covariance matrix of σLV . Furthermore, given the analysis of the surfaces in
this work based on the data used, a financial analyst can select one of the sur-

83



faces in Figure 4.1 depending on his/her preferences. To be more specific, if the
preference of an analyst is to choose a surface with the least sums of squared
errors, then the volatility surface from normally distributed additive error model
should be preferred. However, if the rate of convergence of the MCMC chains is
an important factor, then the volatility surface from normally distributed multi-
plicative error model is to be recommended. Finally, for an analyst who is more
concerned with the statistical accuracy of the sample covariance matrices for
the volatility parameters used in those statistical models, he/she would rather
prefer the surface obtained via student-t distributed additive error model.

4.5.2 Monitoring Convergence of the MCMC chains

In this section, we compute the PSRF(V ) of the option prices obtained from
the σLV estimates via MCMC. Here, for each error model, we simulate m = 3
chains. The m chains are simulated by starting with an over dispersed seed
σ

(1)
LV , σ

(2)
LV , σ

(3)
LV , where each seed has 89 values for the σLV parameters. Each

chain simulated has a length of 500 after a burn in period of 500 chains. Every
kth chain is then saved in a process known as thinning. So, in a chain of 500
estimates, if we choose every 10th estimate, we have a total of 6 estimates in
that chain. Thus, for k = 10, we have n = 6, where n represents the total
number of estimates selected from a chain. In our framework, we have tested
for k = 10 and 100, hence why n = 6 and 51 respectively. The estimated
parameters through this simulation are then used to construct the local volatility
surface via cubic spline interpolation. The surface produced is then used to
compute the option prices via finite element method by solving the Dupire PDE.
Consequently, the PSRF(V ) of the option prices at the selected grid point of
the σLV parameters are computed. Here, we report the PSRF of some of these
option prices below. However, similar pattern are observed for the rest of the 84
option prices at those grid points. Also note that, the same analysis can be done
for any of the other grid points in which there are no observable prices. Table 4.2
and Table 4.3 show the PSRF for the additive normally distributed error model
for n = 6 and 51 respectively. It can be observed from the two tables that the
PSRF gets very close to 1 as n increases from 6 to 51. This is evidence that the
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MCMC has converged. Similarly, we compute the PSRF for the option prices
for the other error models namely: multiplicative normally distribution error,
additive t-distributed error and multiplicative t-distributed error models. These
are depicted in Table 4.4 up to Table 4.9.

Table 4.2: PSRF values for the calibrated call price for additive normally dis-
tributed error model with n = 6,m = 3, k = 100 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9234 0.9184 0.9141
0.25 0.9179 0.9151 0.9145 0.9144
0.50 0.9155 0.9139 0.9137 0.9140
0.75 0.9144 0.9140 0.9135 0.9134
1.0 0.9140 0.9138 0.9131 0.9140

1.5 0.9135 0.9136 0.9139 0.9132
2.0 0.9133 0.9135 0.9132 0.9133

Table 4.3: PSRF values for the calibrated call price for additive normally dis-
tributed error model with n = 51,m = 3, k = 10 (using (4.28)]).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9983 0.9957 0.9908
0.25 0.9932 0.9938 0.9913 0.9907
0.50 0.9904 0.9907 0.9910 0.9902
0.75 0.9903 0.9902 0.9903 0.9904
1.0 0.9907 0.9901 0.9906 0.9907

1.5 0.9908 0.9902 0.9903 0.9907
2.0 0.9905 0.9902 0.9903 0.9905
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Table 4.4: PSRF values for the calibrated call price for multiplicative normally
distributed error model with n = 6,m = 3, k = 100 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 1.1236 1.1213 0.9489
0.25 0.9547 0.9593 0.9373 0.9209
0.50 0.9353 0.9345 0.9243 0.9235
0.75 0.9261 0.9222 0.9211 0.9216
1.0 0.9195 0.9216 0.9213 0.9244

1.5 0.9158 0.9183 0.9169 0.9211
2.0 0.9168 0.9162 0.9157 0.9161

Table 4.5: PSRF values for the calibrated call price for multiplicative normally
distributed error model with n = 51,m = 3, k = 10 (using (4.28)]).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 1.0038 1.0072 1.0364
0.25 1.0532 1.0588 1.0246 1.0014
0.50 1.0250 1.0229 1.0077 1.0061
0.75 1.0107 1.0046 1.0031 1.0043
1.0 1.0004 1.0037 1.0040 1.0055

1.5 0.9946 0.9989 0.9970 1.0032
2.0 0.9966 0.9958 0.9955 0.9958

Table 4.6: PSRF values for the calibrated call price for additive t distributed
error model with n = 6,m = 3, k = 100 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9170 0.9170 0.9177
0.25 0.9132 0.9145 0.9152 0.9152
0.50 0.9133 0.9130 0.9136 0.9140
0.75 0.9142 0.9131 0.9129 0.9137
1.0 0.9130 0.9136 0.9151 0.9146

1.5 0.9132 0.9143 0.9129 0.9146
2.0 0.9135 0.9144 0.9129 0.9138
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Table 4.7: PSRF values for the calibrated call price for additive t distributed
error model with n = 51,m = 3, k = 10 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9967 0.9964 0.9975
0.25 0.9907 0.9924 0.9936 0.9936
0.50 0.9907 0.9903 0.9912 0.9917
0.75 0.9921 0.9905 0.9902 0.9914
1.0 0.9903 0.9911 0.9931 0.9924

1.5 0.9906 0.9921 0.9902 0.9925
2.0 0.9912 0.9923 0.9902 0.9915

Table 4.8: PSRF values for the calibrated call price for multiplicative t dis-
tributed error model with n = 6,m = 3, k = 100 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9220 0.9177 0.9168
0.25 0.9172 0.9168 0.9156 0.9149
0.50 0.9160 0.9162 0.9138 0.9140
0.75 0.9168 0.9151 0.9141 0.9133
1.0 0.9139 0.9164 0.9130 0.9134

1.5 0.9132 0.9139 0.9138 0.9129
2.0 0.9131 0.9134 0.9137 0.9130

Table 4.9: PSRF values for the calibrated call price for multiplicative t dis-
tributed error model with n = 51,m = 3, k = 10 (using (4.28)).

Maturity Strike
85 90 95 100 110 120 130 150

0.08 0.9922 0.9969 0.9945
0.25 0.9921 0.9919 0.9924 0.9936
0.50 0.9924 0.9932 0.9908 0.9909
0.75 0.9921 0.9929 0.9908 0.9902
1.0 0.9910 0.9917 0.9909 0.9913

1.5 0.9902 0.9902 0.9913 0.9911
2.0 0.9904 0.9905 0.9917 0.9910
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Furthermore, to give additional evidence that the MCMC chains have converged,
we compute the R(k) for the four error models studied. We observe that in
general, as k increases, precisely (k = 100, 500, 1000), R(k) → 0 for all the
models we investigate. This numerically shows the MCMC has converged as
well.

4.5.3 Consistency Results for the Local Volatility Surfaces

In this section, we give the numerical results on the consistency of the Bayes’
estimators for each of the four statistical model studied namely: normally dis-
tributed additive error, student-t distributed additive error, normally distributed
multiplicative error, and student-t distributed multiplicative error models. We
check for the consistency of the volatility surfaces over four quarterly periods as
more and more call option prices are observed in the market.

In general, the surfaces can be seen to be consistent over time as the volatility
surfaces remain smooth and stay within a range that prevents arbitrage opportu-
nities in the market. In this context, the volatility values stay within the spread
of [0.1, 0.5]. This conforms with the volatility values obtained from the market.
Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6 illustrate the consistency of
the surfaces over time.

However, for the first quarter under normally distributed multiplicative error
model, we observe high oscillation at lower maturities and strikes. We ascribe
this to the fact that we have fewer observations at this quarter due to some
options expiring at this period. In addition, this also indicates that the local
volatility surface has not yet converged at this period under the normally dis-
tributed multiplicative error model while it has shown sign of consistency for
the other statistical models.
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Figure 4.3: Quarterly volatility surfaces for the additive normally distributed
error model.
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Figure 4.4: Quarterly volatility surfaces for the multiplicative normally dis-
tributed error model.
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Figure 4.5: Quarterly volatility surfaces for the additive student-t distributed
error model.
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Figure 4.6: Quarterly volatility surfaces for the multiplicative student-t dis-
tributed error model.
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CHAPTER 5

STOCHASTIC GALERKIN METHOD

Stochastic Galerkin method provides techniques for constructing surrogate mod-
els for high-dimensional problems in the parameter space based on low order
dimensions. From the perspective of uncertainty quantification, it can be useful
to view it as techniques to significantly reduce the number of deterministic model
solutions required to construct moments associated with a quantity of interest
(QoI). To be able to achieve this reduction, one can employ spectral expansions
that exploit smoothness or solution techniques with convergence rates faster
than the rate, 1√

M
of Monte Carlo simulation for a moderate parameter expan-

sion. Furthermore, Stochastic Galerkin works well with mutually independent
parameters or representation of joint posterior density ρQ(q).

The objective of this method is to represent random processes in a manner that
exploits the smoothness often exhibited by high-dimensional parameter spaces.
This expansion is called polynomial chaos (PC) or spectral expansions.

In this context, we setup an optimization procedure where we minimize an error
functional constrained on solving a parabolic PDE via the Galerkin approach.
With this framework, we aim to quantify the option prices as a random output
based on the randomness of the volatility parameter.

Let us consider the local volatility PDE again:

Ut = 1
2σ

2(t, x)x2Uxx − rxUx, t > t0, x > 0

U(t0, S0; t0, x) = max{S0 − x, 0}, x ≥ 0,

U(t0, S0; t, 0) = S0; lim
x→∞

U(t0, S0; t, x) = 0.

(5.1)
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We then seek to minimize the error functional

G(σ) =
N∑
i=1

Mi∑
j=1

[U(S0, 0;Ti, Kij, σ)− Ṽij]2, (5.2)

where Ṽij = 1
2(V a

ij + V b
ij) is the average of the bid and ask market prices while

U(S0, 0;Ti, Kij, σ) is the model price estimated from solving (5.1) under Galerkin
approach. The above minimization is done with possibly an addition of a penalty
parameter λ to regularize the resultant solution in the parameter space. For this
case, we minimize the following functional with respect to σ:

G1(σ) = G(σ) + λ ‖|5σ|‖2
2 .

The rest of the chapter is structured as follows: Section 5.1 deals with the repre-
sentation of a random variable as a linear combination of orthogonal polynomials
with random argument. In Section 5.2, we give the weak stochastic formulation
for partial differential equations with random inputs. Finally, Section 5.3 uses
stochastic Galerkin method to solve the local volatility equation by minimiza-
tion of the error functional in (5.2). In addition, we use the crude Monte Carlo
method to solve the inverse problem and plot the resultant local volatility.

5.1 Polynomial Chaos Expansion

Consider the sequences {Qk(ω)}∞k=1 of random variables defined on the sample
space Ω of the probability space (Ω,F , P ). Let Pk be the set of polynomials
with arguments Qi having degrees less than or equal k. Also, let P̂k be the set of
polynomials in Pk that are orthogonal to Pk−1. Pk is sometimes termed “Wiener
PC of order k when considering Gaussian variable”.

Since Q : Ω → R, Pk is a functional; a 2nd order (with finite variance) random
variable u can be represented as an infinite expansion

u(ω) = u0P̂0 +
∞∑
i1=1

ui1P̂1(Qi1) +
∞∑
i1=1

∞∑
i2=1

ui1,i2P̂2(Qi1 , Qi2)

=
∞∑
i1=1

∞∑
i2=1

∞∑
i1=1

ui1,i2,i3P̂3(Qi1 , Qi2 , Qi3) + · · ·
(5.3)
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of increasing interaction terms P̂i(Qi1 , Qi2 , Qi3 , . . . , Qin) where ui1 , ui1,i2 , ui1,i2,i3 , · · ·
are real coefficients. More compactly, (5.3) can be written as

u(Q) =
∞∑
k=0

ukΨk(Q1, Q2, . . .), (5.4)

with 1–to–1 correspondence with (5.3).

In practice, we truncate equations (5.3) and (5.4) considering finite set of p
random variables with n interaction. For example, truncation of (5.3) at second
order interaction gives

u(ω) = u0P̂0 +
p∑

i1=1
ui1P̂1(Qi1) +

p∑
i1=1

i1∑
i2=1

ui1,i2P̂2(Qi1 , Qi2). (5.5)

Similarly, truncating (5.4) to k terms yields

u(Q) =
K∑
k=0

ukΨk(Q1, Q2, . . . , Qp), (5.6)

where K + 1 =
(
n+ p

n

)
=
(
n+ p

p

)
. For clarity, lets consider some cases.

Example 5.1. 1. In essence, for p = 2, n = 2 we have

u(ω) = u0P̂0 +
2∑

i1=1
ui1P̂1(Qi1) +

2∑
i1=1

i1∑
i2=1

ui1,i2P̂2(Qi1 , Qi2) =

u0P̂0 + u1P̂1(Q1) + u2P̂1(Q2)u1,1P̂2(Q1, Q1)

+ u2,1P̂2(Q2, Q1) + u2,2P̂2(Q2, Q2).

(5.7)

2. For the case where n = 2, p = 3, we get

u(ω) = u0P̂0 +
3∑

i1=1
ui1P̂1(Qi1) +

3∑
i1=1

i1∑
i2=1

ui1,i2P̂2(Qi1 , Qi2) =

u0P̂0 + u1P̂1(Q1) + u2P̂1(Q2)u3P̂1(Q3)

+ u1,1P̂2(Q1, Q1) + u2,1P̂2(Q2, Q1) + u2,2P̂2(Q2, Q2)

+ u3,1P̂2(Q3, Q1) + u3,2P̂2(Q3, Q2) + u3,3P̂2(Q3, Q3).

(5.8)
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3. For n = 3, p = 3,

u(ω) = u0P̂0 +
3∑

i1=1
ui1P̂1(Qi1) +

3∑
i1=1

i1∑
i2=1

ui1,i2P̂2(Qi1 , Qi2)

+
3∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1,i2,i3P̂3(Qi1 , Qi2 , Qi3) =

u0P̂0 + u1P̂1(Q1) + u2P̂1(Q2) + u3P̂1(Q3) + u1,1P̂2(Q1, Q1)

+ u2,1P̂2(Q2, Q1) + u2,2P̂2(Q2, Q2) + u3,1P̂2(Q3, Q1) + u3,2P̂2(Q3, Q2)

+ u3,3P̂2(Q3, Q3) + u1,1,1P̂3(Q1, Q1, Q1) + u2,1,1P̂3(Q2, Q1, Q1)

+ u2,2,1P̂3(Q2, Q2, Q1) + u2,2,2P̂3(Q2, Q2, Q2) + u3,1,1P̂3(Q3, Q1, Q1)

+ u3,2,1P̂3(Q3, Q2, Q1) + u3,2,2P̂3(Q3, Q2, Q2) + u3,3,1P̂3(Q3, Q3, Q1)

+ u3,3,2P̂3(Q3, Q3, Q2) + u3,3,3P̂3(Q3, Q3, Q3).

(5.9)

Now, consider a random process u(t, x, ω) that is a function of random vec-
tor [Q(ω) = Q1(ω), Q2(ω), · · · , Qn(ω)] : Ω → Rn. By construction, Q(ω) ∈
Γ ⊂ Rp where Γi = Qi(ω) and Γ = ∏p

i=1 Γi in the image probability space
(Γ,B(Γ), ρQ(q)dq) where ρQ(q) is the joint density associated with Q.

For (t, x) ∈ [0, T ] ×D, we separate spatial-temporal and random dependencies
to obtain

uk(t, x,Q) =
K∑
k=0

uk(t, x)Ψk(Q), (5.10)

where uk(t, x) are deterministic coefficients and Ψk(Q) are orthogonal polyno-
mials that form the basis for the random component of the solution.

5.1.1 Basis construction for a single random variable

For Q, take Ψk(Q) to be 1–D global polynomials that are orthogonal with respect
to the density ρQ(q) indexed so that Ψ0 = 1. It follows that E[Ψ0(Q)] = 1 and

E[Ψi(Q)Ψj(Q)] =
∫

Γ
Ψi(q)Ψj(q)ρQ(q)dq

= 〈Ψi(q) ,Ψj(q)〉ρ = δijγi,
(5.11)
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where 〈· , ·〉ρ denotes L2 inner product on the domain Γ with the weight ρQ(q).
The normalization factor is given by

γi = E[Ψi(Q)Ψi(Q)] = 〈Ψi(q) ,Ψj(q)〉ρ .

Now, we compute some statistics for the solution of uK(t, x,Q).

Proposition 5.1. 1. For fixed t and x, the mean of uk is given by

E[uK(t, x,Q)] = E
[
K∑
k=0

uk(t, x)Ψk(Q)
]

= u0(t, x)E [Ψ0(Q)] +
K∑
k=1

uk(t, x)E [Ψk(Q)]

= u0(t, x),

(5.12)

where E[Ψ0(Q)] = 0 and E[Ψk(Q)] = 0 for k ≥ 1.

2. Variance of the process can also be calculated as

V[uK(t, x,Q)] = E
[(
uK(t, x,Q)− E[uK(t, x,Q)]

)2
]

= E
[(
uK(t, x,Q)− u0(t, x)

)2
]

= E
[
(uK(t, x,Q))2 − 2u0(t, x)uK(t, x,Q) + u0(t, x)2

]
= u0(t, x)2 − 2u0(t, x)2 + E

[
(uK(t, x,Q))2

]
= E

[
(uK(t, x,Q))2

]
− u0(t, x)2

= E

( K∑
k=0

uk(t, x)Ψk(Q)
)2− u0(t, x)2

= E
[
2

K∑
k=1

u0(t, x)Ψ0(Q)Ψk(Q)
]

+ E
[
K∑
k=1

uk(t, x)Ψk(Q)
]2

= E

( K∑
k=1

uk(t, x)Ψk(Q)
)2

= E
[
K∑
k=1

uk(t, x)2(Ψk(Q))2
]

+ E

2
∑

1≤i<j<K
ui(t, x)uj(t, x)Ψi(Q)Ψj(Q)


=

K∑
k=1

uk(t, x)2E
[
(Ψk(Q))2

]
+ 2

∑
1≤i<j<K

ui(t, x)uj(t, x)E [Ψi(Q)Ψj(Q)]

=
K∑
k=1

uk(t, x)2γk.

(5.13)
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Example 5.2 (Hermite polynomials for Q ∼ N (0, 1)). The pdf for a normally
distributed random variable is given by

ρQ(q) = 1√
2π

exp
(
−q

2

2

)
,

which is defined on Γ = R. The general form of the Hermite polynomials is given
by:

Hn(Q) = (−1)n exp
(
−Q

2

2

)
dn

dQn

(
exp

(
−Q

2

2

))
. (5.14)

The first few Hermite polynomials are: H0(Q) = 1, H1(Q) = Q, H2(Q) =
Q2 − 1, H3(Q) = Q3 − 3Q, H4(Q) = Q4 − 6Q2 + 3.

Hermite polynomials are orthogonal over the real line with respect to Gaussian
density. Normalization constant for this set of polynomials is given by

γi =
∫
R

Ψ2(q)ρQ(q)dq = i !. (5.15)

We prove the result of (5.15) in the lemma that follows.

Lemma 5.2. For Hermite polynomials, the normalization constant is given by

γi =
∫
R

Ψ2(q)ρQ(q)dq = i !. (5.16)

Proof. We need to show that

γn = 1√
2π

∫
R

exp
(
−q

2

2

)
H2
n(q)ρQ(q)dq = n !. (5.17)

As a property of Hermite polynomials [61],

Hn+1(q)− qHn(q) + nHn−1(q) = 0; (5.18)

indexing with n− 1 yields

Hn(q)− qHn−1(q) + (n− 1)Hn−2(q) = 0. (5.19)

Multiplying (5.19) by Hn(q) gives

H2
n(q)− qHn−1(q)Hn(q) + (n− 1)Hn−2(q)Hn(q) = 0. (5.20)

Similarly, multiplying (5.18) by Hn−1(q) gives

Hn+1Hn−1(q)− qHn(q)Hn−1(q) + nH2
n−1(q) = 0. (5.21)
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Then, subtracting (5.21) from (5.20) leads to

H2
n(q)− nH2

n−1(q) + (n− 1)Hn−2(q)Hn(q)−Hn+1(q)Hn−1(q) = 0. (5.22)

(5.22) implies that

H2
n(q)− nH2

n−1(q) = Hn+1(q)Hn−1(q)− (n− 1).Hn−2(q)Hn(q). (5.23)

Taking the integral over the real line on both sides, we have that

1√
2π

∫
R

exp
(
−q

2

2

)(
H2
n(q)− nH2

n−1(q)
)
dq

= 1√
2π

∫
R

exp
(
−q

2

2

)
Hn+1(q)Hn−1(q)dq

− 1√
2π

∫
R

exp
(
−q

2

2

)
(n− 1)Hn−2(q)Hn(q)dq;

⇒ 1√
2π

∫
R

exp
(
−q

2

2

)
H2
n(q)dq = 1√

2π

∫
R

exp
(
−q

2

2

)
nH2

n−1(q)dq,

(5.24)

where we used the fact that 1√
2π
∫
R exp

(
− q2

2

)
Hm(q)Hn(q) = 0 for m 6= n. Re-

peating this procedure n-times, we obtain

1√
2π

∫
R

exp
(
−q

2

2

)
H2
n(q)dq = n(n− 1)(n− 2) · · · 3.2.1√

2π

∫
R

exp
(
−q

2

2

)
H2

0 (q)dq

= n!√
2π

∫
R

exp
(
−q

2

2

)
dq = n !.

(5.25)

Hence, we conclude that

1√
2π

∫
R

exp
(
−q

2

2

)
H2
n(q)dq = n !. (5.26)

Generally (5.14) is referred to as “probabilistic” Hermite polynomials. The Her-
mite polynomials have density ρQ(q) = exp (−q2). With this, we can convert
from one Hermite polynomial to another by proper scaling as shown below:

E[g(q)] =
∫
R
g(q) 1√

2π
exp

(
−q

2

2

)
dq

=
∫
R
g(x
√

2) 1√
2π

exp
(
−x2

)√
2dx

. =
∫
R
g(x
√

2) 1√
π

exp
(
−x2

)
dx,

(5.27)
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given that x = q√
2 and dx = 1√

2dq. For w
r denoting weight of Hermite polyno-

mials and xr denoting the nodes, we can approximate (5.27) by

E[g(q)] ≈
∑

g(xr
√

2) w
r

√
π
. (5.28)

Hence, the weights and nodes corresponding to (5.14) is ŵr = wr√
π
, qr =

√
πxr.

Example 5.3 (Legendre polynomials for q ∼ U(−1, 1)). The first five Legendre
polynomials are: P0(Q) = 1, P1(Q) = Q, P2(Q) = 3

2Q
2 − 1

2 , P3(Q) = 5
2Q

3 −
3
2Q, P4(Q) = 35

8 Q
4− 15

4 Q
2 + 3

8 . These orthogonal polynomials are defined on the
interval Γ = (−1,−1) with respect to the density ρQ(q) = 1

2 .With this property,
they serve as a suitable basis for uniformly distributed random variables on the
interval (−1,−1).

Example 5.4. Let u ∼ N (µ, σ2). Then, the random variable u can be expressed
as

u = µ+ σQ, (5.29)

where Q ∼ N (0, 1). Using Hermite polynomials, u can be written in the form of
(5.6) as

uK = u0H0(Q) + u1H1(Q) + u2H2(Q) + · · ·

= u0 + u1Q+ u2(Q2 − 1) + · · · .
(5.30)

Comparing (5.29) and (5.30) gives u0 = µ, u1 = σ, uk = 0, k > 1.

Example 5.5. Let u ∼ U(a, b). Then, u has mean µ = a+b
2 , σ2 = (b−a)2

12 . The
exact solution is given by u = µ +

√
3σQ, Q ∼ U(−1, 1). Using Legendre

polynomials, we have that u0 = µ, u1 =
√

3σ, uk = 0, k > 1.

Note that we have focused on Hermite polynomials here for the purpose of this
thesis. For more information on the classification of hypergeometric orthogonal
polynomials (the Askey scheme), we refer interested readers to [89].

5.1.2 Multiple Random Variables

Definition 5.1. A p-tuple k′ = (k1, k2, · · · , kp) ∈ Np
0 of non-negative integers is

called p-dimensional multi-index with magnitude |k′| = k1 + k2 + · · · + kp and
ordering j′ ≤ k′ ⇔ ji ≤ ki, for i = 1, 2, · · · , p.

100



Consider a random vector Q = [Q1, Q2, · · · , Qp] of mutually independent ran-
dom variables and let {Ψk(Qi)}Kk=0 denote univariate basis functions up to degree
K in the variables Qi. Then,

Ψi′(Q) = Ψi1(Q1)Ψi2(Q2) · · ·Ψip(Qp),

for 0 ≤ |i′| ≤ K.

The orthogonality condition is also satisfied by

E[Ψi′(Q)Ψj′(Q)] =
∫

Γ
Ψi′(q)Ψj′(q)ρQ(q)dq

= 〈Ψi′ ,Ψj′〉ρ
= δi′,j′γi,

(5.31)

where Γ = ∏p
i=1 Γk. Note that ρQ(q) is also the product of the densities of each

random variable where as γi = E[Ψ2
i′ ] = γi1 · · · γip is the product of univariate

normalizing constant. Finally, δi′,j′ = δi1,j1 · · · δip,jp denotes the Kronecker delta
up to p variables.

For a random process u(t, x,Q) : [0, T ]×D × Γ→ R we employ the expansion

uK(t, x, ω) =
K∑
|k′|=0

uk′(t, x)Ψk′(Q), (5.32)

with K + 1 =
(
n+ p

p

)
. Note that uk′(t, x) represents the coefficients of the

projection of uK onto the space of the orthogonal polynomials, Pk(Q).

Proposition 5.3. The orthogonality of the basis function can be used to obtain

uk(t, x) = 1
γk

E [u(t, x,Q)Ψk] . (5.33)

Proof. Let the residual be r = uK(t, x,Q) − uk(t, x)Ψk(Q) when uK(t, x,Q)
is projected onto the space of orthogonal polynomials with basis Ψi. Then,
r⊥Ψi(Q). Thus,

E [r(Ψi(Q))] = E
[(
uK(t, x,Q)− uk(t, x)Ψk(Q)

)
Ψi(Q)

]
= 0

E
[
uK(t, x,Q)Ψk(Q)

]
= uk(t, x)E

[
Ψ2
k(Q)

]
uk(t, x) = 1

γk
E
[
uK(t, x,Q)Ψk(Q)

]
.

(5.34)
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As can be seen from (5.33), stochastic Galerkin method deals with the projection
of weighted residuals onto a finite dimensional subspace spanned by appropriate
basis functions, which provide the constraints required to solve for the deter-
ministic coefficients. Finally, to conclude this section, consider the polynomial
chaos expansion in (5.8), we can group the basis functions as shown in Table 5.1.

Table 5.1: Single index, multiple index, and tensored polynomials for p = 3

k |k′| multi-index Polynomial
0 0 (0, 0, 0) Ψ0(Q1)Ψ0(Q2)Ψ0(Q3)
1 1 (1, 0, 0) Ψ1(Q1)Ψ0(Q2)Ψ0(Q3)
2 (0, 1, 0) Ψ0(Q1)Ψ1(Q2)Ψ0(Q3)
3 (0, 0, 1) Ψ0(Q1)Ψ0(Q2)Ψ1(Q3)
4 2 (2, 0, 0) Ψ2(Q1)Ψ0(Q2)Ψ0(Q3)
5 (1, 1, 0) Ψ1(Q1)Ψ1(Q2)Ψ0(Q3)
6 (1, 0, 1) Ψ1(Q1)Ψ0(Q2)Ψ1(Q3)
7 (0, 2, 0) Ψ0(Q1)Ψ2(Q2)Ψ0(Q3)
8 (0, 1, 1) Ψ0(Q1)Ψ1(Q2)Ψ1(Q3)
9 (0, 0, 2) Ψ0(Q1)Ψ0(Q2)Ψ2(Q3)

5.2 Weak Stochastic Formulation for Partial Differential Equation

In this section, we first set up the weak stochastic formulation for a general PDE
and subsequently apply the formulation to the local volatility equation.

Definition 5.2 (Weak formulation). Given the PDE

N (u,Q) = F (Q), x ∈ D,

B(u,Q) = G(Q), x ∈ δD,
(5.35)

whereN is potentially nonlinear differential operator, F (Q) is a source term, and
B(u,Q) and G(Q) are boundary operators. D ⊂ R,R2, or R3 and δD denotes
the boundary of D. We assume Q = [Q1, . . . , Qp] are mutually independent
random variables with range Γ = Rp and joint density ρQ(q). The inner product
with respect to this density is given by 〈· , ·〉ρ , while the space of the random

variables L2
ρ(Γi) has norm ‖g‖2 =

(∫
Γi |g(qi)|2ρQi(qi)dqi

) 1
2 .We consider solutions
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in the space L2(0, T ;Z) where Z = L2
ρ(Γ) = L2

ρ1(Γ1)⊗ L2
ρ2(Γ2)⊗ · · · ⊗ L2

ρp(Γp).
Let the quantity of interest be

y(x) =
∫

Γ
u(u, q)ρQ(q)dq

for x ∈ D. The weak formulation of the above PDE involves finding u ∈ V where
V is a space of test functions that satisfy the boundary conditions of the PDE.
Then, we have that ∫

D
N(u,Q)S(v)dx =

∫
D
F (Q)vdx (5.36)

for all v ∈ V, where S(v) is a linear operator and N is a nonlinear operator
constructed using integration by parts.

Example 5.6. Consider the heat equation

α
d2u

dx2 = −f(x); −1 < x < 1,

u(−1) = u(1) = 0, where Q = α.

(5.37)

Here, N (u,Q) = αd
2u
dx2 ; F (Q) = −f(x), B(u,Q) = u, G(Q) = 0, and domain

D = (−1, 1). An appropriate space of test functions is V = H1
0 (D) and the weak

formulation is given by∫
D
α
d2u

dx2 v(x)dx =
∫
D
−f(x)v(x)dx,∫

D
α
du

dx

dv

dx
dx =

∫
D
f(x)v(x)dx,

(5.38)

which must hold for all v ∈ V . The second line is obtained using integration by
parts where N(u,Q) = αdu

dx
and S(v) = dv

dx
.

Definition 5.3. For the differential equations with random inputs, we seek
solutions u(x,Q) ∈ V ⊗ Z which satisfies∫

Γ

∫
D
N(u, q)S(v(x))z(q)ρQ(q)dxdq =

∫
Γ

∫
D
F (q)v(x)z(q)ρQ(q)dxdq (5.39)

for all test functions v ∈ V, and z ∈ Z.

Now, let us revisit the local volatility model in (5.1). We seek solution

u(t, x, σ) =
K∑
k=0

J∑
j=1

ujk(t)φj(x)Ψk(σ),
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where {φj(x)}Jj=1 and {Ψk(σ)}Kk=1 are the basis for the spatial and random spaces
such that V J = span {φj} ⊂ V and ZK = span {Ψk} ⊂ Z. The choices for φj
are splines, finite elements, or spectral functions. Hence, the domain and space
we seek approximate solutions are D × Γ and V ⊗ Z respectively.

Following the procedures in (5.39), we have that∫
Γ

∫
D
utv(x)z(σ)ρQ(σ)dxdq

=
∫

Γ

∫
D

(1
2σ

2(t, x)v(x)x2uxx − rv(x)xuxz(σ)
)
ρQ(σ)dxdσ

=
∫

Γ

∫
D

(1
2σ

2(t, x)x2uxvx − rxuxv(x)z(σ)
)
ρQ(σ)dxdσ.

(5.40)

We can approximate the solution further by
M∑
m=1

Ψi(σm)ρQ(σm)wm
K∑
k=0

J∑
j=1

dujk
dt

Ψk(σm)
∫
D
φj(x)φl(x)dx

=
M∑
m=1

Ψi(σm)ρQ(σm)wm
K∑
k=0

J∑
j=1

1
2ujkΨk(σm)

∫
D
φ′j(x)φ′l(x)σ2x2dx

− r
M∑
m=1

Ψi(σm)ρQ(σm)wm
K∑
k=0

J∑
j=1

ujkΨk(σm)
∫
D
xφj(x)φl(x)dx.

(5.41)

5.3 Stochastic Gelarkin for Local Volatility Equation

In this section, we solve the Dupire local volatility equation by writing the option
price function of the local volatility equation as a polynomial chaos expansion.
Consider the Dupire equation mentioned in (5.1). Using central difference for-
mula for the derivatives, we write the PDE as

Ut −
1
2σ

2(t, x)x2D2(U)− rxD1(U) = 0,

where D1, D2 are the first and second derivative operators respectively. Further-
more, the θ-method for this problem can be explicitly written as

Un+1 − Un

∆t + (1− θ)
[
−1

2σ
2x2D2(Un)− rxD1(Un)

]
+

θ
[
−1

2σ
2x2D2(U)− rxD1(U)

]
= 0. (5.42)

Note that when θ = 0, we have the explicit method and when θ = 1, we have
the implicit method. For θ = 1/2, we have the trapezoidal rule in general.
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The above formulation can be generalized into the stochastic Galerkin formu-
lation by writing the solution of (5.42) using the generalize polynomial chaos
expansion truncated at some integer K. Precisely, we seek solution for the ran-
dom parametrized PDE

Ut(t, x, ω)− 1
2σ

2(t, x, ω)x2Uxx(t, x, ω)−rxUx(t, x, ω) = 0, t > t0, x > 0, (5.43)

such that

U(t, x, ω) =
K∑
i=0

ui(t, x)Ψi(ξ(ω)), σ(t, x, ω) =
K∑
j=0

sj(t, x)Ψj(ξ(ω)),

where {Ψi(ξ(ω))}Ki=1 are the basis for the random space spanned by Ψi; that is,
ZK = span {Ψi} ⊂ Z. Here, we choose ξ ≡ [ξ1, . . . , ξN ]T to be independent ran-
dom variables normally distributed with mean 0 and variance 1. The polynomial
chaos expansion of the random variables above has been truncated at K such
that for N random variables with P as the highest polynomial interaction we
have K + 1 =

(
N + P

P

)
. Hence, we can rewrite (5.43) as

K∑
i=0

(ui)tΨi −
1
2x

2

 K∑
j=0

sj(t, x)Ψj

2
K∑
i=0

(ui)xxΨi − rx
K∑
i=0

(ui)xΨi = 0. (5.44)

Furthermore, let σ = (σ1, . . . , σL) be the parameters of the volatility surface
σ(t, x, ω). Using frequentist statistical approach as previously studied, let this
parameters be normally distribution with implied volatility σimp as the mean
and Σ as the diagonal variance matrix constructed as explained in Section 3.2.
Then, we have that

s0(t, x) = σimp and s1(t, x) = Rξ,

where R is obtained from the Cholesky decomposition of Σ such that RRT = Σ.
Therefore, we can write σ as

σ = σimp(t, x) +Rξ.

Moreover, the volatility surface σ(t, x, ω) used in solving the PDE is obtained
from the spline interpolation of the σ = (σ1, . . . , σL). Next, we perform a
Galerkin projection on (5.44), which yields

(uk)t 〈Ψk ,Ψk〉−
1
2x

2σ(t, x)2
K∑
i=0

(ui)xx 〈Ψi ,Ψk〉−rx
K∑
i=0

(ui)x 〈Ψi ,Ψk〉 = 0 (5.45)
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for k = 0, 1, . . . , K. We then descretize the PCE coefficients using central differ-
ence in space and time. Let M be the number of grid points in space. Define
M ×M matrices:

L(2) = 1
2∆x2



−2 1

1 . . . . . .
. . . . . . 1

1 −2


, L(1) = 1

2∆x



0 1

−1 . . . . . .
. . . . . . 1
−1 0


,

are the second derivative and first derivative operators respectively. Further-
more, define (K + 1)× (K + 1) matrix P with the entries

Pik = 〈Ψi ,Ψk〉

for i, k = 0, ..., K. Also, define the (K + 1)× (K + 1) diagonal matrix E by:

E =



〈Ψ2
0 〉

. . . 〈
Ψ2
j

〉
. . .

〈Ψ2
K 〉


.

Furthermore, define the M ×M diagonal matrices Pj
s and Px by:

Pj
s =



s2
j(x1)

. . .

s2
j(xm)

. . .

s2
j(xM)


, Px =



x1
. . .

xm
. . .

xM


,

where x = (x1, . . . , xM) are the points in the spatial grid.

Furthermore, define vectors with lengths (K + 1)M such that

un = (un1 , . . . ,unK)T , where uni = (uni (x1), . . . , uni (xM))T ;

X = (X1, . . . ,XK)T , where Xi = (x1, . . . , xM)T ;

X2 = (X2
1, . . . ,X2

K)T , where X2
i = (x2

1, . . . , x
2
M)T ;

σn = (σn1 , . . . , σnM)T , where σni = (σ2
1, . . . , σ

2
M)T .
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Next, we define the M(K + 1)×M(K + 1) diagonal matrices P and Px by:

P =



σ2
1x

2
1

. . .

σ2
jx

2
j

. . .

σ2
Mx

2
M


, Px =



x1
. . .

xm
. . .

xM


,

where x = (x1, . . . , xM) are the points in the spatial grid. Note that matrices P
and Px contains the element wise entries of the vectors X,X2, and σn. Applying
central difference to the partial derivatives of the PCE coefficients in (5.45) and
taking the tensor product yields

(E⊗ Im)unt −
1
2P

(
Pik ⊗ L(2)

)
un − rPx

(
Pik ⊗ L(1)

)
un = 0. (5.46)

Thus, the θ-method can be constructed from (5.46) as

E⊗ IM
[
un+1 − un

∆t

]
+ (1− θ)

[
−1

2P
(
Pik ⊗ L(2)

)
− rPx

(
Pik ⊗ L(1)

)]
un

+ θ
[
−1

2P
(
Pik ⊗ L(2)

)
− rPx

(
Pik ⊗ L(1)

)]
un+1 = 0, (5.47)

where IM is M ×M identity matrix. Using Newton’s method to solve (5.47), we
have

F (un+1) :=
[ 1
∆tE

⊗ IM + 1
2θP

(
Pik ⊗ L(2)

)
+ θrPx

(
Pik ⊗ L(1)

)]
un+1

−
[ 1
∆tE

⊗ IM −
1
2(1− θ)P

(
Pik ⊗ L(2)

)
− r(1− θ)Px

(
Pik ⊗ L(1)

)]
un

= 0.

(5.48)

5.4 Numerical Results

We solve the system of linear equations in (5.48) of size (K+1)M×(K+1)M at
each time step. Figure 5.1 depicts the local volatility surfaces via the stochastic
Galerkin and Monte Carlo methods respectively.

The volatility surface via the stochatic Galerkin approach is obtained by mini-
mizing the error functional in (5.2) while solving (5.48) at each time step. To
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(a) Monte Carlo method with 10000 samples.
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(b) Stochastic Galerkin method by minimization of the
error functional in (5.2).

Figure 5.1: Local volatility surfaces via Monte Carlo method and stochastic
Galerkin methods.
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reduce the computational complexity, we have taken the highest order of poly-
nomial interaction to be P = 3, and the number of random variables to be
N = 2, thus making K =

(
5
3

)
− 1 = 9. In addition, we have used Hermite

polynomials as the orthogonal polynomials since we have worked with normal
random variables.

For the Monte Carlo method, we obtain the volatility estimates by solving (5.48)
for 2600 and 10000 samples respectively and subsequently taking the expectation
of the volatility estimates produced by these samples.

The volatility surfaces from both methods can be used as first hand estimation
for the volatility surface. The surfaces also produce volatility values that are
within the non-arbitrage volatility spread.

The results of our analysis as depicted in Table 5.2 show that the Monte Carlo
method produces higher sums of squared errors (61791) for the 2600 samples
compared to the sums of squared errors (61769) computed for the 10000 samples.

Furthermore, the sums of squared errors of the crude Monte Carlo method with
10000 samples produces slightly higher sums of squared errors compared to the
stochastic Galerkin method (61764). Thus, the optimization procedure repro-
duces the market prices better than the crude Monte Carlo method.

In addition, the Monte Carlo procedure with 10000 samples takes significantly
more time (6.8534×105 seconds) to converge to the sums of squared errors above
compared to the stochastic Galerkin method which takes (3.9788×103 seconds).

We should also note that the large sums of errors obtained for this procedure
is due to the choice of N and P. To obtain more accurate result, a convergence
analysis should be performed for higher values of N and P .

Now, comparing the results of all the numerical methods, the normally dis-
tributed additive error model has the lowest sums of squared errors as shown
in Table 5.2. Furthermore, the results of the Bayesian method demonstrate the
lowest sums of squared errors among all the numerical methods with the excep-
tion of normally distributed multiplicative error model, where the frequentist
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approach performs better.

Table 5.2: Sums of squared errors for all the statistical models and numerical
methods used.

Numerical method Sums of squared errors
Frequentist approach 1701.7

Bayesian (additive normal) 1585.2
Bayesian (additive student-t) 1642.3

Bayesian (multiplicative normal) 2242.9
Bayesian (multiplicative student-t) 1633.7

Stochastic Galerkin 61764
Monte Carlo (2600 samples) 61791
Monte Carlo (10000 samples) 61769
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CHAPTER 6

CONCLUSION AND OUTLOOK

In this chapter, we briefly summarize the main results from the previous four
chapters. Then, we give some interpretations to these results and finally recom-
mend some areas for further research. In this thesis, we have studied mainly on
the calibration of a non-parametric financial model (local volatility) using ad-
vanced numerical methods. These methods include frequentist, Bayesian, and
stochastic Galerkin. In each of these methods, we have constructed the local
volatility surfaces at t = 0 that can be used to price options without violating
the non-arbitrage principle.

We have made four main contributions to the existing literature on local volatil-
ity modeling.

First, we have used the frequentist approach of parameter estimation in con-
structing a local volatility surface via the sampling distribution of the volatility
parameter.

Second, we have shown analytically the consistency of Bayes’ estimators for an
unknown finite-dimensional (scalar and non-scalar) local volatility parameter
under additive and multiplicative normally distributed error models.

Third, we have derived analytically the posterior distributions for the local
volatility parameters under the four statistical error models studied. Here, we
have also illustrated the convergence of the MCMC estimates using two statis-
tical tests namely, PSRF and autocorrelation.
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Finally, we have introduced the use of spectral method to solve the calibration
problem. Here, we have estimated the local volatility parameter by minimiz-
ing an error functional where the model prices are estimated using stochastic
Galerkin approach.

The results from our analysis show that the volatility surfaces via all the three
parameter estimation methods we have studied produce surfaces that exhibit
the smile effect. Also, the volatility values of all the surfaces are well within the
range of values [0.1, 0.5] that would produce non-arbitrage prices in the market.

In addition, our analysis show that the normally distributed additive error model
produces volatility surface with the least sums of squared errors (SS) among all
the statistical models. However, the normally distributed multiplicative error
model produces volatility estimates with the fastest convergence of the MCMC
chains among all the statistical error models.

Furthermore, in comparing the sums of squared errors between the frequentist
and Bayesian methods, the normally distributed additive error model produces
volatility estimates with the lowest SS. However, the frequentist approach pro-
duces SS (1701.7) that is lower than the normally distributed multiplicative error
model (2242.9) but higher than the other statistical models considered. Thus,
the frequentist approach fits the market prices better than the Bayesian method
for this case.

The Stochastic Galerkin method has the highest sums of squared errors among
all the numerical methods considered. This is expected due to the order of poly-
nomial interaction (P = 3) considered. However, in comparison to the Monte
Carlo method with 10000 samples used to solve (5.47), we find the stochastic
Galerkin to have comparable SS.

An important aspect of this thesis that needs further research is understanding
the performance of each of the numerical methods studied. As future work, one
can measure the risk of each constructed volatility surface in pricing and hedging
path-dependent options. So, instead of using path-independent European calls
to calibrate a local volatility model, one would use path-dependent call options.
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This can further increase the accuracy of the calibrated parameter due to the
improvement in the Bayesian posterior.

Finally, it will also be interesting to analyze the calibration of local volatility
function for two or more assets where the assets might be correlated.
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APPENDIX A

PROOFS AND DEFINITIONS

A.1 Proof of Equation (4.23)

For x, v ∈ R, the following relation holds:

vmin(1, x/v) = min(x, v) = xmin(1, v/x). (A.1)

Proof. WLOG let x ≤ v. This implies that x/v ≤ 1. and v/x ≥ 1 Hence,

vmin(1, x/v) = v(x/v) = x;

min(x, v) = x;

xmin(1, v/x) = x.1 = x

(A.2)

Hence, we conclude that (A.1) is true.

A.2 Volatility Parameter

First, we restrict σ to a finite dimensional space grid points Kmin = K1 < K2 <

· · · < Km < . . . < KM = Kmax in spatial direction and Tmin = T1 < T2 < . . . <

Tn < · · · < TN = Tmax in the temporal direction. We may then represent the
volatility parameter by

σ = (log σ1, log σ2, . . . , log σM+N) ,

following the ordering convention σm+(n−1)M = σ(km+1, tn) on the mesh. To
determine a complete surface over a specified region Q, we use thin plate cubic

123



spline to interpolate the discrete volatility values. With this discretization and
the prior in (4.36) we have

‖log(σLV )− log(σimp)‖2
κ = (log σLV − log σimp)T C (log σLV − log σimp) ,

where C is the inverse covariance matrix induced by the norm.

Second, to calculate the likelihood function in (4.35) for each parameter σ, prices
of all the European option values across different strikes and maturities on the
given region must be obtained. These prices can be calculated by solving the
Dupire’s formula (2.13) with appropriate boundary conditions. For the nu-
merical solution of the Dupire’s formula we choose the explicit finite difference
schemes for its simplicity.

A.3 Discretization of Dupire Local Volatility Equation

In order to solve the Dupire equation on the given parameter space described in
Section A.2, we use the Finite Difference Method (FDM). Here, we have used
the forward difference for the first partial derivatives

(
∂C(T,K)

∂T
and ∂C(T,K)

∂K

)
and

central difference for second partial derivative
(

1
2K

2 ∂2C(T,K)
∂K2

)
. Applying FDM

to the Dupire equation in (2.13) gives
1

∆Ti
(C(Ti+1, Ki,j)− C(Ti, Ki,j)) = 1

2σ
2
i,jK

2
i,j

1
∆K2 [C(Ti, Ki,j−1)− 2C(Ti, Ki,j)]

+ 1
2σ

2
i,jK

2
i,j

1
∆K2C(Ti, Ki,j+1)

− rKi,j
1

∆K [C(Ti, Ki,j+1)− C(Ti, Ki,j)] .

(A.3)

A.4 Induced Inverse Covariance Matrix

Recall that in Chapter 2, Section 4.4 we have defined a functional ‖u‖2
κ . given

by
‖u‖2

κ = (1− κ) ‖u‖2
2 + κ ‖|∇u|‖2

2 .

Here, ∇ =
(
∂
∂T
, ∂
∂K

)
is the gradient operator with |∇u| =

(
∂u
∂T

)2
+
(
∂u
∂K

)2
and

‖·‖2 is the standard L2-norm of the square integrable functions; κ ∈ (0, 1) is a
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pre-specified constant.

Let u : R2 → R be twice differentiable in terms of K and T. Furthermore,
let the estimates of u be ũ at the discretized parameter space corresponding
to L = M × N nodes. Then, we can approximate the first norm ‖u‖2

2 by the
quadrature rule,

‖u‖2
∼ = ũT ũ = ũT Iũ,

where I is the L×L identity matrix. For the second norm, consider the integral

‖|∇u|‖2
2 =

∫
T

∫
K

∣∣∣∣∣ ∂u∂K
∣∣∣∣∣
2

+
∣∣∣∣∣ ∂u∂T

∣∣∣∣∣
2

dKdT

over the rectangle [K1, K2)× [T1, T2). Using the notation below

uj,l = u(Km, Tn),

4K
j = Km+1 −Km,

4T
l = Tn+1 − Tn,

this integral can be approximated by

‖|∇u|‖2
∼ = 1

2

∣∣∣∣∣u2,1 − u1,1

4K
1

∣∣∣∣∣
2

+
∣∣∣∣∣u2,2 − u1,2

4K
1

∣∣∣∣∣
2
×4K

1 4T
1

+ 1
2

∣∣∣∣∣u1,2 − u1,1

4T
1

∣∣∣∣∣
2

+
∣∣∣∣∣u2,2 − u2,1

4T
1

∣∣∣∣∣
2
×4K

1 4T
1 .

If we represent the parameter space by [Kmin, Kmax]× [Tmin, Tmax] with M spa-
tial points Kmin = K1, < . . . < Km < . . .KM = Kmax, and N temporal points
Tmin = T1, < . . . < Tn < . . . TN = Tmax chosen in Section A.2, then the ap-
proximation to the integral over the whole region is a quadratic function with
elements of ũ given as

‖|∇u|‖2
∼ = ũTQũ,

where Q is a positive semi-definite matrix. Thus, the inverse covariance matrix
can be represented by

C−1 = κI +Q.

A.5 Expansion of [φn(αn, V )− φn(βn, V )].

In Section 4.2, we have proven the consistency of Bayes’ estimators for additive
and multiplicative error models. As part of the proof, we have bounded the
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distribution function of σn(V ). Here, we give more detailed solution on how to
bound the quantity [φn(αn, V )− φn(βn, V )] used as part of that proof for both
statistical error models.

In Section 4.2.2, we have derived that

φn(αn, V )− φn(βn, V ) = −2 log(π0(αn)) + 2 log(π0(βn))

+
∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2
 . (A.4)

Furthermore, we can simplify the expression in the summation term as

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εt

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εt

)2


=
∑
t∈Υn

Z2
t − 2Zt

(
ft(αn)− ft(σ∗)

εt

)
+
(
ft(αn)− ft(σ∗)

εt

)2


−
∑
t∈Υn

Z2
t − 2Zt

(
ft(βn)− ft(σ∗)

εt

)
+
(
ft(βn)− ft(σ∗)

εt

)2


= 2
∑
t∈Υn

Zt

(
ft(βn)− ft(αn)

εt

)
+
∑
t∈Υn

(ft(αn)− ft(σ∗)
εt

)2

−
(
ft(βn)− ft(σ∗)

εt

)2
 .

(A.5)

For each t ∈ Υn, we can further simply the last term in (A.5) to give(
ft(αn)− ft(σ∗)

εt

)2

−
(
ft(βn)− ft(σ∗)

εt

)2

= ft(αn)2 + ft(σ∗)2 − 2ft(σ∗)ft(αn)
ε2t

− ft(βn)2 + ft(σ∗)2 − 2ft(σ∗)ft(βn)
ε2t

= ft(αn)2 − ft(βn)2 − 2ft(σ∗)ft(αn) + 2ft(σ∗)ft(βn)
ε2t

≥ ft(αn)2 − ft(βn)2 − 2ft(σ∗)ft(σ∗) + 2ft(σ∗)ft(σ∗)
ε2t

(since ft(σ∗) ≥ ft(αn) ≥ ft(βn))

≥ ft(αn)2 − ft(βn)2

ε2t

= (ft(αn)− ft(βn)) (ft(αn) + ft(βn))
ε2t

≥ (ft(αn)− ft(βn)) (ft(αn)− ft(βn))
ε2t

≥
(
ft(αn)− ft(βn)

εt

)2

=
(
ft(βn)− ft(αn)

εt

)2

.

(A.6)
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Substituting the result of (A.6) into (A.5) gives the expression for Xn in (4.11).

In similar fashion, we have also shown in Section 4.2.4 that

φn(αn, V )− φn(βn, V ) = −2 log(π0(αn)) + 2 log(π0(βn))+

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εtft(βn)

)2
 . (A.7)

We can further simplify the terms in the summation above as follows:

∑
t∈Υn

(Zt − ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
Zt −

ft(βn)− ft(σ∗)
εtft(βn)

)2


=
∑
t∈Υn

Z2
t − 2Zt

(
ft(αn)− ft(σ∗)

εtft(αn)

)
+
(
ft(αn)− ft(σ∗)

εtft(αn)

)2


−
∑
t∈Υn

Z2
t − 2Zt

(
ft(βn)− ft(σ∗)

εtft(βn)

)
+
(
ft(βn)− ft(σ∗)

εtft(βn)

)2


= 2
∑
t∈Υn

Zt
εt

(
ft(βn)− ft(σ∗)

ft(βn) − ft(αn)− ft(σ∗)
ft(αn)

)

+
∑
t∈Υn

(ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
ft(βn)− ft(σ∗)

εtft(βn)

)2


= −2
∑
t∈Υn

Zt

[
ft(σ∗)
εt

(
1

ft(βn) −
1

ft(αn)

)]

+
∑
t∈Υn

(ft(αn)− ft(σ∗)
εtft(αn)

)2

−
(
ft(βn)− ft(σ∗)

εtft(βn)

)2
 .

(A.8)

For each t ∈ Υn, we can further simply the last term in (A.8) to give(
ft(αn)− ft(σ∗)

εtft(αn)

)2

−
(
ft(βn)− ft(σ∗)

εtft(βn)

)2

= ft(αn)2 + ft(σ∗)2 − 2ft(σ∗)ft(αn)
ε2tft(αn)2 − ft(βn)2 + ft(σ∗)2 − 2ft(σ∗)ft(βn)

ε2tft(βn)2

= ft(βn)2ft(σ∗)2 − ft(αn)2ft(σ∗)2 − 2ft(σ∗)ft(αn)ft(βn)2 + 2ft(σ∗)ft(βn)ft(αn)2

ε2tft(αn)2ft(βn)2

≥ ft(βn)2ft(σ∗)2 − ft(αn)2ft(σ∗)2

ε2tft(αn)2ft(βn)2 (since ft(αn) ≥ ft(βn))

= ft(σ∗)2

ε2t

(
1

ft(βn)2 −
1

ft(αn)2

)
.

(A.9)
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Substituting the (A.9) into (A.8) gives the desired inequality in (4.18).

A.6 Types of Convergence

When working with stochastic problems, it is often necessary to define sequences
of random variables Xn to approximate the exact solution X. When strong
convergence can not be established for a random variable, it is often useful to
use other forms of convergences like convergence in distribution or probability.
Here, we give the definitions of the various form of convergences that exist in
the literature.

Definition A.1 (Convergence in distribution). The sequences {Xn} converges
in distribution to a random variable X, denoted as Xn

d→ X if for all bounded
and continuous functions f,

E[f(Xn)]→ E[f(X)]

for n→∞.

The convergence in distribution holds if and only if there is convergence in the
distribution function, FX , for all continuous points x ∈ IX , i.e.,

Xn
d→ X ←→ FXn(x)→ FX(x)

for n→∞.

If FX is continuous, then we have uniform convergence given by

supx|FXn(x)− FX(x)| → 0

as n→∞.

Furthermore, let MXn(t) and MX(t) be the moment generating functions of the
sequence {Xn} and random variable X, respectively. Then, the following results
hold:

If lim
n→∞

MXn(t) = MX(t) ∀t =⇒ Xn
d→ X.
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Definition A.2 (Almost surely convergence). A sequence {Xn} converges a.s
to X with probability 1, that is, Xn

a.s→ X, if te set ω with Xn(ω) a.s→ X(ω) as
n → ∞ with probability 1. In other words, we have almost surely convergence
if

P (Xn → X) = P (ω : Xn(ω)→ X(ω)) = 1.

Definition A.3 (Convergence in probability). A sequence {Xn} converges in
probability to X, Xn

P→ X, if ∀ε > 0

P (|Xn −X| > 0)→ 0,

as n→∞.

Note that convergence in probability implies convergence in distribution. The
converse is true if X = x for constant x. Also, almost surely convergence im-
plies convergence in probability. However, the converse is true for a suitable
subsequence {Xnk}, satisfying Xn

P→ X =⇒ Xnk
a.s→ X.

Definition A.4 (Lp convergence). Let p > 0. {Xn} converges in Lp or in the
pth mean to X, Xn

Lp→ X, if E [|Xn|p + |X|p] <∞ ∀n, and

E [|Xn −X|p]→ 0

as n→∞.

Using the markov inequality, P (|Xn −X| > 0) ≤ 1
εp
E [|Xn −X|p] for p, ε > 0,

we have that
Xn

Lp→ X =⇒ Xn
P→ X.

The converse is not true in general.
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APPENDIX B

DATASET

In this appendix, we give the dataset used in constructing the local volatility
surfaces in the previous chapters. This data is given in Figure B. The data
consists of Bid/Ask implied Black-Scholes volatilities in S&P500, April 1999
taken from [2]. Strikes (K) are in percentage of initial spot and maturities (T )
are measured in years. The second column reports approximate option price
bid and ask spreads from mid in basis points (1/100 percent) of the spot index
value. Volatilities are expressed in percent. Blank cells mean that there are
no observations for that particular maturity and strike. The interest rate and
dividend yield are 5.59% and 1.14%, respectively.

Table B.1: Numerical examples constant for calibration process in Chapter 4.

Constant Description Value
S0 time 0 asset price 100
r interest rate 5.59%
d dividend yield 1.14%
n # of calibrating options 163
δ calibration tolerance level (b.p) 3
p # of calibrated parameters 89
κ Sobolev norm (LV model) 0.1
m # of iterations of each MCMC chain 10000
b length of burn-in 500
dt time step size 0.01
dK space step size 5
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Figure B.1: Bid/Ask implied Black-Scholes volatilities in S&P500, April 1999
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