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ABSTRACT

THE COMPARISON OF RISK MEASURES ON CLAIM DISTRIBUTIONS:
TURKISH MOTOR INSURANCE CASE

Telkes, Cansu
M.S., Department of Actuarial Sciences

Supervisor : Prof. Dr. A. Sevtap KESTEL

Co-Supervisor : Prof. Dr. Fatih TANK

April 2018, 93 pages

In this thesis, the impact of various risk measures on pricing methodology of automo-
bile insurance product by using the historical claim data which is obtained from one
of the most reputable insurance company in Turkey is investigated. To model the dis-
tribution of claim experience for pricing methodology, four right skewed distributions
are chosen, namely Gamma, Weibull, Lognormal and Pareto. Two classical methods,
which are methods of moment estimation and maximum likelihood estimation, are
used to estimate the parameters from the data. Lognormal distribution explains the
data ideally. After estimating the parameters of loss distribution, premium and capital
based risk measures are calculated. A comparison is done with the help of the co-
herency criteria for the result of risk measures as a favorable price of the automobile
insurance products.

Keywords : Risk Measures, Coherent Risk Measure, Loss Distribution, Method of Mo-
ment Estimation, Method of Maximum Likelihood Estimation
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ÖZ

HASAR DAĞILIMLARINDAKİ RİSK ÖLÇÜMLERİNİN KARŞILAŞTIRILMASI:
TÜRKİYE KASKO SİGORTASI ÖRNEĞİ

Telkes, Cansu
Yüksek Lisans, Aktüerya Bilimleri

Tez Yöneticisi : Prof. Dr. A. Sevtap KESTEL

Ortak Tez Yöneticisi : Prof. Dr. Fatih TANK

Nisan 2018, 93 sayfa

Bu çalışmada, Türkiye’nin ünlü sigorta şirketlerinden birine ait geçmiş hasar verisi kul-
lanılarak, çeşitli risk ölçümlerinin kasko sigortası ürününün fiyatlandırılması üzerindeki
etkisi incelenmiştir. Fiyatlandırmada kullanılacak olan hasar verisinin dağılımını mod-
ellemek için Gamma, Weibull, Lognormal ve Pareto olmak üzere dört adet sağa dayalı
dağılım seçilmiştir. Ayrıca, bu dağılımların parametrelerini tahmin etmek üzere iki
klasik yöntem olan, moment ve maksimum olasılık tahmini yöntemleri kullanılmıştır.
Bu yöntemlerin sonucuna göre veriyi en iyi şekilde temsil eden dağılımın Lognormal
dağılım olduğu görülmüştür; sonrasında ise risk ölçümleri, tahmin edilen bu parame-
trelere göre hesaplanmıştır. Kasko sigortası ürününde en uygun fiyatın belirlenmesi
için hesaplanan risk ölçüm sonuçları, tutarlı risk ölçümü olma özelliğine göre karşılaştı-
rılmıştır.

Anahtar Kelimeler : Risk Ölçümleri, Tutarlı Risk Ölçümleri, Hasar Dağılımları, Mo-
ment Tahmini Yöntemi, Maksimum Olasılık Tahmini
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aim of The Study . . . . . . . . . . . . . . . . . . . . . . . 3

2 RISK MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Premium Based Risk Measures . . . . . . . . . . . . . . . . 5

2.1.1 Net Premium Principle . . . . . . . . . . . . . . . 6

2.1.2 Expected Value Premium Principle . . . . . . . . . 6

2.1.3 Variance Premium Principle . . . . . . . . . . . . 6

2.1.4 Standard Deviation Premium Principle . . . . . . . 6

2.1.5 Exponential Premium Principle . . . . . . . . . . 6

xv



2.1.6 Esscher Premium Principle . . . . . . . . . . . . . 7

2.2 Capital Based Risk Measures . . . . . . . . . . . . . . . . . 7

2.2.1 Value at Risk . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Conditional Value at Risk . . . . . . . . . . . . . . 9

2.3 Coherency Criteria of Risk Measures . . . . . . . . . . . . . 10

2.3.1 Derivations for Coherency Criteria of Risk Measures 10

3 LOSS DISTRIBUTIONS AND ESTIMATION METHODS . . . . . 21

3.1 Loss Distributions . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Gamma Distribution . . . . . . . . . . . . . . . . 22

3.1.2 Weibull Distribution . . . . . . . . . . . . . . . . 24

3.1.3 Lognormal Distribution . . . . . . . . . . . . . . . 25

3.1.4 Pareto Distribution . . . . . . . . . . . . . . . . . 26

3.2 Parameter Estimation Methods . . . . . . . . . . . . . . . . 27

3.2.1 Method of Moments Estimation . . . . . . . . . . 28

3.2.2 Method of Maximum Likelihood Estimation . . . . 28

4 CASE STUDY: MOTOR INSURANCE . . . . . . . . . . . . . . . . 31

4.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Homogeneity Test . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Method of Moments Estimation . . . . . . . . . . 41

4.3.2 Method of Maximum Likelihood Estimation . . . . 42

4.4 Risk Measures Calculations . . . . . . . . . . . . . . . . . . 44

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvi



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

APPENDICES

A Derivations of Mean, Variance, MGF, MME and MLE of Selected Dis-
tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . 55

A.3 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . 58

A.4 Pareto Distribution . . . . . . . . . . . . . . . . . . . . . . . 62

B Graphical Representation of Fitting Distributions . . . . . . . . . . . 65

B.1 Methods of Moment Estimation . . . . . . . . . . . . . . . . 65

B.2 Methods of Maximum Likelihood Estimation . . . . . . . . 72

C Mathematical Representation of Risk Premiums . . . . . . . . . . . . 81

C.1 Based on Methods of Moments Estimation . . . . . . . . . . 81

C.2 Based on Methods of Maximum Likelihood Estimation . . . 87

xvii



xviii



LIST OF FIGURES

Figure 2.1 Graphical definition of VaR based on 99.5% confidence level (Jo-
rion, 1997, p.52 [12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 Graphical definition of CVaR based on 99.5% confidence level (Jo-
rion, 1997, p.52 [12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.1 Probability Density Function of Gamma (α, 1) (Tse, 2009, p.52 [25]) 23

Figure 3.2 Probability Density Function of Weibull (α, 3) (Tse, 2009, p.52 [25] ) 24

Figure 3.3 Probability Density Function of Lognormal (0, σ2) (Tse, 2009, p.52
[25]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.4 Probability Density Function of Pareto (a,1) (Tse, 2009, p.52 [25]) . 27

Figure 4.1 Histogram of Claim Amounts: a) Istanbul, b) Ankara . . . . . . . . 33

Figure 4.2 Histogram of Claim Amounts Based on Gender and Selected Cities 34

Figure 4.3 Histogram of Claim Amounts Based on Discount Rates for Istanbul 36

Figure 4.4 Histogram of Claim Amounts Based on Discount Rates for Ankara 36

Figure 4.5 Claim Amounts Based on Gender and Discount Rates: a) Istanbul,
b) Ankara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure B.1 Gamma Distribution Graphs of Istanbul . . . . . . . . . . . . . . . 65

Figure B.2 Weibull Distribution Graphs of Istanbul . . . . . . . . . . . . . . . 66

Figure B.3 Lognormal Distribution Graphs of Istanbul . . . . . . . . . . . . . 67

Figure B.4 Pareto Distribution Graphs of Istanbul . . . . . . . . . . . . . . . . 68

Figure B.5 Gamma Distribution Graphs of Ankara . . . . . . . . . . . . . . . 69

Figure B.6 Weibull Distribution Graphs of Ankara . . . . . . . . . . . . . . . 70

Figure B.7 Lognormal Distribution Graphs of Ankara . . . . . . . . . . . . . 71

Figure B.8 Pareto Distribution Graphs of Ankara . . . . . . . . . . . . . . . . 72

xix



Figure B.9 Gamma Distribution Graphs of Istanbul . . . . . . . . . . . . . . . 73

Figure B.10Weibull Distribution Graphs of Istanbul . . . . . . . . . . . . . . . 74

Figure B.11Lognormal Distribution Graphs of Istanbul . . . . . . . . . . . . . 75

Figure B.12Pareto Distribution Graphs of Istanbul . . . . . . . . . . . . . . . . 76

Figure B.13Gamma Distribution Graphs of Ankara . . . . . . . . . . . . . . . 77

Figure B.14Weibull Distribution Graphs of Ankara . . . . . . . . . . . . . . . 78

Figure B.15Lognormal Distribution Graphs of Ankara . . . . . . . . . . . . . 79

Figure B.16Pareto Distribution Graphs of Ankara . . . . . . . . . . . . . . . . 80

xx



LIST OF TABLES

Table 2.1 Summary of Coherency Criteria of Risk Measures . . . . . . . . . . 20

Table 3.1 Summary of Parameter Estimation for Loss Distributions . . . . . . 30

Table 4.1 Summary Statistics of Claim Amounts Based on City . . . . . . . . 32

Table 4.2 Summary Statistics of Claim Amounts Based on Gender and City . . 34

Table 4.3 Coding of Bonus Categorization for Discount Rates . . . . . . . . . 35

Table 4.4 Summary Statistics of Claim Amounts Based on Discount Rates and
City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4.5 Summary Statistics for Gender and Discount Rates of Selected Cities 37

Table 4.6 Result of Two Sample t-test for Selected Cities Based on Gender . . 38

Table 4.7 Results of Two Sample t-test for Selected Cities Based on Discount
Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.8 Contingency Table for Gender and Discount Rates of Selected Cities 39

Table 4.9 Result of Chi Square Test for Homogeneity for Selected Cities . . . 39

Table 4.10 Summary of MME Results for Selected Cities . . . . . . . . . . . . 41

Table 4.11 Summary Statistics of Goodness of Fit Test for Selected Cities . . . 42

Table 4.12 Summary Results of Goodness of Fit Test for Selected Cities . . . . 42

Table 4.13 Summary of MLE Results for Selected Cities . . . . . . . . . . . . 43

Table 4.14 Summary Statistics of Goodness of Fit Tests for Selected Cities . . . 44

Table 4.15 Summary Results of Goodness of Fit Tests for Selected Cities . . . . 44

Table 4.16 Risk Measures Results For Selected Cities . . . . . . . . . . . . . . 45

xxi



xxii



LIST OF ABBREVIATIONS

AIC Akaike’s Information Criteria

BIC Bayesian Information Criteria

CV Coefficient of Variation

CVaR Conditional Value at Risk

c Constant

k Count

CDF Cumulative Distribution Functions

C Cumulative Generating Function

DR Discount Rates

E Expectation

ESPP Esscher Premium Principle

EVPP Expected Value Premium Principle

EXPP Exponential Premium Principle

Q1 First Quantile

inf Infimum

m4 Kurtosis

L(θ) Likelihood Function

X Loss Amount 1

Y Loss Amount 2

max Maximum

MLE Maximum Likelihood Estimation

µ Mean

MME Method of Moments Estimation

min Minimum

M Moment Generating Function

M Monotonicity

NPP Net Premium Principle

H Premium Principle Function

P&C Property and Casualty Insurance

R Real Numbers

xxiii



X Risk of Loss

α Safety Loading

SI Scale Invariance

Q2 Second Quantile

m3 Skewness

SD Standard Deviation

σ Standard Deviation

SDPP Standard Deviation Premium Principle

SA Subadditivity

Σ Sum

Q3 Third Quantile

TI Translation Invariance

VaR Value at Risk

Var Variance

VPP Variance Premium Principle

xxiv



CHAPTER 1

INTRODUCTION

Every moment we live, we experience various risks and it is not possible to completely
eliminate these risks in advance. As a consequence, risk management methods have
been developed not to be exposed to the negative effects of these risks. In other words,
management of risk is the process of identifying, accepting or mitigating the proba-
bility of the occurrence of the threats [17] because the sense of security is the main
purpose of the mankind after food and shelter in the world.

Insurance companies provide people with feeling of confidence with various insurance
products. Therefore, individuals seek insurance products to manage their own risks
and also companies try to improve their risk management mechanisms to better serve
individuals with confidence.

Risk management mechanisms mainly depend on the measurement of risk, which is
the heart of the process, and risk classification, which are primarily market risk, credit
risk and operational risk. The main risk classification of an insurance company is the
operational risks because the occurrence of losses are the main issue from insurance
policies for the company [25]. According to operational risks, insurance companies
have to protect the policyholders against their losses and also sustain the economic
conditions of the companies against the bankruptcy by using their risk measures pro-
cesses.

Risk measures help the insurance companies to contribute to profitability by provid-
ing the optimal premiums for insurance products in a competitive environment while
covering the incoming claims and expenses of the company. As a result, the insurance
companies selling their products with a favorable premiums so that we can feel more
secure.

According to July 2017 report of the Insurance Association of Turkey, there are a
total of 60 life and non-life insurance companies in Turkey. 38 of them are non-life
companies and 22 of them are life companies.

Depend on the distribution of premium production of these companies, it is seen that
automobile insurance has the biggest share in Turkey. In addition to premium produc-
tion share, according to Turkish Statistical Institute; there are approximately 20 million
registered vehicles in Turkey and 1.3 million of these vehicles are involved in an ac-
cident within a year. The vast majority of these property damage accidents take place
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in Istanbul and Ankara. As a result, individuals buy automobile insurance products to
protect themselves because automobile insurance is usually used to cover the financial
loss of insured motor vehicle when the insured motor vehicle has an accident so it is
important to take an automobile insurance product for these losses in Turkey.

In automobile insurance, we have some problems for charging adequate premiums to
meet the future claims [28] and the size of claims is usually not known for cities in ad-
vance. However, we can comment on the adequate premiums for automobile insurance
by looking the claim-premium ratio. The ratio of claim to premium for automobile in-
sures is 70% in accordance with Insurance Association of Turkey. Therefore, insurance
companies are required to analyze historical claims data in order to protect their assets
and financial statute and also determine adequate premium amounts for their new poli-
cies in such a competitive environment.

1.1 Literature Survey

In actuarial applications, risk measures are part of the necessary management pro-
cedures for reducing the exposure of adverse event and Bühlmann (1970) ([6]) took
them into account for the first-time. Bühlmann (1970) stated that premium princi-
ples were defined as assigning a number to claim distributions. As a risk measure,
he made premium principle calculations based on the assumption of known claim dis-
tributions thus expected value premium principle, variance premium principle, stan-
dard deviation premium principle and zero utility premium principle were proposed
by Bühlmann. Moreover, he discussed the usage of them. For instance, the expected
value premium principle is always used in life insurance instead of non-life due to the
lack of homogeneity in non-life insurance area. In non-life insurance, the standard
deviation premium principle is more commonly used because it is more sensitive to
the distribution of claims. On the contrary, the variance premium principle is not as
popular as the standard deviation premium principle because the variance premium
principle does not have delicate characteristics for changing the claim experience. In
addition to these, the zero utility premium principle is also not chosen frequently due
to the difficulty of choosing the right utility function for calculations[6].

In addition to Bühlmann (1970), Artzner et al. (1999) ([2]) stated four desirable prop-
erties for premium principles, and called these measures which satisfy these four prop-
erties as coherent. Firstly, they define risk as a future value of a position given a time
period. Secondly, they stated the risk measures, which are associated with the accep-
tance set. In other words, they ensure that the risk measures have the same unit in
the future value. Therefore; they obtain a bounded and finite set of states of nature.
Thirdly, four axioms are stated for being coherent risk measures. These axioms are
Translation Invariane, Subadditivity, Scale Invariance and Monotonicity. In addition
to the coherent risk measure, they demonstrate that Value at Risk is not coherent due to
the fact that Value at Risk does not satisfy the subadditivity property and they conclude
that Value at Risk does not behave nicely with respect to the addition of these risks.
However, they noted that Value at Risk is coherent under specific conditions.
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According to Rockafellar and Uryasev (2002) ([23]), Value at Risk is a popular risk
measure all around the world even though it does not satisfy the property of subaddi-
tivity. Therefore; they study Conditional Value at Risk as an alternative risk measure
because Conditional Value at Risk satisfies the properties of a coherent risk measure
for portfolio optimization. Moreover, Inui and Kijima (2004) show that Conditional
Value at Risk calculates the loss behind the Value at Risk [10].

In order to offer suitable premiums in Property and Casualty (P&C) insurance, the
number of claims within a given time period and the sizes of those claims are the main
issues. According to Gray and Pitts (2012) ([8]) claim sizes are more important than
the claim frequencies for sufficient premiums of insurance coverage in P&C insurance
because insurers have to stay solvent against those claims. Mostly right skewed distri-
butions are used for modeling the loss data because small claim amounts occur more
frequently than large claim amounts. Selection of the right skewed distribution also is
an important issue for modeling the claim sizes. According to Mikosch (2006) ([18]),
modeling the claim size with exponential family distributions gives more adequate re-
sults than other distribution families.

Furthermore, Wüthrich and Merz (2008) ([26]) stated that the estimation of claim
size and claim probability with algorithmic or simple stochastic techniques (specially
Chain-Ladder and Bornhuetter-Ferguson methods) give poor results. Moreover, Jor-
gensen and Souza (1994) ([11]) suggested Tweedie random variables to estimate the
claim size of a risk. On the other hand, Gray and Pitts (2012) ([8]), Achieng (2010)
([1]), Packova and Brebara (2015) ([22]) and most writers used classical estimation
methods, which are Methods of Moments Estimation and Methods of Maximum Like-
lihood Estimation, for claim size distributions. All these studies showed that the clas-
sical estimation methods give consistent and efficient results for claim size distribu-
tions. In addition to classical estimation approaches, Mazviona and Chiduza ([16])
used Bayesian estimation methods and compared the results with classical approach
and based on their results, classical and Bayesian estimation methods gave same re-
sults.

1.2 Aim of The Study

The aim of the present study is to calculate affordable premiums of automobile insur-
ance in a competitive insurance environment in Turkey by estimating the claim amount
distributions with the help of historical claims data . Well-known risk measures in the
insurance field are selected. To compare the sensitivity of risk measures, automobile
insurance data, which are obtained from one of the most reputable insurance company
in Turkey, are used. The data set contains the claim amounts information of a one-year
period automobile insurance based on gender, discount rates and selected two city. Ad-
ditionally, heavy-tailed distributions are selected to estimate the parameters of claim
distributions by using Methods of Moment Estimation (MME) and Maximum Likeli-
hood Estimation (MLE). The claim experience, moreover, is used as a loading factor
for premium principle calculations.
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This thesis consists of five chapters. The first chapter has introduced the purpose of
the study and given a brief literature review. In the second chapter, mathematical
definitions of risk measures are defined based on premium and capital category. Fur-
thermore, the coherency of risk measures are discussed. In the third chapter, a brief
review of the loss distribution is given. In addition to loss distribution, MME and MLE
methodologies are presented. In the fourth chapter, empirical results of risk measures
are calculated based on estimated loss distributions, which are applied on automobile
insurance data with the help of R programming . The last chapter discusses results of
the study and some more comments for future studies.
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CHAPTER 2

RISK MEASURES

In this chapter, existing approaches for measuring risk in the insurance business will
be discussed. Two main categories of risk measures will be examined. The first one
is the premium based risk measures, which are important for the determination of
optimal insurance premium. The second one is capital based risk measures, which
are important for the determination of economic capital and also optimal insurance
premiums.

2.1 Premium Based Risk Measures

The first use of premium based risk measures in actuarial science was the development
of premium principle, which is also called traditional premium principle. It is defined
as a functional, which is a function of functions, between insured and insurer that
determines an appropriate insurance premium to charge for transferring the risk of loss
[14].

In the premium principle, the random variable X is defined as the loss amount and
X is described as risk of loss and it is a set of non-negative random variables on a
probability space (Ω, F , P). Moreover; H denotes the premium principle function
as a risk measure. The mathematical definition of premium calculation function is
H : X → R, which assigns a nonnegative value to a loss variable X. In short; it is
defined as a mapping from X toR.

The marginal distribution function of the random variable is also important for calcu-
lating sufficient insurance premium for the transferring the risk of loss within the pre-
mium principles. Furthermore, the assumption of bounded claims are made because
unbounded claims will be resulted in an infinite premium. In other words, unbounded
claims reveal situations which are not insurable by an insurance company [13].

In this section, we examined the six most popular premium principles by using math-
ematical definition of risk measuresH and the random variable X as a risk of loss.
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2.1.1 Net Premium Principle

Net Premium Principle states that

H(X) = E[X] (2.1)

It does not load for risk and it is only sufficient for a risk neutral insurer, which means
that the risk is basically non-existent [13]. The biggest problem of Net Premium princi-
ple is that it is insufficient pricing methods for an insurance company to remain solvent.

2.1.2 Expected Value Premium Principle

Expected Value Premium Principle is defined by following equation:

H(X) = (1 + α)E[X] (2.2)

where α is a loading factor and α ≥ 0. It is the most widely used premium principle
within the insurance business because it is easy to understand by the users. However,
it is not sensitive to the fluctuations in the large claim amounts.

2.1.3 Variance Premium Principle

Variance Premium Principle is described by following equation:

H(X) = E[X] + αV ar[X] (2.3)

where α is a loading factor and α ≥ 0. Furthermore, it is sensitive to the change in the
extreme claim amounts.

2.1.4 Standard Deviation Premium Principle

Standard Deviation Premium Principle states that

H(X) = E[X] + α
√
V ar[X] (2.4)

where α is a loading factor and α ≥ 0. Furthermore, it is sensitive to the change of
claim amounts.

2.1.5 Exponential Premium Principle

Exponential Premium Principle is defined as

H(X) =
1

α
lnE[eαX ] (2.5)

where α is a loading factor and α ≥ 0. However, it is not practical to apply in in-
surance pricing methodology because it requires so many assumptions to perform the
mathematical calculations.
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2.1.6 Esscher Premium Principle

Esscher Premium Principle is expressed as

H(X) =
E[XeX ]

E[eαX ]
(2.6)

where α is a loading factor and α ≥ 0. Furthermore, it is sensitive to the change in the
extreme claim amounts.

2.2 Capital Based Risk Measures

Risk measures, depending on the usage of the percentile principle, are called capital
based risk measures and these are also used for constructing an appropriate economic
capital for insurance company. The definition of economic capital is the amount of
assets that a financial firm needs to hold in order to remain solvent at a given time
period [15]. We can say that it is a buffer limit against for unexpected losses and it’s
important for the premium calculations. In this section, we investigate Value at Risk
(VaR) and Conditional Value at Risk (CVaR), which are the most widely used capital
based risk measures.

2.2.1 Value at Risk

The usage of Value at Risk is increased as a standard risk measure in the financial
and actuarial fields in order to evaluate the exposure of risk. The definition of VaR
is described as a measurement of the worst expected loss over a given horizon under
the assumption of normal market conditions with a given level of confidence [12].
More simply, it is just the quantile of distribution over the target horizon. Moreover,
it captures the effect of volatility and the risk exposure. VaR summarizes the risk in a
single number, which is the greatest advantage of it.

In the financial sector, companies take precautions against for unexpected risks in order
to keep their solvency level steady by using VaR. Therefore, company-specific level of
capital is decided with VaR and we define it as the lower quantile value of the their
loss distributions and the risks. Losses are occurred by exceeding this quantile value.
In other words, losses will only occur with a probability of 1−δ and δ is the quantile
value of the loss distribution. In mathematical term, VaR can be written as

V aRδ(X) = F−1
X (δ) = xδ (2.7)

where X is the random variable as a loss and F−1 is the inverse cumulative distribution
functions (inverse CDF).

On the other hand, sometimes X is not a continuous random variable, so that it creates
some calculation problems. The more general definition of VaR, hence, is given by
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V aRδ(X) = inf x ∈ [0,∞) : FX(x) ≥ δ (2.8)

where inf is defined as the greatest lower bound over the defined range and F(x) is
the function of cumulative distribution (CDF) over the random variable X. Figure 2.1
shows the visual definition of VaR;

Figure 2.1: Graphical definition of VaR based on 99.5% confidence level (Jorion, 1997,
p.52 [12])

From the Equation 2.8 and the Figure 2.1, we can say that the calculation of VaR is
simple and it is easy to understand for users because it gives a single number in order
to compare the risk. Therefore, it has a wide usage all over the world [5]. However,
it has some important deficiencies that should be considered because it measures the
total risk but there are different risks in the market. VaR, hence, does not warn about
the severity of losses, which occur in the remaining 1−δ probability. In other words, it
does not sensitive in the tail so that the effect of diversification risk will be ignored.
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2.2.2 Conditional Value at Risk

Due to the drawback of Value at Risk, as an alternative measure, Conditional Value at
Risk (CVaR) was developed because it is more sensitive to the loss distribution at the
tails. CVaR has many names such as Tail Value at Risk (TVaR), Tail Conditional Ex-
pectation (TCE) and Expected Shortfall (ES) due to the lack of consistent terminology
in the literature. In this study, CVaR is basically defined as an expectation value of the
VaR over the percentiles from 0 to α and its’ mathematical definition is;

CV aRδ(X) = E[X|X > V aRδ(X)] (2.9)

The Figure 2.2 shows an illustration of CVaR by using the comparison between the
threshold of VaR and CVaR;

Figure 2.2: Graphical definition of CVaR based on 99.5% confidence level (Jorion,
1997, p.52 [12])

According to the Figure 2.2, value of CVaR is always greater than value of VaR be-
cause CVaR is calculated from the arithmetic average of VaR. Moreover, CVaR has
an advantage of more significant estimation than VaR because it behaves more vari-
ably and sensitively to the risks in the tails and it also adequately assesses the risk
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in the market. Additionally, CVaR overcomes the drawback of VaR by satisfying the
properties of coherency so that CVaR is a natural extension of VaR.

2.3 Coherency Criteria of Risk Measures

In order to obtain an optimal risk measure, coherency criteria have to be fulfilled with
the following four axioms, which are proposed by Artzner (1999) [2]. Coherency refers
to criterion which give economically rational contributions to the risk and efficient
allocation of the premium. In other words, coherency describes the acceptance position
of the regulators. Therefore, any risk measure, which satisfy the coherency properties,
will be considered as an appropriate and optimal risk management tool. In addition
to risk management tool, consistent and competitive premiums will be produced after
satisfying the all criteria so that insurance companies manage the risk of loss in an
effective way.

(i) Translation Invariance: If a principle satisfies the conditionH(X+c) = H(X)+
c for all X ∈ X and c ≥ 0, then the translation invariance property is satis-
fied. In simple terms, the translation invariance is defined as follows: increas-
ing/decreasing the loss, increases/decreases the risk by the same amount. In
other word; It explains the result of loss probability.

(ii) Scale Invariance: If a principle satisfies the condition H(cX) = cH(X) for all
X ∈ X and c ≥ 0, then the scale invariance property is satisfied. As a small
note, the scale invariance is also known as positive homogeneity in economic
literature. We simply define the scale invariance as follows: increasing losses,
increases the risk. In other word; it point out the level of risk.

(iii) Subadditivity: If a principle satisfies the following: H(X+Y ) ≤ H(X)+H(Y )
for all X, Y ∈ X , then it is called a subadditivity property and simply, the
subadditivity property measures the diversification effect of a portfolio, which
is decreasing the risk.

(iv) Monotonicity: If a principle satisfies the conditionH(X) ≤ H(Y ) when X ≤ Y
for all X, Y ∈ X , then the monotonicity property is satisfied and it is defined
as enlarging the size of a portfolio results with higher risks. In other word;
monotonicity shows the severity of risk.

2.3.1 Derivations for Coherency Criteria of Risk Measures

In this section, we investigate the properties of coherent risk measure for both premium
and capital based risk measures. We express the four desirable properties for premium
based risk measures with respect to definitions of six well known premium principles
and for capital based risk measures with respect to definitions of VaR and CVaR .

In order to prove these criteria, we need to define the expected value of discrete and
continuous distributions since we assume that the distribution of risk is known.
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∑∞
i=0 xfX(x) , if the distribituion of risk is discrete

∫∞
−∞ xf(X)dx , if the distribituion of risk is continuous

1. Net Premium Principle: It does not load for risk and it is only sufficient for
a risk neutral insurer, which means that the risk is basically non-existent [13].
The biggest problem of Net Premium principle is that it is insufficient pricing
methods for an insurance company to remain solvent. However, it satisfies the
coherency criteria of risk measures by satisfying following four axioms.

(a) Translation Invariance: Let’s consider X is loss and c is a nonnegative
constant, where is c > 0, then

H(X + c) = E[X + c]

= E[X] + c

= H(X) + c

We can thus express that the net premium principle satisfies the translation
invariance property.

(b) Scale Invariance: Let’s consider X is loss and c is a constant, where is
c ≥ 0, then

H(cX) = E[cX]

= cE[X]

= cH(X)

We thus have shown that the net premium principle satisfies the scale in-
variance property.

(c) Subadditivity: Let’s consider X and Y are losses, then

H(X + Y ) ≤ E[X + Y ]

≤ E[X] + E[Y ]

≤ H(X) +H(Y )

We therefore have shown that the net premium principle satisfies the sub-
additivity property.

(d) Monotonicity: Let’s consider X and Y are losses and X ≥ Y implies
E[X] ≥ E[Y ], then

H(X) = E[X] ≥ E[Y ] = H(Y )

According to the above equations, the net premium principle satisfies the
property of monotonicity.
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2. Expected Value Premium Principle: It is obtained by adding the proportional
risk loading on the Net Premium Principle. Moreover, the usage of it is ex-
tremely wide in the insurance business because it is easy to understand. Follow-
ing four axioms are investigated based on Expected Value Premium Principle.

(a) Translation Invariance: Let’s consider a loss X and a nonnegative con-
stant c, where is c > 0, then

H(X + c) = (1 + θ)E[X + c]

= (1 + θ)(E[X] + c)

= (1 + θ)E[X] + (1 + θ)c

= H(X) + (1 + θ)c

> H(X) + c

We showed that the expected value premium principle does not satisfy the
translation invariance property.

(b) Scale Invariance: Let’s consider a loss X and a constant c, where is c ≥ 0,
then

H(cX) = (1 + θ)E[cX]

= (1 + θ)cE[X]

= cH(X)

We satisfy the property of scale invariance for expected value premium
principle.

(c) Subadditivity: Let’s consider losses X and Y, then

H(X + Y ) ≤ (1 + θ)E[X + Y ]

≤ (1 + θ)(E[X] + E[Y ])

≤ (1 + θ)E[X] + (1 + θ)E[Y ]

≤ H(X) +H(Y )

Thus, the expected value premium principle satisfies the subadditivity prop-
erty.

(d) Monotonicity: Let’s consider losses X and Y and X ≥ Y implies E[X] ≥
E[Y ], then

H(X) = (1 + θ)E[X] ≥ (1 + θ)E[Y ] = H(Y )

Expected value premium principle satisfies the monotonicity property ac-
cording to above equation.

3. Variance Premium Principle: According to Young [27], this premium princi-
ple also obtain from the Net Premium Principle with the additional risk loading
which is proportional to the variance of the risk. Following four axioms are
investigated based on the definition of Variance Premium Principle.
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(a) Translation Invariance: Let’s consider Y = X + c, where X is loss and c
is a nonnegative constant, c > 0 and Y is a function of X, then

H(Y ) = E[Y ] + θV ar[Y ]

= E[X + c] + θV ar[X + c]

= c+ E[X] + θV ar[X]

= H(X) + c

Thus the variance premium principle satisfies the translation invariance
property.

(b) Scale Invariance: Let’s consider Y = cX , where X is loss and c is a
constant, c ≥ 0 and Y is a function of X, then

H(Y ) = E[Y ] + θV ar(Y )

= E[cX] + θV ar(cX)

= cE[X] + θc2V ar(X)

= c(E(X) + θcV ar(X)) 6= cH(X)

The above expression shows that variance premium principle does not sat-
isfy the scale invariance property.

(c) Subadditivity: Let’s consider X and Y are losses, then

H(X + Y ) ≤ E[X + Y ] + θV ar(X + Y )

� (E[X] + E[Y ]) + θ(V ar(X) + V ar(Y ) + 2Cov(X, Y ))

According to above equation, the variance premium principle does not sat-
isfy the subadditivity property unless both loss variables, X and Y, are in-
dependent.

(d) Monotonicity: Let’s consider X and Y are losses and X ≥ Y implies
E[X] ≥ E[Y ], then

H(X) = E[X] + θV ar(X) � E[Y ] + θV ar(Y ) = H(Y )

We stated that variance premium principle does not satisfy the monotonic-
ity property due to the fact that it is not necessary to meet X has to be higher
or equal to Y.

4. Standard Deviation Premium Principle: According to Young [27], this pre-
mium principle also obtain from the Net Premium Principle with the additional
risk loading which is proportional to the standard deviation of the risk. Follow-
ing four axioms are investigated based on the definition of Standard Deviation
Premium Principle.

(a) Translation Invariance: Let’s consider Y = X + c, where X is loss and c
is a nonnegative constant, c > 0 and Y is a function of X, then

H(Y ) = E[Y ] + θ
√
V ar[Y ]

= E[X + c] + θ
√
V ar[X + c]

= E[X] + c+ θ
√
V ar[X]

= H(X) + c
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We have shown that the standard deviation premium principle satisfies the
translation invariance property.

(b) Scale Invariance: Let’s consider Y = cX , where X is loss and c is a
constant, c ≥ 0 and Y is a function of X, then

H(Y ) = E[Y ] + θ
√
V ar(Y )

= E[cX] + θ
√
V ar(cX)

= cE[X] + cθ
√
V ar(X)

= c(E(X) + θ
√
V ar(X)) = cH(X)

We have expressed that the standard deviation premium principle satisfies
the scale invariance property.

(c) Subadditivity: Let’s consider losses X and Y, then

H(X + Y ) ≤ E[X + Y ] + θ
√
V ar(X + Y )

� (E[X] + E[Y ]) + θ
√
V ar(X) + V ar(Y ) + 2Cov(X, Y )

We have shown that the standard deviation premium principle does not
satisfy the subadditivity property unless X and Y are independent.

(d) Monotonicity: Let’s consider losses X and Y and X ≥ Y implies E[X] ≥
E[Y ] then

H(X) = E[X] + θ
√
V ar(X) � E[Y ] + θ

√
V ar(Y ) = H(Y )

Thus the standard deviation premium principle does not satisfy the mono-
tonicity property due to the fact that the condition that X has to be higher
or equal to Y is insufficient.

5. Exponential Premium Principle: According to Young [27], this premium prin-
ciple occurs the exponential utility function. Following four axioms are investi-
gated based on the definition of Exponential Premium Principle.

(a) Translation Invariance: Let’s consider Y = X + c, X is loss and c is a
nonnegative constant, c > 0 and Y is a function of X, then

H(Y ) =
ln[E(eθY )]

θ

H(X + c) =
ln[E(eθ(X+c))]

θ

=
ln[E(eθX+θc)]

θ

=
ln[E(eθX)eθc]

θ

=
ln[E(eθX)] + ln[eθc]

θ

=
ln[E(eθX)] + θc

θ

=
ln[E(eθX)]

θ
+
θc

θ
= H(X) + c
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We have shown that the exponential premium principle satisfies the trans-
lation invariance property.

(b) Scale Invariance: Let’s consider Y = cX , where X is loss and c is a
constant, c ≥ 0 and Y is a function of X, then

H(Y ) =
ln[E(eθY )]

θ

H(cX) =
ln[E(eθcX)]

θ
6= cH(X)

We have shown that the exponential premium principle does not satisfy the
scale invariance property.

(c) Subadditivity: Let’s consider losses X and Y, then

H(X) =
ln[E(eθX)]

θ

H(Y ) =
ln[E(eθY )]

θ

H(X + Y ) =
ln[E(eθ(X+Y )]

θ

=
ln[E(eθ(X)eθ(Y ))]

θ

�
ln[E(eθX)]

θ
+

ln[E(eθY )]

θ

The above expression shows that the exponential premium principle does
not satisfy the subadditivity property unless both losses X and Y are inde-
pendent.

(d) Monotonicity: Let’s consider losses X and Y, verifying that X ≤ Y , then

H(X) =
ln[E(eθX)]

θ

H(Y ) =
ln[E(eθY )]

θ
H(X) ≤ H(Y )

We have shown that the exponential premium principle satisfies the mono-
tonicity property.

6. Esscher Premium Principle: Bühlmann [6] derived this premium principle
from the framework of utility theory and risk exchange. Moreover, the results of
Esscher Premium Principle depend on mainly the selection of loss function. Fol-
lowing four axioms are investigated based on only the mathematical definition
of Esscher Premium Principle.
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(a) Translation Invariance: Let’s consider Y = X + c, where X is loss and c
is a nonnegative constant, c > 0 and Y is a function of X, then

H(Y ) =
E[Y eθY ]

E[eθY ]

H(X + c) =
E[(X + c)eθ(X+c)]

E[eθ(X+c)]

=
E[(X + c)eθXeθc]

E[eθXeθc]

=
eθcE[(X + c)eθX ]

eθcE[eθX ]

=
eθcE[XeθX + ceθX ]

eθcE[eθX ]

=
E[XeθX ] + E[ceθX ]

E[eθX ]

=
E[XeθX ]

E[eθX ]
+
cE[eθX ]

E[eθX ]

H(X) = H(X) + c

The above expressions have proved that the Esscher premium principle sat-
isfies the translation invariance property.

(b) Scale Invariance: Let’s consider Y = cX , where X is loss and c is a
constant, c ≥ 0 and Y is a function of X, then

H(Y ) =
E[Y eθY ]

E[eθY ]

H(cX) =
E[cXeθcX ]

E[eθcX ]

=
cE[XeθcX ]

E[eθcX ]
6= cE[XeθX ]

E[eθX ]
= cH(X)

The above statement shows that the Esscher premium principle does not
satisfy the scale invariance property.
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(c) Subadditivity: Let’s consider losses X and Y, then

H(X) =
E[XeθX ]

E[eθX ]

H(Y ) =
E[Y eθY ]

E[eθY ]

H(X + Y ) =
E[(X + Y )eθ(X+Y )]

E[eθ(X+Y )]

=
E[(Xeθ(X+Y )) + (Y eθ(X+Y ))]

E[eθ(X+Y )]

=
E[(XeθXeθY ) + (Y eθXeθY )]

E[eθXeθY ]

�
E[XeθX ]

E[eθX ]
+
E[Y eθY ]

E[eθY ]
= H(X) +H(Y )

We have shown that the Esscher premium principle does not satisfy the
subadditivity property.

(d) Monotonicity: Let’s consider losses X and Y, assuming that X ≤ Y , then

H(X) =
E[XeθX ]

E[eθX ]

H(Y ) =
E[Y eθY ]

E[eθY ]

H(X) � H(Y )

We have stated that the Esscher premium principle does not satisfy the
monotonicity property as despite the fact that the risk X is lower or equal
to the risk Y, the above statement does not have to be always true.

7. Value at Risk: It is the most used risk measure in the field of finance and insur-
ance. However, Rockafellar and Uryasev [23] showed that VaR does not satisfy
the coherency criteria. Following axioms are investigated based on the satisfac-
tion level of coherency criteria.

(a) Translation Invariance: Let’s consider a loss X and a nonnegative con-
stant c, where c > 0, and Y=X+c, then

V aRδ(Y ) = V aRδ(X + c)

= inf {y : P (Y ≤ y) ≥ δ}
= inf {x+ c : P (X + c ≤ x+ c) ≥ δ}
= c+ inf {x : P (X + c ≤ x+ c) ≥ δ}
= c+ inf {x : P (X ≤ x) ≥ δ}
= c+ V aRδ(X)

We have shown that VaR satisfies the translation invariance property by
using the definition of VaR.
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(b) Scale Invariance: Let’s assume X is loss and c is a constant, where c ≥ 0,
and Y=cX, then

V aRδ(Y ) = V aRδ(cX)

= inf {y : P (Y ≤ y) ≥ δ}
= inf {cx : P (cX ≤ cx) ≥ δ}
= c ∗ inf {x : P (cX ≤ cx) ≥ δ}
= c ∗ inf {x : P (X ≤ x) ≥ δ}
= c ∗ V aRδ(X)

We have shown that VaR satisfies the scale invariance property.
(c) Subadditivity: Let’s assume X and Y are losses, then

V aRδ(X + Y ) ≤ V aRδ(X) + V aRδ(Y )

Let’s define the each equation one by one.

V aRδ(X + Y ) = inf {x+ y : P ((X + Y ) ≤ (x+ y)) ≥ δ}
= inf {x : P ((X + Y ) ≤ (x+ y)) ≥ δ}
+ inf {y : P ((X + Y ) ≤ (x+ y)) ≥ δ}

V aRδ(X) = inf {x : P ((X) ≤ (x)) ≥ δ}

V aRδ(Y ) = inf {y : P ((Y ) ≤ (y)) ≥ δ}

Then, we can write the subadditivity property of VaR as follows;

A ≤ B + C

inf {x : P ((X + Y ) ≤ (x+ y)) ≥ δ} + inf {y : P ((X + Y ) ≤ (x+ y)) ≥ δ}
≤ inf {x : P ((X) ≤ (x)) ≥ δ}
+ inf {y : P ((Y ) ≤ (y)) ≥ δ}

We, thus, showed that VaR does not satisfies the subadditivity property.
(d) Monotonicity: Let’s assume X and Y are losses and X ≤ Y under proba-

bility space (Ω, F , P) then

V aRδ(X) = inf {x : P (X ≤ x) ≥ δ}
≤

V aRδ(Y ) = inf {y : P (Y ≤ y) ≥ δ}

According to above equation, VaR satisfies the property of monotonicity.

8. Conditional Value at Risk: Following axioms are examined based on the defi-
nition of CVaR to see the satisfaction level of coherency criteria of CVaR.

18



(a) Translation Invariance: Let’s assume X is loss and c is a nonnegative
constant, where c > 0, and Y=X+c, then

CV aRδ(Y ) = CV aRδ(X + c)

= E[Y |Y > V aRδ(Y )]

= E[X + c|X + c > V aRδ(X + c)]

= E[X + c|X > V aRδ(X)]

= c+ E[X|X > V aRδ(X)]

= c+ CV aRδ(X)

We have shown that CVaR satisfies the translation invariance property by
using the definition of VaR.

(b) Scale Invariance: Let’s assume X is loss and c is a constant, where c ≥ 0,
and Y=cX, then

CV aRδ(Y ) = CV aRδ(cX)

= E[Y |Y > V aRδ(Y )]

= E[cX|cX > V aRδ(cX)]

= E[cX|X > V aRδ(X)]

= c ∗ E[X|X > V aRδ(X)]

= c ∗ CV aRδ(X)

We have stated that CVaR satisfies the scale invariance property.
(c) Subadditivity: Let’s assume X and Y are losses and Z=X+Y, then

CV aRδ(Z) = CV aRδ(X + Y )

= E[X|X + Y > V aRδ(X + Y )]

+ E[Y |X + Y > V aRδ(X + Y )]

≤ E[X|X > V aRδ(X)]

+ E[Y |Y > V aRδ(Y )]

= CV aRδ(X) + CV aRδ(Y )

We have shown that CVaR satisfies the subadditivity property as long as
losses have a continuous distribution.

(d) Monotonicity: Let’s assume X and Y are losses and X ≤ Y under proba-
bility space (Ω, F , P) then

CV aRδ(X) = E[X|X > V aRδ(X)]

≤
CV aRδ(Y ) = E[Y |Y > V aRδ(Y )]

According to above equations, CVaR satisfies the property of monotonicity.

According to the proofs of coherency level of risk measures, they are summarized
based on the coherency satisfaction level in Table 2.1. In the table, the ‘X’ shows that
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Table 2.1: Summary of Coherency Criteria of Risk Measures

Risk Measures TI SI SA M

Net Premium Principle X X X X
Expected Value Premium Principle x X X X
Variance Premium Principle X x x x
Standard Deviation Premium Principle X X x x
Exponential Premium Principle X x x X
Esscher Premium Principle X x x x
Value at Risk X X x X
Conditional Value at Risk X X X X

the premium principle satisfies the coherency property and the ‘x’ indicates that the
premium principle does not satisfy the coherency property.

Based on Table 2.1, we see that Net Risk Premium and Conditional Value at Risk are
only called as coherent risk measure by satisfying the four properties of coherency.
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CHAPTER 3

LOSS DISTRIBUTIONS AND ESTIMATION METHODS

In this chapter, the characteristics and the usage of loss distributions in insurance and
finance field will be discussed because they are important for pricing processes of an
insurance product. Continuous loss distributions will be mainly examined based on
their usage in insurance and finance field. In addition to loss distributions, the classi-
cal methods of parameter estimation will be expressed. These methods are Moment
Estimation and Maximum Likelihood Estimation.

3.1 Loss Distributions

Insurance is defined as a transfer of risk from the insured to the insurer so that loss
experience has a significant role in the pricing processes of insurance contracts because
in order to offer a reasonable premium for individuals, the estimation of loss events has
to be done accurately in advance.

(Ω, F , P) is the probability space and X is a random variable defined on Ω. Ran-
dom variables can be categorized as discrete or continuous. Discrete random variables
have a countable set of distinct possible values, which compose a countable range
space. On the other hand, continuous random variables have any value within a spec-
ified interval range space[3]. Moreover, random variable X is usually expressed by
a function, which is called probability distribution, defined on all of the real num-
bers, R [4]. If a countable range space is used for defining the random variable X,
it will be called a Discrete Probability Distribution. Otherwise, it will be called a
Continuous Probability Distribution.

Measurement of risk needs the examination and modeling of two independent stochas-
tic processes, which are loss frequency and loss severity, because there is a lack of
predictability of these two stochastic processes in advance in the insurance field [28].

Discrete distributions are used for modeling the frequency of loss, whereas continu-
ous distributions are used for modeling the loss severity because they are basically the
probabilistic representations of the magnitude of loss. In other words, discrete distri-
butions enable us to calculate the probability of occurrence of the loss and continuous
distributions enable us to calculate the probability of the size of the claim, which will
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be not greater than a certain size.

In this study, the severity of loss is only modeled for examining the claim distribution
so that continuous probability distributions are used. In insurance and finance field,
losses can be not only non-negative, but also very high [8] in many cases. When
looking at the past claims of an insurance company for automobile insurance products,
small scale damage occurs very frequently. On the contrary, large scale damage occurs
less frequently compared to small scale damages. In order to deal with these situations,
heavy or fat tailed distributions are applied to the estimation of the distribution of claim
severity. One of the main characteristic of these distributions is being right skewed.
Weibull, Exponential, Pearson, Lognormal, Pareto and Gamma are the most suitable
distributions for estimating the claim severity in the insurance field due to the fact that
all of them have a right skewed feature.

Four right skewed distribution are chosen for estimating the claim severity by using
claim amounts [9]. This choice is made based on the thickness level of distributions’
tail. These four distributions are Gamma, Weibull, Lognormal and Pareto distributions;
where Gamma distribution has the most thin tail and Pareto distribution has the most
thick tail.

3.1.1 Gamma Distribution

The Gamma family has two positive parameters (α, β). The probability density func-
tion is defined as;

f(x) =


0, if−∞ < x ≤ 0

1
βαΓ(α)

xα−1e−
x
β , if 0 < x <∞

where α > 0, β > 0 and the Gamma function is defined as

Γ(x) =

∫ ∞
0

ux−1e−udu, 0 < x <∞

A special notation for the Gamma distribution is X ∼ Gamma(α, β), where β is
defined the scale parameter of distribution and α is the shape parameter of distribution.

Figure 3.1 shows the shape of the Gamma distribution based on different shape param-
eters.
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Figure 3.1: Probability Density Function of Gamma (α, 1) (Tse, 2009, p.52 [25])

According to Figure 3.1; shape parameter of Gamma distribution determines the shape
of the distribution basically [4]. Depend on the value of shape parameter, there are
three basic shape for Gamma distribution.

• α < 1; The distribution decreases monotonically.

• α = 1; Gamma distribution become Exponential distribution and the distribution
decreases monotonically. It is a special case for Gamma distribution.

• α > 1; The distribution increases monotonically from 0 to mode value of the
distribution and then, it starts to decrease but it has skewed shape.

Mean, variance and moment generating function of the Gamma distribution are defined
as;

E[X] = αβ

V [X] = αβ2

M(t) = (1− βt)−α

and the proof of mean, variance and moment generating function can be found in
Appendix A.
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3.1.2 Weibull Distribution

The Weibull distribution has two positive parameters (α, β) and it is described as X ∼
Wei(α, β). The probability density function is defined as;

f(x) =


0, if−∞ < x ≤ 0

β
αβ
xβ−1e−( x

α
)β if 0 < x <∞

where the parameter α > 0 is the scale parameter and β > 0 is the shape parameter.
Shape parameter of Weibull is affected the behavior of the distribution because shape
parameter act like a slope of the line [3]. Therefore, we only deal with the scale
parameter of Weibull distribution.

In the following Figure 3.2, by increasing the scale parameter of the Weibull distribu-
tion, we spread out the dispersion of the distribution. In other words, the peakedness of
the distribution is decreasing because the area of under the curve is holding constant.

Figure 3.2: Probability Density Function of Weibull (α, 3) (Tse, 2009, p.52 [25] )

Mean, variance and moment generating function of the Weibull distribution are de-
scribed as;
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E[X] = αΓ(1 +
1

β
)

V [X] = α2
[
Γ(1 +

2

β
)− Γ2(1 +

1

β
)
]

M(t) =

∫ ∞
0

etx
β

α
(
x

α
)β−1e−( x

α
)β

and the proof of mean, variance and moment generating function also can be found in
Appendix A.

3.1.3 Lognormal Distribution

The Lognormal family has two parameters, which are µ and σ2. It is also described as
X ∼ LN(µ, σ2). The probability density function is given by

f(x) =


0, if−∞ < x ≤ 0

1
σ
√

2π
1
x
e−

1
2

( log x−µ
σ

)2
, if 0 < x <∞

where µ ∈ R is the location parameter and σ2 ∈ (0,∞) is the scale parameter.

Moreover, the following relation can be defined between Normal and Lognormal dis-
tributions [8];

X ∼ LN(µ, σ2)⇔ Y = lnX ∼ N(µ, σ2)

Furthermore, in Figure 3.3, the effect of different scale parameters can be seen in
depth. By increasing the scale parameter, tails of the Lognormal distribution are more
stretched. In other words, the effect of the scale parameter of Lognormal distribution
with value greater than 1 is stretching the distribution. On the contrary, the distribution
is compressing with the value of scale parameter is less than 1.
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Figure 3.3: Probability Density Function of Lognormal (0, σ2) (Tse, 2009, p.52 [25])

Mean, variance and moment generating function of the Lognormal distribution are
defined as;

E[X] = e(µ+σ2

2
)

V [X] = e(2µ+σ2)(eσ
2 − 1)

M(t) = etµ+ 1
2
t2σ2

and the proof of mean, variance and moment generating function also can be found in
Appendix A.

3.1.4 Pareto Distribution

The Pareto family has two positive parameters (a, λ) and the notation of Pareto distri-
bution is X ∼ Pareto(a, λ). The probability density function is given by

f(x) =


0, if−∞ < x ≤ 0

aλa

xa+1 , if λ < x <∞
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where the shape parameter a > 0 and the scale parameter λ > 0.

As seen in Figure 3.4, the shape of the distribution is getting more clear with the larger
shape parameters. In other words, the skewness of the Pareto distribution is increased
by incrementing the shape parameter.

Figure 3.4: Probability Density Function of Pareto (a,1) (Tse, 2009, p.52 [25])

Mean, variance and moment generating function of the Pareto distribution are defined
as;

E[X] =
aλ

a− 1

V [X] =
aλ2

(a− 1)2(a− 2)

M(t) = Does not exist.

and the proof of mean and variance also can be found in Appendix A.

3.2 Parameter Estimation Methods

In order to fit the model of loss distributions of an insurance company products, the
estimation of unknown parameters of loss distributions have to be calculated by using
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the classical parameter estimation methods. These two methods should give unbiased,
consistent and efficient estimators. This section presents two of the most popular clas-
sical methods of estimation, which are Methods of Moments Estimation (MME) and
Methods of Maximum Likelihood Estimation (MLE).

3.2.1 Method of Moments Estimation

Method of Moments Estimation (MME) is one of the oldest and simplest estimation
methods. Although MME estimators are unbiased and consistent, all of the relevant
information in the sample may not be taken into account with this method [4]. In
other words, it does not always provide the efficiency feature of the estimators. In
statistics, MME is defined as a way for estimating population parameters by using
sample moments.

Let’s consider a population probability density function f(x; θ1; θ2; ......; θk), which
depends on k unknown parameters and it is also independent. We also assume that
identical random variables ofX1,X2, ...,Xn are chosen from a population distribution.

The kth population moment of a random variable X is showed as;

µ′k = E[Xk] where k =1,2,.... (3.1)

The kth sample moment of a sample X1, X2,......, Xn is showed as;

m′k =
1

n
Σn
i=1X

k
i where k =1,2,.... (3.2)

By replacing the population moment (3.1) with sample moment (3.2), then the follow-
ing equation system gives the formula for the MME of (θ̂1; θ̂2; ......; θ̂k),

µ′k = m′k (3.3)

E[Xk] =
1

n
Σn
i=1X

k
i (3.4)

We thus have obtain the estimator of method of moments by solving the Equation 3.4.

3.2.2 Method of Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) method is the most preferred estimation ap-
proach for parameters in the world due to the fact that MLE has the properties of
consistency, efficiency, asymptotic normality and invariance [7].
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In statistics, MLE is defined as a method of finding the value of parameters, which
maximizes the probability of obtaining the observed data [19]. Therefore; MLE proce-
dure begins with getting the Likelihood function (L(θ)). The definition of L(θ) is given
the joint density function of n random variables X1, X2,......, Xn, which are assessed
at x1, x2, ....., x3 respectively.

L(θ) = f(x1, x2, ....., xn; θ) (3.5)
L(θ) = f(x1; θ)f(x2; θ).....f(xn; θ) (3.6)

L(θ) =
n∏
i=1

f(xi; θ) (3.7)

By differentiating Equation 3.7 with respect to θ, the maximum likelihood equation is
obtained.

MLE =
dL(θ)

dθ
(3.8)

By solving Equation 3.8 with respect to zero, the value of the estimated parameter is
obtained.

dL(θ)

dθ
= 0 (3.9)

However, it should be verified that this value maximizes the L(θ). In order to get
verified results, a second derivative of L(θ) is taken and it has to be shown that the
result of this equation is less than zero.

MLE =
d2L(θ)

dθ2
≤ 0 (3.10)

If Equation 3.10 is less than zero, then it can be said that the value of Equation 3.9
maximizes the likelihood function L(θ). Therefore; we can assume that the result of
Equation 3.9 gives the estimated parameter based on the maximum likelihood estima-
tion method.

Following Table 3.1 shows the summary of parameter estimators based on two clas-
sical estimation methods for selected loss distributions. The proof of estimation of
parameters based on two methods can be found in Appendix A.
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CHAPTER 4

CASE STUDY: MOTOR INSURANCE

In this chapter, automobile insurance data, which belong to policy year of 2008, are
used to test for an appropriate statistical distribution for claim amounts and to evaluate
the sensitivity of risk measures based on these distributions. Data are obtained from
one of the most reputable insurance company in Turkey. Data contain the information
about motor insurance policy for one-year period. In 2008, there was an increase in the
frequency of claim due to excessive rainfall and flood. This situation might have af-
fected the data but there is no effect of regulation on the data set. Claim amounts of this
data are used as random variables to estimate the claim distribution and this estimation
process is performed with R programming. Moreover, the following assumptions and
specifications are made on the analyses and data set:

(i) Claim amounts are independent.

(ii) Gamma, Weibull, Lognormal and Pareto distributions are considered to describe
the behavior of claim amount.

(iii) Two highly populated cities in Turkey, Istanbul and Ankara, are chosen.

(iv) Among the other types of vehicles, automobiles whose model years are 2004-
2008 are selected.

(v) The brand of the vehicle is taken as insignificant on claim distribution.

(vi) Deductible limits are not considered as the information per policy.

(vii) Reinsurance limits are not available.

4.1 Descriptive Statistics

The aim of descriptive statistics is to point out the outstanding features of the analyzed
data by using numerical and graphical representations. In this data, which includes
2008 policy year, total 29,017 vehicles are registered to insurance company by buying
an automobile insurance policy. 10,255 vehicles of them belong to Istanbul and these
vehicles cover approximately 35% of the data. Moreover, 3,614 vehicles of this data
belong to Ankara, which is approximately equal to 12% of the data. This change
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between registered vehicles is directly proportional to the populations of the selected
cities and higher population result with the high traffic claims penetration in selected
cities. Therefore, drivers’ gender, city, bonus categorization for discount rates and
claim amounts are the main components of the data.

Claim amounts are the most important component for the insurance companies be-
cause the estimation of claim amounts is a major factor in pricing methodology for an
automobile insurance product. Claim amounts over a one-year policy period of the two
selected cities are summarized in the Table 4.1 primarily.

Table 4.1: Summary Statistics of Claim Amounts Based on City

Istanbul Ankara

k 2,387 697
µ 3,360.35 TL 2,322.15 TL
σ 9,162.84 TL 4,228.47 TL
Σ 8,021,164.59 TL 1,618,538.98 TL

min 0.05 TL 0.19 TL
max 189,758.52 TL 46,745.96 TL
Q1 495.04 TL 434.83 TL
Q2 1,137.00 TL 906.00 TL
Q3 2,657.32 TL 2,447.00 TL
m3 10.45 TL 5.12 TL
m4 160.62 TL 40.39 TL
CV 2.7268 1.8209

According to Table 4.1, Istanbul is exposed to more claims than Ankara because there
is a huge difference between the numbers of claim, which is indicated by the letter ”k”
on the table. In other words; based on the claim frequency, the probability of having a
car accident is more common in Istanbul than in Ankara.

In addition to claim frequency, the severity of each claim is more major in Istanbul
than in Ankara because ”µ” stands for the average claim amount and the average
claim amount of Istanbul is approximately 1.5 times higher than the claim amounts
of Ankara. However, outliers, which are the values of min and max, may have caused
this large difference in claim severity for Istanbul because the maximum claim amount
is 189,758.52 TL. Moreover, the variation of claim amount in Istanbul is much higher
than in Ankara because the coefficient of variation for Istanbul is 1.5 times higher than
the coefficient of variation for Ankara. Sum of claim amounts of Istanbul is also greater
than the sum of claim amounts of Ankara so that simply, claims are more likely to take
place in Istanbul with higher variability than in Ankara proportional to population of
these cities.

Based on the skewness statistics (m3), the shape of claim amounts of both cities are
right skewed because the value of skewness statistics are positive, which is the char-
acteristic of right skewed data. Positive kurtosis value (m4) indicates that the claim
amounts of both cities have heavier tails. In addition to skewness and kurtosis, the me-
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dian (Q2) of the claim amounts is smaller than the mean of the claim amounts shows
that the shape of the claim amounts is right skewed for both selected cities.

In addition to the numerical representation of the claim amounts data, the following
figures show the graphical representations of claim amounts based on the selected two
cities. Figure 4.1 shows that the dispersion of claim amounts in both Istanbul and
Ankara are right skewed because most of the claims take place in small amounts.

Figure 4.1: Histogram of Claim Amounts: a) Istanbul, b) Ankara

The costs for covering the accident, morbidity and mortality risks are different for
gender in the pricing process of an automobile insurance [21] so that claim amounts
are examined based on genders secondly. In Table 4.2; the descriptive statistics of
claim amounts are shown with respect to gender and city.

According to gender classification in Table 4.2, female drivers are less likely to get
involved a car accident than male drivers for both cities. Even though female drivers
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Table 4.2: Summary Statistics of Claim Amounts Based on Gender and City

Istanbul Ankara

F M F M

k 628 1,759 203 494
µ 3,580.22 TL 3,281.64 TL 2,855.06 TL 2,103.16 TL
σ 8,186.21 TL 9,488.14 TL 5,069.40 TL 3,814.13 TL
Σ 2,248,756.02 TL 5,772,408.57 TL 579,576.38 TL 1,038,962.60 TL

CV 2.2865 2.8913 1.7756 1.8135

have less claim numbers, the severity of these claims are higher than male drivers so
that the average claim amounts are higher for female drivers in Istanbul and also in
Ankara. The variation of claim severity in Istanbul, furthermore, is almost the same
for female and male drivers, but female drivers have more volatile claim amounts than
male drivers in Ankara. In brief, female drivers have fewer claims but those claims
have larger amounts for both selected cities.

Figure 4.2 meanwhile, shows the distribution of claim amounts based on gender clas-
sification in both selected cities. From the histograms, we can say that the shape of
claim amounts distribution is right skewed for each gender and city.

Figure 4.2: Histogram of Claim Amounts Based on Gender and Selected Cities

Thirdly, we examine the claim amounts depending on bonus categorization for dis-
count rates and city. Bonus categorization is defined as a reduction in the premium
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with a determined rate, which is given on the renewal of policy with the condition that
there have been no claims within the last policy year [7]. The coding of bonus catego-
rization for DR is defined in the Table 4.3 and their descriptive statistics are represented
in the Table 4.4 based on selected cities.

Table 4.3: Coding of Bonus Categorization for Discount Rates

Discount Rates
in Premium (%) Coding

0 0
30 1
40 2
50 3
55 4
60 5

According to Table 4.3, a discount rate of 0% means that the policyholder is new to the
related insurance company or that the policyholder had an accident within the previ-
ous policy year. A 30% discount rate means that the policyholder has had no accident
within the last policy year with the related insurance company. A 40% discount rate
means that the policyholder has made no accident claim within the last two policy
years with the related insurance company. A 50% discount rate means that the policy-
holder has had no accident within the last three policy years with the related insurance
company. A discount rate of 55% means that the policyholder has made no accident
claim within the last four policy years with the related insurance company and lastly, a
60% discount rate means that the policyholder has had no accident within the last five
policy years with the related insurance company.

Table 4.4: Summary Statistics of Claim Amounts Based on Discount Rates and City

Istanbul Ankara

DR (%) k µ (TL) σ (TL) k µ (TL) σ (TL)

0 1469 4,082.9 11,107.61 408 2,817.82 5,025.37
30 581 2,385.41 4,447.98 146 1,896.8 3,039.31
40 192 2,318.93 5,193.4 74 1,584.8 2,355.8
50 71 1,144.81 1,464.45 39 1,287 1,715.52
55 27 1,304.4 1,442.39 10 781.5 778.97
60 47 1,611.73 2,273.99 20 832.2 1,198.47

According to the definition of discount rates and Table 4.4, most of the claims are
occur with new customers or policyholders who have had an accident in the previous
year. Also, the average amount and severity of these claims varies greatly. Based on
the discount rates, claim numbers, severity, average and dispersion of claims decrease
year by year except for the 60% discount rate. The reason for this increase at the
sixth year may depend on the behavior of drivers because among the defects causing

35



accidents, driver defects has the biggest share based on the 2017 report of Turkish
Statistical Institute.

Figures 4.3 and 4.4 show the distribution of claim amounts based on the discount rates
for selected cities. In the figures, each discount rate has a right skewed shape of claim
amount distribution.

Figure 4.3: Histogram of Claim Amounts Based on Discount Rates for Istanbul

Figure 4.4: Histogram of Claim Amounts Based on Discount Rates for Ankara
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In addition, we also examine the claim amounts of the discount rates by adding the
gender level to see the effect of gender and discount rates on claim amounts.

Table 4.5: Summary Statistics for Gender and Discount Rates of Selected Cities

Istanbul Female Male

DR (%) k µ (TL) σ (TL) k µ (TL) σ (TL)

0 382 4,255.55 9,810.84 1,087 4,022.2 11,532.35
30 155 2,862.57 4,918.09 426 2,211.8 4,257.03
40 59 2,417.15 4,269.95 133 2,275.36 5,568.6
50 18 896.6 546.11 53 1,229.1 1,661.6
55 7 1,345.76 1,034.83 20 1,289.88 1,583.65
60 7 1,609.35 2,082.34 40 1,612.14 2,330.68

Ankara Female Male

DR (%) k µ (TL) σ (TL) k µ (TL) σ (TL)

0 118 3,744.1 6,228.63 290 2,440.92 4,400.77
30 48 1,718.96 2,712.51 98 1,983.98 3,196.88
40 20 1,763.2 1,652.29 54 1,518.73 2,578.55
50 12 1,223.25 1,358.45 27 1,315.51 1,875.6
55 2 574 377.6 8 833.38 862.79
60 3 1,390.67 1,744.23 17 733.69 1,120.97

Based on Table 4.5, both gender drivers are less likely to get involved a car accident as
the discount rates get higher except the sixth policy year. This situation is same as the
results of Table 4.4.

4.2 Homogeneity Test

In this section; firstly, we check whether there is an effect of gender on claim amounts
so that we apply t-test on the claim amounts of gender with the assumption that the
variances of gender are not equal. The distribution of claim amounts by gender can be
found in Table 4.2.

According to Table 4.6, we conclude that the gender does not affect the claim amounts
distribution by comparing the p-values of t test with the significance level (0.05).

In addition to the gender effect, we also analyze the effect of discount rates on claim
amounts by applying t-test on the claim amounts of discount rates with the assumption
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Table 4.6: Result of Two Sample t-test for Selected Cities Based on Gender

Two Sample t-test

Istanbul
t = 0.75293

Ankara
t=1.9034

df = 1268.6 df = 300.25

p value = 0.4516 p value = 0.05794

of unequal variances. The distribution of claim amounts by discount rates can be found
in Table 4.4.

Table 4.7: Results of Two Sample t-test for Selected Cities Based on Discount Rates

Two Sample t-test

Istanbul

0 % p value = 0.703

Ankara

0 % p value = 0.0398

30 % p value = 0.1455 30 % p value = 0.6026

40 % p value = 0.8476 40 % p value = 0.6333

50 % p value = 0.2087 50 % p value = 0.864

55 % p value = 0.9169 55 % p value = 0.555

60 % p value = 0.9975 60 % p value = 0.5857

Based on Table 4.7, by comparing the p-values with the significance level, we conclude
that gender and discount rates do not affect the distribution of claim amounts except
the claim amount of 0 % discount rate of Ankara but we will ignore this situation in
the sense that the analyzes to be done are consistent.

Secondly, we check the homogeneity of data to see whether it is necessary to cluster
the claim amounts for fitting the distribution or not. Therefore, we apply the Chi-
Square test on the selected categorical variable of data with the assumption that the
distribution of claim amounts of discount rates for female drivers are the same as the
distribution of claim amounts of discount rates for male drivers for selected two cities.

Claim amounts data have two categorical variables, which are the gender and discount
rates. According to them, Table 4.8 represents the number of claims based on gender
and discount rates for both two cities. Summary statistics of the contingency table can
be found in Table 4.5. Then, Figure 4.5 also shows the distribution of claim numbers
with respect to gender and discount rates. Based on the Table 4.8 and Figure 4.5, most
of the claims occur with a 0% discount rate, which represents the new policyholders
or old policyholders, who have had an accident in the previous policy year. Moreover,
male drivers produce claims more often than female drivers. Table 4.9 shows the re-
sult of the Chi-Square test. Based on the p values of the result of the Chi-Square test,
discount rates and gender have the same distribution for both selected cities. In con-
clusion, the distribution of claim amounts for both cities is homogeneous, so that there
is no need to cluster the data for the process of fitting distribution.
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Table 4.8: Contingency Table for Gender and Discount Rates of Selected Cities

Number of Claims Discount Rates %

0 30 40 50 55 60

Istanbul Female 382 155 59 18 7 7

Male 1087 426 133 53 20 40

Ankara Female 118 48 20 12 2 3

Male 290 98 54 27 8 17

Table 4.9: Result of Chi Square Test for Homogeneity for Selected Cities

Pearson’s Chi Squared Test

Istanbul
χ2 = 5.2408

df = 5

p value = 0.3872

Ankara
χ2 =3.5490

df = 5

p value = 0.616
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Figure 4.5: Claim Amounts Based on Gender and Discount Rates: a) Istanbul, b)
Ankara

4.3 Parameter Estimation

In order to fit a distribution to claim data for an automobile insurance, the estimation
of parameters for the selected distribution has to be done. We choose the Moments Es-
timation (MME) and Maximum Likelihood Estimator (MLE) methods for estimating
the parameters due to the fact that MME and MLE always result in unbiased, consistent
and efficient estimators [4]. Based on the homogeneity test results, the data, which are
used for parameter estimation, consist only of claim amounts and city information be-
cause the gender and discount rates do not significantly affect the distribution of claim
amounts of this data.
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4.3.1 Method of Moments Estimation

By using the MME, estimated parameters are obtained for selecting the best fitted
distribution of claim amounts. Table 4.10 gives the parameters of four selected distri-
butions having been fit to the claims data based on the selected cities. In the Table,
Shape is the first parameter value and Scale is the second parameter value of the dis-
tribution. In addition to the value of parameters, Loglikelihood, AIC and BIC show the
estimation results of the fitted distribution for claims data. The highest Loglikelihood
represents the best results for fitting distribution.

Table 4.10: Summary of MME Results for Selected Cities

Istanbul Shape Scale Loglikelihood AIC BIC

Gamma 0.2160 0.0007 -21,970.47 43,944.95 43,956.48
Weibull 0.6081 2,521.0197 -21,141.21 42,286.41 42,297.95
Lognormal 7.1874 0.0615 -20,789.87 41,583.73 41,595.27
Pareto 2.0000 5.3209 -40,902.57 81,809.14 81,820.67

Ankara Shape Scale Loglikelihood AIC BIC

Gamma 0.3060 0.0001 -6,162.823 12,329.65 12,338.72
Weibull 0.6840 2,074.2757 -6,006.285 12,016.57 12,025.64
Lognormal 7.0348 0.0505 -5,927.634 11,859.27 11,868.34
Pareto 2.000 4.4589 -11,835.18 23,674.37 23,683.44

According to Table 4.10, the highest Loglikelihood for Istanbul belongs to the Lognor-
mal distribution amongst the sampled distributions so a Lognormal distribution gives
the best result of parameter estimation for claims data of Istanbul. Therefore; claim
amounts of Istanbul can be modelled by using a Lognormal distribution with a mean
of 7.1874 and a standard deviation of 0.0615.

Furthermore, the Lognormal distribution also gives the best estimated result for claim
amounts of Ankara due to having the highest Loglikelihood value. Hence; claim
amounts of Ankara can be modelled by using a Lognormal distribution with a mean of
7.0348 and a standard deviation of 0.0505.

However, values of Loglikelihood are not sufficient evidence to show that it is the right
distribution for the claim amounts for selected cities. Therefore; we have to make
an assessment to how well these distributions fit the claim amounts by applying the
Goodness of Fit Test having a null hypothesis which states that the claim amounts of
selected cities come from the specified distribution.

The following Tables 4.11 and 4.12 show the results of a Goodness of Fit Test for
selected cities. The graphical representations of Goodness of Fit Test are presented in
Appendix B.

According to Table 4.11, we see that the p-value of the Kolmogorov-Smirnov test is
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Table 4.11: Summary Statistics of Goodness of Fit Test for Selected Cities

Istanbul Gamma Weibull Lognormal Pareto

Kolmogorov-Smirnov Statistic 0.3703 0.1297 0.0633 0.0984
p value 0.3006 0.1053 0.0514 0.0799

Ankara Gamma Weibull Lognormal Pareto

Kolmogorov-Smirnov Statistic 0.2887 0.1085 0.0780 0.9865
p value 0.2344 0.0881 0.0633 0.8010

Table 4.12: Summary Results of Goodness of Fit Test for Selected Cities

Istanbul Gamma Weibull Lognormal Pareto

AIC 43,944.95 42,286.41 41,583.73 81,809.14
BIC 43,956.48 42,297.95 41,595.27 81,820.67

Ankara Gamma Weibull Lognormal Pareto

AIC 12,329.65 12,016.57 11,859.27 23,674.37
BIC 12,338.72 12,025.64 11,868.34 23,683.44

greater than the significance level, which is 0.05, so we fail to reject the null hypoth-
esis and the AIC values from Table 4.12 show that the Lognormal distribution has the
smallest value of AIC against other distribution value of AIC. Therefore; we conclude
that our claim amounts of Istanbul come from Lognormal distribution with 95% level
of confidence and this means that the future claim amounts of Istanbul could be esti-
mated by using Lognormal distribution in order to use as an claim assumption of future
premiums in the pricing methodology of automobile insurance.

In addition to Istanbul, we see that the p-value of the Kolmogorov-Smirnov test for
Ankara is greater than the confidence level, which is 0.05, so we fail to reject the null
hypothesis and the AIC values of Ankara from Table 4.12 show that the Lognormal
distribution has the smallest AIC value. Therefore; we conclude that the Lognormal
distribution would be the best statistical distribution to the model the claim amounts
of Ankara at a 95% level of confidence and this means that the future claim amounts
of Ankara could be estimated by using Lognormal distribution to determine the future
premiums of automobile insurance.

4.3.2 Method of Maximum Likelihood Estimation

By using the MLE method, estimated parameters are obtained for selecting the best dis-
tribution to be fitted with the help of R programming. Table 4.13 gives the parameters
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of four selected distributions having been fit to the claims data based on the selected
cities. In the Table, Shape is the first parameter value and Scale is the second parameter
value of the distribution. In addition to the value of parameters, Loglikelihood, AIC and
BIC show the estimation results of the fitted distribution for claims data. Selection of
the best fitted distribution is the main goal, hence the highest Loglikelihood represents
the best results for fitting distribution.

Table 4.13: Summary of MLE Results for Selected Cities

Istanbul Shape Scale Loglikelihood AIC BIC

Gamma 0.6477 0.0002 -21,203.36 42,410.73 42,422.26
Weibull 0.7238 2,392.3097 -21,064.15 42,132.31 42,143.84
Lognormal 7.1082 0.0314 -20,785.58 41,575.16 41,586.70
Pareto 1.7936 2,581.0196 -20,853.59 41,711.18 41,722.71

Ankara Shape Scale Loglikelihood AIC BIC

Gamma 0.7291 0.0003 -6,018.89 12,041.79 12,050.86
Weibull 0.7767 1,949.1527 -5,993.05 11,990.10 11,999.18
Lognormal 6.9361 0.0355 -5,923.93 11,851.85 11,860.93
Pareto 2.1294 2,716.4880 -5,948.42 11,900.85 11,909.92

According to Table 4.13, the highest Loglikelihood value for Istanbul belongs to the
Lognormal distribution amongst the sampled distributions so a Lognormal distribution
gives the best result for claims data of Istanbul. Therefore; claim amounts of Istan-
bul can be modelled by using a Lognormal distribution with a mean of 7.1082 and a
standard deviation of 0.0314.

Furthermore, the Lognormal distribution also gives the best estimated result for claim
amounts of Ankara due to having the highest Loglikelihood value. Hence; claim
amounts of Ankara can be modelled by using a Lognormal distribution with a mean of
6.9361 and a standard deviation of 0.0355.

As stated previously, high values of Loglikelihood are not sufficient evidence to prove
that the correct distribution has been chosen. We must assess how well these distribu-
tions fit the claims data using the Goodness of Fit Test.

Tables 4.14 and 4.15 below show the results of Goodness of Fit Test for selected cities.
The graphical representations of the Goodness of Fit Test are presented in Appendix
B.

In Table 4.14, we see that the p-value of Kolmogorov-Smirnov test is greater than the
significance level of 0.05, so we cannot reject the null hypothesis. The AIC values
from Table 4.15 show that the Lognormal distribution has the smallest value amongst
sampled distribution. Therefore; we state that the claim amounts for Istanbul come
from a Lognormal distribution with a 95% level of confidence. Thus, future claim
amounts of Istanbul can be estimated by using Lognormal distribution when modelling
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Table 4.14: Summary Statistics of Goodness of Fit Tests for Selected Cities

Istanbul Gamma Weibull Lognormal Pareto

Kolmogorov-Smirnov Statistic 0.1495 0.1020 0.051 0.0618
p value 0.1469 0.1002 0.0501 0.0607

Ankara Gamma Weibull Lognormal Pareto

Kolmogorov-Smirnov Statistic 0.1320 0.0938 0.0521 0.0665
p value 0.1297 0.0921 0.0512 0.0653

Table 4.15: Summary Results of Goodness of Fit Tests for Selected Cities

Istanbul Gamma Weibull Lognormal Pareto

AIC 42,410.73 42,132.31 41,575.16 41,711.18
BIC 42,422.26 42,143.84 41,586.70 41,722.71

Ankara Gamma Weibull Lognormal Pareto

AIC 12,041.79 11,990.10 11,851.85 11,900.85
BIC 12,050.86 11,999.18 11,860.93 11,909.92

future premiums of an automobile insurance.

The p-value Kolmogorov-Smirnov test for Ankara is also greater than 0.05, so again
we fail to reject the null hypothesis. The AIC values of Ankara from Table 4.15 show
that the Lognormal distribution has the smallest value. Therefore; we conclude that
the Lognormal distribution would be the best statistical distribution to the model the
claim amounts of Ankara with a 95% level of confidence. Future claim amounts of
Ankara can therefore be estimated by using Lognormal distribution when pricing an
automobile insurance.

4.4 Risk Measures Calculations

After estimating the sample parameters of the best fitted distribution, we can now com-
pare the risk premiums based on these estimated parameters, which are found by using
MME and MLE.

According to estimated parameters of claim amount distributions for selected cities,
Table 4.16 shows the results of risk measures based on the estimation methods. All
mathematical calculations of risk measures can be found in Appendix C.

According to risk measures results of both MME and MLE for selected cities, NPP
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Table 4.16: Risk Measures Results For Selected Cities

Istanbul NPP EVPP VPP SDPP EXPP ESPP VaR CVaR

MME 1,325.16 1,590.20 2,656.05 1,341.48 1,990.61 2,656.05 1,463.47 1,510.69
MLE 1,222.55 1,467.06 1,517.42 1,230.23 1,369.99 1,517.42 1,286.72 1,308.13

Ankara NPP EVPP VPP SDPP EXPP ESPP VaR CVaR

MME 1,136.92 1,364.30 1,797.04 1,148.41 1,466.98 1,797.04 1,233.82 1,271.07
MLE 1,029.40 1,235.28 1,296.66 1,036.71 1,163.03 1,296.66 1,090.62 1,105.54

has the smallest premium charge for an automobile insurance. However, as it is known
from ruin theory, using NPP is insufficient for an insurance company to be solvent
[24] so the result of NPP is not the right premium charge for transferring the risk of
policyholders and it is also not appropriate for companys’ reserving purposes.

EVPP is safer side NPP due to the usage of a claim experience rate as a safety loading
in the pricing methodology. However, both NPP and EVPP are not sensitive to the
change in the amounts of claim thus most insurance companies do not prefer to use
NPP nor EVPP as a pricing methodology of an automobile insurance.

In contrast to NPP and EVPP, VPP and ESPP are sensitive to the change of claim
amounts yielding the highest premium for an automobile insurance. Higher premi-
ums, which are calculated based on VPP and ESPP, show that there are more risky
losses to be protected by customers but trying to sell automobile insurance with such
high premiums in a competitive environment puts the sustainability of the insurance
company at risk. SDPP is also sensitive the fluctuations of claim amounts but premi-
ums are relatively lower than VPP and ESPP premiums.

EXPP has the one of the largest premium charges for an automobile insurance com-
pared to the other premium principles. Actually this premium principle is sensitive
to the risk aversion level of the insureds so while increasing the level of risk aversion
of the insured, the premium is quate large. Also, it is not practical to apply in in-
surance pricing methodology because it requires so many assumption to perform the
mathematical calculations.

Beside the premium based risk measures, VaR and CVaR produce a more competitive
premium for the automobile. In addition to the lowest premiums, they are sensitive to
the fluctuations of large claim amounts.

All these risk measures generate a premium which is higher than the expected loss. It
is good for the company’s sustainability but the coherency property is required for risk
measure calculations thus insurance companies prefer CVaR as a pricing methodology
of an automobile insurance.

In this study, we conclude that CVaR gives the most affordable premium, which is
calculated by using the estimators of MLE for Lognormal distribution, because CVaR
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is sensitive to the extreme values on the tail of Lognormal distributions and also it
satisfies the coherency conditions which makes a risk measure a candidate for an ap-
propriate and optimal risk management tool for the insurance company. Also, MLE
gives more unbiased, consistent and efficient estimators than MME [4]. Hence, the
comparison of studied risk measures show that applying CVaR for both selected cities
keep automobile insurance companies on the safer side. In other words, insurance
companies can stay solvent using the this risk measure in the their pricing methodol-
ogy of automobile insurance.
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CHAPTER 5

CONCLUSION

Since people want to feel safe while they live, one of humankind’s main purposes is
to achieve a sense of security. They can achieve this emotion by buying an insurance
product from the various insurance companies providing proper prices so that both the
insureds and the insurers manage their own risk.

Companies determine the suitable premiums for their customers by using risk measure
methods. The definition of risk measure method is a single number to summarize the
future random losses.

In this thesis, the selection of appropriate risk measures is analyzed using the claim
amounts of an automobile insurance, which are obtained from one of the most rep-
utable general insurance company to determine efficient and competitive premiums in
the insurance market by using claim amount distributions.

This thesis shows that, in automobile insurance, the estimation of claim amount distri-
bution is independent from the categorical variables, which are the gender of the driver
and the no-claims discount. Homogeneity tests show that the claim amount distribution
is not dependent on these categorical variables.

The claims are separated based on the selected cities. After the separation of claims,
the estimation of parameters of the claim distributions is performed by applying the
Methods of Moments Estimation and Maximum Likelihood Estimation Method with
the help of R programming. For both cities, the Lognormal distribution is fitted as the
distribution of claim amounts with two estimation methods. Furthermore, the Good-
ness of Fit test is applied to test whether the estimators of selected cities fit the claim
distributions adequately or not. According to the Goodness of Fit test results, the Log-
normal distribution is well suited to the claims data.

Then, selected risk measures are calculated with respect to the Lognormal distribution
by using estimated parameters of MME and MLE. The comparison of studied risk
measures show that applying Conditional Value at Risk for both selected cities by
using two estimation methods give affordable insurance premiums for both the insurer
and insured because CVaR is sensitive to the extreme values of claim amounts and
also CVaR satisfies the coherency criteria, which makes a risk measure a candidate for
the risk management tool of the insurance company. Furthermore, insureds feel more
secure with the help of well-priced insurance products and the insurers can continue to
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remain solvent with this well-priced products.

In future studies, in addition to the classical parameter estimation methods, Bayesian
parameter estimation methods or parametric interval estimation methods may be con-
sidered for estimating the parameter of loss distributions and also, other variables af-
fecting the claim amounts (including brand of the automobile, age of the driver, etc)
could be added for the calculation of well-priced premiums in the competitive insur-
ance market.
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APPENDIX A

Derivations of Mean, Variance, MGF, MME and MLE of Selected
Distributions

A.1 Gamma Distribution

The mean of Gamma distribution is obtained as follows;

E[X] =

∫ ∞
0

x
1

βαΓ(α)
xα−1e−

x
β dx

=
1

βαΓ(α)

∫ ∞
0

x(α+1)−1e−
x
β dx

=
β1+αΓ(1 + α)

βαΓ(α)

∫ ∞
0

1

β1+αΓ(1 + α)
x(1+α)−1e−

x
β dx

=
β1+αΓ(1 + α)

βαΓ(α)

=
βαΓ(α)

Γ(α)

= αβ
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In order to find variance of Gamma distribution, E[X2] has to be found firstly.

E[X2] =

∫ ∞
0

x2 1

βαΓ(α)
xα−1e−

x
β dx

=
1

βαΓ(α)

∫ ∞
0

x(2+α)−1e−
x
β dx

=
β2+αΓ(2 + α)

βαΓ(α)

∫ ∞
0

1

β2+αΓ(2 + α)
x(2+α)−1e−

x
β dx

=
β2+αΓ(2 + α)

βαΓ(α)

= β2 (α + 1)!

(α− 1)!

= β2 (α + 1)(α)(α− 1)!

(α− 1)!

= β2(α + 1)(α)

Thus, the variance of Gamma distribution is described as follows;

V ar[X] = E[X2]− E[X]2

= β2(α + 1)(α)− (αβ)2

= α2β2 + αβ2 − α2β2

= αβ2

Moment generating function of Gamma distribution is obtained as follows;

M(t) = E[etx]

=

∫ ∞
0

etx
1

Γ(α)βα
xα−1e−

x
β dx

=
1

Γ(α)βα

∫ ∞
0

xα−1e−x( 1
β
−t)dx

By applying the transformation 1
β
− t = 1

u
and then, we obtain the probability distri-

bution of Gamma (α, u) so that the inside of the integral is equal to 1.
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=
1

Γ(α)βα

∫ ∞
0

xα−1e−
x
u

=
1

Γ(α)βα
Γ(α)uα

= (
u

β
)α

Now, u
β

= β
1−βt −

1
β

= 1
1−βt , then we can write the moment generating function of

Gamma distribution as follows;

M(t) = (
u

β
)α

= (
1

1− βt
)α

= (1− βt)−α

Method of Moment Estimator of Gamma distribution is described as follows; but
firstly, we need to definition of the mean and the variance of Gamma distribution based
on the sample moments.

E[X] = αβ =
1

n

n∑
i=1

xi (A.1)

V ar[X] = αβ2 =
1

n

n∑
i=1

(xi − x̄)2 (A.2)

By solving equation A.1, we obtain the parameter α as;

α =
x̄

β
(A.3)

Now, substituting A.3 into the equation A.2, we obtain the parameter β as;

αβ2 = (
x̄

β
)β2 (A.4)

= x̄β (A.5)

=
1

n

n∑
i=1

(xi − x̄)2 (A.6)
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From equation A.6, we thus obtain β̂MM as 1
n

∑n
i=1(xi − x̄)2. Now, we can find the

estimator of α by substituting the β̂MM into the equation A.1.

α̂MM = (
x̄

β̂MM

) (A.7)

=
x̄

( 1
nx̄

∑n
i=1(xi − x̄)2)

(A.8)

=
nx̄2∑n

i=1(xi − x̄)2)
(A.9)

Maximum Likelihood Estimator of Gamma distribution is described as;

L(α, β|X) =
n∏
i=1

f(Xi)

=
n∏
i=1

1

βαΓ(α)
xα−1
i e−

xi
β

Now, the natural logarithm of likelihood function has to be taken:

ln(L(X)) = (α− 1)
n∑
i=1

ln(Xi)− nln(Γ(α))− nαln(β)− 1

β

n∑
i=1

Xi

= n(α− 1)ln(X̄)− nln(Γ(α))− nαln(β)− nX̄

β

Now, the derivatives of likelihood function has to be taken with respect to parameters.

dln(L(X))

dα
= nln(X̄)− nΓ′(α)

Γ(α)
− nln(β)

α̂ = n(ln(β)− Γ′(α)

Γ(α)
) + nln(X̄)

dln(L(X))

dβ
= −nα

β
+
nX̄

β2

β̂ =
X̄

α̂

Maximum likelihood values of α and β must satisfy the two equations of α̂ and β̂
because the equation of α̂ cannot be solved in closed form so that an iterative method
for finding the roots has to be done.

54



A.2 Weibull Distribution

The kth moment of Weibull distribution is obtained as follows;

E[Xk] =

∫ ∞
0

xkf(x)dx

=

∫ ∞
0

xk(
β

α
)(
x

α
)β−1e−( x

α
)βdx

=

∫ ∞
0

(
β

α
)(

1

α
)β−1xk+β−1e−( x

α
)βdx

By applying the transformation ( x
α

)β = t and (β
α

)( x
α

)β−1dx = dt

=

∫ ∞
0

(
β

α
)(

1

α
)β−1(αt

1
β )k+β−1e−t(

α

β
)t(

1
β
−1)dt

=

∫ ∞
0

αk+β−1

αβ−1
t
k
β

+1− 1
β t

1
β
−1e−tdt

=

∫ ∞
0

αkt(
k
β

+1)−1e−tdt

= αk
∫ ∞

0

t(
k
β

+1)−1e−tdt

Inside of the integral is equal to the Gamma function with parameter ( k
β

+ 1), so that
kth moment of the Weibull distribution is written as;

E[Xk] = αkΓ(
k

β
+ 1)

The mean of Weibull distribution is equal to 1st moment and it is written as;

E[X] = αΓ(
1

β
+ 1)

In order to find variance of Weibull distribution, E[X2] has to be found firstly. It is
equal the 2nd moment of the Weibull distribution and it is written as;

E[X2] = α2Γ(
2

β
+ 1)

Hence, the variance of Weibull distribution is described as;
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V ar[X] = E[X2]− E[X]2

= α2Γ(
2

β
+ 1)− (αΓ(

1

β
+ 1))2

= α2[Γ(
2

β
+ 1)− Γ2(

1

β
+ 1)]

The moment generating function of Weibull distribution is described as;

M(t) = E[etx]

=

∫ ∞
0

etx
β

α
(
x

α
)β−1e−( x

α
)β

=

∫ ∞
0

β

α

1

αβ−1
xβ−1etx−( x

α
)β

Weibull distribution does not have a simple and closed form of moment generating
function, so that we left it in the form of definition of moment generating function.

Method of Moment Estimator of Weibull distribution is described as follows;

m1 = E[X] = αΓ(
1

β
+ 1)

m2 = E[X2] = α2Γ(
2

β
+ 1)

From the above equations, we thus obtain α̂MM as
1
n

∑n
i=1 xi

Γ( 1

β̂
+1)

. Now, we can find the

estimator of shape parameter of Weibull distribution.

By taking the second sample moment divided by the square of the first sample moment,
a function of the theoretical moments is

m2

m2
1

=
α2Γ( 2

β
+ 1)

α2Γ2( 1
β

+ 1)

By using the root finding techniques, we can solve the equation. In this study, I used
the technique of Nielsen (2011) for obtaining the moment estimator of shape parameter
[20].

Maximum Likelihood Estimator of Weibull distribution is described as;
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L(α, β|X) =
n∏
i=1

f(Xi)

=
n∏
i=1

β

α
(
Xi

α
)β−1e−(

Xi
α

)β

=
βn

αnβ
e−

∑n
i=1(

Xi
α

)β
n∏
i=1

Xβ−1
i

Firstly, the natural logarithm of likelihood function has to be taken:

ln(L(X)) = nln(β)− nβln(α)−
n∑
i=1

(
Xi

α
)β + (β − 1)

n∑
i=1

ln(Xi)

Secondly, the first derivative of likelihood function has to be taken with respect to
parameters.

dln(L(X))

dα
=

nβ

αβ+1
[
1

n

n∑
i=1

xβi − αβ]

α̂ = (
1

n

n∑
i=1

xβi )
1
β

dln(L(X))

dβ
= n(

1

n

n∑
i=1

ln(xi) +
1

β
−
∑n

i=1(xβi ln(xi))∑n
i=1(xβi )

)

β̂ = No simple and closed form

Once the likelihood function has been obtained, the likelihood function is optimized
to find its minimum value. This has to be done iteratively by using an optimization
function, such as Newton-Raphson method because Weibull distribution does not have
a simple and closed form of maximum likelihood estimator for shape parameter.

To verify these solutions are the maximum likelihood estimators of Weibull distribu-
tion, second derivative has to be taken to maximize the loglikelihood function.

d2ln(L(X))

dα2
=

β

α2
[n−

∑n
i=1 x

β
i

αβ
]

d2ln(L(X))

dβ2
= − n

β2
−
∑n

i=1(xβi ln(xi))∑n
i=1(xβi )
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Second derivative of both parameters are less than zero, so that we have been proved
that these parameters are the maximum likelihood parameters of Weibull distribution.

A.3 Lognormal Distribution

Let us assume that Y=eX and X is Normally distributed with mean µ and variance σ2;
ie; N(µ;σ2). Then, the mean of Lognormal distribution is obtained as follows;

E[Y ] = E[eX ] =

∫ ∞
−∞

exf(x)dx

=

∫ ∞
−∞

ex
1√
2πσ

e
−(x−µ)2

2σ2 dx

By applying the transformation y = x− µ and dy = dx

=

∫ ∞
−∞

eµ+y 1√
2πσ

e
−(y)2

2σ2 dy

= eµ
∫ ∞
−∞

ey
1√
2πσ

e
−(y)2

2σ2 dy

= eµ
∫ ∞
−∞

1√
2πσ

e
2yσ2−y2

2σ2 dy

= eµ
∫ ∞
−∞

1√
2πσ

e
−(y−σ2)2+σ4

2σ2 dy

= eµe
1
2
σ2

∫ ∞
−∞

1√
2πσ

e
−(y−σ2)2

2σ2 dy

= eµe
1
2
σ2

= eµ+ 1
2
σ2

In order to find variance of Lognormal distribution, E[Y 2] has to be found firstly.

E[Y 2] = E[e2X ] =

∫ ∞
−∞

e2xf(x)dx

=

∫ ∞
−∞

e2x 1√
2πσ

e
−(x−µ)2

2σ2 dx
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By applying the transformation y = x− µ and dy = dx

=

∫ ∞
−∞

e2(µ+y) 1√
2πσ

e
−(y)2

2σ2 dy

= e2µ

∫ ∞
−∞

e2y 1√
2πσ

e
−(y)2

2σ2 dy

= e2µ

∫ ∞
−∞

1√
2πσ

e
4yσ2−y2

2σ2 dy

= e2µ

∫ ∞
−∞

1√
2πσ

e
−(y−2σ2)2+4σ4

2σ2 dy

= e2µe2σ2

∫ ∞
−∞

1√
2πσ

e
−(y−2σ2)2

2σ2 dy

= e2µe2σ2

= e2µ+2σ2

Thus, the variance of Lognormal distribution is described as follows;

V ar[Y ] = E[Y 2]− E[Y ]2

= e2µ+2σ2 − (eµ+ 1
2
σ2

)2

= e2µ+2σ2 − e2µ+σ2

= e2µ+σ2

(eσ
2 − 1)

Moment generating function of Lognormal distribution is described as;

MX(t) = E[etx] = MY (t)

= etµ+ 1
2
t2σ2

Method of Moment Estimator of Lognormal distribution is described as follows;

m1 = E[X] = exp(µ+
σ2

2
)

m2 = E[X2] = exp(2µ+ 2σ2)

By solving equations, first moment of Lognormal distribution is µ̂ = ln(
∑n

i=1Xi) −
ln(n)− σ̂2

2
and second moment of Lognormal distribution is µ̂ =

ln(
∑n
i=1 X

2
i )

2
− ln(n)

2
−σ̂2.

By solving these two equations for σ̂2:
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ln(
n∑
i=1

Xi)− ln(n)− σ̂2

2
=

ln(
∑n

i=1X
2
i )

2
− ln(n)

2
− σ̂2

2ln(
n∑
i=1

Xi)− 2ln(n)− σ̂2 = ln(
n∑
i=1

X2
i )− ln(n)− 2σ̂2

σ̂2 = ln(
n∑
i=1

X2
i )− 2ln(

n∑
i=1

Xi) + ln(n)

Now, by inserting the value of σ̂2 into the first or second moment of Lognormal distri-
bution, we can find the moment estimator of location parameter.

µ̂ = ln(
n∑
i=1

Xi)− ln(n)− σ̂2

2

= ln(
n∑
i=1

Xi)− ln(n)− 1

2
[ln(

n∑
i=1

X2
i )− 2ln(

n∑
i=1

Xi) + ln(n)]

= 2ln(
n∑
i=1

Xi)−
3

2
ln(n)− ln(

∑n
i=1X

2
i )

2

Maximum Likelihood Estimator of Lognormal distribution is described as;

L(µ, σ2|X) =
n∏
i=1

f(Xi)

=
n∏
i=1

((2πσ2)−
1
2X−1

i exp[
−(ln(Xi)− µ)2

2σ2
])

= (2πσ2)−
n
2

n∏
i=1

X−1
i exp[

n∑
i=1

−(ln(Xi)− µ)2

2σ2
]

Now, the natural logarithm of likelihood function has to be taken:
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ln(L(X)) = ln((2πσ2)−
n
2

n∏
i=1

X−1
i exp[

n∑
i=1

−(ln(Xi)− µ)2

2σ2
])

= −n
2
ln(2πσ2)−

n∑
i=1

ln(Xi)−
n∑
i=1

(ln(Xi)− µ)2

2σ2

= −n
2
ln(2πσ2)−

n∑
i=1

ln(Xi)−
∑i=n

1 ln(Xi)
2 − 2ln(Xi)µ+ µ2

2σ2

= −n
2
ln(2πσ2)−

n∑
i=1

ln(Xi)−
∑n

i=1 ln(Xi)
2

2σ2
+

∑n
i=1 ln(Xi)µ

σ2
− nµ2

2σ2

Now, the first derivative of likelihood function has to be taken with respect to parame-
ters.

dln(L(X))

dµ
=

∑n
i=1 ln(Xi)

σ̂2
− 2nµ̂

2σ̂2

µ̂ =

∑n
i=1 ln(Xi)

n
dln(L(X))

dσ2
=
−n
2σ̂2
−
∑n

i=1(ln(Xi)− µ̂)2

2
(−σ̂2)−2

σ̂2 =

∑n
i=1(ln(Xi)−

∑n
i=1 ln(Xi)

n
)2

n

To verify these solutions are the maximum likelihood estimators of Lognormal distri-
bution, second derivative has to be taken to maximize the loglikelihood function.

d2ln(L(X))

dµ2
=
−n
σ̂2

d2ln(L(X))

d(σ2)2
=

1

2(σ̂2)3
[−

n∑
i=1

(ln(Xi)− µ̂)2]

Second derivative of both parameters are less than zero, so that we prove that these
parameters are the maximum likelihood parameters of Lognormal distribution.
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A.4 Pareto Distribution

The kth moment of Pareto distribution is obtained as follows;

E[Xk] =

∫ ∞
λ

xkf(x)dx

=

∫ ∞
λ

xk(
aλa

xa+1
)dx

= aλa
∫ ∞
λ

(
1

xa+1−k )dx

By multiplying and dividing the equation with (a − k)λa−k, we obtain the following
equation;

=
aλa

(a− k)λa−k

∫ ∞
λ

(a− k)λa−k

xa−k+1
dx

The integral in equation is equal to the Pareto distribution with parameters (a− k, λ),
so it is equal to 1 whenever a − k > 0 thus kth moment of the Weibull distribution is
written as;

E[Xk] =
aλk

(a− k)

The mean of Pareto distribution is equal to 1st moment and it is written as;

E[X] =
aλ

(a− 1)

In order to find variance of Pareto distribution, E[X2] has to be found firstly. It is equal
the 2nd moment of the Pareto distribution and it is written as;

E[X2] =
aλ2

(a− 2)

Hence, the variance of Pareto distribution is described as;
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V ar[X] = E[X2]− E[X]2

=
aλ2

(a− 2)
− (

aλ

(a− 1)
)2

=
aλ2

(a− 2)
− a2λ2

(a− 1)2

=
aλ2(a− 1)2 − a2λ2(a− 2)

(a− 1)2(a− 2)

=
aλ2[(a− 1)2 − a(a− 2)]

(a− 1)2(a− 2)

=
aλ2[a2 − 2a+ 1− a2 + 2a]

(a− 1)2(a− 2)

=
aλ2

(a− 1)2(a− 2)

Method of Moment Estimator of Pareto distribution is described as follows;

m1 = E[X] =
aλ

a− 1

m2 = E[X2] =
aλ2

a− 2

By taking the second sample moment divided by the squared of the first sample mo-
ment, a function of the theoretical moments is obtained as follows;

µ̂2

µ̂1
2 =

(a− 1)2

a(a− 2)

We know that (a−1)2

a(a−2)
− 1 = 1

a(a−2)
so that the equation is equal to a(a− 2) = µ̂1

2

(µ̂2−µ̂1
2)

.
There is a unique solution as long as a > 2, then the moment estimator of shape
parameter is as follows;

âMM = 1 +

√
1 +

n
n−1

X̄

S2

Now, we can calculate the moment estimator of scale parameter by using âMM .

λ̂MM =
X̄

√
1 +

n
n−1

X̄

S2

1 +

√
1 +

n
n−1

X̄

S2
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Maximum Likelihood Estimator of Pareto distribution is described as;

L(a, λ|X) =
n∏
i=1

f(Xi)

=
n∏
i=1

(
aλa

Xa+1
i

)

Now, the natural logarithm of likelihood function has to be taken:

ln(L(X)) = ln(
n∏
i=1

(
aλa

Xa+1
i

))

= nln(a) + naln(λ)− (a+ 1)
n∑
i=1

ln(Xi)

Since a higher scale parameter (λ) will always result in a higher likelihood (ln(λ) is
monotonically increasing), we maximize the likelihood by setting λ̂ as high as possible.
Since λ < xi for all i, we maximize the likelihood by setting λ̂ = min xi with the
smallest xi in the sample.

Now, the derivative of likelihood function has to be taken with respect to shape param-
eter.

dln(L(X))

da
=

n

a
+ nln(λ)−

n∑
i=1

ln(Xi)

â =
n∑n

i=1 ln(Xi)− nln(λ)

To verify these solutions are the maximum likelihood estimators of Pareto distribution,
second derivative has to be taken to maximize the loglikelihood function of Pareto
distribution.

d2ln(L(X))

da2
=
−n
a2

Second derivative of the shape parameter is less than zero, so that we have been proved
that the shape parameter is the maximum likelihood parameter of Pareto distribution.
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APPENDIX B

Graphical Representation of Fitting Distributions

In this part, graphical results of the distribution fitting of automobile claim amounts
data for selected two cities are shown with respect to methods of moment estimation
and methods of maximum likelihood estimation.

B.1 Methods of Moment Estimation

Figure B.1: Gamma Distribution Graphs of Istanbul
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According to Figure B.1; probability density function graph shows that distribution of
our claim amounts have right skewed feature and the red line shows the characteristic
of Gamma distribution. Therefore; claim amounts of Istanbul have the same shape as
Gamma distribution. Both of them are distributed with positively skewed. Moreover,
cumulative distribution function graph shows that claim amounts of Istanbul come
from the family of Gamma distribution. However, Q-Q and P-P plots show that our
claim amounts do not fit Gamma distribution because data of claim amounts are not on
the reference line at the tails.

Figure B.2: Weibull Distribution Graphs of Istanbul

According to Figure B.2; probability density function graph shows that distribution of
our claim amounts comes from Weibull distribution because claim amounts of Istanbul
have the same shape as Weibull distribution. Both of them are distributed with right
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Istanbul come from the family of Weibull distribution. However, Q-Q and P-P plots
show that our claim amounts do not fit Weibull distribution because data of claim
amounts are not on the reference line perfectly.
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Figure B.3: Lognormal Distribution Graphs of Istanbul

According to Figure B.3; probability density function graph shows that distribution
of our claim amounts comes from Lognormal distribution because claim amounts of
Istanbul have the same shape as Lognormal distribution. Both of them are distributed
with right skewed. Moreover, cumulative distribution function graph shows that claim
amounts of Istanbul come from the family of Weibull distribution. Furthermore, P-P
plot shows that our claim amounts fit Lognormal distribution because data of claim
amounts are perfectly match on the reference line. Most of the quantiles of our claim
amounts are on the line of Q-Q plot but they are few outliers at the high end, which are
out of the range. Therefore; from Q-Q plot, the claim amounts have heavy tails on the
right ends.
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Figure B.4: Pareto Distribution Graphs of Istanbul

According to Figure B.4; probability density function graph shows that distribution of
our claim amounts comes from Pareto distribution because claim amounts of Istanbul
have the same shape as Pareto distribution. Both of them are distributed with positively
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Istanbul come from the family of Pareto distribution. Furthermore, P-P plot shows
that our claim amounts fit Pareto distribution because data of claim amounts are on the
straight line. Quantiles of our claim amounts are not on the line of Q-Q plot at right tail
but they are as close as the theoretical value of Pareto distribution except few outliers
at the high end of the range. Hence, we say that Pareto distribution also fit the claim
amounts.
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Figure B.5: Gamma Distribution Graphs of Ankara

According to Figure B.5; probability density function graph shows that distribution of
our claim amounts have right skewed feature and the red line shows the characteristic
of Gamma distribution. Therefore; claim amounts of Ankara have the same shape as
Gamma distribution. Both of them are distributed with positively skewed. Moreover,
cumulative distribution function graph shows that claim amounts of Ankara come from
the family of Gamma distribution. However, Q-Q and P-P plots show that our claim
amounts do not fit Gamma distribution because data of claim amounts are far away
from the reference line at the tails.
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Figure B.6: Weibull Distribution Graphs of Ankara

According to Figure B.6; probability density function graph shows that distribution of
our claim amounts comes from Weibull distribution because claim amounts of Ankara
have the same shape as Weibull distribution. Both of them are distributed with right
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Ankara come from the family of Weibull distribution. However, Q-Q and P-P plots
show that our claim amounts do not fit Weibull distribution because data of claim
amounts are not on the reference line perfectly.
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Figure B.7: Lognormal Distribution Graphs of Ankara

According to Figure B.7; probability density function graph shows that distribution
of our claim amounts comes from Lognormal distribution because claim amounts of
Ankara have the same shape as Lognormal distribution. Both of them are distributed
with right skewed. Moreover, cumulative distribution function graph shows that claim
amounts of Ankara come from the family of Weibull distribution. Furthermore, P-P
plot shows that our claim amounts fit Lognormal distribution because data of claim
amounts are perfectly match on the reference line. Most of the quantiles of our claim
amounts are on the line of Q-Q plot but they are few outliers at the high end, which are
out of the range. Therefore; from Q-Q plot, the claim amounts have heavy tails on the
right ends.

According to Figure B.8; probability density function graph shows that distribution of
our claim amounts comes from Pareto distribution because claim amounts of Ankara
have the same shape as Pareto distribution. Both of them are distributed with positively
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Figure B.8: Pareto Distribution Graphs of Ankara

skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Ankara come from the family of Pareto distribution. Furthermore, P-P plot shows
that our claim amounts fit Pareto distribution because data of claim amounts are on the
straight line. Quantiles of our claim amounts are not on the line of Q-Q plot at right tail
but they are as close as the theoretical value of Pareto distribution except few outliers
at the high end of the range. Hence, we say that Pareto distribution also fit the claim
amounts.

B.2 Methods of Maximum Likelihood Estimation

According to Figure B.9; probability density function graph shows that distribution of
our claim amounts have right skewed feature and the red line shows the characteristic
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Figure B.9: Gamma Distribution Graphs of Istanbul

of Gamma distribution. Therefore; claim amounts of Istanbul have the same shape as
Gamma distribution. Both of them are distributed with positively skewed. Moreover,
cumulative distribution function graph shows that claim amounts of Istanbul come
from the family of Gamma distribution. However, Q-Q and P-P plots show that our
claim amounts do not fit Gamma distribution because data of claim amounts are not on
the reference line at the tails.
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Figure B.10: Weibull Distribution Graphs of Istanbul

According to Figure B.10; probability density function graph shows that distribution of
our claim amounts comes from Weibull distribution because claim amounts of Istanbul
have the same shape as Weibull distribution. Both of them are distributed with right
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Istanbul come from the family of Weibull distribution. However, Q-Q and P-P plots
show that our claim amounts do not fit Weibull distribution because data of claim
amounts are not on the reference line perfectly.
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Figure B.11: Lognormal Distribution Graphs of Istanbul

According to Figure B.11; probability density function graph shows that distribution
of our claim amounts comes from Lognormal distribution because claim amounts of
Istanbul have the same shape as Lognormal distribution. Both of them are distributed
with right skewed. Moreover, cumulative distribution function graph shows that claim
amounts of Istanbul come from the family of Weibull distribution. Furthermore, P-P
plot shows that our claim amounts fit Lognormal distribution because data of claim
amounts are perfectly match on the reference line. Most of the quantiles of our claim
amounts are on the line of Q-Q plot but they are few outliers at the high end, which are
out of the range. Therefore; from Q-Q plot, the claim amounts have heavy tails on the
right ends.

According to Figure B.12; probability density function graph shows that distribution of
our claim amounts comes from Pareto distribution because claim amounts of Istanbul
have the same shape as Pareto distribution. Both of them are distributed with positively
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Figure B.12: Pareto Distribution Graphs of Istanbul

skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Istanbul come from the family of Pareto distribution. Furthermore, P-P plot shows
that our claim amounts fit Pareto distribution because data of claim amounts are on the
straight line. Quantiles of our claim amounts are not on the line of Q-Q plot at right tail
but they are as close as the theoretical value of Pareto distribution except few outliers
at the high end of the range. Hence, we say that Pareto distribution also fit the claim
amounts.
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Figure B.13: Gamma Distribution Graphs of Ankara

According to Figure B.13; probability density function graph shows that distribution of
our claim amounts have right skewed feature and the red line shows the characteristic
of Gamma distribution. Therefore; claim amounts of Ankara have the same shape as
Gamma distribution. Both of them are distributed with positively skewed. Moreover,
cumulative distribution function graph shows that claim amounts of Ankara come from
the family of Gamma distribution. However, Q-Q and P-P plots show that our claim
amounts do not fit Gamma distribution because data of claim amounts are far away
from the reference line at the tails.
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Figure B.14: Weibull Distribution Graphs of Ankara

According to Figure B.14; probability density function graph shows that distribution of
our claim amounts comes from Weibull distribution because claim amounts of Ankara
have the same shape as Weibull distribution. Both of them are distributed with right
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Ankara come from the family of Weibull distribution. However, Q-Q and P-P plots
show that our claim amounts do not fit Weibull distribution because data of claim
amounts are not on the reference line perfectly.
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Figure B.15: Lognormal Distribution Graphs of Ankara

According to Figure B.15; probability density function graph shows that distribution
of our claim amounts comes from Lognormal distribution because claim amounts of
Ankara have the same shape as Lognormal distribution. Both of them are distributed
with right skewed. Moreover, cumulative distribution function graph shows that claim
amounts of Ankara come from the family of Weibull distribution. Furthermore, P-P
plot shows that our claim amounts fit Lognormal distribution because data of claim
amounts are perfectly match on the reference line. Most of the quantiles of our claim
amounts are on the line of Q-Q plot but they are few outliers at the high end, which are
out of the range. Therefore; from Q-Q plot, the claim amounts have heavy tails on the
right ends.
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Figure B.16: Pareto Distribution Graphs of Ankara

According to Figure B.16; probability density function graph shows that distribution of
our claim amounts comes from Pareto distribution because claim amounts of Ankara
have the same shape as Pareto distribution. Both of them are distributed with positively
skewed. Moreover, cumulative distribution function graph shows that claim amounts
of Ankara come from the family of Pareto distribution. Furthermore, P-P plot shows
that our claim amounts fit Pareto distribution because data of claim amounts are on the
straight line. Quantiles of our claim amounts are not on the line of Q-Q plot at right tail
but they are as close as the theoretical value of Pareto distribution except few outliers
at the high end of the range. Hence, we say that Pareto distribution also fit the claim
amounts.
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APPENDIX C

Mathematical Representation of Risk Premiums

C.1 Based on Methods of Moments Estimation

Parameter estimation results of methods of moments give us the mean and variance of
the selected cities based on Lognormal distribution so that we can calculate the risk
premiums based on the their definitions.

The mean and the variance of Lognormal Distribution of Istanbul as follows;

E[X] = eµ+ 1
2
σ2

= e7.1874+ 1
2

(0.0615)2

= 1, 325.163

V ar[X] = e2µ+σ2

(eσ
2 − 1)

= e2∗7.1874+(0.0615)2

(e(0.0615)2 − 1)

= 6, 654.428

1. Net Risk Premium:

H(X) = E[X] = 1, 325.163

2. Expected Value Risk Premium:

H(X) = (1 + α)E[X] = (1 + 0.20) ∗ 1, 325.163 = 1, 590.196

3. Variance Risk Premium:

H(X) = E[X] + αV ar[X] = 1, 325.163 + (0.20 ∗ 6, 654.428) = 2, 656.049

4. Standard Deviation Risk Premium:

H(X) = E[X]+α
√
V ar[X] = 1, 325.163+(0.20∗

√
6, 654.428) = 1, 341.478
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5. Exponential Risk Premium
We can write the Exponential Risk Premium as follow;

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

The moment Generating Function of Lognormal Distribuion is that

Mx(α) = eαµ+ 1
2
α2σ2

Then, Exponential Risk Premium is

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

=
1

α
ln(eαµ+ 1

2
α2σ2

)

=
1

α
(αµ+

1

2
α2σ2)

= µ+
1

2
ασ2

= 1, 325.163 +
1

2
∗ 0.20 ∗ 6, 654.428

= 1, 990.606

6. Esscher Risk Premium We know that Esscher Risk Premium can be represented
by using the first derivative of Cumulative Generating Function.

C(t) = lnMx(t)

Then, the first derivative of the Cumulative Generating function is the following
equation;

C ′(t) =
M ′

x(t)

Mx(t)
=
E[XetX ]

E[etX ]

The moment Generating Function and it’s first derivative of Lognormal Dis-
tribuion are that

Mx(α) = eαµ+ 1
2
α2σ2

M ′
x(α) = (µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

Then, Esscher Risk Premium is

H(X) =
E[XeαX ]

E[eαX ]

=
M ′

x(t)

Mx(t)

=
(µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

eαµ+ 1
2
α2σ2

= µ+ ασ2

= 1, 325.163 + (0.20 ∗ 6, 654.428)

= 2, 656.049
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7. Value at Risk
Let’s assume that X is distributed with lognormal with meanµ and variance σ2;
ie; LN(µ,σ2) and we also know the cumulative and inverse cumulative function
of Lognormal distribution as follows;

F [X] = Φ(
lnx− µ

σ
)

F−1[δ] = exp[µ+ σΦ−1(δ)]

By the definition of VaR, we obtained the VaR of Lognormal distribution is as
follows;

V aR0.95[X] = F−1[δ]

V aR0.95[X] = exp(µ+ σΦ−1(0.95))

where Φ denotes the standard normal cumulative distribution function. Hence,
VaR for Lognormal distribution is

V aR0.95[X] = eµ+σΦ−1(0.95)

= e7.1874+(0.0615∗1.645)

= e7.2886

= 1, 463.473

8. Conditional Value at Risk

CV aR0.95(X) = E[X|X > V aR0.95(X)]

=

∫∞
x0.95

xf(x)dx

1− 0.95

The denominator of above equation is∫ ∞
x0.95

xf(x)dx =

∫ ∞
x0.95

1√
2πσ

e−
(ln x−µ)2

2σ2 dx

By applying the transformation z = lnx−µ
σ
− σ and dx = σeµ+σ2+σzdz

= eµ+σ2

2 ∗
∫ ∞
z∗

1√
2πσ

e−
z2

2 dz

= eµ+σ2

2 [1− Φ(z∗)]

where Φ is the cumulative distribution function of standard normal distribution
and z∗ = lnx0.95−µ

σ
− σ = 7.2886−7.1874

0.0615
− 0.0615 = 1.5835. Hence, CVaR for
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Lognormal distribution is

CV aR0.95(X) =
eµ+σ2

2 [1− Φ(z∗)]

1− 0.95

=
e7.1874+

(0.0615)2

2 [1− Φ(1.5835)]

0.05

=
e7.1893[1− 0.9430]

0.05

=
1, 325.163 ∗ 0.057

0.05
= 1, 510.686

Secondly; the following calculations represent the risk premiums results of Ankara
based on methods of moments.

E[X] = eµ+ 1
2
σ2

= e7.0348+ 1
2

(0.0505)2

= 1, 136.917

V ar[X] = e2µ+σ2

(eσ
2 − 1)

= e7.0348+(0.0505)2

(e(0.0505)2 − 1)

= 3, 300.607

1. Net Risk Premium:

H(X) = E[X] = 1, 136.917

2. Expected Value Risk Premium:

H(X) = (1 + α)E[X] = (1 + 0.20) ∗ 1, 136.917 = 1, 364.3

3. Variance Risk Premium:

H(X) = E[X] + αV ar[X] = 1, 136.917 + (0.20 ∗ 3, 300.607) = 1, 797.038

4. Standard Deviation Risk Premium:

H(X) = E[X]+α
√
V ar[X] = 1, 136.917+(0.20∗

√
3, 300.607) = 1, 148.407

84



5. Exponential Risk Premium
We can write the Exponential Risk Premium as follow;

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

The moment Generating Function of Lognormal Distribuion is that

Mx(α) = eαµ+ 1
2
α2σ2

Then, Exponential Risk Premium is

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

=
1

α
ln(eαµ+ 1

2
α2σ2

)

=
1

α
(αµ+

1

2
α2σ2)

= µ+
1

2
ασ2

= 1, 136.917 +
1

2
∗ 0.20 ∗ 3, 300.607

= 1, 466.977

6. Esscher Risk Premium
We know that Esscher Risk Premium can be represented by using the first deriva-
tive of Cumulative Generating Function.

C(t) = lnMx(t)

Then, the first derivative of the Cumulative Generating function is the following
equation;

C ′(t) =
M ′

x(t)

Mx(t)
=
E[XetX ]

E[etX ]

The moment Generating Function and it’s first derivative of Lognormal Dis-
tribuion are that

Mx(α) = eαµ+ 1
2
α2σ2

M ′
x(α) = (µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

Then, Esscher Risk Premium is

H(X) =
E[XeαX ]

E[eαX ]

=
M ′

x(t)

Mx(t)

=
(µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

eαµ+ 1
2
α2σ2

= µ+ ασ2

= 1, 136.917 + (0.20 ∗ 3, 300.607)

= 1, 797.038
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7. Value at Risk
Let’s assume that X is distributed with lognormal with meanµ and variance σ2;
ie; LN(µ,σ2) and we also know the cumulative and inverse cumulative function
of Lognormal distribution as follows;

F [X] = Φ(
lnx− µ

σ
)

F−1[δ] = exp[µ+ σΦ−1(δ)]

By the definition of VaR, we obtained the VaR of Lognormal distribution is as
follows;

V aR0.95[X] = F−1[δ]

V aR0.95[X] = exp(µ+ σΦ−1(0.95))

where Φ denotes the standard normal cumulative distribution function. Hence,
VaR for Lognormal distribution is

V aR0.95[X] = eµ+σΦ−1(0.95)

= e7.0348+(0.0505∗1.645)

= e7.1179

= 1, 233.823

8. Conditional Value at Risk

CV aR0.95(X) = E[X|X > V aR0.95(X)]

=

∫∞
x0.95

xf(x)dx

1− 0.95

The denominator of above equation is∫ ∞
x0.95

xf(x)dx =

∫ ∞
x0.95

1√
2πσ

e−
(ln x−µ)2

2σ2 dx

By applying the transformation z = lnx−µ
σ
− σ and dx = σeµ+σ2+σzdz

= eµ+σ2

2 ∗
∫ ∞
z∗

1√
2πσ

e−
z2

2 dz

= eµ+σ2

2 [1− Φ(z∗)]

where Φ is the cumulative distribution function of standard normal distribution
and z∗ = lnx0.95−µ

σ
− σ = 7.1179−7.0348

0.0505
− 0.0505 = 1.5950. Hence, CVaR for
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Lognormal distribution is

CV aR0.95(X) =
eµ+σ2

2 [1− Φ(z∗)]

1− 0.95

=
e7.0348+

(0.0505)2

2 [1− Φ(1.5950)]

0.05

=
e7.0361[1− 0.9441]

0.05

=
1, 136.917 ∗ 0.0559

0.05
= 1, 271.073

C.2 Based on Methods of Maximum Likelihood Estimation

Parameter estimation results of maximum likelihood estimation give us the mean and
variance of the selected cities based on Lognormal distribution so that we can calculate
the risk premiums based on the their definitions.

The mean and the variance of Lognormal Distribution of Istanbul as follows;

E[X] = eµ+ 1
2
σ2

= e7.1082+ 1
2

(0.0314)2

= 1, 222.549

V ar[X] = e2µ+σ2

(eσ
2 − 1)

= e2∗7.1082+(0.0314)2

(e(0.0314)2 − 1)

= 1, 474.367

1. Net Risk Premium:
H(X) = E[X] = 1, 222.55

2. Expected Value Risk Premium:

H(X) = (1 + α)E[X] = (1 + 0.20) ∗ 1, 222.549 = 1, 467.059

3. Variance Risk Premium:

H(X) = E[X] + αV ar[X] = 1, 222.549 + (0.20 ∗ 1, 467.367) = 1, 517.421

4. Standard Deviation Risk Premium:

H(X) = E[X]+α
√
V ar[X] = 1, 222.549+(0.20∗

√
1, 467.367) = 1, 230.231
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5. Exponential Risk Premium
We can write the Exponential Risk Premium as follow;

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

The moment Generating Function of Lognormal Distribuion is that

Mx(α) = eαµ+ 1
2
α2σ2

Then, Exponential Risk Premium is

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

=
1

α
ln(eαµ+ 1

2
α2σ2

)

=
1

α
(αµ+

1

2
α2σ2)

= µ+
1

2
ασ2

= 1, 222.549 +
1

2
∗ 0.20 ∗ 1, 467.367

= 1, 369.987

6. Esscher Risk Premium We know that Esscher Risk Premium can be represented
by using the first derivative of Cumulative Generating Function.

C(t) = lnMx(t)

Then, the first derivative of the Cumulative Generating function is the following
equation;

C ′(t) =
M ′

x(t)

Mx(t)
=
E[XetX ]

E[etX ]

The moment Generating Function and it’s first derivative of Lognormal Dis-
tribuion are that

Mx(α) = eαµ+ 1
2
α2σ2

M ′
x(α) = (µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

Then, Esscher Risk Premium is

H(X) =
E[XeαX ]

E[eαX ]

=
M ′

x(t)

Mx(t)

=
(µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

eαµ+ 1
2
α2σ2

= µ+ ασ2

= 1, 222.549 + (0.20 ∗ 1, 467.367)

= 1, 517.421
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7. Value at Risk
Let’s assume that X is distributed with lognormal with meanµ and variance σ2;
ie; LN(µ,σ2) and we also know the cumulative and inverse cumulative function
of Lognormal distribution as follows;

F [X] = Φ(
lnx− µ

σ
)

F−1[δ] = exp[µ+ σΦ−1(δ)]

By the definition of VaR, we obtained the VaR of Lognormal distribution is as
follows;

V aR0.95[X] = F−1[δ]

V aR0.95[X] = exp(µ+ σΦ−1(0.95))

where Φ denotes the standard normal cumulative distribution function. Hence,
VaR for Lognormal distribution is

V aR0.95[X] = eµ+σΦ−1(0.95)

= e7.1082+(0.0314∗1.645)

= e7.1599

= 1, 286.722

8. Conditional Value at Risk

CV aR0.95(X) = E[X|X > V aR0.95(X)]

=

∫∞
x0.95

xf(x)dx

1− 0.95

The denominator of above equation is∫ ∞
x0.95

xf(x)dx =

∫ ∞
x0.95

1√
2πσ

e−
(ln x−µ)2

2σ2 dx

By applying the transformation z = lnx−µ
σ
− σ and dx = σeµ+σ2+σzdz

= eµ+σ2

2 ∗
∫ ∞
z∗

1√
2πσ

e−
z2

2 dz

= eµ+σ2

2 [1− Φ(z∗)]

where Φ is the cumulative distribution function of standard normal distribution
and z∗ = lnx0.95−µ

σ
− σ = 7.1599−7.1082

0.0314
− 0.0314 = 1.6136. Hence, CVaR for
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Lognormal distribution is

CV aR0.95(X) =
eµ+σ2

2 [1− Φ(z∗)]

1− 0.95

=
e7.1082+

(0.0314)2

2 [1− Φ(1.6136)]

0.05

=
e7.1087[1− 0.9465]

0.05

=
1, 222.549 ∗ 0.0535

0.05
= 1, 308.133

Secondly; the following calculations represent the risk premiums results of Ankara
based on methods of maximum likelihood estimation.

E[X] = eµ+ 1
2
σ2

= e6.9361+ 1
2

(0.0355)2

= 1, 029.403

V ar[X] = e2µ+σ2

(eσ
2 − 1)

= e2∗6.9361+(0.0355)2

(e(0.0355)2 − 1)

= 1, 336.280

1. Net Risk Premium:

H(X) = E[X] = 1, 029.403

2. Expected Value Risk Premium:

H(X) = (1 + α)E[X] = (1 + 0.20) ∗ 1, 029.403 = 1, 235.284

3. Variance Risk Premium:

H(X) = E[X] + αV ar[X] = 1, 029.403 + (0.20 ∗ 1, 336.280) = 1, 296.659

4. Standard Deviation Risk Premium:

H(X) = E[X]+α
√
V ar[X] = 1, 029.403+(0.20∗

√
1, 336.280) = 1, 036.714
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5. Exponential Risk Premium
We can write the Exponential Risk Premium as follow;

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

The moment Generating Function of Lognormal Distribuion is that

Mx(α) = eαµ+ 1
2
α2σ2

Then, Exponential Risk Premium is

H(X) =
1

α
lnE[eαx] =

1

α
lnMx(α)

=
1

α
ln(eαµ+ 1

2
α2σ2

)

=
1

α
(αµ+

1

2
α2σ2)

= µ+
1

2
ασ2

= 1, 029.403 +
1

2
∗ 0.20 ∗ 1, 336.280

= 1, 163.031

6. Esscher Risk Premium
We know that Esscher Risk Premium can be represented by using the first deriva-
tive of Cumulative Generating Function.

C(t) = lnMx(t)

Then, the first derivative of the Cumulative Generating function is the following
equation;

C ′(t) =
M ′

x(t)

Mx(t)
=
E[XetX ]

E[etX ]

The moment Generating Function and it’s first derivative of Lognormal Dis-
tribuion are that

Mx(α) = eαµ+ 1
2
α2σ2

M ′
x(α) = (µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

Then, Esscher Risk Premium is

H(X) =
E[XeαX ]

E[eαX ]

=
M ′

x(t)

Mx(t)

=
(µ+ ασ2) ∗ eαµ+ 1

2
α2σ2

eαµ+ 1
2
α2σ2

= µ+ ασ2

= 1, 029.403 + (0.20 ∗ 1, 336.280)

= 1, 296.659
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7. Value at Risk
Let’s assume that X is distributed with lognormal with meanµ and variance σ2;
ie; LN(µ,σ2) and we also know the cumulative and inverse cumulative function
of Lognormal distribution as follows;

F [X] = Φ(
lnx− µ

σ
)

F−1[δ] = exp[µ+ σΦ−1(δ)]

By the definition of VaR, we obtained the VaR of Lognormal distribution is as
follows;

V aR0.95[X] = F−1[δ]

V aR0.95[X] = exp(µ+ σΦ−1(0.95))

where Φ denotes the standard normal cumulative distribution function. Hence,
VaR for Lognormal distribution is

V aR0.95[X] = eµ+σΦ−1(0.95)

= e6.9361+(0.0355∗1.645)

= e6.9945

= 1, 090.616

8. Conditional Value at Risk

CV aR0.95(X) = E[X|X > V aR0.95(X)]

=

∫∞
x0.95

xf(x)dx

1− 0.95

The denominator of above equation is∫ ∞
x0.95

xf(x)dx =

∫ ∞
x0.95

1√
2πσ

e−
(ln x−µ)2

2σ2 dx

By applying the transformation z = lnx−µ
σ
− σ and dx = σeµ+σ2+σzdz

= eµ+σ2

2 ∗
∫ ∞
z∗

1√
2πσ

e−
z2

2 dz

= eµ+σ2

2 [1− Φ(z∗)]

where Φ is the cumulative distribution function of standard normal distribution
and z∗ = lnx0.95−µ

σ
− σ = 6.9945−6.9361

0.0355
− 0.0355 = 1.6095. Hence, CVaR for
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Lognormal distribution is

CV aR0.95(X) =
eµ+σ2

2 [1− Φ(z∗)]

1− 0.95

=
e6.9361+

(0.0355)2

2 [1− Φ(1.6095)]

0.05

=
e6.9367[1− 0.9463]

0.05

=
1, 029.368 ∗ 0.0537

0.05
= 1, 105.541
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