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ABSTRACT

VOLATILITY INDEXES AND AN IMPLEMENTATION OF THE TURKISH
BIST 30 INDEX

Karakurt, Caner
M.S., Department of Financial Mathematics
Supervisor : Prof. Dr. Ömür Uğur

June 2018, 104 pages

In 1993, by representing of CBOE Vix, global financial markets met volatility
indexes. In 2003, methodology of the CBOE Vix is updated and it took the
form which used today. Day after day, volatility indexes have attracted more
and more investors and financial institutions, and soon volatility indexes have
succeeded in becoming one of the most followed financial indicators. Follow-
ing these developments, many countries have introduced their implied volatility
indexes by using CBOE Vix methodology or its variations.

Although there are different academic studies and opinions about whether volatil-
ity indexes are consistent and successful in reflecting the markets volatility ex-
pectation or not. CBOE Vix and its derivatives are the most accepted indicators
about reflecting investors’ volatility expectation.

In this study, firstly development of the CBOE Vix and the methodology of this
index will be explained in detail. Then, other important volatility indexes, that
are created using this methodology will be mentioned. Lastly, an implementation
of this methodology to Turkish BIST 30 index will be made. The interest rates,
needed for calculation of this index will be obtained by Svensson method.
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ÖZ

DALGALANMA ENDEKSLERİ VE TÜRKİYE BIST 30 DALGALANMA
ENDEKSİ UYARLAMASI

Karakurt, Caner
Yüksek Lisans, Finansal Matematik Bölümü
Tez Yöneticisi : Prof. Dr. Ömür Uğur

Haziran 2018 , 104 sayfa

1993 yılında Chicago Opsiyon Borsası’nın CBOE Vix endeksini tanıtmasıyla kü-
resel piyasalar dalgalanma endeksi ile tanışmış oldu. 2003 yılında CBOE Vix’in
metodolojisi güncellendi ve hali hazırda kullanılmakta olan dalgalanma endeksi
oluşmuş oldu. Dalgalanma endeksleri gün geçtikçe daha çok yatırımcının ve fi-
nansal kuruluşun ilgisini çekmeye başladı ve çok geçmeden de en çok takip edilen
göstergeler arasına girmeyi başardı. Bu gelişmeleri takiben bir çok ülke, genel-
likle, CBOE Vix metodolojisini veya bu metodolojinin değişik varyasyonlarını
kullanarak kendi dalgalanma endekslerini piyasaya sundu.

Dalgalanma endekslerinin piyasanın dalgalanma beklentilerini yansıtma konu-
sunda ne kadar tutarlı ve başarılı olduğu ile alakalı akademik çalışmalar ve
değişik görüşler olmasına karşın, yatırımcıların beklenen risk algısını yansıtan
en kabul görmüş göstergeler CBOE Vix endeksi ve bu endeksin türevleridir.

Bu çalışmada öncelikle CBOE Vix’in gelişimi ve endeks metodolojisi detaylı ola-
rak anlatılacak, bu endeksten faydalanarak üretilmiş diğer büyük dalgalanma
endekslerine değinilecek ve son olarak da CBOE Vix metodolojisi kullanılarak
Türkiye BIST 30 dalgalanma endeksi uyarlaması yapılacaktır. Bu dalgalanma
endeksinin hesaplanması sırasında gerekli olan faiz oranları Nelson & Siegel mo-
delinin geliştirilmiş hali olan Svensson modeli ile elde edilecektir.
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Anahtar Kelimeler: Öngörülen dalgalanma endeksi, BIST 30 dalgalanma en-
deksi, XU030 dalgalanma endeksi, Türkiye piyasası dalgalanma endeksi, Svens-
son eğri tamamlama yöntemi
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CHAPTER 1

INTRODUCTION

Volatility is a statistical measure of the dispersion of returns for a given security.
Volatility is the most important criterion along with the return of a financial
instrument. Intrinsically, investors asking for more information about markets
volatility expectations to take turn their investments. There are basically two
ways to obtain the volatility of an instrument: Historical and implied volatilities.
Historical volatility is of course very important while examining the past price
movements of an asset and evaluating whether the asset is a safe haven or not,
but the real thing is to have an idea about the future volatility of the asset to
be invested. Implied volatility is here to find out the fluctuation of a product
in the market, based on the price of that asset or considering the price of a
contract written on that instrument. Remarkable studies of Christensen and
Prabhala (1998) [18] and Fleming (1998) [25], have shown that implied volatility
is superior to historical volatility in predicting realized future volatility. After
studies in academic circles, implementations on implied volatility indexes have
become more intense all over the world. We can think of index options as a
priori of volatility index. For this reason, it is needed to start with index of
options to talk about studies on volatility indexes. Most striking studies about
index of options are works of Gastineau (1977) [27], Galai (1979) [26], Cox and
Rubinstein (1985) [20], Brenner and Galai (1993) [13] and Whaley (1993) [48].
When we look at the earlier stages of the volatility indexes, the derivation of a
volatility index, and financial instruments based on that index, first appeared in
the studies of Menachem Brenner and Dan Galai in 1986 and described in two
academic papers [12, 13].
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There were effective instruments for hedging versus general changes in depth
market directions, yet there were no efficient instruments for hedging against
changes in volatility. For this reason Menachem Brenner and Dan Galai sug-
gested the construction of a volatility index which could be based on equity mar-
ket, bond market and foreign exchange market. In addition to that, with this
way volatility options and volatility futures would be produced on this volatility
index. Investors who need hedging instruments against volatility benefit from
these developments. Menachem and Brennar’s volatility index is called Sigma
index. They thought that, in calculation of Sigma index values, options and fu-
tures could be used. Besides historical data implied values could be integrated
into the calculation. In addition, this index would represent the same role as
the market index plays for options and futures on the index.

The huge fluctuations in volatility in course of recent years, particularly since
the October crash, have highlighted the requirement of instruments for hedging
fluctuations in volatility. Menachem Brennar and Dan Galai proposed the for-
mation of futures and options on a volatility index. Financial specialists could
set up long or short positions on volatility by exchanging volatility futures and
restrict or extend their volatility positions by utilizing volatility options [12].

As stated, there are two different methods to determine the expected volatility.
The first one is to use historical volatility, which consists of standard devia-
tion of historical data from a specific time period. The second one is implied
volatility. As indicated in the studies of Christensen and Prabhala (1998) [18]
and Fleming (1998) [25], implied volatility is superior to historical volatility
when forecasting the future volatility of an asset. Implied volatility can be ob-
tained by Black-Scholes (1973) [8] formula or in other ways. Implied volatility
first appeared in studies of Dupire (1994) [15], Neuberger (1994) [39] and Carr
and Madan (1998) [16]. Britten-Jones and Neuberger (2000) [14]’s study has
a crucial role in model-free implied volatility procedure. They studied under
the diffusion assumption, and this does not require an assumption of constant
volatility. Jiang and Tian (2005) [30] extended the model-free implied volatility
of Britten-Jones and Neuberger to asset price processes with jumps. And they
showed that model-free implied volatility is superior to Black-Scholes implied
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volatility regarding information content.

Meanwhile, Chicago Board Options Exchange (CBOE) retained consultant Robert
Whailey in 1992 to develop a tradable stock market volatility index based on
index option prices. Following that, in 1993, CBOE introduced the CBOE
Volatility Index (Vix), which was originally designed to measure the market’s
expectation of 30-day volatility implied by S&P 100 index (OEX) option prices.
The Vix soon became the premier benchmark for U.S. stock market volatility.
The Vix is the first and the most known implied volatility index. Vix is followed
closely throughout the world, not only in the U.S, it was regarded as the fear
index and it is the most important reference for the volatility of the financial
world, and regularly featured in the leading financial publications and business
news. Implied volatility indexes are assumed to be the most common and the
most reliable indicators for equity index performance in the financial world.

In 2003, the CBOE introduced a more detailed methodology, mostly benefited
from the study of Demeterfi et al. (1999a) [21]. It is also important to add,
as Jiang and Tian (2005) have shown that Demeterfi et al. (1999a)’s method-
ology is theoretically equivalent to the model-free implied volatility mentioned
in Britten-Jones and Neuberger (2000)’s paper. Working with Goldman Sachs,
the CBOE developed further computational methodologies, and changed the
underlying CBOE S&P 100 index (OEX) to the CBOE S&P 500 index (SPX).
While the first version of the Vix, that was introduced in 1993, was using Black-
Scholes implied volatility, the revised version of Vix uses model-free approach in
index calculation. Hibbert et al. (2008) [29] showed that in their study, new Vix
methodology gives better explanations than previous Vix methodology. First
version of the Vix was composed of only 8 at the money put and call OEX
options volatility, but the revised version of the Vix uses out of the money put
and call options over an extensive variety of strikes. In that respect, model-free
implied volatility is superior to Black-Scholes implied volatility too, in addition
to this with the new implied volatility index measure it is possible to increase
the number of volatility derivatives. With this new methodology, Vix was trans-
formed from a theoretical idea into a commonsense standard for trading and
hedging volatility.
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On the other hand, if we talk about volatility derivatives, Deutsche Börse was the
first exchange to list futures contract on implied volatility in 1998. After about
6 years, on March 2004, CBOE introduced the first exchange-traded Vix futures
contract on CBOE Futures Exchange (CFE). Two years later in February 2006,
CBOE launched Vix options contracts. Since the launch to the today average
daily trading volume of the Vix futures and Vix options reached to 800,000
contracts. In 2008, CBOE spearheaded the utilization of the Vix methodology
to appraise expected volatility of a number of goods and foreign currencies.
Like, The CBOE Crude Oil ETF Volatility index (OVX), CBOE Gold ETF
Volatility index (GVZ) and CBOE EuroCurrency ETF Volatility index (EVZ).
In 2014, CBOE upgraded the Vix index to incorporate series of SPX Weeklys.
The consideration of SPX Weeklys permits the Vix index to be calculated with
S&P 500 index option series that most decisively match the 30-day target time
span for expected volatility that the Vix index is planned to represent [23]. The
successful methodology of Vix has been used to create implied volatility indexes
of many countries.

In this thesis, we intend to express volatility indexes and the formulas that are
used in index calculations. The aim of this study is to understand all aspects
of Vix and other volatility indexes, and in the light of these informations and
methods, to design and construct a volatility index for the Turkish BIST 30
index. According to the recent studies there is no volatility index designed
for Turkish equity indexes. And also recent financial news stated that, the
Central Bank of the Republic of Turkey is going to use Vix as base for decision
of interest rate hike. These news point out that Vix and other mostly used
volatility indexes are going to have significant impacts on Turkey’s economy
in the future. Following these developments, Turkish market needs to have a
volatility index that can be used as a benchmark for the equity markets status.
In Chapter 5, we try to present an implementation of volatility index to the
Turkish BIST 30 index. This works biggest aim is to design and construct a
model that can be use as a volatility index for Turkish BIST 30 index.
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CHAPTER 2

THE FIRST VOLATILITY INDEX : CBOE VIX

In this chapter, CBOE Vix and also history and calculation of this index will
be discussed in detail. Vix is the most essential volatility index in the world
financial market. It is the first index about volatility and also it is the most
used volatility index for years. Not only in the United States of America but
also other giants of the financial world take Vix as a reference for volatility.
Now, after a short introduction, we can describe CBOE Vix deeply.

2.1 Derivation of the Formula

Firstly, we assume that stock price satisfies:

dS

S
= (r − q)dt+ σdz (2.1)

here, r is the risk free interest rate, q is the continuous dividend yield, σ is the
volatility, and z is the driftless Brownian motion. By Itô’s lemma we have:

d ln(S) =
(
r − q − σ2

2

)
dt+ σdz (2.2)

By Eq. 2.1 and Eq. 2.2 we get:

dS

S
− d ln(S) = σ2

2 dt (2.3)

Hence, we integrate the last equation from time 0 to time T ,

T∫
0

σ2

2 dt =
T∫

0

dS

S
−

T∫
0

d ln(S)
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1
2 · σ

2T =
T∫

0

dS

S
− (lnST − lnS0) =

T∫
0

dS

S
− ln ST

S0

When we simplify the expression and write V instead of σ2, we get:

V = 2
T

T∫
0

dS

S
−
( 2
T

)
· ln

(
ST
S0

)
(2.4)

The expectation E
[ ∫ dS

S

]
under risk neutral probability measure, E, is :

E
[ T∫

0

dS

S

]
= E

[ T∫
0

(r − q)dt
]

+ E
[ T∫

0

σdz
]

= (r − q) · T

When we take the expectation E[V ] under risk neutral probability measure E,
keeping in mind the above fact, we get:

E[V ] = 2
T
· E
[ T∫

0

(
dS

S

)]
− 2
T
· E
[

ln
(
ST
S0

)]
= 2
T
· (r − q) · T − 2

T
· E
[

ln
(
ST
S0

)]

E[V ] = 2(r − q)− 2
T
· E
[

ln
(
ST
S0

)]
(2.5)

We know that ST = S0 · exp(X), where X =
(
r − q − σ2

2

)
T + σ · z(T ) is a

Gaussian random variable with,

E[X] =
(
r − q − σ2

2

)
T and V ar[X] = σ2T.

Therefore,

E[ST ] = S0 · exp
E[X] + V ar[X]

2

 = S0 · e(r−q)T ,

and hence,

E[V ] = 2
T

 ln
(
F0

S0

)
− E

[
ln
(
ST
S0

)] where F0 = E[ST ] (2.6)

On the other hand we need to look at the values of
St∫
0

1
K2 ·max(K − ST , 0)dK

and
∞∫
St

1
K2 ·max(ST −K, 0)dK in different situations.
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We begin with
St∫
0

1
K2 ·max(K − ST , 0)dK where St is any value of S. Here we

need to consider 2 cases:

1) If St 6 ST then,
St∫
0

1
K2 ·max(K − ST , 0)dK = 0.

2) If St > ST then,
St∫
0

1
K2 ·max(K − ST , 0)dK =

St∫
ST

1
K2 (K − ST )dK = ln

(
St
ST

)
+ ST
St
− 1.

Next, lets look at the values of
∞∫
St

1
K2 ·max(ST −K, 0)dK where St is any value

of S. Again, it is needed to be investigated in 2 cases:

1) If St > ST then,
∞∫
St

1
K2 ·max(ST −K, 0)dK = 0.

2) If St < ST then,
∞∫
St

1
K2 ·max(ST −K, 0)dK =

ST∫
St

(ST −K)dK = ln
(
St
ST

)
+ ST
St
− 1.

Now, combining the two integrals, we have:
St∫
0

1
K2 max(K − ST , 0)dK +

∞∫
St

1
K2 max(ST −K, 0)dK = ln

(
St
ST

)
+ ST
St
− 1.

So, for all values of St we have:

ln
(
ST
St

)
= ST
St
−1−

St∫
0

1
K2 max(K−ST , 0)dK−

∞∫
St

1
K2 max(ST−K, 0)dK. (2.7)

We can take the expectation of the last equation under risk-neutral probability
measure to obtain:

E
[

ln
(
ST
St

)]
=E

[
ST
St
− 1

]
− E

[ St∫
0

1
K2 max(K − ST , 0)dK

]
−

E
[ ∞∫
St

1
K2 max(ST −K, 0)dK

]
.
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Here, E[max(K − ST , 0)] = erT · P (K) and E[max(ST − K, 0)] = erT · C(K).
Where P (K) and C(K) are the prices of the put and call options with strike
price K, r is the risk-free interest rate and Q is the risk neutral probability
measure respectively. Besides, R(m) denotes the yield to maturity on a treasury
bill that will mature in m days:

R(m) = 1
m

∫
r(x)dx

or equivalently
r(m) = R(m) +m ·R′(m)

Therefore,

E
[

ln
(
ST
St

)]
= F0

St
− 1−

St∫
0

1
K2 e

RTP (K)dK −
∞∫
St

1
K2 e

RTC(K)dK. (2.8)

On the other hand,

E
[

ln
(
ST
S0

)]
= E

[
ln
(
ST
St

)]
+ E

[
ln
(
St
S0

)]
= ln

(
St
S0

)
+ E

[
ln
(
ST
St

)]
. (2.9)

In writing Eq. 2.9 we take advantage of the fact that,

ln
(
ST
S0

)
= ln(ST )−ln(S0) = ln(ST )−ln(St)+ln(St)−ln(S0) = ln

(
ST
St

)
+ln

(
St
S0

)
.

By combining Eq. 2.6, Eq. 2.8 and Eq. 2.9, we obtain Eq. 2.10, which gives us
the expected value of variance from time 0 to T .

E[V ] = 2
T

ln
(
F0

St

)
− 2
T

(
F0

St
− 1

)

+ 2
T

 St∫
0

1
K2 e

RTP (K)dK +
∞∫
St

1
K2 e

RTC(K)dK
 (2.10)

Now, lets assume that, for 1 6 i 6 n, Ki’s are the increasing sequence of options’
strike prices; besides, lets fix St as the first strike price below F0 = E[ST ]. We
define Q(Ki) as follows:

(i) If Ki is smaller than St then Q(Ki) is the price of the put option with
strike price Ki.

(ii) If Ki is greater than St then Q(Ki) is the price of the call option with
strike price Ki
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(iii) If Ki equals to St then Q(Ki) is the average of the prices of the call and
put options with strike price Ki.

From this definition we can write:
St∫
0

1
K2 e

RTP (K)dK +
∞∫
St

1
K2 e

RTC(K)dK =
n∑
i=1

∆Ki

Ki
2 e

rTQ(Ki) (2.11)

Where, ∆Ki = Ki+1 −Ki−1

2 for 2 6 i 6 n− 1, but for upper and lower bound-
aries of the sequence of the strike prices ∆K1 = K2−K1 and ∆Kn = Kn−Kn−1.
When we put the right hand side of Eq. 2.11 into Eq. 2.10 we get:

E[V ] = 2
T

ln
(
F0

St

)
− 2
T

(
F0

St
− 1

)
+ 2
T

n∑
i=1

∆Ki

Ki
2 e

rTQ(Ki) (2.12)

It is common to use the Taylor Series approximation of ln
(
F0

St

)
in Eq. 2.12

ln
(
F0

St

)
=
(
F0

St
− 1

)
− 1

2

(
F0

St
− 1

)2
+ 1

3

(
F0

St
− 1

)3
− . . . and

ln
(
F0

St

)
≈
(
F0

St
− 1

)
− 1

2

(
F0

St
− 1

)2

Herewith the Eq. 2.7 turns into:

E[V ] = − 1
T

(
F0

St
− 1

)2
+ 2
T

n∑
i=1

∆Ki

Ki
2 e

rTQ(Ki) (2.13)

Lastly, we need to change St with K0, the greatest strike price below the forward
index level F0. Besides that, in the place of E[V ] σ2 can be rewritten. Hereby
the formula reached its final approximate form:

σ2 = − 1
T

(
F0

K0
− 1

)2
+ 2
T

n∑
i=1

∆Ki

Ki
2 e

RTQ(Ki) (2.14)

2.2 Chicago Board Options Exchange Volatility Index

Vix is an index of volatility. It is the first index that is used for measuring
volatility expectation of the market. When it was introduced in 1993 there were
two objects in mind. It would be:

(1) the main criterion for estimating market’s short term volatility.

9



(2) the base index that is used for creating derivative products on volatility.

The original Vix was based on the S&P 100 index (OEX) option prices, the
reason was simple: at that time OEX index options were the most popular
index options in the United States. Besides, Vix calculation was based on only
at-the-money put and call options, because these options had less bid-ask spreads
and these options trading volume was higher. Since its appearance in the world
financial markets there have beens two significant changes in the patern of Vix:

(1) The SPX option market’s trading volume got ahead and it became the
most active index option market in the United States. Besides, S&P 500
option contracts are European-style, that makes them easier to value, but
OEX options are American-style and these are harder to price.

(2) Trading processes of market contributors in index option markets changed
over time. In the mid 1990s, both index calls and index puts had similar
vital parts in speculators’ trading lines. Trading volumes were adjusted in
1992, OEX calls and OEX puts had almost the same average daily trading
volumes. Over the following years, the index option market dominated by
portfolio insurers, who routinely buy out-of-the money and at-the-money
index puts for protection purposes. Nearly all 2008 long, the daily average
trading volume of SPX puts surpassed SPX calls. The request to buy out-
of-the money and at-the-money SPX puts is indeed a key factor in implied
volatility measures like Vix.

In September 2003, the Vix calculation was changed to represent both of these
significant changes in the index option market structure.

– First, they began to use SPX rather than OEX option prices.

– Second, they started to incorporate out-of-the-money options in the index
computation since out-of-the-money put prices, specifically, contain critical
data with respect to the requests for portfolio insurance and consequently
market volatility. Counting additional option series likewise makes the Vix
less delicate to any single option price [49].
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2.3 The Vix Calculation

In addition to the changes above in CBOE Vix, CBOE enhanced the Vix index
to include series of SPX Weeklys in 2014.

In 2005, 32 years in the wake of presenting the call option, The CBOE began
an experimental program with weeklys. They act like monthly options in every
way alike, apart from the fact that they exist for eight days. They are presented
every Thursday and they terminate eight days after; Fridays (with modifications
for occasions). Speculators who have generally delighted in 12 monthly end
times –the third Friday of every month– now can appreciate 52 lapses for each
year. The consideration of SPX Weeklys permits the Vix index to be calculated
with the S&P 500 index option series that most unequivocally match the 30-day
target timeframe for expected volatility that the Vix index is proposed to reflect.
Using SPX options with more than 23 days and less than 37 days to expiration
guarantees that the Vix index will dependably mirror an interpolation of two
focuses along the S&P 500 volatility term structure [23].

2.3.1 Generalized Vix Formula

Stock indexes, for example, the S&P 500, are figured using the prices of their
stocks. Each index utilizes the choice of component securities and a formula to
ascertain index values. The Vix index is an index comprised of options instead
of stocks and the price of every option representing the market’s view of future
volatility. Like classic indexes, Vix has a formula. The generalized formula used
in the Vix calculation is:

Vix = 100 ·

√√√√√
T1 · σ2

1 ·
NT2 −N30

NT2 −NT1

+ T2 · σ2
2 ·

N30 −NT1

NT2 −NT1

 · N365

N30
(2.15)

where,

σ2
j = 2

Tj
·
∑
i

∆Ki

K2
i

· eRj ·Tj ·Q(Ki)−
1
Tj
·

 Fj
K0
− 1

2

(2.16)

σj: Volatility of near term and next term options for j = 1, j = 2 respec-
tively 1
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T1 and T2: Time to expiration of near term and next term options respec-
tively 1

F1 and F2: Desired forward index levels of near term and next term options
respectively 1

K0: First strike price below the forward index level

Ki: Strike price of the ith out-of-the-money option, a call if Ki > K0; and
a put if Ki < K0; both put and call if Ki = K0

∆Ki: Interval between strike prices - half the difference between the strike
on either side of Ki

∆Ki = Ki+1−Ki−1
2

2

where,

r1 and r2 are risk-free interest rates related to near-term and next-term
options series respectively

Q(Ki): The mid-point of the bid-ask spread for each option with strike
Ki, as mentioned before

NT1 : Number of minutes to settlement of the near term options

NT2 : Number of minutes to settlement of the next term options

N30: Number of minutes in a 30 days (43200)

N365: Number of minutes in a 365-day year (525600)

2.3.2 Components of the Formula

Measuring T : The components of the Vix calculation are near and next term
put and call options with over 23 days and under 37 days to lapse. These incorpo-
rate SPX options with “standard”3rd Friday expiration dates and “weekly”SPX

1 Computations of these components are explained by an example in Section 2.5
2 ∆K for the lowest strike is simply the difference between the lowest strike and the next higher

strike. Likewise, ∆K for the highest strike is the difference between the highest strike and the next
lower strike
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options that terminate every Friday, except the 3rd Friday of every month. Ev-
ery week, SPX options that will be used in the Vix calculation are evaluated
again with regard to new contract maturities.

The Vix calculation measures time to expiration T in date-book days and par-
titions every day into minutes with a specific end goal to imitate the accuracy
that is normally utilized by option traders and volatility merchants. The time
to expiration is given by the following expression:

T = MCurrent Day +MSettlement Day +MOther Days

Minutes in a year ,

where,

– MCurrent Day : Minutes remaining until midnight of the current day,

– MSettlement Day : Minutes from midnight until 8:30 a.m. for “standard”SPX
expirations; or minutes from midnight until 3:00 p.m. for “weekly”SPX
expirations,

– MOther Days : Total minutes in the days between current day and expiration
day.

Remark 2.1. Calculation of the T discussed above is based on CBOE Vix method-
ology. Currently used volatility indexes may vary with T ’s measurement unit.
Most of the indexes use CBOE Vix as base and measure T in minutes but some
of them, for instance, German VDAX-NEW and Swiss VSMI measures T in
seconds. This is because of to create more consistent volatility index. Alterna-
tive decisions can be made while measuring T by organisers or developers of the
related volatility index.

Determining the risk-free rate: The risk-free rate of interest, r1 and r2 are
the bond-equivalent yields of the U.S. Treasury-Bill maturing nearest to the
expiration dates of pertinent SPX options.

Selecting the options to be used in the Vix calculation: The chosen
options are out-of-the money SPX puts revolved around an at-the-money strike
value K0. Just SPX options cited with non-zero bid prices are utilized as a part
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of the Vix calculation. As volatility rises and falls, the strike value scope of
options with non-zero bids have a tendency to grow to contract. Subsequently,
the quantity of options used in the Vix calculation may fluctuate from month-
to-month, day-to-day, and perhaps even moment-to-moment.

Calculating the forward index level F : For each agreement month, decide
forward SPX level F by recognizing the strike price at which the total distinction
between the call and put prices is littlest [23].

2.4 Relation Between CBOE Vix and S&P 500 Index

The Vix has been named the investor fear gauge among financial profession-
als. High Vix values imply, investors consider remarkable risk that the market
will act stingingly, whether downward or upward. The top values of Vix happen
when investors expect big moves in both up and down directions are likely. When
investors foresee neither noteworthy down directionally risk nor respectable up-
ward potential will the Vix be low. When we look at the historical daily and
weekly closing data of S&P 500 index and CBOE Vix between 01.01.2005 and
01.01.2017, it can be implied from the data easily that, correlation of S&P 500
and Vix weekly opening values is −0.50343 and correlation of S&P 500 and Vix
daily closing values is −0.50824. These are significant values as a correlation
of the two time series. Movements of S&P500 index and Vix in the mentioned
time frame can be seen in Table 2.1 and Table 2.2.

Table 2.1: Number of up and down movements of S&P500 Index and CBOE
Vix based on daily closing prices between 01.01.2005 and 01.01.2017

S&P500 Index Vix
UP 1640 1392

DOWN 1379 1612
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Table 2.2: Number of up and down movements of S&P500 Index and CBOE
Vix based on weekly opening prices between 01.01.2005 and 01.01.2017

S&P 500 Index Vix
UP 349 304

DOWN 276 320

Table 2.3: Number and percentage of opposite movements of S&P 500 Index and
CBOE Vix based on daily closing prices between 01.01.2005 and 01.01.2017.

S&P500 Index UP and Vix DOWN Percent of Opposite Movements
1342 81.83%

S&P500 Index DOWN and Vix UP Percent of Opposite Movements
1100 79.77%

Table 2.4: Number and percentage of opposite movements of S&P 500 Index and
CBOE Vix based on weekly opening prices between 01.01.2005 and 01.01.2017.

S&P 500 Index UP and Vix DOWN Percent of Opposite Movements
260 74.50%

S&P 500 Index DOWN and Vix UP Percent of Opposite Movements
216 78.26%
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When we observe daily and weekly closing prices in the same data, it is obvious
from Table 2.3 and Table 2.4 that CBOE Vix reacts considerably opposite to
the S&P 500 index. It can be seen from the Table 2.3, percentage of opposite
movements reaches its maximum value of 81.83% when S&P 500 index moves
upward. However the most notable thing is that, percentage of movements
when S&P 500 falls and Vix rises is 79.77%. This explains why the CBOE Vix
is named as the investor fear gauge; and it clarifies why financial professionals
look closely to the movements of Vix. All the things mentioned here can be seen
on, Figure 2.1 and Figure 2.2. Figure 2.1 is based on 3021 daily closing datas in
the time period of January 2005 and January 2017, and Figure 2.2 is based on
626 weekly opening datas on the same time period.

Despite all, it can not be said, S&P 500 index and Vix moves one for one with
opposite directions. Correlation of S&P 500 and Vix is really strong but it is
not enough to say, these indexes move perfectly in the opposite directons. For a
reasonable number of instances, the S&P 500 index and Vix move in the same
direction. Table 2.5 and Table 2.6 point out these indexes isotropic movements
in the same time frame.

Table 2.5: Number and percentage of isotropic movements of S&P 500 (SPX)
index and Vix based on daily closing values in the time interval of January 2005
and January 2017

SPX up and Vix up SPX up and Vix up / SPX up Percentage of same direction
292 17.80%

18.58%SPX down and Vix down SPX down and Vix down / SPX down
269 19.51%

Table 2.6: Number and percentage of isotropic movements of S&P 500 (SPX)
index and Vix based on weekly opening prices in the time interval of January
2005 and January 2017

SPX up and Vix up SPX up and Vix up / SPX up Percentage of same direction
75 21.49%

21.28%SPX down and Vix down SPX down and Vix down / SPX down
58 21.01%
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Figure 2.1: Daily closing values of S&P 500 (SPX) and Vix between January
2005 and January 2017

2.5 An Example Of Vix Calculation

The example in this section is taken from the CBOE Volatility Index-VIX White
Paper, 2009 [23]. The reason of giving coverage to an example that is taken
from White Paper is simple: data we utilize in this example is realistic and
it is a possible scenario; and also White Paper is the Chicago Board Options
Exchange’s official information leaflet.

To begin with, near-term and next-term options need to be determined. In this
hypothetical example, let us assume that near-term options are standard SPX
options with 25 days and long-term options are SPX weeklys with 32 days to
maturity; all calculations will represent prices observed at 9:46 a.m. Chicago
time. For the sake of calculation of time to maturity, standard SPX options are
assumed to expire the third Friday of the month, and SPX Weeklys are assumed
to expire at the close of buying and selling sessions.
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Figure 2.2: Weekly opening prices of S&P 500 (SPX) index and Vix between
January 2005 and January 2017

Using 9:46 a.m. as the time of the calculation, T for the near-term and next-term
options, respectively T1 and T2 are:

T1 = 854 + 510 + 34560
525600 = 0.0683486,

where,

854 : Minutes from 9:46 a.m. to 12:00 p.m.

510 : Minutes from 12:00 p.m. to 8:30 a.m.

34560 : 24 days in minutes

525600 : 1 year in minutes

and

T2 = 854 + 900 + 44640
525600 = 0.0882686
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Here,

854 : Minutes from 9:46 a.m. to 12:00 p.m.

900 : Minutes from 12:00 p.m. to 3:00 p.m.

44640 : 31 days in minutes

525600 : 1 year in minutes.

Next, the risk-free interest rates those will be used in the Vix calculation, r1

and r2, need to be determined. At this step we will use yields of the U.S.
Treasury-Bill expiring closest to the maturity date of relevant SPX options, and
r1 = 0.0305%, r2 = 0.0286% on that day.

As the third step of the Vix calculation, we need to find desired forward SPX
level F by observing the options trading on the market at the time of calculation.
As seen from Table 2.7, difference between the call and put prices is the smallest
at the 1965 strike for the near-term options, and at the 1960 strike for the
next-term options.

Table 2.7: A part of Near and Next-term call and put options prices listed on
the market at 9.46 a.m.

Near-term Options Next-term Options
Strike Price Call Put Difference Call Put Difference

. . . . . . .
1940 38.45 15.25 23.20 41.05 18.80 22.25
1945 34.70 16.55 18.15 37.45 20.20 17.25
1950 31.10 18.25 12.85 34.05 21.60 12.45
1955 27.60 19.75 7.85 30.60 23.20 7.40
1960 24.25 21.30 2.95 27.30 24.90 2.40
1965 21.05 23.15 2.10 24.15 26.90 2.75
1970 18.10 25.05 6.95 21.10 28.95 7.85
1975 15.25 27.30 12.05 18.30 31.05 12.75
1980 12.75 29.75 17.00 15.70 33.50 17.80

And after chosing strike prices for near-term and next-term options, forward
index prices, F1 and F2 can be calculated, where

F1 : Forward SPX level obtained from near-term options, and
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F2 : Forward SPX level obtained from next-term options.

F1 and F2 are calculated according to:

F : Strike Price+ er·T · (Call Price− Put Price) (2.17)

F1 = 1965 + e0.0003·0.0683486 · (21.05− 23.15) = 1962.89996, and

F2 = 1960 + e0.00028·0.0882686 · (27.30− 24.90) = 1962.40006.

Also,

K0,1 : Strike price for near-term options.

K0,2 : Strike price for next-term options.

Hereby, strike prices for near-term and next-term calculations, K0,1 and K0,2

come to hand. K0,1 and K0,2 are values, instantly below the forward index levels
for near-term and next-term estimations, respectively for the second index 1
and 2. At this stage, K0,1 and K0,2 are both 1960. This value will be used in
near-term and next-term Vix calculation as strike price. After specifying strike
prices, now, out-of-the-money put and out-of-the-money call options can be
determined. Out-of-the-money put options will be selected from options those
have strike prices less than K0,1 and K0,2 for near-term and next-term volatility
estimations respectively. Similarly out-of-the-money call options will be chosen
from options which have strike prices greater than K0,1 and K0,2 for near-term
and next-term volatility calculations respectively. At the stage of selecting near-
term and next-term options, a put option that has a bid price equal to zero will
be excluded. And also if two puts with sequential strike prices are found to
have zero bid prices, no puts with lower strike than this level are regarded
for inclusion. As with the puts, once two successive call options are found to
have zero bid prices, no call option with strike prices are marked. The process
mentioned can be understood with Table 2.8 and Table 2.9. These operations
will be repeated for next term options and lastly both the put and call options
with strike price K0,1 from among near-term options, once more put and call
options with strike price K0,2 out of next-term options will be selected.
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Table 2.8: Near term out-of-the-money put options

Put Strike Bid Ask Include?
1345 0 0.15 Not Considered (Following two zero bids)
1350 0.05 0.15 Not Considered (Following two zero bids)
1355 0.05 0.35 Not Considered (Following two zero bids)
1360 0 0.35 No
1365 0 0.35 No
1370 0.05 0.35 Yes
1375 0.1 0.15 Yes
1380 0.1 0.2 Yes

Table 2.9: Near term out-of-the-money call options

Call Strike Bid Ask Include?
2095 0.05 0.35 Yes
2100 0.05 0.15 Yes
2120 0 0.15 No
2125 0.05 0.15 Yes
2150 0 0.1 No
2175 0 0.05 No
2200 0 0.05 Not Considered (Following two zero bids)
2225 0.05 0.1 Not Considered (Following two zero bids)
2250 0 0.05 Not Considered (Following two zero bids)

Table 2.10: Near term and next term options with quote prices

Near term Strike Option Type Quote Price Next term Strike Option Type Quote Price
1370 Put 0.2 1275 Put 0.075
1375 Put 0.125 1325 Put 0.15
1380 Put 0.15 1350 Put 0.15
. . . . . .

1950 Put 18.25 1950 Put 21.60
1955 Put 19.75 1955 Put 23.20
1960 Put/Call 22.775 1960 Put/Call 26.10
1965 Call 21.05 1965 Call 24.15
1970 Call 18.1 1970 Call 21.10
. . . . . .

2095 Call 0.2 2125 Call 0.1
2100 Call 0.1 2150 Call 0.1
2125 Call 0.1 2200 Call 0.08
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In Table 2.10, both a put and a call option are selected at strike price K0,1 and
K0,2, while one option, either a put or a call, is utilized at each other strike
price. It is also necessary to specify, in Table 2.10, quote prices of call and put
options with strike 1960 were founded by averaging quote prices of put and call
options with the same strike price, 1960. Now, we are ready to insert our values
into Eq. 2.2 in order to calculate near term and next term volatilities. So, we
get for near-term and next-term calculations, respectively:

σ1
2 = 2

T1
·
∑
i

∆Ki

K2
i

· er1·T1 ·Q(Ki)−
1
T1
·
[

F1

K0,1 − 1

]2
, (2.18)

σ2
2 = 2

T2
·
∑
i

∆Ki

K2
i

· er2·T2 ·Q(Ki)−
1
T2
·
[

F2

K0,2 − 1

]2
. (2.19)

In Table 2.11 and Table 2.12, each index option’s contribution to the Vix value
can be seen.

Table 2.11: Near term options and their contribution to the near term volatility

Near Term Strike Option Type Quote Price Contribution by Strike
1370 Put 0.2 0.0000005328
1375 Put 0.125 0.0000003306
1380 Put 0.15 0.0000003938
. . . .

1950 Put 18.25 0.0000239979
1955 Put 19.75 0.0000258376
1960 Put/Call 22.775 0.0000296432
1965 Call 21.05 0.0000272588
1970 Call 18.1 0.0000233198
. . . .

2095 Call 0.2 0.0000002278
2100 Call 0.1 0.0000003401
2125 Call 0.1 0.0000005536

2
T1
·∑i

∆Ki

K2
i
· eR1·T1 ·Q(Ki) 0.018495
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Table 2.12: Next term options and their contribution to the next term volatility

Next Term Strike Option Type Quote Price Contribution by Strike
1275 Put 0.075 0.0000023069
1325 Put 0.15 0.0000032041
1350 Put 0.15 0.0000020577
. . . .

1950 Put 21.6 0.0000284031
1955 Put 23.2 0.0000303512
1960 Put/Call 26.1 0.0000339711
1965 Call 24.15 0.0000312732
1970 Call 21.1 0.0000271851
. . . .

2125 Call 0.1 0.0000005536
2150 Call 0.1 0.0000008113
2200 Call 0.075 0.0000007748

2
T2
·∑i

∆Ki

K2
i
· eR2·T2 ·Q(Ki) 0.018838

The values that we need to know in Eq. 2.2 can be found handily:

1
T1
·
[
F

K0,1
− 1

]2
= 0.00003203

1
T2
·
[
F

K0,2
− 1

]2
= 0.00001699

Therefore, the volatilities are found to be σ1
2 = 0.01846292 and σ2

2 = 0.01882101.
As the last step, Vix value will be created via calculating the 30-day weighted
average of σ1

2 and σ2
2, then taking the square root of this value and multiplying

by 100, as in Eq. 2.1. So our Vix value is:

Vix = 100 ·
√[

0.0683486 · 0.01846292 · 46394− 43200
46394− 35924 + 0.0882686 · 0.01882101 · 43200− 35924

46394− 35924

]
· 525600

43200

Therefore, Vix = 13.69

To see the expected range of S&P 500 index movements we need to infer from
this value. To interpret the value, firstly we need to know how to use the Vix
value to calculate expected range of the S&P 500 index. Vix is calculated as
an annualized value and as it is known volatility is defined as the square root
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of the variance. Then monthly volatility level can be computed by dividing the
Vix value by

√
12, where 12 comes from the number of months in a year.

As continuation of the example above, lets interpret this example’s Vix value.
To begin with, let us assume that the actual S&P 500 (SPX) index value is 2000
when the Vix calculation is made. In that case,

Expected lower bound of SPX = 2000− 2000 · 13.69√
12
· 1

100 = 1920.9607

Expected upper bound of SPX = 2000 + 2000 · 13.69√
12
· 1

100 = 2079.0393 .

Table 2.13: S&P 500 index expected value intervals for different Vix levels

Vix Value Expected range of Up and Down
Movements of S&P 500 index

5 ∓1.44%
10 ∓2.89%
15 ∓4.33%
20 ∓5.77%
25 ∓7.22%
30 ∓8.66%
40 ∓11.55%
50 ∓14.43%
80 ∓23.09%

By the Vix, expected levels of S&P 500 index can be computed as it can be
seen in Table 2.13 for several values. Apart from that, different Vix levels mean
different things in the financial environments but there is not any classification
or study with respect to these levels of fear. Just we can say from the historical
data, Vix values are swinging from 10 to 20 mostly: see Table 2.14 for the
number of occurrences of Vix values historically.
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Table 2.14: Frequency of presence of Vix at different levels between January
2005 and January 2017 with daily closing values

Vix level Number of occurrence Percentage
0 < V ix 6 10 4 0.13%
10 < V ix 6 20 2024 67.02%
20 < V ix 6 30 697 23.08%
30 < V ix 6 40 156 5.17%
40 < V ix 6 50 83 2.75%
50 < V ix 6 80 54 1.79%
80 < V ix 6 90 2 0.07%

Exceptionally Vix level have came up to the level of 80s two times in history.
Those were November 20, 2008 and October 27, 2008, and also all-time high
intra-day Vix value was 89.53 on October 24, 2008. As it can be seen all this
values have seen in the time of Sub-prime Mortgage Crisis, which affected the
whole global economy deeply.
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CHAPTER 3

OTHER IMPORTANT VOLATILITY INDEXES

Globally, the enthusiasm in implied volatility indexes has been developed since
the Chicago Board Options Exchange (CBOE) in the USA presented the CBOE
Volatility Index (Vix) in 1993. As mentioned in Chapter 2, volatility index leads
the market in two different ways: reflecting the anticipation of the market about
volatility and being the underlying index for the volatility derivatives. Today, the
joint trading activity in Vix options and futures is more than 800, 000 contracts
per day and CBOE alone distributes 28 volatility indexes for equity indexes,
exchange traded funds (ETFs), interest rates, goods, currencies and so on [23].

Other countries, leading the world economy, have begun presenting volatility in-
dexes for their markets. Several remarkable ones are: VDAX-NEW of Deutsche
Börse, VSMI of SMI1, VCAC of Paris Bourse (also known as Euronext Paris
since September 2000), FTSE 100 Volatility Index of NYSE Euronext, VAEX of
Euronext Amsterdam and FTSE MIB IVI (Implied Volatility Index) of MIB2.
Apart from these, VSTOXX of EURO STOXX 50, parenthetically, the Dow
Jones Euro Stoxx 50 is an index constituted by the leader and most valuable
companies of the 11 countries of the Euro Zone. This index is created to track
how Euro zone stocks are sailing. Apart from some multinational companies,
those based in the United Kingdom are excluded from this index. The VDAX,
VSMI and VSTOXX are developed jointly by Goldman Sachs and Deutsche
Börse, but more importantly, all volatility indexes are founded on CBOE Vix-

1 SMI is the blue chip index that is made up of 20 largest and most liquid stocks of Switzerland
market

2 Milano Italia Borsa
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New methodology.

In this chapter, significant points of the above mentioned volatility indexes and
relation between these indexes and their adherent equity indexes will be dis-
cussed, and at the end of this chapter, interactions between indexes will be
mentioned with the help of studies in literature.

3.1 VDAX and VDAX-NEW of Deutsche Börse

In this section, firstly VDAX, the previous version of the VDAX-NEW, will be
mentioned and then structure of the VDAX-NEW will be discussed. In this part
of the thesis, we mostly benefit from the publication of Aboura and Villa (1999).

VDAX states volatility expectation of the next 30 days for the DAX3 with per-
centage value. Because of the DAX’s restricted structure, it does not reflect the
whole economy. The DAX volatility index has been computed since December
5, 1994. A sub-index is distributed for every DAX-Options’ maturity dates and
there are 8 sub-indexes with this structure. All indexes are computed interim
of 10 seconds. The idea of the volatility sub-indexes has been planned with a
specific goal to consider their usage as an underlying for derivative instruments.
The VDAX and its sub-indexes are calculated from 8:30 a.m. to 5:00 p.m.
Frankfurt time, on every trading day of Deutsche Terminbörse. The VDAX is
a linear interpolation of the two sub-indexes which are closest to the remaining
life of 45 days. It does not terminate nor it removes the effects of hard fluctu-
ations of volatility, which by and large happen close to expiration. The goal of
the VDAX is the development of a volatility index for a moving time interim
with a steady span. Four points in time are marked, t1, t2, t3, t4 and the two
lifetimes remaining, Tj = [t1, t2] and Tj+1 = [t1, t4] where t1 ⊂ t2 ⊂ t3 ⊂ t4. It
is assumed that t2 be the expiry date of maturity j and t4 be the expiry date
of maturity j + 1. t3 is the conceptual maturity date of the volatility index. In
this calculation, [t1, t2] interval is assumed as a stationary period and a lifetime

3 Deutscher Aktienindex or German Stock Index is blue chip stock market index composed of the
30 major German companies trading on the Frankfurt Stock Exchange
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remaining of T . The volatility for the T is:

VDAX =
√
Tj+1 − T
Tj+1 − Tj

· V 2
j + T − Tj

Tj+1 − Tj
· V 2

j+1 ,

where, Vj and Vj+1 are volatilities of two sub-indexes, chosen from the eight
maturities available for the purpose to encompass fixed lifetime T of the volatility
index [1].

The new volatility index of Deutsche Börse with its improved methodology is
VDAX-NEW. VDAX-NEW takes into account only at-the-money options. This
new index gives access to standard 30 days expected volatility of DAX. VDAX-
NEW is traded at the derivatives exchange EUREX4. Methodology of the VDAX
developed by Deutsche Börse together with Goldman Sachs. The computation
strategy of the index is particularly refined so as to permit better replication
for derivatives and organized products. In this way the VDAX-NEW sets up
volatility as a tradeable and separate asset for speculators. VDAX-NEW have 8
sub indexes for different expiries. These expiration dates are the next 1, 2 and
3 months, the following 1, 2 and 3 quarters. In addition, the coming 2 half year
periods are included.

3.2 VSTOXX of Euro STOXX 50

Euro Stoxx 50 index is market capitalization-weighted index of Europe and com-
posed of 50 companies from European Zone’s sector leaders. These companies
are from 11 Euro-zone countries: Austria, Belgium, Finland, France, Germany,
Spain, Ireland, Italy, Luxembourg, Netherlands and Portugal. As noticed Euro
Stoxx 50 index does not include any company centered in the United Kingdom.
In addition to this, these firms are reappraised annually in September. The
VSTOXX has been built up by Goldman Sachs and Deutsche Börse together.
VSTOXX uses index options available on the Dow Jones Euro STOXX 50 index.
VSTOXX is commonly viewed as Europe’s equivalent of the CBOE Vix. That’s
why, there are more investors in Europe track VSTOXX than in other volatility
indexes of Euro-zone. There are 12 main indexes of VSTOXX. These indexes

4 EUREX exchange is the largest European futures and options market located in Germany
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are calculated for next 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360
days and there are also 8 sub indexes of VSTOXX, counting the next 1, 2, 3,
6, 9, 12, 18, 24 month expirations of Euro STOXX 50 options. Sub-indexes are
calculated simultaneously. To get the main VSTOXX indexes, two nearby sub-
indexes are interpolated linearly. Options, which take VSTOXX as underlying
index, are traded on the EUREX and also, trading volume of these options are
highest between EUREX options.

3.3 VSMI OF Swiss Market

Switzerland has great importance with its location in the middle of the Euro-
pean continent, with its economy and industry. Switzerland is known all over
the world with its stable economy and banking sector. It is a non-European
Union country with very high echelon of welfare. These are sufficient reasons
for investor to look at movements of Swiss Market. VSMI, volatility index of
SMI, is released to the market on April 20, 2005, and from that day on, VSMI is
calculated every trading day, from 8:50 a.m. to 5:30 p.m. in every minutes. Fur-
thermore historical data of this index can be found from January, 1999. Apart
from the options, those are used to calculate the index, VSMI is not a different
instance of volatility index by its structure and calculation method. The reason
is clear, as it was mentioned in the beginning of this chapter, all of the volatility
indexes use the CBOE Vix methodology, moreover, VDAX-NEW, VSMI, VS-
TOXX, were also developed by the same institution. We interpreted the results
of Vix calculation before. The same procedure is valid for other volatility in-
dexes. Briefly, to find the expected upper and lower bound of the SMI; firstly,
expected amount of change needs to be calculated and this value can be found by
multiplying the actual SMI level by

√
30
365 and VSMI value. After the expected

change level is founded, the expected upper bound equals to the actual SMI
value plus the expected amount of change; likewise, the expected lower bound
equals to the actual SMI value minus the expected amount of change.
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3.4 VFTSE of United Kingdom

Euronext is a cross-boundary European stock exchange, created on September
22, 2000 with the merger agreement of Paris, Amsterdam and Brussels markets.
And these stock exchanges’ names are changed with Euronext Paris, Euronext
Amsterdam and Euronext Brussels after this integration. In 2002 Lisbon stock
exchange (BVLP5) participated this exchange group and renamed as Euronext
Lisbon. On April 4, 2007, Euronext completed their agreement made in May,
2006 with the NYSE Group, ended in the incorporation of NYSE Euronext.
FTSE 100 is the product of this group. NYSE Euronext released the FTSE
volatility index in June, 2008. Financial Times Stock Exchange 100 index is
composed of the largest 100 companies traded on the London Stock Exchange.
These companies have highest market capitalizations among other market par-
ticipants. According to the data of NYSE Group, these companies are repre-
senting approximately 81% of the UK market approximately. VFTSE6 reflects
the volatility expectation of market for the next 30 days. VFTSE uses equity
index options those traded in LIFFE7.

3.5 VCAC of Paris Bourse

MONEP8 is the subsidiary of Paris Bourse that trades stock and index options.
Following the introducing of CBOE Vix, on October 8, 1997 MONEP presented
two volatility indexes based on implied volatilities of near at the money CAC 40
index options: VX1 and VX6. While VX1 is the short-term volatility index, VX6
is the next-term volatility index [35]. The CAC 40 index is the main benchmark
of NYSE Euronext Paris. CAC 40 consists of 40 blue-chip French equities those
are the largest by market capitalization and liquidity. VCAC is the new volatility
index for French CAC 40 index. This index is computed since September 3, 2007.
The VCAC is calculated according to the CBOE Vix methodology with a few
changes. VCAC measures implied volatility in 30-day horizon continuously. In

5 Bolsa de Valores de Lisboa e Porto
6 FTSE 100 Volatility Index
7 London International Financial Futures and Options Exchange
8 Marché des Options Négociables de Paris
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the money options and options that satisfy the inequality

Ask Price−Bid Price
(Ask Price+Bid Price) >

1
4h

are excluded from the VCAC calculation.

When we talk about AEX; it is the capitalization-weighted blue chip index of the
Euronext Amsterdam, known as Amsterdam Stock Exchange previously. It is
one of the major indexes of NYSE Euronext Group. VAEX is the volatility index
on AEX index options. Besides, VCAC and VAEX have the same specifications.

3.6 MIB IVI of Borsa Italiana

The FTSE MIB is the benchmark equity index of Borsa Italiana, the National
Stock Exchange of Italy. This index was called MIB index until September 2004.
Until June 2009 this index was governed by Standard & Poor’s, and then, exe-
cution of the index passed to the FTSE Group. Since then, this index is called
as FTSE MIB. The index consists of the most liquid and capitalized 40 Italian
stocks, and holds 80% of the domestic market capitalization according to the
FTSE Russell’s May 2017 data. FTSE MIB IVI shows volatility expectation of
FTSE MIB index, and is calculated by prices of out-of-the-money put and call
options of the underlying FTSE MIB index. FTSE MIB IVI represents the mar-
ket volatility expectation of next 30, 60, 90 and 180 days. FTSE MIB IVI uses
the same methodology with VFTSE; evidently, these indexes are administered
by the same institution. Unlike the other volatility indexes we mentioned, these
indexes are calculated and distributed at the end of trading day. Daily clos-
ing prices of the equity indexes and volatility indexes we mentioned above are
observed in the time frame of January 2007 and January 2017, parenthetically
only CAC 40 and VCAC index daily closing values taken between July 01, 2010
and January 01, 2017 due to the lack of data prior to July 2010. In these time
periods the correlations of volatility indexes with their related equity indexes
were calculated, it can be seen in Table 3.1. Furthermore, combined plots of
these equity and volatility indexes can be seen in Figures 3.1 to 3.5.
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Table 3.1: Correlations of volatility and equity indexes

Equity and Volatility Indices Correlation Time Period
FTSE 100 , VFTSE -0.61492 January 2007 - January 2017

SMI , VSMI -0.46745 January 2007 - January 2017
DAX , VDAX-NEW -0.49799 January 2007 - January 2017

Euro Stoxx 50 , VSTOXX -0.47317 January 2007 - January 2017
CAC 40 , VCAC -0.47858 July 2010 - January 2017
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Figure 3.1: German blue chip index versus its new implied volatility index
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Figure 3.2: Euro STOXX 50 versus VSTOXX
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Figure 3.3: Swiss blue-chip index versus its implied volatility index
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Figure 3.4: FTSE versus VFTSE
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Figure 3.5: French blue-chip index versus its implied volatility index
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3.7 Volatility Spillovers Across Markets

Individual investors, institutional investors and researchers follow closely volatil-
ity indexes since the CBOE Vix was issued to the market. Not only the volatility
expectation of the market, relation between volatility indexes and its underlying
equity index, but also how each market affects other markets is a crucial issue
in financial decisioning and regulations. For that reason, financial professionals
need to know how a financial shock to a market affects another market. How-
ever there are a few studies on volatility transmissions across markets. Related
studies mostly focus on the answers to these questions:

– Which market leads other markets? In other words, which market is the
major supply of the implied information?

– How does a shock to an index affect the other indexes? What is the intense
and the direction of such an affect?

– What is the duration of the impact?

In the study of Eun and Shim (1989), time series of daily stock market returns
were interpreted via VaR analysis, and the U.S. stock market is found to be, by
far, the most influential market in the world. Additionally, against U.S. shocks,
all European and Asian-Pacific markets responded strongly with one day delay
and most of the responses were completed within two days [22]. In the study
of Hamao et al. (1990), it is clearly seen, the existence of price and volatility
change had effect on international stock markets. In their study, London, New
York and Tokyo markets were examined. Significant spillover effects of U.S. and
U.K. stock markets on Japanese market were discovered. At the same time,
spillover effects between these two markets were weak [28]. A parallel result was
founded in the study of Susmel and Engle (1994). They investigated the relation
between New York and London stock markets, and they observed that, there was
no strong evidence of volatility spillovers between these markets. In addition,
the most significant effects arise around New York stock market’s openings [44].
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In the paper of Wagner and Szimayer (2004), the behavior of the implied volatil-
ity indexes of United States and Germany was investigated: Vix and VDAX
particularly. They concentrated on jump risks of implied volatility indexes in
the time period of 1992 and 2002. Their findings showed that VDAX had almost
2 times of jump intensity as compared to the Vix. Moreover, jumps were mostly
country-specific. They also indicated that foreign exchange market movements
might have resulted volatility shocks [47].

Nikkinen and Sahlström (2004) studied the international equity market integra-
tion with respect to the uncertainty. This investigation was about the markets
of United States, United Kingdom, Germany and Finland. The results revealed
a high degree of integration among U.S., U.K. and German markets regarding
implied volatility. While U.S. stock market was the leading source of the implied
volatility; German market was the leading source for Europe. Uncertainty on
U.S. market was spread other markets [40].

Äijö (2008) investigated the term structure linkages between VDAX, VSMI and
VSTOXX and he found that, volatility term structures were highly correlated
and they were closely linked to each other. Furthermore, it can be seen from
this paper, variance of estimation of the implied volatility term structures of
SMI and STOXX could be explained as much as 35% and 65% respectively,
by the volatility term structure of the DAX, with the variance decomposition
analysis [2].

Badshah (2009) studied volatility-return relations and volatility transmissions
of Vix, VXN9, VDAX and VSTOXX. In this study, negative and asymmetric
return-volatility relationships were observed between each volatility index and
its related equity index in the period of February 2001 and June 2008. Signifi-
cant spillover effects were founded across volatility indexes. It is obvious from
the results, Vix affects VXN, VDAX and VSTOXX significantly. Also a shock
to the Vix had an effect on the other three volatility indexes for four to six
days. In Europe, VDAX is the major source of the information. In this study,
Granger causality, generalized impulse response function and variance decom-

9 CBOE NASDAQ 100 volatility index
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position were used to investigate the volatility transmissions. Author stated
that, Vix could explain VXN, VDAX and VSTOXX with average forecast error
variances of 58%, 31% and 29%, respectively. In addition, VDAX could explain
52% of the forecast error variance of VSTOXX [5]. In the recent paper of Naik
and Reddy (2016), they studied the dynamics of linkages between Vix, VDAX,
Indian IVIX, South Korean VKOSPI, and Chinese VXFXI. This study showed
that Vix was the most influential volatility index, and especially, had a great
influence on Indian IVIX. Besides, Indian and Asian volatility indexes had the
least interactions among these indexes. Consequently, Vix should have been
interpreted as early warning signal for overseas markets [37].

3.8 Comparisons of Volatility Indexes and Realized Volatility

Fleming (1998) studied quality of market volatility forecasts implied by S&P
100 index options. This study reflected that, both the S&P 100 call and put
options’ implied volatilities were biased estimations. The level of the bias did
not appear to be sufficiently large to signal the presence of abnormal trading
profits. But also, a linear model using just implied volatility seemed to convey a
good estimate of actual volatility. S&P 100 index implied volatility was efficient
in these situations; it could be used as a market sentiment index; it might have
been an alternative method for asset pricing model; and it might have been
useful in estimating stock market returns [25].

In the study of Christensen and Prabhala (1998), they tried to find the answer
to the question: Does the implied volatility obtained from S&P 100 index op-
tions predict the realized volatility or not? Unlike previous studies on implied
volatility and realized volatility comparison, they used lower sampling frequency
and non-overlapping data with longer time period. In this way they found that,
implied volatility predicted future realized volatility by itself in conjunction with
the history of past realized volatility [18].

Shu and Zang (2001) studied the relation of implied and realized volatility of
S&P 500 index. They investigated the stability of this relationship with different
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measurements. They have used four different estimators to compute realized
volatility, and two different models to compute the implied volatility. When both
the implied volatility and the historical volatility were used to forecast realized
volatility, they found out that the implied volatility surpassed the historical
volatility and this result was valid for all measurements. On the other hand, all
information covered in historical volatility was transmitted on implied volatility,
and also historical volatility had no forecasting ability [42].

In Christensen and Hansen (2002), they studied whether implied volatility from
OEX options could predict future realized volatility or no. They agreed with
Christensen and Prabhala (1998) in that: the implied volatility was an unbi-
ased and efficient forecast of future volatility; besides, it comprised information
content of historical volatility. While Christensen and Prabhala (1998) achieved
implied volatility from at the money options, they attained implied volatilities
from both at the money, and out of the money options. On the other hand,
they investigated implied volatilities derived from call and put options sepa-
rately. Results of this study indicated that implied volatilities obtained from
call options were better volatility forecasts than those from implied volatilities
of put options [17].

Li and Yang (2008), investigated the relationship between implied and realized
volatility of the Australian stock exchange on five years time series from 2001
to 2006. Australian stock exchange (S&P/ASX 200) index options were traded
tenuously and in low trading volumes with long maturity cycles. After solving
this problem through instrumental variable method, they observed that both put
and call implied volatilities were superior to the historical volatility in estimating
future realized volatility. And also implied volatilities achieved from call options
were a better indicator for future volatility forecasts. It should be also noted
that, they focused on the implied volatility from the Black-Scholes model [32].

In their study, Siriopoulos and Fassas (2008) showed that VFTSE contained
all information about future volatility those already included in historical re-
turns. In addition, they also showed that VFTSE and FTSE 100 index acted
significantly negative and asymmetric [43].
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Apart from these, in Figure 3.6 paths of realized volatility of S&P 500 and Vix
were depicted. We see a high correlation of 0.91193 in the time period February,
2005–January, 2017.
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Figure 3.6: Vix and realized volatility of S&P 500 index
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CHAPTER 4

YIELD CURVE MODELING

The term structure of interest rates is a characterization of interest rates as a
function of maturity, also known as spot rate curve or zero-coupon bond yield
curve. In other words, the term structure is a series of discount factors on the
same period. On the other hand, forward interest rates are interest rates on
loans and investments that begins at a future date, called settlement date, and
lasts to a date further into the future, called maturity date. In the absence of
forward rates, it needs to be derived from existing interest rates. For example,
suppose that the central bank of a country, where the investment is planned to
make, has only a certain number of bonds, say 1-year, 2-year, 3-year, 5-year,
and 10-year bonds. Assume that the investment is planned for 8 years in this
country and it is needed to know the 8-year bonds’ yield, but there is no bond
issued with maturity of 8 years. In such a scenario, the interest rate for the
8-year bond is needed to be calculated. And this is the process of finding a
curve or a function that fits best to the set of observed data.

Reliable information about term structure has great importance for investors,
financial professionals, and policy makers. Besides, most of the central banks
consider implied forward rates as a monetary policy indicator. In order to pro-
vide reliable information about term structure of interest rates, there have been
a lot of different techniques to estimate them.

It will be useful to make the following definitions as they will be used in later
sections:
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Discount function: Price of zero-coupon bond, with a face value of 1 unit
of money, as a function of maturity.

Spot yield curve: Spot rates, in other words, zero-coupon bond yields as a
function of maturity.

Forward yield curve: Zero-coupon bond forward yields, equivalently, for-
ward rates as a function of maturity.

In general, there are 2 types of curve fitting techniques mostly used to estimate
forward rates:

(1) Parametric / Regression methods

(2) Non-parametric methods / Interpolation

(1) Parametric/Regression Models: These methods are based on the least squares
approach in general. Here, we try to find the smooth curve that best fits the
data, but the curve does not need to pass through any data point. Nelson &
Siegel method and its expanded version by Svensson are two commonly used
parametric methods. The fitting curve can be an exponential, trigonometric or
any order polynomial function. For the sake of simplicity, we will mention about
linear and polynomial regressions briefly.

(1-a)Linear regression: In linear regression, we are trying to best fit a straight
line to the set of data (x1, y1), (x2, y2), . . . , (xn, yn). A Linear function is in the
form of

f(x) = a0 + a1x+ e,

here a0 is the intercept, the value of f(x) when x = 0, a1 is the slope and e is
the error term. Our goal is to pass the line of this function through the data
set with the least possible estimation error. The estimation error is calculated
as follows:

ei = yi,measured − yi,model = yi − (a0 + a1xi)
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Our goal is to minimize the error:

minimize
a0,a1

n∑
i=1

e2
i = minimize

a0,a1
ET (a0, a1) =

n∑
i=1

(yi − a0 − a1xi)2

To find a0 and a1, we need to take the derivatives of ET with respect to a0 and
a1 separately, and then by equating both expressions to zero in order to solve
for a0 and a1:

∂ET
∂a0

= −2
n∑
i=1

(yi − a0 − a1xi) = 0 (4.1)

∂ET
∂a1

= −2
n∑
i=1

(yi − a0 − a1xi)xi = 0 (4.2)

Below is the graph of the linear regression for the data set consisting of points
(1,1), (3,4), (5,6), (9,12), (16,19), (22,23), (35,39), (43,48), (56,62), (78,88),
(98,99) and (111,123).
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Figure 4.1: An illustration of Linear Regression
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(1-b)Polynomial regression: Linear regression is the first order polynomial re-
gression, now we will look at nth order polynomial regression in general. An
extension of linear regression fitting is nth order polynomial regression, and gen-
eral form of the nth order polynomial function is:

y = f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 + e

Degree of the polynomial can be 2, 3 or a higher value. If n = 2, polynomial is
called quadratic, if n = 3 cubic and if n = 4 quartic polynomial. Particularly, if
n = 1 it is coincides with the linear regression. These models reliability increases
significantly when they are built on large numbers of data. Polynomial regression
models can be represented in matrix notation as follows:



y1

y2

y3

.

.

.

ym



=



1 x1 x2
1 . . . xn1

1 x2 x2
2 . . . xn2

1 x3 x2
3 . . . xn3

. . . . . . .

. . . . . . .

. . . . . . .

1 xn x2
n . . . xnm





a0

a1

a2

.

.

.

an



+



e1

e2

e3

.

.

.

em



(4.3)

here m < n. The matrix on the left side of the equation is ~y, the n × m

dimensional matrix is X, the matrix composed of coefficients is ~a and the matrix
of the error terms is ~e. So, Eq. 4.3 can be rewritten as ~y = X~a+ ~e.We proceed,
as in the linear regression, to find the coefficients a0, a1, · · · , an by minimizing
the error term:

minimize
~a=(a0,··· ,an)

ET (~a) =
n∑
i=1

e2
i =

n∑
i=1

(yi − a0 − · · · − anxni )2

Thus, we need to solve
∂ET
∂ai

, i = 1, 2, · · · , n.

Regression results of different order polynomials can be observed in Figures 4.2
and 4.3.
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Figure 4.2: Change in fitting ability among 2nd and 3rd degree polynomials.
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Figure 4.3: Change in fitting ability among 4th and 5th degree polynomials.
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(2)Non-parametric methods / Interpolation: These types of curve fitting meth-
ods are used when a more precise fit is required. Interpolating function passes
all the data points, unlike regression methods in sight. We will look at different
interpolation functions shortly.

(2-a)Linear interpolation: The simplest type of interpolation is linear interpola-
tion. Linear interpolation means that all consecutive data points are linked to
each other pair by pair with straight lines. As we have already known, linear
interpolating function that crosses points of (x0, y0) and (x1, y1) is:

f(x) = y0 + y1 − y0

x1 − x0
· (x− x0).

Here we need to find all linear interpolating functions that link every consecutive
data points.

For instance, we can see the linear interpolated graph of points (1,30), (2,13),
(3,24), (4,50), (5,36), (6,29) can be observed in Figure 4.4. Such kind of inter-
polation when we have more than two data points is also called piece-wise linear
interpolation.
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Figure 4.4: An illustration of Linear Interpolation
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As it can be seen from the graph, if points are not close to each other, the graph
becomes jagged, and may not be a good approximation between the two consec-
utive data points. Linear interpolation is advantageous in terms of practicality
and provides efficient results for most situations.

(2-b)Quadratic interpolation: Quadratic interpolating function is created by
adding a second order derivative information curvature to linear interpolat-
ing function. Here, we assume three different data points (x0, y0), (x1, y1) and
(x2, y2) are given. We are going to interpolate these points with a second order
polynomial. Our second order interpolating function using Newton’s polynomi-
als is of the form:

g(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1).

Then,

g(x0) = y0 = a0, g(x1) = y1 = a0 + a1(x1 − x0) and a1 = y1 − y0

x1 − x0
.

Similarly,

g(x2) = y2 = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

and

a2 =

 y2 − y1

x2 − x1

−
 y1 − y0

x1 − x0


x2 − x0

.

Sum of the first and the second terms of the g(x) is linear interpolating part of
the function, and the third term of the function generates second order curvature.
You can see the result of Newton’s polynomial interpolation of the same data in
linear interpolation example in Figure 4.5.
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Figure 4.5: Newton’s polynomial interpolation

(2-c)Cubic and Cubic Spline interpolation: Cubic and cubic spline interpolation
techniques are commonly used interpolation methods due to their ability to rep-
resent data successfully. In these methods we utilize a third degree polynomial
function of the form:

h(x) = a3x
3 + a2x

2 + a1x+ a0.

The difference between cubic interpolation and cubic spline interpolation is that:
In cubic interpolation we need at least four data points to compute the poly-
nomial. By four data points we have three different interpolation intervals, and
cubic interpolation is here to connect them with third degree polynomials. On
the other hand, cubic spline interpolation can be thought as more aesthetic rep-
resentation of cubic interpolation. Spline interpolation is achieved by adding
the derivatives of the endpoints of each interval to the account. When the same
data set is used and interpolated by “Cubic polynomials and Splines”we obtain
more satisfactory results, in general, as depicted in Figure 4.6 and Figure 4.7,
respectively.
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Figure 4.6: Cubic interpolation
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Figure 4.7: Spline interpolation
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4.1 Earlier Studies on the Yield Curve Modelling

Development of yield curve fitting techniques started in the seventies with the
paper of McCulloch (1971) [34]. Study of Brennan and Schwartz (1979), which
was published a few years after McCulloch’s, was an important step. They
developed a term structure model that assumed the value of a default free bond
which might have been written as a function of instantaneous and long term
rates [11]. In the study of Cox, Ross, and Ingersoll (1985), they applied a rational
asset pricing model to examine the term structure of interest rates, and this
model also contained the main factors which were consistent with maximizing
behavior and rational expectations [19].

The objective of the study of Langetieg (1980) was to develop a term structure
model that was extensive enough to cover a large number of possible macroe-
conomic relationships. This model required the assumption that the spot rate
could have been represented as a linear function of economic factors those fol-
lowed a joint elastic random walk. The term structure was a simple composition
of expected spot rates and the term premium, where the term premium was
a deterministic function of the bond’s risk vector [31]. As Vasicek (1982) has
stated, the spot rate curves derived by the models of Cox et al.(1981), Langetieg
(1981), and Vasicek (1977) did not perform well to the observed data on bond
yields, moreover existing yield curves exhibited more varied shapes than curves
of these models. In addition, the author used exponential spline fitting tech-
niques in term structure estimation.

Vasicek model was one of the earlier stochastic models. This model described the
short-term interest rates on the assumption that the instantaneous interest rates
were Ornstein-Uhlenbeck process with constant coefficients. This model was a
linear model with Gaussian distribution [46]. Estimation of the term structure
needed to fit the bond data as much as possible, and a smooth function. These
were essential for a good estimation model.

Papers of Mc Culloch (1971) and Vasicek (1982) took an important place among
studies on spline methods. McCulloch proposed an approach with a piecewise
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polynomial spline fitted to price data to the present value function [34]. On the
other hand, most attractive term structure estimation studies with parametric
models were the works of Cohen et al.(1966), Fisher (1966), Echols and Elliott
(1976), Dobson (1978), Chambers et al.(1984) and of course Nelson & Siegel
(1987).

In this chapter, we will focus on Nelson & Siegel (1987), and its improved version
by Svensson (1994). Nelson & Siegel’s study was a milestone in the subject of
yield curve modeling. The aim of the study of Nelson & Siegel was to introduce
a simple parametric model that was flexible enough to represent monotonic,
humped, and S-shaped curves which were generally associated with the yield
curves. This model has been accepted by a large group of financial world due
to its ease in practice. Many central banks trust and have been using this
model for years. Nelson & Siegel tested the procedure on the U.S. Treasury bill
yields with four weeks intervals over three year period. The form of the model
was motivated by the solution of second order ordinary differential or difference
equations. Firstly, we need to give a short description about difference equations;
the role of differential operator is similar. Difference equations are sometimes
called recurrence relations.

Definition 4.1. Let w(t) be a function of a real (or complex) variable t. The
difference operator ∆ is defined as:

∆w(t) = w(t+ 1)− w(t).

The difference operator mentioned above is a first order difference operator, and
higher order difference operators or differences can be defined by compounding
the difference operator with itself. In this way we may obtain a second order
difference, for instance,

∆2w(t) = ∆(∆w(t)) = ∆(w(t+ 1)− w(t))

= ∆(w(t+ 1))−∆(w(t))

= (w(t+ 2)− w(t+ 1))− (w(t+ 1)− w(t))

= w(t+ 2)− 2w(t+ 1) + w(t).
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Similarly, for an nth-order difference, we have,

∆nw(t) = w(t+ n)− n · w(t+ n− 1)+
n · (n− 1)

2! · w(t+ n− 2) + · · ·+ (−1)n · w(t)

=
n∑
k=0

(−1)n ·
(
n

k

)
· w(t+ n− k).

Definition 4.2. Let q(t) and p(t) be functions. The first-order linear difference
equation is:

w(t+ 1)− q(t) · w(t) = p(t).

This equation is called first order difference equation, because it includes the
value of w only at t and t+ 1. The nth-order difference equation can be written
as,

qn(t) · w(t+ n) + qn−1(t) · w(t+ n− 1) + · · ·+ q0(t) · w(t) = p(t),

where q0(t), q1(t), . . . , qn(t) and p(t) are assumed to be known, and also qn(t) 6= 0
for all t. In addition, if p(t) ≡ 0 then equation is said to be homogeneous
otherwise, p(t) 6≡ 0, non-homogeneous.

Nelson & Siegel considered the second order differential, or difference, equation
and its solution in their well-known model. Here r(m) represents the instanta-
neous forward rate at maturity m, and modeled as

r(m) = α1 · r(m− 1) + α2 · r(m− 2) + α0. (4.4)

If the zeros of r(m) are real and lie outside the unit circle the solution has the
form;

r(m) = β0 + β1 · exp
(−m
τ1

)
+ β2 · exp

(−m
τ2

)
. (4.5)

Here τ1 and τ2 are constants representing the time; and β1 and β2 are constants to
be determined. Different forward rate curves, monotonic, humped or S-shaped
can be generated by changing β1 and β2. These curves have the asymptote β0.
r(m) = β0 as m tends to infinity, and r(m) = β0 + β1 + β2 as m→ 0+

The yield to maturity on a bill, called as R(m), is the average of the forward
rates:

R(m) = 1
m

m∫
0

r(x)dx.
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Experiments with the model in Eq. 4.5 showed that the model is over-
parameterized, because as the values of τ1 and τ2 change, it is possible to get
values of the β’s that give almost nearly the same fit. Therefore a plainer model
could give the same curves; this was achieved by the solution of Eq. 4.4 for the
case of two equal real roots:

r(m) = β0 + β1 · exp
(−m
τ

)
+ β2 ·

[(
m

τ

)
· exp

(−m
τ

)]
. (4.6)

In this representation, β0 is the contribution of the long term component, β2 is
the medium term components’ contribution and β1 is the short term components’
contribution. On the other hand, τ is the time constant which determines the
rate of decay of regressors. As it can be deduced that small values of τ mean
sudden decays in the regressors, while large values of τ provide slow decays. So,
while small numbers of τ ’s are good at fitting curve at low maturities, big τ ’s are
good at fitting curvature at longer maturities. In Figure 4.8, thin line represents
the fitted curve with τ of 20, and thicker one indicates the fitted curve with τ
of 100 [38].

Figure 4.8: Effect of τ values on fitting curvature

The yield to maturity can also be obtain as:

R(m) = 1
m

m∫
0

r(x)dx = β0 +(β1 +β2) ·
1− exp

(−m
τ

)
m

τ

−β2 ·exp
(−m
τ

)
. (4.7)
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Limiting values of R(m) and r(m) can be achieved from Eq. 4.7 and Eq. 4.6,
respectively. Intuitively, limiting values of r(m) and R(m) will be the same,
because forward rate R(m) is an average of r(m):

lim
m→0

r(m) = β0 + β1, and lim
m→∞

r(m) = β0.

lim
m→0

R(m) = β0 + β1, and lim
m→∞

R(m) = β0.

In the last section of their study, Nelson & Siegel stated that the parsimo-
nious model presented approximately 96% of the variation in U.S. treasury bills
throughout the period of 1981 − 1983, with a standard deviation of residual
errors of 7.25 basis points. On the other hand, when determining coefficients of
the curve, firstly an appropriate time constant was selected and then this value
was included in the formula to obtain the most suitable coefficients (the β’s)
with the method of least squares [38].

Svensson (1994) investigated and extended Nelson & Siegel (1987)’s model to a
more flexible version. As Svensson (1994) had stated in his study, third term
of Eq. 4.6 was generating a hump-shape, or U-shape if β2 is negative. In order
to increase the flexibility of Nelson & Siegel’s fit, Svensson (1994) added a new
term into the formula, which generated a second hump or U-shape. This new
term includes two additional parameters, β3 and τ2. Here τ2 have to be a positive
real number. The model reads:

r(m) = β0 + β1 · exp
(−m
τ

)
+ β2 ·

[(
m

τ

)
· exp

(−m
τ

)]
+ β3 ·

[(
m

τ2

)
· exp

(−m
τ2

)]
. (4.8)

The components of the Svensson (1994) model:

– β0 is a constant and has the same role as in the Nelson & Siegel (1987)’s
model.

– β1 · exp
(−m
τ

)
is the exponential term which is monotonically decreasing

or increasing depends on β1. This term also exists in Nelson & Siegel
(1987)’s formula Eq. 4.6.
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– β2 ·
[(
m

τ

)
· exp

(
−m
τ

)]
term generates hump or U-shape, depending on

β2. If β2 > 0, term generates hump shape otherwise, β2 < 0, U-shape.
This term also exists in Nelson & Siegel (1987) model, too.

– The last and the new term is β3 ·
[(
m

τ2

)
· exp

(−m
τ2

)]
. This term is added

to Nelson & Siegel (1987) model by Svensson (1994), in order to increase
flexibility and fitting performance of the original model. With this fourth
component, two parameters were added to the model, β3 and τ2. This
term generates second hump or U-shape.

Parameters in this model are picked to minimize the sum of squared errors
between estimated and observed yields. In most cases, Nelson & Siegel (1987)
model gives a reasonable fit, yet at times when the term structure is more
intricate the original Nelson & Siegel fit is not flexible enough. At that point
the extended version of the model enhances the fit impressively.

The following important information was attached in the appendix part of the
Svensson (1994): If the extended Nelson & Siegel model was used it was clear
that, perfect multicollinearity resulted in the case of τ = τ2. In this case β2 +β3

could be determined, but not individually β2 and β3. This means that the
curve has two hump-shapes on top of each other and the model was over-
parameterized. So, it is crucial that appropriate initial values with τ 6= τ2

are selected. Besides, if the estimation converged to τ = τ2, then appropriate
fit is the original Nelson & Siegel fit, but not the extended version of Svensson
(1994) [45].
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The spot rate in this extended version can be obtained as:

R(m) = 1
m

m∫
0

r(x)dx = β0 + β1 ·

1− exp
(−m
τ

)
m

τ



+ β2 ·

1− exp
(−m
τ

)
m

τ

− exp
(−m
τ

)

+ β3 ·


1− exp

(−m
τ2

)
m

τ2

− exp
(−m
τ2

) . (4.9)

Table 4.1, from the study of Pereda (2009), which was prepared based on the
2005 data of Bank of International Settlements shows that the original Nelson
& Siegel model and extended version by Svensson were met with great interests
of most central banks, and also these models are used by many central banks
since then [41].

Table 4.1: Term structure models used by central banks (BIS 2005)

Central Bank Model
Belgium Nelson & Siegel, Svensson
Canada Svensson

United States Fisher-Nychka-Zervos
Finland Nelson and Siegel
France Nelson & Siegel, Svensson

Germany Svensson
Italy Nelson & Siegel
Japan Fisher-Nychka-Zervos
Norway Svensson
Spain Svensson

United Kingdom Anderson and Sleath ( Svensson until 2001 )
Sweden Fisher-Nychka-Zervos ( previously Svensson )

Switzerland Svensson
European Union Svensson

As is clear in Table 4.1, the model of Fisher, Nychka and Zervos (1995) is also
a commonly used spline based estimation method. There is no doubt that,
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study of Fisher et al. (1995) is the most respected representative of the spline
based curve fitting techniques. In the study of Fisher et al. (1995), they claimed
that, spline based methods gave better results than parametric models; and they
supported their claim with the results they have achieved in their experiments:
Nelson & Siegel (1987) model had 2.5 to 3 times larger pricing errors than the
spline based methods [24].

“Why other central banks prefer to use parametric models?”Because paramet-
ric models give satisfactory results in most situations where it is not necessary
to get a very precise estimation; besides, these models are more practical and
more applicable. Bliss (1996) made a comparison of five different term structure
fitting techniques with series of parametric and non-parametric tests. Those
were: Un-smoothed Fama-Bliss method, Smoothed Fama-Bliss method, Mc-
Culloch method, Fisher-Nychka-Zervos method and extended Nelson & Siegel
method. In this study Bliss had benefited from the most commonly used cri-
teria in this subject for evaluating and comparing methods: Duration-weighted
mean of the absolute fitted price errors and hit rate. Based on test results, the
Fisher-Nychka-Zervos method was the worst decision among those techniques.
Because this model mis-priced short maturities; on the other hand, it was vul-
nerable to measurement errors of the data. According to the results of this
study, un-smoothed Fama-Bliss method was the best performing model; how-
ever, the practitioners those wanted to utilize parametric models were advised
to use smoothed Fama-Bliss or extended version of Nelson & Siegel model [9].

There are other studies that compare the existing methods. For instance,
Muvingi and Kwinjo (2014) compared the original Nelson & Siegel model and
the extended version of the model to determine which method was more ap-
propriate to Zimbabwean Bank. T-tests showed that Svensson (1994)’s model
was more suitable for this market [36]. In the paper of Aljinović et al. (2012),
they investigated which model is more appropriate for the Crotian financial mar-
ket, Nelson & Siegel (1987) or Svensson (1994). Based on statistical tests they
made, Svensson model gave more accurate yield curves on this market than the
original model [3]. Marciniak (2006) investigated in detail the most commonly
used yield curve estimation methods for the National Bank of Poland. Mostly,
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comparisons were made among the Svensson model and B-spline model with a
variable roughness penalty (VRP). The author mentioned that the low elastic-
ity of the Svensson model at the short end of the yield curve, high degree of
instability, non uniqueness of estimations were the weaknesses of this model.
Besides, author added that the biggest advantages of Svensson’s model was the
low complexity and easy computability. This is no longer a big advantage in to-
day’s world due to improvements in computer technology. For this reason many
institutions changed their choices of yield curve estimation techniques in the
direction of piecewise polynomial models with a variable roughness penalty [33].

When the term structure studies related to Turkish market are of interest, we re-
call the studies of Yoldaş (2002) and Alper et al.(2004). Yoldaş (2002) compared
the McCulloch spline method, Nelson & Siegel model and Chambers-Carleton-
Waldman exponential polynomial methods on Turkish bond market. Compar-
isons showed that the Chambers-Carleton-Waldman model was superior to the
other two methods in fitting Turkish Treasury bill term structure [50].

Alper et al.(2004), on the other hand, estimated monthly yield curves in Turk-
ish Secondary Government Securities Market with data in the time period of
1992–2003. They utilized both McCulloch spline method and Nelson & Siegel
parametric method. Data set used in this study was constructed with monthly
volume weighted average price and maturity. In-sample and out-of-sample pre-
diction performances of these two models were compared. Briefly, while Nelson
& Siegel model gave better estimation results than McCulloch method at out-of-
sample and in the middle region of the curve, McCulloch method was superior
to Nelson & Siegel model in in-sample properties [4].
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CHAPTER 5

IMPLEMENTATION - BIST 30 VOLATILITY INDEX

Although the history of the İstanbul Stock Exchange1 dates back to 1866, the
basis of the current system was formed with the regulations issued in 1922.
With the capital markets law published in July 1981, a new form and content
were given to the İstanbul Stock Exchange while the capital markets was being
reorganized. At last, on December 26, 1985, İstanbul Stock Exchange opened
and on January 3, 1986, trading started officially. Borsa İstanbul A.Ş., mostly
known with its abbreviation of BIST was founded on December 30, 2012, and
registered on April 3, 2013 as a securities exchange of Turkey. İstanbul stock
exchange gathered, under a single roof, all exchanges operating in the Turk-
ish capital markets. This institution was established by bringing together the
stock exchange İMKB, futures and options exchange (VOB) and İstanbul Pre-
cious Metals and Diamond Market (İAB). The main focus and field of activity
of İstanbul stock exchange was stated in their official website as follows: “In
accordance with the provisions of the Law and the related legislation, to en-
sure that capital markets instruments, foreign currencies, precious metals and
gems, and other contracts, documents, and assets approved by the Capital Mar-
kets Board of Turkey are traded subject to free trade conditions in a facile and
secure manner, in a transparent, efficient, competitive, fair and stable environ-
ment; to create, establish and develop markets, sub-markets, platforms, systems
and other organized market places for the purpose of matching or facilitating
the matching of the buy and sell orders for the above mentioned assets and to
determine and announce the discovered prices; to manage and/or operate the

1 It was called as İMKB (İstanbul Menkul Kıymetler Borsası) in Turkey
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aforementioned or other exchanges or markets of other exchanges; and to carry
out the other activities listed in its Articles of Association”. There are three main
equity indexes in Turkish stock market; BIST 100 (XU100), BIST 50 (XU050)
and BIST 30 (XU030).

– BIST 30 index consists of 30 stocks selected among the stocks of companies
traded on BIST Stars2, BIST Main markets and the stocks of real estate
investment and venture capital investment trusts traded on the Collective
and Structured Products Market. These 30 stocks have the highest market
values and liquidity among BIST 100 stocks.

– BIST 50 index consists of 50 stocks selected among the stocks of com-
panies traded on BIST Stars, BIST Main3 and the stocks of real estate
investment and venture capital investment trusts traded on the Collective
and Structured Products Market. BIST 50 index covers BIST 30 index.

– BIST 100 index is the main index of the Borsa İstanbul. Hundred stocks
of the BIST 100 index are selected from BIST Stars, BIST Main and Col-
lective and Structured Products Market as BIST 30 and BIST 50 indexes.

In addition, Borsa ṡtanbul operates 324 different stock indices, and 54 of these
indices are calculated in real time while the rest of 324 are calculated once at each
sessions close. Turkish market is one of the most exciting emerging markets in
the world. Turkey’s geographical position is one of the main factors that makes
this market very important. Turkey’s economy is export oriented economy, on
the other hand it contains a lot of dynamic companies. Although there are
many regional and political risks, interest of foreign investors in Turkish market
is not at the least level. For these reasons, Borsa İstanbul is a market with
high potential of growth and development. In Figure 5.1 we depict the price
movements of major Turkish equity indices, BIST 30, BIST 50 and BIST 100
between January 2007 and January 2017 can be observed.

2 BIST Stars is the market of companies whose value of traded shares in BIST 100 index and
market value is equal or above TRY 100,000,000

3 BIST Main is the market of companies whose market value is below TRY 100,000,000 according
to the actual free float and shares not included in BIST 100 index

60



0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

4
.1
.2
0
0
7

4
.6
.2
0
0
7

4
.1
1
.2
0
0
7

4
.4
.2
0
0
8

4
.9
.2
0
0
8

4
.2
.2
0
0
9

4
.7
.2
0
0
9

4
.1
2
.2
0
0
9

4
.5
.2
0
1
0

4
.1
0
.2
0
1
0

4
.3
.2
0
1
1

4
.8
.2
0
1
1

4
.1
.2
0
1
2

4
.6
.2
0
1
2

4
.1
1
.2
0
1
2

4
.4
.2
0
1
3

4
.9
.2
0
1
3

4
.2
.2
0
1
4

4
.7
.2
0
1
4

4
.1
2
.2
0
1
4

4
.5
.2
0
1
5

4
.1
0
.2
0
1
5

4
.3
.2
0
1
6

4
.8
.2
0
1
6

XU030

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4
.1
.2
0
0
7

4
.5
.2
0
0
7

4
.9
.2
0
0
7

4
.1
.2
0
0
8

4
.5
.2
0
0
8

4
.9
.2
0
0
8

4
.1
.2
0
0
9

4
.5
.2
0
0
9

4
.9
.2
0
0
9

4
.1
.2
0
1
0

4
.5
.2
0
1
0

4
.9
.2
0
1
0

4
.1
.2
0
1
1

4
.5
.2
0
1
1

4
.9
.2
0
1
1

4
.1
.2
0
1
2

4
.5
.2
0
1
2

4
.9
.2
0
1
2

4
.1
.2
0
1
3

4
.5
.2
0
1
3

4
.9
.2
0
1
3

4
.1
.2
0
1
4

4
.5
.2
0
1
4

4
.9
.2
0
1
4

4
.1
.2
0
1
5

4
.5
.2
0
1
5

4
.9
.2
0
1
5

4
.1
.2
0
1
6

4
.5
.2
0
1
6

4
.9
.2
0
1
6

XU050

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4
.1
.2
0
0
7

4
.5
.2
0
0
7

4
.9
.2
0
0
7

4
.1
.2
0
0
8

4
.5
.2
0
0
8

4
.9
.2
0
0
8

4
.1
.2
0
0
9

4
.5
.2
0
0
9

4
.9
.2
0
0
9

4
.1
.2
0
1
0

4
.5
.2
0
1
0

4
.9
.2
0
1
0

4
.1
.2
0
1
1

4
.5
.2
0
1
1

4
.9
.2
0
1
1

4
.1
.2
0
1
2

4
.5
.2
0
1
2

4
.9
.2
0
1
2

4
.1
.2
0
1
3

4
.5
.2
0
1
3

4
.9
.2
0
1
3

4
.1
.2
0
1
4

4
.5
.2
0
1
4

4
.9
.2
0
1
4

4
.1
.2
0
1
5

4
.5
.2
0
1
5

4
.9
.2
0
1
5

4
.1
.2
0
1
6

4
.5
.2
0
1
6

4
.9
.2
0
1
6

XU100

Figure 5.1: Price movements of BIST 30, BIST 50, and BIST 100 indexes from
2007 to 2017, respectively
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Turkish market met derivatives products with the opening of IMKB futures and
options market on December 21, 2012. Borsa İstanbul A.Ş. VIOP and Turkish
Derivatives Exchange (TURKDEX) merged on August 5, 2013. Borsa İstanbul
and London Stock Exchange Group (LSEG) have completed a comprehensive
agreement covering derivative and index products on January 13, 2015. With
this agreement, BIST 30 futures and options are traded on the London Stock
Exchange since the second half of 2015 and this agreement gave international
exposure to Turkish derivative products.

There are already BIST 30 and mini BIST 30 index options traded in Borsa
İstanbul. Mini BIST 30 options are the new ones: Mini BIST option contracts
were opened trading on September 19, 2014. Aim of issuing new kind of option
series was simple, enabling more retail investors to trade in options market. Ma-
jor difference between the BIST 30 and Mini BIST 30 options is that, while the
contract size of the BIST 30 index options is 100 underlying security, Mini BIST
30 option contract size is only 1 unit of underlying security. Hence, in Mini
BIST 30 option contracts, the level of buying and selling price will be more un-
derstandable for investors since these prices also show the contract sizes. Before
attempting to create BIST 30 volatility index, it is needed to give information
about BIST 30 and mini BIST 30 index option contract specifications. Spec-
ifications were taken from the official website of Borsa İstanbul in July 2017
[10]:

– Underlying security of these options is 1
1000 of the BIST 30 equity index

value.

– BIST 30 and Mini BIST 30 index options can be either European call or
European put options.

– Contract size for the BIST 30 index options is 100 underlying securities,
on the other hand this value is 1 for the Mini BIST 30 index options.

– Minimum price movements of the BIST 30 and Mini BIST 30 index options
is TRY 0.01 per underlying security

– These options are cash settlement type of options.
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– Options are trading from 09:30 to 18:15 continuously according to local
time zone.

– Contract months of BIST 30 and Mini BIST 30 index options are Febru-
ary, April, June, August, October and December. Contracts with three
different expiration months nearest to the current month are traded on the
market at the same time. If December is not one of these three months, a
new contract series with a maturity month of December is launched.

– Settlement dates are the first trading day following the maturity date.

– The daily settlement price is the weighted average price of all trades ex-
ecuted within the last 10 minutes of the trading session. If there are less
than 10 trades in the last 10 minutes of the session, the weighted average
price of the last 10 trades executed during the session will be assigned as
the daily settlement price. If there are less than 10 trades in the whole
session, the weighted average price of all trades executed during the session
will be determined as the daily settlement price.

– Final settlement price of BIST 30 or Mini BIST 30 index call option is
calculated by weighting the weighted time average of the index prices of
the last 30 minutes of auction and closing value of the index with 80% and
20%, respectively. Then, the difference between the calculated weighted
average price (divided by 1000) and strike price is rounded to the nearest
price tick and called as the final settlement price of the BIST 30 or Mini
BIST 30 index call option. Final Settlement price for BIST 30 or Mini
BIST 30 index put option is calculated similarly as final settlement price
of call options, the only difference is that, the difference between the strike
price and the calculated weighted average price (divided by 1000) is taken,
and rounded to the nearest price tick and in this way the final settlement
price of the BIST 30 or Mini BIST 30 index put option is achieved.

– Maturity day is the last trading day of the contract month.

– Strike price tick is 2000 index points for BIST 30 index option contracts
and 5000 index points for Mini BIST 30 index option contracts
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– Maintenance margin for both Mini BIST and BIST options is 75% of the
required collateral.

– Strike prices of BIST 30 and Mini BIST 30 options are set between the
previous trading day’s closing price plus 10% and minus 10% of that value.
But also, board may decide to change these limits.

– For each maturity, at least 7 strike prices such that two of them are “in
the money”, one of them is “at the money” and the other four are “out
of the money” shall be opened. And also, new strikes shall be opened
automatically during the session according to the price fluctuations of the
underlying security.

5.1 An Attempt to Create BIST 30 Volatility Index

Hereby we will try to explain the steps of the attempt to the creation of BIST
30 volatility index in detail and the results of this attempt. In this study, we
have used XU030 (BIST 30) index options’ daily closing prices, Turkish treasury
bill prices, and the other related data on 1-year period of January 2016–January
2017. Data, used in this study, were obtained from the BIST Data Store, an
official website of BIST [7].

In the calculation of the experimental volatility index, which was based on the
CBOE Vix methodology, it was necessary to make some changes to adapt to
our own data. For instance, Vix index is calculated using real-time quotes but
this one is calculated using end-of-day data. Nevertheless, a few days we have
encountered with exceptional cases those not mentioned in the white paper of
Vix. So we had to continue index calculation in line with our own decisions.
Changes we made and rare cases we have encountered are:

(1) As we mentioned deeply in the second chapter, in the original Vix formula,
time to expiration T , is measured in minutes with three different compo-
nents: Minutes remaining until midnight of the current day, number of
minutes from mid-night until expiration time of options, and lastly total
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minutes in the days between the current day and the maturity day. But in
our index, we just take into account the remaining days between the cur-
rent day and expiration day as the variable of T . We used only end-of-day
data, so the other components of the time variable did not make sense for
our calculation.

(2) In the original CBOE Vix formula, near-term options, which are at least a
week from expiration, are taken into calculation. But we could not fulfill
this restriction in our volatility index calculation in order to avoid pricing
anomalies. Because there were not sufficient number of index options
trading on Turkish Derivatives Exchange. If there were a sufficient number
of second-nearby index options to calculate volatility index, we had not
use index options with maturities lower than 10 days. When we could not
find sufficient number of index options, we had to use the same options
series till their maturities.

(3) In the original model, if an option has a bid price equals to 0, then that
option is excluded from the index calculation. In our index, we excluded
options from the calculation which have either bid or ask price equal to
0. The reason behind this limitation was that we could not get robust
calculation if we had taken index options with zero ask prices into the
calculation. It could be seemed like a contradiction, when we had to go
through this limitation while we could not find enough index options, but
this change was crucial in terms of consistency and smoothness of the index
calculation.

(4) In desired index level F calculations, original formula uses differences of
call and put options mid-quote prices, but in our formula we have used ab-
solute differences of mid-quote prices instead of just taking the differences.
This change was made to avoid inconsistent cases in the index calculation.
As we have stated earlier, strike prices of XU030 index options are listed in
2000 points of intervals; for example, a series of index options have strike
prices of . . . , 84000, 86000, 88000, 90000, . . .. In this case, using the original
formula causes bad index option choices. In the U.S. market it does not
pose a problem because there are small intervals: 5 points, between strike
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prices. But in this study it makes a big difference. To illustrate, in the
index calculations of January 5, 2016, if we had calculated according to
the original formula, we would get F = 87999.27327, and we needed to
assign K = 86000, besides we had to do index calculations according to
this value. This would not reflect market expectations neutrally.

(5) On August 31, 2016 there was only one index option traded, a call option
with August 2016 maturity, so on that day the index calculation could not
be made.

(6) In the calculations of March 29, 2016 there were two pairs of index options
with the same strike price differences for June 2016 maturity. Mid-quote
prices were 4.22 and 4.11 for options with strike prices 100000 and 102000
respectively. Here we chose the option with strike price of 100000, due to
the fact that if an option’s price is higher it means that options strike price
reflects a more common expectation of the market participants.

(7) On February 29, 2016 there were just three near-term call options and
four near-term put options traded. Besides, among these, only one pair
of call and put options had the same strike-price, 98000. So we were able
to make near-term volatility calculation based on the pair, and none of
the other near-term call options could be included in the calculation. The
mentioned case can be seen in Table 5.1.

Table 5.1: An exceptional case encountered in Turkish derivatives market

Near Term Call Options
Strike Price Bid Price Ask Price Mid-Quote Price

98000 0.21 0.2 0.205
94000 0.01 0.23 0.12
88000 5 5 5

Near Term Put Options
Strike Price Bid Price Ask Price Mid-Quote Price

102000 10.6 10.6 10.6
98000 2.01 6.05 4.03
92000 0.01 1.99 1
90000 0.01 0.1 0.055
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(8) Wide intervals of days to maturities of Turkish treasury bill data reduced
the curve fitting ability of the Svensson model. Even more, the model gave
negative interest rates in some cases, when days to maturity was below 10
days. When we had faced with such situations, in terms of the consistency
of the study we continued to use the Svensson method. If the term struc-
ture model change had been made, the same negative results would arose.
Besides, these negative values did not affect the index calculation signifi-
cantly. In Table 5.2 the mentioned case in fitting February 2016 Turkish
treasury bill data can be seen.

Table 5.2: Svensson model calculation results for February 2016

Days to Maturity (in years) Yield Svensson Model Yield
0.00274 - -0.0014621
0.120548 0.01105 0.0105127
0.128767 0.01165 0.0113480
0.131507 0.01227 0.0116265
0.131507 0.01207 0.0116265
0.134247 0.01253 0.0119049
0.153425 0.01444 0.0138540
0.156164 0.01492 0.0141324

As it can be seen in Table 5.2, when we tried to find interest rates for
very short-term periods, like a few days, we could not find rational values.
The reason behind the mis-pricing in Table 5.2 was the huge gap between
the maturity we were looking for, 1-day, and the nearest expiration day,
0.120548 years = 44 days. So, Svensson model could not find the appropri-
ate value for 1-day risk free rate. But, it can be observed from Figure 5.2,
Svensson model performs well except for such exceptional cases.
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Figure 5.2: Curve fitting with Svensson model for February 2016 Turkish trea-
sury bill data

5.2 Results

In this study we tried to construct an implied volatility index for Turkish market
XU030 index using CBOE Vix methodology with constraints and amendments
mentioned previously. Results of the study implies that it does not seem possible
to create an efficient implied volatility index for the Turkish market with its
current form. We will go into details on the reasons that led to this result later
in this chapter, but firstly we need to examine the implied volatility index we
constructed. We created the index with 2016–2017 period daily closing prices.
One can ask that, could this time period be extended to the beginning of 2015?
Answer is simple; this was impossible due to the insufficient number of index
options traded on the market. While the period we used could not give logical
results entirely, the longer periods would be more ineffective. We calculated
implied volatilities of each 250 trading days and this index emerged. Index
was designed to reflect markets 60 day volatility expectations, and we made
a comparison of index results and realized volatility of XU030 index in the
same time frame with 60-day intervals. In Figure 5.3 the graph of daily closing
prices of XU030 index and daily calculated values of the implied volatility index
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can be seen. In Figure 5.4 the graph of implied volatility index and realized
volatility comparison are shown. Besides, the movements of implied volatility
index and XU030 index daily and 60-day returns can be observed in Figure 5.5
and Figure 5.6, respectively.
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Figure 5.3: XU030 index closing prices vs. implied volatility index
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Figure 5.5: XU030 Implied volatility vs XU030 daily return
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Figure 5.6: XU030 Implied volatility vs XU030 60-day return
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Realized volatility and implied volatility follow almost the same path except
some times at the line of the implied volatility, unlike the realized volatility.
Sharp falls and large jumps were observed in the latter. In this context, we
do not say that the implied volatility index failed to reflect market expecta-
tions. On the other hand, when we look at the correlation between realized and
implied volatilities, -0.016752246, and correlation between equity index and im-
plied volatility index, 0.115551359, we can not say that the implementation was
successful. We have already examined relationships between equity indexes and
their related implied volatility indexes in Chapter 3, particularly in Table 3.1.
When we compare with the correlation values in that table, we see that there
is a very weak relationship between the implied volatility index we created and
XU030. In addition, we calculated 60-day return of XU030 index using the same
time interval with the implied volatility index. We found correlation of these
two data set as -0.041190509. It is also important to note that a period of at
least 7 years was used in the comparisons of indexes in Table 3.1, but here we
were able to calculate for 1-year period. So, if we had the opportunity to work
on volatility index for a wider time interval, perhaps different results could be
obtained.

5.3 An Additional Investigation

Due to observation of jumps in Figure 5.3, we wanted to investigate the perfor-
mance of implied volatility index at out of jump times. We considered move-
ments with more than 25% change as a jump and found 15 jumps. Dates and
magnitudes of jumps can be seen in Table 5.3. According to jumps, we divided
the whole time interval into 8 sub-intervals, which can be seen in Table 5.4.
Then, we investigated the relation between XU030 equity index and its implied
volatility index in each sub-interval. See Figure 5.7.
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Table 5.3: Jumps in implied volatility index

Jump Time Change in Imp.Vol Index Value
February 29. 2016 -25.45 %

April 4, 2016 -31.75%
April 5, 2016 48.71%
May 2, 2016 -38.84%
May 4, 2016 -28.94%
May 5, 2016 82.80%
May 13, 2016 26.47%
June 3, 2016 25.39%
June 18, 2016 -44.33%
June 19, 2016 111.01%
August 1, 2016 -33.17%
August 3, 2016 46.19%

September 28, 2016 32.02%
December 23, 2016 -26.37%
December 26, 2016 70.92%

Table 5.4: Sub-intervals

Sub-interval Length of interval
January 4 – February 26 40 trading days

March 1 – April 1 24 trading days
April 6 – April 29 18 trading days
May 16 – June 2 13 trading days
June 6 – July 15 27 trading days
July 20 – July 29 8 trading days

August 4 – September 27 33 trading days
September 29 – December 22 61 trading days
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(a) January 4 – February 26

0

2

4

6

8

10

12

14

88000

90000

92000

94000

96000

98000

100000

102000

104000

XU030 ImpVol.Index

(b) March 1 – April 1
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(c) April 6 – April 29
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(d) May 16 – June 2
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(e) June 6 – July 15
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(f) July 20 – July 29
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(g) August 4 – September 27
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(h) September 29 – December 22

Figure 5.7: Movements of XU030 equity index and its implied volatility index
in sub-intervals
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Correlation coefficients of XU030 and implied volatility index in these sub-
intervals can be seen in Table 5.5. Besides, we excluded all trading days in Ta-
ble 5.3 from our data set, and re-calculated the correlations of XU030 index and
its implied volatility index for 235-day time frame. We achieved -0.286122145
as the correlation coefficient. This value was 0.115551359 before the extraction
of jump days. This means, we achieved more successful implied volatility index
by excluding trading days with jumps from the calculation period.

Table 5.5: Correlation coefficients in sub-intervals

Sub-interval Correlation Coefficient
January 4 – February 26 0.49812053

March 1 – April 1 0.711026429
April 6 – April 29 0.081671775
May 16 – June 2 0.909046073
June 6 – July 15 -0.73670148
July 20 – July 29 0.151602216

August 4 – September 27 0.101052481
September 29 – December 22 -0.04048215

By observing the values in Table 5.5, we may conclude that implied volatility
index was successful in the sub-interval of June 6 – July 15. On July 15, 2016
there was a coup attempt in Turkey; and after this coup attempt XU100 index
was opened with 7.08% loss, and XU030 index was opened with 6.71% loss on
July 18, 2016. It has been one of the most shocking events in the Turkish stock
market.

Also, we reviewed the trading days in which jumps were seen. We noticed
that if the desired forward index levels F ’s were different from the previous
trading day’s F values then a jump in the implied volatility index value is very
likely. Examples of this relation can be seen in Table 5.6. Besides, a change
in the number of actively traded options can also be a cause of jumps. We see
this case in the jump between index values of December 23 and December 26.
Although there was no difference in F values between these two days, there
was an increase of 70% in implied volatility index value. This situation can be
explained by the lengths of the options series used in the index calculations.
While on December 23, 2016, nine near-term and five next-term options were
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included index calculations. On December 26, volatility index was calculated
with ten near-term and ten next-term options. Increase in the number of next-
term options affected the index value substantially, and the jump occurred.

Table 5.6: Relation between jumps and change in F values

Trading Day and
F Values (Near-term

and next-term respectively)

Previous Trading Day
and F Values

(Near-term and next-term
respectively)

Change in Implied
Volatility Index Value

February 29, 2016
98000–92000

February 26, 2016
92000–92000 -25.45%

April 4, 2016
102000–104000

April 1, 2016
100000–102000 -31.75%

April 5, 2016
102000-102000

April 4, 2016
102000–104000 48.71%

May 4, 2016
98000–100000

May 3, 2016
100000–102000 -28.94%

May 5, 2016
98000–98000

May 4, 2016
98000–100000 82.80%

June 3, 2016
96000–98000

June 2, 2016
94000–96000 25.39%

July 18, 2016
98000–98000

July 15, 2016
104000–104000 -44.33%

July 19, 2016
96000–96000

July 18, 2016
98000–98000 111.01%

August 1, 2016
94000–96000

July 29, 2016
94000–94000 -33.17%

August 3, 2016
92000–94000

August 2, 2016
94000–96000 46.19%

September 28, 2016
96000–96000

September 27, 2016
94000–96000 32.02%

5.4 Results of the Implementation

Now we will look at the details of the implementation, and mostly we will focus
on the reasons for deficiencies of the index. First of all, options contracts and
other financial derivatives are quite new instruments for the Turkish market.
The first and the most important reason seems to be that option contracts’ not
attracting enough demand. For example average daily trading volume of SPX
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options, underlying security of the Vix, is more than a million since 2016 and
more than a hundred thousand since 2002. See Figure 5.8.
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Figure 5.8: S&P 500 index options average daily trading volume since 2001

This figure was created using the data obtained from www.cboe.com, official web
site of Chicago Board Options Exchange, and it clearly shows the increase in
trading volume of SPX index options year by year with only two exceptions,
decline after the big Mortgage Crisis and the decline wit the crisis in 2012.

When we talk about Turkish options market, we know that trading volume
of the XU030 index options was 763,872,340 TRY in 2014 and 2,234,475,305
TRY in 2015. It means trading volume of the XU030 index options increased
193% from 2014 to 2015. And we had a chance to get access to the index
options’ trading volume as it can be seen in Table 5.7. These data were obtained
from www.borsaistanbul.com. The traded volume increased at a significant level
between 2014 and 2015, but later, interest on index options contracts decreased
between 2016 and 2017. At the same time frame, traded value in US $ seemed
to have decreased, but it should not be overlooked that changes in exchange
rates between US $ and TL also affected this result.
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Table 5.7: BIST index options contracts trading volume and values

Index Options Contracts
Date Open Int. Number of Trades Traded Vol. Traded Value(TL) Traded Value(US $)

Apr 2013-Dec 2013 6,832 1,142 10,352 94,614,200 47,541,315.41
2014 110,469 3,034 107,344 984,914,140 450,466,861.69
2015 191,522 17,266 290,856 2,836,368,995 1,032,031,788.25
2016 293,451 24,829 315,783 2,969,113,000 987,593,349.17
2017 229,752 20,883 275,030 3,242,741,200 891,538,266.62

In the US, options contracts are actively traded in the market for about 18 years,
and the demand is great. Of course we do not compare the US market with the
Turkish market. However, high trading volumes of options contracts have great
impact on implied volatility indexes’ prediction success. As we have mentioned
earlier CBOE Vix reflects market expectations nearly perfectly, and it has been
used as the fear index not in the US, but also in the global markets. The Turkish
market is an emerging market, and it has stridden out in recent years. But as
we see, it seems to be too early to establish an implied volatility index for the
Turkish market.

We investigated the relation between the implied volatility index we constructed
and the XU030 equity index. When we examine the movements of these two
indexes together, we clearly understand that there is no relationship we had
seen in other implied volatility indexes with their underlying equity indexes.
We compared with 1-year data set consisting of 250 daily closing prices that we
have used before. In Table 5.8 and Table 5.9 the ratios of parallel and opposite
moves of XU030 index and implied volatility index can be observed:

Table 5.8: Number and percentage of isotropic movements of XU030 and its
implied volatility index between January 2016 and January 2017

Movement Times Percentage
XU030 Down & Imp. Vol. Index Down 58 23.3%

XU030 Up & Imp. Vol. Index Up 64 25.7%
Total Movements in the Same Directions 122 49%
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Table 5.9: Number and percentage of opposite movements of XU030 and its
implied volatility index between January 2016 and January 2017

Movement Times Percentage
XU030 Up & Imp. Vol. Index Down 71 28.5%
XU030 Down & Imp. Vol. Index Up 56 22.5%

Total Movements in the Opposite Directions 127 51%

In Chapter 2, we did the same study for S&P 500 index and Vix. Of course there
is a big difference in the sense of size of data sets. We examined the movements
of S&P 500 index and Vix with a larger data set consisting of 3022 daily closing
prices in 12-years time period, from 2005 to 2017. When we look at the results
of that study, there is not a big difference in terms of the percentages of isotropic
movements, but there is a remarkable difference in the opposite movements. As
it can be seen in Table 5.10, percentages of the parallel movements of equity
indexes and their implied volatility indexes are not close. When we look at the
opposite movements of equity indexes and their implied volatility indexes, we
see a big difference. The most important aspect of an implied volatility index is
how that index reacts when its related equity index falls or increases. S&P 500
and Vix exhibited exactly what we wanted to see, that is why Vix is called the
fear gauge.

One of our biggest expectations was to see rising implied volatility index value
while the equity index was falling; however, the results we obtained were far
from being satisfactory. Percentage values were very different as compared with
Vix, and the differences cannot be explained by the magnitudes of the data sets.
See Table 5.10.

Table 5.10: Comparison of movements of XU030 and SPX and their related
implied volatility indexes

Parallel Moves Percentage Opposite Moves Percentage
SPX Up and Vix Up 17.8% SPX Up and Vix Down 81.83%

XU030 Up and Imp.Vol.Index Up 25,7% XU030 Up and Imp.Vol.Index Down 28.5%
SPX Down and Vix Down 19.51% SPX Down and Vix Up 79.77%

XU030 Down and Imp.Vol.Index,Down 23.3% XU030 Down and Imp.Vol.Index Up 22.5%

While the previous version of Vix included only eight at-the-money options, the
updated version incorporates all available options on the market. This devel-
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opment implied that if an option series with a larger scale is used then a more
consistent index can be obtained. Therefore we realized one of the reasons for
the failure of the index we created. No matter how many options were included
in the option series of our index calculations, at-the-money options with near-
term maturity were dominant factor in volatility index and other options had
almost no effect. Therefore, our implied volatility index reflected the volatility
expectations of only these options’ holders, and other participants of the market
almost had no effect on the value of implied volatility index. And of course this
was not a good result when we were trying to measure the volatility expectation
of the whole market. Most of the time, our implied volatility index values were
moving around the near-term volatility expectations of the market participants.
Because with the exception of a few put options contracts, next-term options
are barely demanded on the market. This showed that, index options contracts
are regarded as short-term hedging instruments in the Turkish market. Implied
volatility indexes are obtained by blending near-term and next-term volatility
expectations, and when we consider this fact, it is expected that our implied
volatility index will be on the side of the near-term volatility expectations of the
market.

BIST committee introduced a new type of options contracts to the market, Mini
BIST 30 index options, so that small-size investors could take part in the options
market. This new financial instrument was presented on September 19, 2014.
In our implied volatility index calculations, Mini BIST 30 index options were
not added into the calculation. After the failure of implementation, we tried to
improve the index to make it more consistent by adding Mini BIST 30 options in
the calculation. Nevertheless, this was not possible due to the lack of adequate
number of Mini BIST 30 options contracts, with non-zero bid and ask prices. As
it can be seen in Figure 5.9, index options contracts correspond just 0.49% of all
trading activities made in 2015 in the Turkish derivatives market, which is a very
clear indicator of the low demand on index options in VIOP. On the other hand,
the percentage of index futures was very high, because Turkish index futures
and FX futures were among the top 10 most traded derivative instruments in
global markets in 2015.
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Figure 5.9: The distribution of trading activities in VIOP in 2015

There is another point worth mentioning; distribution of trading volumes of
domestic and foreign investors have changed significantly over the last years,
and the percentage share of foreign investors has increased obviously. As it can
be seen in Figure 5.10, the share of domestic investors declined between 2011
and 2015 except for an increase between 2013 and 2014. From another point
of view, interests of foreign investors on the Turkish derivative market products
has been increased since 2011.
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Figure 5.10: Percentages of foreign and domestic investors in VIOP

We tried to give detailed information about the XU030 index options and statis-
tics about it. All the information above shows that investors, both individual
and institutional, do not perceive XU030 index options as a financial tool that
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meets their needs. Investors could not find enough numbers of BIST 30 index op-
tions contracts with maturities that fit investors plans, and this was the biggest
deficit of BIST 30 index options contracts. Maturities of the index options have
to be in a wide range to attract investors.

In Table 5.11, main features of BIST 30 index options can be observed, and
also in Table 5.12 and Table 5.13 main features of S&P 500 index options and
several important index options can be seen, respectively. In the light of these
informations, we see that the Turkish index options have quite limited maturity
dates. In addition, XU030 index options series with new maturities are issued to
the market less frequently than other index options. Consequently, the Turkish
index options have not reached high levels of trading volumes. If an investor
wants to take a position in such an European or American index options has
lots of alternatives with the same strike prices and different maturities. On
the other hand, if an investor wants to buy or sell a Turkish index option, has
only three or at most four different maturities with the same strike price. The
common problem of most emerging markets, like the Turkish market, is the lack
of liquidity and volume. Unless these problems were solved, it is not possible
to derive indicators, such as implied volatility indexes, that give consistent and
efficient results.

Table 5.11: Specifications of BIST 30 index options

Name of the
Instrument

Underlying Options
Chain

Contract
Size Ticker Symbol Expiration

Date
Exercise
Style

BIST 30
Index Options

1/1000 of the
BIST 30 Index

100 Underlying
Assets

XU030X (Bloomberg)
0#XU030*.IS (Reuters)

February, April,
June, August,

October, December
European

Mini-BIST 30
Index Options

1/1000 of the
BIST 30 Index

1 Underlying
Asset

XU030XO (Bloomberg)
0#XU030M*.IS (Reuters)

February, April,
June, August,

October, December
European
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Table 5.12: Specifications of S&P 500 index options

Name of the
Instrument

Underlying
Options Chain Ticker Symbol Expiration Date Exercise

Style
Traditional

SPX SPX SPX 3rd Friday European
Non-Traditional

SPX Friday
End-of-Weeks

(EOW)
SPX SPXW Fridays European

SPX Wednesday
Weeklys SPX SPXW Wednesdays European

SPX Monday
Weeklys SPX SPXW Mondays European

SPX
End-of-Month

(EOM)
SPX SPXW Last Trading day

of Month European

SPX PM-Settled
3rd Fridays SPX SPXW 3rd Fridays European

Mini-SPX Options (1/10th the Notional Size)
Mini-SPX Index

Options
(Weeklys Available)

XSP XSP Fridays European
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Table 5.13: Specifications of several European index options

Name of the
Instrument

Trading
Unit Ticker Symbol Expiration

Months
Exercise
Style

Euro STOXX 50
Index Options

€10 multiplied
by the value
of the index

OESX

The three nearest
successive calendar
months, the three
following quarterly

months of the March,
June, September and

December cycle,
the four following

semi-annual months of
the June and December
cyle, and seven following
annual months of the

December cycle

European

FTSE 100 Index
Options

£10 per index
value UKX

Out to 24 months;
First 2 non-quarterly months,
first 8 quarterly months of
March, June, September,

December cycle.

European
Cash-settled

FTSE 100
Mini-Index
Options

$100 multiplier
per 1/10th of the
FTSE 100 index

UKXM

Up to 12 near-term month,
and also the related exchange
may list up to 10 UKXM

expiration months that expire
12 to 60 months from date of

issuance.

European
Cash-settled

CAC40 Index
Options

€10 per index
value PXA

Trading is composed of 13 open
maturities: Three nearest calendar

months in monthly cycle, the
following seven quarterly months

in March, June, September, December
cycle, and the following 3 annual
maturities in December cycle

European

BEL20 Index
Options

€10 per index
value BEL

1st, 2nd, 3rd, 6th and 9th months
according to the March, June,
September, December cycle.

European
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As the problem is identified, what could be the solution? After analyzing the
tables above, we tried to find different solutions to the problem. The most
applicable solution is not complex indeed. To increase investors’ interest on
BIST 30 index options, we need to modify these instruments’ specifications. No
investor buy or sell a financial instrument that does not suit his or her needs.
The biggest problem is that the new index options are not issued to the market
before the previous options’ expiration.

A suggestion: To solve the problem, as the first step, new index options with
maturities of one month, two months and three months need to be issued to the
market on each trading day. After continuing this procedure for a while, about
two months, it is going to be enough to submit new index options with three
months of maturities. The process can be clarified as:

1) On January 1st, index options with expiration dates of the last trading
day of January, the last trading day of February, the last trading day of
March are issued to the market.

2) On January 2nd, index options with maturity dates of the first trading
day of February, March, and April are offered to the market.

3) By applying the same procedure, new index options will be issued to the
market every new trading day until the last trading day of January. At
the end of the January, we would have approximately sixty index options
trading on the market. More importantly, we would have index options
with approximately 60 different maturities. This means that, on the last
trading day of January, the opportunity to buy or sell an index option
that expire every trading day of February, March, and April will be on the
market.

4) After the above steps were achieved, on each day issuing new series of
index options with three months of maturities is going to be enough.

By applying the procedure above, the VIOP will be enriched in terms of index
options, and the problem of finding appropriate index options will be removed.
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Another solution is to make calculation of the index when market is stable and
there are sufficient number of index options. As it can be seen in Figure 5.4, we
have faced with big jumps for several trading days. There were a few reasons
behind this. On the last trading day of February, April, June, August, October,
and December, index could not give satisfactory results. Because these days
were the expiry dates of index options and there were not sufficient number of
index options to make an efficient index calculation. Secondly, when F values
change, the likelihood of a jump in the index increases at a significant level.
Even between two consecutive trading days, F values can be very different, and
changes in F values can be a cause of jumps. As we have mentioned in detail,
by removing the jump days we achieved more successful index on the entire time
frame.
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CHAPTER 6

CONCLUSION & OUTLOOK

In this thesis, we studied the evolution of implied volatility indexes, and several
illustrations of implied volatility indexes from Europe. However, we mostly
focused on CBOE Vix methodology and implementation of the Turkish BIST
30 index. To construct an implied volatility index for the Turkish market, we
utilized a modified version of CBOE Vix methodology. Then we examined the
forecast ability of this index.

Firstly, we examined the concept of implied volatility index and the first appli-
cation: CBOE Vix. Then, derivation of the Vix formula and components of the
formula were given in detail. For a better understanding of the methodology,
the calculation of the Vix index for a single trading day was shown and clarified.
Later on, we investigated different illustrations of implied volatility indexes from
Europe. All of the indexes we analyzed are using variations of the CBOE Vix
methodology and they produced very successful results just like Vix. The suc-
cess of these type of indexes is measured with the indexes’ ability of estimating
the underlying indexes’ realized volatility. Besides, an implied volatility index
needs to indicate the markets volatility expectation at the moments of big stress
and major movements to be accepted as an effective indicator. We saw that, all
the implied volatility indexes we studied reflected their related equity indexes’
future status with a remarkable success. Even, among these indexes, VFTSE
gave the most satisfactory results.

Later in Chapter 4, we investigated the yield curve modeling. Studies on yield
curve modeling are mainly focused on 2 different methods: Interpolation and
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regression models. We used Svensson method, a modified version of the Nelson &
Siegel model. Svensson model is a parametric method and this model differs from
the original Nelson & Siegel model by the addition of the 4th term to the original
formula. With this new term, two new parameters, β3 and τ2, were added to the
Nelson & Siegel model. New term was added to increase flexibility and fitting
performance of the original model with its ability to generate second hump or
U-shape in yield curves. While β3 indicates the magnitude and the direction of
the second hump, τ2 shows the location of the hump. Nelson & Siegel model
is used in situations where complex curves are not exhibited. Central Bank of
Turkish Republic have used Nelson & Siegel model for years, but in this study
we wanted to see the fitting performance of the Svensson model in the Turkish
treasury bill curve. We concluded that the Svensson model did not make a
significant difference in fitting performance according to the original Nelson &
Siegel model. We encountered with negative values while we were trying to
calculate risk-free rates of short-terms like lengths with less than a week. This
values emerged due to the big differences between maturities of the Turkish
treasury bills, and the linearity of the Turkish market term structure. In other
words, the Svensson model could not provide reasonable values for short-terms
when there were large differences between maturities. Nevertheless, Nelson &
Siegel model gave almost the same results; hence, it model was not superior to
the Svensson model in these scenarios. In addition, a simple linear regression
might be sufficient to estimate the Turkish treasury bill data.

Most importantly, at the beginnings of Chapter 5, we described the Turkish
market in detail; its structure, process of evolution, important events, and fi-
nancial products traded within this market, and index options were discussed in
detail. All specifications of Borsa Istanbul index options were discussed in this
chapter.

Due to the fact that we were not able to use CBOE Vix methodology as it is, due
to the conflicts with the Turkish market, we had to made a few modifications in
the calculation steps. The changes that were made to get more efficient implied
volatility index can be summarized as follows:
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(1) Maturities of the index options were not suitable for the 30-day interpola-
tion, therefore we changed the calculation formula so as to reflect volatility
estimations of the next 60 days.

(2) We took into calculation the number of days until maturity as the time
parameter, and differently from the original Vix model we did not calculate
the parameter T in the unit of minutes, because we could do only end-of-
day calculations.

(3) While index options with zero bid prices are excluded from the index
calculation in original CBOE Vix formula, we excluded both index options
with zero bid prices and zero ask prices from our index calculations with
a view to increase the stability of the index.

(4) In the original formula, to find desired forward index level differences of
call and put options’ mid-quote prices are taken, but this computation
gave unintended results in our calculations and this step was changed
with taking absolute value of differences of call and put options’ mid-quote
prices.

Along with the changes above, implied volatility index calculations were made
for 250 trading days from January 2016 to January 2017, and we constituted an
implied volatility index for the XU030 index. An illustration of index calcula-
tions can be found in Appendix A. We found the correlation coefficient of XU030
index and implied volatility index as 0.115551359 and correlation coefficient of
realized volatility of XU030 and implied volatility index as -0.016752246. These
results were far from being satisfactory when we look at the correlation values
between FTSE100 and VFTSE, SMI and VSMI, DAX and VDAX-New, Euro
STOXX 50 and VSTOXX, CAC40 and VCAC. The main reason of inefficiency
was seemed to be having insufficient trading volumes of XU030 index options.

In the light of the results we obtained, we created 8 sub-intervals by removing
the jump days from the calculation, and re-calculated the index in these sub-
intervals. We achieved more successful index after this process, especially in
the 5th sub-interval, June 6 – July 15, index worked nearly perfect. In this
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sub-interval we obtained correlation coefficient of implied volatility index and
XU030 as -0.73670148. This value is even better than correlations of VFTSE
and FTSE 100.

Then, we excluded all trading days with jumps from whole dataset and re-
calculated the index, and we achieved more successful index than before. By
extracting jump days, we achieved correlation coefficient of XU030 and implied
volatility index as -0.286122145 for 235 trading days time frame. This situation
yields that the index is more successful when it is calculated at certain time
intervals.

At the moment, creating an implied volatility index for the BIST 30 index
that calculates market’s volatility expectation continuously may not be possible.
Instead, we can appeal to the index when major events do not take place in the
Turkish market. So, instead of calculating the index continuously, it would be
more efficient to make index calculation for the intervals at which market is
close to stability. This work can be seen as a preliminary study for an implied
volatility index that will be generated when the related conditions are matched.

In addition, index warrants issued by İş Investment and Deutsche Bank, are
the biggest opponents of XU030 index options contracts in the Turkish market.
There are no margin calls and margins on the warrants, besides all the respon-
sibility belongs to the issuer of the warrants. These features make warrants
more attractive for individual and institutional investors in the Turkish market.
Therefore, instead of BIST 30 index options, BIST 30 index warrants can be
used or included in further studies on BIST 30 implied volatility index. On
the other hand, in accordance with the studies of Barletta et al.(2017) [6], term
structure of the Turkish treasury bills can be investigated in a non-structural
method. This method does not need restrictive parameters on the underlying;
and hence, it can be used in further studies.
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APPENDIX A

AN EXAMPLE FOR AN INDEX CALCULATION

In this part of the study we tried to give implied volatility calculations of an
ordinary day from our sample period to illustrate index calculation steps. We
examined implied volatility calculation steps of February 2, 2016.

On February 2, 2016, there were index options with February, April, June and
December maturities. We only used options with February and April maturities,
because options with June and December maturities did not attract enough
demand in the market, and their trading volume was so close to zero. After
specifying maturities, as the next step we excluded index options with either
zero bid or ask prices. Index options remained after these steps can be seen in
Table A.1. Highlighted areas in the table represent excluded options.

Table A.1: Option series included in the index calculation

Near Term Options (Feb.2016) Next Term Options (Apr.2016)
Call Options Put Options Call Options Put OptionsStrike Bid Ask Bid Ask Strike Bid Ask Bid Ask

78000 0.1 0.1 78000 0.84 1.19
80000 80000 1.15 1.56
82000 0.31 0.54 82000 1.25 1.75
84000 0.5 0.75 84000 7 7.64 1.67 2.42
86000 4.08 4.42 0.93 1.17 86000 5.7 6.28 2.22 2.72
88000 2.76 3.12 1.54 1.83 88000 3.98 4.48 2.92 3.42
90000 1.68 1.92 2.47 2.66 90000 2.93 3.43 3.82 4.32
92000 0.81 1.1 3.57 3.87 92000 2.09 2.59 4.92 5.42
94000 0.37 0.61 5.11 5.41 94000 1.45 1.95
96000 0.15 0.4 96000 0.99 1.24
98000 0.1 0.25 98000 0.67 0.92
100000 0.02 0.3 1.01 19.98
102000
104000
106000 0.01 0.01
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The second step is to determine T values for near term and next term. T1

and T2 are the time variables of index options with February 2016 and April
2016 maturities respectively. There were 28 days between February 2, 2016 and
February 29, 2016, and there were 88 days between February 2, 2016 and April
29, 2016. So,

T1 = 28
365 = 0.076712329, and T2 = 88

365 = 0.24109589.

Thirdly, after calculating T values, we need to determine risk-free interest rates
for near-term and next-term options. As we have already mentioned before, if
we do not have the interest rate data for the near term and next term options’
expiration day, we need to obtain the data via curve fitting methods. As it can
be seen in Table A.2, there were no treasury bill that will expire on February
29, 2016 or April 29, 2016 at the market.

Table A.2: Turkish Treasury bill data for February 2016

Days to Maturity Weighted Average Price Yield

28 - -
44 98.895 0.01105
47 98.835 0.01165
48 98.773 0.01227
48 98.793 0.01207
49 98.747 0.01253
56 98.556 0.01444
57 98.508 0.01492
58 98.492 0.01508
61 98.406 0.01594
62 98.37 0.0163
63 98.328 0.01672
64 98.297 0.01703
65 98.271 0.01729
70 98.1 0.019
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71 98.092 0.01908
72 98.066 0.01934
88 - -
103 97.416 0.02584
105 97.336 0.02664
106 97.288 0.02712
107 97.346 0.02654
111 97.136 0.02864
112 97.111 0.02889
119 96.812 0.03188
121 96.838 0.03162
127 96.638 0.03362
175 95.501 0.04499
176 95.378 0.04622
177 95.353 0.04647
180 95.3 0.047
182 95.183 0.04817
183 95.157 0.04843
188 95.052 0.04948
191 95.027 0.04973
195 94.832 0.05168
196 94.807 0.05193
289 92.191 0.07809
289 92.199 0.07801
292 92.151 0.07849
292 92.149 0.07851
293 92.052 0.07948
293 92.092 0.07908
294 91.881 0.08119
294 92.011 0.07989
294 91.971 0.08029
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295 91.946 0.08054
295 91.924 0.08076
296 91.897 0.08103
296 91.837 0.08163
299 91.755 0.08245
299 91.765 0.08235
300 91.685 0.08315
300 91.725 0.08275
301 91.675 0.08325
301 91.689 0.08311
302 91.672 0.08328
303 91.697 0.08303
306 91.662 0.08338
307 91.597 0.08403
308 91.577 0.08423
308 91.611 0.08389
309 91.557 0.08443
309 91.552 0.08448
310 91.562 0.08438
313 91.461 0.08539
314 91.495 0.08505
314 91.463 0.08537
315 91.41 0.0859
315 91.424 0.08576
316 91.392 0.08608
316 91.377 0.08623
317 91.57 0.0843

We used Excel for calculating approximated values of missing treasury bill rates
via Svensson model. To get Svensson model values, the following steps were
followed in Excel in order:

98



(1) Debt instruments data for the month of calculation day, here February
2016 data, was transferred to an Excel sheet. In next steps, just columns
of “Days to Maturity”and “Weighted Average Price”are going to be needed.
So, importing just these two columns is going to be enough.

(2) We needed to convert days to maturity data to the years to maturity
data. So, we divided all members of the column “Days to Maturity”by 365.
Then, we needed yields of each treasury-bill. We could get “Yields”column
by applying the simple rate of return formula, ln

(
Pt
Pt−1

)
, to all elements

of “Weighted Average Price”column from the beginning to the end respec-
tively. Meanwhile, do not forget to sort both columns with respect to
“Years to Maturity”column from the least to the most and also do not
forget to leave the columns we will try to find empty.

(3) In Svensson model, apart from maturity and yield variables, we need to
have additional six parameters. We created a column for these parameters
and we called these parameters as β0, β1, β2, β3, τ1 and τ2. We assigned 1
to all of these six parameters as the initial value. There was not a specific
reason for selecting this initial value, these values will change in next steps.
So, 0 or anything else can be assigned.

(4) After those steps, we are ready to create “Svensson Yield”column. At the
first row of this column we wrote the Svensson formula (See Eq. A.1), and
found the results of this formula for all data respectively.

Svenssont = β0 + β1

(
1− exp

(−Maturityt
τ1

))
(Maturityt

τ1

) + β2

(
1− exp

(−Maturityt
τ1

))
(Maturityt

τ1

)

− β2 exp
(−Maturityt

τ1

)
+ β3

(
1− exp

(−Maturityt
τ2

))
(Maturityt

τ2

)
− β3 exp

(−Maturityt
τ2

)
.

(A.1)
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We created “Svensson Yield”column, and then we needed to create
“Residue”column. In this column we calculated the square of the differences
of each same rows of “Yield”and “Svensson Yield”columns. “Residue”column
can be created easily by using the following short algorithm:

“If Yieldt > 0 then Residuet = (Yieldt − Svensson Yieldt)2 else do nothing”.

Lastly, we created a cell, “Sum of Residues”, to conclude our treasury-bill calcu-
lation steps. In this cell all of the elements of “Residue”column were summed,
and then Excel solver was utilized to calculate minimum value of “Sum of
Residues”through changing β0, β1, β2, β3, τ1 and τ2 parameters. After the
calculation was done in a meaningful way, we get risk-free rates that were not
available in the market. Excel sheets that show the results of these steps can be
observed in Figure A.1a, Figure A.1b and Figure A.2.

(a) Svensson calculations Excel sheet (b) Svensson calculations Excel sheet cont.
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Figure A.2: Svensson calculations Excel sheet cont.

As it can be seen in the figures, we got 0.006057 and 0.022763 as the rates
of 28-day and 88-day risk-free interest rates, respectively. This estimation was
completed with total error term of 5.08589 · 10−5.

The next step was to find strike prices with the least absolute differences. The
comparisons were made between the mid-quote prices of put and call options
with same strike prices for near and next-term options. Only examining the put
and call options with the same strike prices was enough.

Table A.3: Call and put options with the same strike prices

Near-Term Options Next-Term Options
Strike
Price

Call Opt.
Mid-Quote

Put Opt.
Mid-Quote

Absolute
Diff.

Strike
Price

Call Opt.
Mid-Quote

Put Opt.
Mid-Quote

Absolute
Diff.

86000 4.25 1.05 3.2 84000 7.32 2.045 5.275
88000 2.94 1.685 1.255 86000 5.99 2.47 3.52
90000 1.8 2.565 0.765 88000 4.23 3.17 1.06
92000 0.955 3.72 2.765 90000 3.18 4.07 0.89
94000 0.49 5.26 4.77 92000 2.34 5.17 2.83
100000 0.16 10.495 10.335

As it can be seen in Table A.3, index options with strike price 90000 had the
least absolute difference of mid-quote prices for both near-term and next-term
options. Hence, we have everything to calculate desired forward index level F
for near and next-terms:

101



F = Strike Price + eRT · |Call Price - Put Price|

Here, “Strike Price”is the strike price of the index options with the minimum
absolute difference. “Call Price”and “Put Price”represent mid-quote prices of
call and put options with strike prices that have minimum mid-quote price dif-
ferences respectively. Below F1 and F2 represent desired forward index levels for
near and next-terms respectively. K1 and K2 are the highest strike prices below
the forward index levels for near and next-terms respectively.

F1 = 90000 + e(0.00606·0.0767)· | 1.8− 2.565 |= 90000.77 and K0,1 = 90000

F2 = 90000 + e(0.02276·0.2411)· | 3.18− 4.07 |= 90000.89 and K0,2 = 90000

Then, we determined the index options included in the calculations according
to K0,1 and K0,2 values we found. For both near-term and next-term implied
volatility calculations, same procedure was applied. We took K values as the
limiting points, and we chose into calculation the put options with strike prices
lower than K and the call options with strike prices higher than K values. In
addition to that, we included average of the call and put options with the strike
prices equal to the K0,1 and K0,2 values as a single option. After we listed index
options, we calculated contributions of each index options to the volatility index
value. We employed Eq. A.2 to find contributions, and the results for February
2, 2016 can be observed in Table A.4.

Contribution to the index = 2
T
·
∑
i

∆Ki

K2
i

· eR1·T1 ·Q(Ki) (A.2)
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Table A.4: Options’ contributions to the index value

Near-Term Options

Strike Price Option Type Mid-Quote
Price Contribution

78000 Put 0.1 6.57768E-08
82000 Put 0.425 1.89707E-07
84000 Put 0.625 1.77237E-07
86000 Put 1.05 2.84069E-07
88000 Put 1.685 4.35378E-07
90000 Put&Call 2.1825 5.39139E-07
92000 Call 0.955 2.25767E-07
94000 Call 0.49 1.10961E-07
96000 Call 0.275 5.97066E-08
98000 Call 0.175 3.64601E-08
100000 Call 0.16 6.40297E-08
106000 Call 0.01 5.34246E-09

Next-Term Options

Strike Price Option Type Mid-Quote
Price Contribution

78000 Put 1.015 3.35498E-07
80000 Put 1.355 4.25768E-07
82000 Put 1.5 4.48618E-07
84000 Put 2.045 5.82838E-07
86000 Put 2.47 6.71604E-07
88000 Put 3.17 8.23204E-07
90000 Put&Call 3.625 8.99987E-07
92000 Call 2.34 5.55973E-07
94000 Call 1.7 3.86907E-07
96000 Call 1.115 2.43302E-07
98000 Call 0.795 1.66467E-07
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Total contributions of the near-term options to the near-term implied volatil-
ity value was 5.71896E − 05 and total contributions of the next-term options
to the next-term implied volatility value was 4.59582E − 05. These numbers
were obtained by multiplying the sum of near-term and the sum of next-term
contributions with 1

T
.

Next step was to find the value of 1
Tj
·
[
Fj
K0
− 1

]2
, the second term of Eq. 2.16.

This term was equal to 9.42706E−10, 4.10083E−10 for near-term and next-term
implied volatilities, respectively. Thus, we found σ2

1 and σ2
2 as follows:

σ2
1 = 5.71887E − 05 and σ2

2 = 4.59578E − 05.

As the last step of the whole calculation process, we calculated the 60-day
weighted average of σ2

1 and σ2
2, then we took the square root of that value

and multiplied by 100. Finally, we have the implied volatility index value for
February 2, 2016 with the calculations of:

Volatility Index Value =

100 ·
√(

T1 · σ12 · NT2 −N60

NT2 −NT1

+ T2 · σ22 · N60 −NT1

NT2 −NT1

)
· N365

N60

= 100 ·
(0.076712329 · 0.0000571887·

0.24109589 · 24 · 60− 60 · 24 · 60
0.24109589 · 24 · 60− 0.076712329 · 24 · 60+

0.24109589 · 0.0000459578 · 60 · 24 · 60− 0.076712329 · 24 · 60
0.24109589 · 24 · 60− 0.076712329 · 24 · 60

)

· 365 · 24 · 60
60 · 24 · 60

 1
2

= 12.19396962.
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