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ABSTRACT

EXIT PROBABILITIES OF CONSTRAINED SIMPLE RANDOM WALKS

Ünlü, Kamil Demirberk

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2018, 79 pages

Consider a nearest neighbor stable two dimensional random walk X constrained to
remain on the positive orthant. X is assumed stable, i.e., its average increment points
toward the origin. X represents the lengths of two queues (or two stacks in computer
science applications) working in parallel. The probability pn that the sum of the com-
ponents of this random walk reaches a high level n before the random walk returns to
the origin is a natural performance measure, representing the probability of a buffer
overflow in a busy cycle. The stability of the walk implies that pn decays exponen-
tially in n. Let Y be the same constrained random walk as X , but constrained only
on its second component and the jump probabilities on its first component reversed.
The present thesis shows that one can approximate pn with the probability that com-
ponents of Y ever equal each other, with exponentially decaying relative error, if X
starts from an initial point with nonzero first component. We further construct a class
of Y -harmonic functions from single and conjugate points on a characteristic surface,
with which the latter probability can be either computed perfectly in some cases, or
approximated with bounded relative error in general. We provide numerical exam-
ples showing the effectiveness of the computed approximations and indicate possible
applications of our results in finance and insurance.

Keywords: Approximation of probabilities of rare events, exit probabilities, con-
strained random walks, queueing systems, shared memory management, large de-
viations, credit risk, modeling of insurance and financial systems
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ÖZ

KISITLI BASİT RASTGELE YÜRÜYÜŞLERİN ÇIKIŞ OLASILIKLARI

Ünlü, Kamil Demirberk

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2018 , 79 sayfa

X iki boyutta en yakın komşularına geçerek hareket eden, pozitif koordinat düzle-
mine kısıtlı bir rastgele yürüyüş olsun. Bu yürüyüşün dengeli olduğu farz edilsin yani,
artışlarının ortalaması orijin ((0, 0) noktası) yönünde olsun. X , iki paralel kuyruk
sistemindeki kuyruk uzunluklarını veya bilgisayar biliminde iki yığının uzunluğunu
temsil etmektedir. pn, rastgele yürüyüşün her iki bileşeninin toplamının orijine geri
dönmeden n gibi büyük bir değere ulaşması olasılığını göstersin. pn olasılığı bu sis-
temler için doğal bir performans ölçüsüdür ve yoğun bir döngüde taşma olasılığını
ifade etmektedir. Rastgele yürüyüşün dengeli olmasından dolayı pn olasılığı, n art-
tıkça üstel hızla sıfıra yakınsar. Y , X ile aynı özelliklere sahip fakat sadece ikinci bi-
leşeni kısıtlı ve birinci bileşeninin artış olasılıkları yer değiştirmiş iki boyutlu rastgele
yürüyüş olsun. Bu tez, X’in başlangıç noktasının birinci bileşeni 0 dan farklı seçil-
diğinde, pn olasılığının, Y rastgele yürüyüşünün pn’e karşılık gelen bir olasılığıyla
yaklaşık olarak hesaplanabildiğini ve bu yaklaşık hesapta göreli hatanın üstel hızla
sıfıra yakınsadığını göstermektedir. Ayrıca bu tezde bir karakteristik yüzey üzerin-
deki tek ve eşlenik noktalardan yola çıkarak Y -harmonik fonksiyonları oluşturulmuş
ve bu fonksiyonlar kullanılarak Y ’nin pn’e karşılık gelen olasılığı, bazı durumlarda
mükemmel şekilde ve genel olarak üstten sınırlı göreceli hata ile yaklaşık olarak he-
saplanmıştır. Yapılan hesaplamaların etkinliğini gösteren sayısal örnekler verilmiş ve
bu hesaplamaların finans ve sigortacılık sektörlerindeki olası uygulamalarından bah-
sedilmiştir.

Anahtar Kelimeler: Nadir olayların olasılıklarının yaklaşık hesabı, çıkış olasılıkları,
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kısıtlı rastgele yürüyüş, kuyruk sistemleri, paylaşımlı bellek yönetimi, büyük sapma-
lar, kredi riski, sigorta ve finansal sistemlerin modellenmesi
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CHAPTER 1

INTRODUCTION

A random walk is said to be constrained if its dynamics force it to remain in a given

set. Constrained random walks can be used to model a great variety of systems from

queueing systems, proccesses using a computer’s memory, computer networks to net-

works of companies. The simplest constrained random walk arises from the modeling

of a single queue depicted in Figure 1.1.

Queue Server
µλ

Figure 1.1: The M/M/1 queue

This is a system modeling the arrival of customers to a system to receive service; the

arrival is Poisson with rate λ, the service rate is exponential with rate µ. There is no

loss of generality in assuming that the rates add to 1; if not, one can renormalize them

without changing any of the quantities that we will be working with, for this reason

we will always assume that the rates add to 1. If we observe this system at arrivals

and service completions we can model it using a constrained random walk S on the

positive integers (see Figure 1.2). A jump to the right (occurring with probability

λ) represents a customer arrival and a jump to the left (occurring with probability µ)

represents a service completion; the walk represents the number customers at jump

k. The constraining boundary for S is 0. When S hits 0 it cannot jump to the left

anymore, i.e., when the system is empty no service can happen. In this discussion we

have used the random walk S as a model of a queue; it can also be used to model the

reserves or the equity of a single company, for example, as in [67, Chapter 5]. In that
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interpretation, hitting 0 corresponds to the default of the company.

λ

n1 20 n− 2 n− 1

µ

Figure 1.2: The simple random walk

A stability condition associated with S is the following: λ < µ, i.e., the system

serves on average faster than the arrival rate. Stability is a desirable property, most

systems are designed to be stable so that they can perform predictably and reliably.

Throughout this thesis we will work with stable processes under assumptions similar

to this.

S is mathematically very simple because it is single dimensional. Multidimensional

models constrained random walks arise as models of systems with multiple compo-

nents. The simplest of these are corresponds to two tandem queues (Figure 1.3) and

two parallel queues (Figure 1.4).

Queue QueueServer Server
µ2λ µ1

Figure 1.3: Two tandem network

In the two tandem queues there are two servers. Customer (or jobs / packages / claims

depending on the application) arrive to the first server according to a Poisson process

with rate λ then receive service at server 1 and wait for service in the second queue to

receive service at server 2. The service times are exponentially distributed with rates

µ1 and µ2, respectively.

Server

Queue Server

Queue

λ1 µ1

µ2λ2

Figure 1.4: Two parallel queues

In two parallel queues, customers arrive at queues 1 and 2 with rates λ1 and λ2, then

2



they are serviced at Server 1 and Server 2 with the rates µ1 and µ2.

The state of these systems at the kth jump of the system are represented by a two

dimensional constrained random walk X on the positive orthant Z2
+; the first [second]

component represents the number of jobs in the first [second] queue. The

∂1 = {x ∈ Z
2 : x(1) = 0, x(2) > 0}, ∂2 = {x ∈ Z

2 : x(2) = 0, x(1) > 0}

serve as the constraining boundaries; the meaning of the constraints is the same as

in the case of a single queue: when a queue is empty no service can happen in that

queue. The dynamics of the tandem walk is given in Figure 1.5; the dynamics of the

parallel walk is given in Figure 1.6. The constrained random walk corresponding to

the two parallel queues is also called a simple constrained random walk. In this thesis

we will focus on this random walk.

µ1

λ

µ2

n

n

Figure 1.5: Two dimensional constrained random walk

The stability assumption for the tandem walk is λ < µ1, µ2; the stability assumption

for the simple random walk is λi < µi, i = 1, 2.

Define the stopping times

τn
.
= inf{k > 0 : Xk(1) +Xk(2) = n},

3



i.e., the first time the sum of the components of the walk X equals n. A natural

performance measure associated with the walk X is the following probability:

pn(x)
.
= Px(τn < τ0).

This probability can be represented geometrically as follows. Define the region

An =
{
x ∈ Z

2
+ : x(1) + x(2) ≤ n

}
, (1.1)

and its boundary

∂An =
{
x ∈ Z

2
+ : x(1) + x(2) = n

}
. (1.2)

pn is then the probability that X hits 0 before hitting the diagonal line ∂An.

∂1

0

λ2

µ2

∂An

µ1 λ1

An

∂2

Figure 1.6: Dynamics of X , ∂An and An

Its stability implies that X moves, on average, towards the origin. This means that

these systems work in cycles restarting each time X hits 0. The probability pn has the

following practical interpretation: suppose that the customers (or packets / jobs etc.)

arriving at the system is stored in a joint buffer of size n. pn is the probability that a

cycle starting from point x ends with a buffer overflow, i.e., system failure.

In single dimension (i.e., for the constrained random walk S of Figure 1.2) the com-

putation of pn is trivial, one can find explicit formulas to it by solving the single

dimensional recursive equation that it satisfies. As soon as one goes to two dimen-

sions, the problem turns out to be difficult and its solution has received considerable

4



attention over the last three decades. Even the effective computation of pn via simu-

lation proved difficult [33]. Asymptotically optimal importance sampling algorithms

for it were constructed in [25]; more details about this study can be found in Chapter

5; see also [25] for further references on importance sampling for this probability.

Recently [64] developed approximation formulas for pn and proved that the relative

error of these formulas converge to 0 exponentially for the two tandem walk. The goal

of this thesis to extend these formulas to the simple random walk and prove that the

relative error for these formulas also go to 0 for the simple random walk.

Although the main approach of the present work is parallel to that of [64, 65], many

new challenges appear in the treatment of the two parallel queues and new ideas and

techniques are required to meet these challenges; there are also differences in the

assumptions made and the results obtained. We make a detailed comparison of these

two cases in Section 6.1 of the Conclusion (Chapter 6).

In the rest of this introduction we explain the approach of this thesis to the approxi-

mation of the probability pn and lay out our main results. This is done in Section 1.2.

The further notation needed for this is given in the next section. The plan for the rest

of the thesis is given in Section 1.3.

1.1 Definitions

Let us begin with a formal definition of the simple random walk. For this we need the

constraining map π: X ∈ ∂i when ith queue is empty. Since server can only serves

π(x, v)
.
=




v, if x+ v ∈ Z2

+,

0, otherwise,

π constraints the random walk X on positive quadrant, Z2
+. Let Ik be an independent

and identically distributed (iid) sequence taking values in {(1, 0), (−1, 0), (0, 1), (0,−1)}.

X , the constrained random walk, can be written as

X0 = x ∈ Z
2
+, Xk+1

.
= Xk + π(Xk, Ik), k = 1, 2, 3, ...

5



∂2

λ2

λ2

µ1

λ2

λ1

λ1

λ1

µ2

µ2

µ1

µ2

µ1

∂1

Figure 1.7: The increments of X and the reflecting boundaries

The utilization rates of the nodes are:

ρi =
λi

µi
, i = 1, 2.

We assume that X is stable, i.e.,

ρ1 < 1 and ρ2 < 1.

The system utilization rate:

r =
λ1 + λ2

µ1 + µ2

plays a central role in our analysis. Without loss of generality we can assume

ρ2 ≤ r ≤ ρ1. (1.3)

If this doesn’t hold, we can rename the nodes so that this holds.

We will make two further technical assumptions:

ρ1 6= ρ2,
r2

ρ2
< 1. (1.4)

The first of these is needed in the construction of the Y -harmonic functions in Section

2.1, see (2.6). The second is useful both in the computation of Py(τ < ∞) (see the

proof of Proposition 2.21) and in the limit analysis (see the proof of Proposition 2.8).

We further comment on these assumptions in the Conclusion (Section 6.2).

6



Define the linear transformation

I .
=


−1 0

0 1


 ,

and the affine transformation

Tn = ne1 + I,

where (e1, e2) is the standard basis for R2. Furthermore, define the constraining map

π1(x, y) =




y, if x+ y ∈ Z× Z+,

0, otherwise.

Define Y to be a constrained random walk on Z× Z+ with increments

Jk
.
= IIk, (1.5)

Yk+1 = Yk + π1(Yk, Jk).

Y has the same increments as X , but the probabilities of the increments ei and −ei

are reversed.

Define

B ⊂ Z× Z+,

B
.
= {y : y(1) = y(2)} ,

and the hitting time

τ
.
= inf {k : Yk ∈ B} .

A function h on Z× Z+ is said to be Y -harmonic if

Ey[h(Y1)] = h(y), y ∈ Z× Z+.

1.2 Summary of our analysis

[64, Proposition 3.1] asserts, in a more general framework than the model given

above, that for any y ∈ Z2
+, y(1) > y(2), PTn(y)(τn < τ0) → Py(τ < ∞). The

approximation idea connecting these two probabilities is shown in Figure 1.8: by

7



applying Tn, we move the origin of the coordinate system to (n, 0) and take limits,

which leads to the limit problem of computing Py(τ < ∞) where the limit Y process

is the same process as X (observed from the point (n, 0)) but not constrained on ∂1.

µ1

0 0

λ2 λ2

µ2 µ2

X

nen

∂An

µ1 λ1 µ1λ1

nen

λ1

λ2

µ2

n → ∞Tn

Y n Y

∂Bn ∂B

Figure 1.8: Transformations and the limit problem

A more interesting convergence analysis is when the initial point is given in x coor-

dinates. A convergence analysis from this point of view has only been performed so

far for the two tandem queues in [64, 65]. The goal of the present work is to extend

this analysis to two parallel queues. Our main result is the following theorem:

Theorem 1.1. For any x ∈ R2
+, x(1) + x(2) < 1, x(1) > 0, there exists C7 > 0 and

N > 0 such that

|Pxn
(τn < τ0)− PTn(xn)(τ < ∞)|

Pxn
(τn < τ0)

< e−C7n,

for n > N , where xn = ⌊xn⌋.

Thus, as n increases PTn(xn)(τ < ∞) approximates Pxn
(τn < τ0) very well (with

exponentially decaying relative error in n) if x(1) > 0. In the tandem case there is a

simple explicit formula for Py(τ < ∞). In the parallel walk case a simple explicit

formula exists under the additional condition

ρ1ρ2 = r2. (1.6)

The formula for Py(τ < ∞) under this condition is

Py(τ < ∞) = ry(1)−y(2) +
(1− r)r

r − ρ2

(
ρ
y(1)
1 − ry(1)−y(2)ρ

y(2)
1

)
. (1.7)

8



1.3 Plan of the thesis

Chapter 2 devoted to the approximation of pn. The formula (1.7) is derived in Propo-

sition 2.21 and is based on the class of Y -harmonic functions constructed in Section

2.1 from single and conjugate points on a characteristic surface associated with Y .

A generalization of (1.7) can be used to find upper and lowerbounds for Py(τ < ∞)

when (1.6) doesn’t hold, see Propositions 2.22 and 2.25. Subsection 2.6.1 illustrates

how one can use these results to construct finer approximations of Py(τ < ∞) with

diminishing relative error using superposition of Y -harmonic functions defined by

single and conjugate points on the characteristic surface.

Define the stopping times

σ1 = inf{k : Xk ∈ ∂1}, σ̄1 = inf{k : Tn(Yk) ∈ ∂1}. (1.8)

If we set the initial position of Y to Y0 = Tn(X0), we have

{τn < τ0} ∩ {τn < σ1 ∧ τ0} = {τ < ∞} ∩ {τ < σ̄1 < ∞}.

The main argument in the proof of Theorem 2.19 is this: most of the probability

of the events {τn < τ0} and {τ < ∞} come from the events {τn < σ1 ∧ τ0} and

{τ < σ̄1 < ∞} respectively, if the initial position X0 of X is away from ∂1. The full

implementation of this argument will require the following steps:

1. Construction of Y -harmonic functions, Y − z harmonic functions and bounds

on Ey[z
τ1{τ<∞}] for z > 1 (Sections 2.1 and 2.2); (this step is mathematically

one of the most novel aspects of the thesis, see the comparison in Section 6.1),

2. Large deviations (LD) analysis of Pxn
(τn < τ0) (Section 2.3),

3. LD analysis of Pxn
(σ1 < τn < τ0) (Section 2.4),

4. LD analysis of Pxn
(σ̄1 < τ < ∞) (Subsection 2.4.1).

These steps are put together in Section 2.5. Section 2.6 treats the problem of comput-

ing Py(τ < ∞) from the Y -harmonic functions of Section 2.1.

9



In computer science the constrained simple random walks are used to model multiple

stacks running on a joint memory; the time τn represents a memory overflow. A

quantity that is tightly connected to pn that has been studied in the computer science

context is the following expectation:

Ex[max(Xτn(1), Xτn(2))]. (1.9)

This is the expectation of the size of the largest stack when a memory overflow oc-

curs. The analysis of this expectation has received wide attention since [41] where

the problem is introduced. In Chapter 3 we point out how the methods and approx-

imations methods we develop for pn can be used to analyze this expectation and we

provide a numerical example that the approach does give accurate approximations for

a range of initial points x. A rigorous analysis of this approximation, including proofs

of convergence, remains for future work. Chapter 5 gives a literature review of some

of the works treating the expectation above.

In insurance and finance applications constraints can represent dividend payments

or short selling restrictions; hitting boundaries can represent default or total reserves

hitting a threshold. Chapter 4 gives two examples from insurance and finance demon-

strating these applications.

Chapter 5 is devoted to the literature on analysis of pn. Firstly we summarize [25,

33, 36, 60], which are works on importance sampling and large deviations analysis of

constrained random walks with iid increments arising from queueing networks. We

further review [64, 65] whose transformation and approximation techniques we apply

in this thesis to the calculation of pn for the simple random walk. Lastly we consider

the works [28] and [68], which study the expecation (1.9) under various assumptions

on the jump distribution of the underlying walk.

Finally, Chapter 6, the Conclusion of our thesis, compares the analyses of the tandem

and paralel constrained random walks and discusses directions for future research.
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CHAPTER 2

APPROXIMATION OF THE EXIT PROBABILITIES

2.1 Harmonic functions of Y

Following [64], introduce the interior characteristic polynomial of Y :

p(β, α)
.
= λ1

1

β
+ µ1β + λ2

α

β
+ µ2

β

α
.

and characteristic polynomial of Y on ∂2:

p1(β, α)
.
= λ1

1

β
+ µ1β + λ2

α

β
+ µ2.

As in [64], we will construct Y -harmonic functions from solutions of p = 1; the set

of all solutions of this equation defines the characteristic surface

H .
= {(β, α) ∈ C

2 : p(β, α) = 1},

define, similarly, the characteristic surface for ∂2:

H1
.
= {(β, α) ∈ C

2 : p1(β, α) = 1},

Multiplying both sides of p = 1 by α transforms it to the quadratic equation

α

(
λ1

1

β
+ µ1β − 1

)
+ λ2

α2

β
+ µ2β = 0, (2.1)

Define

α(β, α)
.
=

1

α

β2

ρ2
; (2.2)

if for a fixed β, α1 and α2 are distinct roots of (2.1), they will satisfy

α2 = α(β, α1),
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by simple algebra; we will call the points (β, α1) ∈ H and (β, α2) ∈ H arising from

such roots conjugate. Following [64] we refer to the function α as the conjugator. An

example of two conjugate points for the real section of the characteristic surface H
for λ1 = 0.15, λ2 = 0.2, µ1 = 0.25, µ2 = 0.4; the end points of the dashed line are

an example of a pair of conjugate points (β, α1) and (β, α2). Each such pair defines

a Y -harmonic function, see Proposition 2.3, are shown in Figure 2.1.

0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

α

β

Figure 2.1: The real section of the characteristic surface H

For any point (β, α) ∈ H define the following C-valued function on Z2:

z 7→ [(β, α), z], z ∈ Z
2,

[(β, α), z]
.
= βz(1)−z(2)αz(2).

Lemma 2.1. [(β, α), ·] is Y -harmonic on Z×Z+ − ∂2 when (β, α) ∈ H. In addition

x 7→ [(β, α), Tn(x)], x ∈ Z2
+, is X-harmonic on Z2

+ − ∂1 ∪ ∂2.
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Proof. As in [64], the first claim follows from the definitions involved:

Ez[(β, α), Z1] = µ1β
z(1)−z(2)+1αz(2) + λ2β

z(1)−z(2)−1αz(2)+1

+ λ1β
z(1)−z(2)−1αz(2) + µ2β

z(1)−z(2)+1αz(2)−1

= βz(1)−z(2)αz(2)

(
λ1

1

β
+ µ1β + λ2

α

β
+ µ2

β

α

)

= βz1−z2αz2p(β, α) = [(β, α), z].

and the second claim follows from the first and the fact that Jk = IIk (see (1.5)).

Define

C(β, α)
.
=

(
1− β

α

)
, (β, α) ∈ C

2, α 6= 0.

Proceeding parallel to [64], one can define the following class of Y -harmonic func-

tions from the functions [(β, α), ·]:

Proposition 2.2. Suppose (β, α) ∈ H ∩H1. Then [(β, α), ·] is Y -harmonic.

Proof. Lemma 2.1 says that for (β, α) ∈ H, [(β, α), ·] is Y -harmonic on Z×Z+−∂2.

An argument parallel to the proof of Lemma 2.1 given as:

Ez [(β, α), Z1] = µ1β
z(1)−z(2)+1αz(2) + λ2β

z(1)−z(2)−1αz(2)+1

+ λ1β
z(1)−z(2)−1αz(2) + µ2β

z(1)−z(2)αz(2)

= βz(1)−z(2)αz(2)

(
λ1

1

β
+ µ1β + λ2

α

β
+ µ2

)

= βz1−z2αz2p1(β, α) = [(β, α), z].

[(β, α), ·] is Y -harmonic on ∂2 when (β, α) ∈ H1. These two facts imply the state-

ment of the proposition.

The next proposition gives us another class of Y -harmonic functions constructed from

conjugate points on H, it is a special case of [64, Proposition 4.9]:

Proposition 2.3. Suppose (β, α1) 6= (β, α2), are conjugate points on H. Then

hβ
.
= C(β, α2)[(β, α1), ·]− C(β, α1)[(β, α1), ·]

13



is Y -harmonic.

For sake of completeness and easy reference, let us reproduce the argument given in

the proof of [64, Proposition 4.9]:

Proof. That hβ is Y -harmonic on Z× Z+ − ∂2 follows from Lemma 2.1. For y ∈ ∂2

a direct computation gives:

Ey[[(β, αi), y + π1(y, J1)]]− [(β, αi), y]

= µ1β
y(1)+1 + λ1β

y(1)−1 + λ2β
y(1)−1α + µ2β

y(1) − βy(1)

= βy(1)

(
µ1β + λ1

1

β
+ λ2

α

β
+ µ2 − 1

)

= βy(1)

(
µ1β + λ1

1

β
+ λ2

α

β
+ µ2

β

α
− µ2

β

α
+ µ2 − 1

)

= βy(1)

(
1− µ2

β

α
+ µ2 − 1

)

= βy(1)

(
µ2

(
1− β

α

))

= C(β, αi)β
y(1).

It follows that

Ey[hβ(y + π1(y, J1)]− hβ(y) = C(β, α1)C(β, α2)(β
y(1) − βy(1)) = 0,

i.e., hβ is Y -harmonic on ∂2 as well.

The intersection of H and H1 consists of the points (0, 0), (1, 1) and (ρ1, ρ1). The last

of these gives us our first nontrivial loglinear Y -harmonic function:

Lemma 2.4. [(ρ1, ρ1), ·] is Y -harmonic.

The proof follows from Proposition 2.2 and the fact that (ρ1, ρ1) ∈ H ∩ H1. Fixing

β ∈ C and solving (2.1) gives us the two conjugate points corresponding to β. It is

also natural to start the computation from a fixed α and find its β and its conjugate.

For this, one rewrites p = 1, now as a polynomial in β:

(
µ1 +

µ2

α

)
β2 − β + λ1 + λ2α = 0. (2.3)
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For α fixed, the roots of (2.3) are

β1(α) =
1 +

√
∆(α)

2
(
µ2

α
+ µ1

) , β2(α) =
1−

√
∆(α)

2
(
µ2

α
+ µ1

) , (2.4)

where

∆(α) = 1− 4
(µ2

α
+ µ1

)
(λ1 + λ2α),

and for z ∈ C,
√
z is the square root of z satisfying R(

√
z) ≥ 0.

The function y 7→ Py(τ < ∞) takes the value 1 on ∂B; therefore, of special signifi-

cance to us is the solution of (2.3) with α = 1. The roots (2.4) for α = 1 are

β1(1) =
1 +

√
(2λ1 + 2λ2 − 1)2

2(µ1 + µ2)
=

2(λ1 + λ2)

2(µ1 + µ2)
= r,

β2(1) =
1−

√
(2λ1 + 2λ2 − 1)2

2(µ1 + µ2)
=

2(1− λ1 − λ2)

2(µ1 + µ2)
= 1.

That r ≤ ρ1 < 1 implies C(r, 1) = (1− r) 6= 0. The assumption ρ1 6= ρ2 implies

C(r,α(r, 1)) = 1− r

α(r, 1)
= 1− r

ρ2
r2

= 1− ρ2
r

6= 0.

Therefore, by Proposition 2.3, the root β1 = r above defines the Y -harmonic function

hr = C(r,α(r, 1))[(r, 1), ·]− C(r, 1)[(r,α(r, 1)), ·]

= (1− ρ2/r)[(r, 1), ·]− (1− r)[(r, r2/ρ2), ·].

For this function to be useful in our analysis, we need r2/ρ2 < 1 (see Proposition

2.20), therefore, we assume:
r2

ρ2
< 1. (2.5)

The scalar multiple of hr is frequently used in the calculations, therefore, we will

denote it in bold thus:

hr =
1

1− ρ2/r
hr = [(r, 1), ·]− 1− r

1− ρ2/r
[(r, r2/ρ2), ·]; (2.6)

the assumption ρ1 6= ρ2 ensures that the denominator 1− ρ2/r is nonzero.
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2.2 Laplace transform of τ

To bound approximation errors we will have to argue that we can truncate time with-

out losing much probability. For this, it will be useful to know that there exists z > 1

such that

Ey

[
zτ1{τ<∞}

]
< ∞. (2.7)

In [64, 25], bounds similar to this are obtained using large deviations arguments,

which are based on the ergodicity of the underlying chain. In [59], again a similar

bound is obtained invoking the geometric ergodicity of the underlying process. The

process underlying (2.7) is not stationary. For this reason, these arguments do not

immediately generalize to the analysis of (2.7). To prove the existence of z > 1 such

that (2.7) holds, we will extend the characteristic surface an additional dimension

to include a new parameter; points on the generalized surface will correspond to dis-

counted (in our case we are in fact interested in inflated costs) expected cost functions

of the process Y , i.e., points on this surface will give us functions of the form

Ey

[
zτg(τ)1{τ<∞}

]
.

We will use these functions to find our desired z.

2.2.1 1/z-level characteristic surfaces and Y -z-harmonic functions

The development in this subsection is parallel to Section 2.1 with an additional vari-

able z ∈ C. A function h on Z× Z+ is said to be Y − z-harmonic if

zEy [h(Y1)] = h(y), y ∈ Z× Z+.

Let as before p denote the characteristic polynomial of Y ; the set of all solutions of

the equation zp = 1 defines the 1/z-level characteristic surface

Hz .
= {(β, α) ∈ C

2 : zp(β, α) = 1}.

Similarly, define

Hz
1
.
= {(β, α) ∈ C

2 : zp1(β, α) = 1},

the 1/z-level characteristic surface on ∂1. These surfaces reduce to the ordinary char-

acteristic surfaces when z = 1.
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Multiplying both sides of zp = 1 by α
z

transforms it to the quadratic (in α) equation

α

(
λ1

1

β
+ µ1β − 1

z

)
+ α2λ2

β
+ µ2β = 0,

whose discriminant is

∆z(β)
.
=

(
λ1

1

β
+ µ1β − 1

z

)2

− 4λ2µ2.

Let α be the conjugator defined in (2.2). If (β, α1) ∈ Hz and α 6= 0 then (β, α2, z) ∈
Hz for α2 = α(β, α1); if ∆z(β) 6= 0 (β, α1) and (β, α2) will be distinct points on Hz

and we will call them conjugate.

Lemma 2.5. [(β, α), ·] is Y − z harmonic on Z × Z+ − ∂2 when (β, α) ∈ Hz. In

addition x 7→ [(β, α), Tn(x)], x ∈ Z2
+, is X − z-harmonic on Z2

+ − ∂1 ∪ ∂2.

Proof. The proof is parallel to that of Lemma 2.1.

zEy[(β, α), Y1] = zµ1β
y(1)−y(2)+1αy(2) + zλ2β

y(1)−y(2)−1αy(2)+1

+ zλ1β
y(1)−y(2)−1αy(2) + zµ2β

y(1)−y(2)+1αy(2)+1

= βy(1)−y(2)αy(2)

(
zµ1β + zλ2

α

β
+ zλ1

1

β
+ zµ2βα

)

= βy(1)−y(2)αy(2)zp(β, α) = [(β, α), y].

Define

Cz(β, α)
.
= z

(
1− β

α

)
, (β, α) ∈ C

2, α 6= 0.

Parallel to Section 2.1, the above definitions give us the following class of Y − z-

harmonic functions.

Proposition 2.6. Suppose (β, α) ∈ Hz ∩ Hz
1. Then [(β, α), ·] is Y − z-harmonic.

Proof. Lemma 2.5 says that for (β, α) ∈ Hz, [(β, α), ·] is Y − z-harmonic on Z ×
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Z2
+ − ∂2. An argument parallel to the proof of Lemma 2.5 given as:

zEy [(β, α), Y1] = zµ1β
y(1)−y(2)+1αy(2) + zλ2β

y(1)−y(2)+1αy(2)−1

+ zλ1β
y(1)−y(2)−1αy(2) + zµ2β

y(1)−y(2)αy(2)

= βy(1)−y(2)+1αy(2)

(
zµ1β + zλ2

β

α
+ z

λ1

β
+ zµ2

)

= βy(1)−y(2)αy(2)zp1(β, α) = [(β, α), y].

Proposition 2.7. Suppose (β, α1) 6= (β, α2), are conjugate points on Hz. Then

hz,β
.
= Cz(β, α2)[(β, α1), ·]− Cz(β, α1)[(β, α2), ·] (2.8)

is Y − z-harmonic.

Proof. That hz,β is Y − z-harmonic on Z × Z+ − ∂2 follows from Lemma 2.5. For

y ∈ ∂2 a direct computation gives:

zEy [[(β, αi), y + π1(y, J1)]]− [(β, αi), y]

= zµ1β
y(1)+1 + zλ1β

y(1)−1 + zλ2β
y(1)−1α + zµ2β

y(1) − zβy(1)

= βy(1)

(
zµ1β + zλ1

1

β
+ zλ2

α

β
+ zµ2 − 1

)

= βy(1)

(
zµ1β + zλ1

1

β
+ zλ2

α

β
+ zµ2

β

α
− zµ2

β

α
+ zµ2 − 1

)

= βy(1)

(
1− zµ2

β

α
+ zµ2 − 1

)

= zβy(1)

(
µ2

(
1− β

α

))

= zC(β, αi)β
y(1).

It follows that

Ey[hz,β(y + π1(y, J1)]− hβ(y) = zC(β, α1)C(β, α2)(β
y(1) − βy(1)) = 0,

i.e., hz,β is Y -harmonic on ∂2 as well.
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2.2.2 Existence of the Laplace transform of τ

We next use the Y − z harmonic functions constructed in Propositions 2.6 and 2.7 to

get our existence result.

Proposition 2.8. There exist z0 > 1 and C1 such that

Ey[z
τ
01{τ<∞}] < C1, (2.9)

for all y ∈ Z× Z+, y(1) ≥ y(2).

Proof. Let us first prove the following: if we can find, for some z0 > 1 and C1 > 0,

a Y -z0 harmonic function h satisfying h(y) ≥ 1 on ∂B and C1 > h ≥ 0 on B we are

done. The reason is as follows: that h is Y − z0-harmonic and the optional sampling

theorem imply that h(Yτ∧n)z
τ∧n
0 is a martingale. It follows that

h(y) = Ey[h(Yτ∧n)z
τ∧n
0 ],

for y ∈ B. Decompose the last expectation to {τ ≤ n} and {τ > n}:

h(y) = Ey[h(Yτ )z
τ
01{τ≤n}] + Ey[h(Yn)z

n
0 1{τ>n}]].

That h ≥ 0 on B implies

h(y) ≥ Ey[h(Yτ∧n)z
τ
01{τ≤n}].

Now limn→∞ h(Yτ )z
τ
01{τ≤n} = h(Yτ )z

τ
01{τ<∞}. This and Fatou’s lemma imply

h(y) ≥ Ey[h(Yτ )z
τ
01{τ<∞}]

Finally, h ≥ 1 on ∂B and h ≤ C1 give (2.9). To get our desired h we start from the

points (r, 1) and (ρ1, ρ1) on H. The first point gives us the root (1, r) of the equation

zp(β, 1) = 1.

That

∂zp(β, α)

∂β
|(1,r,1) = z

(
−λ1

1

β2
+ µ1 − λ2α

1

β2
+ µ2

1

α

)
|(1,r,1)

= −λ1
1

r2
+ µ1 − λ2

1

r2
+ µ2

= − 1

r2
(λ1 + λ2) +

1

r
(λ1 + λ2)

= (λ1 + λ2)
r − 1

r2
6= 0.
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and the implicit function theorem gives us a differentiable function β1 on an open

interval I1 around z = 1 that satisfies

zp(β1(z), 1) = 1, z ∈ I1,β1(1) = r.

The conjugate of (β1, 1) on Hz is (β1,α(β1, 1)) (whenever possible, we will omit

the z variable and simply write β1; similarly, we will write α for α(β1, 1)). These

points give us the Y − z-harmonic function

hz = C(β1,α)[(β1, 1), ·]− C(β1, 1)[(β1,α), ·]

=

(
1− ρ2

β1

)
[(β1, 1), ·]− (1− β1)[(β1,α), ·]

= [(β1, 1), ·]−
1− β1

1− ρ2/β1

[(β1,α), ·].

That α(β1(1), 1) = 0 < r2/ρ2 < 1 (Assumption 2.5)implies that 0 < α(β1(z), 1) <

1 if we choose z > 1 close enough to 1. hz will almost serve as our h, except that it

does take negative values on a small section of B. To get a positive function we will

add to hz a constant multiple of the Y − z-harmonic function defined by the point on

Hz ∩Hz
2 that is the continuation of (ρ1, ρ1) on H. This point is (β2(z),β2(z)) where

β2(z) is the root of the the equation
(
λ1

β
+ µ1β + λ2 + µ2

)
=

1

z
;

satisfying β2(1) = ρ1. The implicit function theorem (or direct calculation) shows

that β2 is smooth in an open interval I2 containing 1. Now (β2,β2) ∈ Hz ∩ Hz
2 and

Proposition 2.6 imply that [(β2,β2), ·] ≥ 0 is a Y − z harmonic function. Now define

h′ .
= hz + C0[(β2,β2), ·].

By its definition h′ is Y − z harmonic. We would like to choose C0 large enough so

that h′ is bounded below by 1 on ∂B and is nonnegative on B. By our assumption

(1.3), β1(1) = r < β2(1) = ρ1; therefore, for z > 1 close enough to 1, we will still

have β1(z) < β2(z); let us assume that I1 and I2 are tight enough that this holds. By

definition,

h′(y) = β
y(1)−y(2)
1

(
1− 1− β1

1− ρ2/β1
αy(2)

)
+ C0β

y(1)−y(2)
2 β

y(2)
2 .
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β2 > β1 implies that h′ takes its most negative value for y(1) = y(2), i.e., on ∂B and

if we can choose C0 > 0 so that h is nonnegative on ∂B, it will be so on all of B. On

∂B, h′ reduces to

1− 1− β1

1− ρ2/β1

αy(2) + C0β
y(2)
2 .

If α ≤ β2, then setting C0 =
β1−1

1−ρ2/β1
would imply h′ ≥ 1 on ∂B; α,β1,β2 ∈ (0, 1)

imply

h′ ≤ 1 + C0;

then, h′ can serve as our desired Y − z harmonic function h with C1 = 1 + C0.

Now let us consider the case α > β2 :ordinary calculus implies that if we choose C0

large enough we can make the minimum m0 < 0 over y(2) > 0 of

− 1− β1

1− ρ2/β1
αy(2) + C0β

y(2)
2 ;

arbitrarily close to 0; then choosing h = 1
1+m0

h′ gives us a Y − z harmonic function

that satisfies h ≥ 1 on ∂B, h ≥ 0 on B and h ≤ C1 on B where C1 = 1
1+m0

(1 +

C0).

We now use (2.9) to derive an upper bound on the probability that τ is finite but takes

a too long time:

Proposition 2.9. For any δ > 0, there exists C2 > 0 such that

Py(nC2 < τ < ∞) ≤ e−δn, (2.10)

for any y ∈ Z× Z+, y(1) > y(2) and n > 1.

Proof. Let z0 > 1 and C1 be as in (2.9). For any A > 0, Chebyshev’s inequality gives

Py(nC2 < τ < ∞) = Py(z
nC2

0 < zτ0 < ∞)

≤ Ey[z
τ
0 < ∞]z−nC2

0

≤ e−n(C2 log(z0)−log(C1)/n).

Choosing C2 =
(
δ + log(C1)

n

)
/ log(z0) gives (2.10).
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2.3 LD limit for Px(τn < τ0)

Define

V (x)
.
= log ρ1(x(1)− 1) ∧ log(r)(x(1) + x(2)− 1) ∧ log ρ2(x(2)− 1).

Assumption (1.3) implies

− log(ρ2)(1− x(2)) ≥ − log(r)(1− (x(1) + x(2))),

and therefore

V (x) = log(r)(x(1) + x(2)− 1) ∧ log ρ1(x(1)− 1). (2.11)

The level curves of V for for λ1 = 0.2, λ2 = 0.1, µ1 = 0.3, µ2 = 0.4 are shown in

Figure 2.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6
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1

x(1)

x
(2
)

Figure 2.2: Level curves of V for λ1 = 0.2, λ2 = 0.1, µ1 = 0.3, µ2 = 0.4

The goal of this section is to prove:

Theorem 2.10. V is the LD limit of Px(τn < τ0), i.e.,

lim−1

n
logP⌊nx⌋(τn < τ0) = V (x). (2.12)
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for x(1) + x(2) < 1, x ∈ R2
+.

Proof. Propositions 2.14 and 2.16 state

lim inf −1

n
logP⌊nx⌋(τn < τ0) ≥ V (x). (2.13)

and

lim sup−1

n
logP⌊nx⌋(τn < τ0) ≤ V (x). (2.14)

These imply (2.12).

Next two subsections prove (2.13) and (2.14). To prove the first, we will proceed

parallel to [25, 60, 64] and construct a sequence of supermartingales Mn starting

from a subsolution of a limit Hamilton Jacobi Bellman (HJB) equation associated

with the problem. To prove the bound (2.14) we will directly construct a sequence of

subharmonic functions of the process X .

2.3.1 LD lowerbound for Px(τn < τ0)

For a ⊂ {0, 1, 2} define the Hamiltonian function

Ha(q)
.
= − log


∑

v∈ac

p(v)e−〈q,v〉 +
∑

v∈V ,v(i)≥0,i∈a

p(v)e−〈q,v〉 +
∑

v∈V ,v(i)<0,i∈a

p(v)


 .

We will denote H∅ by H . Ha is convex in q. For x ∈ R2
+, define

b(x)
.
= {i : x(i) = 0}.

Following [23] one can represent V as the value function of a continuous time deter-

ministic control problem; the HJB equation associated with this control problem is

Hb(x)(DV (x)) = 0; (2.15)

a function W ∈ C1 is said to be a classical subsolution of (2.15) if

Hb(x)(DV (x)) ≥ 0; (2.16)

supersolutions are defined by replacing ≥ in (2.16) with ≤ .
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To prove (2.13) will proceed parallel to [64, Section 7]: find an upperbound on

Px(τn < τ0) by constructing a supermartingale associated with the process X . To

construct our supermartingale we will proceed parallel to [25, 60] and use a subsolu-

tion of (2.15), i.e., a solution of (2.16).

Define

r0
.
= (0, 0), r1

.
= log(ρ1)(1, 0), r2

.
= log(r)(0, 1), r3

.
= log(r)(1, 1) (2.17)

and

Ṽ0(x, ǫ)
.
= − log(ρ1)− 3ǫ, Ṽ1(x, ǫ)

.
= − log(ρ1) + 〈r1, x〉 − 2ǫ,

Ṽ2(x, ǫ)
.
= − log(r) + 〈r2, x〉 − ǫ,

Ṽ3(x, ǫ)
.
= − log(r) + 〈r3, x〉,

and

Ṽ (x, ǫ)
.
=

3∧

i=0

Ṽi(x, ǫ). (2.18)

A direct calculation gives

Lemma 2.11. The gradients defined in (2.17) satisfy

H(r0) = H1(r0) = H2(r0) = 0, H(r1) = H2(r1) = 0,

H(r2) > 0, H1(r2) > 0, H(r3) = 0.

Proof.

H(r0) = − log
(
λ1e

0 + λ2e
0 + µ1e

0 + µ2e
0
)
= − log(1) = 0.

H1(r0) = − log
(
λ1e

0 + λ2e
0 + µ1e

0 + µ2

)
= − log(1) = 0.

H2(r0) = − log
(
λ1e

0 + λ2e
0 + µ1 + µ2e

0
)
= − log(1) = 0.

H(r1) = − log
(
λ1e

− log(ρ1) + λ2e
0 + µ1e

log(ρ1) + µ2e
0
)

= − log(λ1
1

ρ1
+ λ2 + µ1ρ1 + µ2)

= − log(µ1 + λ2 + λ1 + µ2) = − log(1) = 0.

H(r2) = − log
(
λ1e

0 + λ2e
−r + µ1e

0 + µ2e
r
)

= − log(λ1 + µ1 − r(λ2 − µ2)) > 0.
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H2(r2) = − log
(
λ1e

0 + λ2e
−r + µ1e

0 + µ2

)

= − log(λ1 + µ1 + µ2 +
λ2

r
) = − log(1− λ2(1−

1

r
)) > 0.

H2(r1) = − log
(
λ1e

− log(ρ1) + λ2e
0 + µ1e

log(ρ1) + µ2

)

= − log(λ1
1

ρ1
+ λ2 + µ1ρ1 + µ2)

= − log(µ1 + λ2 + λ1 + µ2) = − log(1) = 0.

H(r3) = − log
(
λ1e

− log(r) + λ2e
− log(r) + µ1e

log(r) + µ2e
log(r)

)

= − log(λ1
1

r
+ λ2

1

r
+ µ1r + µ2r)

= − log((λ1 + λ2)
1

r
+ (µ1 + µ2)r) = − log(1) = 0.

The 0-level curve of the Hamiltonians is shown in Figure 2.3 and the gradients ri is

shown in Figure

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-1.5

-1

-0.5

0

q1

q 2

Figure 2.3: The 0-level curves of H and H1 (dashed line)
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Define

C3
.
= − 1

log(r)
, C4

.
= − log(ρ1)C3 =

log(ρ1)

log(r)
. (2.19)

log(r) < log(ρ1) < 0 implies

1 > C4 > 0. (2.20)

By equating Ṽ2(x, ǫ) and Ṽ3(x, ǫ)

− log(r) + log(r)x2 − ǫ = − log(r) + log(r)x1 + log(r)x2,

we find the first component of the intersection point as x1 = − 1
log(r)

ǫ, then we equate

Ṽ1(x, ǫ) and Ṽ3(x, ǫ)

− log(ρ1) + log(ρ1)C3 − 2ǫ = − log(r) + log(r)C3 + log(r)x2,

to find the last component of the intersection point x2 = 1− log(ρ1)
log(r)

+C3

(
1 + log(ρ1)

log(r)

)
ǫ.

Thus, the functions Ṽi, i = 1, 2, 3 meet at

x∗ = (C3ǫ, 1− C4 + C3(1 + C4)ǫ) ; (2.21)

i.e.,

Ṽ1(x
∗) = − log(ρ1) + 〈r1, x∗〉 − 2ǫ

= − log(ρ1) + log(ρ1)

(
− 1

log(r)
ǫ

)
− 2ǫ

= − log(ρ1)− (2 + C4)ǫ.

Ṽ2(x
∗) = − log(r) + 〈r2, x∗〉 − ǫ

= − log(r) + log(r)

(
1− log(ρ1)

log(r)
− 1

log(r)

(
1 +

log(ρ1)

log(r)

)
ǫ

)
− ǫ

= − log(r) + log(r)− log(ρ1)−
1

log(r)
log(r)ǫ− 1

log(r)
log(ρ1)ǫ− ǫ

= − log(ρ1)− ǫ− log(ρ1)

log(r)
ǫ− ǫ

= − log(ρ1)− (2 + C4)ǫ.
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Ṽ3(x
∗) = − log(r) + 〈r2, x∗〉

= − log(r)− log(r)
1

log(r)
ǫ

+ log(r)

(
1− log(ρ1)

log(r)
− 1

log(r)

(
1 +

log(ρ1)

log(r)

)
ǫ

)

= − log(r) + ǫ+ log(r)− log(ρ1)− ǫ+
1

log(r)
log(ρ1)ǫ

= − log(ρ1)− (2 + C4)ǫ.

Ṽ1(x
∗) = Ṽ2(x

∗) = Ṽ3(x
∗) = − log(ρ1)− (2 + C4) ǫ. (2.22)

We assume that ǫ > 0 is small enough so that x∗ satisfies

x∗(1), x∗(2) > 0, x∗(1) + x∗(2) < 1.

Ṽ (·, ǫ) equals Ṽi(·, ǫ) in the region

Ri
.
= {x ∈ R

2 : Ṽ (x, ǫ) = Ṽi(x, ǫ)},

these regions are shown in Figure 2.4. As in [25, 60], we will mollify Ṽ (x, ǫ) with

1

1

R2

R0 R1

R3

Figure 2.4: Regions Ri

η(x)
.
= 1|x|≤1(|x|2 − 1)2, x ∈ R

2, C5
.
=

∫

R2

η(x)dx, ηδ(x)
.
=

1

δ2C5

η(x/δ), δ > 0.

to get our smooth subsolution of (2.15):

V (x, ǫ)
.
=

∫

R2

Ṽ (x+ y, ǫ)η0.5C3ǫ(y)dy, (2.23)
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Lemma 2.12. The function V (x, ǫ) of (2.23) satisfies (2.16) and

∣∣∣∣
∂2V (·, ǫ)
∂xi∂xj

∣∣∣∣ ≤ C6/ǫ; (2.24)

where C6 is independent of x. Furthermore,

V (x, ǫ) ≤ ǫ for x(1) + x(2) = 1, x ∈ R
2
+. (2.25)

Proof. The proof is parallel to that of [60, Lemma 2.3.2]. Ṽ is the minimum of

four affine functions and hence is Lipschitz continuous and has a bounded (piecewise

constant) gradient almost everywhere. This implies

DV (x, ε) =

∫

R2

DṼ (x+ y, ǫ)η0.5C3ǫ(y)dy

=
3∑

i=0

wi(x)DṼi,=
3∑

i=1

wi(x)ri; (2.26)

where

wi(x) =

∫

R2

η0.5C3ǫ(x)1Ri
(x)dx.

This shows that V (·, ε) ∈ C1. To show

Hb(x)(DV (·, ǫ)) ≥ 0, (2.27)

one considers x ∈ R2o
+

.
= {x ∈ R2

+, x(1), x(2) > 0}, x ∈ ∂1 and x ∈ ∂2 separately.

We will provide the details only for the first two. For x ∈ R2o
+ ,

Hb(x)(DV (·, ǫ)) = H(DV (·, ǫ)).

By Lemma 2.11 we know that all ri satisfy H(ri) ≥ 0. That H is a convex function

and Jensen’s inequality imply that the DV (x, ǫ) =
∑3

i=0wi(x)ri satisfiesH(DV (x, ǫ)) ≥
0; this proves (2.27) for x ∈ R2o

+ .

We know by (2.20) that C4 ∈ (0, 1); therefore, by (2.22)

Ṽ0(·, ǫ) = − log(ρ1)− 3ǫ < − log(ρ1)− (2 + C4)ǫ

= Ṽ1(x
∗, ǫ) = Ṽ2(x

∗, ǫ) = Ṽ3(x
∗, ǫ).
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This implies that the region R0 intersects all of the R1, R2 and R3 and in particular

that the strip {x ∈ R2
+ : x(1) < C3ǫ} lies in R0 ∪ R2. Then, for x ∈ ∂1, the ball

B(x, C3ǫ/2) lies completely in R0 ∪R2, which implies

DV (x, ǫ) = w0(x)r0 + w1(x)r2, w0(x) + w1(x) = 1.

By Lemma 2.11 we know that H1(r0) = 0 and H1(r2) ≥ 0. These and the convexity

of Hi imply (2.27) for x ∈ ∂1.

The bound (2.24) follows from the Lipschitz continuity of Ṽ (·, ǫ), differentiation un-

der the integral sign in (2.23) and bounds on the first derivative of η. Finally, (2.25)

follows from

Ṽ3(x, ǫ) ≤
ǫ√
2
, for any x ∈ B(y, ǫC3/2), y such that y(1) + y(2) = 1, y ∈ R

2
+,

To get our upperbound on the probability Px(τn < τ0) we define

M
(n,ǫ)
k

.
= e−nV (Xk/n,ǫ)−

C6k

nǫ ,

where C6 is as in (2.24).

Lemma 2.13. M (n,ǫ) is a supermartingale.

Proof. The Markov property of X implies that it suffices to show

Ex

[
M

(n,ǫ)
1

]
≤ e−nV (x/n,ǫ)

Ex

[
M

(n,ǫ)
1 enV (x/n,ǫ)

]
≤ 1

− log
(
Ex

[
M

(n,ǫ)
1 enV (x/n,ǫ)

])
≥ 0. (2.28)

The expression on the left equals

− log


 ∑

v:v(i)≥0,i∈b(x)

e−n(V ((x+v)/n,ǫ)−V (x/n,ǫ))p(v) +
∑

v:v(i)=−1,i∈b(x)

p(v)


+

C6

nǫ
.

(2.29)

A Taylor expansion and the bound (2.24) imply

|(V ((x+ v)/n, ǫ)− V (x/n, ǫ))− 〈DV (x), v/n〉| ≤ C6

n2ǫ
.
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Then, the expression in (2.29) is bounded below by

− log


 ∑

v:v(i)≥0,i∈b(x)

e−〈DV (x),v〉p(v) +
∑

v:v(i)=−1,i∈b(x)

p(v)


− C6

nǫ
+

C6

nǫ
.

The log term above equals Hb(x)(DV (x, ǫ)), which by Lemma 2.12 is nonnegative.

This proves (2.28).

Proposition 2.14. Let x ∈ R2
+ with x(1) + x(2) < 1, xn = ⌊nx⌋ and let V be as in

(2.11). Then for any ε > 0 there exists an integer N such that for n > N

Pxn
(τn < τ0) ≤ e−n(V (x)−ε). (2.30)

In particular,

lim inf −1

n
logP⌊nx⌋(τn < τ0) ≥ V (x). (2.31)

The proof is parallel to that of [65, Proposition 4.3].

Proof. The inequality (2.31) follows from (2.30) upon taking limits. The rest of the

proof focuses on (2.30). Let ǫn > 0 be a sequence satisfying ǫn → 0 and ǫnn → ∞.

Let τ0,n = τn ∧ τ0. The optional sampling theorem ([27, Theorem 5.7.6]) applied to

the supermartingale Mk = M
(n,ǫn)
k at time τ0,n gives

Exn

[
Mτ0,n

]
≤ M0 = e−nV (xn/n,ǫn).

Restricting the expectation on the left to {τn < τ0} makes it smaller:

Exn

[
1{τn<τ0}Mτn

]
≤ e−nV (xn/n,ǫn).

Expanding Mτn using its definition gives

Exn

[
1{τn<τ0}e

−nV (Xτn/n,ǫn)e
−C6τn
nǫn

]
≤ e−nV (xn/n,ǫn).

Xτn ∈ ∂An and the bound (2.25) reduce the last display to

Exn

[
1{τn<τ0}e

−C6τn
nǫn

]
≤ e−nV (xn/n,ǫn)enǫn. (2.32)

By the definitions involved we have

lim
n→∞

V (xn, ǫn) = V (x).
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This, nǫn → ∞ and taking the lim inf− 1
n
log of both sides in (2.32) gives

lim inf
n→∞

−1

n
logExn

[
1{τn<τ0}e

−C6τn
nǫn

]
≥ V (x). (2.33)

Now suppose that (2.30) doesn’t hold, i.e., there exists ε > 0 and a sequence nk such

that

Pxnk
(τn < τ0) > e−nk(V (x)−ε), (2.34)

for all k; we pass to this subsequence and omit the subscript k. [60, Theorem A.1.1]

implies that there is a C2 > 0 such that

Pxn
(τ0,n > nC2) ≤ e−n(V (x)+1), (2.35)

for n large. Then

Exn

[
1{τn<τ0}e

−
C6τn
nǫn

]
≥ Exn

[
1{τn<τ0}e

−
C6τn
nǫn 1{τ0,n≤nC2}

]

≥ e
−C6C2

nǫn
n
Exn

[
1{τn<τ0}1{τ0,n≤nC2}

]

≥ e
−C6C2

nǫn
n (Pxn

(τn < τ0)− Pxn
(τ0,n > nC2))

≥ e
−C6C2

nǫn
n
(
e−n(V (x)−ε) − e−(V (x)+1)n

)
.

Now taking lim sup− 1
n
log of both sides gives

lim sup
n→∞

−1

n
logExn

[
1{τn<τ0}e

−C6τn
nǫn

]
≤ V (x)− ε.

This contradicts (2.33). Therefore, the assumption (2.34) is false and there does exist

N > 0 such that (2.30) holds for n > N . This finishes the proof of this proposition.

2.3.2 LD upperbound for Px(τn < τ0)

The LD upperbound corresponds (because of the − log transform) to a lowerbound

on the probability Px(τn < τ0). To get a lower bound on this probability, it suffices

to have a submartingale of X with the right values when X hits ∂An ∪ {0}. As op-

posed to the analysis of the previous section (where we constructed a supermartingale

from a subsolution to a limit HJB equation), one can directly construct a subharmonic

function of X to get the desired submartingale. The next proposition gives this ex-

plicit subharmonic function. In its proof the following fact will be useful: if g1 and
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g2 are subharmonic functions of X at a point x, then so is g1 ∨ g2, this follows from

the definitions involved.

Proposition 2.15.

fn(x)
.
= ρ1

n−x(1) ∨ r(n−x(1))−x(2) ∨ ρn−1
1

is a subharmonic function of X on An − ∂An

Proof. We note

ρ
n−x(1)
1 = ρ

(n−x(1))−x(2)
1 ρ

x(2)
1 = [(ρ1, ρ1), Tn(x)].

Furthermore, (ρ1, ρ1) ∈ H. It follows from these and Lemma 2.5 that x 7→ ρ
n−x(1)
1

is X-harmonic for x ∈ Z2o
+

.
= Z2

+ − {∂1 ∪ ∂2}. A parallel argument proves the same

for x 7→ r(n−x(1))−x(2). The constant function x 7→ ρn−1
1 is trivially X-harmonic for

all x ∈ Z2
+. It follows that their maximum, fn is subharmonic on Z2o

+ .

It remains to prove that fn is subharmonic on ∂1 and ∂2. fn(x) = r(n−x(1))−x(2)∨ρn−1
1

for x ∈ ∂1 ∪ {x ∈ Z
2
+, x(1) = 1}. Both x 7→ r(n−x(1))−x(2) and x 7→ ρn−1

1 are

X-harmonic on ∂1. It follows from these that fn is subharmonic on ∂1.

For x ∈ ∂2 ∩ {x ∈ Z
+
2 : x(1) < n} we have fn(x) = ρ

n−x(1)
1 ∨ ρn−1

1 . By Lemma

2.4 and by fact that Ik = IJk we know x 7→ ρ
n−x(1)
1 is harmonic on ∂2; the same

trivially holds for x 7→ ρn−1
1 ; therefore, x 7→ ρ

n−x(1)
1 ∨ ρn−1

1 is subharmonic on

∂2 ∩ {x ∈ Z
+
2 : x(1) < n} Furthermore, by definition fn(x) ≥ ρ

n−x(1)
1 ∨ ρn−1

1 . These

imply that fn is subharmonic on ∂2∩{x ∈ Z
+
2 : x(1) < n}. The last three paragraphs

together imply the statement of the proposition.

Proposition 2.16.

Px(τn < τ0) ≥ fn(x)− fn(0) (2.36)

and in particular

lim sup−1

n
logP⌊nx⌋(τn < τ0) ≤ V (x), (2.37)

for x ∈ R2
+, x(1) + x(2) < 1, x(1) > 0.
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Proof. By Proposition 2.15, we know that fn is a subharmonic function of X . It

follows that f(Xn) is a submartingale. This and the optional sampling theorem imply:

fn(x) ≤ Ex[fn(τn ∧ τ0)]

fn(x) ≤ Px(τn < τ0)(1− fn(0)) + fn(0)

≤ Px(τn < τ0) + fn(0),

where we have used fn(x) = 1 for x ∈ ∂An; this gives (2.36). Taking − 1
n
log of both

sides and applying lim sup gives (2.37).

2.4 LD limit of Px(σ1 < τn < τ0)

To implement the argument given in the introduction we need an LD lowerbound for

the probability

Px(σ1 < τn < τ0). (2.38)

We will obtain the desired bound through a subsolution of the limit HJB equation

associated with X . This is parallel to the construction given in [65, Proposition 4.3]

and the argument of Section 2.3.1. The main difference is in the construction of

the subsolution. Bounding (2.38) requires a subsolution consisting of two pieces,

one piece for before σ1 and one for after. For the first piece we need the following

additional root of the limit Hamiltonian:

r4
.
= (log(ρ1/r), log(r)) . (2.39)

Now define

Ṽ4(x, ǫ)
.
= − log(r) + 〈r4, x〉,

Ṽ (0, x, ǫ)
.
=

∧

i∈{0,2,4}

Ṽi(x, ǫ),

Ṽ (1, x, ǫ)
.
= Ṽ (x, ǫ) =

3∧

i=0

Ṽi(x, ǫ), (2.40)

and

Vσ(0, x)
.
= Ṽ (0, x, 0) = (− log(ρ1)) ∧ (− log(r) + 〈r4, x〉),

Vσ(1, x)
.
= Ṽ (1, x, 0) = (− log(ρ1) + 〈r1, x〉) ∧ (− log(r) + 〈r3, x〉).
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where the vectors ri are as in (2.17).

Now define the smoothed subsolution:

V (x, ǫ, i)
.
=

∫

R2

Ṽ (x+ y, ǫ, i)η0.5C3ǫ(y)dy, i = 0, 1. (2.41)

The function Ṽ (0, ·, ·) is obtained from Ṽ (1, ·, ·) by striking out Ṽ1 from the minimum

and replacing Ṽ3 with Ṽ4. In particular, the components Ṽ0 and Ṽ2 are common to both

Ṽ (1, ·, ·) and Ṽ (0, ·, ·); this ensures that these functions overlap around an open region

along ∂1, which implies in particular that

V (1, x, ǫ) = V (0, x, ǫ), (2.42)

for x ∈ ∂1.

Remark 2.1. The condition (2.42) allows one to think of V (·, ·, ·) as a subsolution of

the HJB equation on a manifold; the manifold consists of two copies of R2
+, glued to

each other along {x ∈ R2
+, x(1) = 0}.

We use V (·, ·, ·) to construct the supermartingale

M
(n,ǫ,σ)
k

.
= e−nV (Xk/n,ǫ,1{k<σ1}

)−
C6k

nǫ ,

where C6/ǫ is an upperbound on the second derivative of V (·, ·, ·), which can be

obtained by an argument parallel to the one used in the proof of (2.24) of Lemma

2.12. The main difference from subsection 2.3.1 is that the smooth subsolution has

an additional parameter i to keep track of whether X has touched ∂1; this appears

as the 1{k<σ1} term in the definition of the supermartingale M (n,ǫ,σ). A three stage

version of this argument appears in [65, Proposition 4.3] to bound another related

probability arising from the analysis of the two dimensional tandem random walk.

The main result of this section is the following:

Proposition 2.17. For any ǫ > 0, there exists N > 0 such that

Pxn
(σ1 < τn < τ0) ≤ e−n(Vσ(0,x)−ǫ), (2.43)

for n > N , where xn = ⌊nx⌋, 0 < x(1) + x(2) < 1, x ∈ R2
+.

Proof. Parallel to the proof of Proposition 2.14, we choose a sequence ǫn → 0 with

nǫn → ∞; (2.44) follows from an application of the optional sampling theorem to

the supermartingale M (n,ǫn,σ) and the bound (2.35).
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2.4.1 LD limit for Px(σ̄1 < τ < ∞)

For this subsection and the next section it will be convenient to express the Y process

in x coordinates, we do this by setting, X̄k
.
= Tn(Yk); X̄k has the following dynamics:

X̄k+1 = X̄k + π1(X̄k, Ik).

σ̄1 of (1.8) in terms of X̄ is σ̄1 = inf{k : X̄k ∈ ∂1}.

The processes X̄ and X have the same dynamics except that X̄ is not constrained on

∂1. By definition, X̄0 = X0. Note the following: X̄ hits {x ∈ Z×Z+ : x(1)+x(2) =

n} exactly when Y hits {y ∈ Z× Z+ : y(1) = y(2)}; i.e., if we define

τ̄n
.
= inf{k : X̄k(1) + X̄k(2) = n},

then τ = τ̄n.

Proposition 2.18. For any ǫ > 0, there exists N > 0 such that

Pxn
(σ̄1 < τ̄n < ∞) ≤ e−n(Vσ(0,x)−ǫ), (2.44)

for n > N , where xn = ⌊nx⌋, x(1) + x(2) < 1, x ∈ R× R+

Proof. The two stage subsolution V (·, ·, ·) of (2.41) is a subsolution for the X̄ process

as well because, X̄ has identical dynamics as X with one less constraint. Therefore,

the proof of Proposition 2.17 applies verbatim to the current setup with one change:

in the proof of (2.44) we truncate time with the bound (2.35) for τn. We replace this

with the corresponding bound (2.10) for τ .

2.5 Completion of the limit analysis

We now combine Propositions 2.16, 2.17 and 2.18 to get the main approximation

result of this work:

Theorem 2.19. For any x ∈ R2
+, x(1) + x(2) < 1, x(1) > 0, there exists C7 > 0 and

N > 0 such that

|Pxn
(τn < τ0)− PTn(xn)(τ < ∞)|

Pxn
(τn < τ0)

=
|Pxn

(τn < τ0)− Pxn
(τ̄n < ∞)|

Pxn
(τn < τ0)

< e−C7n,

for n > N , where xn = ⌊xn⌋.
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That Pxn
(τ̄n < ∞) = PTn(xn)(τ < ∞) follows from the the definitions in subsection

2.4.1.

Proof. The definitions (2.11) and (2.40) imply that

2C7 = Vσ(x, 0)− V (x) > 0,

for x ∈ R2
+, x(1) + x(2) < 1, x(1) > 0. Choose ǫ < C7. The processes X and X̄

follow exactly the same path until they hit ∂1. It follows that

|Pxn
(τn < τ0)−Pxn

(τ̄n < ∞)| ≤ Pxn
(σ1 < τn < τ0) +Pxn

(σ̄1 < τ̄n < ∞). (2.45)

By Propositions 2.17, 2.18 and 2.16 there exists N > 0 such that

Pxn
(σ1 < τn < τ0) + Pxn

(σ̄1 < τ̄n < ∞) ≤ e−n(Vσ(0,x)−ǫ/2), (2.46)

and

Px(τn < τ0) ≥ e−n(V (x)−ǫ/2), (2.47)

for n > N . The bounds (2.45), (2.46) and (2.47) give

|Pxn
(τn < τ0)− Pxn

(τ̄n < ∞)|
Pxn

(τn < τ0)
< e−nC7 ,

for n > N.

2.6 Computation of Py(τ < ∞)

Theorem 2.19 tells us that Py(τ < ∞), y = Tn(xn), approximates Pxn
(τn < τ0)

with exponentially decaying relative error for x(1) > 0. To complete our analysis, it

remains to compute Py(τ < ∞). As a function of y, Py(τ < ∞) is a Y -harmonic

function. Furthermore, it is ∂B-determined, i.e., it has the representation

y → E[g(Yτ )1{τ<∞}],

for some function g on ∂B (for y 7→ ∂Py(τ < ∞), g equals 1 identically). We will try

to compute Py(τ < ∞) as a superposition of the Y -harmonic functions expounded

in Section 2.1; because Py(τ < ∞) is 1 for y ∈ ∂B, we would like the superposition
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to be as close to 1 as possible on ∂B. We have two classes of Y -harmonic functions

given in Propositions 2.2 (constructed from a single point on H) and 2.3 (constructed

from conjugate points on H). The first class gives us only one nontrivial Y -harmonic

function, computed in Lemma 2.4: hρ1 = [(ρ1, ρ1), ·]. Remember that we have as-

sumed α(r, 1) = r2/ρ2 < 1. This implies that, among the functions in the second

class, the most relevant for the computation of Py(τ < ∞) is

hr =
1

1− ρ2/r
hr = [(r, 1), ·]− 1− r

1− ρ2/r
[(r, ρ2/r

2), ·],

because this Y -harmonic function exponentially converges to 1 for y = (k, k) ∈ ∂B

and k → ∞. A simple criterion to check whether a Y -harmonic function of the form
∑I

i=1 ci[(βi, αi)] is ∂B-determined is given in [64]:

Proposition 2.20. A Y -harmonic function of the form
∑I

i=1 ci[(βi, αi)] is ∂B deter-

mined if |βi| < 1 and |αi| ≤ 1, i = 1, 2, 3, ..., I.

Our main theoretical result on Py(τ < ∞) arises from a linear combination of hρ1

and hr:

Proposition 2.21. If

ρ2ρ1 = r2, (2.48)

then

Py(τ < ∞) = hr(y) +
1− r

1− ρ2/r
hρ1(y), (2.49)

for y ∈ B.

Proof. The right side of (2.49) is Y -harmonic by construction. Furthermore, ρ2ρ1 =

r2 implies hr(y)+
1−r

1−ρ2/r
hρ1(y) = 1 for y ∈ ∂B. Therefore, to prove (2.49) it suffices

to prove that

hr +
1− r

1− ρ2/r
hρ1 (2.50)

is ∂B-determined. For this we will use Proposition 2.20; in the present case, the βi

are ρ1, r < 1 and the αi are 1 and ρ1 ≤ 1. It follows that (2.50) is ∂B-determined.

If (2.48) doesn’t hold, i.e., if r2 6= ρ1ρ2 then one can proceed in several ways. As a

first step, one can use the functions hr and hρ1 to construct lower and upper bounds

on Py(τ < ∞):
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Proposition 2.22. There exists positive constants c0, c1, and C8

Py(τ < ∞) ≤ ha,0(y) ≤ C8Py(τ < ∞); (2.51)

where

ha,0 = c0hr + c1hρ1 . (2.52)

In particular, ha,0 approximates Py(τ < ∞) with bounded relative error.

Proof. If ρ1 > r2/ρ2, one can set c0 = 1 and c1 =
1−r

1−ρ2/r
since, for these values

ha,0 = hr +
1− r

1− ρ2/r
hρ1 ≥ 1 (2.53)

on ∂B. Both ha,0 and y 7→ Py(τ < ∞); this and (2.53) imply ha,0(y) ≥ Py(τ < ∞)

for y ∈ B. To get the second bound on (2.51) set

C8 = 1 +
1− r

1− ρ2/r
max
x≥0

[
ρx1 −

(
r2

ρ2

)x]
. (2.54)

With this choice of C8 we get the second bound in (2.51) on ∂B; that both y 7→
Py(τ < ∞) and ha,0 are ∂B-determined implies the same bound on all of B. If

ρ1 < r2/ρ1, first choose C0 so that

1 + min
x≥0

[
C0ρ

x
1 −

1− r

1− ρ2/r

(
r2

ρ2

)x]
≥ 1/2. (2.55)

Then

ha,0(y) = 2hr(y) + 2C0hρ1(y) ≥ 1,

for y ∈ ∂B, from which the first bound in (2.51) follows. To get the second bound,

set

C8/2 = 1 + max
x≥0

[
C0ρ

x
1 −

1− r

1− ρ2/r

(
r2

ρ2

)x]
,

and proceed as above.

Our choice of the constant 1/2 in (2.55) is arbitrary, any value between (0, 1) would

suffice for the argument. Therefore, the constants c0 and c1 are not unique and they

can be optimized to reduce relative error.
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Proposition 2.23. For x ∈ R2
+, x(1) + x(2) < 1, x(1) > 0, xn = ⌊nx⌋, and for n

large, ha,0 of (2.52) evaluated at Tn(xn) approximates Pxn
(τn < τ0) with bounded

relative error.

Proof. We know by Theorem 2.19 that, for x ∈ R2
+, x(1) + x(2) < 1 and x(1) > 0,

PTn(xn)(τ < ∞) approximates Pxn
(τn < τ0) with vanishing relative error. On the

other hand, the above Proposition tells us that ha,0 of (2.52) approximates Py(τ < ∞)

with bounded relative error. These imply that ha,0(Tn(x)) approximates Pxn
(τn < τ0)

with bounded relative error.

Proposition 2.7 gives not one but a one-complex-parameter family of Y -harmonic

functions. A natural question is whether one can obtain finer approximations of

Py(τ < ∞) than what ha,0 provides. In this, we need ∂B-determined Y -harmonic

functions. The next proposition (an adaptation of [64, Proposition 4.13] to the current

setting) identifies a class of these which are naturally suitable for the approximation

of Py(τ < ∞).

Proposition 2.24. There exists 0 < R < 1 such that for all α ∈ C with R < |α| ≤ 1

, max(|β1(α)|, |α(β1(α), α)|) < 1; in particular hβ1(α) is ∂B-determined.

Proof. We know by [64, Proposition 4.7] that |β1(α)| ≤ r < 1 for all |α| = 1. Then

|α(β1(α), α)| =
∣∣∣∣
β1(α)

2

αρ2

∣∣∣∣ ≤
r2

ρ2
< 1,

where the last inequality is the assumption (2.5). The functions β1 and α are con-

tinuous; it follows that the inequality above holds also for R < |α| ≤ 1 if R < 1 is

sufficiently close to 1. That hβ1
is ∂B-determined follows from these and Proposition

2.20.

We can now use as many of the ∂B-determined Y -harmonic functions identified in

Propositions 2.3 and 2.24 as we like to construct finer approximations of Py(τ <

∞). Once the approximation is constructed upperbounds on its relative error can be

computed from the maximum and the minimum of the approximation on ∂B- as was

done in the proof of Proposition 2.22:
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Proposition 2.25. Let R be as in Proposition 2.20. For ck ∈ C and R < |αk| ≤ 1

k = 0, 1, 2, ..., K define

ha,K = R(ha∗,K), ha∗,K = hr + c0hρ1 +
K∑

i=1

ckhβ1(αk). (2.56)

Then ha,K is Y -harmonic and ∂B-determined. Furthermore, for

c∗ = max
y∈∂B

|ha∗,K − 1| < ∞, (2.57)

ha∗,K approximates Py(τ < ∞) with relative error bounded by c∗.

Proof. We know by Propositions 2.2 and 2.3 that ha∗,K is Y -harmonic. That R <

|αk| ≤ 1 and Proposition 2.20 imply that ha∗,K is also ∂B-determined, i.e.,

ha∗,K(y) = Ey[h
a∗,K(Yτ )1{τ<∞}].

Taking the real part of both sides gives:

ha,K(y) = Ey[h
a,K(Yτ )1{τ<∞}], (2.58)

i.e, ha,K is Y -harmonic and ∂B-determined. That c∗ < ∞ follows from

max |β1(αk),α(β1(αk), αk)| < 1.

(see Proposition 2.20).

The inequality

1− c∗ < ha,K(k, k) < 1 + c∗, (2.59)

follows from (2.57), |R(z) − 1| ≤ |z − 1| for any z ∈ C. It follows from (2.59) and

(2.58) that

(1− c∗)Ey[1{τ<∞}] ≤ ha,K(y) ≤ (1 + c∗)Ey[1{τ<∞}]

(1− c∗)Py(τ < ∞) ≤ ha,K(y) ≤ (1 + c∗)Py(τ < ∞),

This implies that ha,K approximates Py(τ < ∞) with relative error bounded by c∗.

One of the key aspects of Proposition 2.25 is that it shows us how to compute an upper

bound on the relative error of an approximation of the form (2.56) from the values it

takes on ∂B. We can use this to choose the αk and the ck to reduce relative error, the

next subsection illustrates this procedure.
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2.6.1 Finer approximations when r2 6= ρ1ρ2

To illustrate how one can use approximations of the form (2.56) to improve on the

approximation provided by Proposition 2.22, let us assign values to the parameters λi

and µi satisfying the assumptions (1.3), (1.4):

λ1 = 0.1, µ1 = 0.2, λ2 = 0.2, µ2 = 0.5;

for these choice of parameters we have

r =
λ1 + λ2

µ1 + µ2
=

3

7
.

We note r2 = 9/49 6= 1/5 = ρ1ρ2; therefore, we don’t have an explicit formula for

Py(τ < ∞). But Proposition 2.22 implies that

ha,0(y) = hr +
1− r

1− ρ2/r
hρ1 (2.60)

approximates Py(τ < ∞) with relative error bounded by

C8 − 1 =
1− r

1− ρ2/r

(
ρx

∗

1 − αx∗

2

)
= 0.3607,

α2 =
r2

ρ2
, x∗ = log(log(ρ1)/ log(α2))/(log(α1)− log(ρ1));

where C8 is computed as in (2.54). Then, by Theorem 2.19, ha,0(Tn(xn)) approxi-

mates Pxn
(τn > τ0) with relative error converging to a level bounded by C8 − 1 =

0.3607 .

We can reduce this error by using further Y -harmonic functions given by Propositions

2.3 and 2.24 and constructing an approximation of the form (2.56). We note β1(0.7) =

0.34610 and therefore, by an argument parallel to the proof of Proposition 2.24, we

infer that |β1(α)| ≤ 0.34619 , |(β1(α), α)| < 1 for |α| = 0.7. Thus, hβ1(α) is Y -

harmonic and ∂B-determined for all |α| = 0.7, and we can use this class of functions

in improving our approximation of Py(τ < ∞). Let us begin with using K = 3

additional Y -harmonic functions of this form in our approximation: for the α’s let us

take

α1,j = 0.7ei
j

4
2π, j ∈ {1, 2, 3 = K}.

The resulting harmonic functions are

hβ1(α1,j), j ∈ {1, 2, 3 = K}.
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(see (2.4) and (2.8)).

Our approximation ha,K will be of the form

ha,K = R(ha∗,K), ha∗,K = hr + c1,0hρ1 +
K∑

j=1

c1,jhβ1(α1,j ).

One can choose the coefficients c1,j , j ∈ {0, 1, 2, 3 = K} in a number of ways, for

example, by minimizing Lp errors. Here we will proceed in the following simple

way: the ideal situation would be ha,K(y) = 1 for all y ∈ ∂B, which would mean

ha,K(y) = Py(τ < ∞), but this will not hold in general. We will instead require

that this identity holds for y = (k, k), k = 0, 1, 2, 3. This leads to the following four

dimensional linear equation:

1 = ha,K(k, k) = hr((k, k)) + c1,0hρ1(k, k) +
3∑

j=1

c1,jhβ1(α1,j )(k, k), (2.61)

k = 0, 1, 2, 3; Solving (2.61) gives

c1,0 = 7.80744− 0.12974i, c1,1 = −0.25880 + 1.46155i,

c1,2 = −0.26358− 0.01349i, c1,3 = 0.17597 + 0.01433i.

Once the approximation is computed, following Proposition 2.25 one can easily com-

pute its relative error in approximating Py(τ < ∞) by computing

max
y∈∂B

|ha∗,K(y)− 1|.

That maxj=1,2,..,K(r, ρ1, r
2/ρ1, |α1,j|, |β1(α1,j),α(β1(α1,j), α1,j)) < 1 implies

argmaxy∈∂B|ha∗,K(y) − 1| is finite. For ha∗,K computed above, the maximizer turns

out to be y∗ = (4, 4) = (K + 1, K + 1) and the maximum approximation error is

c∗ = max
y∈∂B

|ha∗,K(y)− 1| = |ha,K((y∗))− 1| = 0.17764. (2.62)

The graph of the approximation error |ha∗,K(y)− 1|, y ∈ ∂B is shown in Figure 2.5.
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Figure 2.5: |ha∗,K(y)− 1| as a function of y = (k, k)

By Proposition 2.25 ∣∣∣∣
Py(τ < ∞)− ha,0(y)

Py(τ < ∞)

∣∣∣∣ ≤ c∗.

Theorem 2.19 now implies that ha,K(Tn(xn)) approximates Pxn
(τn < τ0) with rel-

ative error bounded by c∗ = 0.17764 for n large. Therefore, in improving our

approximation from ha,0 of (2.60) to ha,3 by adding three Y -harmonic functions

of the form hβ1(α1,j ) to the approximating basis, the relative error decreases from

c∗0 = 0.3607 to c∗0 = 0.17764. Figure 2.6 shows the level curves of − 1
n
log ha,3(Tn(x))

and − 1
n
logPx(τn < τ0) (the latter computed numerically via iteration of the har-

monic equation satisfied by Px(τn < τ0)) for n = 60; the level curves overlap com-

pletely except along ∂1, as suggested by our analysis.

To illustrate how the approximation error decreases when K increases, let us repeat

the computation above with K = 20. The resulting maximum relative error turns out

to be:

c∗ = max
y∈∂B

|ha∗,20(y)− 1| = |ha∗,20((21, 21))− 1| = 1.6211× 10−3.

The probability P(4,0)(τ60 < τ0), computed numerically, equals 4.6658 × 10−17, the

best approximation of this quantity computed above is ha,20(56, 0) = 5.2 × 10−17.

The discrepancy arises from the proximity of (4, 0) to ∂1. As we move away from

the ∂1, these quantities get closer P(10,0)(τ60 < τ0) = 3.3303× 10−15, ha,20(50, 0) =
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Figure 2.6: Level curves of − 1
n
log ha,0(Tn(x)) and − 1

n
logPx(τn < τ0), n = 60

3.3358×10−15, compatible with the maximum relative error computed above. Figure

2.7 shows K 7→ ha,K(50, 0) and P(10,0)(τ60 < τ0) (the flat line), drawn at 10−15 scale.
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Figure 2.7: K 7→ ha,K(50, 0) and P(10,0)(τ60 < τ0)
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CHAPTER 3

APPROXIMATION OF THE GREATEST COMPONENT OF

THE EXIT POINT

A well studied quantity in computer science is the following expectation:

Ex[max(Xτn(1), Xτn(2))], (3.1)

this is the expectation of the greatest component of the exit point. If X models two

stacks working in parallel on a shared memory, this is the length of the longest stack

at the time of overflow. The study of this expectation was introduced in [41, section

2.2.2, exercise 13]; a great amount of literature exists on this expecation, see [16,

28, 34, 46, 47, 68]. Some of these works are reviewed in Chapter 5. To the best

of our knowledge the problem of approximating this expectation, in the general case

(i.e., when the jump probabilities are arbitrarily chosen) remains an open problem. In

the present chapter we discuss how the approach of the present work can be used to

construct approximations in the stable case.

The Markov property of X implies

Ex[max(Xτn(1), Xτn(2))]

= Px(τ0 < τn)E0[max(Xτn(1), Xτn(2))] + Ex[1{τn<τ0}max(Xτn(1), Xτn(2))].

The same idea applied at x = (0, 0) gives

E0[max(Xτn(1), Xτn(2))]

= P0(τ0 < τn)E0[max(Xτn(1), Xτn(2))] + E0[1{τn<τ0}max(Xτn(1), Xτn(2))].

Therefore, the computation of the expecation (3.1) can be reduced to the computation

of Px(τn < τ0) and Ex[1{τn<τ0}max(Xτn(1), Xτn(2))]. The previous chapters were
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devoted to the approximation of Px(τn < τ0); in this chapter we would like to point

out how the approach of the earlier chapters can be used to approximate

fn(x)
.
= Ex[1{τn<τ0}max(Xτn(1), Xτn(2))]. (3.2)

fn takes the value

fn(x) = max(x1, x2)

for x ∈ ∂An. Note that this is not constant on ∂An; it depends both on x and n (e.g.,

fn((n, 0)) = n.). This is in contrast to Px(τn < τ0) which takes the constant value 1

on ∂An. The graph of fn on ∂An is shown in Figure 3.1. This change leads to several

n/2

n n

Figure 3.1: fn on ∂An

difficulties in applying our approach to the approximation of (3.2):

1. in the approximation of fn, there is no fixed limit problem; the limit problem

depends on n,

2. the value of fn on ∂An gives the limit boundary condition on ∂B only up to

(n, n); there is no obvious extension of fn to all of ∂B- the simplest extension

would be to assign the value 0 for (k, k) ∈ ∂B for k > n,

3. the function fn is piecewise linear on ∂An; none of the Y -harmonic functions

we have constructed in the earlier chapters have linear behavior on ∂An: we

either have constant values or exponential growth or decay.

We propose to deal with these issues as follows:

1. construct a Y -harmonic function hl that equals approximately function (y1, y2) 7→
y2 on ∂B,
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2. approximate fn(Tn(y)) on ∂B with (y1, y2) 7→ n− y1,

3. approximate (y1, y2) 7→ n− y1 on ∂B, using hl and the Y -harmonic functions

constructed in the earlier chapters.

The functions (y1, y2) 7→ n−y1 and fn(Tn(y)) equal each other only up to (n/2, n/2)

on ∂B (See Figure 3.2). Therefore, the resulting approximation will be good only for

y ∈ ∂B with y1 = y2 ≤ n/2, and, we expect the resulting approximation, when

extended to all of An, to be good only for points away from the upper half of ∂An

(i.e., for points x below the diagonal line x(1) = x(2); this indeed turns out to be the

case, see Figure 3.3).

n/2

n n

Figure 3.2: The approximation and the error

The next section constructs a Y -harmonic function having linear behavior on ∂B. In

Section 3.2 we use this function and the Y -harmonic functions of the previous chap-

ters to construct an approximation of fn; as expected, the approximation performs

well away from the upper section of ∂An.
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3.1 Harmonic function resulting from diferentiation

Remember that our Y -harmonic function are of the form

hβ(y) = β(α)y1−y2 (C(β(α),α(α))αy2 − C(β(α), α)α(α)y2)

= β(α)y1−y2 [(β, α), (y2, y2)],

where (β, α) and (β,α) are conjugate points on the characteristic surface. A natural

way to introduce linear (in y) terms into this function is to differentiate it with respect

to α. This is what we will do. Let an overbar denote partial differentiation with respect

to α: e.g., ᾱ denotes ∂α
∂α

. The chain rule gives

d

dα
hβ = (y1 − y2)β

y1−y2−1β̄[(β, α), (y2, y2)]

+ βy1−y2

((
∂C

∂β
β̄ + C̄

(
ᾱ+

∂α

∂β
β̄

))
αy2 + y2Cαy2−1

−
(
∂C

∂β
β̄ + C̄

)
αy2 − Cαy2−1y2

(
ᾱ+

∂α

∂β
β̄

))
.

To obtain linear behaviour on ∂B, it suffices to set α = 1; the last display reduces to

the following for α = 1 on ∂B, i.e., for y1 = y2:

hl
.
=

d

dα
hβ(1) =

((
∂C

∂β
β̄ + C̄

(
ᾱ+

∂α

∂β
β̄

))
+ y2C (3.3)

−
(
∂C

∂β
β̄ + C̄

)
αy2 − Cαy2−1y2

(
ᾱ+

∂α

∂β
β̄

))
;

note that we have a y2C term here, i.e., a term with linear growth. This was our

aim. In the next subsection we compute all of the partial derivatives listed above and

simplify them. These will be used in the numerical study of Section 3.2.
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3.1.1 Simplification of the partial derivatives

Formulas for the derivates appearing in the last display are

C̄ =
∂C

∂α
= µ2

β

α2
,

∂C

∂β
= −µ2

α
ᾱ = − β2

ρ2α2
,

∂α

∂β
=

2β

ρ2α
,

β̄ = −1

2

(
∆̄

2
√
∆

(µ2

α
+ µ1

)−1

+
(
1−∆1/2

) (µ2

α
+ µ1

)−2

µ2α
−2

)
,

∆̄ = 4
µ2

α2
(λ1 + λ2α)− 4λ2

(µ2

α
+ µ1

)
.

Define λs = λ1 + λ2, µs = µ1 + µ2 and r = λs/µs. Substituting α = 1 in these give

∆(1) = 1− 4(µ2 + µ1)(λ1 + λ2) = 1− 4µsλs

= 1− 4µs(1− µs) = 1− 4µs + µ2
s

= (2µs − 1)2 = (2µs − λs − µs)
2

= (µs − λs)
2.

β(1) =
1−

√
∆(1)

2(µ1 + µ2)
=

1−
√

(µs − λs)2

2(µ1 + µ2)

=
1− µs + λs

2(µ1 + µ2)
=

(1− µ1 − µ2) + (λ1 + λ2)

2(µ1 + µ2)

=
(λ1 + λ2) + (λ1 + λ2)

2(µ1 + µ2)
=

λ1 + λ2

µ1 + µ2

= r.

β̄(1) = −1

2

(
4(µ2λs − λ2µs)

2(µs − λs)µs
− (1− µs + λs)

µ2

µ2
s

)

= −
(
µ2λs − λ2µs

(µs − λs)µs
− λsµs

µ2
s

)
= − 1

λs

(
µ2λs − λ2µs

µs − λs
− rµ2

)

= −µ2

µs

(
rµs − ρ2µs

µs − λs

− r

)
= −µ2

µ2

(
µs(r − ρ2)

µs − λs

)

= −µ2

µs

(
r − ρ2
1− r

− r

)
.

C̄ = µ2r,
∂C

∂β
= −µ2, ᾱ = −r2

ρ2
,
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∂α

∂β
=

2r

ρ2
, ∆̄ = 4(µ2λs − λ2µs).

The first term in equation 3.3 we have ∂C
∂β

(r,α) and C̄ which are evaluted at α = 1 as

C̄(r,α) = µ2
r

( r
αρ2

)2
= µ2

r
r4

ρ2
2
α2

= µ2
ρ22α

2

r3

∣∣∣
α=1

= µ2
ρ22
r3
,

∂C

∂β
(r,α) = − µ2

r2

αρ2

= −µ2ρ2α

r2

∣∣∣
α=1

= −λ2

r2
.

The first term in 3.3 is
(

∂C
∂β

β̄ + C̄
(
ᾱ+ ∂α

∂β
β̄
))

which equals to

− λ2

r2
β̄(1) + µ2

ρ22
r3

(
−r2

ρ2
+

2r

ρ2
β̄(1)

)
= −λ2

r2
β̄(1) + µ2

ρ22
r3
(
−r2 + 2r ¯β(1)

)

= −λ2

r2
β̄(1) +

λ2

r3
(−r2 + 2rβ̄(1)) = −λ2

r2
β̄(1)− λ2r

2

r3
+

2λ2β̄(1)r

r3

= −λ2β̄(1)

r2
− λ2

r
+

2λ2β̄(1)

r2
=

λ2β̄(1)

r2
− λ2

r
=

λ2

r

(
β̄(1)

r
− 1

)
.

The second term is

y2C(β,α) = y2µ2(1−
β

α
) = y2µ2

(
1− β

β2

αρ2

)
= y2µ2

(
1− αρ2

β

) ∣∣∣
α=1

= y2µ2

(
1− ρ2

r

)
.

The third term is

−
(
∂C

∂β
(r, 1)β̄(1) + C̄(r, 1)

)
αy2 = −(−µ2β̄(1)+µ2r)α

y2 = µ2(β̄(1)− r)

(
r2

ρ2

)
.

The last term is

−C(β, α)αy2−1y2

(
ᾱ+

∂α

∂β
β̄

)
=

µ2

ρ2
r(1− r)

(
r − 2β̄(1)

)
αy2−1y2.

Then overall, our function at the boundary is:
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d

dα
[(r, 1), (y2, y2)] =

λ2

r

(
β̄(1)

r
− 1

)
+ y2µ2

(
1− ρ2

r

)
+
(
µ2β̄(1)− µ2r

)
αy2

+
µ2

ρ2
r(1− r)(r − 2β̄(1))αy2−1y2.

3.2 Numerical example

In this section we construct, using the Y -harmonic function hl of 3.3 and the Y -

harmonic function hβ of the previous chapters to construct an approximation of the

expectation fn(x) of (3.2) using the approach outlined at the beginning of this chapter.

Our approximation of fn(x) will be of the form hexp,K(Tn(x)) where

hexp,K = R(hexp∗,K) = nhr −
1

1− ρ2/r
hl + c0hρ1 +

K∑

k=1

ckhβ1(αk)

where

αk = Reij/K2π, 0 < R < 1,

and the coefficient of hl is chosen so that the y2 term in − 1
1−ρ2/r

hl has a −1 coeffient

on ∂B. The key difference between ha,K (used in the approximation of Px(τ < ∞))

and hexp,K above is the new harmonic function hl, which introduces the y2 term on

the boundary ∂B.

Our approach to the choice of the constants c0, and ck will be the same as in the

previous section: choose them so that hexp,K(y2, y2) = n− y2 for y2 ≤ K. This gives

a (K + 1)× (K + 1) linear system to be solved for c0, c1,...,cK .

To see how well this approximation works, let us try it on a numerical example. For

parameter values we use the same parameter values used in the previous chapters:

λ1 = 0.1, λ2 = 0.2, µ1 = 0.2, µ2 = 0.5; as we know from Chapter 2, R = 0.7

ensures that all hβ1(αk) are ∂B-determined with |β1(αk)| < 1; for K we take K = 20,

i.e., we use additional 20 Y -harmonic functions of the form hβ1(α) where |α| = 0.7.

For n we take 60.

Figure 3.3 show the level curves of − 1
n
log fn and − 1

n
log hexp,K(Tn(·))(thin, curving
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away from the x2-axis near the top corner); to compute fn numerically, we iterate the

harmonic equation satisfied by fn until it converges, for n = 60, less than 1000 iter-

ations guarantee convergence. The level curves overlap away from the upper half of

An (above the line x1 = x2); this is as expected: by construction, fn and hexp,K(Tn(·)
overlap only upto (n/2, n/2) on on ∂An (see Figure 3.2).

10 20 30 40 50 60

10

20

30

40

50

60

x1

x
2

Figure 3.3: Level curves of − 1
n
log fn and − 1

n
log hexp,K(Tn(·))

The graphs of log(fn) and log(hexpk,K(Tn(·)) along x2 = 0 is given in Figure 3.4;

as is clear from the figure, log(hexpk,K(Tn(·)) provides an excellent approximation of

log(fn).

As x2 increases the quality of the approximation deteriorates for smaller values of x1,

see Figure 3.5, which is as expected.

Giving a theoretical proof of the goodness of these approximations and their extension

to x(2) > x(1) remain for future work.
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Figure 3.4: log(hexp,K(n− x1, x2)) (dashed line) and log(fn) on x2 = 0
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Figure 3.5: log(hexp,K(n− x1, x2)) (dashed line) and log(fn) on x2 = 30
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CHAPTER 4

APPLICATIONS TO INSURANCE AND FINANCE

In the last decade research has emerged modeling systems of companies; this corre-

sponds to multidimensional processes, see e.g. , [9, 63] and references in these works.

Constraints to these proceses can model dividend payment [32] or restrictions on short

selling. Therefore, constrained random walks can also serve as models of financial

systems. In this chapter we provide two examples giving financial interpretation to

our results.

4.1 Probability of low total reserves of an insurance system

The simplest possible insurance system consists of of two insurance companies A

and B. One can model the reserves of these two companies as a process X in R2,

the first [second] component representing the reserves of A [B]. X is a discrete

time process, each step representing a single period (a month, quarter, year, etc.). A

common simplification [67, Chapter 5] is to assume the reserves to be integer valued

(where one unit can represent, e.g., total premiums collected in a period) in which

case we get a process in Z2; in the rest of this chapter we will make this assumption;

yet another common simplication ([67, Chapter 5]) is to assume that statistically, the

quarters represented by the increments of X are independent of each other. This

leads to a random walk model for X . In general, the distribution of the increments

will depend on great number of things: the revenues of the companies, the regulatory

environment within which they operate, agreements with them etc. so in general it

can take arbitrary values, an example is given in Figure 4.1.
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Figure 4.1: Possible increments of X can in general be arbitrary

So far X is unconstrained. Constraints on X can be introduced to model dividend

payments; suppose that A [B] pays dividends of one unit whenever its reserves hit

k1 [k2] at the end of a period; these payments correspond to contraints on the lines

{x : x(i) = ki}, i = 1, 2. We implement these constraints using the constraining map

π(x, v)
.
=




v, if x(i) + v(i) < ki, i = 1, 2,

0, otherwise,

and X is defined as the constrained process

Xk = Xk−1 + π(Xk, Ik),

where Ik denotes the iid increments of the process X . The constraining boundaries of

X are {x : x(i) = ki}, i = 1, 2; these boundaries play the same role as the boundaries

∂i did in the earlier chapters.

The stability of X in this context means that in each period both companies make

money on average, i.e., both components of E[Ik] are strictly positive. When X

is stable, i.e., when both companies are profitable on average, (k1, k2) becomes a

recurrent point and X moves in cycles that restart each time it hits (k1, k2). As we

recall (k1, k2) plays the same role that the origin (0, 0) shown in the earlier chapters.

Under this stability assumption a natural question about this system is as follows:

what is the probability that in a cycle the system’s total reserves go below a given

thershold n. Let τn denote the first time X(1) + X(2) equals n and let τ0 denote

first time it hits the point (k1, k2); the probability of total reserves going below n is

represented by the probability

Px(τn < τ0); (4.1)
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geometrically this is the probability of X hitting the line {x : x(1)+x(2) = n} before

hitting the point (k1, k2), see Figure 4.2.

µ2

n

n

λ1

λ2

(k1, k2)

µ1

Figure 4.2: Constrained Random Walk for Insurance Model

If the increments take values in {(1, 0), (−1, 0), (0, 1), (0,−1)} with probabilities µ1,

λ1, µ2, λ2 the probability (4.1) is exactly the probability we have approximated in

Theorem 2.19. This gives one possible application / interpretation of our results in

insurance. The same framework can also be used to study credit risk; the next section

discusses this possibility.

4.2 Application to Credit Risk

Consider the same setup as above, i.e., two companies A and B whose equity is mod-

eled by the two dimensional random walk X . As before, let ∂i denote the coordinate

axes and σi the first time X hits ∂i. In the present framework, σ1 models the default

time of company A and σ2 models the default time of company B (see Figure 4.3)

σ1 ∧σ2 models the first time one of the companies in the system go bankrupt. If there

are no dividend payments,

Px(σ1 ∧ σ2 < ∞) (4.2)
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is the probability that this system ever goes bankrupt. The stability assumption

implies that this probability is strictly less than 1, i.e., the problem is nontrivial.

Px(σ1 ∧ σ2 < ∞) is of the same type as Py(τ < ∞) for which we have developed

formulas in Section 2.6 of Chapter 2. The main difference is that the exit boundaries

are different; in Section 2.6 the exit boundary ∂B is {y : y(1) = y(2)} whereas

in (4.2) the exit boundary is ∂1 ∪ ∂2. We think that the type of harmonic functions

constructed in Section 2.6 can be extended to develop formulas for (4.2) for the exit

boundary ∂1 ∩ ∂2. This is an interesting research problem for future work.

(0,0)

∂1

∂2

Figure 4.3: X hitting ∂1 ∪ ∂2 is the first default time

Similar to the application above, allowing A and B to pay dividends whenever their

equity hits levels k1 and k2 respectively corresponds to introducing reflecting bound-

aries at{x : (i) = ki} (see Figure 4.4).

(k1, k2)
∂1

∂2
(0,0)

Figure 4.4: Constrained Simple Random Walk for Finance Application
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Then once again, the stability assumption implies that X travels in cycles which

restart every time it hits (k1, k2), then the probability

Px(σ1 ∧ σ2 < τ0)

is the probability that the system goes bankrupt in the current cycle. This is exactly a

problem of the type that we have studied in Chapter 2; the main difference once again

being the different geometry of the exit boundary (rectangular for the current case,

triangular in Chapter 2). As also pointed out in [64], we think that the analysis of the

triangular case can be extended to the rectangular case using similar structures such

as characteristic surfaces and conjugate points on them; an implementation of these

ideas also remain for future work.
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CHAPTER 5

LITERATURE REVIEW

There is a wide literature on the approximation of the probability Px(τn < τ0) and

other expectations and probabilities of constrained processes using many techniques

including large deviations analysis and simulation, see, [1, 2, 4, 5, 6, 7, 8, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 66, 68].

In this section we review [25, 33, 36, 60, 64, 65, 28, 68]; for further literature review

we refer the reader to [64].

[33] evaluates the performance of an IS estimator of rare event in tandem Jackson net-

work and computes the large deviations decay rate of pn for the initial points (1, 0).

A popular heuristic in importance sampling is to use a static change of measure im-

plied by large deviations analysis (in the approximation of pn for two tandem random

walk, this corresponds to interchanging λ with the smaller of the µi). It was observed

in this work that this heuristic can perform very poorly in the estimation of pn in

multidimensional constrained random walks.

The large deviations result in [33] is as follows: for a d-dimensional constrained

random walk representing a Jackson network, we have

lim
n→∞

−1

n
log pn((1, 0, ..., 0)) =

d∧

i=1

− log ρi, (5.1)

where pn is as before the probability P(1,0,...,0)(τn < τ0), where

ρi = [λ(I − P )−1]i/µi,

P is the routing matrix of the network and λ is the vector of arrival rates. To establish
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this result, [33] proves

b1ρ
n
∗n

−1 ≤ pn ≤ b2ρ
n
∗ (n+ 1)d, ρ∗ = max

j
ρj ,

using a theorem from [3], which claims

π(∂An) = c−1
0 E0

(∫ τ0

0

1{Xt∈∂An}dt

)
,

where π is the stationary measure of π.

[36] computes the large deviation rate function for constrained random walks

The prior works that thesis has greatest connection to are [25, 60, 64, 65]. [25, 60]

shows how to use, design and implement IS algorithms for the simulation of the prob-

ability pn when the starting point x is near the origin. An Their methodology is based

on subsolutions of the HJB equation arising from the limit analysis of the second

moment of the IS estimator. This equation turns out to be the same that appears in

the large deviations analysis of pn. We have used the simple random walk version

of this equation in Chapter 2, see (2.15) in our analysis of the relative error of the

approximation as well as obtaining LD lowerbounds on the probability pn.

The IS estimator of pn is of the following form:

p̂n = 1An

Tn−1∏

k=0

Θ(Y (k + 1))

Θ̄n(Y (k + 1)|Xn(k))
.

The goal here is to choose the IS measure Θ̄ so that the second moment of this esti-

mator is minimized, this leads to the optimization problem

Vn(x) = inf EP(p̂n) = inf EP

(
1An

Tn−1∏

k=0

Θ(Y (k + 1))

Θ̄n(Y (k + 1)|Xn(k))

)
.

This function satisfies a dynamics programming equation, which , for x in the interior,

Vn(x) = inf
2∑

i=0

Vn

(
x+

1

n
vi

)
Θ̄(vi)

Θ(vi)
Θ(vi).

Applying − 1
n
log to this equation and taking limits reduces this equation to (2.15).

[25, 60] uses subsolutions to this limit equation to construct its asymptotically optimal

IS algorithms.
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The present work is a continuation / extension of [65], which treats the approximation

of Px(τn < τ0) for the two dimensional tandem walk; [65] derives the following

explicit approximate formula for this probability:

Px(τn < τ0) ≈ Py(τ < ∞)

= ρ
y(1)−y(2)
2 +

µ2 − λ

µ2 − µ1

ρy(1)−y(2)ρ
y(2)
1 +

µ2 − λ

µ1 − µ2

ρy(1)−y(2)ρ
y(2)
1 .

Section 6.1 gives a detail comparison of the results of this thesis and [65] covering

the tandem walk.

[28] studies the expectation

E0[max(Xτn(1), Xτn(2))],

for the simple constrained random walk using combinatorics techniques to count the

trajectories of the walker; note that this work focuses on the initial condition x = 0.

[28] transforms the walk in a triangle to a square, than the walk in a square reduces to

a 1 dimensional simple random walk. For these techniques to work [28] focuses on

two particular cases of the jump probabilities. In the first case authors set p = 1
4
, thus

the probability of each increments equal to one over four, that is

P (Ii = (1, 0)) = P (Ii = (0, 1)) =
1

4
,

P (Ii = (−1, 0)) = P (Ii = (0,−1)) =
1

4
,

this is called as “metastable case". The second case is the “contracting case”, where

the jump probabilities are taken to be

P (Ii = (1, 0)) = p < P (Ii = (−1, 0)) = q, (5.2)

P (Ii = (0, 1)) = p < P (Ii = (0,−1)) = q.

where p ∈
(
0, 1

4

)
. In this case the probability of a positive increment is less than the

probability of a negative increment. Note that in both cases the jump probabilities are

symmetric, i.e., there is no distinction between the queues. [28] proves that

A(p, n) = E0[max(Xτn(1), Xτn(2))] ∼ n0.67526...,

for the metastable case and

A(p, n) ∼ 3

4
n,
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for the contracting case.

[28] uses the variable m (rather than n as we do above) to denote buffer size (or

equivalently the position of the exit boundary). In the rest of our review of [28] we

will also use m to denote buffer size. Very briefly, the reductions mentioned above are

performed as follows. Γm represents the graph on the integer interval [1, ..., m] with

forward edges {(x, x + 1)|0 ≤ x < m}, backward edges {(x, x − 1)|0 < x ≤ m}
and loops {(0,0) ;(m,m) }.

The set of all edges is

{(x, x+ 1)|0 ≤ x < m} ∪ {(x, x− 1)|0 < x ≤ m} ∪ {(0, 0); (m,m)}.

Figure 5.1: The graph Γm

Uk,n,t denotes the set of paths of length n from vertex 0 to k in one-dimensional

random walk containing t loops. Uk(x, u) denotes the generating function of number

of paths.

Figure 5.2: The multi-graph Λm

Λm shows the multi-graph whose vertices is {[x1, x2] : 0 ≤ x1, x2 ≤ m} and the set
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of edges

{([x1, x2], [|x1 + 1|−, x2])} ∪ {([x1, x2], [|x1 − 1|+, x2])}∪

{([x1, x2], [x1, |x2 + 1|−])} ∪ {([x1, x2], [x1, |x2 − 1|+])},

where x ∈ Z2 and

|x− 1|+ =




x− 1, if x− 1 > 0

0, otherwise

|x+ 1|− =




x+ 1, if m > x+ 1

m, otherwise

θk1,k2,n,t denotes the set of paths of length n from the point [0, 0] to the point[k1, k2] in

two dimensional random walk containing t loops; θ̂k1,k2(x, u) denotes the exponential

generating function of numbers of paths

Tk1,k2,n,t denotes set of paths of length n from the point [0, 0] to the point[k1, k2] in

two dimensional random walk, which t are loops with k1 + k2 < m. The generating

function of this paths is denoted by Tk1,k2(x, u).

Lastly, πk1,k2 denotes the probability of hitting the absorbing barrier (k1, k2) where

k1 + k2 = m. [28] estimates this probability by counting the trajectories of the

random walk:

1. Estimate the generating function of triangular walks from walks in square lat-

tice by using the reflection principle i.e.,

Tk1,k2(x, u) = Qk1,k2(x, u)−Qm−k2,m−k1(x, u),

when k1 + k2 < m.

Tk1,k2(x, u) = x(Qk1−1,k2(x, u)+Qk1,k2−1(x, u)−Qk1+1,k2(x, u)+Qk1,k2+1(x, u)),

when k1 + k2 = m.

2. Estimate the generating function of two dimensional counting walks in a square

i.e.,

Q̂k1,k2(x, u) =
∑

n,t≥0

Qk1,k2,n,tu
tx

n

n!
= Ûk1(x, u)Ûk2(x, u),
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where

Ûk(x, u) =
∑

n,t≥0

Uk,n,tu
tx

n

n!
.

3. Transform counting of walks in a square to shuffles of 1 dimensional walks

over an interval i.e.,

Uk(x, u) =
∑

n,t≥0

Uk,n,tx
nut.

4. Express the generating functions of the walks over an integer in terms of partial

fraction decompostion i.e.,

Uk(x, u) = −
∑ ck(ϕ)

(1− 2x cosϕ)
,

where

ck(ϕ) =




2 sinϕ sin(m−k+1)ϕ−u sin(m−k)ϕ

(m+2) cos(m+2)ϕ−2(m+1)u cos(m+1)ϕ+mu2 cosmϕ
, if ϕ 6= 0

− 1
m+1

, otherwise

The general probability of reaching absorbing state is given as

πk1,k2 =

(
p

q

)m
2

Tk1,k2

(
(pq)

1

2

(
q

p

) 1

2

)
,

for the metastable case the limiting distribution is

lim
m→∞

mπλm,(1−λ)m = 4

(
1

2
+ f(λ) + f(1− λ)

)
;

where

f(x) =
∑

n≥1

coshπx
sinh nπx

sinhnπ
.

The expected size of the largest stack can now be approximated by integrating with

respect to f . For the contracting case it is shown that the probability of absorption

converges to the uniform distribution:

lim
m→∞

mπλm,(1−λ)m = 1.

where λ ∈ [α, β] and [α, β] is a subinterval of [0, 1]. Again, the expected size of the

largest stack is now found by integrating with respect to the uniform distribution.

An early reference on the approximation of the expectationE0[max(Xτn(1), Xτn(2))],

is [68] treating the symmetric case (5.2) where the jump probabilities of the first and
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second dimension are the same. As opposed to [28], [68] considers the unstable case

where p > q and also focuses on the initial condition x = 0.

The main idea in [68] is that after the first logm step, the probability of returning to

the one of the reflecting boundaries is asymptotically 0, thus the analysis reduces to

simple random walk in 2 dimensions with one absorbing barrier at x(1) + x(2) = n.

Details are given below.

The approximation result in [68] is the following

A(p, n) =
n

2
+

√
n

2π(4p− 1)
+O

(
log(n)√

n

)
. (5.3)

[68] proves (5.3) by 1) showing that one may ignore the constraints on the dynamics

of X and 2) computing the same quantity for the unconstrained process (this is [68,

Lemma 1]).

The first step of the argument has itself two steps: 1) a case covering when X0 is

sufficiently away from the constraining boundaries (this is [68, Lemma 2]) and 2) and

argument when X0 = 0; the second part runs the process for t number of steps and

just uses the law of large numbers (with large deviations estimates) to show that the

process will be in a region where the first part works (this is [68, Lemma 3]).
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Figure 5.3: The region R

Define the region R ⊂ Z2
+ : [⌈λ′ logn⌉, ⌈λ log n⌉ + 1]2, where 0 < λ′ < λ are

constants that are chosen based on the parameter p and ǫ > 0 is a small number, again

chosen depending on the parameter p; the region R is shown in Figure 5.3; λ′ < λ;

so for n large enough R is nonempty and grows linearly with log(n). The dashed line

in Figure 5.3 shows the average dynamics of X .
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Let us give an summary of the above argument using Figure 5.3:

1. Use large deviations bounds to show that starting with X0 = 0, with high

probability X will be in the rectangle R at time t = ⌊λ log(n)⌋ + 1. The

contribution of paths with Xt /∈ R to E0[|max(Xτ (1), Xτ (2))|] is negligable.

2. For X0 = a ∈ R, as far as the computation of Ex[|max(Xτ (1), Xτ (2))|] is

concerned, X can be replaced with the unconstrained process X ′.

These two steps give the approximation (5.3).
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CHAPTER 6

CONCLUSION

6.1 Comparison with the tandem case

This section compares the analysis and results of the current work to those of [64, 65]

treating the approximation of the probability Px(τn < τ0) for the constrained random

walk representing two tandem queues, which has the increments (1, 0), (−1, 1) and

(0,−1). The main idea is the same for both walks: i.e., approximation of Px(τn < τ0)

by Py(τ < ∞) and computing/ approximating the latter via harmonic functions con-

structed out of single and conjugate points on the characteristic surface. However, the

assumptions, the results and the analysis manifest nontrivial differences. Let us begin

with the assumptions:

Assumption r2/ρ2 < 1 In the tandem case β1(1) = ρ2 and the conjugate point of

(ρ2, 1) is (ρ2, ρ1), therefore, the stability assumption automatically implies α(r, 1) <

1. For the parallel case, α(r, 1) can indeed be greater than 1 if r and ρ1 are close and

ρ2 is small; we therefore explicitly assume r2/ρ2 < 1. This assumption appears in

two places: 1) in the convergence analysis, in the derivation of the bound (2.9) and

2) in the computation of Py(τ < ∞) in Section 2.6. We think that the use of the

assumption r2/ρ2 < 1 in the first case can be removed without much change from

the arguments of the present and earlier works; the details remain for future work.

We think that the computation of Py(τ < ∞) when r2/ρ2 > 1 presents genuine dif-

ficulties, the treatment of which also remains for future work. Next we point out the

differences in results:
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Region where Py(τ < ∞) is a good approximation for Px(τn < τ0) That the

tandem walk involves no jumps of the form (−1, 0) implies that PTn(xn)(τ < ∞) pro-

vides an approximation of Pxn
(τn < τ0) with exponentially decaying relative error

for all x away from 0; in contrast, the presence of the jump (−1, 0) in the parallel

case, implies that the same approximation works only away from ∂1 for the parallel

walk case treated in the present work. This difference shows itself in the proofs of

exponential decay of relative error, too, this is discussed below.

Explicit formula for Py(τ < ∞) In the case of the tandem walk, the probability

Py(τ < ∞) can be explicitly represented as a linear combination of the harmonic

functions hρ1 and hρ2 for all stable parameter values as long as µ1 6= µ2; in the paral-

lel case this only happens when r2 = ρ1ρ2 (see Proposition 2.21). When r2 6= ρ1ρ2,

hr and hρ1 can only provide an approximation of Py(τ < ∞) with bounded rela-

tive error (Proposition 2.22). This relative error can be reduced by adding into the

approximation further ∂B-determined Y -harmonic functions (Proposition 2.25 and

subsection 2.6.1).

The changes in argument from the tandem walk to the parallel walk are as follows:

Analysis of Px(τn < τ0) In prior works [25, 60, 61, 64] the LD analysis of Px(τn <

τ0) and similar quantities are based on sub and supersolutions of the limit HJB equa-

tion, similar to the analysis given in subsection 2.3.1. In the present work, a novelty

is the use of explicit subharmonic functions (Proposition 2.15) of the constrained ran-

dom walk X in the proof of the upperbound Proposition 2.16.

Analysis of Px(σ1 < τn < τ0) The probability corresponding to Px(σ1 < τn < τ0) in

the tandem case is Px(σ1 < σ1,2 < τn < τ0). For the proof of the exponential decay

of the relative error, we need upperbound on these probabilities. Both papers develop

these upperbound from subsolutions to a limit HJB equation. The subsolution con-

sists of three pieces (one for each of the stopping times σ1, σ1,2 and τn) for the tandem

walk, and two pieces for the parallel walk (one for each of the times σ1 and τn). In

the tandem case, the pieces of the subsolution are constructed from the subsolution

for the probability Px(τn < τ0), whereas in the parallel case a new piece is introduced
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based on the gradient r4 of (2.39).

Analysis of Px(σ̄1 < τ < ∞) The probability corresponding to Px(σ̄1 < τ < ∞) in

the tandem case is Px(σ̄1 < σ̄1,2 < τ < ∞). The special nature of the tandem walk

allowed us to find upperbounds on this probability from the explicit formula we have

for Py(τ < ∞); this significantly simplified the analysis of the tandem walk case. For

the parallel walk, we extended the analysis of Px(σ1 < τn < τ0), based on subsolu-

tions, to Px(σ̄1 < τ < ∞). In this, the most significant novelty is the analysis given

Section 2.2, where we prove the existence of z > 1 such that Ez [z
τ1{τ<∞}] < ∞.

For this, we introduce what we call Y − z-harmonic functions and provide methods

of construction of classes of them from points on 1/z-level characteristic surfaces,

which are generalizations of characteristic surfaces.

6.2 Conclusion

The probability Py(τ < ∞) approximates Px(τn < τ0) well when x is away from

∂1; as noted in the previous section, this is in contrast to the tandem case, where the

approximation is good away from the origin. How can one extend the approximation

to the region along ∂1? A natural idea, already pointed out in [64] is to repeat the

same analysis, but this time taking the corner (0, n) as the origin of the Y process,

i.e., to use the change of coordinate y = Tn(x) = (x(1), n − x(2)) to construct

the Y process. Numerical calculations indicate that the resulting approximation will

be accurate (i.e., exponentially decaying relative error) along ∂1 between the points

(0, n) and (0, ⌊(1 − C4)n⌋) (see (2.19) for the definition of C4). We believe that

arguments and computations parallel to the ones given in the present work would

imply these results; the details are left for future work. We think that the extension of

the approximation to the region along the line segment between (0, 0) and (0, ⌊(1 −
c1)n⌋) requires further ideas and computations.

We expect the analysis linking Px(τn < τ0) to Py(τ < ∞) when ρ1 = ρ2 to be

parallel to the analysis given in the current work. For the computation of Py(τ < ∞),

when ρ1 = ρ2, the case λ1 = λ2, µ1 = µ2 appears to be particularly simple. In this
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case, upon taking limits in (2.49) one obtains

Py(τ < ∞) = ry(1)−y(2) + (1− r)ry(1)(y(1)− y(2)),

where r = ρ1 = ρ2. A complete analysis of the computation of Py(τ < ∞) when

ρ1 = ρ2 remains for future work.

In subsection 2.6.1, the computation of Py(τ < ∞) when r2 6= ρ1ρ2 proceeds as fol-

lows: 1) we first construct a candidate approximation ha,K = R(ha∗,K) of Py(τ < ∞)

2) we find an upperbound on the relative error of the approximation by finding the

maximum of |ha∗,K − 1| on ∂B. A natural question is the following: given a rela-

tive error bound, can we know apriori that an approximation having that maximum

relative error can be constructed? If that is possible, how many Y -harmonic func-

tions of the form given by Proposition 2.3 would we need? To answer these questions

require a fine understanding of the functional analytic properties of the span of the

∂B-determined Y -harmonic functions given by Propositions 2.2 and 2.3. This ap-

pears to be a difficult problem because the functions given in these propositions don’t

have simple geometric properties, such as the orthogonality of the Fourier basis in

L2. A study of this problem remains for future work.

The exact formula for Py(τ < ∞) for the tandem case has a remarkable extension

to d dimensions; this is derived in [64] and is based on harmonic-systems, a concept

defined in that work. We think that it is also possible, in the case of parallel queues, to

obtain nontrivial harmonic systems in higher dimensions. A complete characteriza-

tion of such systems and the question of under what conditions they would give a rich

class of Y -harmonic functions to approximate Py(τ < ∞) also remain challenging

problems for future research.
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