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ABSTRACT

A COMPARISON OF CONSTANT AND STOCHASTIC VOLATILITY IN
MERTON’S PORTFOLIO OPTIMIZATION PROBLEM

Oztiirk, Ozan
M.Sc., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

August 2018, 44 pages

Merton’s Portfolio Problem is a dynamic portfolio choice problem, which assumes
asset returns and covariances are constant. There is well documented evidence that,
stock returns and volatilities are correlated. Therefore, stochastic volatility models in
dynamic portfolio problems can give better results. The work [J. Liu, Portfolio selec-
tion in stochastic environments, Review of Financial Studies, 20(1), 2007] developed
a general dynamic portfolio model that allows the parameters of the model to depend
on an external process X ; this general model includes Merton’s portfolio problem with
Heston stochastic volatility (Merton H) and constant volatility as special cases. Liu’s
solution involves substituting solutions of a specific form into the Hamilton Jacobi
Bellman (HJB) equation associated with the problem and reducing it first to a simpler
Partial Differential Equation (PDE), and then reducing this PDE into a sequence of
Ordinary Differential Equations (ODE). In this thesis we give the details of these re-
ductions. We then use the explicit solutions provided by Liu for the Merton H model
to see the effect of replacing stochastic volatility with constant volatility in Merton’s
problem. We find that, a ratio(sensitivity to stochastic volatility ratio) depending on
mean reversion rate, risk aversion and Sharpe ratio is the most important parameter in
this respect. When the value of this ratio is small, incorporating stochastic volatility
into the model has little effect on the optimal portfolio. When it is large (when Sharpe
ratio is high and the investor has low risk aversion) taking stochastic volatility into
consideration is meaningful.
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(074

MERTON’UN PORTFOY PROBLEMININ, SABIT VOLATILITE ILE
STOKASTIK VOLATILITE OLDUGU DURUMLARDA KARSILASTIRILMASI

Oztiirk, Ozan
Yiiksek Lisans, Finansal Matematik Bolimii

Tez Yoneticisi  : Dog. Dr. Ali Devin Sezer

Agustos 2018, 44 sayfa

Merton’un portfoy problemi, varlik getirilerinin ve volatilitelerinin sabit oldugunu
varsayan bir dinamik portfOy secim problemidir. Varlik getirileri ve volatiliteleri arasinda
korelasyon olduguna dair 6nemli bulgular mevcuttur. Bu durum goz Oniiniinde bu-
lunduruldugunda, stokastik volatilite kullanilan dinamik portfOy secimlerinin daha iyi
sonu¢ vermesi ongoriilmektedir. Bu baglamda, Liu, model parametrelerinin, X ile
ifade edilen, digsal siireclere bagli oldugu genel bir portféy secim modeli gelistirmistir[J.
Liu, Portfolio selection in stochastic environments, Review of Financial Studies, 20(1),
2007]. Merton portfoy probleminde, Heston stokastik volatilitesi oldugu durum (Mer-
ton H) ve volatilitenin sabit oldugu durum, farkli durumlar olarak bu genel modelin
icerigi dahilindedir. Liu’nun ¢oziimii, belli bir sonu¢ formunun, ilgili Hamilton Ja-
cobi Bellman (HJB) denkleminde degistirilmesini, bunun sonucunda bu denklemin
kismi diferansiyel denkleme (PDE) doniisiimiinii ve daha sonra da bu PDE’nin bir
takim adi diferansiyel denklemlere (ODE) indirgenmesini icermektedir. Bu tezde bu
islemlerin detaylar1 verilmistir. Daha sonra Liu’nun Merton H modeli icin verdigi ek-
splisit ¢oziim kullanilarak, Merton probleminde, stokastik volatilitenin sabit volatilite
ile degitirilmesinin etkisi incelenmistir. Bunun sonucunda ortalamaya doniis hizi,
Sharpe orani, risk istahi parametrelerine bagli olan bir oranin (stokastik volatiliteye
hassasiyet oran1) onemli oldugu tespit edilmistir. Bu oran kiiciik iken stokastik volatilitenin
modele dahil edilmesinin optimal portféy secimi iizerindeki etkisi azdir. Bu oran
biiyiik iken (Sharpe oranmin yiiksek oldugu ve yatirimeilarin risk istahi yiiksek iken),
stokastik volatilitenin hesaba katilmasi portfdy se¢imini etkilemektedir.
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Anahtar Kelimeler : Dinamik sistemlerde portfoy secimi, Merton’un portféy problemi,
Stokastik volatilite, Heston modeli, Stokastik kontrol.
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CHAPTER 1

Introduction

Portfolio selection is one of the popular topics in finance literature for a long time.
Investors always looked for an answer for how to manage their wealths more effi-
ciently; whether to invest in stock market or buy government bonds, which stocks to
buy, how to allocate wealth between different stocks, etc. In this sense, the first mod-
ern approach to answer these questions is advanced by Harry Markowitz in 1952[12].
He developed a model which optimizes portfolios according to their expected returns
and variances (mean-variance optimization). Markowitz’s model is based on a static
framework which only includes one period of time and excludes future possible events
which means the asset returns and correlations stay constant in the investment period.
As a result, Markowitz’s model fall short due to its limitation in adapting to changes in
the market.

A dynamic model which can take into account fluctuations in the market would be
more realistic and more accurate for investors, especially for long term investments.
However, compared to static models, with the dynamic models it is more difficult to
obtain solutions. For this reason, dynamical models are developed many years later.
In 1969 Nobel laureate Robert Merton solved a dynamic portfolio problem, where an
investor seeks to invest some part of its wealth and consume remaining part in a limited
market setting[15]. In this setting, the investor either buy a risky asset such as a stock
and/or a risk free asset, such as a treasury bond. In order to find both optimal asset
allocation and optimal consumption, Merton used dynamic programming principles
in continuous time setting. His seminal work is considered as the starting point of
dynamic portfolio choice which is also subject of Stochastic Control theory.

The Merton problem can be explicitly solved by the help of a series of simplifying
assumptions such as; risky assets follow geometric Brownian motion, mean and co-
variance of asset returns stay constant until the end of investment horizon, there are no
transaction costs, assets are traded continuously in time, the market is perfectly liquid,
investor has constant relative risk aversion(CRRA) etc. These assumptions contradict
with dynamics of the stock market. However, Merton’s solution to the problem gives
a good understanding of dynamic portfolio problem. Thus, Merton’s portfolio prob-
lem became a well established approach in the literature. But since the assumptions
made were not very realistic, many researchers attempted to integrate more realistic
assumptions to the model.



The assumption of constant mean and covariance of asset returns, is one of the
major unrealistic assumptions in Merton’s portfolio problem. There is a strong empir-
ical evidence in the literature that stock market returns is not constant over time. In
the works of French et al.[8], Campbell and Hentschel [3], fluctuation in volatility is
observed and correlation between asset returns and volatility is documented. Further
to this, the volatility is not constant as can be inferred in volatility smiles in option
prices. For pricing risky assets, taking asset return mean and covariance as time vary-
ing processes fit market dynamics better. In literature, stochastic volatility models
such as Heston [10], SABR [9], can explain smile curves. Considering this, stochastic
volatility models in a dynamic portfolio choice may give better results than a classical
Merton’s portfolio model.

In this context, Liu [11] developed a general dynamical portfolio model for a
CRRA type investor in incomplete markets. Liu characterized asset returns by a series
of differential equations which he calls ’quadratic returns’ and by the help of these
differential equation he obtained a general solution; the model studied by Liu includes
optimal investment under Heston stochastic volatility model as a special case. This
extends Merton’s classical framework and gives explicit solution of dynamic portfolio
choice problem for a CRRA investor in a setting where the stock price follows the
stochastic volatility model of Heston for incomplete markets.

In this thesis, an attempt has been made to see the difference between the con-
stant volatility and stochastic volatility in dynamic portfolio choice and tried to find
an answer to in which conditions it is relevant to integrate stochastic volatility to the
dynamic portfolio choice problems. Liu’s model of Merton’s portfolio problem is the
framework of this thesis. Based on this model, a comparison is made and a conclusion
is driven. This thesis is organized as follows; the second chapter gives a brief back-
ground information about stock price movement and stochastic control theory. The
third chapter deals with the Merton Portfolio Problem in its classical form. Liu’s dy-
namic portfolio model is the subject matter of the fourth chapter. In fifth chapter, we
give Liu’s reduction of his general model to the problem of dynamic portfolio choice
under stochastic volatility. We also show how one can reduce this solution to the
constant volatility case. Finally we compare the two models of volatility in the sixth
chapter.

1.1 Literature Review

Portfolio choice is a subject of considerable attention. Even though there are nu-
merous studies on the subject, there are a few studies on the dynamic portfolio choice
which incorporates stochastic volatility of the risky asset’s return. These studies are
differentiated from each other with respect to their assumptions on asset returns, util-
ity settings and market conditions. Schroder and Skiadas [17], for example, studied
stochastic volatility for homothetic generalized recursive utility and driven closed-form
solutions for the optimal consumption for incomplete markets as a special case of com-
plete markets. Chacko and Viceira [4], studied dynamic portfolio choice in incomplete
markets for one-factor stochastic volatility model (with constant expected return and
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time varying precision—the reciprocal of volatility) with recursive utility preferences
and gave a closed-form approximate analytic solution in their study. They found out
that the optimal portfolio demand for stocks includes an inter-temporal hedging com-
ponent. They implemented their model to US stock data and found that the stock
return volatility did not appear to be variable and persistent enough to generate large
inter-temporal hedging demands. Liu[11] focused on dynamic portfolio choice prob-
lems when the asset returns were quadratic and the investor had a constant relative
risk aversion utility function. Liu, gave exact explicit solution, while other studies
gave approximate solutions to the problem. Liu applied his method to portfolio choice
problem for incomplete markets when the stock return follows Heston’s [10] stochastic
volatility model.

Following Liu’s work, Buraschi et al.[2] developed a new multivariate inter-temporal
portfolio choice which allows volatility and correlation risk to have separate roles and
in that context, they derived an optimal portfolio implications for economies in which
the degree of correlation across industries, countries, or asset classes is stochastic.
They found that the optimal hedging demand can be significantly different from the one
implied by more common models with constant correlations or single-factor stochastic
volatility. Later, Faria et al.[7], extending the work of Chacko and Viceiral[4], took
ambiguity into account in the dynamic portfolio choice and test, how ambiguity about
the stochastic processes that generate the return and volatility of the risky asset im-
pacts portfolio choice. Faria, found that the ambiguity affects portfolio choice, through
a specific correlation structure, that also induces ambiguity about the return process.
Another example of stochastic volatility in dynamic portfolio choice is the study of Es-
cobar et al.[6]. This study incorporated multi-factor stochastic volatility model (which
is introduced by Christoffersen et al.[S] in option pricing) into the portfolio choice
problem. In this respect, a model for multivariate inter-temporal portfolio choice in
complete and incomplete markets with multi-factor stochastic covariance matrix of
asset returns is developed and its performance on investors welfare is analyzed. Es-
cobar et al. concluded that investors who invest myopically, ignore derivative assets,
model volatility by one factor and ignore stochastic covariance between asset returns
can incur significant welfare losses.






CHAPTER 2

Background - Stochastic Control Theory

In this chapter we will give some brief information about models of stock price move-
ments. We give the definition of the geometric Brownian motion and we look at the
stock price movements given by the Heston stochastic volatility model. Then we will
introduce the concepts of Stochastic Control Theory.

2.1 Stock price model

2.1.1 Geometric Brownian Motion

The standard Brownian motion B is often considered the simplest possible continu-
ous time continuous stochastic process. It can be considered to be a continuous time
random walk; rigorously, it is defined through the following properties:

1. B(0) = 0 and B, is almost surely continuous.

2. B, has t > 0 has stationary independent increments. if r < s < ¢ < u then
B, — B; and B, — B, are independent stochastic variables

3. B— B; ~N(0,t —s)for0 < s <t

The simplest and earliest model for stock prices assumes that the underlying risky
assets follow a geometric Brownian motion, which is represented by the following
stochastic process:

dSt = ,U/Stdf —+ (TStdBt, (21)

where 1 and o are constants and d3; denotes integration with respect to the standard
Brownian Motion. The constant  is the drift coefficient and the 1.5;dt component of
dS; corresponds to the drift process which represents the trend in the movement of the
price. In this model, the random fluctuations in the price increment depends linearly
on the current price itself (this is the 0.5;dB; term; the constant o (volatility) is the
coefficient of this linear dependence.



A geometric Brownian motion model dictates that asset returns are assumed to be log
normally distributed, and the standard deviation of the returns (i.e. the volatility) is
assumed to be constant.

2.1.2 Heston model

A geometric Brownian motion is based on the assumption that the volatility of the
risky asset is constant. In Heston’s stochastic volatility model, Heston relaxed this
assumption and defined the volatility as a stochastic process which affects the dynam-
ics of stock prices. In Heston model the risky asset follows the following stochastic
differential equation [10];

dS, = pSydt + \/V,S,dB,, (2.2)
AV, = K(0 — V,)dt + o,\/V,dBY, (2.3)

Where S; denotes stock price and V; denotes variance, where K, 6,0, > 0. B; and
By are Brownian motions. K (mean-reversian rate )is the rate at which V; returns to
the long-term volatility mean 6. o, is the volatility of the volatility. B; and B} are
correlated Brownian motions:

dB,dBY = pdt, (2.4)

where p € (—1, 1) is the correlation coefficient.

2.2 Basic Structure of Stochastic Control Problems

We now give a brief summary of concepts from stochastic control theory following
Pham [16]. A stochastic control problem formed by three main features: state of the
system, control and performance criterion. Brief description of each is given below.

2.2.1 State of the System

Stochastic Control Theory problems take place in a dynamic system where the system
is characterized by its states and evolves in an uncertain environment. The system rep-
resented by a filtered probability space (2, F,F = {F},t € [0,T]},P) . State of the
system is described by some set of quantitative variables(state variables) which formal-
ized as X = X, which is a [F adapted stochastic process that shows the evolution of
the variables describing the dynamic system through a stochastic differential equation
that maps t — X;(w) for all w € Q.

For controlled diffusion process in R" our state of the system follows the following
stochastic differential equation



dX, = b(X,, as)ds + o( Xy, o, )dBs, (2.5)

where B denotes d-dimensional Brownian motion on the filtered probability space.

In order to obtain a unique solution, one imposes regularity and growth conditions on
the coefficients a and 0. b : R” x A — R™ and 0 : R" x A — R™*? satisfy following
Lipschitz condition in A for some K

Suglb(x,a) - b(yva)’ + |U(I,CZ) - U(y7a)| < K|$ - y| (26)
ac

2.2.2 Control

Control is a process, which influences the state variable X in order to achieve a desired
goal. If this goal is to optimize some payoff function then this concept is defined as
optimal control. Control is denoted as & = a; whose value is decided at time t in
function of the available information F;. We want our control to be admissible. The
set of all admissible control is represented by A

For controlled diffusion process in R", our control needs to satisfy the following con-
ditions in order to obtain unique and strong solutions for A

T
E[/ 16(0, o) |* + |(0, )| 2dt | < oo, 2.7)
0
E[ sup | XE*]?] < oo, (2.8)
t<s<T

where the existence and uniqueness of a strong solution to the SDE (2.5) starting from
T at s = t is denoted by X%, t < s < T.

s

2.2.3 Performance Criterion

In stochastic control theory we want to optimize all admissible controls over a func-
tional J(t, z«). Our performance criterion for controlled diffusion process is in the
form;

J(t,z,a) = E(/tT f(s, XM ag)ds + g(X;‘T)> (t,z) € 10, T] x R",

on a finite horizon [0, 7]

where f represents a running profit function and g represents a terminal reward func-
tion. Both f and g are utility functions which measures the happiness of the investor
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by taking into account of risk aversion of the investor. Utility functions are strictly
concave functions. ', ¢’ >0 f7, ¢” <0

The maximum value attained from the performance criterion is defined as value func-
tion and denoted by v. The main purpose in stochastic control to find an optimal control
that attains the value function.

v(t,x) = supJ(t, z, a). (2.9)

acA

& € Ais an optimal control if v(t,z) = J(t, z, &)

The process « is in the form g = (s, X.*) for some measurable function o from
[0, 7] x R™ into A is called Markovian control.

2.3 Solution of the Stochastic Control Problem

A popular method for the solution of the stochastic control problem formulated above
is Bellman’s Dynamic Programing principle. This principle (see Bellman[1]) can be
described as follows: if one knows the expected minimal cost for each of the possible
states in the next step, the optimal control for the current state is one that optimizes the
sum of the cost for the control chosen for the present step and the minimal cost of the
state resulting from this choice. This gives a recursive description of the value function
and the optimal control. In the continuous time framework, if the value function is
differentiable enough, this recursion can be expressed as the HIB equation. Further
details of these ideas are given below.

2.3.1 Dynamic Programming and HJB equation

In dynamic programing (DP), optimization problem was broken down to smaller sub-
problems by varying initial state values. Some relation among the value functions are
sought. Let us see how this process leads to nonlinear Hamilton-Jacobi-Bellman (HJB)
partial differential equations.

Breaking up the problem into two pieces (before and after a stopping time 6 gives the
following recursion of v:

v(t, x supIE[/ FXE" ag)ds +v(0, X;7) |, (2.10)

acA

for any stopping time 6 € T; 1 (the set of stopping times valued in [t, 7))

When Ito’s formula applied to v(s, X ét’s)) between s = t and s = t + h, the following

8



equation is obtained:

t+h ’t
o(t+h, X;5) = U(t7£lf)+/ ((%)JrLO‘Sv)(S,Xﬁ“)ds—lr(local) martingale, (2.11)
t

where for a € A, L* is the second order operator associated to the diffusion X with
constant control «

1
L% = b(z,a)Dyv + §tr(<7(x7 a)o'(z,a) D), (2.12)

if we substitute this into the DP equation we will obtain

t+h 81(:
supE {/ (=) + L*v)(s, X")ds + f(XL, 2, a4)ds| = 0, (2.13)
acA t dv

divide by h send h to zero and obtain by mean value theorem. Then HJB equation is
obtained

ad + sup[Lv + f(x,a)] =0, (t,z)€[0,T) x R", (2.14)
ot acA

with terminal condition

o(T7,x)=v(T,z) =g(x), ze€R"

Classical approach to stochastic control is to show the existence of a smooth solution
and if possible obtain an explicit solution from HJB equation, if we can prove the
existence of a smooth solution we can solve stochastic control problem by verification
method

2.3.2 Verification argument

A verification argument consists of the following steps: through a study of the HIB
equation or otherwise, produce a guess for the value function. Then use the HJB
equation itself, Ito’s formula and perhaps other tools from probability theory and the
theory of stochastic processes to prove that your guess is indeed correct. The work Liu
[11] and Merton’s solution of the original optimal investment problem use this type
of an argument. The argument starts with the assumption that the value function has a
specific form and then it follows the consequences of this assumption, which eventually
lead to a pair of ODE which are solved explicitly. Once the ODE are solved, the
value function can be defined in terms of the solutions. Then these candidate solutions
are rigorously verified to satisfy the HIB equations. Their smoothness, along with

9



Ito’s formula imply that they are indeed the value functions of the associated control
problems. Some of these ideas and reductions are given in detail in the following
chapters.
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CHAPTER 3

Merton’s Portfolio Problem

Following the background information given, we will now look at Merton’s portfolio
problem. The Merton’s portfolio problem is set in a limited market which consists
of only two kind of securities. A riskless asset Sy and a risky asset S;. There is
an investor who wants to allocate its wealth between these assets, and additionally,
the investor intends to consume some amount of the wealth. Merton|[15] looked for
an optimal investment and consumption strategy for an constant relative risk aversion
type investor in a setting where assets are traded continuously in time without any
transaction cost and indivisibility. Also mean and covariance of asset returns assumed
to stay constant until the end of the investment horizon

The price process of risky and riskless assets are given by the following equations
Merton[14]

dSOt :TSQtdt, (3])
dSy, =pSdt + oSy dBy, (3.2)

where B, is a Brownian motion and y, 7, o are constants with conditions;
u=r>=>0ando >0

Under these settings, investors wealth process evolves according to following equation

th = (1 — th)WtTdt + QStWt([Ldt + O'dBt) — Ctdt, (33)
where ¢ is the fraction of the wealth in risky asset and C} is the consumption rate. This
process continues until some terminal time , 7.

The agent will maximize the following expected utility:

maxFE [/T e PLEIC)dt + F(W,T)], (3.4)
0

11



subject to the budget constraints

Ct>07 Wt>07 WO>07

where f is a strictly concave utility function f’(t) > 0, f”(¢) < 0. Remembering
dynamic programing equation we can state this equation in the form,

T
sE W)= guag B| [ e sicias row)| 35)
$i=0-Ci=0 t
where J(T, W, X) = f(Wr).
If we take 1" as t + h and apply Ito’s formula, we will obtain the following equation;
aJ, 0y

O_Efld): e Btf(Ct)+§+a—W[(¢( p—r)+r)W,—Cy +

92 J;
2002

g%fwf} . (3.6)

If we look for the first order conditions of the derivation, we will obtain

aJ,

—pBt Tt
¢ f1(C) = 5 =0, (3.7)

oJy Py o,
(1= 1) 5 + Sz oW o? =0. (3.8)

Nonlinear partial differential equations are difficult to solve, In order to make these
nonlinear equation solvable, CRRA utility functions are selected. With CRRA utility
functions we can obtain explicit solution.

o
Let f(C) of the form — where 0 < v < 1
Y

If we rewrite our equation using the CRRA utility function we will obtain following
equation;

1=y 0y =Bt O 9y o (p—1)? [0/ OV
- [aw} exp(—l_m/)-f- o Tan W TN (3.9)
a.J
B t
O =[Ptz ]t (3.10)
*_—( —r)@,]f/aw
VW, oW (3.11)

Remembering Stochastic Control Theory, we need a candidate solution which attain
the value function. Let conjecture the solution in the form

J(W,.t) = KeT[W(t)]W. (3.12)

12



If we put our candidate solution into (3.9), K must satisfy the following ordinary dif-

ferential equation;
.

K(t) = ak(t) — (1 =) [K(8)] =,

where o = 3 — 7[2((,‘5(_2T_)i) + 7] subject to K (t) = e' ™

Solution of this differential equation is ;

14 (ve = 1)ert=D 7

K(t
(t . ,
where v = L.
1 =7
So our optimal control policy becomes
_ L
C*(t) =[K@®)] W (#), (3.13)
pw—r
() =————. 3.14

which suggests leaving a certain fraction of the wealth on risky asset. This fraction is
directly proportional with risk premium. As the award of taking risk increases, stock
weight increases as well. On the other hand, as variance increases, a riskier envi-
ronment evolves, thus amount of stock weight decreases. As risk aversion increases,
investors willingness to avoid risk increases, so an investor is unwilling to hold risky
asset thus stock weight decreases.

13






CHAPTER 4

Liu’s General Explicit Solution

In this chapter, we will look at Liu’s general solution for dynamic portfolio choice. Let
us consider a market, consist of a riskless asset (/) and M risky assets (F;) whose
price process is given by:

dFo;

=r(X,)dt 4.1
P()t T( t) ) ( )
dby .
S —a(X0)dt + Ti(X0)ABryi = 1,...,N. 42)

where 5, is m dimensional Brownian motion. The state of the system evolves accord-
ing to following process.
dX; = p~dt + 2XdB}. (4.3)

Here, r(X;), p;:(X:) and ¥;(X}) represent the functions of an Ndimensional state vari-
able vector of X, ;i is the drift coefficient and ¥ is the diffusion coefficient.

It is assumed that the agent is a price taker, assets are traded contentiously in time
without transaction costs or asset indivisibility and short sales are allowed.

Under these settings, the following expected utility function will be maximized

T 1—v 1—y
C W,
max, Lo { / ae M —dt + (1 - a)e‘BTL} , (44
Pri—o:Cii g 0 1—7 1—7

where ¢, represents the portfolio weights of the risky assets which is an M dimensional
vector. ¢, is the consumption rate and W, denotes the value of trading strategy which
finances ¢,/ at time 7.

th = (Wt [(/)?(/JJ — ’l') + 7'] — Ct) dt -+ Wt(b?EdBt (45)

~ is the risk aversion coefficient. /3 is the discount rate and o determines the importance
rate of inter-temporal consumption. When « equals to zero then, the problem turns into
an asset allocation problem with zero inter-temporal consumption.
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Stochastic control theory approach leads to following Hamilton Jacobi Bellman equa-
tion for J where J (¢, W, X) is an indirect utility function.

oJ 1. .
max(p’c{a + §W2¢T22T¢JWW + Wl (u—7r) +r]Jw — CJw

1
+ Wt Spt X Ty x + 5Tr(EXEXTJXXT)

(Ghmt]
+p X1, + oze_ﬁtl—} =0, (4.6)
pa— f\,/

with boundary condition

Wiy

J(T, W, X) = (1—0{)6_’&1_7.

Similar to the solution of the Merton Model, Liu searches a solution to (4.6) of the

form:
1—v

flz,t)". 4.7)

J(t,w,z) = e‘ﬁtf}

The next proposition derives the equation that f must satisfy so that J above solves
(4.6); this equation is given as (7) in [11]. Reduction of (4.6) to (4.8) is given in the
appendix of [11]; the following proof is a detailed version of this reduction.

Proposition 4.1. For J of the form (4.7) the equation (4.6) reduces to
Xy XT X, 1 =7¢x w1 ’
fe 405t (S fn) + (0 + TZ P (n—1)) fa
1 . :
+ ﬁ(v — D (B2 =2 ppt () e
5

- 1 -
+ ( 2727 (w—r)"A (p—r) + > Ty ;/) f+ar =0 (48

For two vectors a and b let @ ® b denote the matrix with entries (a ® b); ; = a;b;.

Proof. The derivatives of J are

Jt:_@]+fy£ft’ szl__7J’ wazwj
f w w?
v (1 =)y Y(y—1) y
JI:_J T sz:—waa sz:—J ac@ x+_=] rT-.
7 J. o 7 Jo ® f 7 J.
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Substituting these in (4.6) and canceling out the 11”’s wherever possible give

J N
max { — BJ + V?ft + ch%Acb(v — DS+ (@ (p—r)+r)(1—7)] — c! ” Ly
+ ngszzXTWJfr 0.5t <2X2XT <%me ® fot éJf))
x5 O
+ ffo—l—ae 1_7}—0,

Multiplying both side of the last equation by f/J reduces the last display to
7l T =7
mas y — B +3f+ ¢S AGy = DS + (8 (= 1)+ )1 =)~ O]

+ BT - e+ 000 (29 (LY o 1 11 ))

c
159, + e L =0
J1—~

Taking those terms not depending on ¢ and C' out of the bracket reduce the last display
to

0.5tr (EXEXT (@fx & fx + A/fxx)) + /J/Xfyfx - ﬁf + ’th + 7"(1 - 7).]0

1— 1
max { — CTVf + ¢TSS (1 =) () fe + ¢T§A¢(7 — 1) f

Ty (1 — el CT
+¢ (w—r)(1—=7)f + ae 71 =0. (4.9)

Denote the expression inside the last brackets by (¢, C'). E is concave with gradient

Epey=((v=1)()fA¢+ 1L —7)(p—r)f +Sp" S (1 =) (1) fe

Lm0y ae—ﬁfc—7§> . (4.10)

w

The concavity of E implies that the optimizer of the above problem (¢*, C*) is the
solution of

Substituting the formula (4.10) for the gradient gives the following equation for C'
1—
S acPtic—L _ g, (4.11)
w J

17



and the following for ¢

vyAS — (p—r1) — ZpTZXT*y% =0, (4.12)
where we have divided both sides by (v — 1) f. Let us solve (4.11):
11 1— 1
/f +ae PO v —0= - taeCZ =0
J w J
Substitute the formula (4.7) for J:
1—7 e Bto— 1—v — - _
g e O e =0 1 aC o = 0
C = oz_lw_”]”
C* = a%wf_l.
(4.12) is linear in ¢, whose solution is obtained by inverting A:
1, rxr S

Now let us substitute C* in (4.9) to simplify that equation:
xexr (Y(y=1) X
05 \ BN h & ot afe | |+ 00 0le = Bf 4 0fitr (=)

— @b f D 6 T (= ) (0) e + 675 A — 1
1—x

_wg (6”1”]:_;) o (4.14)

+¢"(p—7r)(1—7)f +ae

Cancel the w and f terms in the first term of the second line and substitute the formula
for J in the last line to get:

0.5tr (2X2XT (@f ® fu+ vfm» + 1Y fe = Bf+fe A1 =) f

— (1= ) + 6" B (L =) (N e+ ¢ Ado( v f
T (=)= +a7 =0,

Combining the first term on the second line and the last term on the third line reduces
the last equation to

0.5t (zXzXT (@f 9 fot vfm>> 1 fe — B (=S

O SE(L= 9) () + A — DS + 67— r) (L= ) a3 =0,
(4.15)
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Let us now expand the terms ¢*Sp" 57 (1 — v)(7) fa, 0" 5AG(y — 1)7f and ¢* (1 —
r)(1 — ) f by substituting (4.13) for ¢*; we begin with the last one:

(@) = 1)1 =) f = (%A (u ey vszzXT%))T (4= r)(1—)f

— - :/ L= )" (A=) f + 1= ) (A" (€ ) (u—r). (@.16)

where we have used A~! = (A~!)". Now remember that A = Y%7 Therefore, A~! =
(XT)~13~1. Substituting this in the last expression gives:

(1= (ATS"ENTL) =1 =) (EN) WS L) (1 —7)
= (1—7) (ZXpS (7)) fx. (4.17)

where we have used (M )"y = (M"y)" 2. Substitute (4.13) for the first ¢* in [(¢*)" 5 Ap(y—

Dyf]

cb*)T%Acb*( — 1/
T
% -1 ( —r+ vEpTEXT%» %Acb*(“/ —1)f
T

(A ( —rﬂszzXTﬁ)) Lagtty - 17
1
20

1
f 2
—D(p—r)"e"f + 17( —1) (ST ST (4.18)

Substitute again (4.13) for the remaining ¢*, the first term:

SO = D) f
T1 -1 T XTf.T
) —1) ;A (M—T+72p b 7)
(= D= = ) A =) + = D =) (A7 (BT 1))
L= ) A = 1)+ 5= D= ) () )

~~
—
=2
I
—_

Il
~

—~
2
|

Il
~

—~
2

[ =
=

NI~ N~ N~ N

(=) A (=) + %(v ~ D) (S =) fr @19)

I
Kh
)
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and the second term:

L= Dy = 1) (S0 (59 )"

2
1 T/vX\T £ \1 -1 T Xfo
=5 =D (EEN ) AT = TS +
1 TvX\T £ \T 4-1 1 T/vX\T ¢ \L 4—1 TxT o
=50 =D& B ) A=)+ 5= 1) (2" (B7) fe)” AT T
1 X -1 T 1 T/X\T £\ 4—1 TXfo
=50 =D EPE =) Lotz =D (B (EY L) AT T
(4.20)
The last term of this expression is computed as follows:
(Sp"(EX) o) ATISGTEXT £, = fIEX pxT(E7) ST S EXT S,
= f2 2 pp X o, (4.21)

where we have used, once again, A~ = (X7)~'X L. It remains to expand (¢*)TXp? ©XT(1—

¥) () f
(@)TSp X (L =) () fa

= (%/Al (u — 7+ S’ BT fx)) Zp EX (A =N fe
i

_ (A_l (N_T_'_,YEpTEXTf;)) EpTEXT(]. _,.)/)fx

1
—fES X pp" (2T S,

= (p=r)"EN TP ENT A=) fe + (1= v)f
LTS X o (S f 422)

=1 =7Ep(E) " (1 =r)"fa+ (1 =) 7

Before we substitute these terms in (4.15) let us note one more fact; it follows from
the involved definitions that for a vector v and a matrix M, tr(Ma ® a) = o’ Ma.
Therefore, tr(X% (%) f, @ f,) = fISX(ZX)T f,. Then we can rewrite (4.15) as

0.59tr (SYSXT 1, ) + o.5@szX(zX>fo 15— BF +fe (L= )f

+ oS S (1 =) () fe + & A(/)( —Dyf + ¢ - 1)1 =) f + 70 = 0.
(4.23)

Now substituting (4.16), (4.17), (4.18), (4.19), (4.20), (4.21) and (4.22) reduce the last
equation to

o 057t (SYSXTf) + (3 + (1= )EXps (=)' fo

+ 570 = DS = (),

- (1 T (=) A =)+ (L= ) - ﬁ) fHat =0,
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Finally we divide both sides by ~y to obtain
1 — T
fo 05t (SXSXT £, + <ﬂx N Tvgxpz_l(“ - 7,)> .
1
+ 5700 DTSN~ S¥0p" (2))
s

l—~ T A-1 L —v ) 1/
+ —r) A —r)+ r—— + a7 =0. (4.24)
(G a4 =2 2) g

O

HJB equation now reduced to a simpler equation. Only the last term o'/ creates
nonlinearity in this equation, we need to remove this non linear term in order to solve
this equation. One approach is to take o = 0 which reduces it to

A

. 4 1 — r
ft + 0.5tr (EXEXT,fqrrx,') + (HX + Tﬂyzxpz_l(ﬂ - T)) fa:

#570 = DR (DY S5 (),

4 (1_7(/L—T)TA_1(/L—T)+1_7r—£)f:0. (4.25)

22 v y

The second approach to deal with the nonlinearity in (4.8) given in [11] is to focus on
the ”complete markets” case which assumes X and the asset prices to be driven by the
same Brownian motion; in this case (4.8) can again be reduced to (4.25). The Heston
model application studied in later chapters is an incomplete model, for this reason we
focus on the incomplete case and assume v = 0; for the details of the complete case
we refer the reader to [11].

To be able to solve and obtain analytic solution of equation (4.25), some restrictions
are made on both dynamic state variable vector X and asset returns. Mainly we assume
that state variable X has a drift and diffusion coefficient which are quadratic functions
of itself and asset returns are quadratic functions as well.

The first assumption which is made is the following;

W=k—-KX+ %XTnT.KQ.nX, (4.26)
SASXT = ho 4+ hy X + XTI hynX, 4.27)

additional restrictions on parameters are applied
K'n"=n"K, K" =0, hin" =0, hyn’ =0 (4.28)

In these equations £ represents a N x 1 constant vector. K and hy are N x N
constant matrices, Ky = K,.4,j=1,...,N;,k=1,...,N denotes a constant ten-
sor(generalization of vector and matrix) with three indices (two upper one lower) and
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h, = hiljk, 1,7,k =1, ..., N is constant tensor with three indices (one upper two lower)
hy = hd,,i,j=1,..,Ni,k=1,..., N is constant tensor with four indices (two upper
two lower)

Secondly, it is stated that the asset returns should satisfy following conditions;

1
r =0y 4+ 0, X + éxTnT(sQnX, (4.29)
1
(=) (25 (= 1) =Ho + Hi X + S X" Hon X, (4.30)
1
S — 1) =go + 1 X + 5XTnT.gQ.anX, 4.31)
SEppt £XT - XX =1+ 1 X + X"y X, (4.32)
with restrictions
gin" =n"g, gn =0, hn" =0, Ly =0 (4.33)

In these equations d; is a constant, ¢; is a constant N dimension vector, d is a constant
N; x N matrix. Hj is a constant, H; is a constant vector of dimension N, Hy is a
constant matrix of dimension N; X Ny, gg is a constant vector of dimension N, g; is
a constant matrix of dimension N x N, g, is a constant tensor with three indices (two
upper indices running from 1 to N; and one lower index running from 1 to V), gyis a
constant matrix of dimension N1 x N1, [y is an N x Nconstant matrix, /;is a constant
tensor with three indices (with one upper index and two lower indices all running from
1 to N), and l»is a constant tensor with four indices (with two upper indices running
from 1 to N;and two lower indices running from 1 to N).

These assumptions imply that all the coefficients of the (4.25) are quadratic in n.X and
linear in X. Under these assumptions [11] we seek a solution of (4.25) of the form:

f= /c(t)+d(t)TX+0.5XTnTQ(t)nX, (4.34)

where ¢(t) is a scalar function, d(t) is a N dimensional vector function and Q)(t) is
a N; x N; matrix function. Since the equation holds for all X, the coefficients of
these terms have to be zero, which leads to ordinary differential equations for ¢(t),
d(t), and Q(t). The next proposition reduces (4.25) to equations satisfied by these
functions; these equations are given as (18),(19) and (20) in [11] ; the derivation of
these equations are given in [11]; the following proof is a detailed version of this
derivation.
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Proposition 4.2. For f of the form (4.34) the equation (4.25) reduces to

d 1-— 1
pr + (k+ Wgo)Td + 5dT[ho + (1 = v)lo)d
1 T -7 l—v. B
—_ H —_— =
+ 2”(%77 Qn) ++ 22 0o+ 5 o y 0,
d 1—n
EOH[_KJF Lg)]"d
1
+ §dT[h1 + (1 — )] + 'r/TQ'r/[ho + (1 —)lold
1— 1— 1— -
+ 0" Qulk + —g0) + QW]Hl + =15, =0,
and

d 1=\
g@t(-K+—=0)Q

—25) + QuTTho + (1 — NlolnQ
1 _
2y

+Q(—f(+1

1
27H2 +

]_ 2l
+ dtfhy + (1 — )lo]d + qugd +

for ¢, d and Q.

— 5, =0,
v

Proof. The proof consists of substituting the form of the solution, the assumptions and

the restrictions into equation(4.25):

T

~

| A 1— _
fot tr (ZXZXTfm> + l(ux + TVZX,OE =) fo

~~ \ J/

1 —~

2

+ 21f (= DFT((EXSX)E - X ppt ()1,

N J/
~~
3

+ 1_7(u—r)TA_1(,u—r)+1_7r—§f:().

f and derivative of f are;
f — O+ X+ 3 X " Q(t)n X"
- d d 1 d A
= (—c+—d" X + =X"n"—QnX
fo=(get d X+ 5 X0 2 OnX)f,
fo=(d+n"QnX)f,
foar = " Qn + (d+ 1" QnX)(d+n"QnX)"f.
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If we look at the terms shown with 1 in (4.35) and replace (4.39), (4.26)
%tr (EXEXwa> Z%tr {(ho + X 4+ X" honX). 0" Qn
a4+ QuX)(d + 17 QuX)T]F |
Since f is a scalar we can take it out. By using basic operation rules we will have;
= % f [tr(honTQn) + tr(hodd") + tr(hod X 0" Qn) + tr(hon” QnXd")
+ tr(hon” QnX X 0" Q') + tr(hy X dd") + tr(XTnThanddT)} :

other terms will cancel due to h1n” = 0 and hyn” = 0 restrictions

We can take dd’ as a common factor which will reduce the equation to;
= %f [tr(hOnTQn) + trlho + X + X T honX(dd") + tr(hod X' 0" Q"n)
+ tr(hon" QnXd") + tr(honTQnXXTnTQn)] :
Remembering tr(Ma ® a) = a® Ma property, we can represent the equation as;
= |t Qn) + ko 4 X 4 T X+ O
+ (d"hon" QnX) + (X" Q"nhon" QnX )} : (4.40)

For any matrix A and a vector d X®Ad is equal to d” AT X. Using this property we
can reduce this equation to;

1.
=5/ {tr(honTQn) +d" [ho + M X + 20" honX]d + 2(X 0" Q" nhod)

+ (X TnTQTnhonTQnX)} : (4.41)

If we look at the term shown 2 in (4.35) and replace (4.26), (4.31),(4.38);
1—7 N .
(WX + —2ps (u—r)' fo =
Y
1 1—
[(k - KX + §XT77T.K2.77X) +—7
~

1 s .
(90 + 1 X + éXT'r/T.gz-nX) (d+n"QnX)f.
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Multiplying the equation above gives;

T
A 1 1— 1

N J/
-~

7

1—7~

A 1 1 r
= KX X o) 4 1 b X X0 0| ().

v~
(2

(4.42)

After the operations of 77 in (4.42), we will obtain;

T
. 1 1-— 1

_ [u« I QnX) + (—EX + L g XY (r Qnx)

1 l—v_ 771 r
+ <§XT77T.K2.77X+ WX Ui '92-77X> (TITQUX)}

gIn™ = 0 and Kyn” = 0 restrictions cancels out the other remaining terms which
makes this equation;

f[(k + L g0)) (7 QnX) + (~XTKTn"QnX) + (“TVXTngnTQnX)} :

Additionally, if we apply Kn” = n” K and ¢"n” = 1", our equation will become;

f[(k +—90)" (0" QnX) + (X" 5" KQnX) + (“TWXTUTﬁfQTZX)l :

If we place the terms ¢ and 7z together, this gives;

T
1 1 1 )
_ [(k — KX+ XU KpnX) + — Vg0 + 1 X + §XT17T.92.77X)] (df)+

1—

g ; . ; 1 -~ R ;
(k + 90)" (" QX f) + (=X"n" KQnX f) + (=X g QnX f).
If we also apply g3 7" = 0 and Kon® = 0 restrictions, they cancel $ X' n' . Ky.nX,
ix™p" g2.nX terms in ¢ and then we obtain;
R n

1 - 1 Lo
= [(k—KX)Jrﬂ—/v(go+ng+§XTnT.gz.nX)] (df)

ik + —g0) (" QnX f) + (=X KQnX f)

1 — R .
+<TVXTnTngQan). (4.43)
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If we look at the term 3 in (4.35) and replace (4.38), (4.32)

1 T (XX X T (y\T
2f(—l)f((EE) — X000 (2) ) fe

= 2f(7 —D[(d+ 7" QnX) [ [~lo — b X — X" Lo X](d+ " QnX)f

(T=~)(d" + X" Q" n)lo(d + 1" QnX)
(1 ="+ X 0" Q"n) (L X)d+

+ (L= + X" Q" n)(X"n"lanX)d,

other terms will cancel out because of ;" = 0 and l,n” = 0 restrictions. If we
multiply and use X' Ad is equal to d” AT X property, this would lead to final of;

DO |,

(1 — ) [d lod + 2(XTn" QT n)lod + d" 1, X d+

(XTn" Q" n)lo(n" OnX) + +d* X nTlynXd|. (4.44)
If we look at the terms 4 in equations (4.35) and replace (4.30);

= A )+ =

J— r)/ N
r——f
22 v

A1 — 1

o
(5o + 6,.X + X" 82 X) - ﬁ/] L (445

]_ _
+
v
Lastly, we plug (4.41),(4.43),(4.44),(4.45) into (4. 35), the equation becomes
R 1 .
1x TnT -QnX f) +5/ {tr(honTQn)

dat d

d d
—c+—d"X
< c+ — ; + 5

+d"[ho + i X + X n"honX]d + 2X " 0" Qnhod + X" 0" Qnhon QnX }

1 1 to
+ [(k — KX)+ T”(go + X + §XTnngnX)} (df)+

b+ 220 T QuX ) + (~XTyT RQuX ) + (?XTH 9 QnX f)
é(l —7) [dTlod +2(XT0" Q") lod + d" 1, Xd + (X" Q™ n)ly(n" QnX)

1
+d" XT Tzandl + fl v7(HD+H1X+ 2X n' HonX)

1 —
_|_
v

. 1 §
7(50 +0,X + §XT7/T.OQ.7]X) — g = 0.
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This equation consists of three classes of terms; terms that are independent of X,
terms linear in X and quadratic in n.X. In order for the equation to hold for all X, all
coefficients of these terms must be zero. This would lead to three ordinary differential
equations;

if we separate scalar terms we obtain:

d 1 1 1—
E?+—mmﬁQm+—fhd+%+ 77%Vd
B

1 1— 1—
+ (1= )(d"ld) + =L Ho+ —L5y— = =0
2 272 Y Y

After reshaping and taking into d”.d parenthesis we obtain the equation for the ¢ func-
tion:

d 1—
ot b+ —Lgn)Td+ S lho + (1 = )b
1 1—1 1—
+—wmﬁQm++ L+ 105, -8 o (4.46)
2 27 g v
If we separate linear terms we obtain:
d T T, T
£d X + 5 d' hi Xd+2(X"n" Qnhod)
1—~ T
[ EX (X)) ( )" (n" QnX)
1
+ 5(7 - 1) [Z(XTnTQTn)lod + dTlle}
]_ _
THx o+ s X
Ty v
All coefficient of these terms must be zero which leads to following equation for d:

%d+ thd+%%7QWm®} = K7+£%1@”fd

+(

1— 1-
Tm+—2s =o
2 g

QJRHQW+§W—1ﬂ@#Q%Nﬂ+dﬁM

After reshaping and taking into d’.d and 1’ (Qn parenthesis, we obtain the final equa-
tion for d:

d 1— 1
1— 1— 1—1
[ho + (1= 7)lold + 1" Quk + —go) + 27]}[1 +—T5 =0, (447)
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Finally, collecting the quadratic terms together we obtain the equation for Q:
1 d 1
X OnX + S [d" X 0 hanXd + X' Quhon' QnX ]|

N 1o~y a1 1—~ ) .
—%X”hrﬁQnX)+-77<ﬂ§XTnﬂthVﬂ4-bﬁnyTﬁbean)

N —

+ W—UPXQFQ%%WW%X%HFX%Wde

1-— 1-— N
+ (nTQnX)XTnlenXd,)} + 4727XT77TH277X + WWXTWT.OQ.UX = 0.

To solve this equation all coefficients must be zero if we take into %X I'nT . nX
parenthesis, we obtain:

L—n -7,
Gad + ( 7nQ)

d .
@Q + d"had + Qnhon’ Q — KQ +
1—v

]__
Y1+

o 5, = 0.

+ (1 =) [(Qn")lo(nQ) + d"l,d] +

After reshaping and taking into d.d”, Qn’.nQ parenthesis we get the equation for Q:

1—7 1—7

~

SO+ (~ K+ 19) Q1 @~ K+ 230) + Quho + (1 1lo}nQ

1—7 L—7

22

1 —
-+ﬁmy+ﬂ—7ﬂﬁﬁ+—71£ﬂ+ Hy+—15,=0. (4.48)

O

Substituting the various terms arising from the form of the value function (4.34) in
(4.13) gives the following formula for the optimal control:

& =25 (p=ramperrd ),
¢ %(EET)* (1 =7+ 2" S (d + QnX)), (4.49)

in terms of d and (). The ordinary equations derived in the above proposition for d and
@ can be solved to obtain optimal controls through the above formula. An application
is given in the following chapter.
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CHAPTER 5

Dynamic Portfolio Choice Problem when Stocks have Stochastic
Volatility

In this chapter, we will first review the application of Liu’s framework to Merton’s
problem with Heston stochastic volatility model. This application is given in Section
2.2 in reference [11]. Then we reduce the model to a setting where volatility is constant
as in the classical Merton’s model. The next chapter will compare these two models.

5.1 Stochastic Volatility Case

In stochastic volatility case, risky assets are assumed to follow;

t

ar
5o =(r + A V)dt + /VidB,
t

AV, =(k, — K, V,)dt + o,\/V,dB. (5.1)

which can also be expressed as

AV, = KU(% — V,)dt 4+ 0,/ VidB?

v

where I’% is the long mean of variance, as t goes to infinity, the expected value of V;

Ky

tends to % K is the rate at which V/ reverts to o

o, 1s the variance of the volatility
which shows the variance of V.

When asset returns follow (5.1) , variables can be expressed as follows in terms of the
notation of Liu general solution;

pw—r=X\V, %=V, (5.2)
S=VV, p=p., (5.3)
r = do. (5.4)
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these specifications imply;

(= )BTy — ) = A2V, (5.5)
ZXpE_l(:u - T) = PuOuASV, (5.6)
S¥(pp" = DEXT = —(1 = p})a,V. (5.7)

In the previous chapter, we showed that, the optimal asset allocation rule is given by,
¢* = S (Xx)~! (=7 +ySp"SXT(d + QnX)) (4.49). As it can be seen from the
equation optimal allocation rule does not depend on ¢(t) and moreover, when asset
returns follow Heston’s model (5.1) then there is no quadratic relation between assets
which makes @ as 0. So in order to find optimal weight for stochastic volatility, only
solving ordinary differential equation for d(t) is sufficient.

d(t) is given in the previous chapter(4.47). If we change variables according to Hes-
ton’s model we will obtain the following equation;

d 1—~ o2 —
—d, — [Ky — —\oup0| + =2[1 — (1 = )(1 = p2)]d> M =0, (58
Sy~ [ oop] + Gl = (1= )= A + 5N =0, 5
with terminal condition d,(7") = 0
Solution of this differential equation is;
O IR T 920
Ry + &) exp(&,T) — v
dy(t) = 9 5ot e (5.9)
— i >0
A cos(Cp/2) Y vo—=
R + Conterra)
where
L=
0y = A2,
292 ¥
1 —
"%v = Kv - —fy/\so'vpvv
8
& = VA2 +25,[02 + 7(1 - p2)]o?,
¢ =—i& and 7= (T —1).
and the optimal portfolio allocation rule is
. 1
qbs = _)\s + pvavdv . (510)
Y

The first part of the solution is the myopic component. It represents mean-variance
optimization of the optimal allocation under the short time horizon. Second part is the
inter-temporal hedging demand component which shows the agents behavior accord-
ing to the changing market situations. Merton’s optimal portfolio allocation rule for
constant volatility case is equal only to the myopic component of stochastic volatility
case.
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Interestingly, optimal stock portfolio weight does not depend on volatility. In a stochas-
tic volatility model it is expected that stock portfolio weight should be related to volatil-
ity. However, according to Liu’s solution, ;¢ — 7 is given as A;V" which indicates that,
risk premium is directly proportional to volatility. When volatility is high, return is
equivalently high. When volatility is low the return is also equivalently low. Thus,
through risk premium’s effect, the volatility impact on stock portfolio weight is neu-
tralized, which makes volatility independent from optimal portfolio rule.

5.2 Constant Volatility Case

To be able to compare portfolio choice problems, in case of stochastic volatility and
constant volatility, it is necessary to make two models related with each other. In this
case, if we can remove stochastic features of volatility in Liu’s portfolio problem, then
portfolio problem would downgrade to a solution for constant volatility case, which
would be very similar to Merton’s classical model. So in this part, we solve Merton’s
portfolio problem in Liu’s framework as a special case.

If o, is taken as zero, the stochastic component of volatility would be canceled. Ad-
ditionally, if volatility, V4, is taken as <, the volatility is set to its long term mean.
Under these circumstances, the optlmlzatlon problem with stochastic volatility should
downgrade to a constant volatility case.

Making o, = 0 reduces optimal stock weight allocation rule to;

ot = 1a,, 5.11)
Y

which is the same as the Merton’s classical model, only a myopic component repre-
sents the optimal allocation rule.

To correctly downgrade stochastic volatility to constant volatility case, it is neces-
sary to check the value function as well. After making volatility a constant process,
the value function should also satisfy the characteristic of classical Merton’s Portfolio
Problem. The new value function should not change as long as the volatility stays
constant.

In Liu’s general solution, the value function is given as
1—
J(t,fw x) _ e—ﬁtW ! [6c(t)+d(t)x+0.5XT17TQ(t)nX]’Y. (5.12)
) ) 1 _ ”}/
If asset returns follow Heston’s model, then Q becomes zero
Wi
J(t,w,z) = e—ﬁtl— [ectird®]7, (5.13)
-7
Only ¢(t) + d(t)x affects the value function which might have stochastic features re-

garding volatility. Hence, instead of looking at the whole value function we will ex-
amine only constant volatility cases of functions ¢(t) and d(t)
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If we apply o, = 0 rule to d, (5.8), d, reduces to constant volatility version which is
denoted by d,,.

d 11—+ o2 T A

—dy — [K, — —Xeoupo| + 2[1 — (1 =1 = p)]d®> + —XN2=0 (5.14
il > oupo] + (1= (L= 7)1 = pp)ld; + 2z s (5.14)
Therefore, in passing from Heston’s stochastic volatility to constant volatility, the ODE
satisfied by d reduces to:

d 1—7
_dcv - decv ‘
dt * 2?2

A =0, (5.15)

with terminal condition d.,(7") = 0.

Proposition 5.1. Solution of (5.15) is given by

1— )\
dey(t) = %(1 — efv(t=T)y, (5.16)

Proof. Equation(5.15) is a first order constant coefficient ODE with a constant non
homogeneous term. A well known method to solve such ODE is to use an integrating
factor.

%dw ~ Kooy + 5522 = 0 (5.17)
’ —— Y

!/ ay
y b
Yy —ay=—0,
I =e ",
e—uty/ + _ae—aty - b€_at,
(efaty)/ _ beiat,
b—at
e_aty = + 017
b at
y=—+ Che™, (5.18)
a
with terminal condition y(7") = 0.
b
-+ C’leaT = 0,
b
Cfl — __6—aT
a
If we replace C'; in (5.18)
b b
Yy =— + (__efaT) Pat
a a
b
=-[1- edt=1], (5.19)



After changing a b and y we obtain the solution for d,,(t);

(1—7)A2

R (1 — efot=1)) (5.20)

dey(t) =

c(t) is given in the previous chapter. If we reduce the equation of c(t) to Heston’s model
and change d(t) with d,,(¢) our equation becomes;

B

1_7%+;}:0 (5.21)

d
N kvdcv
dtc + + {

It is observed that, the difference in ¢(t) arises from the function d(t).

kub o kb
Cm)(t) :? [e(t - 1] + (T - f)[ a

+ . (5.22)

For value function to be constant with volatility we need to check the outcome of
c(t) +d(t) x V. (5.23)

If we replace ¢(t), d(t) and V' with ¢y, de, and 32 ;

(c(t) +d(t) x V) :% [e(t_T) -1+ t-T) [l;;b + al]
b B ky
e )|
feub
=@—Tﬂgz+aﬁ. (5.24)

As we can see, the solution only depends on 1’2—1 If this value is fixed, stochastic

volatility case can be downgraded to constant Vofatility case. To test this, a graph is
plotted for different terms of %, and K, when ~, A 3, ¢ is set to 0.5, 0.2, 0.3, 0.1
respectively. This is given in Figure 5.1;
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Figure 5.1: Effects of K, and k, on value function

In Figure 5.1, three sets of values were used. These were K, = 0.01 , &k, = 0.2,
K, =002, k, =04, K, = 0.01, k, = 0.3. It should be noted that in the former
two sets '& has the same value and they fall on the same line meaning that their value

functlons are the same. In the third set, Ik(” has a different value and thus it gives a
different value function. This implies that, when volatility is fixed at its long term

mean, then value function behaves the same as Merton’s constant volatility model.

Considering both optimal risky asset weight rule and the value function, we can come
to the conclusion that when o, is fixed at O and V is taken as "”” the stochastic volatil-
ity model of dynamic portfolio choice would change to constant volatility case. Thus
a comparison between stochastic volatility and constant volatility can be made by re-
laxing and applying these restrictions and additionally, the difference between value
functions is only arose from the function d.
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CHAPTER 6

Comparison of the Two Models

In the previous chapter, we showed that under restriction of o, and V = %, the
stochastic volatility case downgrades to the constant volatility case. In this chapter
we will make numerical analysis to show how stochastic volatility affects the dynamic
portfolio choice.

Optimal risky asset weight in stochastic volatility case is given as,

1
¢Z = ;/\s + pvo'vdm (61)

the second term p,0,d,, is the only term that differs compared to (5.11) and shows
the increase of proportion of the risky asset when there is stochastic volatility in the
system.

Optimal stock weight is dependent on variables K, ,v, A, p,, 0,. Since there are
too many variables, it is difficult to see and interpret the effect of each variable on
portfolio choice. But since the variables p, and o, are valued between (—1,1) and
(0,1) respectively, their multiplication would be between (—1,1). Only in extreme
cases these values would be close to 1 or -1, so only for large values of d, this equation
would make a substantial difference as compare to constant volatility case. Therefore
we will examine the value of d, as a way of comparison. Moreover, the difference
between value functions of two cases depends only on the functions d,, and d,,. Thus,
comparing d., and d, will indicate the difference in the value functions. So by only
comparing d functions we can see how two models differentiate from each other.

The solution of d,, is more complex to work with as compared to d.,. When K, ,y, \is
fixed, the solutions of d,, is bounded by d, for different values of p, and o,. Therefore,
we can examine d,, instead of d,,.

(1=

1 _ Kv(t—T) i
272K, ( ¢ )

dey(t) =
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1—9)A2
% directly affect the value of d.,. K, represents the mean rever-
7 v

1—9)\2, I .
% is referred to as SSVR (sensitivity to stochastic
Yy
volatility ratio) that combines mean reversion rate(f,), risk aversion rate of the in-
vestor () and Sharpe ratio(\;). Here, Sharpe ratio defines the relation between risk
premium per volatility.

K, and

sion rate( K,,), and the ratio

To see the effect of stochastic volatility in Merton’s problem, we will pursue the fol-
lowing methodology. First, we will look at how the SSVR and K, affect d., and d,.
Then, we will look at how SSVR is affected by v, As

In order to see the effect of SSVR on d., and d,, we will set SSVR to the values
[0.2, 0.8, 1.6] and K, to the values of [0.2, 0.7, 1.2]. We will fix p, to 0.5 and let 0,
to take values 0.1 to 1. We then plot the graph of d., and d, with all combinations of
SSVR and K, for different values of o, as time ¢ goes form 0 to 1, Figure 6.1.

It should be noted that, in Figure 6.1, blue lines represent the values of d, when o,
varies and red line represents d.,. SSVR increases from top to bottom. It is clearly
seen that the values of d., and d, are determined by SSVR. When SSVR is high (fig-
ures at the bottom) the corresponding d values (d., , d,) also high, which supports the
(1=
272K,
optimal portfolio choice as a whole.

argument that, ratio measures the sensitivity of stochastic volatility to the

At the same time, the value of K, increases from left to right in Figure 6.1 . The
figure, confirms the argument that, beyond its direct effect to SSVR, the parameter K,
influences the shape of the curves i.e. it determines how fast d,, decays with time.

Further, it can be seen from the Figure 6.1, d, values become large enough to affect

portfolio weight, when % = 1.6. When (;;271)2,2 is equals to 0.8 the values of d,

varies from 0.15 to 0.6 for different values of of given K,. When (;27}(’[\)5 = 0.2 the
values of d,, are not large enough to affect the equation (6.1).

Having evaluated how SSVR and K, affects d., and d,,, we now look at how SSVR is
affected by v and \,. In order to see the direct effect of A\ and v on (;52—7[){12 (SSVR), a
table is prepared for each variables under the conditions where  and A take up values
[0.2, 0.5, 0.8] and [0.1, 0.4, 0.7] respectively. K, is taken as 1. As seen from the
Table 6.1, SSVR varies form 0.01 to 4.9 depending on the values v and A. In case of
a risk loving investor (low values of ) in a market with very high Sharpe ratio (high

values of \;) would yield values of SSVR high enough to affect d,. By looking at the
values, we can observe that % is most likely will have values lower than 0.2. In
order to better observe the outcome of these parameters an application to real data is
made in the following section.
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Table 6.1: Values of SSVR for different values of v and A

v X, SSVR
0.2 0.1 0.100
0.5 0.1 0.010
0.8 0.1 0.001
02 04 1.600
0.5 04 0.160
0.8 04 0.025
02 07 4.900
0.5 0.7 0.490
0.8 0.7 0.076

6.1 An Application of Dynamic Portfolio Choice with Stochastic Volatility and
Constant Volatility to BIST30 Stock Exchange

In this section, we will test how stochastic volatility affect the dynamic portfolio choice
when it is implemented with real data. Thus, an application was made using BIST30
stock exchange data. In a previous study, Mert[13] priced BIST30 European call
warrants (a special derivative product, which traded in Borsa Istanbul) using Hes-
ton Stochastic volatility model. This study includes calibration of Heston’s parame-
ters across two time intervals (01.03.2016-31.03.2016) and (15.01.2016-03.02.2016),
which are given below;

Table 6.2: Heston’s parameters for BIST30 for two time intervals [13]

Mean of Parameters 15.01.2016-03.02.2016 01.03.2016-31.03.2016

K, 11.2126 6.6562
% 0.1209 0.1718
Ty 0.4073 1.4238
Vo 0.0565 0.1292
0 0.8719 -0.2578
r 0.1081 0.1086

Using these values, it is possible to make an dynamic portfolio application. In order to
implement Liu’s model, only x4 value is missing. To obtain the p value, BIST30 index
stock prices are extracted for the given time periods. Their daily log returns are calcu-
lated and annualized to yearly data (a.u) to be compatible with the Heston parameters
in [13]. And, then values of \;, SSVR and d, are calculated. These processes yield the
following results;
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Table 6.3: Values of p, i — 7, As, SSVR, d,(0) calculated for BIST30 data in two time
intervals

Mean of Parameters 15.01.2016-03.02.2016 01.03.2016-31.03.2016

7 0.0024 20.0028
a.j 0.8208 -0.5039
©—r 0.7127 -0.6125
A, 0.9870 -2.1601
()23 0.0869 0.7001
2’)’2Kv . .
d,(0) 0.0896 1.2267

In order to compare stochastic volatility with constant volatility, relevant values of d.,
and d,, are plotted in Figure 6.2. The red line indicate the effect of constant volatility on
value function while blue line indicates the effect of stochastic volatility on the same.
Moreover, the values of SSVR are also given in the figure.

01
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Figure 6.2: Values of d., and d, calculated from BIST30 data for a) time period
15.01.2016-03.02.2016, b) time period 01.03.2016-31.03.2016
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The graph at Figure 6.2(a) shows the values of d., and d, for time period (15.01.2016-
03.02.2016) for given parameters in Table 6.2 and Table 6.3. The corresponding value
of SSVR equals to 0.089, which is a small value, consequently the value of d, is
equivalently small. This correspondence is consistent with the findings of this thesis
that the value of d,, is determined by SSVR. For such low values of d,, stochastic
volatility would result in very small change in portfolio choice that can be ignorable
regarding the rule for optimal hedging demand p,o,d,.

The graph at Figure 6.2(b) refers to parameters for time period (01.03.2016-31.03.2016).
This gives SSVR = 0.7 and d,, = 0.74. The value of d, is much greater compared to
that in the previous time period, which indicates that the impact of stochastic volatility
is now much greater. This is reflected by the difference between blue line (stochas-
tic volatility) and the red line (constant volatility) which is larger in the second time
period. Considering value of the d, the incorporating of stochastic volatility become
relevant as it would lead to more significant differences in portfolio choice.
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CHAPTER 7

Conclusion and Future Work

In this thesis, a comparative study was carried out between stochastic volatility and
constant volatility in Merton’s portfolio optimization problem within the framework of
Liu’s model. Liu’s solution involves substituting solutions of a specific form into the
Hamilton Jacobi Bellman (HJB) equation associated with the problem and reducing it
first to a simpler Partial Differential Equation (PDE), and then reducing this PDE into
a sequence of Ordinary Differential Equations (ODE). In this thesis we give the details
of these reductions. We then used explicit solutions provided by Liu for the Merton
H model to see the effect of replacing stochastic volatility with constant volatility.
We drived a ratio(SSVR) which measures the sensitivity of dynamic portfolio choice
to stochastic volatility. Values taken by this ratio and how they affect the portfolio
choice were examined through graphs by making comparisons. Finally an application
on BIST30 was made which verified the findings of the current work that when the
value of SSVR is small, incorporating stochastic volatility into the model has little
effect on the optimal portfolio. When this ratio is large (when Sharpe ratio is high
and the investor has low risk aversion) taking stochastic volatility into consideration is
meaningful.

As a future work, the current application can be extended; BIST30 data can be analyzed
over a wider range and similarly the application can be implemented to other markets
data. This would lead to a better empirical interpretation of stochastic volatility on
dynamical portfolio choice.
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