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ABSTRACT

ADAPTIVE MULTIVARIATE SOLUTION SCHEMES FOR INVERSE
ELECTROCARDIOGRAPHY PROBLEM

Onak, Önder Nazım
Ph.D., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

Co-Supervisor : Prof. Dr. Gerhard Wilhelm Weber

September 2018, 111 pages

Electrocardiographic Imaging (ECGI) is an emerging medical imaging modality to
visualize the heart’s electrical activity. It has a promising potential for diagnosing car-
diac abnormalities and facilitate the planning and execution of necessary treatments.
Visualizing heart’s electrical activity requires solving the ill-posed inverse electro-
cardiography (ECG) problem. Despite the considerable efforts and improvements in
this field, there exist some limitations and challenges that hinder its application to
daily clinical practice. Hence, the inverse ECG problem still attracts the attention of
researchers.

Since the inverse ECG problem has a ill-posed characteristic, it is necessary to regu-
larize the problem by imposing constraints based on prior information about the solu-
tion. Although, several regularization methods have been applied to solve the inverse
ECG problem, none of the them has been accepted as an optimal technique. Because,
each method has limitations and there exist some cases where they have pros and cons
in terms of accuracy, computational complexity and required prior information about
the solution.

This study focuses on developing adaptive methods that do not claim strong assump-
tions about the functional form of the unknown epicardial potential distribution and
requires less or relatively easily obtainable prior information compared to traditional
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inverse problem solution techniques. In order to reach these goals the inverse ECG
problem is handled both from statistical and deterministic solution techniques per-
spectives. Firstly, minimum relative entropy method is adopted as an alternative sta-
tistical solution technique for inverse ECG problem and effects of method parameters
are comprehensively assessed. From deterministic solution technique perspective,
we have proposed multivariate adaptive spline-based method in order to decrease the
number of unknown in the problem while increasing the estimation accuracy by tak-
ing advantage of local support property of spline-based approaches.

Keywords: inverse problem, inverse electrocardiography, minimum relative entropy,
multivariate adaptive regression splines, regularization
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ÖZ

TERS ELEKTROKARDİOGRAFİ PROBLEMİNİN ÇÖZÜMÜNDE
ÇOKDEĞİŞKENLİ UYARLANABİLİR YÖNTEMLER

Onak, Önder Nazım
Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Ortak Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm Weber

Eylül 2018 , 111 sayfa

Elektrokardiyografik görüntüleme (ECGI) kalp elektriksel aktivitesini daha detaylı
görselleştirmek için üzerinde çalışılan bir tıbbi görüntüleme yöntemidir. Kardiyak
anormalliklerin teşhisi ve gerekli tedavilerin planlanmasını ve uygulanmasını kolay-
laştırıcı potansiyele sahiptir. Kalp elektrik aktivitesinin görüntülenmesi, kötü konum-
landırılmış ters elektrokardiyografi (EKG) problemini çözmeyi gerektirmektedir. Çe-
şitli çözüm yöntemleri geliştirilmesine ve uygulanmasına rağmen, günlük klinik uy-
gulamalarda kullanımını engelleyen bazı sınırlamalar ve zorluklar bulunmaktadır. Bu
nedenle, ters EKG problemi hala araştırmacıların ilgisini çekmektedir.

Ters EKG problemini çözmek için çeşitli düzenlileştirme yöntemi uygulanmış olsa da
bunların hiçbiri optimum yöntem olarak kabul edilmemektedir. Çünkü, bu yöntemle-
rin hassasiyet, hesaplama karmaşıklığı ve çözümle ilgili gerekli önsel bilgilerin elde
edilmesi bakımından birbirlerine göre artıları ve eksileri bulunmaktadır.

Çalışmamızda, bilinmeyen epikardiyal potansiyel dağılımının fonksiyonel yapısı hak-
kında güçlü varsayımlarda bulunmayan esnek yöntemler geliştirmeyi amaçladık. Bu-
nunla beraber mevcut ters problem çözüm teknikleri ile karşılaştırıldığında, uygula-
yacağımız yöntemin göreceli daha az veya elde edilmesi kolay önsel bilgi içermesini
hedefledik. Bu amaçlara ulaşmak için, ters EKG problemi istatistiksel ve determi-
nistik çözüm teknikleri açısından ele alınmıştır. Öncelikle, ters EKG problemi için
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alternatif istatistiksel çözüm yöntemi olarak minimum bağıl entropi yöntemi benim-
senmiş ve yöntem parametrelerinin etkileri detaylı incelenmiştir. Deterministik çö-
züm tekniği olarak, çok değişkenli parametrik olmayan bağlayıcı fonksiyon temelli
çözüm yöntemi önerilmiş, tahmin doğruluğunu arttırırken problemin bilinmeyen sa-
yısını azaltılmıştır.

Anahtar Kelimeler: Ters problemler, ters EKG, minimum bağıl entropi, çok değiş-
kenli uyarlanabilir regresyon eğrileri, düzenlileştirme.
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CHAPTER 1

INTRODUCTION

Heart is an electro-mechanical organ that pumps the blood through the whole body

via contracting and expanding its muscles. The contraction of the cardiac muscles

is triggered and accompanied by the electrical current, which causes potential fields

through the heart tissue. Spread of these potential fields over the heart surface acti-

vates the resting tissues for contraction. It also propagates throughout the body tissues

encircling the heart and on the thorax.

Heart diseases are the foremost cause of death worldwide. According the World

Health Organization (WHO), heart diseases represented 31% of all global deaths in

2015, which is higher than all form of cancer combined [110]. Since the heart failure

can occur rather unexpectedly or happen gradually over months, anyone who are at

cardiovascular risk need early detection and inspection via counseling, guidance and

medication as deemed appropriate.

Medical imaging modalities have been important tools to visualize tissues, organs and

chemical or electrical activities of the human body in order to diagnose the patients

clinical problems. In the field of Cardiac Electrophysiology, 12-lead electrocardiog-

raphy (ECG) has become the broadly used non-invasive tool for visualizing the time-

varying electrical activity of the heart. The information provided by ECG might be

crucial to diagnose heart diseases. Since, any deviation from the regular behavior of

the electrical activity may be the indicator of cardiovascular disorders and, it can help

diagnose a disease while it is still in its early stages. However, ECG suffers from

a low-resolution information due to the sparse body surface measurement locations,

attenuated and smoothed signal measurements, which significantly restraint its bene-
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fits. Since the activity of the heart arise as a result of complex electrical and biological

phenomenons, low-resolution information prevents determination of clear-cut sepa-

ration between normal and abnormal ECG signal [65]. For this reason, researchers

have been working on the imaging technology, known as Electrocardiographic Imag-

ing (ECGI), and developed computational methods to obtain more extensive infor-

mation of cardiac electro-physiology to tackle with difficulties confronted in clinical

diagnosis arising from limited data.

Imaging heart’s electrical activity by ECGI systems requires solving the inverse prob-

lem of electrocardiography. Solution of this inverse problem can be defined as esti-

mating the parameters of the cardiac source model using the forward model relating

the source to body surface potential measurements (BSPM). It could be an alternative

imaging modality by filling the gap between 12-lead ECG and invasive cardiac elec-

trical activity monitoring methods if it is supported by a sufficient patient statistical

evaluation [20, 62]. The establishment of the forward model relies on the geometry

and electrical conductivities of inhomogeneities inside the torso. Due to the dispers-

ing effect of the torso on the heart signals and the discretization process, inverse

problem is ill-posed [16]. Thus, small variations in the model or measurements can

give rise to large errors in the solution.

Solving an ill-posed inverse ECG problem to reconstruct a physiologically meaning-

ful electrical activity of the heart is a challenging task. On the other hand, it is possible

to increase the solution stability against the perturbations by means of regularization

methods by incorporating prior knowledge about the desired solution. Although sev-

eral methods have been proposed, this task still receives a lot of attention from re-

searchers, who are trying to develop a solution technique that is optimal both in terms

of accuracy and computational complexity [23, 31, 116].

1.1 Motivation and Goals of the Study

Because of advancements in applied mathematics and supported by emerging com-

puter technology, solution techniques (quadratic, non-quadratic, statistical, etc.) have

been developed to solve inverse problems in various fields of science and engineer-
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ing. Many of these algorithms have been adopted to solve the inverse ECG problem

by considering the properties of underlying cardiac electrical process. On the other

hand, all methods have their pros and cons compared to each other in terms of accu-

racy, computational complexity and required prior information about the solution. For

example, while quadratic methods assumes that the epicardial potential distribution

is smoothly changing over the heart surface, on the contrary l1-norm regularization

implicitly seek a sparse solution [37, 114]. However, hearts electrical activity starts

from a few focal sites but then propagates throughout heart surface. As a result, the

structure of epicardial potential distribution has complex spatio-temporal behavior

during the cardiac cycle [84]. Assuming that we have no a priori information about

the current form of epicardial potential distribution, the question remains as which

particular norm solution should be employed. Alternatively, inverse problem can be

solved by statistical methods. Given an estimate of the multivariate probability distri-

bution function (pdf), one can obtain estimation of the unknown variables. Although

the studies on Bayesian estimation of epicardial potentials [91, 104] assumed that

prior pdf is multivariate Gaussian distribution. This definition is based on empirical

study of the epicardial potential distributions, and it is not proven that Gaussian prior

is the best way to represent the epicardial potentials.

The main goal of this thesis is to develop adaptive methods that do not claim strong

assumptions about the functional form of the unknown epicardial potential distribu-

tion, and that need less or relatively easily obtainable prior information compared to

other inverse problem solution techniques. To reach these goals, inverse ECG prob-

lem is handled both from statistical and deterministic solution perspectives. For each

perspective, the goals and contribution of this research can be summarized as follows:

• Adopting a statistical solution method for the solution of the inverse ECG prob-

lem which requires prior information about the unknown epicardial potential

distribution that can be obtained more easily, compared to other statistical

methods. Reducing the dependency of this information could facilitate and

improve the quality of the solution.

The success of statistical methods relies on good prior information such as prior

expected value and variance, which are not always easy to obtain. Even with
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a simple Gaussian distribution, prior expected value (mean) vector and covari-

ance matrix are necessary to fully represent the epicardial potentials. On the

other hand, the form of the probability density function (pdf) may not be known

or be highly suspected and some important statistical parameters, such as the

mean or the variance may not be well-known or difficult to estimate [111, 114].

• Constructing an adaptive method that represents the epicardial potential dis-

tribution such that the number of unknown variables are less than the original

problem but overcome the shortage of l2-norm approaches when the epicardial

potential distribution is sparse.

Spline-based methods are alternative approach to solve ill-posed inverse prob-

lems. The main advantage of them is the parametrization of the problem in

terms of a small number of unknowns. In addition, the local support of the

splines allows changing the approximation in local regions without affecting

remote portions of the curve to increase accuracy of the approximation [10, 18].

Despite these advantages, there are very few studies in literature that solve the

inverse ECG problem using splines [28, 118, 119]. These studies use paramet-

ric methods, i.e., assumptions on functional relationship between dependent

and independent variables must be specified in advance. However, determina-

tion of the optimal number of basis functions and the knot locations requires

preliminary works on the data to obtain an accurate approximation. Typical

approach to choose these parameters is quite arbitrary by using trial-and-error

[45]. A possible way to remedy this issue is to use non-parametric regression

methods.

1.1.1 Contributions of the Thesis

This dissertation achieves the following major contributions.

• Minimum Relative Entropy (MRE) method is successfully adopted to recon-

struct epicardial potential distribution, and effects of its parameters to the solu-

tion have been systematically investigated. Starting from simple box car distri-

bution, first of all prior pdf is constructed with the help of body surface mea-
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surements. This step eliminates the strong assumption about prior pdf definition

for statistical inversion. Instead, it is shown for inverse ECG problem that prior

pdf can be constructed starting from any simple probability distribution. Next,

posterior pdf is computed and than impacts of parameters lower-upper bounds,

mean and expected uncertainty to the solution have been investigated. It is also

revealed that, the most important parameter is the expected mean value unless

the other parameters are under-estimated. Compared to Bayesian estimation,

information about the MRE parameters can be obtained more easily.

This work has resulted in the following publications and presentations:

– Onak, O. N., Serinagaoglu Dogrusoz, Y., G.-W. Weber, Effects of a priori

parameter selection in minimum relative entropy method on inverse elec-

trocardiography problem. Inverse Problems in Science and Engineering,

26(6), 877–897, 2018. (SCI)

– Onak, O. N., Serinagaoglu Dogrusoz, Y., G.-W. Weber, Minimum rela-

tive entropy method for inverse electrocardiography problem, Problems

of Non-linear Analysis in Engineering Systems No.1(41), vol. 20, 64-70,

2014.

• Multivariate adaptive non-parametric reduced-order model for ill-posed linear

inverse ECG problem is proposed. Its strong features and properties that need

to be improved have been investigated using a large dataset under several sim-

ulation scenarios. Proposed method adaptively constructs functional represen-

tation of the unknown epicardial potential distribution using a small number of

basis functions, which significantly reduces problem dimension while increas-

ing the estimation accuracy in earlier times of the stimulation. Our approach

differs from the other spline based methods such that the underlying functional

relationship between dependent and independent variables do not need to be

determined in advance.

As a result of this study, it is shown that non-parametric regression methods

provide a flexible way of modeling epicardial potential distribution function for

the inverse ECG problem. Hence, necessity of preliminary work to determine

the functional representation of the unknown epicardial potential distribution

is alleviated by means of non-parametric regression technique. Additionally,
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it is also demonstrated that, local support of the spline based modeling can

facilitate the shortage of l2-norm solutions in some extend when the epicardial

potential distribution is sparse (i.e., close to stimulation time). The success in

estimating the sparse epicardial potential leads to determination of pacing site

more accurately.

This work has resulted in the following publications and presentations:

– Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Evaluation

of multivariate adaptive non-parametric reduced-order model for solving

the inverse electrocardiography problem: A simulation study. In review:

Medical and Biological Eng and Computing. (SCI)

– Onak, O. N., Serinagaoglu Dogrusoz, Y, and Weber G.-W., Robustness of

Reduced Order Non-Parametric Model for Inverse ECG Solution Against

Modelling and Measurement Noise, Computing in Cardiology, Maastricht,

Netherlands, Sep. 23-26, 2018.

– Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Effects of

Measurement Noise in MARS-based Inverse ECG Solution Approach, 26th

IEEE Signal Processing and Communications Applications Conference,

Çesme, Izmir, 2-5 May. 2018.

– Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Effect of the

Geometric Inaccuracy in MARS-based Inverse ECG Solution Approach,

Computing in Cardiology, Rennes, France, Sep. 24-27, 2017.

– Onak, O. N., Serinagaoglu Dogrusoz, Y., and Weber G.-W., Application of

Multivariate Adaptive Regression Splines for Inverse ECG Problem, 20th

National Biomedical Engineering Meeting, Seferihisar, Izmir, 3-5 Nov.

2016.

Consequently, both MRE and proposed non-parametric spline-based method

in this dissertation construct models for representation of unknown epicardial

potential distribution step by step using available measurements. They are less

restrictive, and demand less prior information compared to other parametric

regularization techniques. They can also be used to confirm the correctness of

the parametric model for the inverse ECG problem under consideration.
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1.2 Scope of the Thesis

This dissertation is composed of 4 main chapters excluding the introduction and ap-

pendices:

• The second chapter provides background information about cardiac anatomy

and electrophysiology. After that, foundation of the forward and inverse ECG

problems, along with a comprehensive literature survey including the inverse

problem solution techniques are presented. This chapter also includes the ex-

planation of datasets that we used for solving the inverse ECG problem and

quantitative accuracy measurement metrics for comparison purposes.

• Chapter 3 starts with the detailed description of the MRE method and its ap-

plication to linear inverse ECG problem. After that, second part of the chapter

presents the estimation results and assessments on the effects of MRE parame-

ters.

• Chapter 4 presents the definition of Multivariate Adaptive Regression Splines

(MARS) algorithm, and a reformulation of the linear inverse ECG problem

based on MARS method. The rest of the chapter includes estimation results

obtained under perturbations such as modeling error and measurement noise.

• Chapter 5 includes concluding remarks and an outlook to future studies.
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CHAPTER 2

BACKGROUND

2.1 Anatomy of the Heart

The heart is a cone shaped, fibromuscular organ. It lies in the middle mediastinum of

the thoracic cavity between the right and left pleural sacs, which is called pericardium

[61]. A small amount of fluid is present within the sac, called as the pericardial

fluid, which lubricates the surface of the heart and allows it to move freely during

contraction and relaxation functions [61, 68, 109]. The heart continuously operates

as a pump to deliver blood to whole body. It is at the a centre of the circulatory system.

The average human heart beats at 72 beats per minute and pumps approximately 4.7-

5.7 liters of blood per minute. It weighs approximately 250 to 300 grams in females

and 300 to 350 grams in males [106].

The wall of the heart is composed of three layers as shown in Fig. 2.1:

• The epicardium is the outer lining of the cardiac chambers and is formed by the

visceral layer of the serous pericardium [47]. It is the interior pericardium layer

and also called visceral pericardium.

• The myocardium is the middle layer of the cardiac wall and is composed of

three discernable layers of muscles that are seen predominantly in the left ven-

tricle and inter-ventricular septum alone. It includes a subepicardial layer, a

middle concentric layer and a subendocardial layer [92]. The myocardium also

contains important structures such as excitable nodal tissue and the conducting

system.
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• The endocardium is the innermost layer of the heart. It is formed of the en-

dothelium and subendothelial connective tissue [92, 101].

Figure 2.1: Layers of the heart [92, 101].

The heart is separated into four distinct chambers as shown in Fig. 2.2. The two su-

perior receiving chambers are the left and right atria, which are thin-walled, located

just above the thick-walled inferior pumping chambers called as left and right ven-

tricles, respectively. The atria receive blood from the venous system and lungs and

then contract and eject the blood into the ventricles. The right ventricle pumps blood

through the pulmonary circulatory system, and the left ventricle pumps blood through

the longer systemic circulatory system [26, 92, 101].

The heart contains four valves located between each atrium and ventricle and in the

two arteries that empty blood from the ventricle (Fig. 2.2). These valves are primarily

composed of fibrous connective tissues that originate and extend from the heart walls.

Tricuspid valve manages blood flow from the right atrium to the right ventricle. The

bicuspid (mitral) valve controls blood flow from the left atrium to the left ventricle.

The pulmonary valve blocks the blood pumped to left pulmonary arteries from flow-

ing back to the right ventricle. The aortic valve restricts blood flow direction only

towards the aorta [26].
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Figure 2.2: The Chambers and valves of the heart [26, 92].

2.2 Cardiac Electrophysiology

Cardiac muscle cells also known as cardiac myocytes are packed with mitochondria

to maintain the steady supply of ATP required for contraction [78]. The contraction

of the cardiac muscles is a complex process and can be divided into neural, hormonal

and intrinsic components. Under normal conditions, the contraction of heart muscles

is initiated by an electrical impulse in the sinotrial node located at the right atrium and

spread through the atria and antrioventricular node. The stimulation of one cardiac

cell initiates stimulation of adjacent cells. The difference between excited and resting

tissue voltages leads to electrical current which causes excitation of the resting tissues

in a wave-like manner [65]. Concurrently with electrical stimulation and contraction

of atrium, blood is pumped to the ventricles. Afterwards, excitation wave-front acti-

vates ventricular conduction system, Fig. 2.3, and advances throughout the ventric-

ular muscle and triggers contraction of ventricular myocardium, resulting in blood

being pumped to the body. The conduction system provides an automatic rhythmic

beat in order to pulmonary and systemic circulation operate in synchrony.

The electrical impulse that travels through the heart is formed by ion movements

across the membranes of heart cells that result in a potential difference across cellu-

lar membranes. This imbalance, which is called the Action Potential (AP), reflects

the complex intracellular and extracellular concentration variation of sodium (Na+),

potassium (K+) and calcium (Ca2+) ions. The shape of AP differs depending on lo-
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Figure 2.3: Schematic illustration of the cardiac conduction system [26].

cation of the cell in the heart, due to different ion channels and anatomy of myocytes

muscle cells. Notwithstanding differences, APs have strong similarities and their

shape can be divided into five phases. The shape of AP as shown in Fig. 2.4, rep-

resents different phases of opening and closing of different ion-channel types, which

results in ion currents and also membrane potentials as follows [58]:

Figure 2.4: Phases of a cardiac action potential (myocardium) [58].

• Resting phase (4): It is the natural state, and a cell will remain in the resting
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state until an electrical stimulation arrives.

• Depolarization phase (0): The sharp increase in AP is caused by the transient

influx of Na+ ions.

• Early re-polarization phase (1): Corresponds to theNa+ channel inactivation

and the polarizing efflux of K+ ions.

• Plateau phase (2): The distinctive plateau is associated with the opening of

voltage-sensitive Ca2+ channels.

• Re-polarization phase (3): Outward K+ channels remain open, but the Ca2+

channels close.

Electrically discharging frequency of sinotrial node determines the rate of heart beats.

Any premature discharges due to electrical irregularities of the heart muscles disrupt

the heart rhythm. If premature contraction occurs in the lower chambers of the heart,

it is called Premature Ventricular Contraction (PVC). During PVC, the ventricle gen-

erates an action potential too soon without waiting for a stimulation initiated by a nor-

mal conduction mechanism of the heart, causing an irregular heart beat. The source

and pattern of PVC can be identified via electrocardiogram (ECG). Treatment proce-

dure depends on the severity of the symptoms. In case of ablation therapy, determi-

nation of exact source location of premature contraction is important for the success

of the procedure. However, classical ECG techniques offer limited information about

the spatial properties of cardiac abnormalities [22]. It is the goal of noninvasive ECGI

techniques to provide high resolution information for clinicians in order to increase

the success of treatment. For example, priory localization of PVC via ECGI would

facilitate the planning and execution of radio frequency catheter ablation [103].

2.3 Electrocardiographic Imaging

Electrocardiographic imaging (ECGI) is a noninvasive technique for cardiac electro-

physiology to provide high resolution information from body surface potential mea-

surements (BSPM) with the use of patient-specific cardiac MR and CT images. All

these measurements and images are used to reconstruct cardiac electrical activity such
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as potential and activation patterns of the heart tissues. The idea of developing high

resolution electrocardiographic method derives from the aspiration to obtain a high

resolution image of cardiac electrical activity beyond the capabilities of the classi-

cal 12-lead ECG [49, 86, 88]. It has been gaining attention of the researchers both

from academia and industry. Because of the strong interest in this field Consortium

of Electrocardiographic Imaging (CEI) [23] and EDGAR data repository [4] has been

formed for interaction and collaboration of researchers and data exchange through the

workgroups. The basic ECGI methodology involves solving the electrocardiographic

forward and inverse problems. While the forward problem of ECG aims to predict

body surface potential distributions from the known cardiac source model, the inverse

problem of ECG reconstructs electrical activity of the heart from body surface mea-

surements and previously constructed forward model. In this chapter, we provide a

brief description and mathematical structure of both problems, then summarize the

important solution techniques that have been proposed to solve the ill-posed inverse

problem of ECG.

2.4 ECG Forward Problem

The term forward problem refers to modeling some physical fields, processes, or

phenomena. Mainly, forward problem includes: domain and equations of process,

the initial conditions if applicable (i.e., process is non-stationary) and boundary con-

ditions of the domain [55]. The forward problem of ECG aims at computation of

the body surface potential distribution resulting from cardiac electrical activity. Cal-

culation of the electric field in the torso is mainly dependent on size, location and

properties of the internal structures between the heart and torso surface [73]. Skele-

tal muscles, lungs, fats, bones and blood are some of the major internal structures

that can be taken into account in the solution of the forward problem. On the other

hand, considering all the inhomogeneities increases the computational complexity of

the forward problem. For this reason, it is required to find a balance between the

accuracy of the solution and the computational complexity of the problem.

Besides structure of the torso, the cardiac source model also needs to be specified

to complete the model of the forward ECG problem. The equivalent double layer
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(EDL) and the surface potential representation (endocardial and epicardial) are two

major cardiac source models that have been used to solve inverse and forward prob-

lems [105]. After selecting torso and cardiac source models, potential distribution on

the body surface can be computed either by boundary element method (BEM) or by

volume conductor model (VCM) [41, 42, 73, 81].

Figure 2.5: A model of homogeneous torso-volume conductor. The human thorax

is bordered by a surface, SB, and surrounded by a non-conductive air; all cardiac

bio-electric sources are planted in the closed region covered by epicardial layer, SH

[71].

The system depicted in Figure 2.5 represents the thorax and epicardium forming two

nested non-intersecting surfaces. This system is described by a quasi-static approxi-

mation of Maxwell’s equations with the assumption of no active bioelectric sources

existing between these two surfaces. In terms of the epicardial potentials, the ECG

forward problem can be formulated as Laplace’s equation with boundary condition

defined in Eqn. (2.1) [71].

∇ · σ∇φ(p) = 0 (p ∈ B), ∇φ(p) · nb = 0 (p ∈ SB), (2.1)

where B is an isotropic volume conductor (the human torso) in which is contained the

region of bioelectric sources, H, σ is the scalar conductivity of B, φ(p) is the electric

potential at a field point p = (x, y, z), and SH and SB are smooth surfaces with unit

normals nH and nB that are oriented outward with respect to the region H.

The outcome of the forward solution can be represented in vector-matrix notation as
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follows:

y = Ax. (2.2)

Here, A ∈ Rm×n is a forward operator, y ∈ Rm stands for the measurement vector

and x ∈ Rn denotes the source (epicardial potential) vector.

It is important to ensure a rigorous identification of the forward transfer operator in

ECGI, which characterizes the relationship between measurements and source. How-

ever, as we stated previously, taking into account all inhomogeneities within the torso

increases computational complexity of the forward problem. For this reason, it is

required to find a balance between accuracy of the solution and computational com-

plexity of the problem. Nevertheless, which inhomogeneous electric properties of

internal structures need to be accounted for is not clear enough [11]. Several studies

have been done by researchers to find out how much detail needs to be considered

for the forward/inverse ECG problems. In [85], Ramanathan et al. attempted to char-

acterize and understand the effects of conductor properties within the torso using a

detailed realistic torso model that includes all the major inhomogeneities and epi-

cardial potentials as a cardiac source model. Results of this study showed that, if

there were no pathology causing variations in volume conductor properties, poten-

tial patterns on body surface were minimally affected by the torso inhomogeneities.

Klepfer et al. [59] concluded that including inhomogeneities have minor influence on

the of body surface potential pattens but they alters the magnitude of potentials. The

results of Klepfer’s study suggest that subcutaneous fat, anisotropic skeletal muscle

and lungs should be included in simulating the torso potentials. Keller et al. [57]

discussed different organs have varying influences on the different ECG segments;

While lungs are more important for atrial signals, ventricular signals are more ef-

fected by the heart conductivities. But, blood and anisotropic skeletal muscle have

greater impact on both atrial and ventricular signals. In recent study by Bear et al.

[11], the inhomogeneous torso models produced potential amplitudes closer to the

true potentials compared to those obtained by the homogeneous model. Common

conclusion in these studies was, despite the amplitude differences between simulated

and measured body surface potentials their potential maps were quite similar. On the

other hand, Cluitmans et al. [20] argued that to decide the complexity of the forward
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model, more in-vivo studies need to be conducted.

2.5 ECG Inverse Problem

Inverse problem is a field in mathematics and the applied sciences, which refers to

approximating underlying function or estimating model parameters of a physical phe-

nomena from indirect measurements [25, 97]. In this sense, inverse problem of ECG

can be described as inferring cardiac electrical activity from the given BSPM and

mathematical model that characterizes the relationship between measurements and

sources. Here, the mathematical model is constructed by solving the forward ECG

problem. Depending on the selected cardiac source model, the parameters to be es-

timated vary. On the other hand, the generic form of the problem is similar [105].

If the cardiac source is taken as an epicardial potential distribution, then the problem

can be represented as follows:

yk = Axk + nk (k = 1, 2, . . . T ), (2.3)

where, A ∈ Rm×n and k are the forward transfer matrix and the time index, respec-

tively: yk ∈ Rm stands for the body surface potentials at all observation points, and

xk ∈ Rn denotes the unknown epicardial potentials to be estimated. In our study,

these parameters are the potentials on the epicardial surface. The last term nk ∈ Rm

represents the measurement noise.

The difficulty of the inverse ECG problem arises from their ill-posed nature. This

ill-posedness originates from the discretization process in the forward solution and

attenuation of the signal inside the torso. Amount of attenuation also changes de-

pending on the measurement location, because of the distance to the source and the

inhomogeneities through propagation direction. Although there is no formal defini-

tion of an ill-posed problem, it should involve all the problems that have no solutions

or have many solutions in the desired class, or the solutions are unstable. But in com-

mon use, the term ill-posed is related to unstable problems [55]. From the perspective

of inverse ECG problem, instability means that relatively small changes in the body

surface measurements are abundantly amplified in the solution. In addition to mea-
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surement noise, inaccuracies in the heart-torso geometric model and errors in the

conductivities of the organs, which are used to calculate forward operator, also affect

the solution. Furthermore, if the number of the measurement locations is less than

the number of the parameters to be estimated (i.e., the forward transfer matrix A in

Eqn. (2.3) is under-determined) there can be no unique solution [82]. Consequently,

problem need to be appropriately constrained by introducing prior information about

the solution in order to obtain physiologically meaningful outcome.

2.5.1 Solution Methods

Inverse problems have gained lots of attention due to their important applications in

different fields of science. Several algorithms have been developed to solve linear

and non-linear inverse problems. These algorithms solve the inverse ECG problem

by considering the properties of underlying cardiac electrical process. These solution

techniques can be divided into two categories: deterministic and statistical frame-

works [82]. In this part of the thesis we will review the most commonly used methods

solving the inverse ECG problem.

2.5.1.1 Deterministic Methods

The solution techniques in deterministic framework usually called as regularization

methods, in which an objective function to be minimized or a constraint function

to be satisfied is composed of a combination of the norm of the residual error and

some norm of a constraint functions [82]. In this part, we will summarize notable

deterministic methods which are proposed for solving inverse ECG problem.

Tikhonov Regularization:

It is well-known standard technique to eliminate the instability in the inverse solution

[5, 17, 38]. It has been applied in several areas including electrocardiography. The

form of the Tikhonov regularization for the linear inverse problem takes the form

given in Eqn. (2.4). In this equation, since the problem is solved at each time instant
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separately, the time index k is omitted.

arg min
x∈Rn
{‖y −Ax‖2

2 + λ‖Rx‖2
2}, (2.4)

where λ ≥ 0 is a regularization parameter. It controls the trade-off between fidelity

to the measurements and the defined constraint. Although several methods have been

proposed to determine the optimal value for λ, the L-curve method [43] is commonly

utilized for the inverse ECG problems. The L-curve is a plot on log-log scale with λ

is a parameter on this curve and the optimal regularization parameter is assumed to be

the value of λ which minimizes both ‖y−Ax‖2
2 and ‖Rx‖2

2 in some sense [8]. Reg-

ularization matrix R is used to incorporate the priori information about the solution.

It can be the identity matrix or the first or second order derivative operator depending

on the desired smoothness of the solution. If R = I, then the Tikhonov estimation

can be calculated using singular value decomposition (SVD) as follows:

Singular value decomposition of matrix A is represented as:

A = UΣV, (2.5)

where

U = [u1 . . .un], V = [v1 . . .vn], (2.6)

Σ = diag(σ1, . . . , σn), (σ1 ≥ σ2 ≥ . . . ≥ σn). (2.7)

The Tikhonov estimation is given by

x̂Tikh =
n∑
i=1

σ2
i

σ2
i + λ

ui
Ty

σi
vi. (2.8)

The idea of Tikhonov method is to suppress the contribution of small singular values

into solution, i.e., high frequency components are filtered out. Tikhonov regulariza-

tions of zero-first and second order were applied to inverse ECG problem and its

estimation accuracy reported in [21, 70, 71]. According the results of these studies,

although the major features of epicardial potential distribution pattern could be de-

tected, the solutions were smooth and had lower amplitudes then the true epicardial

potentials.
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Truncated Singular Value Decomposition (TSVD):

TSVD method uses first k < n singular values and corresponding right and left eigen-

vectors to solve the problem, which is called truncation.

x̂Tsvd =
k∑
i=1

ui
Ty

σi
vi. (2.9)

The truncation parameter k is used to prevent the perturbation error from blowing up,

at the cost of introducing bias in the regularized solution. But the determination of

optimal k is another issue to be solved.

Generalised Eigensystem:

Generalised eigensystem (GES) proposed by Throne et al. [99] employs finite ele-

ment technique to define a truncated eigenvector expansion. The BSPM are approx-

imated in terms of the eigenvectors, and a least squares fit is used to estimate the

expansion coefficients. The resultant expansion can be used to calculate the heart

surface potentials as follows:


xH

xV

y

 =
Nα∑
i=1

αi


νiH

νiV

νiy

 , (2.10)

where the αi andNα are expansion coefficients and number of eigenvector considered

in the solution respectively and: xH , xV and y are heart surface, volume and body

surface potentials respectively. On the other hand, νiH , νiV and νiy correspond to

the ith eigenvectors. The increase in the surface mesh structure resolution and the

optimally selected Nα value produces better estimations as expected.

GES, TSVD methods and Tikhonov regularization were employed for solving the

problem of inverse ECG using inhomogeneous eccentric sphere model in [100] to

examine the effects of geometry and conductivity errors. Although the outcomes of

GES had lower RMS values for almost all range of tested modeling error cases, stud-

ies on more realistic geometries are required in order to comprehensively its success.

Truncated Total Least Squares

Shou et al. [95] tested Truncated Total Least Squares (TTLS) method using a realistic
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heart–lung–torso model with inhomogeneous conductivities.

minimize
Ã,ỹ

‖(A,y)− (Ã, ỹ)‖F subject to ỹ = Ãx. (2.11)

Here, Ã, ỹ are the erroneous version of A and y. This study concludes that TTLS

results are very close to Tikhonov and TSVD estimations if there is only measurement

noise, but performed better in case of geometric errors imposed into the model.

However these standard regularized solutions produce smeared output and lead to

decrease in accuracy when locating minimum and maximum potential values [16]. In

order to improve the smooth solution of Tikhonov regularization, several approaches

have been proposed. Some of the important methods are explained subsequently.

Genetic Algorithm with Tikhonov and TSVD:

In [51], heuristic optimization technique genetic algorithm (GA) was used to improve

the estimations of Tikhonov and TSVD regularizations. The idea is to start from the

initial population, which is actually constructed by using Tikhonov or TSVD estima-

tions, and find the best epicardial potential vector by solving the following minimiza-

tion problem:

minimize
x

‖y −Ax‖2
2. (2.12)

According to the simulation results in [51] that were performed under different mea-

surement noise levels, estimation accuracies significantly improved. On the other

hand the success of this approach strongly depends on the number of generations in

the GA algorithm and must be properly determined to improve the estimation.

Binary quadratic optimization:

Potyagaylo et al. [79] developed an approach to determine the ischemic areas and

ectopic foci based on transmembrane voltages (TMV). Using the fact that faster de-

polarization process compared to re-polarization and plateau phase after depolariza-

tion, the TMV is assumed to have a constant value in the depolarization phase. Under

these assumptions the problem was reformulated as an unconstrained binary quadratic

optimization problem.

arg min
x∈[l,u]n

{‖y −Ax‖2
2 + λ‖Rx‖2

2}. (2.13)
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Here, l and u stand for binary values corresponding to the upper and lower bounds that

every solution component may take. The problem in Eqn. (2.13) has finite but very

large possible solutions. For this reason the authors implemented heuristic search

and difference of convex functions algorithms in order to reduce the dimension of the

problem to locate ischemic region and ectopic foci.

Multiple Constraint Regularization:

Imposing multiple spatial constraints into the problem was proposed to improve the

Tikhonov-based estimations. In [1], incorporation of both spatial energy and Lapla-

cian of the solution constraints were employed.

arg min
x∈Rn
{‖y −Ax‖2

2 + λ1‖x‖2
2 + λ2‖Lx‖2

2}. (2.14)

Here, λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters and L is the Laplacian op-

erator. On the other hand, these methods ignore the time-evolution dynamics of the

potential distribution and solve the problem at each time frame separately. Therefore,

successively more progressive method was attempted in [16] to account for both spa-

tial and temporal information in the solution by using an augmented model addressed

by Eqn. (2.15).

arg min
x̄∈R̄n
{‖ȳ − Āx̄‖2

2 + λ1‖R̄x̄‖2
2 + λ2‖T̄x̄‖2

2}. (2.15)

The elements of augmented model are defined as follows: There is the measurement

vector ȳ = [yT1 , . . . ,y
T
k ]T , where k is the number of time samples. The unknown vec-

tor x̄ is defined in a similar way as ȳ. The augmented forward operator is constructed

as Ā = Ik ⊗A. Here, ⊗ represents the Kronecker product, and Ik is k × k identity

matrix. The matrices R̄, T̄ are operators for spatial and temporal constraints.

It was shown that the conjecture of using spatial and temporal constraints increased

the temporal behavior of estimations compared to spatial constraint alone. However,

the drawback of this approach is the need for determination more than one regu-

larization parameter. The original study suggested L-surface method to find these

parameters. Later on, a genetic algorithm based approach was also proposed in to

find these parameters [34].
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Greensite Spatio-Temporal Approach:

Greensite [40] included temporal correlation of potentials in the problem by concur-

rently regularizing the equations associated with all time instants. Greensite’s method

relies on the use of principal components of measurement matrix Y = [y1, . . . ,yT ]

to compute unknown matrix X = [x1, . . . ,xT ].

If we compute the SVD of the measurement matrix, we obtain:

Y = PSTT , (2.16)

where P, T are eigenvector matrices related to spatial and time domains of BSPM,

respectively. S is the diagonal matrix containing singular values of Y. Then Eqn.

(2.3) can be modified as follows:

Y = AX, (2.17)

PSTT = AX. (2.18)

If we multiply both sides by T from the right side, we receive:

AXT = PS, (2.19)

AX̌ = PS. (2.20)

Here, X̌ = XT is the new unknown matrix and Tikhonov regularization can be used

to estimate it. After that the solution of X can be obtained by multiplying X̌ by TT .

It was shown that behind in [40] Greensite method produced more accurate solution

by increasing the temporal stability of the estimation.

Greensite’s idea can be summarized as follows; First the time series of the signals

decorrelated prior to applying spatial regularization. After decorrelation is achieved,

the resulting set of equations is solved by the standard Tikhonov regularization and

finally, the decorrelation is reversed to restore the temporal correlation.

23



Twomey Technique:

The modification of Tikhonov method was proposed by Twomey [102] in order to

avoid unwanted oscillations by including a priori information on the solution.

arg min
x∈Rn
{‖y −Ax‖2

2 + λ‖x− xp‖2
2}, (2.21)

where xp is a prior estimate of x. It is intended to minimize the difference between

the solution and an a priori knowledge. Twomey regularization was employed to

solve the inverse ECG problem in [36, 77].

Non-Quadratic Methods:

Besides the quadratic regularization methods, non-quadratic approaches have also

been proposed for cardiac source reconstruction and locating arrhythmic substrates

on the heart. Since l2-norm penalty functions lead to smooth solutions, they do not

produce accurate solution for sparse source imaging, such as locating diseased regions

or pacing sites.

The l1-norm regularization scheme, also known as total-variation regularization, has

been applied with considerable success especially, when restoring high-frequency

spatial features of inverse ECG problem [37, 115]. This method can be formulated as

follows:

arg min
x∈Rn
{‖y −Ax‖2

2 + λ‖Dx‖1}, (2.22)

where D =
∂x

∂n
is the normal derivative of the potential on the heart surface. It was

concluded in [37] that, l1-norm method has a better capability when detecting and

localizing the areas of early activated regions than l2-norm regularization. Despite

its success in reconstructing sparse signals, l1-norm regularization has high compu-

tational complexity due to its nondifferentiable structure. For this reason, smoothed

l0-norm regularization [108] has been proposed to estimate epicardial potential dis-

tribution.

Besides the l0- and l1- norm based regularization for reconstructing sparse signals,

Rahimi et al. [84] utilized lp-norm regularization to bridge the gap between overly

smeared and overly focal solutions. In their subsequent study, a multi-model adaptive
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estimation approach in which the weighted combination of l0, l1 and lp solution was

employed to determine the final estimation [83].

Reduced Order Models:

In order to reduce complexity and increase the estimation accuracy in the inverse

ECG problem, reduced-order models were also considered. Use of Proper Orthogo-

nal Decomposition (POD) was attempted to identify ionic parameters and infarction

locations [15]. Spline-based methods were applied to the ill-posed inverse ECG prob-

lems in order to take the advantages of spline-based regression. Their main advantage

is the parametrization of the problem in terms of a small number of unknowns, and

their local support that allows for changing the approximation in local regions without

affecting remote portions of the function to be estimated. Recently published works

of Zettinig [118, 119] and Erem et al. [28] modeled the problem based on cubic poly-

nomials in order to benefit from splines. We call the method in [28] as Spline Inverse

(SI) in the rest of thesis.

The method proposed in [28] can be summarized as a low-order parametrization of

an individual beat using temporal splines. First, the spline fitting procedure for body

surface potentials is realized by employing the spline curves that are defined in terms

of pseudo-time parameters. After that, the fitting procedure is completed by mapping

the outcome from pseudo-time to actual time. For this method, the relationship be-

tween the epicardial potentials and the noise-free body surface potentials, which is

part of the relationship given in Eqn. (2.2), is rewritten in matrix form as:

Y = AX, (2.23)

where

Y =
[
y1,y2, . . . ,yT

]
, (2.24)

and

X =
[
x1,x2, . . . ,xT

]
. (2.25)

The spline approximation of the body surface potentials (Y) is then defined as fol-

lows:

Y ≈ KYP1P2, (2.26)

where KY is a coefficient matrix for the knot points, P1 and P2 are the operators for

the spline interpolation in the pseudo-time parameter, and for mapping the pseudo-
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time parameter to actual time, respectively. Similarly, heart surface potentials can be

represented as follows:

X ≈ KXP1P2. (2.27)

Using Eqns. (2.26) and (2.27), Eqn. (2.23) can be written as:

Y ≈ KYP1P2 = AKXP1P2. (2.28)

Then, the inverse problem reduces to solving the following equation for the coefficient

matrix KX:

KY = AKX. (2.29)

In order to solve the unknown matrix KX given in Eqn. (2.29) Tikhonov regular-

ization is applied for each column separately. In this study, we employed zero-order

Tikhonov regularization, in which the regularization matrix is chosen as the identity

matrix.

However, a common issue of such parametric approaches is the determination of the

optimal number of spline functions to avoid model over-fitting and obtaining an accu-

rate approximation. A typical approach to choose these parameters is quite arbitrary

by using trial-and-error [45].

Other Methods:

In addition to all these regularization methods, other notable approaches can be listed

as follows:

• Vectorcardiographic optimization combined with patient specific information [19].

• Partial differential equation (PDE)-constrained optimization [107], in which the

whole PDE model is used as a constraint in both equality and inequality forms

rather than only the source constraints.

• Combination of the Support Vector Regression (SVR) with Self-Organizing

Feature Map (SOFM) techniques [52].

• Iterative numerical methods generalized minimal residual (GMRes) [86], and

Lanczos-bidiagonalization method combined along with TTLS [35].
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2.5.1.2 Statistical Methods

All physical measurements include uncertainties because of the noise and the nature

of physical phenomena which we wish to observe. Therefore, all these measurements

are not simply observed values but they provide an information about the states of

some observable parameters [97]. In classic inversion techniques, the noise is as-

sumed to be deterministic and bounded. On the other hand, some applications cannot

be modeled properly in this way. Consequently, statistical models have been pro-

posed, in which the noise is assumed to be a random variable [12]. The interpreta-

tion of statistical modeling is that the information about values of these variables is

incomplete but, based on our prior knowledge they can be expressed by their proba-

bility distributions [56]. Here, by a priory information we mean that the theoretical

assumption about the probability density function, which is independent of the mea-

surements. In that sense, probabilistic inverse problem solution techniques differs

from the classical estimation methods such that they treats the unknown parameters

as a random variables rather than unknown constants. These random variables are

characterized in terms of a multivariate pdf which is deduced from prior knowledge

about the problem under consideration.

Bayesian estimation and Kalman Filter are the most commonly utilized statistical

methods for solving inverse ECG problems.

Bayesian Estimation:

In Bayesian Maximum a Posteriori (MAP) estimation, prior information about the

epicardial potentials is used to construct a conditional a posteriori probability density

function and then the solution is the potential distribution which maximizes the pos-

terior pdf, given BSPM [91, 104]. Later on it was advanced by including spatial and

temporal correlations of the epicardial potentials simultaneously [39, 76].

From a Bayesian inversion theory point of view, the model parameters y, x, n in

Eqn. (2.3) are random variables. Let us assume that the parameter x is the only

unknown. But, on the other hand, the form of prior density function p(x) and a

conditional probability density function p(y|x) are assumed to be known. The idea
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consist in computing the posterior density function p(x|y) as follows:

p(x|y) =
p(y|x)p(x)∫

RN p(y|x)p(x)dx
. (2.30)

After computation of the Bayesian solution, i.e., the posterior probability density, if

we would like to accept the most probable value of x in the distribution as a solution.

It is defined as follows:

x̂MAP = arg max
x

p(x|y). (2.31)

The term of x̂MAP is the Maximum A Posteriori (MAP) estimation of the unknown

variable.

Similarly, Conditional Mean (CM) estimate can be defined as in Eqn. (2.32):

x̂CM =

∫
RN

xp(x|y)dx. (2.32)

Kalman Filter:

Kalman filter was applied to inverse electrocardiography to incorporate the spatio-

temporal behavior of electrocardiographic signals [6, 13, 24, 54]. In Kalman filter

approach, the unknown potentials are the states to be estimated and the state transition

matrix represents our knowledge or assumptions about the temporal behaviour of

the unknown potentials at two consecutive time instants. Kalman filter includes two

major steps: prediction and correction. Assuming that the unknown potential vector

xk defined in Eqn. (2.3) within the process of the subsequent form;

xk = Gxk−1 + wk, (2.33)

where G, wk are the state transition matrix and process noise vector, respectively.

Prediction step:

x−k = Gx+
k−1, (2.34)

P−k = GP+
k−1G

T + Vk, (2.35)
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Correction step:

Kk = P−k AT (AP−k AT )−1 + Wk, (2.36)

x+
k = x−k + Kk(xk −Ax−k ), (2.37)

P+
k = (I−KkA)P−k . (2.38)

Here, Kk is the Kalman gain matrix, and Vk, Wk correspond to the covariance ma-

trices for nk and wk, respectively. The superscripts (−), (+) indicate the pre- and

post-estimation values.

The estimation accuracy of the statistical methods depends on the quality of available

prior information. Performance of the Bayesian MAP estimation method depends on

a good a priori pdf, which is not usually available. Similarly, Kalman filter approach

requires well-formed state transition rule in order to obtain robust and accurate esti-

mation. Forming an appropriate state transition matrix is still an issue to be solved.

2.5.2 Trends in the Inverse ECG Field

Trends in the inverse problems of ECGI can not be thought independent from the re-

searches in the field of forward ECG problem. Hence, similar to the forward problem

discussed in Chapter 2.4, effects of torso inhomogeneities on the inverse ECG prob-

lem have not been fully revealed yet. The conclusion of prior study of Ramanathan

et al. [85] was: homogeneous approximation does not cause significant deteriora-

tion in the accuracy of inverse solutions. However, the study of van Oosterom [105]

showed that inverse solutions improved if the effects of lungs were taken into ac-

count. But, this study mainly focuses on comparing the performances of two major

source types rather than investigating the effects of torso inhomogeneities. In addi-

tion, the recent study of Zemzemi et al. [117] has shown that for small noise values

in the BSPM, the effect of torso heterogeneities is clear. But their influence decreases

when the noise level in the measurements was increasing. In light of current state of

the forward ECG problem studies, Rudy in [87] concluded that, although including

inhomogeneities into model has some advantages, clinical ECGI applications show
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that homogeneous approximation would be adequate. Cluitmans et al. [20] argued

that extensive validation by in vivo studies should be applied for interpretation and

validation of the results.

The images obtained by solving inverse problem of ECG contain valuable diagnostic

and therapeutic information. It was initially applied for localizing focal ventricu-

lar arrhythmias, such as ventricular premature beats [50]. However, inverse ECG

problems were usually modeled and solved with the assumption of static torso-heart

geometries and the geometric error due to the cardiac motion and contraction are not

included into the problem. Jiang et al. in [53] concluded that, although the inverse

solutions obtained from both the static and the dynamic models approximately pro-

duced the similar results during QRS complex period, for the ST-T segment, static

inverse problem approaches generated large errors in the estimates. In [24], electrical

and mechanical measurements were combined in order to obtain more precise esti-

mation of the electrical state of the ventricles throughout the heart beat. These studies

suggest that the inclusion of cardiac motion into the model leads to more accurate

solutions.

The inverse problem of electrocardiography has not been fully studied for fibrillating

rhythms [31, 50, 89], but mostly analyzed and validated during stationary rhythms.

ECG Imaging for Atrial Fibrillation (AF) is a challenging problems because the sig-

nal at the level of torso is weak compared with that from the ventricles [50] and

during AF, besides the epicardial potentials additional parameters such as, dominant

frequency, phase maps and singularity points should be considered that might be clin-

ically more relevant than the raw potentials [31].

Hearts electrical activity starts from a few focal sites but then propagates throughout

heart surface. Classical l1- and l2-norm regularization methods tend to produce focal

and smooth solutions, respectively. However, epicardial potential distribution shows

both sparse and smooth characteristic behavior while propagating over the heart sur-

face during the cardiac cycle. Consequently, these classical methods have some short-

ages to represent the complete behavior of the epicardial potential distribution. Sim-

ilarly, in order to obtain good estimates by using statistical methods it is required to

have a good a priory information such as, form of the multivariate the probability dis-
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tribution function, mean and covariance informations about the unknown epicardial

potentials. Assuming that we have not enough a priori information about the current

form of epicardial potential distribution, the question still remains as which particular

norm solution or probability distribution function should be employed.

2.6 Test Data and Evaluation Methods

In this section, we give information about the datasets and quantitative metrics that

are used to measure success of the proposed methods from various perspectives.

2.6.1 Data

Two different data collections, which were prepared in University of Utah and Karl-

sruhe Institute of Technology (KIT), have been used to evaluate the performance of

algorithms. Both of the collections consist of unipolar body surface potentials. Al-

though we have used only Utah data collection in our research related to Minimum

Relative Entropy method (Chapter 3), later on both data collections have been utilized

to examine the performance of the proposed solution technique in Chapter 4.

UTAH COLLECTION: Epicardial potentials employed in this study were measured at

University of Utah by Robert S. MacLeod and his co-workers [67]. They were taken

from dog hearts, which were perfused from another dog’s circulatory system and sus-

pended in an electrolytic filled (500 Ω) adolescence human thorax-shaped fibreglass

tank. To measure the epicardial potentials, a nylon sock electrode with silver wires

was slipped over the ventricles. The epicardial measurements were recorded from 490

points with a sampling rate of 1000 samples per second. In order to achieve maximum

diversity from data-set standpoint, we utilized 23 recordings with 23 different stim-

ulation sites on the epicardial surface, coming from 5 different experiments. Body

surface potential measurements corresponding to these epicardial potential measure-

ments were not available to us, therefore we used BSPs simulated from the measured

epicardial potentials. Then, BSPs were simulated at these electrode locations by solv-

ing the forward ECG problem using the boundary element method (BEM) [42], and

by adding independent and identically distributed Gaussian noise to noise-free BSPs.
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In these BSP simulations, lungs were included in the geometric torso model, since

they have been considered to be among the most influential inhomogeneities in the

forward computations [59]. On the other hand, a homogeneous torso model was as-

sumed in the BEM solution of the forward matrix A that was used for solving the

inverse problem.

The original dataset includes 771 lead-set configuration on the body surface. In our

MRE study (Section 3) we used the original dataset but later on in the studies pre-

sented in Section 4 the number of lead sets on the torso surface reduced to 192 as by

employing the method proposed by Lux et al. [63].

KIT COLLECTION: This data collection is provided by Karlsruhe Institute of Tech-

nology (KIT), and can be obtained from the ECGI Consortium EDGAR Time Signal

Catalog database [27]. It includes extracellular potentials on the pericardium for 8

ventricular beats with different pacing locations: epicardium, endocardium and sep-

tum. BSPs were simulated using the finite element method, and the bi-domain model

on an inhomogeneous human patient model, but forward transfer matrix was com-

puted using the boundary element method for a simplified homogeneous model.

2.6.2 Evaluation Metrics

In order to evaluate performances of the inverse ECG solution algorithms used in this

study, we employ quantitative metrics and qualitative comparisons. In addition to

comparing estimated epicardial potentials with the true epicardial potentials, we have

also obtained and compared the activation time distributions. Activation times are

calculated from the epicardial potentials using the spatio-temporal approach proposed

by Erem et al. [28], and evaluated by Cluitmans et al. [21]. This algorithm involves a

two step procedure:

• Step 1: Temporal derivative of the time series at each node on the epicardial

surface is computed. Then, from this derivative waveform, temporal activation

time is defined for each node as the time instant that has the most negative

derivative value. These temporal activation times are collected in a vector τ .

• Step 2: The propagation pattern represented by the temporal activation times
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on the surface of the heart are smoothed by solving the following optimization

problem:

arg min
τD∈RN

{‖τ − τD‖2
2 + γ‖LτD‖2

2}, (2.39)

where L represents the surface Laplacian operator and γ controls the smooth-

ness of potential propagation pattern on the heart surface. The solution of

Eqn. (2.39) is called the spatio-temporal activation time estimate.

The minimum value of the estimated spatio-temporal activation time vector was then

calculated as the earliest activation time, and the corresponding node on the heart

surface was accepted as the estimated pacing site.

For quantitative evaluation of the epicardial potential and activation time estimates,

correlation coefficient (CC), relative error (RE) and pacing site localization error (LE)

are computed. For CC and RE calculations, z ∈ RN is assumed to be the true param-

eter vector (epicardial potentials at a single time instant, or activation times), and ẑ is

its estimate, with the corresponding mean vectors, z̄ and ¯̂z, respectively:

CC =

∑N
i=1 (zi − z̄i)

(
ẑi − ¯̂zi

)√∑N
i=1 (zi − z̄i)2∑N

i=1

(
ẑi − ¯̂zi

)2
, (2.40)

RE =
‖z− ẑ‖2

‖ẑ‖2

. (2.41)

Here, subscript i stands for the ith element of the corresponding vector. In this study,

CC and RE are calculated at each time instant for the epicardial potentials, and then

mean and standard deviation values of these CC and RE are obtained over time for

comparison of results. Activation time vectors yield single CC and RE values. LE

between the estimated and the actual pacing sites is calculated by computing the Eu-

clidean distance between the estimated and the true pacing sites. Besides quantitative

comparisons, qualitative assessments are made by visual inspection to efficaciously

capture the local variations between the real and the estimated epicardial potential

maps and activation time maps using the Map3d software [66], which was developed

by researchers at University of Utah as a part of the Scientific Computing and Imaging

software.
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CHAPTER 3

INVERSION VIA MINIMUM RELATIVE ENTROPY

Minimum Relative Entropy (MRE) principle (also known as minimum cross entropy)

describes a statistical method to infer a posterior probability density function (pdf)

that avoid bias, from prior estimate of pdf and new obtained data as a constraints

on expected values [93, 94, 112]. It was introduced by Kullback [60] and called

minimum directed divergence. Since its derivation, MRE principle has been applied

in a wide variety of areas in science and engineering including: pharmacokinetic

parameter estimation [2], detecting the origin of pollutant in drinking water structures

and reformation of groundwater contaminant diffusion history [75, 80, 114], locating

and detecting CO2 leakage [96], identification of the source term of gas emission in

atmosphere [64], estimation problem for quantum systems to reconstruct the behavior

of a quantum channel or in retrieving information at the receiver of a communication

system [120]. In contrast to the Bayes estimation, the idea behind the application

of MRE to inverse problem is that: the form of the prior pdf is highly suspected or

may not be available. In addition to this, statistical parameters such as variance or

moments are difficult to estimate. Instead, MRE defines a way of pdf approximation

by considering that the measured data are expected values of some unknown pdf and

put them into a suitable form of constraints.

3.1 Motivation

In statistical inverse problem solving approaches such as Maximum A Posteriori

(MAP) estimation, the form of prior probability distribution is assumed to be known.
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In most of the applications, it is common to use Gaussian prior pdf that also requires

reliable prior information about mean and covariance matrices in order to an obtain

accurate estimation. However, in some cases, prior pdf itself may be unknown or it

may not be possible to obtain good information about full covariance matrix. At this

point, the MRE-based inversion procedure proposed in [112] defines a more flexible

way, based on limited information.

In this part of the thesis, we have explored the impacts of changes in parameter values

of the MRE estimation and assessed its limitations. These parameters are the lower,

upper bounds and the expected value of the solution, and the expected uncertainty in

the model. By employing these parameters, initially a priori pdf is constructed, after

that this pdf is used to estimate an a posteriori pdf. This a posteriori pdf is utilized

to determine a estimation. MRE method is more flexible when we compare to the

Bayesian MAP estimation. Since, Bayesian MAP method requires a full covariance

matrix in addition to a expected value vector, even if the simplified Gaussian assump-

tion has been made. Besides these issues, we have also explored different approaches

in order to define prior expected value, which become the most important parameter.

This chapter is organized as follows: Chapters 3.2 and 3.3 describe the mathematical

background of estimating multivariate pdf via MRE method and its application to lin-

ear inverse ECG problem, respectively. The further sections include the experimental

results and concluding remarks.

3.2 Minimum Relative Entropy

The application of MRE method for estimating unknown parameters of the inverse

problem explained in this part is rely on the principles developed by Shore [94]. It

follows coherent inference axioms of uniqueness, invariance, system independence.

In other words, if a problem can be solved in different ways, each path must lead

to the same answer [111]. It was adapted by Woodbury et al. [112] to solve hydro-

geological inverse problem.

Suppose that q†(x) is a unknown multivariate density function of the random vector

x, having an initial estimate p(x). In addition, additional constraints exist to restrict
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the q†(x). Typical constraint information consists of:

q†(x) ≥ 0, (3.1)

∫
RN

q†(x)dx = 1. (3.2)

The constraints in Eqn. (3.1) and normalizing constraint Eqn. (3.2) are necessary to

construct a valid pdf q†(x).

∫
RN

q†(x)fj(x)dx = f̂j (j = 1, 2, . . . ,M). (3.3)

Here, in the Eqn. (3.3), functions fj(x) (j = 1, 2, . . . ,M) are assumed to be known

and new information exist in expected value constraints form f̂j . The task at hand

is determining pdf q(x), which is the estimation of q†(x), consistent with provided

new information. The relative entropy principle states that the solution q†(x) is to

minimize Eqn. (3.4) subject to constraints given in Eqns. (3.1)–(3.3).

H(q,p) = min
q†

H(q†,p). (3.4)

Here H(q,p) is the Kullback-Leibler divergence that defines the relative entropy of

q(x) with respect to p(x) and defined as:

H(q,p) =

∫
RN

q(x) ln
q(x)

p(x)
dx. (3.5)

The Kullback-Leibler divergence measures the non-symmetric difference between

two probability distributions over the same variable x. One of the alternative methods

for solving the optimization problem in Eqn. (3.4) is introducing Lagrange multipliers

µ and γi, i = (1, 2, . . . ,M) corresponding to the constraints. After introducing the

Lagrange multipliers, optimization problem can be stated as:

q(x) = argmin
q†


∫
RN

q†(x) ln
q†(x)

p(x)
dx + µ

[∫
RN

q†(x)dx− 1

]
+

M∑
j=1

γj

(∫
RN

q†(x)fj(x)dx− f̂j
)
 . (3.6)

We should note that the constraint given in Eqn. (3.1) is indirectly included in Eqn. (3.6).

Since q†(x) is placed in the logarithmic term, q†(x) has to be greater or equal to zero.

Otherwise, Eqn. (3.6) becomes an invalid mathematical term.
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By taking derivative of Eqn. (3.6) with respect to q†(x) solution can be obtained.

Therefore, q(x) satisfies:

q(x) = p(x) exp

(
−1− µ−

M∑
j=1

γjfj(x)

)
. (3.7)

Furthermore, the constraint in Eqn. (3.3) can be modified in order to deal with uncer-

tainty in the f̂j to find the solution within a specified tolerance:

M∑
j=1

(∫
RN

q†(x)fj(x)dx− f̂j
)2

≤ ε2. (3.8)

Then, Eqn. (3.6) can be stated as:

q(x) = argmin
q†


∫
RN

q†(x) ln
q†(x)

p(x)
dx + µ

[∫
RN

q†(x)dx− 1

]
+

γ

[
M∑
j=1

(∫
RN

q†(x)fj(x)dx− f̂j
)2

− ε2
]
 , (3.9)

where µ and γ are Lagrange multipliers.

The constant term f̂j can be carried into the integral equation. Let us define a function

gj(x) such that

gj(x) = fj(x)− f̂j, (3.10)

the last integral term of Eqn. (3.9) can be stated as:

∫
RN

q†(x)fj(x)dx− f̂j =

∫
RN

q†(x)
(
fj(x)− f̂j

)
dx =

∫
RN

q†(x)gj(x)dx. (3.11)

Then we can obtain the solution of Eqn. (3.9) by computing its variation relative to

q†(x). Therefore, q(x) satisfies:

q(x) = p(x) exp

(
−1− µ−

M∑
j=1

λjgj(x)

)
, (3.12)

where

λj = 2γ

∫
RN

q†(x)gj(x)dx (j = 1, 2, . . . ,M). (3.13)
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Defining a prior pdf, p(x), is the fundamental part of the MRE method. In many

estimation problems, it is possible to gather adequate information about upper and

lower bound for the unknowns. Then, pdf of the unknown random vector x can be

defined by a multivariate uniform distribution using these basic information:

b(x) =


∏N

i=1
1

Ui−Li , if Li ≤ xi ≤ Ui,

0, otherwise,
(3.14)

where Ui and Li are the upper and lower bounds of xi (ith element of x), respectively.

An estimate of the prior pdf (we will call this estimate p̂(x)) can be obtained by

minimizing entropy of p(x) relative to the boxcar pdf b(x), subject to the expected

value constraint:

x̄j =

∫
RN
xjp(x)dx (j = 1, 2, . . . , N), (3.15)

where x̄ = [x̄1, x̄2, . . . , x̄N ]T is the prior mean vector, and x̄i is the mean value of

xi. The optimization problem is similar to Eqn. (3.6), and estimate of p(x) is given

as:

p̂(x) = argmin
p


∫
RN

p(x) ln
p(x)

b(x)
dx + η

[∫
RN

p(x)dx− 1

]
+

N∑
i=1

βi

(∫
RN
xip(x)dx− x̄i

)
 . (3.16)

Solving the minimization problem yields:

p(x) = b(x) exp

(
−1− η −

N∑
i=1

βixi

)
, (3.17)

where η and βi are the Lagrange multipliers, where each βi is determined by the

definition from Eqn. (3.15) and η by the normalization requirement:∫
RN

p(x)dx = 1. (3.18)

3.3 Application to Discrete Linear Inverse Problem

This section describes the application of MRE method to the ill-posed linear inverse

ECG problem defined in Eqn. (3.19) at a single time instant separately:

y = Ax + n. (3.19)
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In this problem the goal is to estimate x. The known function fj(x) and its mean

value in discrete linear case can be defined as:

fj(x) =
N∑
i=1

Ajixi, (3.20)

f̂j =

∫
RN
q(x)

[
N∑
i=1

Ajixi

]
dx, (3.21)

where Aji is the element located at jth row and ith column of matrix A. From linear

inverse ECG point of view, body surface measurement fj corresponds the expected

value f̂j . Let us assume that the upper and lower bound of x given in Eqn. (3.14) can

take a value in the range of (0, U), then we can define the pdf q(x) as:

q(x) =
N∏
i=1

−ai
exp(−aiU)− 1

exp(−aixi), (3.22)

where

ai = βi +
M∑
j=1

λjAji. (3.23)

The estimate x̂ is then the expected value of Eqn. (3.22). The ith element of this

estimate is:

x̂i =
exp(−aiU)aiU + exp(−aiU)− 1

ai[exp(−aiU)− 1]
. (3.24)

For non-zero lower bounds, the problem can be re-scaled by defining x̂ = x̂0 + L,

where x̂ is the true solution, x̂0 is the corresponding model solution for zero lower

bound, and L is the vector of lower bounds. Zero lower bound solution x̂0 can be

calculated using modified data ym = y − AL. The upper bounds and expected

values must be replaced by Ui − Li and x̄i − Li, respectively. After x̂0 is computed

with the MRE method, the true solution calculated as x̂ = x̂0 + L.

3.4 Results

The MRE implementations given in [74, 75] have been adapted to linear inverse ECG

problem. To achieve this, information about the three parameters of the MRE method:

upper and lower bounds, prior mean of the unknown variable x, and the expected

uncertainty value ε2, is required. In this part, the impacts of these parameters are
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investigated by altering only one of them at a time and by keeping unchanged the

other parameters at their true values. True values of these parameters are defined as

follows:

• Prior mean vector: The true prior mean vector at the kth time instant is equal

to the true epicardial potential vector at that time instant, i.e., x̄k = xk.

• Upper and lower bounds: We use upper and lower bounds that are fixed with

respect to time, but different for each lead. In order to find the true upper and

lower bound vectors at time instant k, we first obtain an epicardial potential

matrix X ∈ RN×T , whose kth column consists of the true epicardial potential

vector at the kth time instant (k = 1, . . . , T ):

X =
[
x1 x2 . . . xk . . . xT

]
. (3.25)

After that, the maximum and minimum values of the epicardial potentials at

lead j (j = 1, . . . , N ) over all time instants are computed as follows:

xmax(j) = max(X(j, :)), (3.26)

xmin(j) = min(X(j, :)). (3.27)

Then, for all time instants k, the same true upper and lower value vectors are

used:

uk =
[
xmax(1) xmax(2) . . . xmax(N)

]T
, (3.28)

lk =
[
xmin(1) xmin(2) . . . xmin(N)

]T
. (3.29)

This means that the true values of the upper and lower bounds for the jth lead

at the kth time instant are equal to uk(j) and lk(j), respectively.

• Expected uncertainty: The true value of expected uncertainty ε2 is equal to the

variance of measurement noise, i.e. σ2(n).
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3.4.1 Effects of upper and lower bounds

In this part, the impacts of over and underestimated lower and upper bound values

are examined by fixing the expected uncertainty to its true value. On the other hand,

use of the true mean vector is not realistic, because it is not possible to obtain; hence,

besides the true mean vector, noisy mean vectors have also been utilized. The upper

and lower bound vectors are modified in Eqns. (3.28) and (3.29) by multiplying them

by a scalar, α as:

ûk = α uk, l̂k = α lk, (3.30)

and then, by varying α in the range 0.4 to 2.0.

E{CC} vs upper lower bounds
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Figure 3.1: Obtained E{CC}±σ{CC} values for different upper and lower bounds.

The results are presented in Fig. 3.1 as mean and standard deviation values of CC

over time. Estimation results shows that it is better to chose prior upper and lower

bounds large enough such that the extreme values of true epicardial potentials can lie

between these bounds to obtain high CC values. Otherwise, estimation accuracy start

to degrade even in the noise free case, especially if α < 0.9. Moreover, use of large

upper and lower bound values compensates the performance drops caused by noise

in the prior mean values to some degree. For example; prior mean at 5 dB SNR, CC

value increase as α rises from 1 to 2. All this observations suggests that it is much

better to overestimate the upper and lower bound values rather then using the true

values or underestimating them.

42



3.4.2 Effects of prior mean

In this test, the aim is to observe impacts of the prior mean value. In order to conduct

this, upper and lower bounds of epicardial potentials are fixed a large value as given

by Eqn. (3.30) with α = 2 and the true value of the expected uncertainty is used to

eliminate the possible effects of these parameters on the estimation results. In order

to change the prior mean vector, Gaussian white noise at different SNR levels (1, 5,

10 and 20 dBs) is added to true mean value vector. CC values of all estimations at all

time instants have been calculated to compare the accuracy of outcomes. The mean

and standard deviation of these CC values over time are displayed at Fig. 3.2.

E{CC} vs noisy prior mean values 
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Figure 3.2: Obtained E{CC} ± σ{CC} values for various prior mean vectors.

Results show that deviation from the true mean causes degradation in estimation ac-

curacy of MRE method. Although it is tolerable for down to 10 dB SNR, i.e. the

average CC values are still above 90%, the accuracy of estimation severely degrades

for lower values of SNR in terms of CC metric.

3.4.3 Effects of expected uncertainty

In this part of the study, the impacts of expected uncertainty are explored if its value

is over- and under-estimated. The expected uncertainty is modified by multiplying its

true value by a scalar, β in the range 0.4 to 1.6. The upper and lower bound values are

fixed as given by Eqn. (3.30) with α = 2. Similar to other test cases, besides the true
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mean value results for noisy mean values at 5 and 15 dB SNR have also presented.

The results are given in In Fig 3.3 in terms of mean and standard deviation values

of CC. If β > 1 (over-estimated expected uncertainty case), even with the noisy

mean values, high CC values can be achieved (CC > 0.8). On the other hand, if

β decreases (under-estimated expected uncertainty case), even with the true mean

values, CC values decrease significantly.

E{CC} vs expected uncertanity
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Figure 3.3: Obtained E{CC} ± σ{CC} values for various expected uncertainty val-

ues.

3.5 Determination of MRE parameters

In the previous section the effects of three parameters of MRE methods have been

examined on the estimation accuracy. The results show that the most important pa-

rameter of MRE method is the prior mean value. However, it is not easy to define

prior mean vector and requires more attention. The other parameters can be more

easily determined compared to prior mean vector. The upper and lower bounds might

be deducted from available training data obtained from in-vivo studies or mathemat-

ical simulations. The expected uncertainty can be deduced based on measurement

system sensitivity information and possible noise sources. Hence, from this point of

view we have presented and tested two simple method to define a prior mean value.

We should note that, upper and lower bounds of epicardial potentials are defined as in

Eqns. (3.28) and (3.29) with α = 2, and the true expected uncertainty value has been
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Figure 3.4: Obtained E{CC} ± σ{CC} values for method 1.

used.

Method 1: In order to calculate the prior mean value, the estimated potential vector

obtained for the preceding time frame (x̂k−1) is altered by multiplying a scalar value

(µ), Eqn.(3.31):

x̄k = µx̂k−1. (3.31)

This simple assumption relates the epicardial potentials at a certain lead with only the

epicardial potential at the same lead in the previous time frame. It is called Random

Walk model that used to characterize transitions of states in the Kalman filtering lit-

erature [3]. We should note that, the prior mean at k = 0 is equal to a zero vector

(x̄0).

Three distinct scalar coefficient values are, µ = 0.9, 1.0, 1.1. In Fig. 3.4 estimation

accuracies are presented in terms of average and standard deviation values of CC. The

highest estimation accuracy is obtained for µ = 0.9.

Method 2: This approach use the same constant value as a prior mean value for all

leads. Three different cases have been tested:

• Case 1: Time varying (TV) prior mean value:

x̄k =
1

N

N∑
j=1

xk(j), (3.32)
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x̄k = x̄k1, (3.33)

where 1 = [1, 1, . . . , 1]T , and xk(j) is the jth lead potential value on the epicar-

dial surface at kth time frame. x̄k is calculated using true epicardial potentials.

• Case 2: Constant prior mean value for all leads and time instants, where the

averaging is over all times and leads:

x̄ =
1

NT

T∑
k=1

N∑
j=1

xk(j), (3.34)

x̄k = x̄1. (3.35)

Similar to Case 1, true epicardial potentials have been used to obtain x̄ in this

solution.

• Case 3: This case is very similar to Case 2; an average x̄ value is used to ob-

tain the mean vector at all time instants. However, different then Case 2, Case

3 utilize training set to define x̄, and upper, lower bounds. The training set

includes 22 different ectopic beats, which were recorded during the QRS inter-

val, when the initial stimulation site is on the ventricles. Each recording was

initiated from a different part of the heart surface. For each of these 22 record-

ings, an upper bound, a lower bound and a mean value have been calculated as

explained in Case 2. Then mean values of these parameters have been used in

the MRE solution.

Table 3.1: Calculated E{CC} ± σ{CC} values for different prior mean value deter-
mination approaches.

Tikhonov MRE MRE MRE MRE
µ = 0.9 from prev. sol. Case 1 Case 2 Case 3

E{CC} 0.7695 0.7496 0.7584 0.7581 0.7713
σ{CC} 0.1826 0.2005 0.2168 0.2077 0.1659

The estimation performances of the MRE method, in which the prior mean values

determined by using these three cases, presented in Table 3.1 in terms of CC metric.

Tikhonov regularization results are also included in order to construct a comparison
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basis. According to these results, there is no considerable difference, in term of av-

erage CC metrics, between any of these three cases. On the other hand, mean CC

metrics provide us general idea about the estimation performances. It is required to

examine the outcomes in more detailed especially if CC values are close to each other.

For this reason, the original and estimated isochronous maps for different time frames

are presented in Figure 3.5.

Figure 3.5: True and estimated isochronous maps in the QRS duration.

When we examine these maps, we observe that at most of the time instants, there is no

clear advantage of using the MRE approach over the traditional Tikhonov regulariza-

47



tion method with our simple prior mean definitions. On the other hand, at t = 57 ms,

wave-front reconstructions of the MRE method (in all three cases) show better fi-

delity to the original map. In these maps, the contour lines are more tightly packed

compared to Tikhonov regularization and random-walk approach (with µ = 0.9) so-

lutions. Sharp turns in the original wave-front around the 10 o’clock direction cannot

be observed with the latter two approaches, but visible in Case 1, Case 2 and Case

3 results. Another observation is that, there is considerable advantage between time

varying and constant mean values on the estimation accuracies. We haven’t observed

any significant difference on estimations when prior means deduced from training

sets and from true epicardial potential distribution are employed. But this is not unex-

pected result, because we have used constant prior mean value for all time instants and

leads, which is calculated from all available training dataset. Under different stimu-

lation scenarios, propagation patterns over the heart surface and epicardial waveform

shapes with respect to time may vary significantly, but the average values more or less

stays constant.

3.6 Discussion and Conclusion

In this part of the thesis, the appropriateness of the MRE approach to solve the ill-

posed linear inverse ECG problem is examined. We especially focused on the impacts

of MRE parameters on the estimation results. In order to reach these goals, we have

implemented different numerical simulations by modifying only one parameter at a

time and kept all the others unchanged. Based on our observation we concluded that:

• If the prior mean is close to its true value, upper and lower bounds do not

have a significant effect on the estimation accuracies unless they are under-

estimated. On the contrary, overestimated upper and lower bound helps to deal

with the performance degradation originated from the deviations in the prior

mean value.

• The expected uncertainty value should be chosen greater or equal to the true

uncertainty, otherwise estimation accuracy decreases.

• The prior mean value is the crucial parameter for MRE method. its deviation
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from the true mean significantly reduces estimation performance.

Except the expected mean value, other parameters (upper, lower bounds and uncer-

tainty) can be deducted from experimental data, mathematical models, simulations

and specification of the measurement devices. Nonetheless, in order to obtain better

estimations of the unknown epicardial potential, one needs a good prior estimate for

the expected mean. We have proposed and tested two simple approaches to obtain

the expected mean; random-walk and constant mean. Random-walk produced simi-

lar results with the Tikhonov regularization. On the other hand, even with the simple

approach using a constant mean for all leads and all times, wave-front reconstructions

at some time instants are improved compared to Tikhonov regularization. Although

the MRE method seems to yield similar results with the conventional regularization

methods, the results given in Section 3.4 suggest that with a more careful definition

of the MRE parameters, this approach has promise for real data applications. When

we compare the results of Sections 3.4 and 3.5, we can conclude that there is room for

improving the MRE method to solve the inverse ECG problem more accurately then

the traditional regularization methods. However more studies are required to obtain a

good prior expected mean.

There are several studies that exist in the literature to define an appropriate prior pdf

for the epicardial potentials and other types of electrical activity of the heart. Previous

works on Bayesian estimation of epicardial potentials [91, 104] assumed that prior pdf

is multivariate Gaussian distribution. This definition is based on empirical study of

the epicardial potential distributions, and it is not proven that Gaussian prior is the

best way to represent the epicardial potentials. Moreover, even though the potentials

are assumed to have a Gaussian distribution, depending on the initial stimulation site

or in general the pathology of the heart that produces the corresponding epicardial

potentials, it was still a challenge to define an appropriate mean and covariance ma-

trix that best represent the data. In previous studies, the prior pdf model parameters

were either obtained from training sets of previously recorded potentials [91] or from

simulated potentials that result from mathematical modeling of cardiac electrical ac-

tivity [30]. More recently, Rahimi et al. applied hierarchical Bayesian estimation to

estimate the 3D distribution of trans-membrane potentials in the heart [83], and they

observed that depending on the current time within the cardiac cycle, l1-norm prior
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(Laplacian), l2-norm prior (Gaussian) or lp-norm prior (1 < p < 2) should be chosen,

and value of p should be one of the estimated parameters as well. In light of these

studies, it is obvious that the prior probability distribution should be chosen carefully.

In this study, we wanted to keep the simple uniform (box-car) pdf definition for the

epicardial potentials, however we did not want to use it directly as the prior pdf in

the Bayesian estimation procedure. Hence, we have preferred to employ two step

procedure in order to define the prior probability distribution of epicardial potentials;

At first, the uniform pdf is defined by using upper and lower bounds only, after that

this simple pdf is utilized to estimate the prior pdf that will be used with the Bayesian

estimation.

3.6.1 Limitations of the Study, and Future Work

In this part of the thesis, we have followed original studies on MRE based ill-posed

linear inverse problem solution approaches [75, 113]. We have constructed the prior

pdf to be an exponential distribution starting from the uniform pdf. It is of course

possible to define the Gaussian prior pdf as similar to in [91], or as an lp-norm prior

as in [83], and starting from the box-car pdf, estimate the parameters of these rep-

resentations. It is even possible to skip the box-car pdf step and directly specify the

prior pdf and use it in the Bayesian estimation of epicardial potentials. This is our

first effort in applying the MRE method to inverse ECG problem, thus we have fol-

lowed the same steps of MRE implementation presented in most of the studies in the

literature.
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CHAPTER 4

MULTIVARIATE ADAPTIVE NON-PARAMETRIC MODEL

Spline-based methods have been applied to ill-posed inverse problems in various

fields of science, engineering. Baussard et al. in [9, 10] and Miller et al. in [72]

proposed the B-spline based approximations to solve inverse scattering problem in

order to detect and characterize buried object. In Impedance Tomography [7] spline-

based method was used to determine the general shape of the inhomogeneities in the

torso. There are very few studies in literature that solve the inverse ECG problem us-

ing splines; recently published works of Zettinig [118, 119] and Erem [28] modeled

the problem based on cubic polynomials in order to take advantage of splines. The

main advantages of the spline-based methods are the parametrization of the problem

in terms of a small number of unknowns and changing the approximation in local

regions without affecting remote portions of the curve or the surface that we wish to

approximate. These properties improve the robustness of the inversion and increase

the accuracy of the reconstruction [9]. In this context, the constructed model for the

unknown parameter of the inverse problem is the projection of data onto the space

spanned by the selected spline basis in the model.

4.1 Motivation

The aforementioned applications of splines in the inverse ECG problem use para-

metric methods. However, common issue in these parametric approaches is how to

determine the optimal number of spline functions and the knot locations to avoid

over-fitting of the model and to obtain an accurate approximation. Typical approach
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to choose these parameters is quite arbitrary by using trial-and-error [46]. In other

words, assumptions on functional relationship between dependent and independent

variables must be specified in advance.

Parametric techniques assume that the underlying function can be described by a pre-

selected number of parameters. These approach can be preferable if reliable informa-

tion are available about the underlying model. On the other hand, if the number of in-

dependent variables in the model need to be increased and interaction of these variable

required to represent the nonlinear relationships, then the process become problem-

atic because of the curse of dimensionality. A possible way to remedy this problem

is to use non-parametric regression methods, as they require a few assumptions about

the problem that are far less restricting than parametric approaches [29, 44]. Another

issue about the polynomial regression analysis is that the approximated functions tend

to behave erratically, i.e., they have high oscillations, at the boundaries of the input

domain. This erratic behavior gets worse as the polynomial order gets higher [14]. On

the other hand, oscillatory behavior at the boundaries can be avoided using piecewise

polynomial functions [14].

In this part of the study, we have proposed multivariate reduced order non-parametric

method to solve the inverse ECG problem using Multivariate Adaptive Regression

Splines (MARS). Our goals are:

• MARS based solutions are non parametric regression methods and provides us

a flexible way to represent the relationship between measurements and inde-

pendent variables using smaller number of parameters compared to the original

problem. That generate a large family of basis functions based on the supplied

data. After that the best possible basis functions and their interactions can be

selected in an algorithmic way to model the function under consideration.

• Another important goal of our study is to improve the estimation of local sharp

changes in the epicardial potential distribution better than other classical regu-

larization techniques by taking advantage of local support properties of splines.

Determination of these sharp changes could be helpful to identify cardiac ar-

rhythmias, especially in the case of PVCs, and it would expedite the planning

and execution of the ablation procedure.
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4.2 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines is a non-parametric statistical regression

procedure that makes no specific assumption about the underlying functional rela-

tionship between the dependent (response) and independent variables (predictors) to

estimate general functions of high-dimensional arguments, given sparse data [32, 33].

MARS is an adaptive procedure because the selection of the basis functions (BFs) is

data-based and specific to the given problem at hand [98]. It follows the divide and

conquer strategy to generate a set of BFs such that the data sets are partitioned into

one-dimensional piecewise linear splines of differing slopes of the form (v− τ)+ and

(τ − v)+, where (·)+ means the positive part:

(v − τ)+ =

 v − τ, if v > τ,

0, o/w,
, (τ − v)+ =

 τ − v, if v < τ,

0, o/w.
(4.1)

The relation between the input and the response in the general model is expressed as:

z = f(v) + ε, (4.2)

where z is a response variable, v = (v1, v2, . . . , vp)
T is a vector of predictors and

ε is the additive stochastic error term in the observation with zero mean and finite

variance. MARS builds reflected pairs for each input v̂i = (v̂i1, v̂i2, . . . , v̂ip)
T with

p-dimensional knots τi = (τi1, τi2, . . . , τip)
T (i = 1, 2, . . . , S). Then, the collection

of 1-dimensional BFs can be defined as follows:

B := {(vj − τ)+, (τ − vj)+ | τ ∈ {τj1, τj2, . . . , τjS} , j ∈ {1, 2, . . . , p}} .
(4.3)

The fundamental idea of the MARS is to allow additive and multiplicative interactions

of the linear truncated basis functions to approximate the model. Thus, the functions

of MARS consist of single spline functions or the product of two or more of them to

allow for the interactions, resulting in a flexible model that can handle both linear and
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non-linear behavior. The MARS estimate of the unknown regression function, f̂(v),

can be written as an additive function of the product-form basis functions:

z u θ0 +
L∑
l=1

θlψl(v) + ε, (4.4)

f̂(v) = θ0 +
L∑
l=1

θlψl(v). (4.5)

Here, ψl (l = 1, 2, . . . , L) are BFs fromB, or products of two or more such functions,

and θl are the unknown coefficients for the lth basis function or for the constant 1

(l = 0). Interaction BFs are created by multiplying an existing BF with a truncated

linear function involving a new variable. In this case, both the existing BF and the

newly created interaction BF are used in the MARS approximation. The form of the

lth BF can be written as follows:

ψl(v) :=

Kl∏
j=1

(
sKl

j
·
(
vKl

j
− τKl

j

))
+
, (4.6)

where Kl is the number of truncated linear functions multiplied in the lth BF, vKl
j

is

the predictor variable corresponding to the jth truncated linear function in the lth BF,

τKl
j

is the knot value corresponding to the variable vKl
j
, and sKl

j
is the selected sign

(+1 or −1).

MARS is motivated as a process to create a continuous model following a strategy

like that utilised in recursive partitioning. As in recursive partitioning, the MARS

method has a forward procedure to add terms, and a backward protocol to prune

terms from the model. The MARS algorithm searches for all possible knot locations

within the ranges of each predictor. The forward stepwise addition procedure can

produce a large collection of basis functions, and the process is stopped when a user-

specified maximum model size is reached. The forward phase starts with a constant

basis function ψ0(v) in the model. Then, successively at each state, a pair of basis

functions are added to the model that produce the largest decrease in the defined lack

of criteria:

LOF = ‖z − f̂(v)‖2
2, (4.7)
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by considering all possible pairs of new basis functions: ψl(v)(vi−τij) andψl(v)(τij−
vi), where the variable vi represents one of the predictors, τij is a new knot in that pre-

dictor, and ψl(v) is a basis function currently in the model that does not depend on

vi. However, here we should note that the original MARS implementation is a re-

gression algorithm, and its lack-of-fit measure is defined as given in Eqn. (4.7), so

it is not suitable to solve the ill-posed inverse ECG problem. Thus, we modified the

algorithm to handle Eqn. (2.3). This modified MARS algorithm is explained in detail

in Section 4.3.

Backward stepwise algorithm is employed to prevent over-fitting by decreasing the

complexity of the model without degrading the fit to data, and to remove those BFs

from model that contribute to the smallest increase in the lack-of-fit error at each

stage, thus producing an optimally estimated model f̂L. The best-fitting model in

the stepwise sequence is chosen to minimize the generalized cross-validation crite-

rion, which represents the relationship between the average lack-of-fit to data and

complexity of the model [32]:

GCV (L) =
1

N

N∑
i=1

(zi − f̂(vi))
2/

[
1− C(L)

N

]2

. (4.8)

Here, L represents the size of the model, N is the number of observations and C(L)

stands for the complexity cost function of the model. More detailed information about

C(L) can be found in [32].

4.3 Reformulation of the Inverse ECG problem

In this study, we have explored an adaptive spline-based approximation to solve the

linear inverse ECG problem. The proposed method constructs a model of the poten-

tial distribution on the epicardial surface based on the MARS by benefiting the heart

geometry and the body surface potentials. However since the MARS is a regression

procedure, it is not possible to use it directly for solving the linear inverse problem.

This part explains how the epicardial potential distribution can be defined as a contin-

uous function, and the small modification required in the MARS algorithm to solve
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the inverse ECG problem. Since the discrete linear inverse problem defined in Eqn.

(2.3) is considered and solved at each time instant separately, time index k can be

omitted from the equation:

y = Ax + n, (4.9)

where y = [y1, y2, . . . , yM ]T , x = [x1, x2, . . . , xN ]T , n = [n1, n2, . . . , nM ]T , and the

subscripts denote corresponding node numbers.

Figure 4.1: Top left (A): cardiac geometry represented in terms of triangular mesh

elements and the corresponding isopotential maps. Top right (B): sample 1D and

2D splines. Left bottom corner (C): evolution of the estimated epicardial potential

distribution at three MARS iterations, along with the corresponding true epicardial

potentials. The potential distribution function model starts from the single constant

spline and at each iteration suitable basis functions are added to the model to obtain

a better approximation (approximations from left to right). Right bottom corner (D):

True epicardial potential distribution.

As a first step in MARS modeling, epicardial potentials x should be defined as a

function of some independent variables. Epicardial potential distribution is treated

and modeled as a function f(r) defined over a 3-dimensional epicardial surface, as

represented in Fig. 4.1. This figure shows the cardiac geometry represented in terms
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of triangular mesh elements and corresponding isopotential maps at the top left side,

sample 1D and 2D splines at the top right side, and evolution of the estimated epicar-

dial potential distribution at three MARS iterations, along with the corresponding true

epicardial potentials at the bottom. The potential distribution function model starts

from a single constant basis function, and then at each iteration suitable BFs are added

to the model, step by step, a better approximation can be obtained. Consequently, x

can be expressed as a collection of function values f(ri) at predefined coordinates

ri = [ri1, ri2, ri3]T ∈ Ω (i = 1, 2, ..., N):

x =
[
f(r1), f(r2), . . . , f(rN)

]T
. (4.10)

Here, Ω ∈ R3 denotes the 3-dimensional epicardial surface shown in Fig. 4.1, and r

stands for the coordinate vector of any point on this surface.

Up to here, epicardial potentials are reformulated as a function of spatial variables

defined on the epicardial surface. This function now can be approximated by a spline-

based approximation, as illustrated in Fig. 4.1. If we treat yi (i = 1, 2, . . . ,M) as the

responses, and the elements of r as the predictors, then MARS method can be applied

to estimate the function f(r). Thus, the MARS estimate of the unknown function

f̂(r) can be written in the following form:

f̂(r) = θ0 +
L∑
l=1

θlψl(r). (4.11)

Here, L is the number of basis functions in the model. In light of the equations given

above, the ith torso measurement yi can be written as:

yi =
N∑
j=1

aij f̂(rj) + ni, (4.12)

where aij is the ith row, jth column element of A. If we substitute Eqn. (4.11) into

Eqn. (4.12), we obtain:

yi =
N∑
j=1

aij

(
θ0 +

L∑
l=1

θlψl(rj)

)
+ ni. (4.13)
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Then, Eqn. (4.9) can be expressed based on spline functions and corresponding coef-

ficients as:

y = AΨθ + n, (4.14)

x̂ = Ψθ, (4.15)

θ =
[
θ0, . . . , θL

]T
, (4.16)

Ψ =


1 ψ1(r1) . . . ψL(r1)

...
... . . .

...

1 ψ1(rN) . . . ψL(rN)

 . (4.17)

Here, Ψ is a matrix composed of spline functions that are selected from the set B in

Eqn. (4.3), by the MARS algorithm for each time instant separately. Thus, selected

spline functions may be different at each time. The θ represents the corresponding

coefficient vector, and the Ψθ term is the approximation of the unknown epicardial

potential vector x.

However, MARS is a regression procedure to explore the relationships between de-

pendent and independent variables. It assumes that there exists no transformation

between the measurements and the function which we wish to approximate. For this

reason MARS employs the lack-of-fit function given in Eqn. (4.7). On the other hand,

in the inverse ECG problem, measurements are the outputs of the transformation, ob-

tained by applying the forward matrix A on the epicardial potentials that we wish to

approximate. For this reason, Eqn. (4.7) is not suitable for our problem. The problem

given in Eqn. (4.14) is ill-posed, thus, the solution needs to be constrained. Further-

more, epicardial potential distributions are actually correlated across time: therefore

methods that only exploit spatial constraints without considering the temporal evo-

lution of the potentials are not ideal. Consequently, the use of temporal information

could improve the estimation accuracy. In this study, we have introduced the follow-

ing problem formulation to estimate the spatio-temporal behavior of the epicardial

potentials:

minimize
θ

‖y −AΨθ‖2
2 + λ‖Ψθ − x̂k−1‖2

2. (4.18)
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Here, x̂k−1 is the estimated epicardial potential vector in the previous time instant, and

the initial state x̂0 is the Tikhonov estimation at k = 1 and λ ≥ 0 is the regularization

parameter. Algorithms 1 and 2 give the simplified forms of the forward and backward

steps of the modified MARS method that we have used in this study to solve the

inverse ECG problem.

Algorithm 1: Simplified explanation of modified MARS forward stepwise

algorithm for solving the inverse ECG problem.

Initialization;

Start from the simple model that contains constant basis function;

ψ1(r) = 1, M = 2, lof ∗ =∞, Ψ =


ψ1(r1)

...

ψ1(rN)

 ;

For given λ ;

while M < Mmax do

Add spline, ψ∗(r), to the model from the spline collection ;

Ψ∗ =


ψ∗(r1)

...

ψ∗(rN)

, Ψnew =
[
Ψ Ψ∗

]
;

Solve the optimisation problem ;

lof ← minimize
θ

‖y −AΨnewθ‖2
2 + λ‖Ψnewθ − x̂k−1‖2

2.;

if lof < lof ∗ then

Ψ← Ψnew;

M ←M + 1;

lof ∗ ← lof

end

end

The corresponding lack-of-fit criteria to replace Eqn. (4.7), PRSS, can then be written
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as follows:

PRSS =
M∑
i=1

(
yi −

N∑
j=1

aij

(
θ0 +

L∑
l=1

θlψl(pj)

))2

+

λ

N∑
j=1

(
θ0 +

L∑
l=1

θlψl(pj)− x̂jk−1

)2

,

(4.19)

where x̂jk−1 corresponds to the jth component of the vector x̂k−1.

Algorithm 2: Simplified explanation of modified MARS backward stepwise

algorithm to find the optimal model size.

Initialization;

L← Size of the model

M ← Number of measurement points on the body surface

PRSS = ‖y −AΨθ‖2
2 + λ‖Ψθ − x̂k−1‖2

2

GCV ∗(L) =
PRSS

M
/

[
1− C(L)

M

]2

for i = Mmax to 2 do

Remove one of the splines from the model. ;

Assuming that Ψ∗ is the new matrix after removing one of the splines

from the model,

Calculate ;

PRSS = ‖y −AΨ∗θ‖2
2 + λ‖Ψ∗θ − x̂k−1‖2

2

Calculate GCV ;

GCV (L) =
PRSS

M
/

[
1− C(L)

M

]2

if GCV (L) < GCV ∗(L) then
Ψ = Ψ∗

GCV ∗(L)← GCV (L)

L← L− 1

end

end
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4.4 Results for Utah Data Collection

In this section, we evaluate the performance of proposed non-parametric MARS-

based approach. Results are compared with estimates of well-known techniques such

as Tikhonov and Twomey regularizations and additionally the spline-based technique

introduced in [28]. In this part of the study, Spline Inverse term and SI abbreviation

are used for the technique of Erem et al. [28]. Here, we should note that for Utah

dataset all simulations are performed using torso potentials contaminated by 30 dB

SNR Gaussian noise (except in Section 4.4.6, where noise variance varies), and all

are repeated for 5 noise realizations.

The Utah data collection contains 23 ventriculary paced beats, coming from 5 differ-

ent experiments. In order to comprehensively assess the performance of the proposed

method from various perspective, interventions have also been applied to each dataset

in the Utah data collection. These interventions are, introducing geometric errors and

adding extra measurement noise.

4.4.1 Reconstruction of Electrograms

Initially, we have ran all algorithms for the 23 datasets from Utah collection during

the QRS complex, and CC and RE values are computed. Tables 4.1 and 4.2 show the

mean and standard deviations (std) of the CC and RE values obtained over time.

Results presented in this table can be interpreted as follows: The reconstruction which

is achieved by MARS-based technique have better fidelity to the original epicardial

potential distributions for almost all datasets from the perspectives of CC and RE

values. However, since these average metrics do not give any detail about the change

of CC and RE values during the QRS interval, sample graphs representing the change

of CC and RE values with respect to time are presented in Fig. 4.2. These figures

show that, MARS-based solution scheme is superior at earlier times of the wave-

front propagation, but later on, when the potential distribution propagates through the

epicardial surface, its accuracy is comparable to SI methods in terms of the CC and

RE metrics. A similar behavior is observed for all the other datasets. High CC and

low RE values at earlier times of the QRS interval obtained by MARS-based solution
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Table 4.1: Mean (E{CC}) and standard deviation (σ{CC}) values of CC for the
epicardial potential estimates of the Utah data collection.

CC
Dataset Tikhonov Twomey Spline Inverse MARS

1 0.72± 0.19 0.76± 0.18 0.75± 0.19 0.84± 0.12

2 0.71± 0.19 0.74± 0.18 0.73± 0.20 0.81± 0.13

3 0.77± 0.18 0.79± 0.18 0.78± 0.18 0.82± 0.15

4 0.76± 0.20 0.77± 0.20 0.78± 0.20 0.83± 0.14

5 0.75± 0.20 0.77± 0.19 0.78± 0.20 0.81± 0.16

6 0.77± 0.17 0.80± 0.15 0.79± 0.18 0.84± 0.13

7 0.78± 0.14 0.81± 0.13 0.80± 0.15 0.86± 0.11

8 0.68± 0.29 0.72± 0.27 0.71± 0.30 0.78± 0.22

9 0.76± 0.18 0.79± 0.17 0.79± 0.18 0.85± 0.14

10 0.72± 0.17 0.74± 0.15 0.74± 0.17 0.78± 0.14

11 0.64± 0.20 0.67± 0.20 0.67± 0.21 0.73± 0.19

12 0.71± 0.16 0.73± 0.16 0.74± 0.18 0.78± 0.15

13 0.64± 0.26 0.67± 0.25 0.66± 0.27 0.73± 0.23

14 0.66± 0.19 0.70± 0.17 0.70± 0.19 0.79± 0.13

15 0.64± 0.22 0.67± 0.21 0.67± 0.23 0.75± 0.18

16 0.68± 0.24 0.70± 0.23 0.71± 0.24 0.78± 0.19

17 0.64± 0.28 0.67± 0.26 0.67± 0.28 0.76± 0.19

18 0.76± 0.19 0.77± 0.19 0.78± 0.20 0.81± 0.17

19 0.70± 0.23 0.73± 0.21 0.75± 0.22 0.76± 0.19

20 0.77± 0.17 0.79± 0.16 0.79± 0.18 0.81± 0.14

21 0.76± 0.17 0.78± 0.17 0.78± 0.19 0.82± 0.14

22 0.77± 0.18 0.80± 0.17 0.79± 0.20 0.81± 0.16

23 0.78± 0.20 0.78± 0.20 0.76± 0.26 0.84± 0.18

Average 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16
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Table 4.2: Mean (E{RE}) and standard deviation (σ{RE}) values of RE for the
epicardial potential estimates of the Utah data collection.

RE
Dataset Tikhonov Twomey Spline Inverse MARS

1 0.64± 0.17 0.60± 0.17 0.62± 0.21 0.52± 0.17

2 0.65± 0.17 0.62± 0.15 0.67± 0.31 0.57± 0.13

3 0.59± 0.20 0.60± 0.30 0.60± 0.26 0.55± 0.18

4 0.60± 0.22 0.62± 0.30 0.60± 0.34 0.54± 0.18

5 0.63± 0.23 0.60± 0.17 0.59± 0.21 0.56± 0.16

6 0.59± 0.17 0.55± 0.17 0.59± 0.31 0.51± 0.16

7 0.59± 0.14 0.55± 0.14 0.58± 0.25 0.48± 0.14

8 0.67± 0.35 0.64± 0.30 0.63± 0.33 0.57± 0.30

9 0.61± 0.17 0.60± 0.22 0.60± 0.32 0.49± 0.13

10 0.63± 0.13 0.60± 0.11 0.61± 0.14 0.57± 0.13

11 0.69± 0.22 0.66± 0.16 0.72± 0.43 0.63± 0.24

12 0.63± 0.15 0.64± 0.22 0.70± 0.72 0.57± 0.14

13 0.72± 0.30 0.70± 0.25 0.75± 0.60 0.62± 0.20

14 0.67± 0.16 0.64± 0.16 0.63± 0.17 0.56± 0.14

15 0.69± 0.22 0.66± 0.18 0.71± 0.43 0.60± 0.18

16 0.67± 0.24 0.66± 0.23 0.72± 0.72 0.58± 0.21

17 0.71± 0.28 0.73± 0.35 0.75± 0.78 0.62± 0.23

18 0.60± 0.18 0.69± 0.19 0.64± 0.53 0.55± 0.16

19 0.66± 0.21 0.66± 0.25 0.69± 0.74 0.60± 0.22

20 0.59± 0.15 0.58± 0.16 0.60± 0.28 0.55± 0.15

21 0.60± 0.18 0.61± 0.24 0.60± 0.34 0.54± 0.16

22 0.59± 0.21 0.55± 0.16 0.59± 0.43 0.53± 0.19

23 0.56± 0.25 0.61± 0.34 0.62± 0.38 0.46± 0.21

Average 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18
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technique enhance its average metrics.

(a) CC vs time graph for dataset 5. (b) RE vs time graph for dataset 5.

(c) CC vs time graph for dataset 14. (d) RE vs time graph for dataset 14.

Figure 4.2: Evolution of CC and RE values over time for two datasets selected from

the Utah data collection. These figures represents the predomination of MARS-based

approach in earlier times of the wave-front propagation in terms of CC and RE metrics

4.4.2 Epicardial Potential Maps

Because CC and RE values can only give us a general idea about how these solutions

vary, and in cases when CC or RE values are very close to each other, it is necessary

to examine the solutions in more detail to evaluate their respective usefulness. To

achieve this, the original and reconstructed epicardial potential maps are plotted at

two sample times; right after pacing is applied (Fig. 4.3), and at a later time when the

wave-front has propagated though the epicardial surface (Fig. 4.4).

At earlier times of the wave-front propagation in Fig. 4.3, reconstructed wave-fronts

by the proposed MARS-based approach are focalized around the stimulation site bet-

ter than the other three methods. Furthermore, amplitudes of the reconstructed acti-
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vation wave-fronts by MARS-based method are higher and closer to the true values

compared with the results of other estimation methods. On the other hand, in Fig. 4.4,

although all methods reconstruct the general shape of the wave-front similar to the

true maps, the wave-fronts reconstructed by the MARS-based technique are more

spread than those obtained by the Tikhonov, Twomey and SI methods.

(a) Isopotential maps for dataset 5 from the Utah data collection at t = 10 msec.

(b) Isopotentials maps for dataset 14 from the Utah data collection at t = 10 msec.

Figure 4.3: Sample snapshots of the original and reconstructed isopotential maps

from the Utah data collection short time after the stimulation.

4.4.3 Activation Isochrone Maps

Activation isochrone maps display the propagation pattern of the reconstructed epi-

cardial potentials, and they could be useful for calculating propagation velocity in

different parts of the heart surface, and to compare success of the methods.

In order to evaluate the estimated activation times, we have plotted the CC values of

activation times corresponding to each method and each dataset in Fig. 4.5, and the

average CC over all datasets are calculated for each method. Estimated activation

times are very close to true ones and obtained high CC values ≥ 0.90 on the average

65



(a) Isopotentials maps for dataset 5 from the Utah data collection at t = 50 msec.

(b) Isopotentials maps for dataset 14 from the Utah data collection at t = 50 msec.

Figure 4.4: Sample snapshots of the original and reconstructed isopotential maps

from the Utah data collection after the depolarization has spread over the heart sur-

face.

Figure 4.5: Pearson CC values for activation times for the Utah data collection.

for all methods. However depending on the dataset, success of the each method

differs when compared to each other, as illustrated in Fig. 4.5. In order make visual

comparisons sample isochrone maps for the Utah data collection are presented in Fig.

4.6. For dataset 5, Fig. 4.6a, except the Tikhonov regularization, all the methods
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(a) Isochrone maps for dataset 5 from Utah data collection.

(b) Isochrone maps for dataset 14 from Utah data collection.

Figure 4.6: Sample isochrone maps for the Utah data collection.

produce similar isochrone patterns, that are close to the true activation pattern. On

the other hand, for dataset 14, MARS-based approach yield an isochrone pattern with

better fidelity to the true activation map. These observations are also supported by the

CC values shown in Fig. 4.5.

4.4.4 Pacing Site Localization

Locating the site of earliest activation is an important issue in clinical application

of ECGI and could be helpful to identify cardiac arrhythmias such as PVCs. The

predomination of MARS-based solution technique at earlier times indicates that it

has a potential for determining the earliest activation time and hence the stimulation

location better than the other three methods. Table 4.3 presents a list of pacing site LE

values. According to these values, for 12 of the 23 datasets, MARS-based technique

have estimated more precise pacing locations, while Tikhonov, Twomey and Spline

Inverse have succeeded in 4, 7 and 7 out of 23 datasets, respectively.
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Table 4.3: Pacing site localization errors in mm for the Utah data collection.

Test data Tikhonov Twomey Spline Inverse MARS
1 1.28± 2.87 4.18± 3.89 7.41± 0.91 7.74± 0.74

2 10.47± 1.80 9.67± 2.20 11.28± 0.00 8.67± 2.20

3 10.91± 0.00 10.91± 0.00 11.88± 2.16 10.91± 0.00

4 7.01± 2.86 5.73± 0.00 5.73± 0.00 5.73± 0.00

5 6.57± 1.49 7.66± 0.00 7.57± 1.87 8.14± 1.08

6 14.04± 2.52 13.29± 2.72 15.80± 2.82 12.38± 2.59

7 13.23± 3.35 10.66± 0.28 12.65± 2.55 6.41± 2.49

8 21.77± 20.25 10.56± 2.75 12.24± 2.11 12.51± 0.96

9 2.11± 2.90 1.72± 2.35 0± 0.00 1.06± 2.37

10 7.21± 1.27 7.78± 0.00 7.90± 0.28 7.48± 1.69

11 7.13± 2.93 4.07± 0.00 4.07± 0.00 5.42± 1.87

12 6.42± 2.00 5.53± 0.00 5.53± 0.00 5.79± 0.36

13 11.93± 7.73 4.16± 4.12 7.55± 3.32 3.49± 3.51

14 18.81± 2.00 14.16± 4.53 16.99± 4.33 9.26± 2.39

15 16.22± 5.76 8.11± 0.62 9.74± 2.03 3.77± 2.37

16 8.53± 2.29 9.77± 0.00 7.53± 2.04 4.94± 1.00

17 10.39± 3.58 7.47± 1.64 7.85± 2.16 6.27± 0.00

18 8.31± 1.23 8.86± 0.00 7.22± 1.50 7.77± 1.50

19 11.87± 0.40 10.14± 1.41 11.69± 0.00 9.63± 1.15

20 5.48± 0.00 5.06± 0.39 4.10± 2.32 4.77± 0.00

21 6.07± 3.66 6.79± 0.00 5.43± 3.04 6.79± 0.00

22 7.88± 0.96 7.45± 0.00 7.45± 0.00 7.45± 0.00

23 9.84± 5.83 7.56± 5.42 9.36± 2.36 8.05± 2.31

Average 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33
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4.4.5 Robustness Against the Modeling Errors

Modeling inaccuracies are also important for the success of applied regularization

techniques. Their influences on the inverse solutions were studied in [6, 48, 69, 100].

Modeling errors originate from several parameters or assumptions that are used in

the solution of the forward problem. Variations in the conductivities of torso tissues,

segmentation errors of medical images, discretization error, movement of the heart,

geometry parameters such as size, location of the heart and electrode positions on the

torso, are some of the important properties that cause the modeling errors. According

to the outcomes of [100], heart size and location deviations have significant effect on

the reconstruction performance.

Our aim in this section is to assess the robustness of our approach against the pertur-

bations derived from modeling errors. To understand their influence, the following

artificial distortions are introduced: small perturbations in the forward transfer ma-

trix, variation in size of the heart and location inside the torso. All the tests presented

here have been performed using Utah data collection with body surface potentials that

are simulated using an error free model, and contaminated by 30 dB SNR zero-mean

Gaussian noise. To measure the impact of model inaccuracies, average CC, RE and

pacing site LE are computed over 23 datasets, for each modeling error case.

4.4.5.1 Distortions in the Transfer Matrix

In this part, the forward transfer matrix is contaminated by an additive Gaussian noise

matrix of the same size, with zero mean, independent and identically distributed el-

ements, in order to gain insight about the effects of small perturbations in the model

arising possibly from many different parameters mentioned above. Two different

matrix perturbation levels at 20 and 30 dB SNR are considered. Change of estima-

tion performances in terms of average CC, RE and pacing site LE are presented in

Fig. 4.7. A notable observation about the results is that when an error in the forward

matrix is introduced and its SNR is changed from 30 to 20 dB, the MARS-based

estimation performance remains quite robust and only a small amount of decrease

is observed in all three accuracy measures. However, increasing the noise in the
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forward model cause considerable degradation in estimation accuracies of the other

three methods. The percentage of degradation in CC values of MARS-based method

are about 2.25% and 3.75% at 30 and 20 dB SNR, respectively. On the other hand,

under the same conditions other methods’ CC measurements decrease approximately

7% and 14% for Tikhonov, 11% and 20% for Twomey and 6.75% and 15% for SI.

Similarly, the changes in RE are approximately 3.6% and 5.4% for MARS, 8% and

23.8% for Tikhonov, 16% and 27.5% for Twomey and 11.3% and 17.7% for SI meth-

ods. When we examine the LE errors, the percentage of degradation in LE values

MARS-based method are approximately 5%, 29% at 30 and 20 dB SNR respectively.

However, degradation percentages become 28%, 45% for SI, 15%, 27% and 15%,

15% for Twomey and Tikhonov respectively.

(a) Correlation coefficients. (b) Relative errors.

(c) Small variations in the forward transfer ma-

trix.

Figure 4.7: Small variations in the forward transfer matrix (Utah data collection).
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4.4.5.2 Errors in the Heart Location

To simulate the heart positioning errors, heart is shifted along the x-axis (i.e., right

and left of the body) and y-axis (i.e., backward and onward of the body) of the orig-

inal torso mesh and the forward transfer matrix corresponding to this modified mesh

is employed in inverse calculations. Shift amounts are 10 mm in the ±x and ±y di-

rection; 0 mm shift means that there is no geometric error. The average CC, RE and

pacing site localization errors, corresponding to shifting to the left and right side in-

side the torso from its true location, are plotted in Figs. 4.8 and 4.9. Unlike the small

variation in the forward transfer matrix case, the shifted heart location has degraded

the estimation performances of all methods. However, MARS-based approach has

showed the best performance in terms of average CC and pacing site LE metrics if

shift is in the ±x direction. On the other hand, its RE evaluation seems to be sensi-

tive against the heart position. Furthermore, if the heart position is shifted in the ±y
direction, estimation performances of the MARS, SI and Twomey methods have got

close to each other.

4.4.5.3 Errors in the Heart Size

The impact of the geometric errors due to the incorrect determination of heart size on

the reconstruction of epicardial potentials are examined by utilizing the heart geome-

try of 0.8 and 1.2 times the actual heart size, and the corresponding modified forward

transfer matrix for inverse solution. Scaling factor 1 means that true heart geometry

is used. The average CC, RE and pacing site LE corresponding to different heart

sizes are given in Fig. 4.10. Similar to the shift errors, MARS-based solution has

produced the highest CC values and more precisely determined pacing site locations

for all heart size errors.

4.4.6 Robustness against Measurement Noise

In order to examine the effects of measurement noise on the inverse problem solu-

tions, body surface potentials are contaminated by a zero mean Gaussian noise of 10,

20 and 30 dB SNR. Estimation performances in terms of average CC and RE values
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(a) Correlation coefficients. (b) Relative errors.

(c) Pacing site localization error.

Figure 4.8: Shifted heart location to the left and right side inside the torso from its

true location (Utah data collection).

are presented in Fig. 4.11. At all noise levels, proposed method have produced higher

mean CC and lower mean RE values. When noise level changed from 30 dB to 10

dB SNR, proposed method performance has degraded approximately %12 in terms of

mean CC values. On the other hand, SI, Twomey and Tikhonov performances have

reduced %16, %23 and %19, respectively. Similarly for relative errors, performance

degradations are approximately %25 for both MARS-based approach and SI, and %32

for Twomey and Tikhonov regularizations. We have also calculated pacing site LE of

all methods for each noise level. Pacing site LE for Tikhonov and Twomey methods

are significantly affected due to decreasing SNR value. MARS-based method and

SI have yielded similar results, which are better compared to Tikhonov and Twomey

regularizations.

72



(a) Correlation coefficients. (b) Relative errors.

(c) Pacing site localization error.

Figure 4.9: Shifted heart location to the backward and onward inside the torso from

its true location (Utah data collection).

4.5 Results for KIT Data Collection

KIT data collection contains 8 ventricularly paced beats, and pacing sites are located

on the epicardium, endocardium and septum center. We have used the KIT data

collection without any interventions (such as adding extra measurement noise, or in-

troducing geometric errors) to facilitate comparison of the methods evaluated in this

study with future studies. Heart surface potentials in this dataset are referred to as

pericardial potentials, and although they are not the same, they are similar enough

that pericardial and epicardial potential labels have been used interchangeably in liter-

ature. To be consistent with previous sections, we continue to use the term ‘epicardial

potentials’ in this section.
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(a) Correlation coefficients. (b) Relative errors.

(c) Pacing site localization error.

Figure 4.10: Scaled heart size (Utah data collection).

4.5.1 Reconstruction of Electrograms

For each dataset, epicardial potential distributions have been estimated, and mean CC

and RE values are computed and displayed in Tables 4.4 and 4.5. These mean and

standard deviation values of the CC and RE metrics are calculated over time for each

dataset. We have obtained higher mean CC values compared to other methods.

In the earlier times of the propagation, reconstructed epicardial potentials by the

MARS-based approach yield higher CC values, as illustrated in Fig. 4.12. On the

other hand, when we look at the RE metrics, although MARS-based technique has

yielded lower RE values for the Utah data collection, for KIT data collection SI and

our method have produced similar results (Tables 4.4 and 4.5). In general, CC and

RE values obtained for the KIT data collection are not as good as the results of Utah

data collection for all four regularization methods. The most possible reason is the
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(a) Correlation coefficients. (b) Relative errors.

(c) Pacing site localization error.

Figure 4.11: Measurement noise at different SNR values (Utah data collection).

Table 4.4: Mean (E{CC}) and standard deviation (σ{CC}) values for KIT data
collection.

CC
Dataset Tikhonov Twomey Spline Inverse MARS

SEPTUMCENTER 0.39± 0.11 0.34± 0.18 0.44± 0.10 0.47± 0.13

LVLAT 0.32± 0.10 0.28± 0.15 0.41± 0.11 0.45± 0.12

LVAPEX 0.32± 0.08 0.30± 0.15 0.39± 0.13 0.47± 0.12

LVANTERIOR 0.38± 0.10 0.31± 0.15 0.41± 0.08 0.46± 0.10

RVPOSTERIOR 0.37± 0.08 0.30± 0.13 0.38± 0.09 0.46± 0.09

RVANTERIOR 0.29± 0.08 0.29± 0.08 0.39± 0.06 0.42± 0.11

LVLATEPI 0.43± 0.11 0.31± 0.13 0.43± 0.10 0.47± 0.13

LVLATENDO 0.31± 0.08 0.30± 0.15 0.41± 0.12 0.47± 0.12

Average 0.32± 0.09 0.30± 0.14 0.41± 0.10 0.46± 0.11

difference between models used to solve the forward and inverse ECG problems.
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Table 4.5: Mean (E{RE}) and standard deviation (σ{RE}) values for KIT data
collection.

RE
Dataset Tikhonov Twomey Spline Inverse MARS

SEPTUMCENTER 0.94± 0.09 1.19± 1.02 0.90± 0.05 0.88± 0.09

LVLAT 1.02± 0.09 1.22± 0.72 0.92± 0.05 0.91± 0.06

LVAPEX 0.98± 0.06 1.60± 1.78 0.93± 0.04 1.03± 0.54

LVANTERIOR 0.91± 0.07 1.13± 1.10 0.89± 0.05 0.88± 0.09

RVPOSTERIOR 0.92± 0.03 1.12± 0.83 0.92± 0.04 0.89± 0.06

RVANTERIOR 1.04± 0.11 1.21± 1.25 0.91± 0.04 0.99± 0.58

LVLATEPI 0.92± 0.05 1.15± 0.53 0.92± 0.05 0.92± 0.12

LVLATENDO 1.02± 0.10 1.50± 1.70 0.92± 0.05 0.91± 0.07

Average 0.97± 0.08 1.27± 1.12 0.91± 0.05 0.93± 0.20

(a) Dataset SEPTUMCENTER from KIT data

collection.

(b) Dataset SEPTUMCENTER from KIT data

collection.

(c) Dataset RVPOSTERIOR from KIT data col-

lection.

(d) Dataset RVPOSTERIOR from KIT data col-

lection.

Figure 4.12: Evolution of CC and RE values over time for datasets selected from KIT

data collections.

4.5.2 Epicardial Potential Maps

In order to compare the reconstruction performances of the methods, we have plotted

epicardial potential distributions both in earlier times of the propagation, and at a

later time for two of the datasets in Figs. 4.13 and 4.14. In general, reconstructed

epicardial maps could not capture details in the true epicardial potentials, but for some
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datasets such as the RVPOSTERIOR, proposed MARS-based approach has yielded

focalized activity around the stimulation site better than the other three methods. For

the SEPTUMCENTER dataset, none of the methods have been able to reconstruct

epicardial potentials with fidelity to true distributions.

(a) KIT dataset SEPTUMCENTER at t = 70 msec.

(b) KIT dataset RVPOSTERIOR at t = 30 msec.

Figure 4.13: Sample snapshots of the original and reconstructed isopotential maps

from the KIT data collection short time after the stimulation.

4.5.3 Activation Isochrone Maps

Activation time estimate fidelity to true values for the KIT data collection given in

Fig. 4.15 are poor compared to Utah data collection results. But, SI and MARS

method’s estimations are u %15 better in terms of CC metrics, compared to the

Tikhonov and Twomey regularizations. While MARS and SI method have yielded

average CC values 0.68 and 0.66, respectively for activation times, Tikhonov and

Twomey regularization have values of 0.51 and 0.50, respectively. Sample isochrone

maps for the KIT data collection are given in Fig. 4.16.
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(a) KIT dataset SEPTUMCENTER at t = 100 msec.

(b) KIT dataset RVPOSTERIOR at t = 100 msec.

Figure 4.14: Sample snapshots of the original and reconstructed isopotential maps

from the KIT data collection.

4.5.4 Pacing Site Detection

Table 4.6 gives the LE values for the KIT data collection for all methods. Twomey

and MARS methods have located the pacing the site better than the other methods

(both have yielded best estimates for 3 datasets out of 8). On the other hand, MARS

estimations are ≈ %60 more accurate when we check the average localization error

in mm.

Table 4.6: Pacing site localization errors in mm for KIT data collection.

Test data Tikhonov Twomey Spline Inverse MARS
SEPTUMCENTEREPI 45.01 50.93 21.85 38.02

LVLAT 9.14 20.50 32.25 12.33

LVAPEX 13.79 0 14.21 8.87

LVANTERIOR 17.46 0 25.58 9.78

RVPOSTERIOR 10.95 39.39 45.02 0

RVANTERIOR 17.93 0 0 0

LVLATEPI 91.43 16.95 22.85 14.03

LVLATENDO 0 32.31 14.03 14.03

Average 25.71± 29.56 20± 19.62 21.97± 13.40 12.13± 11.88
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Figure 4.15: Pearson CC values for activation times for the KIT data collection. The

numbers on the horizontal axis refers to the dataset number following the order given

at Table 4.4.

(a) Isochrone maps for dataset SEPTUMCENTER from the KIT data collection.

(b) Isochrone maps for dataset RVPOSTERIOR from the KIT data collection.

Figure 4.16: Sample isochrone maps for reconstructed epicardial potentials (KIT data

collection).
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4.6 Conclusions and Discussion

In this part of the thesis, we have presented a non-parametric MARS-based approach

for reconstructing potential distributions on the epicardial surface of the heart. Our

primary interest is to develop an adaptive method, which significantly reduces the

problem dimension while increasing estimation accuracy. Unlike B-spline or other

cubic polynomial approaches, the proposed method of this study does not require a

pre-determined number of spline functions. Instead, it constructs a large collection of

basis functions using possible knot locations such that both additive and interactive

effects of the predictors are taken into account. From a collection of basis functions, a

set of basis functions consisting of the ones which produce the largest decrease in the

defined lack of fit criteria, is selected to construct the model of the unknown function.

We have tested our methods utilizing two different simulated data collections of ven-

tricularly paced beats: Utah data collection of 23 datasets with different pacing lo-

cations, which are located on the frontal, back and side regions of the epicardium;

KIT data collection of 8 beats with different pacing locations on the epicardium, en-

docardium and septum. Quantitative and qualitative evaluation of the results from

various perspectives have been also provided to represent strong features of MARS

and properties that need to be improved. Following parameter values have been used

for the MARS algorithm to solve the inverse ECG problem; maximum allowed num-

ber of functions and number of allowed interactions between independent variables

in the model are 40 and 3, respectively. The average number of spline functions in

the estimated model turned out to be 15 ± 1 for the Utah data collection, and 21 ± 1

for the KIT data collection.

With the Utah collection, three different simulation scenarios have been carried out.

In the first scenario, there are no geometric errors in the mathematical model and

the measurement noise is kept at a moderate level of 30 dB SNR. Overall evaluation

of our results show that, in terms of average CC and RE values, MARS has yielded

better results than the other methods (p < 0.0001). LE values for MARS are better

than Tikhonov regularization results (p = 0.033). Statistically, they are not signif-

icantly different from Twomey or SI results (p = 0.16, and p = 0.4, respectively),

however, in terms of average LE, MARS has yielded slightly smaller values (9% and
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16% lower average LE values than Twomey and SI, respectively, in mm). In the

second scenario, measurement error is kept at the same level of 30 dB, but geomet-

ric error is introduced into the mathematical model in terms of random disturbance,

shifting the heart position, and scaling the heart size. In case of random distortion

is applied to the forward transfer matrix, MARS has produced highest CC, lowest

RE and LE values. From a statistical point of view, the LE errors of MARS are not

significantly different from the other methods, except the SI results obtained at 30 dB

SNR (p = 0.033866). Similar results for CC, RE and LE values have been obtained

if the heart geometry is scaled or shifted. The significant statistical differences for

LE errors are between the MARS, Tikhonov and Twomey methods, but not with SI

if the heart is scaled by a constant factor. For scale factors 0.8 and 1.2, the p val-

ues are computed as p = 0.024472 and p < 0.000001 for Tikhonov; p = 0.042484

and p < 0.000001 for Twomey methods. Statistically significant difference for LE

errors have been observed between MARS and other 3 methods if heart is shifted

in the +x direction. The computed p values are p = 0.002038, p < 0.000001 and

p = 0.019618 for Tikhonov, Twomey and SI methods, respectively. Finally, in the

last scenario, the level of measurement noise are varied while excluding geometric er-

rors. Decreasing noise SNR has significantly effected the LE errors of Tikhonov and

Twomey estimations, but MARS and SI have yielded more stable outputs compared

the these two methods. The p values are computed as follows; For 20 dB SNR noise

p values are p = 0.104175, p = 0.000242, p < 0.00001 . For 10 dB SNR noise p

become p = 0.369559, p = 0.000326, p = 0.996815 for SI, Tikhonov and Twomey,

respectively.

KIT data collection, on the other hand, has been used as provided by the researchers [90]

to facilitate comparison in future studies. For these datasets, performances of all four

methods are worse than those for the Utah data collection. This performance degra-

dation is not surprising, since the forward model used to simulate BSPs in the KIT

collection includes more inhomogeneities than the forward model that we have used

for simulating BSPs in the Utah collection. In terms of average CC values, MARS has

performed better than the other methods (p < 0.001), however, statistically compar-

ing RE values of MARS with Tikhonov and SI have not yielded significant differences

(p = 0.14 and p = 0.54, respectively). Similarly, LE values are also statistically not
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significantly different from the other methods (p = 0.25 for Tikhonov, p = 0.35 for

Twomey, and p = 0.14 for SI). Among the KIT datasets, SEPTUMCENTER has

yielded the worst LE values for all methods. Septum is located between the right and

left ventricles, and a wave-front initiated at the septum takes some time to reach the

epicardial surface. Therefore, there is no obvious pacing site observed on the epi-

cardium. When the LE results are evaluated excluding SEPTUMCENTER, MARS

results have been found to be statistically different from the SI results (p = 0.04),

but similar to Tikhonov and Twomey results (p = 0.24 and p = 0.3, respectively).

However, we should note that, while the statistical tests for the Utah data collection

have been carried out with 23 beats and 5 noise realizations for each beat, KIT data

collection comparisons are for only 8 beats. It is a rather small sample set to make

reliable statistical comparisons; more data are needed to come to a conclusion. When

the individual results for 8 datasets are examined, MARS has yielded 40% and 45%

lower average LE values than Twomey and SI, respectively, in mm.

These results show that, MARS method has potential for accurately solving the in-

verse ECG problem in the presence of geometric errors and measurement noise, espe-

cially for clinical applications that require pacing site localization (such as detection

of PCVs). However, despite strengths of MARS, it also has some limitations that

need to be addressed to accept it as a reliable approach for ECGI applications.

4.6.1 Limitations of the Study, and Future Work

• Despite good performance of the MARS method in the earlier times, its perfor-

mance after the activity has spread over the heart becomes comparable to the

other methods, and even yields a more spread wave-front. We believe that this

is partially due to using an l2-norm in the cost function to be minimized. l2-

norm based approaches usually produce smeared solutions. On the other hand,

local support of the spline-based modeling (i.e. changing approximation in a

local region without affecting the remote portion of the approximated function)

has alleviated this shortcoming to some extent by adaptively selecting suitable

basis functions for the model. As the wave-front progresses over the epicardial

surface, sparsity of the potential distribution disappears and local support of the
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spline-based approach also decreases. Using l1-norm or lp-norm, which have

been shown to improve wave-front reconstructions could improve solutions.

• Due to its iterative nature, runtime for MARS is longer than the other methods.

This is a significant disadvantage for clinical applications that require real time

decision making. To increase speed and decrease overall computational cost,

MARS could be employed for detecting early activation times, for localization

of PVCs, but it can be replaced with a lower computational cost method as the

wave-front propagates over the heart surface.

• Although we have tested the robustness of MARS to geometric errors, there

are still other tests that can be done to further evaluate MARS in the presence

of geometric errors. For example, to mimic actual mechanical changes during

diastole and systole periods, heart geometry could be modified to reflect these

changes and to study their effects on inverse solutions. Additionally, the effects

of rotation of the heart within the torso has not been considered in this study,

which should be included in future studies.

• Here we have only considered spatially fitted splines. Alternatively, MARS-

based approach could be modified to include temporal splines as well, either

alone, or combined with spatial splines.

• This study is limited to simulated data, and focuses only ventricularly paced

beats. Evaluation of the MARS method should be extended to use a wider

variety of data including simultaneously measured epicardial and body surface

potentials, to detect different types of arrhythmia, to study its performance in

the recovery region, etc.

Since MARS is a non-parametric regression procedure, it can simplify and automate

the determination of the model size, construction and selection of the spline functions

based on supplied data. However, these steps increase the computational complexity

of the inverse solution. Parametric techniques can be preferable if sufficient informa-

tion or assumptions are available about the underlying model of the function to be

estimated. In addition, if the model of a function is required to be expressed by more

than one variable and their interactions, then parametric methods become problematic

because of the curse of dimensionality.
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CHAPTER 5

CONCLUSIONS

In this dissertation, the inverse ECG problem is handled both from statistical and de-

terministic solution techniques perspectives. We have described adaptive approaches

that expedite the solving inverse ECG problem without claiming strong assumptions

and by using relatively easily obtainable prior information about the unknown epicar-

dial potential distribution.

In Chapter 3, we have adopted statistical inversion scheme called Minimum Relative

Entropy for solving the inverse ECG problem. This method treats the unknown pa-

rameters as random variables and then computes the multivariate probability density

function to describe the behavior of the parameters. The solution is defined as the

expected value of the parameters based on the posterior probability density function.

In statistical inversion schemes, a good prior information requires knowledge about

the form of the prior pdf and moments of the unknown parameters (i.e., mean, co-

variance, etc.) to obtain better estimates. On the other hand, it is not always possible

to know the form of the pdf and to collect reliable prior information about its pa-

rameters such as, mean and covariance values, or they might be highly suspected. In

such a case, MRE method provides an alternative formulation for solving the inverse

problems starting from very simple prior pdf definition.

Throughout this study, we have carefully examined effects of MRE parameters to

the solution. According to the results, the upper-lower bounds and expected uncer-

tainty have no significant influence unless they are under-estimated. Compared to the

Bayesian MAP estimation, MRE method does not require full covariance matrix in

addition to a mean vector. However the prior mean value is the crucial parameter for
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the MRE method.

In Chapter 4, we have proposed a non-parametric multivariate spline-based approach

to solve the inverse ECG problem. Our aim is to reduce the number of unknowns in

the model while increasing estimation accuracy by taking advantage of local support

property of spline-based approaches. In contrast to the other parametric approaches,

proposed technique does not make strong assumptions about the form of the function

we wish to estimate, which reduces the requirement of preliminary work for model-

ing the inverse ECG problem. Efficiency of the proposed method is examined under

various disturbances including noise and geometric errors. We have achieved better

estimations compared to traditional regularization techniques, when the potential dis-

tribution activity on the heart surface is condensed in a local region (i.e. very close

to stimulation time). The success in estimations close to the stimulation time also

leads to determination of pacing site more accurately. In addition, we have obtained

more stable outputs under disturbances measurement noise and geometric errors dis-

turbances.

Both methods we have presented in this dissertation provide a flexible way of mod-

eling and solving the inverse ECG problem. In addition, they can also be used to

test whether parametric model is well-specified, if the problem will be modeled and

solved by the parametric technique. However, within each method several develop-

ments should be implemented in the future as follows:

• MRE:

– The prior mean value is the crucial parameter for MRE method and further

studies are required to determine a proper prior mean value to increase the

effectiveness of the method.

– We have constructed the prior pdf starting from the uniform pdf. MRE

method also allow us to use other pdfs such as Gaussian distribution in-

stead of starting from simple assumption if more information is available

on the underlying behavior of the parameters.

• MARS-based Scheme:

– In this thesis we have modeled the problem only by using spatially fitted
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splines. However, MARS-based approach could be modified to include

temporal splines as well, either alone, or combined with spatial splines to

better represent the spatio-temporal behavior of the epicardial distribution.

– Performance of the MARS-based method in the earlier times of the stim-

ulation could be improved by using l1 or lp-norm based cost function def-

initions.

– It might be possible to improve estimations of local activities by weight-

ing observations considering the trend changes at the estimated epicardial

potential distribution.

– The adaptation of other non-parametric algorithms such as locally adap-

tive polynomial regression, should be investigated to increase the approx-

imation success in local regions.

– Its efficiency should be tested for detecting multiple pacing sites.

– Performance of the MARS-based method after the activity has propagated

over the heart should be improved by including additional constraints to

prevent reconstructed wave-fronts from overly spreading out.

– Robustness of the method should be tested with coarse epicardial surface

geometry.

• General:

– This study is limited to simulated data, and focuses only on ventricularly

paced beats. Evaluation of the both methods should be extended to use

a wider variety of data including simultaneously measured epicardial and

body surface potentials, in order to detect different types of arrhythmia.

– Both solution approaches have higher computational complexity com-

pared to traditional regularization methods. Any improvements in their

algorithms to reduce computation time would increase the applicability of

these methods in daily clinical routines.
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APPENDIX A

MRE ESTIMATION RESULTS

Table A.1: Mean (E{CC}) and standard deviation (σ{CC}) values for CC obtained
for various upper and lower bounds. Results are presented for the true prior mean
vector, and noisy prior mean vectors at 15 and 5 dB SNR values.

True prior mean Prior mean at 15 dB SNR Prior mean at 5 dB SNR
α E{CC} ± σ{CC} E{CC} ± σ{CC} E{CC} ± σ{CC}

0.4 0.7976 ± 0.1130 0.7766 ± 0.1128 0.5278 ± 0.3163
0.5 0.8761 ± 0.1371 0.8490 ± 0.1298 0.6644 ± 0.1417
0.6 0.8944 ± 0.1944 0.8787 ± 0.1864 0.6918 ± 0.1404
0.7 0.8911 ± 0.2270 0.8681 ± 0.2337 0.7125 ± 0.1221
0.8 0.9237 ± 0.1915 0.8852 ± 0.2323 0.6904 ± 0.0955
0.9 0.9922 ± 0.0281 0.9540 ± 0.0674 0.7109 ± 0.0877
1.0 0.9993 ± 0.0035 0.9819 ± 0.0064 0.7367 ± 0.0894
1.5 0.9999 ± 0.0003 0.9823 ± 0.0057 0.8295 ± 0.0479
2.0 0.9996 ± 0.0016 0.9820 ± 0.0065 0.8536 ± 0.0313

Table A.2: Mean (E{CC}) and standard deviation (σ{CC}) values for CC obtained
for various prior mean vectors. Upper and lower bounds, and expected uncertainty in
the error are fixed, the true prior mean vector is disturbed by Gaussian white noise at
different SNR values.

SNR E{CC} ± σ{CC}
1 0.7331 ± 0.0328
5 0.8595 ± 0.0270
10 0.9476 ± 0.0158
15 0.9819 ± 0.0073
20 0.9939 ± 0.0037

True 0.9996 ± 0.0016
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Table A.3: Mean (E{CC}) and standard deviation (σ{CC}) values for CC obtained
for various expected uncertainty values. Results are presented for the true prior mean
vector, and noisy prior mean vectors at 15 and 5 dB SNR values.

True prior mean Prior mean at 15 dB SNR Prior mean at 5 dB SNR
β E{CC} ± σ{CC} E{CC} ± σ{CC} E{CC} ± σ{CC}

0.4 0.6593 ± 0.2673 0.8013 ± 0.1923 0.7225 ± 0.1638
0.6 0.9945 ± 0.0105 0.9400 ± 0.1230 0.8283 ± 0.1021
0.8 0.9972 ± 0.0136 0.9821 ± 0.0060 0.8557 ± 0.0315
1.0 0.9996 ± 0.0016 0.9817 ± 0.0062 0.8531 ± 0.0298
1.2 0.9997 ± 0.0009 0.9819 ± 0.0063 0.8541 ± 0.0331
1.4 0.9988 ± 0.0048 0.9819 ± 0.0061 0.8555 ± 0.0340
1.6 0.9997 ± 0.0009 0.9808 ± 0.0070 0.8503 ± 0.0405

Table A.4: Mean (E{CC}) and standard deviation (σ{CC}) values for CC obtained
for previous time instant solution multiplied by a constant.

MRE MRE MRE
µ = 0.9 from prev. sol. µ = 1.0 from prev. sol. µ = 1.1 from prev. sol.

E{CC} 0.7496 0.7251 0.6798
σ{CC} 0.2005 0.2014 0.2038
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APPENDIX B

MARS ESTIMATION RESULTS

Table B.1: Pearson CC values for activation times for the Utah data collection.

CC
Dataset Tikhonov Twomey Spline Inverse MARS

1 0.95 0.97 0.98 0.95

2 0.95 0.95 0.98 0.94

3 0.95 0.99 0.95 0.98

4 0.96 0.97 0.96 0.98

5 0.94 0.99 0.97 0.99

6 0.97 0.99 0.98 0.97

7 0.91 0.90 0.90 0.96

8 0.98 0.99 0.97 0.99

9 0.95 0.99 0.99 0.98

10 0.95 0.99 0.99 0.99

11 0.98 0.99 0.99 0.99

12 0.98 0.99 0.93 0.99

13 0.91 0.97 0.97 0.97

14 0.89 0.94 0.94 0.97

15 0.93 0.95 0.91 0.99

16 0.98 0.99 0.99 0.99

17 0.99 0.99 0.99 0.99

18 0.99 0.99 0.99 0.99

19 0.99 0.99 0.99 0.99

20 0.96 0.99 0.98 0.99

21 0.96 0.99 0.99 0.99

22 0.92 0.99 0.93 0.96

23 0.95 0.99 0.99 0.99

103



Table B.2: Mean CC values for small variations in the forward transfer matrix.

CC
Noise SNR Tikhonov Twomey Spline Inverse MARS
Noise Free 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16

30 dB 0.67± 0.20 0.67± 0.19 0.69± 0.21 0.79± 0.16

20 dB 0.62± 0.20 0.60± 0.19 0.63± 0.20 0.77± 0.17

Table B.3: Mean RE values for small variations in the forward transfer matrix.

RE
Noise SNR Tikhonov Twomey Spline Inverse MARS
Noise Free 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18

30 dB 0.68± 0.19 0.72± 0.22 0.69± 0.28 0.58± 0.25

20 dB 0.73± 0.20 0.79± 0.19 0.73± 0.20 0.59± 0.20

Table B.4: Mean LE values for small variations in the forward transfer matrix.

LE in mm
Noise SNR Tikhonov Twomey Spline Inverse MARS
Noise Free 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33

30 dB 11.27± 5.87 8.71± 4.56 10.97± 6.59 7.52± 3.58

20 dB 11.23± 8.42 9.87± 6.06 12.44± 8.11 9.22± 3.66

Table B.5: Mean CC values for shifted heart location to the left and right side inside
the torso from its true location.

CC
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 0.65± 0.17 0.67± 0.19 0.65± 0.14 0.71± 0.14

0 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16

−10 0.65± 0.17 0.61± 0.17 0.64± 0.13 0.70± 0.13

Table B.6: Mean RE values for shifted heart location to the left and right side inside
the torso from its true location.

RE
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 0.75± 0.27 0.72± 0.22 0.73± 0.14 0.76± 0.21

0 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18

−10 0.74± 0.25 0.86± 0.23 0.74± 0.12 0.73± 0.17
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Table B.7: Mean LE values for shifted heart location to the left and right side inside
the torso from its true location.

LE
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 12.65± 7.09 15.64± 12.86 10.58± 5.63 7.16± 3.78

0 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33

−10 12.19± 8.72 16.7± 19.26 9.37± 4.9 8.3± 3.86

Table B.8: Mean CC values for shifted heart location to the backward and onward
inside the torso from its true location.

CC
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 0.64± 0.17 0.60± 0.15 0.64± 0.16 0.70± 0.14

0 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16

−10 0.67± 0.17 0.63± 0.15 0.66± 0.16 0.72± 0.14

Table B.9: Mean RE values for shifted heart location to the backward and onward
inside the torso from its true location.

RE
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 0.75± 0.22 0.96± 0.37 0.75± 0.22 0.76± 0.18

0 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18

−10 0.71± 0.19 0.85± 0.27 0.72± 0.12 0.84± 0.34

Table B.10: Mean LE values for shifted heart location to the backward and onward
inside the torso from its true location.

LE
Shift (in mm) Tikhonov Twomey Spline Inverse MARS

10 12.32± 7.44 8.18± 3.32 8.79± 4.4 8.65± 4.8

0 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33

−10 12.12± 6.7 9.82± 8.12 11.32± 5.33 8.42± 4.13

Table B.11: Mean CC values for scaled heart size.

CC
Scale factor Tikhonov Twomey Spline Inverse MARS

1.2 0.69± 0.18 0.67± 0.17 0.70± 0.18 0.77± 0.14

1 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16

0.8 0.69± 0.18 0.65± 0.16 0.69± 0.17 0.76± 0.14
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Table B.12: Mean RE values for scaled heart size.

RE
Scale factor Tikhonov Twomey Spline Inverse MARS

1.2 0.72± 0.16 0.75± 0.18 0.72± 0.13 0.68± 0.31

1 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18

0.8 0.82± 0.25 0.86± 0.23 0.83± 0.17 0.91± 0.24

Table B.13: Mean LE values for scaled heart size.

LE
Scale factor Tikhonov Twomey Spline Inverse MARS

1.2 2.73± 7.09 15.64± 12.86 10.58± 5.63 7.16± 3.78

1 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33

0.8 12.19± 8.72 16.7± 19.26 9.37± 4.9 8.3± 3.86

Table B.14: Mean CC values for measurement noise at different SNR levels.

CC
Noise SNR Tikhonov Twomey Spline Inverse MARS

30 dB 0.72± 0.20 0.75± 0.19 0.74± 0.21 0.80± 0.16

20 dB 0.65± 0.22 0.66± 0.22 0.69± 0.23 0.76± 0.19

10 dB 0.58± 0.23 0.58± 0.23 0.62± 0.25 0.70± 0.23

Table B.15: Mean RE values for measurement noise at different SNR levels.

RE
Noise SNR Tikhonov Twomey Spline Inverse MARS

30 dB 0.63± 0.20 0.62± 0.21 0.62± 0.26 0.56± 0.18

20 dB 0.72± 0.26 0.71± 0.26 0.69± 0.28 0.60± 0.23

10 dB 0.83± 0.34 0.82± 0.33 0.77± 0.31 0.70± 0.33

Table B.16: Mean LE values for measurement noise at different SNR levels.

LE in mm
Noise SNR Tikhonov Twomey Spline Inverse MARS

30 dB 9.76± 3.38 7.88± 1.40 8.56± 1.56 7.16± 1.33

20 dB 17± 7.1 38.83± 18.4 11.27± 3.7 8.51± 3.05

10 dB 26.11± 12 40.58± 12.8 14.17± 5.03 15.51± 8.53
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Table B.17: Mean activation times Pearson CC values for KIT data collection.

CC
Dataset Tikhonov Twomey Spline Inverse MARS

SEPTUMCENTER 0.53 0.32 0.30 0.42

LVLAT 0.53 0.46 0.79 0.70

LVAPEX 0.61 0.55 0.66 0.82

LVANTERIOR 0.61 0.69 0.58 0.74

RVPOSTERIOR 0.82 0.73 0.89 0.79

RVANTERIOR 0.58 0.43 0.73 0.49

LVLATEPI 0.10 0.50 0.66 0.67

LVLATENDO 0.52 0.37 0.70 0.81

Average 0.51 0.51 0.66 0.68
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