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ABSTRACT

CONSTRUCTIONS OF MAXIMUM RANK DISTANCE CODES, CYCLIC
CONSTANT DIMENSION CODES, AND SUBSPACE PACKINGS

Otal, Kamil
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2018, 40 pages

In this thesis, we aim to introduce main contributions to solve three main problems in
coding theory.

The first problem investigates the construction of inequivalent maximum rank dis-
tance (MRD) codes. Namely, we look for the constructions of the largest possible
sets of m × n matrices over a finite field Fq, such that the rank of the subtraction of
any two different matrices in the set cannot be smaller than a certain number. Con-
structions of such codes under a suitable equivalence notion have taken a worthwhile
attention in the last decade due to their applications in many areas, and most of the
constructions including also our works have been discovered in last few years. We
introduce these outcomes classifying them considering the main and most general
equivalence idea. We basically use the language of linearized polynomials in this
direction as usual in many works in the literature.

The second problem, which is originated from an application related to the efficiency
in random network coding, concerns the construction of large cyclic subspace codes
of constant dimension. In this set up, we aim to construct large sets of k-dimensional
subspaces of Fnq in a way that any two distinct subspaces cannot be close to each other
more than a certain number in terms of the subspace distance, and the cyclic shifts of
each subspace must be included in the set. We give the only systematic construction
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of such sets in the literature utilizing linearized polynomials again but in a slightly
different way. We note that the basic structure of this construction was proposed in
our another work. Additionally, we summarize the history of the solution and some
further remarks.

In the last problem, we focus on the constructions of subspace packings, which are
the q-analogue of packing designs. This notion is a natural generalization of constant
dimension codes, and has applications in the analysis of different network codes.
We give a recursive construction of such codes using a generalization of the linkage
construction rather than linearized polynomials. In particular, we make use of the
matrix version of MRD codes together with some facts from linear algebra. This
result is one of the main outcomes of our recent work.

We express that these problems are different from but substantially related to each
other. Connections among them are also expressed in related places. Furthermore,
we remark that various areas of mathematics are used to solve these problems in gen-
eral, e.g. finite geometry, algebraic geometry, algebra, and linear algebra. Therefore,
it is not easy to introduce all advances properly with their complete preliminary in-
formation here. Moreover, we try to keep our language as simple as possible, and
follow the historical journey of the advances. In that way, we target that this thesis
can addresses to a more general reader group.

Keywords: linearized polynomials, subspace polynomials, rank metric codes, maxi-
mum rank distance (MRD) codes, subspace codes, constant dimension codes, random
network coding, subspace packings.
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ÖZ

MAKSİMUM RANK UZAKLIKLI KODLARIN, DEVİRLİ SABİT BOYUT
KODLARININ, VE ALTUZAY PAKETLEMELERİNİN İNŞASI

Otal, Kamil
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2018 , 40 sayfa

Bu tezde, kodlama teorisindeki üç ana probleme çözümler sunan temel katkıları ta-
nıtmayı amaçlıyoruz.

İlk problem birbirine denk olmayan maksimum rank uzaklıklı (MRD) kodların in-
şasını inceliyor. Yani, Fq üzerindeki m × n matrislerin mümkün olan en büyük kü-
mesinin inşasını, kümedeki iki farklı matrisin farkının rankı belirli bir sayıdan küçük
olamayacak şekilde ele alarak araştırıyoruz. Bu tarz kodların uygun bir denklik fikri
altındaki inşaları son on yılda başka alanlardaki uygulamaları sebebiyle kaydadeğer
bir ilgi topladı, ve bizim çalışmalarımızı da içeren inşaların çoğu son birkaç yılda
keşfedildi. Bu inşa yöntemlerini, temel ve en genel denklik fikrini dikkate alıp sınıf-
landırarak veriyoruz. Bu doğrultuda, literatürdeki birçok işte de gözlendiği gibi, temel
olarak lineerleştirilmiş polinomların dilini kullanıyoruz.

Rastgele ağ kodlamadaki etkin hesaplama ile ilgili bir uygulamadan kaynaklanan
ikinci problem, büyük sabit boyutlu ve devirli altuzay kodlarının inşasını dikkate
alıyor. Bu kurgu dahilinde, Fnq ’nin k-boyutlu altuzaylarından oluşan büyük bir kü-
meyi, kümedeki birbirinden farklı iki altuzayın birbirine olan altuzay uzaklığı belirli
bir sayıdan daha yakın olmayacak şekilde ve her bir altuzayın devirli kaydırılmışı da
küme içinde kalacak şekilde inşa etmeyi amaçlıyoruz. Bu tarz kodların literatürdeki
tek sistematik inşasını yine lineerleştirilmiş polinomları ama bu sefer biraz farklı şe-

ix



kilde kullanarak tanıtıyoruz. Belirtmek isteriz ki bu inşanın ana yapısı bizim bir diğer
çalışmamızda sunulmuştur. Ek olarak, çözümün tarihini ve bazı ilgili notları özetli-
yoruz.

Son problemde, paketleme tasarımlarının q-analoğu olan altuzay paketlemelerinin in-
şasına odaklanıyoruz. Bu fikir sabit boyut kodlarının doğal bir genelleştirmesidir, ve
farklı ağ kodlarının analizinde uygulamaları vardır. Bu tarz kodların yinelemeli bir
inşasını, lineerleştirilmiş polinomlar yerine "linkage" inşa metodunun bir genelleş-
tirmesini kullanarak veriyoruz. Özellikle, MRD kodların matris versiyonlarından ve
lineer cebirdeki bazı araçlardan faydalanıyoruz. Bu inşa yöntemi bizim son çalışma-
mızdaki ana sonuçlardan biridir.

Bu problemlerin birbirinden farklı ama birbirleriyle oldukça bağlantılı olduğunu be-
lirtiriz. Aralarındaki bağlantılar da ilgili yerlerde veriliyor. Ayrıca not etmek isteriz
ki genel olarak matematiğin sonlu geometri, cebirsel geometri, cebir, ve lineer cebir
gibi çeşitli alanları bu problemleri çözmek için kullanılmıştır. Bundan dolayı, tüm
gelişmeleri gerekli ön bilgilerini de tam bir şekilde burada vererek sunmak kolay de-
ğildir. Üstelik, dilimizi mümkün mertebe basit tutmaya çalışıyoruz, ve gelişmelerin
tarihi seyrini takip ediyoruz. Bu şekilde, daha genel bir okuyucu grubuna hitap etmeyi
hedefliyoruz.

Anahtar Kelimeler: lineerleştirilmiş polinomlar, altuzay polinomları, rank uzaklıklı
kodlar, maksimum rank uzaklıklı kodlar, altuzay kodları, sabit boyut kodları, rastgele
ağ kodlama, altuzay paketlemeleri.
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CHAPTER 1

INTRODUCTION

In this chapter, firstly we give an overview on the main goal of coding theory related

to our contents. Later, we exemplify this goal introducing our motivating problems.

Lastly, we summarize the outline of the other chapters.

1.1 Overview

The main concern in coding theory is to communicate fast and correctly. In this di-

rection, a finite ambient set A endowed with a distance function (metric) d is taken.

The elements of A are called words, some of which are determined as "meaning-

ful", whereas the others are considered "meaningless". Meaningful words are called

codewords and the set C of codewords in A is called a code or dictionary.

The idea of communication is to convey codewords to some other part on a commu-

nication channel. However, the "noise" level of the channel may alter the codewords

and turn them into other codewords or meaningless words in A. Therefore, the other

part may not understand or misunderstand the original codeword. On the other hand,

a corrupted codeword is expected to be in a close neighborhood of the original one.

Accordingly, we need to determine C utilizing the metric function d on A in a suit-

able way. Namely, we require that the elements of C are distributed homogeneously

in A as much as possible. In that way, the receiver can guess that the received word

is originally the closest codeword to itself (error correction). In this set up, the min-

imum distance between any two distinct codewords is called the minimum distance

of C and denoted by d(C). Minimum distance of a code is the main security measure
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of the code. In particular, for "noisier" channels we need to determine codes with

larger minimum distances. However, an increase in d(C) causes a decrease in the size

of C for fixed A. This trade-off yields a sphere packing problem, or an optimization

problem in other words.

In addition to construct largest possible codes for a given minimum distance, we can

need some further properties on the code depending on needs coming from compu-

tations. For instance, if we take A as a vector space, then choosing C as a subspace

of A can be quite useful in many applications. Similarly, sometimes we can need to

classify codes with respect to an equivalence notion, and discover new codes when-

ever possible. Such concerns are interesting because of not only their importance in

applications but also their attractive theoretical structures.

In this thesis, we focus on the construction of three of such structures, and want to

give all known contributions by classifying them and summarizing their history. In

particular, the rest of this chapter is devoted to introduce the problems explicitly and

highlight the contents of the thesis. We also note that we assume the reader has basic

knowledge of linear algebra and finite fields.

1.2 Problem Settings

Let Fm×nq denote the set of m × n matrices over a finite field Fq of q elements. The

function d defined on Fm×nq × Fm×nq by

d(A,B) := rank(A−B)

satisfies the usual axioms of a metric, and is called the rank distance on Fm×nq .

A subset C of the ambient space A = Fm×nq including at least two elements and

equipped with the rank distance is called a rank metric code. The minimum distance

d(C) of a rank metric code C is defined by d(C) := min{d(A,B) : A,B ∈ C and A 6=
B}.

Note that, from a given rank metric code, we can produce another one, of the same

size and minimum distance, by applying some basic operations. For example, mul-

tiplying all codewords from the right by an invertible n × n matrix we produce such
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a second rank metric code. Therefore, new constructions are expected to give really

"new" codes considering this issue. In other words, we need to define an equiva-

lence notion between any two codes. The most general and widely used definition

of equivalence is determined in [5] considering the set of all rank distance preserving

maps under the light of [46, Theorem 3.4]: Two rank metric codes C, C ′ ⊆ Fm×nq are

called equivalent if there exist X ∈ GL(m,Fq), Y ∈ GL(n,Fq), Z ∈ Fm×nq , and an

automorphism σ of Fq acting on the entries of a given matrix in Fm×nq such that

C ′ = XCσY + Z := {XCσY + Z : C ∈ C} when m 6= n,

C ′ = XCσY + Z or C ′ = X(Ct)σY + Z when m = n,
(1.1)

where the superscript t denotes the transposition of matrices. Observe that Z must be

the zero matrix if both C and C ′ are additive, i.e. closed under addition. Furthermore,

if both C and C ′ are linear over Fq, then σ can be taken as the identity without loss

of generality. This equivalence idea have been used in different forms and scopes in

several works [5, 23, 25, 27, 29, 30, 33, 34, 36, 37, 38, 45].

Rank metric codes have a well-known upper bound, called Singleton-like bound, for

a given minimum distance. We state it as follows.

Proposition 1.2.1. [8] Assume m ≤ n without loss of generality. Let C ⊆ Fm×nq be a

rank metric code, then |C| ≤ qn(m−d(C)+1).

An elementary proof for this proposition can be given as follows.

Proof. Let d denote d(C) for short, and C ′ ⊆ F(m−d+1)×n
q be the set of matrices ob-

tained by deleting the last d−1 rows of codewords in C. IfA,B ∈ C are distinct code-

words, then so are their imagesA′, B′ ∈ C ′, as d(A,B) = rank(A−B) > d−1. This

implies that |C| = |C ′|. Also the inclusion C ′ ⊆ F(m−d+1)×n
q implies |C ′| ≤ qn(m−d+1),

which means |C| ≤ qn(m−d+1).

We call a rank metric code maximum rank distance (MRD) if the Singleton-like bound

is met. MRD codes exist for all q,m, n and d [8, 16, 35] and have various applications,

for example, in random network coding [40], space-time coding [24, 43], distributed

storage [39], and cryptography [41].
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The number of inequivalent MRD codes increase while the parameters get larger

[36]. This result is very similar to the classification of finite groups in group theory.

Therefore, the classification and finding new MRD codes problem has gained interest

and many constructions appeared especially in the last decade, see for example [4, 9,

11, 21, 23, 29, 30, 33, 34, 37, 38, 45]. We briefly express it as the first motivating

problem of the thesis as follows.

Problem 1. For which parameters and how can we construct new classes of MRD

codes with respect to the equivalence idea given in (1.1)?

Now we give some basic definitions and facts and then introduce the second problem.

Note that the finite field FqN is also a vector space over Fq. We call the set of all sub-

spaces of FqN over Fq as projective space of (vector) dimensionN over Fq and denote

by Pq(N). The set of all k dimensional elements of Pq(N) is called Grassmannian

space (or briefly Grassmannian) over Fq and denoted by Gq(N, k). The metric d on

Pq(N) given by

d(U, V ) := dimU + dimV − 2 dim(U ∩ V )

is called the subspace distance. A subset C ⊆ Pq(N) including at least two elements

and equipped with this metric is called a subspace code. If moreover C ⊆ Gq(N, k),

then C is called a constant dimension code. We define the minimum distance d(C) of

a subspace code C by d(C) := min{d(U, V ) : U, V ∈ C and U 6= V } naturally. A

cyclic shift of a subspace U ⊆ FqN is given by αU := {αu : u ∈ U}, where α ∈ F∗qN .

Observe that a cyclic shift is a subspace of FqN over Fq of the same dimension. A

subspace code C is called cyclic if αU ∈ C for all U ∈ C and α ∈ F∗qN , and quasi-

cyclic if αU ∈ C for all U ∈ C and α ∈ G, where G is a multiplicative subgroup of

F∗qN . Quasi-cyclic codes are also known as “(cyclic) orbit codes" (see, for example,

[17, 44]).

Remark 1.2.1. Note that we use d to denote both the subspace distance and the rank

distance functions together, but we think that there is a less possibility to confuse

them in this thesis. It is because, they are defined on different ambient spaces, also

we examine them in separate chapters, Chapter 2 and Chapter 3.
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Subspace codes constitute the main mathematical structure in random network coding

by reason of their error correction capabilities shown in [20]. Cyclic subspace codes

have a particular interest with their efficient encoding and decoding algorithms. They

were firstly presented in [20] from the design theoretical perspective, and then they

are defined in [13] as the q-analogue of classical cyclic codes. They are also studied

in [44] and [17] from the point of view of group actions. Constructions of such codes

is the second main problem of in this thesis, and we state it briefly as follows.

Problem 2. How can we construct large cyclic subspace codes systematically?

The third problem considers a generalization of subspace distance but the code does

not require to include cyclic shifts of codewords. Now we present the third problem

explicitly. Let 1 ≤ s ≤ k ≤ N and λ ≥ 1. Also let C be a set of k-dimensional

subspaces of FNq such that any s-dimensional subspace of FNq is covered by at most λ

elements of C. In other words, C satisfies

dim(U1 ∩ · · · ∩ Uλ+1) ≤ s− 1

for all distinct U1, . . . , Uλ+1 ∈ C. We call such sets subspace packings. Subspace

packings are q-analogue of packing designs and the construction of large packing

designs is an important problem in design theory, see surveys [26, 42]. Similarly, our

ultimate purpose is to construct large subspace packings, see survey [2] for example.

This problem has a recent application to network coding [14, 15].

Let Aq(N, k, s;λ) denote the largest possible size of a subspace packing, we give the

mathematical setup of this problem as follows.

Problem 3. How can we construct large, preferably of size Aq(N, k, s;λ), subspace

packings?

5



1.3 Organization

We give the outline of the other chapters as follows.

Chapter 2 is devoted to contributions related to Problem 1. In particular, Section 2.1

basically gives mathematical background: the introduction of linearized polynomials

over finite fields and their fundamental properties in Section 2.1.1, the connection

between linearized polynomials and rank metric codes in Section 2.1.2, and lastly a

quite fruitful lemma and its proof in Section 2.1.3. We then propose three large fam-

ilies obtained by diverse constructions in Sections 2.2, 2.3, and 2.4 separately. Later

on, we list concise information on the other constructions in Section 2.5. Finally,

we list some further remarks and comments regarding Problem 1 and its solutions in

Section 2.6.

Chapter 3 mainly introduces the unique systematic solution to Problem 2 in the lit-

erature. In particular, we utilize subspace polynomials – a special class of linearized

problems introduced in Section 3.1. Later we state and prove our main result, Theo-

rem 5, in Section 3.2.

In Chapter 4, we initially present a different approach to Problem 3 in the first section.

Later, we state the main theorem, Theorem 6, together with further remarks in Section

4.2. The last section proves Theorem 6 considering the cases separately.

In the last chapter, we briefly discuss the main results of the thesis emphasizing the

profiles of the methods to build them.
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CHAPTER 2

CONSTRUCTIONS OF MAXIMUM RANK DISTANCE CODES

In this chapter, we introduce all basic constructions of MRD codes. Hence, this chap-

ter can be seen as an updated and slightly extended version of Section 3 of our work

[32]. We use the language of linearized polynomials as usual in many recent works

(see for example [23, 29, 30, 33, 34, 38, 45]). We introduce such polynomials in

Section 2.1 and then give three large families of MRD codes in Sections 2.2, 2.3,

and 2.4. We emphasize that the families given in Sections 2.2 and 2.4 are the among

our contributions proposed in [30] and [33] respectively. Lastly, we mention other

constructions briefly in Section 2.5 and concluding remarks in Section 2.6.

2.1 Preliminaries

This section aims to define and explain one of the main mathematical concepts of the

thesis. First subsection is devoted to linearized polynomials, the second subsection

gives their connections to rank metric codes, and the last one proposes a very practical

tool, Lemma 2.1.1.

2.1.1 Linearized Polynomials

A polynomial f(x) ∈ Fqn [x] of the form

f(x) =
l∑

i=0

αix
qi (2.1)
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is called a q-polynomial (or, a linearized polynomial) over Fqn . We call l the q-degree

of f if αl 6= 0. Some important properties of such polynomials can be given as

follows.

• f(cα + β) = cf(α) + f(β) for all c ∈ Fq and α, β ∈ Fq, where Fq denotes the

algebraic closure of Fq.

• Each root of f in Fq has the multiplicity qr where r is the smallest integer

satisfying αr 6= 0.

• The roots of f in an extension of Fqn constitute a vector space over Fq. Spe-

cially, the set of roots of f in Fqn is a subspace of Fqn over Fq. This space

is called the kernel of f and denoted by ker(f). The rank of f is defined by

n− dim(ker(f)) and denoted by rank(f).

2.1.2 Polynomial Representation of Rank Metric Codes

Let f(x) ∈ Fqn [x] be a q-polynomial of q-degree at most n − 1. Let {ε1, ε2, . . . , εn}
and {δ1, δ2, . . . , δn} be two ordered bases of Fqn over Fq. Then, for all α ∈ Fqn we

have

f(α) = f(c1δ1 + c2δ2 + · · ·+ cnδn)

= c1f(δ1) + c2f(δ2) + · · ·+ cnf(δn)

=
[
f(δ1) f(δ2) . . . f(δn)

] [
c1 c2 . . . cn

]t

= [ε1 ε2 . . . εn]


f(δ1)ε1 f(δ2)ε1 . . . f(δn)ε1

f(δ1)ε2 f(δ2)ε2 . . . f(δn)ε2
...

... . . . ...

f(δ1)εn f(δ2)εn . . . f(δn)εn




c1

c2
...

cn


(2.2)

for some ci ∈ Fq for 1 ≤ i ≤ n, where f(δi)εj denotes the coefficient of εj when f(δi)

is written as a linear combination of ε1, . . . , εn, for all 1 ≤ i, j ≤ n. Let F denote the

matrix given by [f(δi)εj ]i,j ∈ Fn×nq , equation (2.2) says that there is a one to one cor-

respondence between f and F with respect to the fixed ordered bases {ε1, ε2, . . . , εn}
{δ1, δ2, . . . , δn}. Furthermore, we have rank(F ) = rank(f). Moreover, the alge-

bra Fn×nq with the matrix addition and the matrix multiplication corresponds to the
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algebra

Ln := {α0x+ α1x
q + · · ·+ αn−1x

qn−1

: α0, . . . , αn−1 ∈ Fqn}

with the addition and the composition of polynomials modulo xqn − x, respectively.

Let f(x) =
∑n−1

i=0 αix
qi ∈ Ln and let {δ1, δ2, . . . , δn} given above be a normal basis.

Also take εi = δi for all i = 1, . . . , n. Then, the correspondence f ↔ F above im-

plies the correspondence f̂ ↔ T−1F tT , where f̂ is given by f̂(x) =
∑n−1

i=0 α
qi

n−ix
qi

mod xq
n − x, the subscripts of the coefficients are given modulo n, and T is a partic-

ular invertible matrix. Here, f̂ is called the adjoint of f .

We consider the algebra Ln as the ambient space instead of the algebra Fn×nq while

studying rank metric codes. Accordingly, we can inherit the equivalence notion (1.1)

in case σ is identity as follows: Let C and C ′ be two subsets of Ln (both including at

least two elements), then C and C ′ are equivalent if there exist g1, g2, g3 ∈ Ln such

that g1(x) and g2(x) are invertible and

C ′ = g1(x) ◦ C ◦ g2(x) + g3(x)

:= {g1(x) ◦ f(x) ◦ g2(x) + g3(x) mod xq
n − x : f(x) ∈ C}, or

C ′ = g1(x) ◦ Ĉ ◦ g2(x) + g3(x)

:= {g1(x) ◦ f̂(x) ◦ g2(x) + g3(x) mod xq
n − x : f(x) ∈ C},

(2.3)

where the ◦ operation denotes the composition. Note also that, if C is closed under

addition, then the minimum distance d(C) is indeed the minimum non-zero rank of the

elements in C. We prefer to represent rank metric codes using Ln instead of Fn×nq as

the ambient space, since polynomials are independent of any bases and hence seem

to be more brief and neat to represent rank metric codes. Also the arithmetic on

polynomials seems easier than the one on matrices.

Note that, from a code C ⊆ Fn×nq of minimum distance d, by deleting the last n−m
rows (or columns) for some m < n, we can obtain another code C ′ ⊆ Fm×nq (or

⊆ Fn×mq ) of distance d−n+m. We call this procedure puncturing and C ′ a punctured

code. Here, if C is an MRD code then so is C ′. Therefore, these constructions can

be used to produce MRD codes of rectangular matrices. In the following chapter, we

give constructions of MRD codes mainly for m = n.
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2.1.3 A Useful Tool

We now give an important lemma used to construct three large families of MRD

codes introduced in the following three sections. Before stating it, we remember the

definition of norm function Normqn/q on Fqn over Fq: Normqn/q(x) := x1+q+···+q
n−1 .

Also we recall that a q-polynomial f(x) ∈ Fqn [x] of q-degree l can have at most ql

roots, i.e. dim(ker(f)) ≤ l by the fundamental theorem of algebra.

Lemma 2.1.1. [19] Let f(x) = α0x+α1x
q + · · ·+αlx

ql ∈ Fqn [x] be a q-polynomial

of q-degree l, where 0 < l < n. If Normqn/q(αl) 6= (−1)nlNormqn/q(α0), then

dim(ker(f)) ≤ l − 1.

An elementary proof of Lemma 2.1.1, which is also available in [38], can be given as

follows.

Proof. Observe that there is a one to one correspondence between an l-dimensional

subspace U of Fqn over Fq and a monic q-polynomial of q-degree l annihilating U ,

let us denote this polynomial by mU . Every linearized polynomial of q-degree l an-

nihilating U is an Fqn-multiple of mU , and so it suffices to prove the result for any

particular linearized polynomial of q-degree l annihilating U . Choose an Fq-basis

{δ1, . . . , δl} of U , and define a q-polynomial f as follows.

f(x) := det



x xq . . . xq
l

δ1 δq1 . . . δq
l

1

δ2 δq2 . . . δq
l

2

...
... . . . ...

δl δql . . . δq
l

l


= α0x+ α1x

q + · · ·+ αlx
ql .

Here, clearly f annihilates U , i.e. is a multiple of mU . On the other hand, expanding

along the top row gives that α0 = (−1)lαql and so Normqn/q(αl) = (−1)nlNormqn/q(α0),

which completes the proof.

2.2 Twisted Gabidulin Codes and their Generalizations

In this section, we give the first construction of MRD codes and its generalizations

following their history. Theorem 1 and the following remarks at the end of this section
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gives the most general version of this construction.

A natural construction of MRD codes can be given in the language of linearized

polynomials as follows:

Gn,k := {α0x+ α1x
q + · · ·+ αk−1x

qk−1

: αi ∈ Fqn for all 0 ≤ i ≤ k − 1}.

Observe that the size of Gn,k is clearly qnk. Moreover, the dimension of kernel of

the subtraction of any two distinct elements in Gn,k is less than or equal to k − 1. In

other words, d(Gn,k) ≥ n− (k− 1). These two facts prove that Gn,k is an MRD code.

Moreover, Gn,k is a linear subspace of Ln over Fq, which makes it a mathematically

rich and practically useful structure. This set is the first construction of MRD codes

in history and has been discovered in [8, 16, 35] independently. It is called Gabidulin

codes or Delsarte-Gabidulin codes in the literature.

Gabidulin codes were generalized in [16] considering all automorphisms of Fqn over

Fq as

Gn,k,s := {α0x+ α1x
qs + · · ·+ αk−1x

qs(k−1)

: αi ∈ Fqn for all 0 ≤ i ≤ k − 1},

where s is an integer satisfying gcd(s, n) = 1. We reemphasize that all polynomials

are considered modulo xqn − x for along this chapter even if we do not express it

explicitly. The main idea used here is the fact that Fqn ∩ Fqs = Fq. The resulting

family is linear again and called generalized Gabidulin codes. Note that, for n ≤ 4,

all generalized Gabidulin codes are equivalent to Gabidulin ones. We can give G5,2,1

and G5,2,2 as an example of the smallest inequivalent couples of such codes. We

can show the inequivalence between them as follows: Assume that there are two

invertible linearized polynomials g1, g2 ∈ L5 satisfying, for all α0, α1 ∈ Fq5 there

exist β0, β2 ∈ Fqn such that

β0x+ β1x
q2 ≡ g1(x) ◦ (α0x+ α1x

q) ◦ g2(x) mod (xq
5 − x). (2.4)

If we expand the computations on the right hand side in equation (2.4), and equate

the coefficients of xq, xq3 , xq4 to zero, then we see that either g1 = 0 or g2 = 0, i.e.

not both are invertible, contradiction. Note that G5,2,1 and G5,2,2 are both linear, so

disproving this assumption is enough to prove the inequivalence between them.

A significant generalization of Gabidulin codes was discovered in [38]. The author

relates MRD codes with finite semifields (a generalization of finite fields) and utilizes
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Lemma 2.1.1 explicitly. The resulting family is

Hn,k,s(η, h) := {α0x+ α1x
qs + · · ·+ αk−1x

qs(k−1)
+ ηαq

h

0 x
qsk : α0, . . . , αk−1 ∈ Fqn},

where gcd(n, s) = 1, 1 ≤ k ≤ n − 1 and η ∈ Fqn satisfies Nqn/q(η) 6= (−1)nk.

This family is called generalized twisted Gabidulin codes. Particularly, Hn,k,1(η, h)

is called twisted Gabidulin codes. The multiplicative structure of the norm function

together with Lemma 2.1.1 can be directly used to prove that Hn,k,s(η, h) is indeed

an MRD code. The full classification of this family with respect to the parameters

was investigated in [29] for n = 4 and k = 2, in [38] for s = 1 and (n, k) 6= (4, 2),

and in [23] for arbitrary s values. Explicitly, [23, Theorem 4.4] says the following

about the equivalence of such codes: Let n, k, s, t, g, h ∈ Z+ satisfying gcd(n, s) =

gcd(n, t) = 1 and 2 ≤ k ≤ n− 2. Let η and θ be in Fqn satisfying Normqns/qs(η) 6=
(−1)nk and Normqnt/qt(θ) 6= (−1)nk. The codes Hn,k,s(η, g) and Hn,k,t(θ, h) are

equivalent if and only if one of the following sets of conditions are satisfied:

1. s ≡ t and g ≡ h modulo n, and there exist c, d ∈ (Fqn \{0}), an automorphism

ρ of Fq, and an integer r such that

θcq
h−1dq

r+h−qr+sk

= ηρq
r

.

2. s ≡ −t and g ≡ −h modulo n, and there exist c, d ∈ (Fqn \ {0}), an automor-

phism ρ of Fq, and an integer r such that

cq
g−1dq

r+g−qr+sk

= ηρq
r

θq
sk

.

In particular, the smallest examples of new codes in this family are semifields given

for q = 3, n = 3 and k = 1, and for q = 4, n = 2 and k = 1. On the other hand, this

construction does not work for the q = 2 and η 6= 0 case.

The set Hn,k,s(η, h) was extended further in [30] for case q is composite. This ex-

tension includes also nonlinear but additive codes. The following theorem introduces

the corresponding larger family.

Theorem 1. Let n, k, s, u, h ∈ Z+ satisfying gcd(n, s) = 1, q = qu0 and k < n. Let

η ∈ Fqn be satisfying Nqn/q0(η) 6= (−1)nku. Then the set

Hn,k,s,q0(η, h) := {α0x+ α1x
qs + · · ·+ αk−1x

qs(k−1)
+ ηα

qh0
0 x

qsk : α0, . . . , αk−1 ∈ Fqn}
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is an MRD code of minimum distance n− k + 1.

Lemma 2.1.1 can be efficiently applied to prove also Theorem 1. The codes in this

family is called additive generalized twisted Gabidulin codes.

We now elaborate one point as a preparation to show that Hn,k,s,q0(η, h) includes

newer codes. Consider f(x)p
i

:= xp
i◦f(x) mod xq

n−x, where p is the prime divid-

ing q. If we expand f(x)p
i to the corresponding matrix as in (2.2), then we obtain the

matrix B−1F piA, where A and B are invertible matrices satisfying [δp
i

1 . . . δp
i

n ]A =

[δ1 . . . δn] and [εp
i

1 . . . εp
i

n ]B = [ε1 . . . εn]. That is, f(x)p
i does not correspond to

F pi directly. In fact, f(x)p
i is not a q-polynomial when i 6≡ 0 mod logp(q), so it

corresponds to another q-polynomial which has the matrix form B−1F piA when we

fix the ordered bases {ε1, . . . , εn} and {δ1, . . . , δn}. Nevertheless, it makes sense to

write the equivalence between two additive codes C and C ′ in polynomial form as

follows: C ≡ C ′ if and only if

C ′ = g1 ◦ Cp
i ◦ g2, or C ′ = g1 ◦ Ĉp

i ◦ g2

for some invertible q-polynomials g1, g2 ∈ Fqn [x] and a non-negative integer i, even

if some elements are not q-polynomials. These pi-polynomials give an idea about the

largest field over which the code is linear. Consequently, we deduce the following

result about additive rank metric codes in general: Let C1, C2 ⊆ Ln be two additive

rank metric codes and let Fq1 ,Fq2 be the largest subfields of Fq such that C1 is Fq1-

linear and C2 is Fq2-linear, then q1 = q2 if C1 and C2 are equivalent. In that way,

when we compare two additive twisted Gabidulin codes, we observe the following:

Let q = qu11 = qu22 . Then Hn,k,s,q1(η, h) and Hn,k,s,q2(η, h) are not equivalent when

gcd(h logp q1, n logp q) 6= gcd(h logp q2, n logp q).

Remark 2.2.1. A further generalization of codes in Theorem 1 has been available

in a recent preprint [37]. The author mainly utilizes further algebraic properties of

skew polynomial rings and particular semifields (Petit’s cyclic semifields) in order to

construct new MRD codes.

Remark 2.2.2. We introduced Hn,k,s,q0(η, h) as generalization of Gabidulin codes

in this section, but there is another direction of generalization of such codes. We

introduce it in Section 2.4 separately.
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2.3 Hughes-Kleinfeld Codes

The family introduced in Section 2.2 has been inspired by a particular family of semi-

fields, twisted semifields. In this section, we introduce another family of MRD codes

for even n, constructed from Hughes-Kleinfeld semifields. We can give the main

result directly as follows.

Theorem 2. [45] Let n be an even integer and s be an arbitrary integer satisfying

gcd(n, s) = 1. Let also γ ∈ Fqn satisfying Normqn/q(γ) is a non-square in Fq. Define

Dn,k,s(γ) :=

{
α0x+

(
k−1∑
i=1

βix
qsi

)
+ γαkx

qsk : β1, . . . , βk−1 ∈ Fqn , α0, αk ∈ Fqn/2

}
.

Then Dn,k,s(γ) is an MRD code of size qnk and minimum distance n− k + 1.

It is easy to prove Theorem 2 using Lemma 2.1.1. In particular,Dn,1,s(γ) corresponds

to Hughes-Kleinfeld semifields, i.e. it contains new codes for k = 1. Moreover, it

includes new codes for also other k > 1 values. We use the following definition in

order to prove Dn,k,s(γ) is new for all parameters. Let

Nr(C) := {φ ∈ Ln : φ ◦ f ∈ C for all f ∈ C}

for a given C ⊆ Ln. We call Nr(C) the right nucleus of C. If subsets C and C ′ of Ln
are both linear and equivalent to each other, i.e. there exist invertible g1, g2 ∈ Ln such

that C = g1 ◦C ′ ◦ g2, then for any given element φ ∈ Nr(C) we observe the following:

C = φ ◦ C ⇔ g1 ◦ C ′ ◦ g2 = φ ◦ (g1 ◦ C ′ ◦ g2)⇔ C ′ = (g−11 ◦ φ ◦ g1) ◦ C ′,

and so g−11 ◦φ◦g1 ∈ Nr(C ′). That means, there is a one to one correspondence between

elements of Nr(C) and Nr(C ′), and hence their sizes are the same. However, direct

computations show that Nr(Dn,k,s(γ)) = Fqn/2 whereas Nr(Hn,k,s(η, h)) = Fqn . In

conclusion, we get that Hughes-Kleinfeld type MRD codes are never equivalent to

generalized twisted Gabidulin codes.

2.4 Partition Codes

Both families of MRD codes given in Sections 2.2 and 2.3 are generalizations of two

semifields and produce additive codes. In this section, we present another family

14



of MRD codes which is not a generalization of semifields. Furthermore, it includes

non-additive MRD codes for most of the parameters. The construction is given as

follows.

Theorem 3. [33] Let I be a subset of Fq, and n, k and s be positive integers such that

k < n and gcd(n, s) = 1. Also let

C(1)n,k,s,I :=

{
k−1∑
i=0

αix
qsi mod xq

n − x : α0, . . . , αk−1 ∈ Fqn ,Normqn/q(α0) ∈ I

}
,

C(2)n,k,s,I :=

{
k∑
i=1

βix
qsi mod xq

n − x : β1, . . . , βk ∈ Fqn ,Normqn/q(βk) /∈ (−1)n(k+1)I

}
.

Then Cn,k,s,I := C(1)n,k,s,I ∪ C
(2)
n,k,s,I is an MRD code with d(Cn,k,s,I) = n− k + 1.

We can use Lemma 2.1.1 again in order to show that minimum distance of Cn,k,s,I is

larger than or equal to n − k + 1. Besides, we can find the size of Cn,k,s,I using the

facts that the norm function is an onto function, and C(1)n,k,s,I and C(2)n,k,s,I are disjoint.

For q = 2 we see that Cn,k,s,I is a generalized Gabidulin code. On the other hand,

Cn,k,s,I is not closed under addition when q > 2 and I is not one of ∅, {0},Fq \ {0}
and Fq. Also we see that zero is in Cn,k,s,I , i.e. Cn,k,s,I is not affine. These facts impose

that Cn,k,s,I is not equivalent to any additive codes when q > 2 and I is not one of

∅, {0},Fq \{0} and Fq. We remark that Cn,k,s,I includes all known non-additive MRD

codes for most of the parameters n and d in the literature.

2.5 Other Constructions

Previous three subsections give three known families of MRD codes, whose construc-

tions work for nearly all parameters n and d. In this section, we mention the other

constructions in the literature briefly.

1. The first non-additive MRD codes in history was given in [4] for n = 3 and

d = 2 utilizing some features from finite geometry. Later, this method was

generalized in [11] for arbitrary n and d = n− 1. We can give the construction
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using the language of linearized polynomials as follows: For λ ∈ Fqn \ {0}, let

πλ := {(αx) ◦ (x+ λxq + λ1+qxq
2

+ · · ·+ λ1+q+···+q
n−2
xq

n−1
) ◦ (βx) :

α, β ∈ Fqn \ {0}},
Jλ := {(αx) ◦ (x− λxqn−1

) ◦ (βx) : α, β ∈ Fqn \ {0}},
A1 := {αx : α ∈ Fqn \ {0}},
A2 := {αxqn−1

: α ∈ Fqn \ {0}}.

We remark that πλ1 = πλ2 and Jλ1 = Jλ2 when Norm(λ1) = Norm(λ2).

Hence, for Norm(λ) = a, we can use πa and Ja instead of using the notations

πλ and Jλ, respectively. Thus we get the following result.

Theorem 4. Let q > 2 and n ≥ 3. For any subset I of Fq \ {0, 1}, put

ΠI =
⋃
a∈I πa, ΓI =

⋃
b∈Fq\(I∪{0}) Jb and set

An,I := ΠI ∪ ΓI ∪ A1 ∪ A2 ∪ {0} ⊆ Ln.

Then An,I is a non-additive MRD code of minimum distance n− 1.

We cannot use Lemma 2.1.1 in order to verify Theorem 4. In fact, further

preliminary information mostly from projective geometry is required before

the proof, and hence we omit the proof here.

2. A generalization of Theorem 4 is available in [9] for MRD codes of m×n type

with d = m− 2 satisfying m ≤ n.

3. Linear sets are used to construct MRD codes for n = 6 and d = 5, and for

n = 8 and d = 7 in [6].

4. A generalization of punctured generalized Gabidulin codes was given in [34].

The idea is to produce codes including m× n matrices, where m is larger than

or equal to a nontrivial multiple of n. In general, the authors use linearized

polynomials of the form

k−1∑
i=0

αix
qi +

l∑
j=1

ηj

(
k−1∑
i=1

λi,jαi

)
xq

k−1+tj
,

for fixed ηj and λi,j for i = 0, 1, . . . , k − 1 and j = 1, . . . , l taking ηj ∈
Fqsj \ Fqsj−1 , where n ≤ s0 and Fq ⊆ Fqs0 ( Fqs1 ( · · · ( Fqsl ⊆ Fqm .
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5. Another investigation of codes including rectangular matrices is available in

[25]. In particular, the authors give MRD codes of m × 4 type with d = 3 for

m > 4, and of m × 5 type with d = 4 for m > 7. They also showed that the

codes of these families are not punctured generalized Gabidulin codes.

6. Another study on codes of rectangular type matrices is available in [7]. The

authors introduce a construction of MRD codes containing (rn/2) × n type

matrices with d = n− 1 for even n.

2.6 Final Remarks

We list some concluding remarks regarding the construction problem of such codes.

• We emphasize that three main constructions in Sections 2.2, 2.3 and 2.4 are

constructed under the light of Lemma 2.1.1. Note that a similar notion is avail-

able also in [34] for rectangular matrices. Such tools can be seen as an initial

point for constructions of MRD codes.

• We also remark that two main constructions in Sections 2.2 are 2.3 are inspired

by semifields. Therefore, it makes sense to study on other semifields for further

constructions.

• The structure of the codes plays an important role for checking equivalence.

For example, testing equivalence between two non-additive MRD codes seems

a considerably hard problem.

• MRD codes have various applications in many areas such as coding theory and

cryptography. In particular, linear MRD codes are used as encryption keys

in some code-based encryption schemes. Observe also that we can construct

at least 2q different partition codes using only the parameter I in Theorem 3.

Here, 2q is an exponential statement in terms of q and independent of n. That

is, the set of such codes can be chosen sufficiently large with respect to q, for

even small m and n values. However, there are no applications of non-additive

MRD codes such as partition codes in cryptography yet.
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• MRD codes have connections with some geometrical structures such as linear

sets, see [22] for example. That means, the constructions of new MRD codes

may help us to understand and enrich other areas in mathematics.
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CHAPTER 3

CONSTRUCTIONS OF CYCLIC CONSTANT DIMENSION

CODES

In this chapter, we introduce a construction of cyclic constant dimension codes using

a particular class of linearized polynomials. This construction is the first and unique

systematic construction of such codes up to our knowledge. We also briefly mention

the history of generalizations of the method. We remark that our work [31] inherits

the main framework of the construction.

3.1 Preliminaries

We have sufficient knowledge about linearized polynomials from Section 2.1. We

now present a particular class of such codes. A monic q-polynomial over FqN is

called a subspace polynomial if

• it splits completely over FqN (i.e. all roots are in FqN ), and

• has no multiple roots (i.e. the coefficient of x is nonzero).

From the definition we observe a one to one correspondence between a k-dimensional

subspaceU of FqN and a subspace polynomial f of q-degree k satisfying f(U) = {0}.

Let U ∈ Gq(N, k), we assume 1 < k < N unless otherwise stated since we omit the

trivial cases. Clearly, U is a linear space over Fq, but U can be also a linear space

over a larger field. This property affects some important parameters, the Orb(U) :=
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{αU : α ∈ F∗qN} set is called the orbit of U , the size of an orbit can be determined as

follows.

Proposition 3.1.1. Let U ∈ Gq(N, k). Then, t is the largest number such that U is

Fqt-linear if and only if

|Orb(U)| = qN − 1

qt − 1
.

Similar versions of this well-known theorem are available also in [1, 10, 17]. We may

prove this theorem in an elementary way as follows.

Proof. (⇒) : Let Fqt be the largest field over which U is linear. Then we have

|Orb(U)| ≤ qN−1
qt−1 since aU = U for all a ∈ Fqt . Assume that the equality does

not hold. Then there exists an α ∈ FqN \ Fqt such that αU = U , by pigeon hole prin-

ciple. It implies U is also Fqt(α)−linear, but Fqt ( Fqt(α) since α /∈ Fqt . Hence Fqt

is not the largest field over which U is linear, contradiction. Therefore, the equality

must hold, i.e. |Orb(U)| = qN−1
qt−1 .

(⇐) : It can be shown by the (⇒) part.

If t = 1 in Proposition 3.1.1, then the orbit is called full length orbit. Otherwise, the

orbit is called degenerate orbit.

If we need to work on degenerate orbits in general, we can equivalently work on

full length orbits over Fqt and then carry all the information from Gqt(N/t, k/t) to

Gq(N, k).

3.2 A Systematic Construction

The following theorem gives a systematic construction of cyclic subspace codes in-

cluding many full length orbits in Gq(N, k), when the minimum distance is 2k − 2.

Theorem 5. Let k and s be positive integers satisfying 1 ≤ s < k and gcd(s, k) = 1.

Consider r polynomials

Ti(x) := xq
k

+ θix
qs + γix ∈ Fqn [x], 1 ≤ i ≤ r
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satisfying θi 6= 0 and γi 6= 0 for all 1 ≤ i ≤ r, and

(
γi
γj

) qs−1
q−1

6=

(
γi
γj

(
θi
θj

)−1) qk−1
q−1

when i 6= j. (3.1)

Also let

- Ni be the degree of the splitting field of Ti for 1 ≤ i ≤ r,

- Ui ⊆ FqNi be the kernel of Ti for 1 ≤ i ≤ r,

- N be a multiple of lcm(N1, ..., Nr).

Then the code C ⊆ Gq(N, k) given by

C =
r⋃
i=1

{αUi : α ∈ F∗qN}

is a cyclic code of size r q
N−1
q−1 and of minimum distance 2k − 2.

Proof. Let Ci := {αUi : α ∈ F∗qN}, for 1 ≤ i ≤ r. Then C :=
⋃r
i=1 Ci is a cyclic

subset of Gq(N, k). It is enough to prove

dim(αUi ∩ βUj) ≤ 1 when i 6= j or
α

β
/∈ Fq, (3.2)

in order to show that |C| = r q
N−1
q−1 and d(C) = 2k − 2. Let θ ∈ αUi ∩ βUj for some

1 ≤ i, j ≤ r. Then there exist u ∈ Ui and v ∈ Uj such that θ = αu = βv. Write α
β
u

instead of v, solving the system Ti(u) = 0 and Tj(αβu) = 0 in terms of u, we obtain(
(
αq

k

βqk
)θi − (

αq
s

βqs
)θj

)
uq

s

+

(
(
αq

k

βqk
)γi − (

α

β
)γj

)
u = 0. (3.3)

The left hand side of equation (3.3) is clearly a q−polynomial in terms of u. Here,

computations show that the left hand side is not identically zero because of (3.1). On

the other hand, if one of(
(
αq

k

βqk
)θi − (

αq
s

βqs
)θj

)
and

(
(
αq

k

βqk
)γi − (

α

β
)γj

)
is zero, then the result directly holds. Otherwise, i.e. when both are nonzero, we see

that any two roots u1 and u2 must satisfy(
u1
u2

)qs−1
= 1,
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which implies u1/u2 ∈ Fq since gcd(s, k) = 1. That means, elements u in (3.3)

constitute a vector space of dimension at most one. In other words, the proof is

completed.

Remark 3.2.1. The initial version of Theorem 5 was given in [1] for θi = γqi and

s = 1. Later, it was generalized in [31] to the s = 1 case. The current version has

been proposed by [3].

Remark 3.2.2. Note that Theorem 5 includes only full length orbits. We can insert

degenerate orbits into the code keeping the minimum subspace distance. In particular,

for k dividingN , it is shown in [3] that we insert also a degenerate orbit coming from

the polynomial of type

xq
k − ax ∈ Fqn [x].

In that way, the size of the code can be slightly increased.

Remark 3.2.3. Let T (x) ∈ FqN [x] be a subspace polynomial and U be the set of all

roots of T (x). There is another subspace U ⊆ FqN associated with T (x).

u ∈ U ⇔ T (x) =

(
xq − 1

uq−1
x

)
◦Q(x)

for some q-polynomial Q(x) over FqN . This space can be also characterized by

u ∈ U ⇔ uq is a root of T (x) := (α0x)q
k

+ · · ·+ (αk−1x)q + x,

where

T (x) = xq
k

+ αk−1x
qk−1

+ · · ·+ α0x.

Here, U is called the adjoint space of U [28, Theorems 14, 15 and 16]. Therefore,

corresponding to a code C obtained in Theorem 5, we can construct another code C
using the polynomials Ti(x) = γq

k

i x
qk + θq

k−s

i xq
k−s

+ x instead of Ti(x) in Theorem

5. Both C and C are of the same size, and we call C the adjoint code of C.
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CHAPTER 4

CONSTRUCTIONS OF SUBSPACE PACKINGS

In this chapter, we give a recursive solution to Problem 3. The solution is also avail-

able in our work [12] where also further information about lower and upper bounds

for Aq(N, k, s;λ) and computational results are presented.

4.1 Preliminaries

Let 1 ≤ δ ≤ k ≤ N and α ≥ 2 be integers. Also, let C be a set of k-dimensional

subspaces of FNq such that any α elements of C span a subspace of dimension at least

k + δ in FNq . We denote the largest possible size of C by

Bq(N, k, δ;α).

We have the following equalities.

Aq(N, k, s;λ) = Bq(N,N − k, k − s+ 1;λ+ 1),

Bq(N, k, δ;α) = Aq(N,N − k,N − k − δ + 1;α− 1).

These equalities come from a one to one correspondence between a codeword and its

dual with respect to the classical inner product given by (x1, . . . , xN) · (y1, . . . , yN) =∑N
i=1 xiyi for any (x1, . . . , xN), (y1, . . . , yN) ∈ FNq . We can state this correspondence

briefly in the following well-known result.

Proposition 4.1.1. Let U1, . . . , Uλ ∈ Gq(N, k). Then,

(U1 + · · ·+ Uλ)
⊥ = U⊥1 ∩ · · · ∩ U⊥λ .
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Proof. The proof can be derived directly for λ = 2 as follows.

v ∈ (U1 + U2)
⊥ ⇔ v · y = 0 for all y ∈ U1 + U2

⇔ v · (a1u1 + a2u2) = 0 for all a1, a2 ∈ Fq, u1 ∈ U1, u2 ∈ U2,

⇔ a1(v · u1) + a2(v · u2) = 0 for all a1, a2 ∈ Fq, u1 ∈ U1, u2 ∈ U2,

⇔ v · u1 = 0 and v · u1 = 0 for all u1 ∈ U1, u2 ∈ U2,

⇔ v ∈ U⊥1 ∩ U⊥2 .

We can complete the proof for general λ applying induction.

Now we give a technical lemma as a property of MRD codes.

Lemma 4.1.1. Let d, k and N be integers satisfying 2 ≤ d ≤ k < N . There are qN

MRD codes Ci ⊆ Fk×Nq for 1 ≤ i ≤ qN satisfying the following.

• Minimum rank distance of Ci is d for all 1 ≤ i ≤ qN ,

• Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ qN ,

• Minimum rank distance of
⋃qN

i=1 Ci is d− 1.

Proof. Recall Gabidulin codes

G = {θ0x+ θ1x
q + · · ·+ θk−dx

qk−d ∈ FqN [x] : θ0, . . . , θk−d ∈ FqN}

from Section 2.2. Clearly G is an MRD code of size qN(k−d+1) and minimum rank

distance N − k + d. Also note that such codes exist for all d, k and N satisfying

2 ≤ d ≤ k < N . Set

Gθ := θxq
k−d+1

+ G

for each θ ∈ FqN . Observe that minimum rank distance of Gθ is N − k + d, and

Gθ ∩ Gγ = ∅ for all distinct θ, γ ∈ FqN . We delete the last N − k rows of the

N ×N type matrix version of Gθ (remember the correspondence (2.2)) and create Cθ
(puncturing) for all θ ∈ FqN . Here, Cθ and C := ∪θ∈F

qN
Cθ are still MRD codes, and

have minimum rank distances d and d− 1 respectively.
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4.2 A Recursive Construction

In this section, we give a recursive construction for Bq(N, k, δ;α) and then deduce

the corresponding result for Aq(N, k, s;λ). Firstly note that we can naturally assume

N ≥ k+ δ, and do so from now on. On the other hand, N can be smaller than k+ 2δ

or not. Considering both cases separately, we can give the following result.

Theorem 6. [12] Let 1 ≤ δ ≤ k, k + δ ≤ N and 2 ≤ α ≤ qN + 1 be integers. Then

we have the following.

1. If N < k + 2δ, then

Bq(N, k, δ;α) ≥ (α− 1)qmax{k,N−k}(min{k,N−k}−δ+1).

2. If N ≥ k+2δ, then for an arbitrary t satisfying δ ≤ t ≤ N −k−δ, we observe

the following.

(a) If t < k, then

Bq(N, k, δ;α) ≥ (α−1)qk(t−δ+1)Bq(N−t, k, δ;α)+Bq(t+k−δ, k, δ;α).

(b) If t ≥ k, then

Bq(N, k, δ;α) ≥ (α−1)qt(k−δ+1)Bq(N−t, k, δ;α)+Bq(t+k−δ, k, δ;α).

Remark 4.2.1. Note that the length of vectors is expected to be greater than or equal

to k+δ. However, in Case 2 of Theorem 6, there is a possibility that t+k−δ < k+δ

for Bq(t+ k − δ, k, δ;α). In such situations, we consider the following convention.

Bq(t+ k − δ, k, δ;α) = min

{
α− 1,

[
t+ k − δ

k

]
q

}
.

The reason behind this convention can be understood from the definition.

Corollary 4.2.1. Let 1 ≤ s ≤ k ≤ N and 1 ≤ λ ≤ qN be integers. Then we have the

following.

1. If k > 2s− 2, then

Aq(N, k, s;λ) ≥ λqmax{k,N−k}(min{k,N−k}−k+s).
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2. If k ≤ 2s − 2, then for an arbitrary t satisfying k − s + 1 ≤ t ≤ s − 1, we

observe the following.

(a) If t < N − k, then

Aq(N, k, s;λ) ≥ λq(N−k)(t−k+s)Aq(N − t, k − t, s− t;λ)

+Aq(t+N − 2k + s− 1, t− k + s− 1, t− 2k − 2s− 1;λ).

(b) If t ≥ N − k, then

Aq(N, k, s;λ) ≥ λqt(N−2k+s)Aq(N − t, k − t, s− t;λ)

+Aq(t+N − 2k + s− 1, t− k + s− 1, t− 2k − 2s− 1;λ).

Remark 4.2.2. Theorem 6 gives a lower bound forBq(N, k, δ;α) and soAq(N, k, s;λ).

It is natural to investigate how much this bound is good. Computational results in

[12], which includes also upper bounds for Aq(N, k, s;λ) found by some other meth-

ods, show that this bound is quite good for many small parameters. For instance, we

can see some good lower bounds obtained by Theorem 6 below.

• 5377 ≤ A2(8, 6, 5; 4) ≤ 5654,

• 1024 ≤ A2(8, 4, 2; 4) ≤ 1224,

• 768 ≤ A2(8, 4, 2; 3) ≤ 901,

• 512 ≤ A2(8, 4, 2; 2) ≤ 578.

Note also that it is not easy to construct large subspace packings for larger parame-

ters using basic computational trials, hence the recursive construction in Theorem 6

can be used efficiently for this purpose.

4.3 Proof of the Construction

In this section, we prove Theorem 6 case by case. We emphasize that the main idea

utilized here is a generalization of the linkage construction (see [18] for example) by

the help of Lemma 4.1.1.
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4.3.1 Case 1: N < k + 2δ

We now prove Theorem 6 for N values satisfying k + δ ≤ N < k + 2δ. We utilize

the following construction for this purpose.

Construction 4.3.1. Let Ik denote the k × k identity matrix over Fq and let G1 ⊆
Fk×(N−k)q be a linear MRD code of minimum rank distance δ. Let G2, . . . , Gα−1 be

other (affine) MRD codes of minimum rank distance δ obtained by translating G1 in

a way that

dR(G1 ∪ · · · ∪Gα−1) = δ − 1.

At this point, we recall that G1, . . . , Gα−1 exist for all 2 ≤ α ≤ qmax{k,N−k} + 1 by

Lemma 4.1.1. Also note that Gi and Gj are disjoint for all 1 ≤ i < j ≤ α − 1.

Let G := G1 ∪ · · · ∪ Gα−1. Adding each matrix in G to the end of Ik, we construct

(α − 1)qmax{k,N−k}(min{k,N−k}−δ+1) different matrices of size k × N . The resulting

matrices are still in row reduce echelon form (RREF). Let RREF(C) denote the set of

such matrices, and let C be the set of rowspaces of matrices in RREF(C).

Proposition 4.3.1. Let C be the set of k-spaces in Construction 4.3.1. Then we have

dim(U1 + · · ·+ Uα) ≥ k + δ,

for all distinct U1, . . . , Uα ∈ C.

Proof. Given pairwise distinct U1, . . . , Uα ∈ C, let u1, . . . , uα ∈ RREF(C) be the

corresponding k × n matrices in RREF. Let also A1, . . . , Aα ∈ G satisfying

Ui = rowspace(ui) = rowspace(Ik|Ai)

for all 1 ≤ i ≤ α. Here, dim(U1 + · · ·+ Uα) is clearly equal to

rank

Ik A1

Ik A2

...
...

Ik Aα
αk×n

. (4.1)

Note thatA1, . . . , Aα must be pairwise distinct by definition. Also note thatA1, . . . , Aα ∈
G = G1 ∪ · · · ∪ Gα−1, i.e. at least two of Ai’s must be from the same Gj for some
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1 ≤ j ≤ α − 1 (by pigeonhole principle). Without loss of generality, assume A1 and

A2 are from the same Gj for some 1 ≤ j ≤ α− 1. Then clearly (4.1) is equal to

rank

Ik A1

0 A2 − A1

...
...

0 Aα − A1

≥ rank
Ik A1

0 A2 − A1

≥ k + δ.

4.3.2 Case 2a: N ≥ k + 2δ and t < k

We now prove Theorem 6 for N and t values satisfying N ≥ k + 2δ, δ ≤ t < k, and

t ≤ N − k − δ. We use the construction below for this purpose.

Construction 4.3.2. Let CN−t be a subset of k-dimensional subspaces of FN−tq such

that any α pairwise distinct elements V1, . . . , Vα ∈ CN−t satisfy dim(V1 + · · ·+Vα) ≥
k+ δ, and |CN−t| = Bq(N − t, k, δ;α). Note that N − t ≥ k+ δ since t ≤ N −k− δ,
i.e. it makes sense to take such CN−t.

1. For any V ∈ CN−t, we can find a unique matrix v ∈ Fk×(N−t)q in RREF such

that V is the rowspace of v. Create the set RREF(CN−t) writing each element

of CN−t in this form.

2. Let G1 ⊆ Fk×tq be a linear MRD code of minimum rank distance δ. Let

G2, . . . , Gα−1 be other (affine) MRD codes of minimum rank distance δ ob-

tained by translating G1 in a way that

dR(G1 ∪ · · · ∪Gα−1) = δ − 1

(recall Lemma 4.1.1). Let G := G1 ∪ · · · ∪ Gα−1. Adding each matrix in G to

the end of each v ∈ RREF(CN−t), we construct (α−1)qk(t−δ+1)|CN−t| different

matrices of size k×N . The resulting matrices are still in RREF. We define C as

the set of rowspaces of such matrices.

3. Additionally, consider Cappendix ⊆ Gq(N, k) such that

• the first N − (t+ k − δ) entries of Cappendix is zero,
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• dim(W1 + · · ·+Wα) ≥ k + δ for all distinct W1, . . . ,Wα ∈ Cappendix,

• Cappendix has the largest possible size (i.e. |Cappendix| = Bq(t + k −
δ, k, δ;α)).

In order to complete our construction, we take the union C ′ of C in Step 2 and Cappendix
of Step 3.

Proposition 4.3.2. Let C ′ be the set of k-spaces in Construction 4.3.2. Then we have

dim(U1 + · · ·+ Uα) ≥ k + δ,

for all distinct U1, . . . , Uα ∈ C ′.

Proof. Firstly note that C and Cappendix are disjoint. Given pairwise distinctU1, . . . , Uα ∈
C ′, if all U1, . . . , Uα are in Cappendix, then the result is clear by definition. Similarly, if

one of U1, . . . , Uα is in C and an another one is in Cappendix, then result is immediate

again. Now assume U1, . . . , Uα ∈ C and let u1, . . . , uα ∈ RREF(C) be the corre-

sponding k × N matrices. Let also v1, . . . , vα ∈ RREF(CN−t) and A1, . . . , Aα ∈ G
satisfying

Ui = rowspace(ui) = rowspace([vi|Ai])

for all 1 ≤ i ≤ α. Here, dim(U1 + · · ·+ Uα) is clearly equal to

rank

v1 A1

v2 A2

...
...

vα Aα
αk×N

. (4.2)

Also, note that the order of U1, . . . , Uα in U1 + · · ·+ Uα is not important. Therefore,

we can examine statement (4.2) in the following three cases without loss of generality.

1. Assume v1 = v2 = · · · = vα. In this case, A1, . . . , Aα must be pairwise distinct

by definition. Also note that A1, . . . , Aα ∈ G = G1 ∪ · · · ∪ Gα−1, i.e. at least

two of Ai’s must be from the same Gj for some 1 ≤ j ≤ α− 1 (by pigeonhole

principle). Assume A1 and A2 are from the same Gj for some 1 ≤ j ≤ α − 1
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without loss of generality. Then clearly (4.2) is equal to

rank

v1 A1

0 A2 − A1

...
...

0 Aα − A1

≥ rank
v1 A1

0 A2 − A1

≥ k + δ.

2. Assume vi 6= vj for all 1 ≤ i < j ≤ α. In this case,

rank

v1 A1

v2 A2

...
...

vα Aα
αk×n

≥ rank

v1

v2
...

vα
αk×(N−t)

= dim(rowspace(v1) + · · ·+ rowspace(vα))

≥ k + δ,

by the definition of CN−t.

3. Assume v1 6= v2 = v3 without loss of generality. This case also implies A2 6=
A3. Note that (4.2) equals

rank

v1 A1

v2 A2

0 A3 − A2

...
...

vα Aα

≥ rank

v1 A1

v2 A2

0 A3 − A2

≥ rank
v1

v2
+ rank(A3 − A2)

≥ (k + 1) + (δ − 1)

= k + δ.
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Remark that k + δ ≤ N − t because we take t ≤ N − k − δ. Therefore, Theorem 6

can be reapplied for Bq(N − t, k, δ;α).

4.3.3 Case 2b: N ≥ k + 2δ and t ≥ k

This case can be proven similarly as in the proof of Case 2b.
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CHAPTER 5

CONCLUSION

The main purpose of this thesis is to give the main results solving Problems 1, 2, and

3 using a simple language and remarking the historical journeys. We express that all

three problems are relatively new and motivated mainly from applications. Also note

that they have been intensely studied in recent years. Therefore, we hope that the

thesis would help researchers to follow recent advances related to these problems in

a compact and easy way. In this chapter, we briefly discuss the main results of the

thesis emphasizing the profiles of the methods to build them.

The classification of MRD codes gets more complicated when the parameters in-

crease. Fortunately, the rich and neat structure of linearized polynomials plays a

fruitful role in solutions of Problem 1. We remark that most of the solutions to Prob-

lem 1 have appeared utilizing such polynomials. As a result, we can list the largest

solutions as Theorems 1, 2, and 3 thank to Lemma 2.1.1. At this point, we also

would like to express that our contribution [30] plays a significant role in creation of

Theorem 1, and our another work [33] yields Theorem 3. In addition to these three

families, there are some other methods from different areas of mathematics as we

observe in Section 2.5.

Cyclic constant dimension codes have a relatively difficult structure since the code-

words are larger objects and we also cannot mention binary operations on codes.

Theorem 5 tries to overcome this issue relaxing the N parameter and utilizing sub-

space polynomials. Note that Theorem 5 is the only systematic solution of Problem 2

in the literature, and its eventual structure was presented in our work [31].
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The subspace packing problem, Problem 3, investigates the most gigantic structures

among the three problems. Fortunately, the neat framework of Gabidulin codes (i.e.

Lemma 4.1.1) and the linkage construction can be combined to set up Theorem 6 as

a sufficiently useful solution. The one to one correspondence between matrices in

RREF and their rowspaces is another important tool to solve the problem. We are

glad to note that this theorem is one of the basic results in our work [12].
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