

INVESTIGATION OF GENETIC DIVERSITY, HEAVY METAL AND MINERAL NUTRIENT STATUS OF *Robinia pseudoacacia* L. PLANTS COLLECTED FROM URBAN ECOSYSTEMS

MEHMET EMIN URAS

Ph.D. THESIS Department of Biology

Thesis Supervisor Prof. Dr. Ibrahim Ilker OZYIGIT

> Thesis CO-Supervisor Assoc. Prof. Dr. Ertugrul FILIZ

> > ISTANBUL, 2017

INVESTIGATION OF GENETIC DIVERSITY, HEAVY METAL AND MINERAL NUTRIENT STATUS OF *Robinia pseudoacacia* L. PLANTS COLLECTED FROM URBAN ECOSYSTEMS

MEHMET EMİN URAS (720111005)

Ph.D. THESIS Department of Biology

Thesis Supervisor Prof. Dr. Ibrahim Ilker OZYIGIT

Thesis CO-Supervisor

Assoc. Prof. Dr. Ertugrul FILIZ

ISTANBUL, 2017

MARMARA UNIVERSITY INSTITUTE FOR GRADUATE STUDIES IN PURE AND APPLIED SCIENCES

M. Emin URAS, a Doctor of Philosophy student of Marmara University Institute for Graduate Studies in Pure and Applied Sciences, defended his thesis entitled "INVESTIGATION OF GENETIC DIVERSITY, HEAVY METAL AND MINERAL NUTRIENT STATUS OF *Robinia pseudoacacia* L. PLANTS COLLECTED FROM URBAN ECOSYSTEMS", on

July 20, 2017 and has been found to be satisfactory by the jury members.

Jury Members Prof. Dr. Ibrahim Ilker OZYIGIT Marmara University

(Advisor)

(Jury Member)

(Jury Member)

Prof. Dr. Nermin GOZUKIRMIZI Istanbul University

Prof. Dr. Celal YARCI Marmara University

Prof. Dr. Goksel DEMİR Kirklareli University

Assoc. Prof. Dr. Filiz VARDAR Marmara University (Jury Member)

(Jury Member)

APPROVAL

Marmara University Institute for Graduate Studies in Pure and Applied Sciences Executive Committee approves that M. Emin URAS be granted the degree of Doctor of Philosophy in Department of Biology, Biology Program on $\mathcal{O}7, \mathcal{O}8, 2017$ (Resolution no: $2017/18^{-1}$)

Director of the Institute

ACKNOWLEDGMENT

I would like to thank Dr. Ibrahim Ilker Ozyigit for his patience, wisdom and genuine friendship. He was a great mentor with his advices and experiences. He spent great effort to advance me in academic life. Again I would like to thank him for supporting attitude, endurance and patience. I would also like to thank my co-advisor Dr. Ertugrul Filiz. He has been a great mentor and a teacher to me. I consider it a chance to be a student of Dr. Ozyigit and Dr. Filiz. I want to become a great teacher and adviser like them.

I would like to thank Dr. Celal Yarci, Dr. Nermin Gozukirmizi, Dr. Göksel Demir, Dr. Bahattin Yalcin, Dr. Filiz Vardar, Dr. Cenk Sesal and Dr. Zeki Severoglu for their great support and guidance. I thank to all of my friends in our research group especially Dr. Recep Vatansever, Ibrahim Ertugrul Yalcin, Ahmet Yilmaz and Ugur Sen for suppoting me throughout my studies during PhD thesis.

I want to express my gratitude to my family especially my wife and children for their endless patience during my PhD thesis.

This thesis was supported by Marmara University BAPKO division with project number of FEN-C-DRP-050614-0241.

In addition, following conference papers have been presented from this thesis;

- I. I. Ozyigit, M. E. Uras, U. Sen, I. E. Yalcin, R. Vatansever, S. Karadeniz, F. Tabanli, E. Filiz, G Demir, Utilization of a well-known biomonitor plant *Robinia pseudoacacia* L. to evaluate heavy metal pollution levels in Istanbul/Turkey, International Conference on Environment and Natural Science (ICENS) Singapore April 2, 2016, (Oral Presentation).
- M. E. Uras, E. Filiz, I. I. Ozyigit, U. Sen, Assessment of Genetic Diversity and Phylogenetic Analyses of *Robinia pseudoacacia* L. Collected from Urban Ecosystem, XIII. Congress of Ecology and Environment with International Participation, UKECEK-2017.

July, 2017

M. Emin URAS

TABLE OF CONTENTS

ACKNOWLEDGMENT	i
TABLE OF CONTENTSii	i
ABSTRACT	/i
ÖZETvi	ii
CLAIM FOR ORIGINALTY	.X
SYMBOLS	xi
ABBREVIATIONS	xii
LIST OF FIGURES	iv
LIST OF TABLES	ix
1-INTRODUCTION	.1
1.1 Plant Mineral Nutrition, Heavy Metals and Environmental Pollution	.1
1.1.1 Environmental pollution	1
1.1.2 Biomonitors and biomonitoring	.4
1.1.3 Studied mineral nutrient elements and heavy metals	.4
1.1.4 Robinia pseudoacacia L	11
1.2 Assessment of Genetic Similarities and Phylogenetic Relationships1	.8
1.2.1 DNA barcoding and phylogenetics1	8
1.2.2 Internal transcribed spacer (ITS) as a genetic marker	19
1.2.3 Chloroplast <i>trnL</i> - <i>trnF</i> spacer as phylogenetic marker	20
1.2.4 Molecular markers and DNA fingerprinting	23
1.2.5. Aim of this study	28
2. MATERIALS AND METHODS	29
2.1. Study Areas	29
2.2. Sampling	5
2.4 Analysis of Mineral Nutrient Elements and Heavy Metals	39
2.4.1 Sample preparation	39

	2.4.2 ICP- OES and element measurements	41
	2.5 Photosynthetic Pigment Analysis	42
	2.6 Total Protein Analysis	44
	2.7. Genetic and Phylogenetic Studies	45
	2.7.1 DNA Isolation	.45
	2.7.2 PCR Reactions	47
	2.7.3 Gel Electrophoresis	50
	2.7.4 ISSR Band Data Analysis	.52
	2.7.5 Phylogenetic Analysis	52
	2.8 Statistical Analysis	53
3. 1	RESULTS AND DISCUSSION	54
	3.1 Mineral Elements and Heavy Metals	54
	3.1.1 Boron (B)	55
	3.1.2 Calcium	.60
	3.1.3 Cadmium (Cd)	66
	3.1.4 Chromium (Cr)	71
	3.1.5 Copper (Cu)	76
	3.1.6 Iron (Fe)	81
	3.1.7 Potassium (K)	87
	3.1.8 Magnesium (Mg)	92
	3.1.1.9 Manganese (Mn)	97
	3.1.10 Sodium (Na)	103
	3.1.11 Nickel (Ni)	108
	3.1.12 Lead (Pb)	113
	3.1.13 Zinc (Zn)	.119

3.1.15 Statistical Analysis	
3.2 Photosynthetic Pigment Analysis	
3.3 Results of Total Protein Analysis	130
3.4 Genetic Analysis Data	131
3.4.1 ISSR Data	131
3.4.2 Phylogenetic Analysis	137
3.4.2.1 Internal transcribed spacer 1 (ITS1)	137
3.4.2.2 <i>trnL</i> - <i>trnF</i> intergenic spacer	141
4. CONCLUSION	147
REFERENCES	147
SUPPLEMENTARY	164
RESUME	177

ABSTRACT

INVESTIGATION OF GENETIC DIVERSITY, HEAVY METAL AND MINERAL NUTRIENT STATUS OF *Robinia pseudoacacia* L. PLANTS COLLECTED FROM URBAN ECOSYSTEMS

Fabaceae family member Robinia pseudoacacia L. is a deciduous tree, which is native to North America and has been widely planted in many parts of the world, especially in Europe, Southern Africa and Asia. Although it is considered as an invasive plant species, it has been widely used for shelter belt and land reclamation purposes. Also, this plant species is accepted as a biomonitor plant. In this study, heavy metal pollution levels of Istanbul and Kocaeli provinces were measured by using this biomonitor plant species that were collected in four different seasons, and the effects of pollution on mineral nutrient status of this plant were determined. For this purpose, fresh leaf, branch and bark samples of R. pseudoacacia plants and their co-located soils were collected from Prince Island (control), Bagdat Avenue, Barbaros Boulevard, TEM highway (dense traffic) and Dilovasi District (industrial). Determination of some mineral elements and heavy metals (B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn) were conducted by using ICP-OES. Photosynthetic pigment and total protein contents were determined as well. Additionally, some genetic analysis were performed to reveal phylogenetic relations and genetic similarity among studied R. pseudoacacia genotypes. ITS1 and trnL - trnF intergenic spacer sequences, and ISSR band data were employed for genetic analysis. DNA isolation was done by using CTAB method with some modifications.

Two different types of seasonal variations on element content were observed. According to this, B, Ca, Cd, Cr, Cu, Fe, Mg, Mn and Pb concentrations were grouped within the same pattern with an increase in spring and autumn, and a decrease in summer and winter. On the other hand, K, Na, Ni and Zn grouped in another pattern with a decrease from summer to winter, and an increase in spring after winter. Total protein concentrations were observed as the highest in autumn, while relatively lower in spring and summer. Additionally, there were some fluctuations in photosynthetic pigment concentrations in leaf samples collected from different stations in three different seasons.

ITS1 and *trnL - trnF* intergenic spacer sequences analysis showed that *R. pseudoacacia* genotypes have a high level of interspecific genetic similarity. They were also included as a subgroup in the same clade with other *Fabaceae* member genotypes when compared with other species. According to the ISSR based Principal Component Analysis test, three subplots were obtained. While one comprised the genotypes collected from Bagdat Avenue, Barbaros Boulevard, Prince Island and Dilovası Disctrict, one other comprised only genotypes of TEM Highway and the third one comprised four genotypes of Dilovası district.

According to the results, it can be proposed that ISSR molecular markers, nuclear ITS1, and chloroplast trnL - trnF intergenic spacer sequences are effective genetic tools to analyze *R. pseudoacacia* genotypes in genetic studies.

Keywords: Biomonitoring, pollution, soil, heavy metal, mineral nutrient, molecular markers, phylogeny, ITS1, *trnL* - *trnF* intergenic spacer

July, 2017

Mehmet Emin URAS

ÖZET

KENTSEL EKOSİSTEMLERDEN TOPLANAN *Robinia pseudoacacia* L. BİTKİLERİNİN GENETİK ÇEŞİTLİLİĞİNİN, AĞIR METAL VE MİNERAL ELEMENT DURUMUNUN İNCELENMESİ.

Fabaceae familyasının bir üyesi olan Robinia pseudoacacia L., Kuzey Amerika'ya özgüdür ve dünyanın birçok yerinde, özellikle Avrupa, Güney Afrika ve Asya'da dikimi yapılan yaprak döken bir ağaçtır. Bir istilacı bitki türü olarak kabul edilmesine rağmen, erozyondan koruma ve arazi ıslahı amacıyla yaygın bir şekilde kullanılmaktadır. Ayrıca, bu bitki türünün biyomonitor olarak kullanılabileceği kabul edilmiştir. Bu çalışmada, İstanbul ve Kocaeli illerinin ağır metal kirlilik düzeyleri, dört ayrı mevsimde toplanan bu biyomonitor bitki örnekleri kullanılarak ölçülmüş ve kirliliğin bu bitkinin mineral besin durumu üzerine olan etkileri saptanmıştır. Bu amaçla Büyük ada (kontrol), Bağdat Caddesi, Barbaros Bulvari, TEM karayolu (yoğun trafik) ve Dilovasi (endüstriyel) bölgelerinden R. pseudoacacia bitkisinin taze yaprak, dal ve kabuk örnekleri ile bitkilerin yetiştiği bölge toprakları toplandı. Bazı mineral element ve ağır metallerin (B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb ve Zn) miktarının belirlenmesi ICP-OES cihazı kullanılarak gerçekleştirildi. Fotosentetik pigment ve toplam protein içeriği de tespit edildi. Ayrıca, incelenen R. pseudoacacia genotipleri arasındaki filogenetik ilişkileri ve genetik benzerlik oranını ortaya çıkarmak için bazı genetik analizler de yapılmıştır. Genetik analizlerde, ITS1 ve trnL-trnF intergenik ara bölgesi dizileri ve ISSR bant verileri kullanılmıştır. DNA izolasyonu, bazı değişiklikler yapılarak CTAB yöntemi kullanılarak gerçekleştirilmiştir.

Bitki mineral element içeriklerinde iki farklı mevsimsel varyasyon gözlemlenmiştir. Buna sonuçlara göre, B, Ca, Cd, Cr, Cu, Fe, Mg, Mn ve Pb konsantrasyonları, benzer şekilde ilkbahar ve sonbaharda artarak, yaz ve kış mevsiminde ise azalarak aynı grupta toplanmıştır. Öte yandan, K, Na, Ni ve Zn, yaz mevsiminden kış mevsimine düşüş, kıştan sonra ilkbaharda bir artış göstererek başka bir grup oluşturmuştur. Toplam protein konsantrasyonlarının sonbaharda en yüksek seviyeye ulaştığı, bahar ve yaz aylarında ise göreceli olarak daha düşük seviyede olduğu tespit edilmiştir. Ayrıca, farklı istasyonlardan

üç mevsimde toplanan yaprak örneklerinin fotosentetik pigment konsantrasyonlarında bir miktar dalgalanma tespit edilmiştir.

ITS1 ve *trnL-trnF* intergenik ara bölgesi dizilerinin analizi, *R. pseudoacacia* genotiplerinin, türlerarası genetik benzerlik düzeyinin yüksek olduğunu göstermiştir. Diğer bazı türler ile karşılaştırıldığında, filogenetik ağaçta *Fabaceae* familyasının bir alt grubu olarak, familyanın diğer üyeleriyle aynı grup içinde yer almıştır. ISSR verilerine dayanan Temel Bileşen Analizi (Principal Component Analysis-PCA) testine göre, üç subplot elde edilmiştir. Biri Bağdat Caddesi, Barbaros Bulvarı, Büyük Ada ve Dilovası'ndan toplanan genotiplerden ibaretken, diğeri yalnızca TEM Otoyolu genotiplerinden ve üçüncüsü de Dilovası bölgesinin dört genotipinden oluşmaktadır.

Elde edilen sonuçlara göre, ISSR moleküler işaretleyicisi, çekirdek ITS1 dizisi ve kloroplast *trnL - trnF* intergenik ara bölgesi dizisi, genetik çalışmalarda *R. pseudoacacia* genotiplerini analiz etmek için etkili genetik araçlar olarak önerilebilir.

Anahtar kelimeler: Biomonitör, kirlilik, toprak, ağır metal, mineral besin, moleküler işaretleyici, filogeni, ITS1, *trnL – trnF* intergenik ara bölgesi

Temmuz, 2017

Mehmet Emin URAS

CLAIM FOR ORIGINALTY

In this study, some parts (leaves, branch and barks) of *Robinia pseudoacacia* L. trees, which have already been proven as a biomonitor plant species by different researches were used for monitoring seasonal pollution levels of Istanbul, which is one of the biggest metropolitans of the world, during 2014-2015 vegetation periods. In addition to measurement of heavy metals in both plant and soil samples, mineral nutrient status of tree parts were also measured to compare the effects of accumulated heavy metals in different stations in different pollution levels. Although only one season, especially summer was preferred in most of the previous studies, in this study, samplings were done during all four seasons. Additionally, some pigment concentrations of the leaves were measured to see the effects of the pollution in different stations.

Also, plant samples were collected from 5 different stations as individuals of tree populations of these stations, and filogenetic relations and genetic diversity of these populations were studied in molecular levels.

Therefore, this study conducts the similar studies in conjunction with its obtained original and new data. Hereby, we declare that this study comprises our original work. Any material in this study has never been previously published by another person or research group. Additionally, we further declare that this study does not contain any materials, which have been submitted for any degrees or diplomas, or other qualifications at another university.

July, 2017

Mehmet Emin URAS

SYMBOLS

%	: Percentage
μl	: Microliter
μΜ	: Micromolar
cm	: Millimeter
g	: Gram
g/cm ³	: Gram per cubic centimeter
Μ	: Molarity
ml	: Aluminum
mm	: Centimeter
°C	: Celsius
rpm	: Revolutions per minute
V	: Voltage
v	: Volume
w	: Weight

ABBREVIATIONS

AFLP	: Amplified
Ag	: Silver
Al	: Aluminum
As	: Arsenic
ATP	: Adenosintriphosphat
В	: Boron
Ca	: Calcium
Cd	: Cadmium
Cl	: Chloride
Со	: Cobalt
Cu	: Copper
DNA	: Deoxyribonucleic acid
DOIZ	: Dilovasi Organised Industrial Zone
DW	: Dry Weight
Fe	: Iron
GPS	: Global Positioning System
Hg	: Mercury
In	: Indium
ISSR	: Inter simple sequence repeat
ITS	: Internal transcribed spacer
K	: Potassium
MEHMA	: Mineral Element and Heavy metal Analysis
Mg	: Magnesium
ML	: Maximum Likelihood
Mn	: Manganese
Мо	: Molybdenum
Na	: Sodium
Ni	: Nickel
Р	: Phosphorus
PCR	: Polymerase chain reaction
PEP	: Phosphoenolpyruvate

PPA	: Photosynthesis pigment analysis
RAPD	: Random amplified polymorphic DNA
RNA	: Ribonucleic acid
ROS	: Reactive oxygen species
RuBP	: Ribulose 1,5-bisphosphate
Se	: Selenium
ТРА	: Total protein analysis
Zn	: Zinc
ТРА	: Total protein analysis
NCBI	: National Center of Biotechnology Information

LIST OF FIGURES

Figure 1.1 Places of studied mineral nutrient elements and heavy metals on periodi table	c 2
Figure 1.2 General view of R. pseudoacacia	13
Figure 1.3 Bark of <i>R. pseudoacacia</i>	14
Figure 1.4 Flowers of R. pseudoacacia	15
Figure 1.5 Fruit of R. pseudoacacia	16
Figure 1.6 R. pseudoacacia, planted in 1759,	17
Figure 1.7 Typical organization of nuclear rRNA genes in eukaryotes.	20
Figure 1.8 The schematic representation of <i>trnT</i> , <i>trnL</i> and <i>trnF</i> genes on cpDNA	22
Figure 1.9 Possible matches between ISSR primers and template DNA	27
Figure 2.1 Stations	30
Figure 2.2 Prince Island	31
Figure 2.3 Bagdat Avenue	32
Figure 2.4 TEM Highway	32
Figure 2.5 Sampling at Prince Island	34
Figure 2.6 Sampling at Bagdat Avenue	35
Figure 2.7 Samplingat Barbaros Boulevard	36
Figure 2.8 A pollution scene in Dilovasi Organized Industrial Zone (DOIZ)	37
Figure 2.9 SamplingDilovası district	38
Figure 2.10 Sampling at TEM Highway	39
Figure 2.11 -80 Ultra deep freezer	40
Figure 2.12 Plant parts samples in oven	40
Figure 2.13 Berghoff microwave oven and Teflon vessels	41
Figure 2.14 Inductively Coupled Plasma Optical Emission Spectroscopy	42
Figure 2.15 Homogenizer and UV-Visible Spectrophotometer.	43

Figure 2.16 Mortar and pestle for sample	43
Figure 2.17 Optizen NANO Q Spectrophotometer.	45
Figure 2.18 Esco Aeris Thermal Cycler Model G96	48
Figure 2.19 The schematic representation of PCR reactions steps	49
Figure 2.20 Electrophoresis equipment (B) UV transilluminator	51
Figure 2.21 The adopted parameters for phylogenetic analysis	53
Figure 3.1 Average B concentrations in Prince Island	55
Figure 3.2 Average B concentrations in Bagdat Avenue	56
Figure 3.3 Average B concentrations in TEM Highway.	56
Figure 3.4 Average B concentrations in Barbaros Boulevard	57
Figure 3.5 Average B concentrations in Dilovasi District	57
Figure 3.6 Removal rates of B	58
Figure 3.7 Average Ca concentrations in Prince Island	60
Figure 3.8 Average Ca concentrations in Bagdat Avenue	61
Figure 3.9 Average Ca concentrations in TEM Highway.	61
Figure 3.10 Average Ca concentrations in Barbaros Boulevard	62
Figure 3.11 Average Ca concentrations in Dilovasi District	62
Figure 3.12 Removal of Ca	63
Figure 3.13 Average Cd concentrations in Prince Island	66
Figure 3.14 Average Cd concentrations in Bagdat Avenue	67
Figure 3.15 Average Cd concentrations in TEM Highway.	67
Figure 3.16 Average Cd concentrations in Barbaros Boulevard	69
Figure 3.17 Average Cd concentrations in Dilovasi District	69
Figure 3.18 Removal rates of Cd	70
Figure 3.19 Average Cr concentrations in Prince Island	71
Figure 3.20 Average Cr concentrations in Bagdat Avenue	72

Figure 3.21 Average Cr concentrations in TEM Highway	72
Figure 3.22 Average Cr concentrations in Barbaros Boulevard	73
Figure 3.23 Average Cr concentrations in Dilovasi District	73
Figure 3.24 Removal of Cr	74
Figure 3.25 Average Cu concentrations in Prince Island	76
Figure 3.26 Average Cu concentrations in Bagdat Avenue	77
Figure 3.27 Average Cu concentrations in TEM Highway	77
Figure 3.28 Average Cu concentrations in Barbaros Boulevard	78
Figure 3.29 Average Cu concentrations in Dilovasi District	78
Figure 3.30 Removal of Cu	79
Figure 3.31 Average Fe concentrations in Prince Island	81
Figure 3.32 Average Fe concentrations in Bagdat Avenue	
Figure 3.33 Average Fe concentrations in TEM Highway	
Figure 3.34 Average Fe concentrations in Barbaros Boulevard	83
Figure 3.35 Average Fe concentrations in Dilovasi District	
Figure 3.36 Removal of Fe	84
Figure 3.37 Average K concentrations in Prince Island	
Figure 3.38 Average K concentrations in Bagdat Avenue	
Figure 3.39 Average K concentrations in TEM Highway	
Figure 3.40 Average K concentrations in Barbaros Boulevard	
Figure 3.41 Average K concentrations in Dilovasi District	
Figure 3.42 Removal of K	90
Figure 3.43 Average Mg concentrations in Prince Island	92
Figure 3.44 Average Mg concentrations in Bagdat Avenue	93
Figure 3.45 Average Mg concentrations in TEM Highway	93
Figure 3.46 Average Mg concentrations in Barbaros Boulevard	94

Figure 3.47 Average Mg concentrations in Dilovasi District	94
Figure 3.48 Removal of Mg	95
Figure 3.49 Average Mn concentrations in Prince Island	97
Figure 3.50 Average Mn concentrations in Bagdat Avenue	98
Figure 3.51 Average Mn concentrations in TEM Highway	
Figure 3.52 Average Mn concentrations in Barbaros Boulevard	
Figure 3.53 Average Mn concentrations in Dilovasi District	99
Figure 3.54 Removal of Mn	100
Figure 3.55 Average Na concentrations in Prince Island	103
Figure 3.56 Average Na concentrations in Bagdat Avenue	104
Figure 3.57 Average Na concentrations in TEM Highway	104
Figure 3.58 Average Na concentrations in Barbaros Boulevard	105
Figure 3.59 Average Na concentrations in Dilovasi District	105
Figure 3.60 Removal of Na	106
Figure 3.61 Average Ni concentrations in Prince Island	108
Figure 3.62 Average Ni concentrations in Bagdat Avenue	109
Figure 3.63 Average Ni concentrations in TEM Highway	109
Figure 3.64 Average Ni concentrations in Barbaros Boulevard	110
Figure 3.65 Average Ni concentrations in Dilovasi District	110
Figure 3.66 Removal of Ni	111
Figure 3.67 Average Pb concentrations in Prince Island	113
Figure 3.68 Average Pb concentrations in Bagdat Avenue	114
Figure 3.69 Average Pb concentrations in TEM Highway	114
Figure 3.70 Average Pb concentrations in Barbaros Boulevard	115
Figure 3.71 Average Pb concentrations in Dilovasi District	115
Figure 3.72 Removal of Pb	116

Figure 3.73 Average Zn concentrations in Prince Island	19
Figure 3.74 Average Zn concentrations in Bagdat Avenue	20
Figure 3.75 Average Zn concentrations in TEM Highway	20
Figure 3.76 Average Zn concentrations in Barbaros Boulevard	21
Figure 3.77 Average Zn concentrations in Dilovasi District	21
Figure 3.78 Removal of Zn12	22
Figure 3.79 Dendrogram Based on Nei's (1978) Genetic distance13	34
Figure 3.80 Principal Component Analysis (PCA) of <i>R. pseudoacacia</i> genotypes13	36
Figure 3.81 ITS1 amplicons in agarose gel13	37
Figure 3.82 Phylogenetic distribution of Robinia ITS1 sequences	39
Figure 3.83 The joining phylogenetic tree of ITS and ITS1 sequences	10
Figure 3.84 <i>trnL-trnF</i> intergenic spacer bands in agarose gel14	11
Figure 3.85 Phylogenetic distribution of trnL-trnF intergenic spacer sequences	14
Figure 3.86 The joining phylogenetic tree of <i>trnL-trnF</i> intergenic spacer sequences14	15

LIST OF TABLES

Table 1.1 Some potential heavy metal sources	3
Table 1.2 Classification of Robinia pseudoacacia L.	12
Table 1.3 First Generation DNA Markers	24
Table 1.4 Second Generation DNA Markers	24
Table 1.5 New Generation DNA Markers	26
Table 2.1 GPS coordinates and performed analysis in Prince Island samples	34
Table 2.2 GPS coordinates and performed analysis in Bagdat Avenue	35
Table 2.3 GPS coordinates and performed analysis in Barbaros Boulevard	36
Table 2.4 GPS coordinates and performed analysis in TEM Highway	37
Table 2.5 GPS coordinates and performed analysis in Dilovasi District	38
Table 2.6 Reagents for preparing 250ml of CTAB extraction buffer	46
Table 2.7 PCR reaction compounds and their total volumes	48
Table 2.8 The sequences of ITS primers	49
Table 2.9 The primer sequences of trnL - trnF intergenic genic spacer	50
Table 2.10 The sequences of ISSR primers	50
Table 3.1 Ca Levels in different studies	65
Table 3.2 Cd Levels in different studies	70
Table 3.3 Cr Levels in different studies	75
Table 3.4 Cu Levels in different studies	80
Table 3.5 Fe Levels in different studies	85
Table 3.6 K Levels in different studies	91
Table 3.7 Mg Levels in different studies	96
Table 3.8 Mn Levels in different studies	101
Table 3.9 Na Levels in different studies	107
Table 3.10 Ni Levels in different studies	112

Table 3.11 Pb Levels in different studies 117
Table 3.12 Zn Levels in different studies 123
Table 3.13 Results of Repeated Measures Multivariate Tests 125
Table 3.14 Pearson Correlation Matrix (R) scores 127
Table 3.15 Chlorophyll concentrations of Ca , Cb Total C , $Cx+x$, and Ca/Cb
Table 3.16 Total protein contents with statistics 130
Table 3.17 Details of nine ISSR primers used in this study
Table 3.18 Summary of genetic variation statistics for all loci
Table 3.19 Single-Population Descriptive Statistics
Table 3.20 Nei's unbiased measures of genetic identity and genetic distanc
Table 3.21 NCBI GenBank accession numbers and some charasteristics of ITS1 sequences obtained from this study .137
Table 3.22 Details of top three ITS1 sequences similar to <i>R. pseudoacacia</i> genotypes in this study.
Table 3.23 NCBI GenBank accession numbers and some charasteristics of <i>trnL-trnF</i> intergenic spacer sequences obtained from this study
Table 3.24 Details of top three <i>trnL-trnF</i> Intergenic spacer sequences similar to <i>R</i> . <i>pseudoacacia</i> genotypes in this study. .143

1. INTRODUCTION

1.1 Plant Mineral Nutrition, Heavy Metals and Environmental Pollution

Some elements have great importance in plant life cycle while some others are toxic, and exposure to these elements can be potentially harmful for plants. Plants uptake all the essential elements from the environment where they grow. Therefore it is a necessity to protect the environment. Mineral elements and heavy metals are natural components of the environment whose levels can be affected by athropogenic activities. It should also be noted that any problem in an environment could also affect every living member of that ecosystem. For instance, any threat to plants not only affects the plants but also decomposers, animals and eventually humans. Environmental pollution is one of the serious threats in every ecosystem. Thus, environmental studies like pollution monitoring, and recreational or bioremediation studies are important in terms of environmental sustainability. Bioindicator organisms could be effectively used in monitoring the pollution levels in an environment in addition to analytical methods and instruments such as chemical or physical detectors, and electrical and nonelectrical equipment.

1.1.1 Environmental pollution

Environmental pollution is a major problem threatening the future of humanity. Pollution and pollution-borne diseases have sharply increased since the beginning of this century, and this situation not only has been a threat to public health but also to plants, animals, microorganisms and to all ecosystems. Pollution can be defined as undesired changes in biological, chemical and physical composition of soil, water and air (Kilinc and Kutbay, 2008). Heavy metal exposure is regarded as one of the most dangerous pollution types in terms of consequences on biological life. In soil, heavy metals occur as natural components but due to anthropogenic activities, heavy metal levels has been significantly increased in all ecosystems (Das et. al. 2014). Thus, their deposition has led to the formation of many serious problems. For example, it has been reported by several authors that increased level of heavy metals can cause severe diseases like cancer or poisoning (Järup, 2003). Heavy metals and other pollutants may enter enter food chains from lower levels and then be transferred to the upper levels, jeopardizing all food chains. In most cases, the main way of exposure to toxic elements has been through dietary intake (Bo et. al., 2009; Das et. al. 2014).

Although there has not been a precise definition for heavy metal, they are generally defined by their density. The most frequently used definition for heavy metals is that "heavy metals are metals or metalloids which have density more than 5g/cm³". (Järup et. al. 2003) Some heavy metals are either essential such as cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn) or relatively harmless such as silver (Ag) and indium (In). But most heavy metals have detrimental effects on living organisms. The most deleterious heavy metals are arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) (Järup et. al. 2003; Wuana and Okieimen 2011; Tchounwou et. al. 2012).

Heavy metals can be divided into three groups; (i) essential for plant growth and development like Fe, Cu, Zn, Mn and Mo, (ii) beneficial for plant growth such as Ni and

Si, and (iii) directly toxic to plants like As, Pb, Cd, Cr and Hg (Ozyigit et al., 2013).

Figure 1.1. Places of studied mineral nutrient elements and heavy metals on periodic table.

Heavy metals have been widely used in various applications for almost 5000 years. For example, lead pipes were used in water transportation in ancient Rome; Hg was used as remedy for healing syphilis; Cd was used as chemical component in dyes; and As was used in wood preservation. Although hazards of heavy metals have been known from

ancient times, first methodological and scientific studies were published in late 1800s (Järup et. al. 2003).

Rapid industrialization, population growth, increased consumption and environmental negligence are main reasons of pollution (Das et. al. 2014). Heavy metals can easily spread throughout the environment and can even be detected in indoor dust forms at homes, schools and offices (Kurt-Karakus, 2012). Emissions of heavy metals could be in various ways such as mine tailings, electronic and metal wastes, leaded gasoline and paints, land application of fertilizers, animal manures, sewage sludge, pesticides, wastewater irrigation, coal combustion residues, spillage of petrochemicals, and atmospheric deposition (Wuana and Okieimen 2011). Some potential heavy metal sources are shown in Table 1.1. Although emissions and deposition of heavy metals have accelerated throughout the 20th century, it started to decrease in developed countries in last decades (Järup et. al. 2003).

1. Smoke and particles	• Vehicle (Cd, Pb and Mo)
	• Fossil fuels (As, Cd, Cr, Cu, Mn, Ni, V, U, Pb, Sr, Zn and Ti)
	• City and industrial waste (Cd, Cu, Pb, Sn, Hg and V)
2. Industry	Production of plastic goods (Co, Cr, Cd and Hg)
	• Textile (Zn, Al, Ti and Sn)
	• Wood preservation/processing (Cu, Cr and As)
	• Refinery (Pb, Ni and Cr)
	• Production of home gadgets (Cu, Ni, Cd, Zn and Sb)
3. Metal and mine industry	• Iron and steel production (Zn, Cu, Ni, Cr and Cd)
	• Metal processing (Zn, Cu, Ni, Cr, Cd, Hg, Pb and As)
	• Smelting metals (As, Cd, Hg, Pb, Sb and Se)
4. Agriculture	• Irrigation (Cd, Pb and Zn)
	• Natural and artificial fertilizers (As, Cd, Cu, Mn, Zn, U and V)
	• Liming (As and Pb)
	• Metal corrosion (Fe, Pb and Zn)
5. Wastes	• Sewage (Cd, Cr, Cu, Hg, Mn, Mo, Ni, V, Pb and Zn)
	• Excavation and drilling (As, Cd, Fe and Pb)
	• Ash (Cu and Pb)

Table 1.1. Some potential heavy metal sources (Markert, 1993; Yasar, 2009)

1.1.2 Biomonitors and biomonitoring

Since the beginning of 1900s, lichens have been used in investigation of air pollution and which is later followed by many other organisms. In this context, a biomonitor has been described as an organism (or part of it) which is able to give information about the quality of environment. Biomonitoring is the continuous observation of relevant environment by employing bioindicators. Biomonitor organisms usually show resistance to accumulation of pollutants at high levels (Figueiredo et al., 2007). They are mainly selected based on criteria such as; (i) they should be distributed all over the relevant area in large quantities, (ii) they could discriminate the airborne and soil-borne pollutants, and (iii) they should easily be recognized and sampled (Aksoy et al., 1999). Fungi, lichens, tree barks and rings, plant leaves, mosses, mollusks and animals have been used for biomonitoring purposes so far. Biomonitoring is a cost effective and environmentally friendly approach (Aksoy, 2008). Aksoy et al. (2000) and Çelik et al. (2005) used *R. pseudoacacia* as a bioindicator for monitoring the heavy metal pollutions in different provinces of Turkey.

1.1.3 Studied mineral nutrient elements and heavy metals

Cd is a heavy metal with 48 atomic number, 112.4 atomic weight, and 8.65 g/cm³ density (Wuana and Okieimen, 2011). It is naturally present in earth crust with Zn, Pb and Cu. It is a non-essential element and also one of the major three toxic heavy metals which has detrimental effects on all organisms thereby has detrimental effects on all organisms (Järup, 2003; Wuana and Okieimen, 2011; Das et. al. 2014). Cd is used in production of PVC, color pigments, anticorrosion agents, several alloys and Ni-Cd rechargeable batteries. It is also present in detergent, pesticides, phosphate fertilizers and biosolids (sewage sludge) of farmlands. Uptake of Cd rises with lower pH (Järup, 2003; Wuana and Okieimen, 2011). It is a very persistent element and remains in soil for many years. Acute exposure to Cd results with lung inflammation, while chronic exposure results in lung cancer, proteinuria; possible kidney damage and softening of bones. Itai-itai disease, which occurred in the middle of 20th century in Jintsu River Valley, near Fuchu in Japan, is the most dramatic example of Cd poisoning. (Wuana and Okieimen, 2011).

Chromium (Cr) is a heavy metal its accumulation in the environment could threaten ecological life. It has atomic number of 24, atomic weight of 51.996 and density of 7.19 g/cm³ [61]. There are many oxidation states of Cr, among these Cr (III) ions are

considered non-toxic and a biologically active trace element for humans while Cr (IV) and Cr (VI) is highly toxic and carcinogenic [61-67]. Cr (VI) are forceful oxidants at neutral/low pH value [66]. Acute exposure to Cr results in gastrointestinal bleeding, acute renal failure and hemolysis however chronic exposure results with allergic dermatitis, pulmonary fibrosis (lung scarring) and lung cancer ([68]; Wuana and Okieimen, 2011). Chromium is a desirable metal due to its high hardness and resistance to corrosion. It is used in tanning process which causes high amounts of Cr to be released in environment with waste water. In addition there are many more areas that Cr is widely used such as alloys, electroplating, oxidizing agents, pigments for textile glass, ceramic manufacturing, and photography (Yadav, 2010; Wuana and Okieimen, 2011; Das et. al. 2014). Its excess amounts are toxic to plants; causes nutrient imbalances, wilting of tops, inhibition of growth and chlorophyll production and root damages. Accordingly, plants react against toxic Cr with reactive oxygen species (ROS) compounds (Yadav, 2010).

A certain amount of some heavy metals are essential for plants and animals. They are mostly constituents of several key enzymes and structural basic materials. One of the essential heavy metals is Cu which has atomic number of 29, atomic weight of 63.5 and density of 8.96 g/cm³ (Wuana and Okieimen, 2011). Cu exerts structural, biochemical and physiological functions. Cu serves as a cofactor for oxidative stress-related enzymes including catalase, superoxide dismutase and peroxidase. It also serves as a component of metalloenzymes that take part in hemoglobin production and carbonhydrate metabolism. Cu is also involved in CO₂ assimilation, ATP synthesis, water regulation as well as being an essential component of various compounds in photosynthetic system and respiratory electron transport chain (Yadav, 2010; Wuana and Okieimen, 2011; Tchounwou et. al. 2012). Cu cycles between oxidized Cu (II) and reduced Cu (I) states with redox reactions. During cycle transitions between states the superoxide and hydroxyl radicals are generated. Also, excessive exposure to Cu can cause Wilson disease, anemia, liver and kidney damage, and stomach and intestinal irritation in humans (Wuana and Okieimen, 2011; Tchounwou et. al. 2012).

Fe is also an essential element for plants, animals and microorganisms. It has atomic number of 26, atomic weight of 55.845 and density of 7.87 g/cm³. Fe is a crucial mineral nutrient element which has a key role in energy transformation reactions and other life processes in cells (Kabata-Pendias and Mukherjee 2007). Iron is a component of

hemoglobin and myoglobin, and it is required to make some hormones and connective tissue in humans and animals. It functions in important processes in plants such as photosynthesis, respiration and chlorophyll biosynthesis, as well as being a structural component in heme, Fe-sulfur cluster and other Fe-binding sites (Kobayashi and Nishizawa, 2012). Romheld and Marschner (1991) reported that 400-1000 µg/g of Fe in DW is toxic for plants. Its excess amounts can cause damages in plants due to ROS-derived oxidative stress (Becana, Moran & Iturbe-Ormaetxe 1998). ROS irreversibly deteriorate cellular structures, and damage biological membranes, DNA and proteins. Fe interferes with ion absorption; multiple nutritional disorder of K, P, Ca, Zn and Mg with excessive Fe uptake (Quinet et al. 2012).

Manganese (Mn) is a transition metal and a member of iron family. It has atomic number of 25, atomic weight of 54.938 and density of 7.21 g/cm³. Mn as ethylcyclopentadienyl manganese tricarbonyl (MMT) is used as gasoline additive replacing lead. It functions as a cofactor for different enzymes such as oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, lectins, and integrins. Especially arginase, phosphotransferase, reverse transcriptase and Mn-superoxidedismutase (Mn-SOD) are the best known enzymes including Mn (Law et al., 1998). In addition, Mn can also substitute Mg in various enzymes. There are also some relationships between Mn and N assimilation, photosynthesis and chloroplast structure (Kabata-Pendias and Mukherjee 2007). It is required by all organisms as trace metal but it has also some dangerous aspects as neurotoxin which can cause irreversible damage to mammal's nervous system. Chronic exposure to excessive Mn levels in humans can result in psychiatric and motor disturbances, referred to as manganism which shows symptoms similar to Parkinson's disease and causes death of dopaminergic neuron (Yin et al., 2010).

Nickel (Ni) is also a transition metal with 28 atomic number, 58.693 atomic weight and 8.908 g/cm³ density. It is an essential trace element required by humans and animals. However, it could be dangerous when maximum tolerable amounts are exceeded (Wuana and Okieimen, 2011; Das et al. 2014). Ni is commonly used in metal industry as ingredient of stainless steels and other metals. Ni alloys which have corrosion and high-temperature resistance are used in aircraft and plating industries, production of magnetic components, electrical equipments and Ni-Cd batteries. In addition, Ni is a common catalyst for hydrogenation and oxidation of various organic compounds (Kabata-Pendias

and Mukherjee 2007; Wuana and Okieimen, 2011). It plays a vital role in plants since it is a component of enzyme. The major sources of Ni as a pollutant are metal plating, combustion of fossil fuels and nickel mining. It is discharged into air by power plants and trash incinerators, and remains in air for a long period of time (Wuana and Okieimen, 2011). Ni exposure generally occurs with oral consumption. For instance, dishes containing Ni pigments or made from Ni alloys may release Ni into food. In addition, Ni can be absorbed directly by inhaling cigarette smoke, contact of skin with jewelry, shampoos, detergent and coins. Chronic exposure to Ni may be toxic even carcinogenic (Butticè, 2015). Moreover, Ni is one of the most allergic compounds (Thyssen et al. 2007).

Pb is considered as the most hazardous heavy metal for its toxicity. However, it is a useful metal which has a wide variety of applications in different areas (Kabata-Pendias and Mukherjee 2007). It has an atomic number of 82, atomic weight of 207.2 and density of 11.40 g/cm³ (Wuana and Okieimen, 2011). One of the most important features of Pb is its persistence in environment. Leaded gasoline was the major source of Pb in 1970-80s due to gasoline additives tetraethyl and tetramethyl lead. Later, leaded gasoline was prohibited in developed countries. This prohibition was helped in reducing atmospheric Pb pollution and human blood Pb levels (Becker et al., 2013). Nowadays, Pb emission is caused by production of Pb storage batteries, solders, bearings, cable covers, ammunition, plumbing, paper/pulp, gasoline, caulking, sewage sludge, mining-smelting activities, Pb containing paints and explosives (Kabata-Pendias and Mukherjee 2007; Yadav, 2010; Wuana and Okieimen, 2011).

Lead exposure occurs via inhalation and ingestion. Gastrointestinal system, kidneys and central nervous system are the most effected systems from Pb exposure. Acute exposure to high level of Pb may cause headache, nervousness, abdominal pain, encephalopathy, acute psychosis, confusion, reduced consciousness and proximal renal tubular damage. Long term exposure and bioaccumulation of Pb may cause some effects such as damage to nervous systems, memory deterioration, prolonged reaction time, reduced ability to understand, inhibition of heme formation and synthesis, anemia, kidney damage, impaired mental development of young children, carcinogenicity and genotoxicity, impaired reproductivity, impaired growth, hyperactivity, mental deterioration and lower IQ for children (Järup, 2003; Kabata-Pendias and Mukherjee 2007; Wuana and Okieimen,

2011). In addition, Pb also affects plants via inducing ROS production, morphological and membrane deteriorations, inhibition of enzymes that regulate growth and photosynthetic processes, and water imbalance and disturbance on mineral nutrition (Yadav, 2010).

Zn is a heavy metal which has atomic number of 30, atomic weight of 65.38 and density of 7.14 g/cm⁻³, and it is chemically similar to Mg. It naturally exists in soil but its levels rise due to anthropogenic and industrial activities such as mining, coal, waste combustion, sewage sludge, urban composts, excessive fertilizers and steel processing. Zinc is a component of various alloys, batteries, automotive equipment, pipes and household devices, and it is widely used as catalyst in production of rubber, pigments, plastic, lubricants, and pesticides. Drinking water stored in metal tanks may also contain high amount of zinc (Kabata-Pendias and Mukherjee 2007; Wuana and Okieimen, 2011). Zn is required by living organisms in small amounts but excessive concentrations could be harmful (Wuana and Okieimen, 2011). Plants utilize Zn in various metabolic functions such as being a co-factor of approximately 300 proteins related to carbohydrate, protein, and phosphate metabolism, and also in auxins, RNA and ribosome formations, and in transcription factors (Kabata-Pendias and Mukherjee 2007; Ricachenevsky et al., 2015). Utilization of zinc fertilizers in long term can affect the plants and cause poisoning. For instance, excessive zinc inhibits photosynthesis, and causes retarded growth, chlorosis in younger leaves and senescence. Excessive zinc gives rise to Mn and Cu deficiency in plant shoots (Kabata-Pendias and Mukherjee 2007). Zinc is also essential for humans. It has structural and catalytic functions in approximately 10% of all human proteins, and takes part in inter/intracellular signaling (Clemens et. al., 2014). It has also important role in human immune system and brain development of fetus (Hafeez et al., 2013).

Boron is a micronutrient for plants, which has an atomic number of 5, atomic weight of 10.81 and density of 2.34 g/cm³. B has various usages in different areas such as production of fiberglass, borosilicate glass, flame retardant tools, textiles, agricultural fertilizers, pesticides, cosmetics, antiseptics and laundry products. B emissions can occur from natural and artificial sources, which are mainly derived from industrial activities such as mining operations, glass and ceramics industries, chemicals production, and coal fired power plants. It spreads in water resources with sewage outfalls, especially with detergent products, leaching salt deposits and B-fertilizers. (Kabata-Pendias and

Mukherjee 2007). B is an essential microelement for vascular and some aquatic plants. It is involved in carbohydrate metabolism, movement of sugars and other materials, nitrogen fixation, cell division, maintaining the cell wall structure, differentiation, maturation, development and growth. In addition, B is also required in reproduction, pollen tube growth and pollen germination (Blevins and Lukaszewski 1998; Kabata-Pendias and Mukherjee 2007; Gupta and Solanki 2013). B influences calcium metabolism, affects bone growth and central nervous system functions, alleviates arthritic symptoms, facilitates hormone action and helps reduce the risk of some cancer types (Nielsen, 2014). B is an essential element but its high amounts could be toxic. When excessive amount of B is ingested, such symptoms like nausea, vomiting, diarrhea and dermatitis could appear (Kabata-Pendias and Mukherjee 2007).

Ca is an important component of cell as an essential macroelement. It has atomic number of 20, atomic weight of 40.078 and density of 1.55 g/cm^3 . Ca is used in various industrial areas such as production of cement, mortar, lime, glass, toothpaste, insecticides and many other products. Ca compound, calcium hydroxide solution $[Ca(OH)_2]$ is used as an indicator of CO₂ (Lide, 2005). It serves as a secondary signaling molecule in both animal and plant signaling pathways. As a major structural element, Ca makes up the bones, teeth and shells. Thus, calcium is the most abundant mineral element in mass of most animals (Lide, 2005; Hawkesford et. al., 2012; Steinhorst and Kudla, 2014). Besides, Ca contributes to cell wall and plasma membrane integrity, prevents and reduces detrimental effects of salinity, regulates ion transport, selectivity, cation-anion balance and osmoregulation, controls ion-exchange behavior and enzyme activities (Hawkesford et. al., 2012; Tuna et al., 2007). In addition, Ca plays a vital role in neurotransmitter release from neurons, contraction of all muscle types, and fertilization, serve as a cofactor, and takes part in blood-clotting cascade. Elevated blood Ca levels may result in formation of kidneys stones.

K is a mobile macroelement involved in important metabolic functions. It is an alkali metal which has atomic number of 19, atomic weight of 39.098 and density of 0.862 g/cm³. Cytosol includes many cations among which potassium is the most abundant one and regulates osmotic potential of the cell with other ions. Among major roles of K are regulations of membrane potential, plant-water interactions, plant movements, cell extension, CO_2 fixation in photosynthesis, and maintaining charge balance and enzyme

activation (especially in protein and starch synthesis, as well as in respiratory and photosynthetic metabolism) (Hawkesford et. al., 2012; Benito et al., 2014). K is used in production of agricultural fertilizers containing potassium. Potassium influences multiple physiological processes in humans and animals, including resting cellular-membrane potential, propagation of action potentials in neural, muscular and cardiac tissue, hormone secretion and action, systemic blood pressure control, and mineralocorticoid action (He and MacGregor 2008).

Mg, which is a main structural element in chlorophyll, is a plant macronutrient. It has atomic number of 12, atomic weight of 24.305 and density of 1.738 g/cm³. Its functions are mainly related to capacity to interact with strongly nucleophilic ligands. Mg interacts with proteins as direct connection or catalytic effect, both makes Mg one of the important homeostatic regulative elements. Chlorophyll is an essential molecule which makes photosynthesis possible, contains magnesium in its molecule center. Furthermore, Mg functions as a cofactor in structure of many important enzymes including glutathione synthase, ATPase, RuBP carboxylase and PEP carboxylase (Hawkesford et. al., 2012). Its excessive amounts cause ROS formation and deficiency of some other elements competing with Mg uptake in plants. Plants over-exposed to Mg demonstrate symptoms of leaf chlorosis, dark inclusions and/or crinkling (Fernando and Lynch 2015). Mg is also essential for humans. It interacts with polyphosphate compounds such as ATP, DNA and RNA. It takes role in enzymatic reactions as a cofactor of hundreds of enzymes. In addition, its involved in bone formation, has roles in nerve and muscle functions, and transcription, and adjusts blood sugar, pressure levels and protein synthesis (Gibson, 2012; Rude, 2012; Volpe, 2012).

Na is an alkali metal belonging group 1 and has atomic number of 11, atomic weight of 22.989 and density of 0.968 g/cm³. Na is a highly reactive metal and sodium compounds are highly water-soluble, thus Na is one of the most common dissolved elements by weight in oceans. Salinity is a major problem in agricultural areas. Na is a non-essential element for terrestrial plants but it can be beneficial or nutritious for some species. For instance, sodium is a growth promoter for halophytic plants (Maathuis, 2014). Low level of Na can be beneficial at lower K concentrations for plants due to similar atomic structure of K and Na (Amtmann and Sanders, 1999; Maathuis, 2014). Interestingly, low soil sodium makes some crops more tasty (Maathuis, 2014). In humans and animals, Na is

essential to maintain and regulate blood volume, blood pressure, osmotic equilibrium and pH. In addition, limited Na increase in fodder plants can help to prevent Na-deficiency in livestock (Maathuis, 2014). Excessive amount of sodium and chlorine induce to osmotic stress by reducing the water potential and production of ROS also can be seen in this condition. (Miller et al., 2010; Maathuis, 2014).

According to literature, scientific researches and publications increase the public awareness and accordingly responsible authorities. Precautions and regulations for avoiding this type of pollution have given favorable results but this situation must improve.

1.1.4 Robinia pseudoacacia L.

R. pseudoacacia L. is a perennial tree from *Fabaceae* family. In different languages, it is known as beyaz cicekli yalanci akasya (Turkish), black locust, yellow locust, or false acacia (English), gewöhnliche robinie (German), robinier faux-acacia (French), maruga (Italian), and yáng huái (Chinese). It has a wide distribution range around the world. It can grow in many soil types but particularly well on moist, loamy soils or those of limestone origin. It can survive in various types of climates, particularly preferring humid environment. The main habitat of black locust is North America but due to its invasive and adaptive features it has spread across the world naturally or by humans.

R. pseudoacacia belongs to *Fabaceae* (*Leguminosae*) family which is the third largest family in the world. This family has approximately 760 genera and 19000 species, and includes many economically important species. Along with the *Poaceae* (*Gramineae*) family, *Fabaceae* family is the most important staple food source and agricultural species in the world. *Fabaceae* family comprises three subfamilies such as *Caesalpinioideae*, *Mimosoideae* and *Papilionoideae* (*Faboideae*). Caesalpinioids range in size from shrubs to large trees naturally found in tropical regions and includes approximately 3270 species. This group also ranges in size from shrubs to large trees. Mimosoids also have much wider distribution on earth than Caesalipinioids and have vital ecological role in pantropical regions.

Papilionoids form the biggest group of *Fabaceae* family with approximately 13,800 species and they are the most studied group of this family due to their ecological and

economic importance (Schwarz et. al., 2015). *Astragalus* (over 2,400 species), *Acacia* (over 950 species), *Indigofera* (around 700 species), *Crotalaria* (around 700 species), and *Mimosa* (around 500 species) are largest generas in Papilionoids. The most important agricultural species in this family are *Glycine max* (soybean), *Phaseolus vulgaris* (bean), *Pisum sativum* (pea), *Cicer arietinum* (chickpea), *Medicago sativa* (alfalfa), *Arachis hypogaea* (peanut), *Ceratonia siliqua* (carob), *Glycyrrhiza glabra* (liquorice) (Rahman and Parvin, 2014).

Various chemical compounds have been identified in *Fabaceae* family members including several types of alkaloids, non-protein amino acids, amines, flavonoids, isoflavonoids, coumarins, phenylpropanoids, anthraquinones, di-, sesqui- and triterpenes, cyanogenic glycosides, protease inhibitors and lectins (Wink and Mohamed 2003). The subfamily *Papilionoideae* harbors the genus *Robinia*, including species *R. hispida*, *R. luxurians*, *R. neomexicana*, *R. viscosa* and *R. pseudoacacia*. In addition, other major tribes in *Papilionoideae* subfamily includes the *Swartzieae*, *Sophoreae*, *Dalbergieae*, *Amorpheae*, *Thephrosieae*, *Indigofereae*, *Phaseoleae*, *Desmodieae*, *Psoraleae*, *Loteae*, *Galegeae*, *Trifolieae*, *Podalyrieae*, *Liparieae*, *Bossiaeae*, *Crotalarieae*, *Thermopsideae*, and *Genisteae*

<u>Rank</u>	Scientific and Common Name
Kingdom	Plantae - Plants
Subkingdom	Tracheobionta - Vascular plants
Superdivision	Spermatophyta - Seed plants
Division	Magnoliophyta - Flowering plants
Class	Magnoliopsida - Dicotyledons
Subclass	Rosidae
Order	Fabales
Family	Fabaceae/Leguminosae - Pea family
Subfamily	Faboideae/ Papilionoideae
Genus	Robinia L locust
Species	Robinia pseudoacacia L black locust

Table 1.2. Classification of Robinia pseudoacacia L.

R. pseudoacacia develops extensive radial root systems, about 1-1.5 times the width of its crown. Roots can spread among gullies, which are caused by erosion. It grows to become a medium-sized tree, generally up to 12-18 m in height. Tree barks are smooth and brown during development and become thick later, deeply furrowed, scaly and dark brown. Young branches are thorny (Stone, 2009).

Figure 1.2. General view of R. pseudoacacia

R. pseudoacacia has an invasive feature, due to its high growth ability it can spread at very fast rate. It can generate monodominant forests. Wood of *R. pseudoacacia* is durable and solid. So it has numerous usages in different fields. It can be used as timber, fuelwood and in paper production (USDA, NRCS 2016). Wood of *R. pseudoacacia* were reported to be used in ship building due to its water-durable and resistance feature (Veitch et. al. 2010).

R. pseudoacacia can be propagated through seeds and it can be propagated vegetatively by using root or branch cuttings additionally in-vitro propagation can be applied for mass production (David and Keathley 1992).

Figure 1.3. Bark of *R. pseudoacacia*

Moreover, it can be used in soil enrichment studies due to residing endophytic nitrogen binding bacteria within its roots. Also R. pseudoacacia can be used for erosion control (USDA, NRCS 2016). Flowers of *R. pseudoacacia* are fragrant and contain rich nectar. Bees visit these flowers and make high quality monofloral honey (Veitch et. al. 2010). R. pseudoacacia has also been reported to contain various chemical substances. For example, "robinin (a kaempferol 3,7-di-O-glycoside)" was obtained by Zwenger and Dronke in 1861 (Zwenger and Dronke, 1861; Veitch et. al. 2010). In other studies, different bioactive molecules with antifungal and antimicrobial activities have been identified from R. pseudoacacia such as robinlin (antimicrobial), D-pinitol (antifungal), robetrin, myricetin, tannins, flavonoids, flavanonols, polyphenols, dihidrobin, robinetin and quercetin (Tian et al., 2001; Chen and Dai, 2014; Marinas et al., 2014). They were reported to provide protection against pathogens and other biotic stresses. Some plant parts especially bark contains poisonous substances for animals and humans (Veitch et. al. 2010). Furthermore, it is also used for ornamental, shelterbelt, land reclamation and melliferous purposes, and stabilizing abraded fields (Marinas et al., 2014). It has some substances that have allelopathic effects against other species. Barks of R. pseudoacacia also have exceptional endurance for deterioration because of substances such as dihidrobin and robinetin.

Figure 1.4. Flowers of R. pseudoacacia

Flowers of *R. pseudoacacia* are used in alternative medicine for antispasmodic, antigastric acid, sedative and relaxing heat burn purposes, and contents of flowers have antioxidant substances (Marinas et al., 2014). In a previous study, seed proteins of *R. psudoacacia* were reported to have antimicrobial activity against some bacteria including *Corynebacterium michiganense, Staphylococcus aureus, Bacillus subtilis, Erwinia carotovora* subsp. *carotovora, Pseudomonas syringae* pv *syringae* and *Xanthomonas campestris* pv *campestris* (Talas-Oğras et al., 2005).

In general, *R. pseudoacacia* has 2n=20 chromosome numbers but some tetraploid *R. pseudoacacia* trees (4n=40) are also widely cultivated in China (Meng et al., 2014). Its blooming season is spring. Fruits and seeds are persistent and moderately abundant on tree. Flowers of *R. pseudoacacia* are being pollinated by hummingbirds and insects especially honeybees (Stone, 2009). Fruits and seeds begin at spring and end at summer. It can be propagated by seeds, cuttings and bare roots but it has moderate spread with seed (USDA, NRCS 2016). Black locust begins producing seeds at about 6-year-old and seeds disperse with gravity and potentially by birds. Seeds can endure for long periods of time and require scarification and mineral soil for successful germination. Seedlings are intolerant to shade (Stone, 2009). In most cases *R. pseudoacacia* grow fast but it has a

short life span, living approximately 90 years but it is recorded that a *R. pseudoacacia* tree planted at 1759 in Kew Royal Botanic Garden, London, England is still alive (Figure 1.5.).

Figure 1.5 Fruit of R. pseudoacacia

The assessment of accumulated heavy metals and mineral nutrient elements in plant and soil samples can indicate the pollution status of environment. For this purpose *R*. *pseudoacacia* is commonly used in heavy metal pollution assessments as a biomonitor plant. Various heavy metals especially Cd and Pb are accumulated by *R. pseudoacacia* in plant parts. Different studies have reported that *R. pseudoacacia* is a good biomonitor organism and can be efficiently used in bioaccumulation, bioremediation and pollution studies (Filipović-Trajković, et. al. 2012; Kaya et. al. 2010; Aksoy et. al. 2000).

Figure 1.6 *R. pseudoacacia*, planted in 1759, near Elizabeth Gate at Kew Royal Botanic Garden, London, England [65]

1.2 Assessment of Genetic Similarities and Phylogenetic Relationships

1.2.1 DNA barcoding and phylogenetics

The identification and distinguishing of species have scientifically begun in 1750s and later it produced a discipline today called "Taxonomy". At earlier times, taxonomic distinction was mainly based on the morphological and anatomical features of species but over time it has become inefficient/insufficient. Thus, it has been necessary to support the taxonomical tools with other equipment, methods and techniques. The invention of PCR and DNA sequencing technologies has been revolutionary events for not only molecular biologist but also all other researchers who are dealing with all subfields of biology including taxonomy and phylogeny. PCR and DNA sequencing techniques could help identify a particular gene or whole genome sequence, which can be further used to reveal the phylogenetic relationships between species. The logic of DNA barcoding was born from this idea. DNA barcoding lies on the sequencing of some DNA regions in species as an identification tool. Microgenomic identification systems lie on sequencing small segments of DNA which permits the species discrimination. It stands as an extremely promising approach to understand the biological diversity. This approach gains acceptance in identification of protists, bacteria and viruses, which are morphologically located at the very least distinguishable group (Hebert et. al., 2003). DNA sequencing has many advantages upon other conventional PCR-based DNA markers from aspects of reproducibility, reliability, stability and simplicity. There have been many available regions/genes (coding and noncoding sequences) used for these purposes like nuclear internal transcribed spacer (ITS), mitochondrial gene cytochrome c oxidase 1 (CO1), plastid sequences; atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoCl gene, psbK-psbI spacer, trnL-trnF spacer/genes and trnH-psbA spacer. However, selected region of DNA to be sequenced must have three properties such as (i) universality, (ii) sequence quality/coverage and (iii) discrimination power. It must be found in genome of the subject species -universality-, be easily identifiable from both two directions sequence quality and coverage- and be able to distinguish specimens from each other discrimination power- (CBOL Group, 2009). For example, ribosomal RNA genes (rRNA) can be used to reveal the ancient relationships between species since these genes have small changes over time. However, genes which change rapidly like mitochondrial

and plastid genomes can reveal the divergences between closely related species (Hebert et. al., 2004). Unlike plants, animals have some standard marker like mitochondrial gene cytochrome c oxidase 1 (*COI*) to understand the phylogenetic relationship. A few candidate genes or regions have been offered as a possible standard marker but none of these were widely accepted by the taxonomic community (CBOL Group, 2009). Besides, nuclear ribosomal DNA (nrDNA) ITS region has been frequently used in determination of phylogenetic relationships between animals, plants, fungi and other life forms. The ITS region has been recently proposed as universal barcode for all fungi by Schoch et al. 2012. In addition, chloroplastic *trnL* - *trnF* spacer was also used to reveal the relationship in plants and other organisms.

1.2.2 Internal transcribed spacer (ITS) as a genetic marker

Ribosomes are very crucial component of cells due to their function to catalyze the synthesis of proteins. Catalytic center of ribosomes primarily consists of ribosomal RNAs (rRNA) and this region is highly conserved from structural and functional aspects. Therefore, rRNA regions have strong primary sequence conservation interspersed with variable regions although that ITS and IGS regions show great divergence between closely related species. The exons of rRNA genes could discriminate the distantly related species while intron regions such as ITS1 and ITS2 can be used in discrimination of closely related species. These characteristics make the rRNA cistrons an ideal molecule to investigate the phylogenetic relations between organisms. Genes which encode rRNA molecules are typically arranged into an operon, with an internally transcribed spacer (ITS) that is also used to discriminate the closely related organisms (Lee et. al., 2009; Porras-Alfaro et. al., 2014). rRNA cistrons are used to reveal the phylogenetic relations in eukaryotes such as animals, plants and fungi, and prokaryotes such as bacteria, Cyanobacteria and archea (Hebert et. al., 2004; Gillespie et. al., 2006; CBOL Group, 2009; Lee et. al., 2009). Ribosomal RNA (rRNA) cistrons are organized in Nucleolus Organizer Region (NOR) in eukaryotes. NOR region contains the tandem repeats of ribosomal genes. The eukaryotic rRNA cistron contains 18S, ITS1, 5.8S, ITS2 and 28S rRNA sequences. Among rRNA cistron these ITS1, ITS2 introns and 5.8S rRNA gene are called ITS region. Following transcription, two of ITS segments (ITS1, and ITS2) are removed via RNA splicing process (Schoch et. al., 2012).

Figure 1.7 (A) Typical organization of nuclear rRNA genes in eukaryotes. (B) Structure of Internal Transcribed Spacer (ITS) region on nuclear DNA ITS. (IGS, Intergenic Spacer; ETS, Externally Transcribed Spacer; SSU, Small Subunit; LSU, Large Subunit.) Figure A and B respectively are modified from Gillespie et al. (2006) and Porras-Alfaro et al. (2014).

1.2.3 Chloroplast *trnL* - *trnF* spacer as phylogenetic marker

DNA sequencing has dramatically changed the world of molecular biology in fields of genome mapping, gene annotation, comparative genome analysis, mutation analysis, phylogenetic analysis *etc.* After the completion of first genome sequencing by Fleischmann et al., (1995), various other organisms have been sequenced subsequently.

The main function of chloroplasts is to fulfill the photosynthesis in presence of sunlight for synthesis of glucose, fatty acids (Stumpf, 2014), pigments (Back et al., 2016), starch and amino acids (Niehaus et al., 2014). The chloroplastic genes could be divided into three categories according to their roles such as photosynthetic genes, ribosomal protein genes (rRNA, tRNA) and genes that are involved in other functions (Xu et. al., 2015). The chloroplast genomes (cpDNA) have remained better conserved than nuclear genomes. The plastid genomes (plastome) consist of a quadripartite structure that contains large single copy region (LSC), a small single copy region (SSC) and two large inverted repeats (IR). They are also highly conserved with respect to their size, gene order and structural organization as well as relatively free of large deletions, insertions, transpositions, inversions and SNPs (single nucleotide polymorphism). Thus, chloroplast genome is useful in phylogenetic studies. All chloroplasts exhibit genome polyploidy thereby chloroplast DNA is abundant; could be present in one chloroplast with 50 copies and taking into account that approximately 50 chloroplasts are present in a plant cell which makes 2500 cpDNA copies per plant cell (Alzohairy et. al., 2015; Schwarz et. al., 2015). This number could be even more in some other species. As of 2016, there have been 890 land plant chloroplast genome sequences (cpDNA, plastome) available on NCBI genome database (ncbi.nlm.nih.gov/genome). Schwarz et. al., (2015) reported that most of land plant plastomes range in size from 110 kb to 170 kb with an average of 154 kb. In addition plastome size of R. pseudoacacia is 154,835 bp, size of LSC, SSC and both of IR regions are 86,172, 19,005 and 24,829 bp respectively, and plastome has varied protein, rRNA and tRNA genes with noncoding DNA regions. Besides, it includes 76 protein-coding, 30 tRNA and 4 rRNA genes. Moreover R. pseudoacacia plastome has 17 genes with introns, 35.9% with GC content, 56.3% with protein coding regions. The chloroplastic genome of R. pseudoacacia has been recently sequenced and annotated by Sabir et al. (2016) but this data has not been published (Genbank accession number: KJ468102).

The chloroplastic DNA genes and noncoding regions have been frequently used in molecular taxonomic and phylogenetic studies, particularly analysis for basal clades due to low mutation rate compared with nuclear genes. The cpDNA is generally inherited uniparentally (maternally in Angiosperms and paternally in Gymnosperms) as a single copy and it is nonrecombinant with contast to nuclear genes which exist with at least two copies, these copies may demonstrate with recombination and gene conversion (Soltis and Soltis, 1998; Small et. al., 1998; Guo et. al., 2007).

The phylogenetic studies have showed that noncoding regions are more useful in determination of lower taxonomic ranks for their lack of functional constraints.

Therefore, phylogenetically noncoding regions can be more informative and have distinctive quality (Small et. al., 1998). During the translation mechanism in protein synthesis, tRNAs take role in transferring the information encoded in genome to structural or/and functional proteins. tRNA molecule can recognize the specific codons on messenger RNA and then carry the particular amino acids into the protein-building machinery according to DNA code written into mRNA. So, tRNAs have to be produced in large quantities and be coordinately controlled in response to need in protein synthesis. tRNA genes (trn genes) are highly conserved regions on the cpDNA. These preserved coding sequences like chloroplastic trn genes, introns and intergenic spacers are the most frequently used regions in phylogenetic studies. The trnL (UAA) - trnF (GAA) and trnT (UGU) - trnL (UAA) spacers were first characterized by Taberlet et al. (1991). Chloroplast trnL gene encodes the tRNA molecule that is the carrier of leucine amino acid meantime *trnF* gene encodes phenylalanine amino acid carrying tRNA molecule. Chloroplast trnL (UAA) - trnF (GAA) genes, their intron and intergenic spacer have been reported to be frequently used in phylogenetic studies (Bohle et al., 1994; Gielly and Taberlet, 1994; Ham et al., 1994; Mes and Hart, 1994: Sang et. al., 1997).

trnT, trnL and trnF Genes on cpDNA

Figure 1.8 The schematic representation of *trnT*, *trnL* and *trnF* genes on cpDNA

trnT, trnL and trnF genes are separated by two intergenic spacers, and trnL intron is located within the first and second exon of trnL (UAA) gene. The trnL-F (GAA) intergenic spacer separates the second exon of trnL (UAA) gene from that of trnF (Poczai and Hyvönen 2011). Taberlet et al. (1991) has reported that non-coding regions display the highest genetic divergence thereby the amplification and sequencing of these regions have crucial importance in phylogenetic studies as intraspecific genetic markers. In other words, noncoding regions are genetically more variable due to the absence of gene rearrangements and high mutation levels. Thus, it has a potential to discriminate the close species in lower taxa.

1.2.4 Molecular markers and DNA fingerprinting

Molecular markers -also known as genetic markers- can be defined as a fragment of DNA that matches with a certain sequence within the genome. These markers are often used in molecular biology to identify and amplify a particular sequence on DNA in a full or partial genome. Molecular studies employ the comparative methods with direct and indirect approaches. For instance, the comparison of genome or gene sequencing is a direct method while comparison of amplified fragments of DNA according to their amplicon size is an indirect comparison method. Both methods gained ground in scientific community (Avise, 2012). Molecular markers have a great diversity but overall they can be divided into three classes according to their conception such as protein variants (allozymes), DNA sequence polymorphism and DNA repeat variation. These markers are employed in many areas such as genome mapping, population genetics, gene tagging, molecular linkage maps, map-based gene cloning, marker aided selection, genetic diversity analysis, phylogenetic reconstruction, evolutionary studies, paternity testing and forensic applications (Maheswaran, 2004; Schlötterer, 2004). Allozymes which are accepted as first molecular markers began to be used in middle of 1960s, later various markers have been invented. The information obtained from patterns of protein gel electrophoresis was used in different fields of molecular biology. Proteins (allozymes and isozymes) were used as molecular markers, showing the DNA variations indirectly with different patterns in gel electrophoresis. Later, mid 70's are the years when DNA-based molecular markers and first DNA sequences were introduced to scientific community. In this context, RFPL were the first molecular marker, and after that various molecular markers have been developed for different purposes (Schlötterer, 2004). In other words, first generation DNA molecular markers started with RFLP. Table 1.3 shows the first generation DNA molecular markers, which are mostly derivate of RFLP markers (Maheswaran, 2004).

YEAR	Acronym	Reference
1974	RFLP	Grodzicker et al. (1974)
1985	VTNR	Jeffreys et al. (1985)
1986	ASO	Saiki et al. (1986)
1988	AS-PCR	Landergren et al. (1988)
1988	ОР	Beckmann (1988)
1989	SSCP	Orita et al. (1989)
1989	STS	Olsen et al. (1989)

Table 1.3 First Generation DNA Markers (Maheswaran, 2004)

The second generation DNA molecular markers and their references are shown in Table 1.4. These molecular markers are primarily based on the micro satellites and relied on PCR technology. Micro satellites are arrays of tandemly repeated 2 - 5 nucleotide DNA sequences which dispersed all along the genomes of all eukaryotic organisms. It must be pointed out that one of the most commonly used molecular marker "Random Amplified Polymorphic DNA (RAPD)" has been published by Williams et al. (1990) in this time line. RAPD primers can attach multiple sites in the genome and produce large numbers of DNA fragments per reaction. RAPD does not require prior knowledge about primer sequences in the target species (Maheswaran, 2004; Schlötterer, 2004).

Year	Acronym	Reference
1990	RAPD	Williams et al. (1990)
1990	AP-PCR	Welsh and McClelland (1990)
1990	STMS	Backman and Soller (1990)
1991	RLGS	Hatada et al. (1991)
1992	CAPS	Akopyanz et al. (1992)
1992	DOP-PCR	Telenius (1992)
1992	SSR	Akkaya et al. (1992)
1993	MAAP	Caetano-Anollés et al. (1993)
1993	SCAR	Paran and Michelmore (1993)

Table 1.4 Second Generation DNA Markers (Maheswaran, 2004).

New generation DNA molecular markers (Table 1.5) are effective with high-throughput performance, reliable results, reproducibility, ease of application and lower cost. Inter Simple Sequence Repeats (ISSR) and Amplified Fragment Length Polymorphism

(AFLP) came forward and are the most used markers all of new generation DNA molecular markers. PCR amplification of both markers yields multiple bands that show a presence or absence variation between individuals. New generation DNA molecular markers contain DNA sequencing technologies, genome targeting and new functional markers as well (Poczai et al., 2013).

Poczai et al., (2013) has reported that in addition to new generation DNA markers there are some developed new kind of markers such as Conserved DNA and Gene Family Based Markers (CDDP, PBA, TBP and ITP), Transposable Element Based Markers (IRAP, REMAP, ISAP, IPBS and SSAP), Resistance-Gene Based Markers (RGAP and NBS profiling), RNA-Based Markers (iSNAP, cDNA-AFLP, cDNA-RFLP and EST-SSR) and Targeted Fingerprinting Markers (DALP, PAAP, SRAP, TRAP, CoRAP and SCoT). Those markers are relatively new and also have their own advantages and weaknesses depending on the case/marker. Poczai et al., (2013) also mentioned that usage ratio of all of these new markers is 11% while RAPD, ISSR and AFLP and derivative of these markers total usage ratio is 89% until 2012. Additionally there are some new marker systems also developed like Restriction site–associated DNA sequencing (RAD-seq) (Baird et al., 2008) and InDel markers.

According to Poczai et al., (2013), most commonly used DNA Markers such as RAPD, ISSR and AFLP have some weaknesses like (i) the co-movement of same size fragments from independent loci in different samples, (ii) the co-movement of paralogous bands instead of orthologous, (iii) the nested priming, causing to amplicons from overlapped fragments, (iv) the formation of heteroduplex, alternate allelic sequences and/or similar duplicate loci generate the products, (v) the collision, two or more different fragments at equal size become in a single lane, (vi) the non-independence, due to codominancy or nested priming a band is estimated more than one, and (vii) the artifactual segregation distortions, brought about undetected codominancy, worse gel resolution or false loci scoring.

Year	Acronym	Reference
1994	ISSR	Zietkiewicz et al. (1994)
1994	SAMPL	Morgante and Vogel, (1994)
1994	SNP	Jordan and Humphries (1994)
1995	AFLP (SRFA)	Vos et al. (1995)
1995	ASAP	Gu et al. (1995)
1996	CFLP	Brow et al. (1996)
1996	ISTR	Rhode (1996)
1997	DAMD-PCR	Bebeli et al. (1997)
1997	S-SAP	Waugh et al. (1997)
1998	RBIP	Flavell et al. (1998)
1999	IRAP	Kalendar et al. (1999)
1999	REMAP	Kalendar et al. (1999)
1999	MSAP	
2000	MITE	Casa et al. (2000)
2000	TE-AFLP	van der Wurff et al. (2000)
2001	IMP	Chang et al. (2001)
2001	SRAP	Li and Quiros (2001)

Table 1.5 New Generation DNA Markers (Maheswaran, 2004)

Genetic diversity is very important and critical for survival of the species in ever-changing environmental conditions. The species can deal, maintain the homeostasis and adapt to new conditions owing to genetic diversity for long term. Moreover, information obtained from genetic diversity studies could be used in development of efficient conservation, breeding and genetic resource management strategies. Molecular markers have the capacity to develop genetically improved varieties as a complementary application for phenotypic selection. Along with phenotypic traits, molecular markers can quickly resolve which variety is worth to be cultivated on a large scale (Badfar-Chaleshtori et. al., 2012; [30]).

Molecular markers and DNA fingerprinting techniques have been developed to measure the genetic variability and cultivar identification. Among DNA-based molecular markers, Amplified Fragment Length Polymorphism (AFLP) and Restriction Fragment Length Polymorphism (RFLP) have found significant grounds in genetic relationship studies. However, these methods are expensive and not easy in application and which need expertise. Besides, Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) markers are easy in application as well as they are cheap and require no radioactive labelling; only small amounts of DNA is sufficient especially for ISSR markers which are very reproducible, and highly polymorphic and informative (Zietkiewicz et al., 1994; Gajera et. al., 2010; Sözen 2010).

Microsatellites are DNA motifs within the range of 2-5 base pairs and are repeated 5-50 times as a single locus, and these loci disperse throughout the eukaryotic genomes with thousands copies. ISSR is a PCR-based method, which includes the amplification of DNA segments between two identical microsatellite regions oriented in opposite direction. Primers of ISSR are designed from microsatellites and adjusted to anchor from both 5' and 3' as forward and reverse directions of template DNA sequences. In this technique, a single primer can target multiple genomic loci to amplify in PCR reaction. There is no need for prior genomic sequence information for ISSR primer design. This feature makes the ISSR a very advantageous application (Reddy et. al., 2002; Huang et. al., 2012).

Figure 1.9 Possible matches between primers and template DNA. Unanchored (A), 3'- anchored (B) and 5'-anchored (C). (Modified from Reddy et. al., 2002)

ISSR primers can be used unanchored or (more usually) anchored with 1 to 4 bases extended into the flanking sequences either. Unanchored primers consist of only dinucleotide, tri-nucleotide, tetra-nucleotide or penta-nucleotide of microsatellite sequences. These primers can be attached everywhere in microsatellite site of template DNA, leading to slippage and smear formation of bands (Figure 1.10. A). Anchored primers consist of microsatellite sequences along with 2-5 nucleotide flanking sequences. Anchored primers anneal specific region on the template DNA from both 3' and 5' directions and generate more clear bands (Figure 1.10 B and C). The produced bands of ISSR markers have a length of between 200-2000 bp. (Reddy et al., 2002).

ISSR is a simple, highly polymorphic and quick method which carries the benefits of microsatellites (SSRs), amplified fragment length polymorphism (AFLP) and universality of random amplified polymorphic DNA (RAPD). ISSR markers can be used for genomic fingerprinting, genetic diversity and phylogenetic analysis, genome mapping and determining the SSR motif frequency (Reddy et. al., 2002).

Having many molecular markers available, among these ISSR markers possess some advantages on others. These can be listed as (i) no need for prior or length information (ii) relatively low cost, (iii) ease in application, (iv) universality, ISSR markers can attach to multiple different loci of genome due to microsatellite sequences being abundant and dispersed throughout the eukaryotic genome, (v) diversity and discrimination power, microsatellites shows high differentiation rate compared to other parts of DNA, and (vi) reproducibility, ISSR primers (especially anchored primer) produce same bands at different applications in same PCR conditions. (Zietkiewicz et al., 1994; Reddy et. al., 2002; Cao et. al., 2006).

1.2.5. Aim of this study

In this genetic context, investigation/assessment of i) heavy metal and mineral element status of *R. pseudoacacia* plants distributed in urban ecosystem in terms of seasonal changes, ii) effects of accumulated heavy metals on mineral element status in different stations and levels, iii) photosynthetic pigment and total protein levels under heavy metal pollution, iv) genetic similarity of *R. pseudoacacia* genotype groups by using ISSR band data v) phylogenetic relationships of *R. pseudoacacia* genotype groups was aimed.

2. MATERIAL AND METHODS

In Istanbul and Kocaeli provinces, R. pseudoacacia has been often used for ornamental and recreational purposes in parks, gardens and road sides as well as planted in industrial sites that emit heavy metals and other pollutants to the environment. Thus, R. pseudoacacia plants have been significantly exposed to the traffic and industrial derived heavy metal pollutions. In this work, we initially aimed to determine the effects of pollution on plant-soil interactions in terms of mineral nutrient element and heavy metal uptakes, and some other physiological parameters. Samplings were done at all four seasons, covering the whole year to determine the seasonal variations of tested metal levels in soil and plant samples. In addition, it has been known that exposure to heavy metals can also cause mutagenesis in plant genomes. Therefore, this study also attempted to investigate the mutations in plant genomes using ISSR-PCR method. Finally, this work investigated the genetic relationships between R. pseudoacacia plants by using ITS, trnLtrnF intergenic spacer sequences and ISSR-PCR. For this, plant and soil samples were collected during all four seasons namely summer (July 2014), autumn (October 2014), winter (January 2015) and spring (April 2015). Mineral nutrient elements and heavy metals in soil, bark, washed/unwashed leaves and branch samples were analyzed using ICP-OES. As physiological parameters, photosynthetic pigment and total protein analyses were done in summer, autumn and spring samples. Genetic analyses were done using summer leaf samples.

2.1. Study Areas

Plant samples were collected from four stations in Istanbul and one station in Kocaeli province. Istanbul stations have been selected from heavy traffic sites such as Bağdad, Barbaros and TEM, and as control Prince Islands due to absence of traffic, whereas Kocaeli station was from a heavy industrial area, Dilovasi. Istanbul is the biggest and most crowded city of Turkey with approximately 14.7 million inhabitants according to TUIK 2015 data. According to TUIK 2016 report, there are over 3.5 million motor vehicles registered in Istanbul as of March 2016. Thus, city has to deal with some unfavorable situations such as traffic congestion, environmental pollution, informal settlement, rapid motorization, industrial and municipal wastes (OECD, 2008).

Figure 2.1 Stations Prince Island (1), Bağdat Avenue (2), TEM Highway (3), Barbaros Boulevard (4), Dilovasi District (5).

Prince Islands, Bağdad Avenue, Barbaros Boulevard and TEM highway are the stations from Istanbul province. Prince Islands are located in Marmara Sea, Bagdat Avenue is a shopping, residence and entertainment area at Asian side and TEM highway is very important route which connects Istanbul to other regions of Turkey. These tree stations are located at Anatolian side (Asian Side) of Istanbul while Barbaros Boulevard is located at European side. Barbaros Boulevard is one of the main roads connecting two central areas (Beşiktaş to Levent) of main city, therefore it has a very heavy traffic load.

Prince Islands consist of seven individual islands namely Buyukada (Prince Island), Heybeliada (Saddlebag Island), Burgazada (Fortress Island), Kınalıada (Henna Island), Kasık Adası (Spoon Island), Sedef Adası (Mother-of-Pearl Island) and Sivriada (Sharp Island). Prince Islands have been very popular recreational areas for Istanbulites as well as for tourists. Its population is estimated to raise up to 140.000 with daily visitors. The largest island is Prince Island (Buyukada) which has approximately 8.000 habitants in winter and 30.000 in summer, and it was selected as control station because of its conserved nature [63-64]. Transportation is carried out mostly with horse-drawn carriages or electric motorcycle/bicycle in Prince Islands. Only a few motorized vehicles belonging to the governmental agencies are used in islands and there are not any industrial facilities on islands. Mainland shore is Maltepe district which is 2.3 km far. This distance inhibits the transportation of pollutants from mainland to islands, thus islands are relatively conserved areas from traffic and industrial pollutions.

Figure 2.2 Prince Island

Bagdat Avenue is located between Kadikoy and Maltepe. It is a leading shopping and residential area of Asian Side of Istanbul. The avenue has heavy traffic load especially during rush hours. Barbaros Boulevard is one of the main routes extensively used by motor vehicles at downtown. The traffic load of boulevard is intense at anytime of weekdays. TEM highway also has an intense traffic but is more propitious than Barbaros Boulevard in terms of vehicle speed and geographic conditions.

Figure 2.3 Bagdat Avenue

Figure 2.4 TEM Highway

Kocaeli Province is one the leading industrialized cities of Turkey, which is located at 90 km east of Istanbul. The province has many industrial investments because of proximity to highways, sea and railway networks, and to the major cities such as Istanbul, Bursa and Ankara. Kocaeli has 12 organized industrial zones and the biggest one is the Dilovasi Organized Industrial Zone (DOIZ). DOIZ is located right in the center of Dilovasi district (Hamza et al., 2011). It was established in 2002 and has 900 ha land area with 209 operational companies (Mert and Akman 2011; [64]). Major industrial branches in DOIZ are iron-steel industry, chemical industry, petrochemical industry, pharmaceutical industry, wood products industry, energy industry (coal-fired electric power plant) and non-ferrous metal industry (Durukal et al., 2008; Mert and Akman 2011; Yaylalı-Abanuz, G. 2011; Bingöl et al., 2013). Inhabitants of Dilovası district are seriously affected from pollutions caused by DOIZ. Hamza et al., (2011) reported that death rates by cancer are three times higher in Dilovasi compared to the national and global records. Lung, gastrointestinal and hematopoietic cancers as well as other respiratory disease incidences rose up in last two decades (Tuncer 2009; Hamza et al., 2011).

2.2. Sampling

Samples have been collected from five different stations namely Buyukada, Bağdad Avenue, Barbaros Boulevard, TEM Highway and Dilovası district. Initially, 61 individuals were selected, plant, soil samples collected from 5 stations however some individuals were cut or died due to construction or landscaping purposes. Thus samples of all individuals couldn't be obtained for analysis. All individuals are shown in Tables 2.1-2.5 according to collected stations.

Individuals _	Coordinates		менма		тра	Genetic	
	North	East		IIA	11 A	ISSR	Phylogeny
Ada1	40° 52.454'	29° 07.665'	Х	Х	Х	Х	Х
Ada2	40° 52.414'	29° 07.688'	Х	Х	Х	Х	-
Ada3	40° 52.409'	29° 07.701'	Х	Х	х	Х	-
Ada4	40° 52.399'	29° 07.700'	-	-	-	Х	Х
Ada5	40° 52.398'	29° 07.721'	-	-	-	-	-
Ada6	40° 52.392'	29° 07.740'	-	Х	Х	Х	-
Ada7	40° 52.396'	29° 07.815'	-	-	-	Х	-
Ada8	40° 52.377'	29° 07.934'	Х	Х	х	Х	-
Ada9	40° 52.361'	29° 07.964'	Х	Х	Х	Х	-
Ada10	40° 52.330'	29° 08.056'	Х	Х	Х	Х	Х
Ada11	40° 52.258'	29° 08.170'	Х	Х	х	Х	-
Ada12	40° 52.338'	29° 08.167'	Х	Х	Х	Х	-

Table 2.1 GPS coordinates and performed analyses in Prince Island samples (MEHMA, Mineral Element and Heavy Metal Analysis; PPA, Photosynthetic Pigment Analysis; TPA, Total Protein Analysis)

Figure 2.5 Sampling at Prince Island

Table 2.2 GPS coordinates and performed analyses in Bagdat Avenue samples(MEHMA, Mineral Element and Heavy Metal Analysis; PPA, Photosynthetic PigmentAnalysis; TPA, Total Protein Analysis

Individuals _	Coordinates					Genetic Studies	
	North	East		PPA	IFA	ISSR	Phylogeny
Bag1	40° 58,420'	29° 03,255'	-	-	-	Х	-
Bag2	40° 58,329'	29° 03,682'	Х	х	Х	Х	-
Bag3	40° 58,350'	29° 03,678'	-	х	Х	Х	X
Bag4	40° 58,174'	29° 03,974'	Х	X	Х	Х	X
Bag5	40° 58,087'	29° 03,992'	Х	х	х	х	-
Bag6	40° 58,084'	29° 03,989'	-	-	-	х	-
Bag7	40° 57,967'	29° 04,222'	-	-	-	Х	-
Bag8	40° 57,676'	29° 04,663'	Х	Х	Х	Х	Х
Bag9	40° 57,658'	29° 04,711'	Х	Х	Х	Х	-
Bag10	40° 57,691'	29° 04,742'	Х	Х	X	Х	-
Bag 11	40° 57,482'	29° 05,143'	Х	Х	Х	Х	-
Bag 12	40° 57,431'	29° 05.205'	x	x	x	x	_

Figure 2.6. Sampling at Bagdat Avenue

Table 2.3 GPS coordinates and performed analyses in Barbaros Boulevard samples(MEHMA, Mineral Element and Heavy Metal Analysis; PPA, Photosynthetic PigmentAnalysis; TPA, Total Protein Analysis)

Individuala	Coordinates				TDA	Genetic Studies	
murriuuais	North	East		FFA	IFA	ISSR	Phylogeny
Bar1	41° 03,223'	29° 00,571'	Х	х	Х	х	-
Bar2	41° 03,227'	29° 00,578'	Х	х	х	х	-
Bar 3	41° 3.256'	29° 00,671'	-	-	Х	х	-
Bar 4	41° 02,882'	29° 00,498'	Х	х	х	х	-
Bar 5	41° 02,852'	29° 00,493'	Х	х	х	х	-
Bar 6	41° 02,843'	29° 00,494'	Х	Х	Х	х	-
Bar 7	41° 02,771'	29° 00,470'	-	-	х	х	-
Bar 8	41° 02,771'	29° 00,470'	Х	х	х	х	-
Bar 9	41° 02,770'	29° 00,467'	-	-	Х	х	-
Bar 10	41° 02,770'	29° 00,467'	-	-	Х	х	Х
Bar11	41° 02,665'	29° 00,452'	X	Х	X	x	X
Bar12	41° 02,666'	29° 00,454'	X	X	X	X	X

Figure 2.7. Sampling at Barbaros Boulevard

Table 2.4 GPS coordinates and performed analyses in Dilovasi District samples(MEHMA, Mineral Element and Heavy Metal Analysis; PPA, Photosynthetic PigmentAnalysis; TPA, Total Protein Analysis)

Individuala	Coordinates		MEIIMA	Ъ₽А	тъλ	Genetic Studies	
mulviuuais	North	East		FFA	IFA	ISSR	Phylogeny
Dil1	40° 46,951'	29° 31,793'	Х	Х	Х	Х	-
Dil2	40° 46,941'	29° 31,802'	Х	Х	Х	Х	-
Dil3	40° 46,944'	29° 31,800'	-	Х	Х	х	-
Dil4	40° 46,987'	29° 31,789'	Х	Х	Х	-	-
Dil5	40° 47,015'	29° 31,786'	Х	Х	Х	х	-
Dil6	40° 47,068'	29° 31,784'	-	Х	Х	х	-
Dil7	40° 47,086'	29° 31,791'	Х	Х	Х	Х	Х
Dil8	40° 47,109'	29° 31,784'	Х	Х	Х	Х	Х
Dil9	40° 47,233'	29° 32,070'	-	Х	Х	х	Х
Dil10	40° 47,251'	29° 32,062'	-	Х	Х	Х	-
Dil11	40° 47,508'	29° 31,870'	Х	Х	Х	Х	-
Dil12	40° 47,269'	29° 31,768'	Х	х	Х	-	-

Figure 2.8 A pollution scene in Dilovasi Organized Industrial Zone (DOIZ)

Figure 2.9 Sampling at Dilovası district

Table 2.5 GPS coordinates and performed analyses in TEM highway samples (MEHMA,
Mineral Element and Heavy Metal Analysis; PPA, Photosynthetic Pigment Analysis;
TPA, Total Protein Analysis)

Ter dissi dara la	Coordinates				TDA	Genetic Studies	
Individuals -	North	East		PPA	IPA	ISSR	Phylogeny
TEM16	40° 52,940'	29° 22,775'	Х	Х	х	х	-
TEM18	40° 52,947'	29° 22,773'	-	Х	х	х	-
TEM19	40° 52,952'	29° 22,773'	-	Х	Х	Х	Х
TEM20	40° 52,960'	29° 22,758'	Х	Х	х	х	-
TEM21	40° 52,970'	29° 22,748'	-	Х	х	х	-
TEM22	40° 52,975'	29° 22,743'	Х	Х	Х	Х	-
TEM23	40° 52,980'	29° 22,738'	-	Х	Х	Х	-
TEM24	40° 52,982'	29° 22,731'	Х	Х	х	х	-
TEM25	40° 52,989'	29° 22,725'	-	Х	Х	Х	Х
TEM26	40° 53,020'	29° 22,688'	Х	Х	х	х	Х
TEM27	40° 53,048'	29° 22,663'	Х	Х	х	х	-
TEM28	40° 53,052'	29° 22,659'	X	X	Х	X	-
TEM29	40° 53,062'	29° 22,653'	Х	х	х	Х	-

Figure 2.10 Sampling at TEM Highway

2.4 Analysis of Mineral Nutrient Elements and Heavy Metals

2.4.1 Sample preparation

Samplings were conducted in summer (July 2014), autumn (October 2014), winter (January 2015) and spring (April 2015). Samples were processed each time for avoiding contamination, decay and confusion. Soil samples (about 500 g) were taken from a depth of 10 cm by using a stainless steel shovel, and were dried at 80°C in an oven for 48 hrs and then passed through a 2-mm sieve. The sieves were washed with distilled water and 96% ethanol each time to avoid contamination. 0.3 g weighted soil samples, and 9 mL 65% (v/v) HNO₃, 3 mL 37% (v/v) HCl and 2 mL 48% (v/v) HF (Merck) were added into Teflon vessels. Bark, branch and leaf samples were collected from each individual and they have not been immediately subjected to any processes. They were stored in envelops from blotting papers and then labelled according to the individuals and stations. Leaf samples were allocated for physiological studies (photosynthetic pigment and total protein analyses), mineral nutrient element and heavy metal analysis, and molecular studies. Leaves which were allocated for molecular and physiological studies were packed and put into dryice, then transferred to laboratory. These samples were preserved at -80°C Lexicon II ULT deep freezer (Esco Micro Pte. Ltd. Singapore) until analysis.

Figure 2.11 -80 Ultra deep freezer.

The allocated leaf samples for mineral element and heavy metal analysis were separated into two subgroups; i) one was washed with distilled water to remove the dust particles in a standardized procedure, and ii) other was put in an envelope as unwashed leaf samples.

Figure 2.12 Plant parts samples (washed and unwashed leaves, branch, and bark) in oven.

Bark, branch, washed and unwashed leaf samples, which are used for mineral element and heavy metal analysis, were kept in 80°C M 6040 P oven (Electro-mag, Istanbul, Turkey) for 48 hrs. Then, samples were ground by using mortar and pestle. 0.2 g weighed samples, and 8 ml %65 HNO₃ (Merck) were transferred into Teflon vessels. All plant and soil samples were mineralized in a microwave oven (Berghof-MWS2) according to the wet ashing procedure. Procedure was applied as 5 min at 145°C, 5 min at 165°C and 20 min at 175°C. The samples were filtered by using Whatman filters with 1-2 μ m pore diameter in average. Last volume was adjusted to 50 ml with ultrapure water in volumetric flasks and then stored in falcon tubes until ICP-OES application. Stock solutions were prepared as 10, 50, 100, 250 and 500 mg/L by using multi-element stock solutions 1000 mg/L (Merck). Calibration curves were drawn by using stock solutions.

Figure 2.13 Berghoff microwave oven and Teflon vessels.

2.4.2 ICP- OES and element measurements

The mineral nutrient elements and heavy metals were analyzed by using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). ICP consists of two parts, one is plasma generator (ICP) and other is spectrometer. Mineralized sample solution sprays on to plasma that is generated from argon (Ar) gas by using an intense electromagnetic field. Elements becomes induced and emits a unique radiation (uV and visible light) at the characteristic wavelengths. An optical spectrometer detects the emission of radiation. The intensity of light emissions indicates the concentration of elements within solution.

Figure 2.14 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES).

All samples were analyzed by using ICP-OES Optima 7000 DV (Perkin Elmer Corp., Massachusetts, USA) at Bahcesehir University, Faculty of Engineering and Natural Sciences, Laboratories of Department of Environmental Engineering. The concentrations of elements such as B, Cu, Ca, Cd, Cr, Fe, K, Mn, Na, Ni, Mg, Pb and Zn were measured in mg/kg dry weight (DW).

2.5 Photosynthetic pigment analysis

Chlorophyll *a*, *b*, a/b, and total chlorophyll, and carotenoids (Cx+c) are important photosynthetic pigments in plants. The stress factors usually affect the plant metabolism and they cause the fluctuation on levels of these compounds. Thus, photosynthetic pigments are some good indicators showing the plant situation under stress conditions.

The control and other plant leaf samples were weighed as 0.5 g and homogenized with 15 ml %80 acetone in a falcon tube by using WiseTis Homogenizer (Wisd - Witeg Laboratory Equipment, Wertheim, Germany). Homogenized leaves were centrifuged at 3000g and +4°C for 10 min. After centrifuge, volume of supernatant was measured and noted. Then, the absorbance of supernatant was measured at 470, 645 and 663 nm wavelength using T60 UV Visible Spectrophotometer (PG Instruments, Leicestershire,

United Kingdom). Photosynthetic pigment quantities were calculated from measured absorbance values according to Arnon (1949).

$$C_{a} = [12.7 \text{ x } D_{663} - 2.69 \text{ x } D_{645}] \text{ x } \frac{\text{ml}}{1000}$$
$$C_{b} = [22.9 \text{ x } D_{645} - 4.68 \text{ x } D_{663}] \text{ x } \frac{\text{ml}}{1000}$$
$$\text{Total } C = [20.2 \text{ x } D_{645} + 8.02 \text{ x } D_{663}] \text{ x } \frac{\text{ml}}{1000}$$
$$C_{x+c} = \frac{1000 \text{ A}_{470} - 1.90 \text{ C}_{a} - 63.14 \text{ C}_{b}}{214} \text{ x } \frac{\text{ml}}{1000}$$

Figure 2.15 Homogenizer and UV-Visible Spectrophotometer.

Figure 2.16 Mortar and pestle for sample grinding in photosynthetic pigment analysis.

2.6 Total Protein Analysis

The total protein concentrations were measured by using UV-VIS spectrophotometry. Initially, total protein isolation was performed and then phosphate buffer was prepared to apply the isolated protein solution. Phosphate buffer was prepared by mixing stock A and B.

Stock A: 2.76 g NaH₂PO₄.2H₂O was taken and put into an erlenmeyer, and completed with distilled water up to 100 ml for 0.2 M solution.

Stock B: 3.56 g Na₂HPO₄.2H₂O was taken and put into an erlenmeyer, and completed with distilled water up to 100 ml for 0.2 M solution.

Phosphate buffer: 6.4 ml Stock A and 43.6 ml Stock B were mixed and completed up to 100 ml by adding 50 ml distilled water. Final molarity of solution was adjusted to 0.1 M and pH was adjusted at 7.7.

Applied Protocol:

- 0.4 g leaf tissue was weighed and put into cold mortar with 2 ml phosphate buffer (0.1 M, pH 7.7). Tissue was homogenized with a pestle on ice.
- 2. Homogenized samples were put into 2 ml microcentrifuge tubes and labelled.
- 3. Samples were centrifuged at +4°C and 12.000 rpm for 20 min.
- 4. Supernatant was transferred into a clean tube as protein source. The exposure of samples to high temperature and light was avoided during processing.
- 1.5 μl supernatant was measured by using OPTIZEN NANO Q Spectrophotometer (Mecasys Corp., Gyeonggi-do, Republic of Korea) at protein measurement mode for determination of protein concentration (mg.ml⁻¹)

Figure 2.17 Optizen NANO Q Spectrophotometer. dsDNA and protein measurement modes were shown in the figure.

2.7 Genetic and Phylogenetic Studies

There have been several PCR-based methods employed herein in detection of genetic similarities, phylogenetic relationships and mutations.

2.7.1 DNA isolation

The extraction and purification of nucleic acids are the first step in genetic studies. Because, quality and quantity of nucleic acids directly influence further studies. For instance, contaminants could affect the performance of PCR reactions or cloning studies (Somma and Querci, 2004). A variety of DNA isolation methods have been available but the most convenient method depends on such essential criteria; (i) target nucleic acid, (ii) source organism, (iii) source tissue, (iv) desired results (e.g., yield, purity), and (v) further studies (e.g., PCR, RT-PCR, cloning, cDNA synthesis). Extraction methods mainly require the lysis of cell, inactivation of cellular nucleases and separation of nucleic acids from remaining cellular components.

In this study, several isolation methods have been applied to obtain sufficient amount of DNA with good quality. These methods included the manual methods and commercial kits. Only summer samples (collected at July 2014) were used for genetic studies.

There are some manual methods for nucleic acids isolation like CTAB or SDS methods. CTAB was preferred in this study. This method is suitable for extraction and purification of DNA from plants, and it is good at polysaccharides and polyphenolic compounds (Somma and Querci, 2004). CTAB was applied according to Doyle (1987) and Doyle (1990) with some modifications.

Reagent	Amount			
СТАВ	5g (2% w/v)			
Tris-HCl pH 8.0 (1 M)	25ml			
EDTA pH 8.0 (0.5 M)	10ml			
β-mercaptoethanol	% 0.2 (v/v) added just before beginning of process into extraction buffer			
NaCl (5 M)	70ml			
Nuclease Free Water	165 ml (or up to 250 ml)			
PVP	0.05 g for 0.5 g of sample tissue (added during grinding)			
Total	250 ml CTAB extraction buffer			

Table 2.6 Reagents for preparing 250ml of CTAB extraction buffer

Frozen leaves were used for DNA isolation. Before the isolation procedure, extraction buffer was prepared by using reagents in Table 2.6. For this purpose, 5g CTAB (cetyltrimethylammonium bromide), 5M 70 ml NaCl, 0.5M 10ml EDTA and 1M 25ml Tris-HCl (pH8) were mixed and completed with distilled water up to 250ml. CTAB buffer was preheated to 65° C and % 0.2 (v/v) β -mercaptoethanol was added just before the isolation. CTAB method includes the following steps:

- 0.05-0.1g leaf tissue was homogenized by using Mixer Mill MM 400 homogenizer (Retsch GmbH., Düsseldorf, Germany) or mortar and pestle.
- Homogenized leaf tissue was transferred in a 2ml microcentrifuge tube and 800µl CTAB extraction buffer and 0.002g PVP were added into tube. The tube was inverted several times.
- 3. The mixture was incubated at 65°C for 45 min.
- 4. 800µl of 24:1 Chloroform/Octanol was added to mixture and inverted several times.
- 5. Mixture was centrifuged at 13.000g for 10 min.
- 6. Approximately 600µl supernatant was transferred into a clean tube.
- 7. 300µl 5M NaCl and 600 µl cooled %96 isopropanol were added to mixture.
- 8. The mixture was kept at 4-6°C until DNA strands becomes visible.

- 9. After mixture was centrifuged at 10.000g, supernatant was decanted.
- 10. 70% ethanol was added onto pellet and tapped kindly to solve DNA.
- 11. Centrifuged at 10.000g for 3 min.
- 12. Steps 10 and 11 were repeated several times.
- 13. After last centrifugation at 13.000g for 3 min, supernatant was decanted.
- 14. Remained DNA pellet was cleaned from ethanol with air drying at fume hood.
- 15. 100µl of TE or ultrapure water was added on to DNA for re-hydration.
- 16. DNA concentration was measured using OPTIZEN NANO Q Spectrophotometer (Mecasys Corp., Gyeonggi-do, Republic of Korea) at dsDNA measurement mode.
- 17. After measurement of DNA concentration, final concentration was adjusted to 20-50 ng/ml with adding ultrapure water or TBE solution.

2.7.2 PCR reactions

PCR reactions are carried out for amplification of various DNA parts. PCR applications are used in many areas including diagnosis of genetic diseases, DNA cloning and sequencing, phylogeny studies, gene function diagnosis, forensic sciences, paternity testing, and detection of pathogens (Bartlett and Stirling 2003). Aeris Thermal Cycler Model G96 (Esco Micro Pte. Ltd., Singapore) below was used for amplifications in this study. ITS1 region, $trnL_{UAA}$ - $trnF_{GAA}$ Intergenic Spacer and Microsatellite Regions (with ISSR primers) were amplified.

Figure 2.18 Esco Aeris Thermal Cycler Model G96,

PCR reactions requires optimization of mixture of compounds at relevant conditions. Template DNA, reaction buffer, MgCl₂, dNTP mix, Taq polymerase, primer(s) and ultrapure water were the substances used in PCR reactions (Table 2.7).

	Concentrat	– Volumo (ul)	
PCR mixture component –	Recommendation	Final	– voiume (μi)
10X PCR buffer	1-1.5X	1X	2.5
25 mM MgCl ₂	2-4mM	3mM	3
10 mM dNTP mix	0.2-0.5mM (each)	0.2mM	2
Primer (From 10µM stock)	0.2-1µM	0.5µM	1.25
Nuclease free sterile water	15		
Template DNA (50 ng/µl)	20-50ng/µl	50ng/µl	1
Taq Polymerase	1-5U	1.25U	0.25
	Total		25 µl

Table 2.7 PCR reaction compounds and their total volumes

PCR conditions affect the quality and quantity of DNA yield. Thus, these conditions should be carefully optimized. Reactions for ITS1, $trnL_{UAA}$ - $trnF_{GAA}$ Intergenic Spacer regions and ISSR-PCR were performed according to the conditions given in Figure 2.19. Annealing temperature, length and other characteristics of primers are changed according

to the design and use purposes. A total of 19 primers were herein used in PCR reactions, two for ITS, two for $trnL_{UAA}$ - $trnF_{GAA}$ Intergenic Spacer and 15 for ISSR.

Figure 2.19 The schematic representation of PCR reactions steps

Two primers were used in amplification of ITS (Internal Transcribed Spacer). These are universal ITS1 and ITS2 primers given in Table 2.7. As mentioned above, ITS region consists of ITS1, 5.8S rRNA and ITS2 parts. In this study, ITS1 part of ITS region was amplified. ITS primers were annealed at 48°C during amplification.

Table 2.8 The sequences	of ITS ₁	primers (White et al.,	1990)
-------------------------	---------------------	-----------	---------------	-------

Primer	Sequence	Annealing Temperature
ITS1	5'-TCCGTAGGTGAACCTGCGG-3'	48°C
ITS2	5'-GCTGCGTTCTTCATCGATGC-3'	

Amplification of $trnL_{UAA}$ - $trnF_{GAA}$ intergenic spacer region was performed at similar conditions with ITS reactions. Annealing temperature was adjusted to 48°C. Primers were designed by Sang et at., (1997) similar to Taberlet et al., 1990. Primers were designed to be corresponding to nucleotide $trnL_{UAA}$ and $trnF_{GAA}$ positions of cpDNA of tobacco (Shinozaki et al., 1996).
Primer	Sequence	Annealing Temperature
trnL-F Forward	5'-AAAATCGTGAAGGTTCAAGTC-3'	48°C
trnL-F Reverse	5'-GATTTGAACTGGTGACACGAG-3'	70 C

Table 2.9 The primer sequences of *trnL* - *trnF* intergenic genic spacer (Sang et al., 1997)

Table 2.10 is showing the ISSR primers which were selected to amplify the microsatellite sites to reveal the genetic similarity and small changes on genome of *R. pseudoacacia*.

Table 2.10	The sequences of	of ISSR primers ((Nagaoka and	Ogihara 1997)
-------------------	------------------	-------------------	--------------	--------------	---

Primer	UBC Code	Sequence	Annealing Temperature
ISSR1	UBC807	(AG) ₈ T	48°C
ISSR2	UBC811	(GA) ₈ C	53°C
ISSR3	UBC817	(CA) ₈ A	50°C
ISSR4	UBC818	(CA)8G	53°C
ISSR5	UBC820	(GT) ₈ C	53°C
ISSR6	UBC823	(TC) ₈ C	53°C
ISSR7	UBC827	(AC) ₈ G	53°C
ISSR8	UBC825	(AC) ₈ T	54°C
ISSR9	UBC848	(CA) ₈ RG	56°C
ISSR10	UBC849	(GT) ₈ YA	54°C
ISSR11	UBC855	(AC) ₈ YT	54°C
ISSR12	UBC842	(GA) ₈ YG	56°C
ISSR13	UBC875	(CTAG) ₄	59°C
ISSR14	UBC829	(TG) ₈ C	49°C
ISSR15	UBC844	(CT) ₈ RC	56°C

2.7.3 Gel electrophoresis

Electrophoretic methods have found very important grounds in many areas such as genetics, biochemistry, medical diagnostic and forensic sciences. Gel electrophoresis is used to discriminate and visualize the amplicons. Herein, CS-300V omniPAC MIDI Power Supply (Cleaver Scientific Ltd., Warwickshire United Kingdom) was used as power supply. Agarose (peqGOLD Universal Agarose, VWR International, Darmstadt, Germany) was used in gel electrophoresis as 1.2g for 100ml 1X TBE (Fisher Scientific,

Massachusetts, USA) solution or 3g for 250ml 1X TBE solution [1.2% (m/v)] for ITS1 and trnL-trnF intergenic spacer, and as 1.6g for 100ml 1X TBE solution or 4g for 250ml 1X TBE Solution [1.6% (m/v)]. Ethidium bromide was used (MP Biomedicals, California, USA) as 2μ for 100ml or 5μ for 250 ml.

Figure 2.20 Electrophoresis equipment (A) and UV transilluminator (B)

Amplicons were mixed with 6X DNA loading dye which contains bromophenol blue (Termo Fisher Scientific, Massachusetts, USA) as 3μ for 12μ PCR product. Electrophorese conditions were set up as 50 V and 60 min for 100 ml small size gel or 80 V and 120 min for 250 ml large size gel. After gel electrophoresis, DNA bands were visualized by using UV transilluminator (Vilber Lourmat, Collégien, France) and WiseUV WUV-L20 UV-Transilluminator (Wisd - Witeg Laboratory Equipment, Wertheim, Germany). Amplicons of ITS and *trnL - trnF* Intergenic spacer were formed as single band while ISSR amplicons with multi bands.

2.7.4 ISSR analysis

Fragments amplified with ISSR molecular markers were treated as a character and scored as binary code (1 for presence and 0 for absence). Only visibly clear and unambiguous bands were considered for scoring. POPGENE version 1.32 (Yeh et al., 1999) and MVSP 3.22 (Multi-Variate Statistical Package) were used in analysis. Jaccard similarity index was used for collection of matrix of similarities between individuals. Genetic parameters calculated herein included the percentage of polymorphic loci (P), mean number of observed (Na) alleles, effective (Ne) alleles per locus, (Kimura, 1964) Nei's gene diversity (h) and Shannon's information index (I). Graphical representation of ISSR relationships among individuals were provided using a principal component analysis (PCA) test, which was demonstrated with variance-covariance matrix calculated from marker data using MVSP 3.2 program. Jaccard's similarity coefficients were used to generate a dendrogram by using unweight pair group method with calculating the arithmetic average (UPGMA) by MVSP 3.2.

2.7.5 Phylogenetic analysis

ITS and trnL-F Intergenic Spacer primers generated single monomorphic bands as expected. 3μ of PCR product and 1μ of DNA loading dye were mixed and loaded into agarose gel (1.2%) to display the relevant bands in expected size. The remaining 20-22 μ of PCR products were used for sequencing applications. PCR products were sequenced by Iontek Molecular Diagnostics (IMD - Maslak, Istanbul, TURKEY).

Sequencing processes were performed for ITS1 and trnL-F Intergenic spacer regions by using three same individuals from each location. Obtained sequences were analyzed and short or incorrect DNA sequences were eliminated and if necessary the sequencing process were repeated. DNA sequences of other species were obtained from Nucleotide data base of GenBank/NCBI (ncbi.nlm.nih.gov/genbank/).

Obtained and our DNA sequences were aligned by using ClustalW in BioEdit 7.2.5 (Hall, 1999; Larkin et al., 2007) with default parameters. Phylogenetic tree was constructed by using MEGA 6 with Maximum-Likelihood (ML) method (Tamura et al., 2013) according to the analysis options given in Figure 3x. Bootstrap tests were applied using MEGA 6 with 1000 replicates. The evolutionary distances were calculated by using maximum

composite likelihood method. Kimura 2-parameter nucleotide substitution model and complete deletion option were used to obtain the datasets. Sequence identity matrix, G+C content (%), Tajima's test of neutrality (Tajima, 1989), and conserved regions were calculated with BioEdit 7.2.5.

```
Analysis
 Analysis -
                    ----- Phylogeny Reconstruction
 Statistical Method ----- Maximum Likelihood
Phylogeny Test
 Test of Phylogeny ----- Bootstrap method
 No. of Bootstrap Replications --- 1000
Substitution Model
 Substitutions Type ----- Nucleotide
                  ----- Tamura-Nei model
 Model/Method ----
Rates and Patterns
 Rates among Sites ----- Uniform rates
Data Subset to Use
 Gaps/Missing Data Treatment ---- Complete deletion
Tree Inference Options
 ML Heuristic Method ----- Nearest-Neighbor-Interchange (NNI)
 Initial Tree for ML ------ Make initial tree automatically (Maximum Parsimony)
 Branch Swap Filter ----- Very Strong
System Resource Usage
 Codons Included ----- 1st+2nd+3rd+Non-Coding
```

Figure 2.21 The adopted parameters for phylogenetic analysis

2.8 Statistical analysis

All element calculations were done based on the dry weight of samples. The protein concentrations were analyzed using software IBM SPSS Statistics 20 with One Way Analyses of Variance (ANOVA) with Tukey's post-hoc HSD (Table xy). Statistical significance was showed as **P<0.01 and *P<0.05. Tukey's post-hoc tests were employed for localities and terms.

The chlorophyll concentrations were analyzed using software IBM SPSS Statistics 20 with Multivariate Analysis of Variance (MANOVA) with Tukey's post-hoc HSD. Statistical significance was showed as **P<0.01 and *P<0.05. Tukey's post-hoc tests were employed for chlorophyll concentrations and terms.

The element concentrations were analyzed using software IBM SPSS Statistics 20 with Repeated Measures MANOVA with Tukey's post-hoc HSD and Pearson correlation (Table zz, Table ww and Tablo qq).). Statistical significance was shown as **P<0.01 and *P<0.05 (2-tailed).

3. RESULTS AND DISCUSSION

3.1 Mineral Elements and Heavy metals

In this study B, Ca, Cd, Cr, Mg, Cu, Fe, K, Mn, Na, Ni, Pb, and Zn elements were determined by using ICP-OES. Unwashed leaves (UwL), washed leaves (WL), bark (B) and branch (S) samples as plant parts and soil samples were analyzed for determination of heavy metal and mineral nutrient element levels. In addition removal rates were calculated by using element amounts in unwashed and washed leaf samples. All detected all heavy metal and mineral element concentrations were shown in supplementary section Tables 1-13.

It is aimed to reveal heavy metal levels and effects of these heavy metals on mineral nutrition status of *R. pseudoacacia* plants. *R. pseudoacacia* plants were chosen from different stations which have different levels of vehicle traffic and industrial sourced heavy metal pollution.

3.1.1 Boron (B)

Boron is a micronutrient for plants. It functions in metabolic processes and has importance as basic structural material for cell wall. But excess amount of B can be harmful (Kabata-Pendias and Mukherjee 2007). According to results, B content in plant parts ranged between 2.800±0.067 mg.kg⁻¹ (Branch/Dilovasi District) and 43.604±0.927 mg.kg⁻¹ (Unwashed leaves/Prince Island). B concentration of soil ranged between 17.497±0.357 mg.kg⁻¹ (Dilovasi District) and 48.959±1.139 mg.kg⁻¹ (Prince Island). Prince Island samples contained the highest B concentrations both in plant and soil. Dilovasi District has the lowest B concentrations.

Figure 3.1 Average B concentrations in Prince Island

Results indicated that B concentrations in all samples for all stations tend to increase during autumn and spring, and decreasing during summer and winter. The highest B content in plant samples have accumulated at spring. Likewise the highest soil B content was also detected in spring. Whereas the lowest accumulation of B was detected in summer in both plant and soil samples of all stations.

Figure 3.2 Average B concentrations in Bagdat Avenue.

TEM Highway / B (mg.kg⁻¹)

Figure 3.3 Average B concentrations in TEM Highway.

Figure 3.4 Average B concentrations in Barbaros Boulevard.

Dilovasi District / B (mg.kg⁻¹)

Summer Autumn Winter Spring

Figure 3.5 Average B concentrations in Dilovasi District.

The highest removal rate (Figure 3.6) was calculated in Dilovasi District for autumn samples as 40.2% and the lowest was calculated in Prince Island also for autumn samples with 7.7%. While the lowest B concentrations were detected in Dilovasi District, removal rate of B increased from Prince Island to Dilovasi District gradually. As the B concentrations in plant and soil decreased, the removal rates of B increased relatively.

Higher removal rates were determined at TEM Highway, Barbaros Boulevard and Dilovasi District (Figure 3.6). The main factor that caused increase in the removal rates may be airborne emission of B in these stations. This suggestion can be supported, since there are many sources of boron such as detergent, glass, porcelain, leather and fertilizer factories and fly ash sourced from power plants and combustion of fuel additives (Nable et al., 1997; Gan et al., 2012; Vatansever et al., 2016). Also all type of mentioned factories and power plants are present at Dilovasi District. TEM Highway and Barbaros Boulevard stations have heavy traffic flow which can emit B in to ecosystem due to combustion of fuel additives.

Figure 3.6 Removal rates of B

Levels of B in plant parts decreased from Prince Island to Dilovasi District in relation with decreasing levels of B in soil. B is a highly dissolving element. Coal combustion derivates fly ash contains some trace elements in large quantity (especially B) and may cause ecotoxic problems. For example fly ash sourced B is associated with reduction of plant production (Matsi and Tsadilas 2005).

Olias et al. (2004) and Li and Zhang (2011) stated that precipitation increases the dissolving mineral elements in soil. In relation to these suggestions and removal rates, it

can be suggested that especially in Dilovasi District B emissions occurred via air. Interaction between precipitation and B emission in air can increase B levels in the soil in spring season. Additionally Blevins and Lukaszewski (1998) reported that B content in plants increases in autumn and spring seasons due to taking part in the plant physiological processes.

Kacar and Katkat (2007) reported that the acceptable B levels in plant parts and soil are 10-100 and 20-200 mg.kg⁻¹ respectively. Highest levels in plants and soil are detected as 43.604 mg.kg⁻¹ (UwL/spring/Prince Island) in plants and 48.959 mg.kg⁻¹ (spring/ Prince Island) in soil. Lowest levels are detected as 2.801 mg.kg⁻¹ (branch/summer/Dilovasi) in plants and 17.497 mg.kg⁻¹ (summer/Dilovasi) in soil. According to these findings, plant and soil B levels are within the normal limits.

3.1.2 Calcium (Ca)

Calcium is one of the macronutrients and it serves as metabolic and structural component of cell. According to results, Ca levels of samples increased from Prince Island, which has not traffic and industrial establishment, to Dilovasi District which has heavy industrial zone. Ca concentrations of soil ranged between 20535.347±624.843 mg.kg⁻¹ (Prince Island) and 55414.639±1255.819 mg.kg⁻¹ (Dilovasi District). Ca concentrations in plant parts ranged between 16500.672±482.137 mg.kg⁻¹ (washed leaves/Prince Island) and 54655.701±1066.560 mg.kg⁻¹ (bark/Dilovasi District).

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.7 Average Ca concentrations in Prince Island.

The highest Ca content in plant samples was detected in spring among with an increase in soil samples for all stations. The lowest Ca content was detected in summer for all samples and stations. Increased Ca concentrations in autumn decreased in winter, then increased in spring.

Bagdat Avenue / Ca (mg.kg⁻¹)

Figure 3.8 Average Ca concentrations in Bagdat Avenue.

Summer Autumn Winter Spring

Figure 3.9 Average Ca concentrations in TEM Highway.

Barbaros Boulevard / Ca (mg.kg⁻¹)

Figure 3.10 Average Ca concentrations in Barbaros Boulevard.

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.11 Average Ca concentrations in Dilovasi District.

Figure 3.12 Removal rates of Ca.

Removal rates of Ca (Figure 3.12) ranged between 0.8% and 4.0% with fluctuations unrelated to stations and seasons. The highest removal rate was calculated for Bagdat Avenue in autumn samples with 4.0% and the lowest was calculated for Barbaros Boulevard in spring samples with 0.8%. Removal rate of Prince Island and Dilovasi District showed low variation in different seasons while other stations showed high variation in relation with season.

Esen et al., (2016) conducted a study for assessment of biomonitor capability of *Carpinus betulus, Quercus petraea* and *Tilia argentea* trees. Instrumental neutron activation analysis (INAA) was used for detecting element levels in soil, leaves and twigs. One control (Atatürk Arboretum) and 3 urban (Bahcekoy, Levent and Yildiz Park), in total four stations were selected. Ca levels in soil were detected as 1100.0, 4300.0, 27000.0 and 11700.0 mg.kg⁻¹ respectively and Ca levels in leaf samples were detected between 15200.0 and 51500.0 mg.kg⁻¹. Our findings in Ca levels in soil were higher than Esen et al., (2016) while Ca levels in leaf samples were about same. Difference in soil Ca levels may be caused by study station choices and our stations has more vehicle traffic and industrial facilities. Tzvetkova and Petkova (2015) conducted a study for investigation

of heavy metal accumulation by using R. pseudoacacia plants as biomonitor in industrial zones. According the study, Ca levels in leaves of industrial zone samples were detected between 15400.0 and 38920.0 mg.kg⁻¹ and for leaves of control samples between 15330.0 and 37120.0 mg.kg⁻¹. Leaf Ca levels of Dilovasi Disctrict as industrial zone were higher and leaf Ca levels Prince Island study as control zone were relatively lower than the results of mentioned study. Jensen et al., (2010) conducted a study for determining mineral element levels in leaves of Fraxinus pennsylvanica and R. pseudoacacia at a reclaimed mine site. According to results of the study Ca levels in R. pseudoacacia were determined as 12200.0 mg.kg⁻¹ for control site and 17800 mg.kg⁻¹ for reclaimed mine site. Both of control and reclaimed mine site Ca levels in leaves were lower than our control and other stations Ca level results. In a study of Rahmonov (2009), role of plant litter (R. pseudoacacia litter) was investigated in a sandy ecosystem by analyzing chemical composition of the plant and litter. Ca levels in leaves, shots and barks were detected as 19116.0, 9398.0 and 3478.0 mg.kg⁻¹ respectively. Ca Level in findings of Rahmonov (2009) were lower than our level of Ca findings. Taberi and Salehi (2009) conducted a study for investigation of effects of municipal sewage irrigation on R. pseudoacacia plants. Two group of plants were selected as treatment group which were artificially irrigated with sewage and control group which was irrigated with well water. Ca levels in leaves were detected as 31570.0 mg.kg⁻¹ for irrigated sewage water and 27480.0 mg.kg⁻¹ ¹ for irrigated well water. Lowest and highest leaf Ca concentrations were determined as 16500.672 in (Prince Island) and 47726.482 (Dilovasi District) mg.kg⁻¹ respectively. Range of these results is higher in comparison with Taberi and Salehi (2009) Ca level results. Ca concentrations in plants tissues increased from Prince Island to Dilovasi District in correlation with increasing traffic density and industrial activities. This situation may be related with increased heavy metal concentrations. Plants react to survive under heavy metal stress conditions with various protection mechanisms. Chemical similarity of Ca to Cd makes Ca a useful protector against Cd stress. Plants raise Ca levels to compete with and reduce effects of Cd (Lachman et al., 2015).

		Soil	(mg.kg ⁻¹)	Plan	t (mg.kg ⁻¹)	g ⁻¹) Country/City reatment 0-22500 (L) 0-36100 (L) TUR/Istanbul 0-51500 (L) Bulgaria 20 (L) Sept Bulgaria 7800 (L) USA	
Reference	Plant	Control	Treatment	Control	Treatment		Method
	Carpinus betulus			15400 (L)	16500-22500 (L)		
Esen et al., (2016) Quercus Tilia Ar	Quercus petraea	1100	4300-27000	15200 (L)	20700-36100 (L)	- TUR/Istanbul	k0-INAA
	Tilia Argentea			50100 (L)	31900-51500 (L)	-	
Tzvetkova and				15330 (L) June	1540 (L) June		AAS
Petkova (2015)	R. pseudoacacia			37120 (L) Sept.	38920 (L) Sept	- Bulgaria	
Jensen et al., (2010)	R. pseudoacacia			12200 (L)	17800 (L)	USA	ICP-MS
				1	9116 (L)		
Rahmonov (2009)	R. pseudoacacia			13478 (B)		Poland	FAAS
				9398 (S)		-	
Tabari and Salehi (2009)	R. pseudoacacia	20050	26290	27480 (L)	31570 (L)	Iran	AAS

Table 3.1 Detected Ca Levels in different studies (L: leaf, B: bark, S: branch)

3.1.3 Cadmium (Cd)

Cadmium is one of the most hazardous heavy metals, which threats all organisms. Emission of Cd is sourced mainly from anthropogenic activities and especially industrial activities (Wuana and Okieimen, 2011; Das et. al. 2014). According to results Cd concentrations in plant samples elevated in relation with soil samples from Prince Island to Dilovasi District. Lowest Cd content in plant samples was detected in Prince Island as 0.157 ± 0.003 mg.kg⁻¹ in branch samples, highest Cd content was detected in Dilovasi District as 7.799 ± 0.161 mg.kg⁻¹ in unwashed leaves. Soil samples Cd content ranged between 0.611 ± 0.014 mg.kg⁻¹ (Prince Island/ winter) and 8.853 ± 0.282 mg.kg⁻¹ (Dilovasi District/spring).

Figure 3.13 Average cadmium (Cd) concentrations in Prince Island

Cd content of plants and soil samples changed according to the season in all stations. The lowest Cd in plant samples were detected in summer then Cd contents increased in autumn then decreased again in winter. Finally, the highest Cd content was detected in spring. These fluctuations may be caused by various effects including dilution effect, high solubility of minerals with high precipitation and defoliation.

Figure 3.14 Average cadmium (Cd) concentrations in Bagdat Avenue.

TEM Highway/Cadmium (Cd) (mg.kg⁻¹)

Figure 3.15 Average cadmium (Cd) concentrations in TEM Highway.

Figure 3.1.16 Average Cd concentrations in Barbaros Boulevard.

Figure 3.1.17 Average Cd concentrations in Dilovasi District.

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.1.18 Removal rates of Cd between unwashed and washed leaves

The highest removal rate of Cd was calculated as 24.6 % at Prince Island. The lowest removal rate of Cd was calculated as 3.7% at TEM Highway. High removal rates in Prince Island could be sourced from too low level of Cd concentration. A small differentiation in the low values emerges as the high value of the removal rate. Additionally the high rate of removal indicates airborne emission of Cd for Prince Island. There was no significant difference between removal rates in relation with season in all stations.

Cd is a non-essential and toxic heavy metal. Cd is highly soluble and mobile in soil solutions. Thus Cd can easily penetrate plant tissues and food chains. Additionally soil Cd content effects Cd uptake and cause accumulation in plant tissues (Sarwar et al., 2010). There are a lot of studies in scientific literature for determining and assessment of Cd levels and effects on organisms. Some of them are about *R. pseudoacacia* and biomonitoring Cd levels from different countries are shown in Table 3.2. As mentioned above our detected Cd ranges are 0.611-8.853 mg.kg⁻¹ for soil samples and 0.157-7.799 mg.kg⁻¹ for plant samples. Expected soil Cd content usually ranged between 0.06-1.1 with 0.5 mg.kg⁻¹ average (Kabata-Pendias and Mukherjee 2007). According to these values soil Cd content of TEM, Barbaros and Dilovasi stations are above the normal limits. Some

results of Armaki 2016, Nadgorska-Socha et al., 2016, Celik et al., 2004, Mertens et al., 2004 and Aksoy et al., 2000 were also above the normal limits while detected soil Cd content can be considered within the normal limits.

Deference	Organism	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		Country/oity	Madhad	
Kelerence	Organishi	Control	Study Site	Control	Study Site	Country/city	wiemou	
1:(2016)	D 1 .	2.4		2.3	(L)	Y		
Armaki (2016)	K. pseudoacacia	2	5.4	2.6	(S)	Iran	ICP (UES)	
Nadgorska-Socha et al., (2016)	R. pseudoacacia	1.31	3.12-31.67	0.11 (L)	0.22-3.01 (L)	Poland	Flame AAS	
Polowski at al. (2016)	D manuda angain			1.87-2	.41 (L)	Daland	Flore AAS	
Palowski et al., (2016)	K . pseudoacacia			2.01-2	.60 (B)	Poland	Fiame AAS	
				11.3	3 (L)	_	100 0 00	
Monfred et al., (2013)	R. pseudoacacia			9.7	(S)	Iran	ICP-OES	
Serbula et al., (2012)	R. pseudoacacia	<0.5	0.5-0.86	ND	ND	Serbia	ICP-AES / AAS	
Asgari and Amini (2011)	R. pseudoacacia					Iran	AAS	
Gjorgieva et al., (2011)	R. pseudoacacia					Macedonia	ICP-AES	
Kaya et al., (2010)	R. pseudoacacia	0.015- 0.063	0.142- 0.656	0.04	0.057- 0.367	TUR/Gaziantep	ICP-MS	
Yener and Yarci	Alcea pallida	0.117-1.373 -		0.203-1.081 (L)			4 4 5	
(2010)				0.226-0.0	662 (S)	I UK/Istanbul		
				0 (L)		_		
Rahmonov (2009)	R. pseudoacacia			0 (B)		Poland	Flame AAS	
				0 (S)				
Samecka-Cymerman	p	0.28.0.45	0 < 1 0	0.03-0.05 (L)	0.04-1.1 (L)	Deleval	Error AAC	
et al., (2009)	K. pseuaoacacia	0.38-0.45	0.6-1.9	0.40-0.44 (B)	0.39-1.5 (B)	Poland	Furnace AAS	
				0.365 (UwL)	0.805- 3.700			
Celik et al., (2005)	R. pseudoacacia	0.48	1.373- 7.367		(UwL)	TUR/Denizli	Flame AAS	
			1.501	0.325 (WL)	1.990 (WL)			
Mertens et al. (2004)	R pseudoacacia	5.7 (Sec	liment)	<0.23		Belgium	Flame AAS	
	к. pseuaoacacia	3.7 (Seument)		(0.25 (E)		Dergrunn	. 10110 7 17 10	
Alsovatal (2000)	P negudoacacia	0.64	1.20-	0.47 (UwL)	0.77-3.39 (UwL)	TUD /Kovceri	445	
ARSOY Et al., (2000)	K. pseudoacacia	(Rural)	9.88	0.44 (WL)	0.58-1.22 (WL)	1 UK/Kayseff	лаз	

Table 3.2 Detected Cd Levels in different studies (L: leaf, UwL: unwashed leaf, WL: washed leaf, B: bark,S: branch)

The expected range of plant Cd contents is stated as 0.05-0.2 mg.kg⁻¹ for the most of plants and above 5-30 mg.kg⁻¹ is considered as toxic (Kabata-Pendias and Pendias, 2001). According to these limits, Cd contents of plant samples in Dilovasi District are in the toxic levels especially in the leaf samples. Our Cd content results are higher than the other studies which are mentioned at Table 3.2.

3.1.4 Chromium (Cr)

Chromium is an essential and toxic element at the same time. Some forms of Cr serve as microelement (Cr^{3+} trivalent) and some forms of it is toxic (Cr^{6+} hexavalent) to organisms depending on amount and form (Wuana and Okieimen, 2011). According to our results total Cr levels in plant samples ranged between 2.117±0.033 mg.kg⁻¹ (Prince Island/branch) and 21.988±0.938 mg.kg⁻¹ (Dilovasi District/bark). Chromium concentrations of soil ranged between 8.763±0.160 mg.kg⁻¹ (Prince Island) and 39.967±1.386 mg.kg⁻¹ (Dilovasi District).

Dilovasi District samples contained the highest Cr concentrations both in plant and soil while Prince Island has the lowest Cr concentrations. Seasonal changes in Cr contents were observed in the same way as other elements. Plant Cr contents were observed from low to high levels as follows; summer, winter, autumn, spring. Soil Cr contents also changed nearly same as plant samples while Prince Island soil Cr contents were detected in a different pattern. Soil Cr contents were observed from low to high levels as follows: summer, autumn, winter and spring.

Prince Island/Chromium (Cr) (mg.kg⁻¹)

Figure 3.19 Average Cr concentrations in Prince Island

Bagdat Avenue/Chromium (Cr) (mg.kg⁻¹)

Figure 3.20 Average Cr concentrations in Bagdat Avenue.

Figure 3.21 Average Cr concentrations in TEM Highway.

Barbaros Boulevard/Chromium (Cr) (mg.kg⁻¹)

Figure 3.22 Average chromium (Cr) concentrations in Barbaros Boulevard.

Dilovasi Disctrict/Chromium (Cr) (mg.kg-1)

Figure 3.1.23 Average Cr concentrations in Dilovasi District.

% Removal of Cr

Figure 3.24 Removal rates of chromium (Cr)

Removal rates of Prince Island, Bagdat Avenue and TEM Highway were lower than Barbaros Boulevard and Dilovasi District. The lowest removal rate was calculated for Bagdat Avenue as 4.0% while the highest was calculated for Dilovasi District as 16.7%. The high Cr removal rate in the Dilovasi district can be attributed to intense industrial activity, while heavy traffic can cause high removal rates on Barbaros Boulevard. Additionally removal rates and seasons did not show any significant relation.

Chromium content of soil ranged from 5 to 120 mg.kg⁻¹ with average of 54 mg.kg⁻¹. According to our results soil Cr content of all stations were determined as below the world average. There are some studies in Table 3.3, conducted to determine Cr levels in soil and plant parts. In a study conducted in Istanbul by Esen et al., 2016, soil Cr content was determined as above the upper limit. Soil Cr content results of Vural 2013, Yasar et al., 2010, Samecka-Cymerman et al., 2009 and Tabari and Salehi 2009 were determined as below the average. Our results of soil Cr content were higher than the results of Vural 2013, Yasar et al., 2013, Yasar et al., 2010, Samecka-Cymerman et al., 2009 while the results of Esen et al., 2016 and Tabari and Salehi 2009 were higher than our results.

As mentioned above, plants need Cr at low amounts to maintain metabolic processes. Kabata-Pendias and Pendias 2001 stated the plant Cr contents varies from 0.1 to 0.5 mg.kg⁻¹ and the toxic levels of Cr as 5-30 mg.kg⁻¹ for plants. According to our results plant Cr levels did not exceed the normal limits. When considering other studies, it was determined that all results are within normal limits.

Deference	Organism	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		Country/sity	Mathad
	Organism	Control	Study Site	Control	Study Site	Country/city	Methoa
	Carpinus betulus	_		1.03 (L)	1.06-3.52 (L)		
Esen et al., (2016)	Quercus petraea	250	98.8-190	0.92 (L)	1.40-2.17 (L)	TUR/Istanbul	k0-INAA
	Tilia Argentea	_		1.24 (L)	2.11-2.99 (L)	-	
Vural (2013)	R. pseudoacacia	22-36		0.33-2.19 (S)		TUR/Gumushane	ICP-AES
Yasar et al., (2010)	Cercis siliquastrum	5.65	10.13	1.63 (L)	6.12 (B)	TUR/Istanbul	ICP-OES
Samecka-Cymerman		7992	10.5.17.4	0.4-0.6 (L)	0.55-1.16 (L)	D-11	ICD MS
et al., (2009)	K. pseudoacacia	1.0-0.2	10.5-17.4	4.5-4.8 (B)	4.9-7.4 (B)	Foland	ICP-MS
Tabari and Salehi (2009)	R. pseudoacacia	33.81	48.04	ND (L)	ND (L)	Iran	AAS

Table 3.3 Cr levels (L: leaf, B: bark, S:branch)

Our results of plant Cr content are higher than the results of other studies (Table 3.3). Esen et al., 2016 and Yasar et al., 2010 conducted Cr their studies with different plant species. The difference between the results may arise from this situation. Although Vural 2013, Samecka-Cymerman et al., 2009, Tabari and Salehi 2009 used *R. pseudoacacia* in their studies, our plant Cr results are higher than the results of these studies.

3.1.5 Copper (Cu)

Copper (Cu) mostly functions in metabolic processes as cofactor. Cu is a microelement that must be taken up from the soil. Results showed that Cu levels in plant samples ranged between 9.974±0.196 mg.kg⁻¹ (Branch/Prince Island) and 91.947±1.920 mg.kg⁻¹ (Unwashed leaves/Dilovasi District). Soil Cu contents were detected between 20.749±0.411 mg.kg⁻¹ (Prince Island) and 103.782±2.931 mg.kg⁻¹ (Dilovasi District). Dilovasi District samples contained the highest Cu concentrations both in plant and soil while Prince Island has the lowest Cu concentrations.

In all stations, *R. pseudoacacia* has taken Cu from soil nearly as much as amount of Cu in soil. Thus Cu content in plant samples increased in relation with station soil Cu content from Prince Island to Dilovasi. Plant samples of Dilovasi District (heavy industrial zone) had accumulated Cu 3-4 times more than the Prince Island samples (no traffic, no industrial establishment) and airborne Cu was almost equal for all stations. According to results, uptake and accumulation of Cu altered in relation with the seasons. The lowest uptake and accumulation occurred in summer. The highest uptake and accumulation occurred in seasons are sprevious elements.

Prince Island/Copper (Cu) (mg.kg⁻¹)

Figure 3.25 Average copper (Cu) concentrations in Prince Island

Figure 3.26 Average Cu concentrations in Bagdat Avenue.

Figure 3.27 Average Cu concentrations in TEM Highway.

Figure 3.28 Average Cu concentrations in Barbaros Boulevard.

Figure 3.29 Average Cu concentrations in Dilovasi District.

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.30 Removal rates of Cu

Differences on Cu level between unwashed and washed leaves changed slightly in terms of season and station. According to seasons, removal rate of Cu ranged between 13.3% and 16.8% for summer; 11.8% and 15.2 for autumn; 13.1% and 16.4% for winter; 11.6% and 15.1% for spring. Removal rate in terms of stations ranged between 13.5% and 15.2% for Prince Island; 14.0% and 15.4% for Bagdat Avenue; 13.1% and 15.2% for TEM Highway; 13.8% and 16.8 for Barbaros Boulevard; 11.6% and 15.0% for Dilovasi District.

Kabata Pendias and Pendias (2001) reported that Cu contents in soil usually ranged between 20-30 mg.kg⁻¹ and Cu contents in plant parts ranged between 5-30 mg.kg⁻¹. In the light of this data Cu contents in soil samples were above the normal range except Prince Island station. Cu contents in plant parts were also above the normal limits. Yener and Yarci (2010) conducted a study with *Alcea pallida* plant from 5 station in Istanbul and determined that the soil Cu contents ranged between 22.611-207.308 mg.kg⁻¹ (Table 3.6). Their study sites were selected stations having relatively dense traffic circulation from European side of Istanbul. These different results may be caused from station differences.

Guney at al., (2010) also conducted a study to determine impacts of heavy traffic on highways to soils of Istanbul. Their Cu contents in soil (20 cm depth) results are consistent with our results.

D_ 6	o :	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		a		
Reference	Organism	Control	Treatment	Control	Treatment	- Country/city	Method	
Nadgorska-Socha et al., (2016)	R. pseudoacacia	3.49	7.69-33.75	12.07 (L)	12.40 - 13.53 (L)	Poland	Flame AAS	
				4.69	9-8.59 (L)			
Palowski et al., (2016)	R. pseudoacacia			8.32	2-9.69 (B)	- Poland	Flame AAS	
Tzvetkova and	R pseudoacacia			17.8 (L) June	13.3 (L) June	- Bulgaria	AAS	
Petkova (2015)	K. pseudoucuciu			8 (L) Sept.	17.2 (L) Sept	Duigana	71115	
Vural (2013)	R. pseudoacacia	8-35		2.75	5-34.5 (S)	TUR/Gumushane	ICP-AES	
Serbula et al., (2012)	R. pseudoacacia	59.1	67.8-903.3	1.1 (WL) 101.2 (UwL) 110.6	0.9-236.7 (WL) 38.7-286.7 (UwL) 27.9-6418.2	Serbia	ICP-AES / AAS	
				(B)	(B)			
Kaya et al., (2010)	R. pseudoacacia	2.0-6.9	20-38	43 (L)	6.9-9.5 (L)	TUR/Gaziantep	ICP-MS	
Jensen et al., (2010)	R. pseudoacacia			9.32 (L)	13.0 (L)	USA	ICP-MS	
C		21.4-136 (Surface)				TUD /I-4	Flame AAS	
Guney et al., (2010)		12.6-94.1 (20-cm depth)		_		1 UK/Istanbul		
Yener and Yarci		22.611-207.308		17.027-23.367 (L)			AAS	
(2010)	Alcea pallida			2.954- 9.641 (S)		⁻ TUR/Istanbul		
Tabari and Salehi (2009)	R. pseudoacacia	5	3	43.50 (L)	27.43 (L)	Iran	AAS	
Samecka-Cymerman	D	11.7–	14 27	3.3-3.8 (L)	7.4-16.2 (L)	Deland	Flowe AAS	
et al., (2009)	k. pseudoacacia	12.4	14-37	4.3- 4.5(B)	9.1-19 (B)	Polalid	Flame AAS	
Celik et al., (2005)	R. pseudoacacia	8.680	17.189- 69.710	5.64 (UwL) 5.28 (WL)	12.22-20.81 (UwL) 8.125-10.15 (WL)	- TUR/Denizli	Flame AAS	
Mertens et al., (2004)	R. pseudoacacia	54.2 (Sediment)		8.3 (L)		Belgium	Flame AAS	
Aksoy et al., (2000)	R. pseudoacacia	11 (Rural)	16-79	8 (UwL) 7.32 (WL)	12.96-29.12 (UwL) 8.96-14.04 (WL)	- TUR/Kayseri	AAS	

Table 3.6 Cu levels (L: leaf, UwL: unwashed leaf, WL: washed leaf, B:bark, S:branch)

Other studies in Table 3.6 were conducted by using *R. pseudoacacia* in different countries. When the results of these studies are compared with our results, our results are higher than the all results except study of Serbula et al., (2012) which was conducted at Bor/Serbia which has Cu rich mines and metal industry sites. Results of this study indicated that the area has exceptionally high Cu contents in both soil and plants.

3.1.6 Iron (Fe)

Iron is required for various metabolic processes and as a structural component thus plants and other organisms must acquire Fe to maintain their homeostasis (Kobayashi and Nishizawa, 2012). Our results showed that Fe levels in plant samples ranged between 63.565 ± 1.188 mg.kg⁻¹ (Branch/Prince Island) and 308.217 ± 3.306 mg.kg⁻¹ (Unwashed leaves/Dilovasi District). Soil Fe contents were determined between 1767.070 ± 39.478 mg.kg⁻¹ (Prince Island) and 3756.504 ± 73.388 mg.kg⁻¹ (Dilovasi District). Dilovasi District samples contained the highest Fe concentrations both in plant and soil while Prince Island has the lowest Fe concentrations. *R. pseudoacacia* has taken Fe in increasing proportions.

Seasonal variations in Fe contents occurred as previous elements. The highest Fe contents in soil and plant parts were detected in spring while the lowest were detected in summer. When plant parts Fe contents are compared, it was observed that bark has the highest Fe contents for all seasons and all stations.

Prince Island/Iron (Fe) (mg.kg⁻¹)

Figure 3.31 Average Fe concentrations in Prince Island.

Figure 3.33 Average Fe concentrations in Bagdad Avenue.

Figure 3.33 Average Fe concentrations in TEM Highway.

Figure 3.34 Average Fe concentrations in Barbaros Avenue.

Dilovasi Disctrict/Iron (Fe) (mg.kg⁻¹)

Figure 3.34 Average Fe concentrations in Dilovasi District.

Figure 3.36 Removal rates of Fe

According to seasons, removal rates of Fe ranged between 9.9% and 13.0% for summer; 8.7% and 12.6% for autumn; 8.5% and 12.2% for winter; 7.3% and 12.4% for spring. Removal rate in term of stations ranged between 8.5% and 9.9% for Prince Island; 8.9% and 10.9% for Bagdat Avenue; 7.3% and 12.2% for TEM Highway; 7.6% and 12.1% for Barbaros Boulevard; 12.2% and 13.0% for Dilovasi District. The lowest removal rate was detected as 7.3% from TEM Highway in spring. The highest one was detected as 13.0% from Dilovasi District in spring. In terms of season, removal rates of Fe changed in a narrow range for Prince Island, Bagdat Avenue and Dilovasi District. TEM Highway and Barbaros Boulevard also changed within a narrow range except spring. These stations have dynamic traffic conditions when compared to the Prince Island and Dilovasi District. These dynamic conditions might have affected dispersal of Fe and changed the removal rate of Fe.

D 4	<u> </u>	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		<i>a</i>		
Reference	Organism	Control	Study Site	Control	Study Site	- Country/city	Method	
Nadgorska-Socha et al., (2016)	R. pseudoacacia	390.66	319.43- 1143.32	78.28 (L)	73.19 - 106.86 (L)	Poland	Flame AAS	
Polowski et al. (2016)	P. manuda manin			61.2-74.2	(Other organs)	- Dolond	Flame	
Palowski et al., (2016)	K . pseudoacacia			183.9	9-752.1 (B)	Poland	AAS	
	Carpinus betulus	_		261 (L)	272-750 (L)	_		
Esen et al., (2016)	Quercus petraea	13800	28000-30000	246 (L)	413-492 (L)	TUR/Istanbul	k0-INAA	
	Tilia Argentea	-		386 (L)	582-646 (L)	-		
Tzvetkova and				64.6 (L) June	68.3 (L) June			
Petkova 2015)	R. pseudoacacia			136.2 (L) Sept.	143.5 (L) Sept	- Bulgaria	AAS	
Vural (2013)	R. pseudoacacia			38.59-693.32 (8)		TUR/Gumusha ne	ICP-AES	
Jensen et al., (2010)	R. pseudoacacia			98.6 (L)	116 (L)	USA	ICP-MS	
Yasar et al., (2010)	Cercis siliquastrum	3825.42 Control - 2589.35 Urban		134.74 (uWL)-44.97 (WL)		TUR/Istanbul	ICP-OES	
				258 (L)			Flame AAS	
Rahmonov (2009)	R. pseudoacacia			2276 (B)		Poland		
				932 (S)		-		
Samecka-Cymerman		047 056	CEE 1550	57-66 (L)	84-109 (L)	D 1 1		
et al., (2009)	K. pseudoacacia	847-856	655-1556	55-81 (B)	89-129 (B)	- Poland	ICP-MS	
Tabari and Salehi (2009)	R. pseudoacacia	19690*	23990*	91.87 (L)	110.00 (L)	Iran	AAS	
Celik et al., (2005)	R. pseudoacacia	2695.6	2892.7- 3939.3	100.2 (uWL)	255.01-3087.0 (uWL)	TUR/Denizli	Flame AAS	
Mertens et al., (2004)	R. pseudoacacia	54.202	(Sediment)			Belgium	Flame AAS	

Table 3.5 Fe levels	(L: leaf	, uWL: u	inwashed leaf,	WL: washed	leaf, B:	bark, S: br	anch)
---------------------	----------	----------	----------------	------------	----------	-------------	-------

Iron is fourth abundant element in the earth crust with 5%, however the range of Fe content in soil is between 0.1 and 10% (Kabata-Pendias and Mukherjee 2007). There are some studies conducted for determination of Fe contents in soil and plants (Table 3.5). Results of Esen et. al. (2016) and Tabari and Salehi (2009) are higher than the upper limits and our results while results of our study and other studies are within the normal limits. In addition to this, results of Celik et al. (2005) are in agreement with our results. Results of Nadgorska-Socha et al. (2016), Yasar et al. (2010), Samecka-Cymerman et al. (2009), Celik et al. (2004) and Mertens et al. (2004) are lower than our results.

Iron content in plant parts are also determined in mentioned studies (Table 3.5). Normal limits of Fe content in plant part values are mentioned as 50-500 mg.kg⁻¹ (Kabata-Pendias
and Mukherjee 2007; Broadley et al., 2012). According to these values, our results of Fe content are within the normal limits. Fe content in branch, unwashed and washed leaf samples ranged between 63.565 and 308.217 mg.kg⁻¹. Higher Fe contents were detected in bark samples (164.414 - 396.553 mg.kg⁻¹) for all stations and all seasons than the other plant parts. This situation may be caused by aerial deposition and long-term accumulation of Fe in bark samples. Thus bark of *R. pseudoacacia* can be used for long term accumulation of Fe.

Fe content in plant parts results of Palowski et al. (2016), Esen et al. (2016), Vural (2013), Rahmonov (2009) and Celik et al. (2005) were higher than our results. Additionally Fe content in bark results of Palowski et al. 2016, branch results of Vural (2013), bark and branch results of Rahmonov (2009) and unwashed leaf samples of Celik et al. (2005) were also higher than the normal limits. The results of Nadgorska-Socha et al. (2016), Tzvetkova and Petkova (2015), Jensen et al. (2010), Yasar et al. (2010), Samecka-Cymerman et al. (2009) and Tabari and Salehi (2009) were lower than ours.

Although Fe content in soil is abundant, acquisition of Fe is difficult for plants due to low solubility of Fe in neutral and basic pH values. Plants have two mechanisms to acquire Fe from soil named strategy I and II. Dicots - including *R. pseudoacacia* - and non-graminaceous monocots acquire Fe from soil using strategy I. Soil pH value is very important for these plants. The soil pH difference may alter Fe accumulation by altering Fe solubility. For instance, despite the fact that sil soil Fe content results of Tabari and Salehi (2009) are quite higher, plant Fe content is quite low.

3.1.7 Potassium (K)

Potassium is a mobile macroelement and involved in some important metabolic functions such as regulation of osmotic balance and enzyme activation (Hawkesford et. al., 2012; Benito et al., 2014). According to our results, K content in plant samples ranged between 5593.069±95.772 mg.kg⁻¹ (Branch/Dilovasi District) and 17026.936±283.127 mg.kg⁻¹ (Unwashed leaves/Prince Island). Soil K contents were determined between 9229.131±231.342 mg.kg⁻¹ (Winter/Dilovasi District) and 20047.094±353.103 mg.kg⁻¹ (Summer/Prince Island). Prince Island samples has the highest K concentrations both in plants and soil while Dilovasi District has the lowest Fe concentrations. The highest K levels in plant and soil were detected in summer.

Prince Island/Potassium (K) (mg.kg⁻¹)

Figure 3.37 Average K concentrations in Prince Island.

K showed different pattern of seasonal variation. The highest K content in plant parts and soil was detected in summer. After summer, K contents decreased in autumn and later the lowest K levels were detected in winter. In spring K levels were elevated above the autumn levels. As mentioned above, K is an essential macroelement for plants and all living plant cells need it at different proportions. Uptake of K is affected by various

factors. Such as in rainy seasons, increased K levels in plant parts and soil may be caused by the increase of K solubility and mobility with rain.

Figure 3.38 Average K concentrations in Bagdat Avenue.

■Summer ■Autumn ■Winter ■Spring

Figure 3.39 Average potassium (K) concentrations in TEM Highway.

Barbaros Boulevard/Potassium (K) (mg.kg⁻¹)

Figure 3.40 Average K concentrations in Barbaros Boulevard.

Figure 3.41 Average K concentrations in Dilovasi District.

Soil K reserve consists of three forms of K which can be defined as structural, fixed and exchangeable. Available K forms for plants include directly soluble K in soil, water and exchangeable form of K which is attached to surface of soil particles electrostatically. Directly available (0.1-0.2%) and exchangeable forms of K for plants are represented with 1-2% of total K content in soil (Moody and Bell 2006; Sardans and Peñuelas 2015). Available soil K content is affected by several factors including temperature, pH, water content and wetting-drying cycles, aeration, mineralogical/textural factors and biological processes.

Available K reserve expands with decaying of falling leaves and dead roots, rainfall, atmospheric deposition and weathering of K contained minerals. Whereas K uptake by crops, fixation between plates of clay minerals and leaching shrinks the available K reserve (Raghavendra et al., 2016). Cause of increase in K contents of soil decomposition of plant falling leaves and dead roots in spring and summer. Additionally K content in plants may be increased to maintain increased physiological functions. Increased precipitation may cause decrease in K content of soil with leaching in autumn and winter due to the high solubility of K.

% Removal of K

Figure 3.42 Removal rates of K

Changes in Removal rate of K occurred in a wide range depending on locality and season. According to seasons, removal rates of K ranged between 4.0% and 10.5% for summer; 2.7% and 12.9% for autumn; 2.6% and 12.6% for winter; 4.1% and 10.8% for spring. Removal rate in terms of stations ranged between 2.6% and 4.1% for Prince Island; 6.0% and 8.0% for Bagdat Avenue; 8.4% and 9.2% for TEM Highway; 4.6% and 9.7% for Barbaros Boulevard; 10.5% and 12.9% for Dilovasi District. The highest removal rate was detected as 12.9% from Dilovasi District in autumn. The lowest was detected as 2.6% from Prince Island in spring. In terms of location, high removal rates were detected at Dilovasi District while lower results were detected in Prince Island. High removal rates of K in Dilovasi and low rates in Prince Island may indicate that the source of K is industrial and combustion. The samples of Dilovasi were collected from vicinity of detergent plant which is one of the aerial sources of K.

	Reference Organism Soil (mg.kg ⁻¹) Plant (mg.kg ⁻¹) Control Study Site Control Study Site Esen et al., (2016) Carpinus betulus Quercus petraea 6500 11200- 14000 11300(L) 11800-12000 (L) Tilia Argentea 6500 11200- 14000 11300(L) 15100-46600 (L) Frvetkova and Petkova (2015) R. pseudoacacia 42470 (L) 19750 (L) June Insen et al., (2010) R. pseudoacacia 25800 (L) 24500 (L) Rahmonov (2009) R. pseudoacacia 6554 (L) 810 (B) 640 (S) 640 (S) 640 (S) 640 (S) 640 (S)	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)			
Reference		Country/city	Method				
	Carpinus betulus	- 6500	11200- 14000	12200 (L)	11800-12000 (L)		k0-INAA
Esen et al., (2016)	Quercus petraea			11300(L)	13000-19800 (L)	TUR/Istanbul	
	Quercus petraea 6500 11200- 14000 11300(L) 15000-19800 (L) TUR/Istanbul Tilia Argentea 42470 (L) 19750 (L) June R. pseudoacacia 42470 (L) 19750 (L) Bulgaria R. pseudoacacia 23550 (L) 14530 (L) Bulgaria R. pseudoacacia 25800 (L) 24500 (L) USA						
Tzvetkova and Petkova (2015)	R. pseudoacacia	-		42470 (L) June 23550 (L) Sept.	42470 (L) 19750 (L) June June 23550 (L) 14530 (L) Sept. Sept		AAS
Jensen et al., (2010)	R. pseudoacacia	-		25800 (L)	24500 (L)	USA	ICP-MS
Rahmonov (2009)	R. pseudoacacia	-	 		6554 (L) 810 (B) 640 (S)		Flame AAS
Tabari and Salehi (2009)	R. pseudoacacia	3430	2560	5730(L)	8120 (L)	Iran	AAS
Mertens et al., (2004)	R. pseudoacacia	9155 (S	ediment)			Belgium	Flame AAS

Table 3.6 K levels (L: leaf, uWL: unwashed leaf, WL: washed leaf, B: bark, S: branch)

There are some K levels in soil and plant parts in table 3.6 from different studies. Soil K contents in this study is found to be higher than the previous studies with the exception of some results from Esen et al., 2016. When plant parts results are considered, results of Esen et al., 2016, Tzvetkova and Petkova 2015 and Jensen et al., 2010 were higher than this study.

3.1.8 Magnesium (Mg)

Mg, which is a plant macronutrient, functions as a main structural element in chlorophyll and as an important cofactor (Hawkesford et. al., 2012). According to results, Mg levels in plant samples ranged between 991.260±30.121 mg.kg⁻¹ (Branch/Dilovasi District) and 3882.824±63.000 mg.kg⁻¹ (Unwashed leaves/Prince Island). Soil Mg contents were determined between 2721.780±72.774 mg.kg⁻¹ (Dilovasi District) and 4672.004±195.616 mg.kg⁻¹ (Prince Island). Prince Island samples contained the highest Mg concentrations both in plant parts and soil while Dilovasi District has the lowest Mg contents.

Seasonal variation pattern of Mg remained the same for all stations. The highest Mg levels in plant and soil were detected in spring while the lowest were detected in summer for all stations. Mg concentrations in all plant and soil samples tend to increase during autumn and spring and decrease during winter and summer.

Summer Autumn Winter Spring

Figure 3.43 Average Mg concentrations in Prince Island.

Figure 3.44 Average Mg concentrations in Bagdat Avenue.

■Summer ■Autumn ■Winter ■Spring

Figure 3.45 Average Mg concentrations in TEM Highway.

Figure 3.46 Average Mg concentrations in Barbaros Boulevard.

■Summer ■Autumn ■Winter ■Spring

Figure 3.47 Average Mg concentrations in Dilovasi District.

Figure 3.48 Removal rates of Mg between unwashed and washed leaves.

Changes in removal rate of Mg especially depend on locality. Removal rate levels were similar in term of season. Removal rate of Mg ranged between 8.5% and 37.7% for summer; 8.9% and 38.1% for autumn; 8.1% and 37.4% for winter; 8.7% and 29.1% for spring. Removal rate in terms of stations ranged between 8.1% and 8.9% for Prince Island; 15.7% and 16.7% for Bagdat Avenue; 28.7% and 29.4% for TEM Highway; 27.7% and 32.1% for Barbaros Boulevard; 24.4% and 38.1% for Dilovasi District. The highest removal rate was detected as 38.1% from Dilovasi District in autumn. The lowest was detected as 8.1% from Prince Island in winter.

Removal rate of Mg leaped at TEM Highway and reached the maximum level at Dilovasi District. According to these results, sources of Mg were mainly airborne particles which are generated by heavy traffic and industrial establishments in TEM, Barbaros and Dilovasi. Also decreased levels of Mg in soil might have affected the uptake of Mg by the plants. In Dilovasi District and Barbaros Boulevard, decrease in removal rates of Mg might be sourced from Mg increase in leaves at spring.

Doforence	Organism	Soil (mg.kg ⁻¹)		Plant (1	mg.kg ⁻¹)	Country/	Mathad		
Kelerence		Control	Treatment	Control	Treatment	city	Method		
Tzvetkova and	D 7 '			2420 (L) June	1870 (L) June	Delessie			
Petkova (2015)	k. pseudoacacia	pseudoacacia 2320 (L) 2250 (L) Bulg	Bulgaria	AAS					
Jensen et al., (2010)	R. pseudoacacia			3290 (L)	3880 (L)	USA	ICP-MS		
				1618 (L)					
Rahmonov (2009)	R. pseudoacacia					462 (B)		Poland	Flame AAS
				338 (S)		-			
Tabari and Salehi (2009)	R. pseudoacacia	301	378	2380 (L)	3380 (L)	Iran	AAS		

Table 3.7 Mg levels (L: leaf, uWL: unwashed leaf, WL: washed leaf, B: bark, S: branch)

Tabari and Salehi, (2009) reported that results of Mg content in soil irrigated with municipal sewage water ranged between 301 and 378 mg.kg⁻¹. According to results of this study, Mg content in soil of control station which is Prince Island ranged between 4166.854 and 4672.004 mg.kg⁻¹. This difference in the Mg content of the soil may be due to soil type and mineral element content. Additionally Mg content in upper layer of soil ranged from 300 to 8400 mg.kg⁻¹ (Merhaut, 2007). Mg content results of Tabari and Salehi, (2009) and this study are within the normal range.

Mg contents in plant parts of our study are higher than results of Tzvetkova and Petkova, (2015) and Rahmonov (2009); and consistent with the results of Jensen et al. (2010) and Tabari and Salehi (2009). Hawkesford et al., (2012) reported that plant vegetative parts Mg requirement ranges from 1500 to 3500 mg.kg⁻¹. Results of this study showed that Mg content in plant parts are within the range. But some results in Dilovasi District were lower than the normal values.

3.1.1.9 Manganese (Mn)

The main function of Mn is being a cofactor for different enzymes, thus Mn serves as a micronutrient for all organisms (Das et al. 2014). According to results, Mn levels in plant samples ranged between 24.740 ± 0.553 mg.kg⁻¹ (Branch/Prince Island) and 242.712 ± 7.392 mg.kg⁻¹ (Bark/Dilovasi District). Soil Mn concentrations were determined between 389.210 ± 8.465 mg.kg⁻¹ (Prince Island) and 932.012 ± 16.726 mg.kg⁻¹ (Dilovasi District). Prince Island samples contained the lowest Mn concentrations both in plant and soil while Dilovasi District has the highest Mn concentrations.

The highest Mn levels in plant and soil were detected in spring in all stations while the lowest were detected in summer. Results indicated that Mn concentrations in all plant and soil samples for all stations tend to be increase during autumn and spring and decrease during summer and winter. Additionally seasonal variation pattern remained the same for all stations.

Summer Autumn Winter Spring

Figure 3.49 Average Mn concentrations in Prince Island

Figure 3.50 Average Mn concentrations in Bagdat Avenue

TEM Highway/Manganese (Mn) (mg.kg⁻¹)

Figure 3.51 Average Mn concentrations in TEM Highway

Barbaros Boulevard/Manganese (Mn) (mg.kg⁻¹)

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.52 Average Mn concentrations in Barbaros Boulevard

Dilovasi Disctrict/Manganese (Mn) Results (mg.kg⁻¹)

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.53 Average Mn concentrations in Dilovasi Disctrict

Figure 3.1.54 Removal rates of Mn

The highest removal rate was detected as 17.6% from Prince Island in summer. The lowest was detected as 11.2% from Dilovasi District in spring. Removal rate of Mg ranged between 13.3% and 17.6% for summer; 13.6% and 17.0% for autumn; 13.4% and 17.1% for winter; 11.2% and 16.7% for spring. Removal rate in terms of stations ranged between 16.6% and 17.6% for Prince Island; 13.4% and 14.1% for Bagdat Avenue; 14.8% and 16.7% for TEM Highway; 14.6% and 16.5% for Barbaros Boulevard; 11.2% and 16.0% for Dilovasi District. According to results, control, heavy traffic and industrial zones had similar Mn removal rates whereas removed amount of Mn with washing procedure increased from Prince Island to Dilovasi District. The main air emission sources of Mn are fossil fuel combustion, re-entrainment of Mn-rich soils and industrial emissions (Williams et al., 2012). The increase in Mn content in Bagdad, TEM and Barbaros stations may be due to heavy traffic but the highest Mn content in Dilovasi District may be sourced from industrial emission specially iron-steel production factories.

The Mn content of the plant parts has increased in parallel with the increasing Mn content in the soil. Millaleo et al., (2010) reported from Neumann and Römheld (2001) that soil

mobilization of many micronutrients are affected by soil pH value, organic acid and organic matter contents. Williams et al., (2012) reported that combustion of fossil fuel which contains Mn compound additives is the main source of soil Mn. In relation with that, it is possible that differences at soil pH, texture, organic acid and organic matter ingredients may cause the increase in Mn content from Prince Island to Dilovasi District.

Reference	Organism	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		Country	Method
Kererence		Control	Study Site	Control	Study Site	/City	
Nadgorska-Socha et al., (2016)	R. pseudoacacia	21.76	151.53 - 250.64	21.43 (L)	12.99- 21.91 (L)	Poland	Flame AAS
	Carpinus betulus			3840 (L)	555-970 (L)	Country /City Poland TUR /Istanbul Bulgaria USA USA Poland Poland Iran TUR /Gumushane USA	k0-INAA
Esen et al., (2016)	Quercus petraea	410	610-840	1930 (L)	1040-1240 (L)		
	Tilia Argentea			598 (L)	272-402 (L)		
Tzvetkova and				28.9 (L) June	43.3 (L) June		
Petkova (2015)	R. pseudoacacia			93.0 (L) Sept.	100.7 (L) Sept	- Bulgaria	AAS
Vural (2013)	R. pseudoacacia			3.74-14.0 (S)		TUR /Gumushane	ICP-AES
Jensen et al., (2010)	R. pseudoacacia			41.5 (L)	52.8 (L)	USA	ICP-MS
				110 (L)			
Rahmonov (2009)	R. pseudoacacia			30 (B)		Poland	Flame AAS
			Sept TUR 3.74-14.0 (S) TUR /Gumushane 41.5 (L) 52.8 (L) USA 30 (B) Poland 16 (S) 101-108 (L) 91-216 (L) Distribution				
Samecka-Cymerman				101-108 (L)	91-216 (L)		
et al., (2009)	R. pseudoacacia	201-214	266-553	45-48 (B)	49-167 (B)	Poland	ICP-MS
Tabari and Salehi (2009)	R. pseudoacacia	641.91	742.36	31.56 (L)	46.56 (L)	Iran	AAS
	R. pseudoacacia	251.052	337.36- 786.47	53.6 (UwL)	147.8-349.2 (UwL)	TUR	Flame
Cenk et al., (2005)		2/1.8/0		43.3 (WL)	95.4-229.2 (WL)	/Denizli	AAS
Mertens et al., (2004)	R. pseudoacacia	683 (\$	Sediment)			Belgium	Flame AAS

Table 3.8 Mn levels (L: leaf, uWL: unwashed leaf, WL: washed leaf, B: bark, S: branch)

Mn contents in soil are highly variable as $10 - 9000 \text{ mg.kg}^{-1}$ but overall average is calculated as 437 mg.kg⁻¹ (Kabata-Pendias and Mukherjee, 2007). There are some studies shown in table 3.8 about determination of some mineral element levels in *R. pseudoacacia* and/or other species. There is not an extreme soil Mn content level in this study or other studies and Mn contents in soil were within the normal limits for all studies.

Plant Mn content generally ranges from 30 to 300 mg.kg⁻¹ and 400-1000 mg.kg⁻¹ of Mn is condsidered as excessive and toxic therefore Mn is both an essential and toxic mineral element (Kabata - Pendias and Pendias, 2001). Plant part Mn levels of this study remained

within the normal limits thus it can be said that, *R. pseudoacacia* plants have acquired sufficient amount of Mn to maintain its physiological processes. When other studies were examined, Esen et al., (2016) reported that *Carpinus betulus* and *Quercus petraea* plants have accumulated Mn in high proportions than the *R. pseudoacacia* leaves as 3840 and 1930 mg.kg⁻¹ respectively. The authors did not mention any of the toxicity symptoms caused by Mn. The genetic and physiological differences among plants may affect mineral element accumulation like in this case. In study of Nadgorska-Socha et al., (2016) detected Mn level in plant parts is under the sublimit. Extreme levels of Mn were not detected in other studies.

3.1.10 Sodium (Na)

Na is a non-essential alkali metal and it is responsible for salinity in agricultural areas. According to results, Na levels in plant samples ranged between 52.325±2.448 mg.kg⁻¹ mg.kg⁻¹ (branch/winter/Dilovasi District) 304.958±9.606 (unwashed and leaves/summer/Prince Island). Soil Na contents were determined between 992.662±35.412 mg.kg⁻¹ (winter/Dilovasi District) and 2449.783±71.939 mg.kg⁻¹ (summer/Prince Island). Prince Island samples contained the highest Na concentrations both in plant and soil while Dilovasi District has the lowest Na concentrations.

The highest Na level in plants and soil was detected in summer in all stations while the lowest was detected in winter. Na contents in soil and plant varied similar to the seasonal variation of K. Seasonal variation pattern remained same for all stations for all samples. Results indicated that Na concentrations in all plant and soil samples for all stations tend to be decrease from summer to winter, followed by an increase again in spring.

Summer Autumn Winter Spring

Figure 3.55 Average Na concentrations in Prince Island

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.56 Average Na concentrations in Bagdat Avenue

TEM Highway/Sodium (Na) (mg.kg⁻¹)

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.57 Average Na concentrations in TEM Highway

Figure 3.58 Average Na concentrations in Barbaros Boulevard

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.59 Average Na concentrations in Dilovasi District

Increase in soil Na content is a consequence of natural events (effect of seawater, climatic conditions and rock weathering) or anthropogenic impacts (industrial and agricultural activities, irrigation, road salt, water softener, sewage. etc.). Intrusion of seawater in coastal areas or islands can increase soil Na content. (Kelly et al., 2008; Yadav et al., 2011). The higher Na content in Prince Island and Bagdat Avenue, which are the nearest stations to sea, may be a consequence of this phenomenon.

Removal Rates of Sodium (Na) Between Unwashed and Washed Leaves (%)

Summer Autumn Winter Spring

Figure 3.60 Removal rates of Na between unwashed and washed leaves

The highest removal rate of Na was detected as 29.7% from Dilovasi District in autumn. The lowest was detected as 11.9% from Prince Island in summer. Removal rate of Na ranged between 11.9% and 29.2% for summer; 12.5% and 29.7% for autumn; 12.1% and 21.5% for winter; 12.1% and 28.8% for spring. Removal rate in terms of stations ranged between 11.9% and 12.5% for Prince Island; 16.3% and 18.3% for Bagdat Avenue; 21.5% and 22.6% for TEM Highway; 12.2% and 23.5% for Barbaros Boulevard; 20.9% and 29.7% for Dilovasi District. Changes in removal rate of Na especially depend on locality.

Plants adjust the optimal ratio between K^+ and Na^+ to maintain metabolic functions, sufficient growth and yield development. In this work, it can be suggested that *R*. *pseudoacacia* plants adjusted Na levels in plant parts efficiently.

Doforonco	Organism	Soil (mg.kg ⁻¹)		Plant (mg.kg ⁻¹)		Country	Mathad
interentiet	Organishi	Control	Treatment	Control	Treatment	Country	Methou
	Carpinus betulus	_		411 (L)	443-1550 (L)	TUR/Istanbul	k0-INAA
Esen et al., (2016)	Quercus petraea	1600	3400-14800	780 (L)	1000-990 (L)		
	Tilia Argentea	-		555 (L)	990-930 (L)		
Jensen et al., (2010)	R. pseudoacacia			17.0 (L)	43.7 (L)	USA	ICP-MS
				464 (L)			
Rahmonov (2009)	R. pseudoacacia			408 (B)		Poland	Flame AAS
				460 (S)		•	
Tabari and Salehi (2009)	R. pseudoacacia	0.887	1.09	0.887 (L)	1.09 (L)	Iran	AAS
Mertens et al., (2004)	R. pseudoacacia	457 (\$	Sediment)			Belgium	Flame AAS

Table 3.9 Na levels (L: leaf, uWL: unwashed leaf, WL: washed leaf, B: bark, S: branch)

Esen et al., (2016) detected soil Na content in different stations in Istanbul between 1600 and 14800 mg.kg⁻¹ (Table 3.9). According to results, Na content in soil of control station is lower than the control station of this study. While Na content of other stations were higher than the Na content values of other stations in this study.

3.1.11 Nickel (Ni)

Nickel is a heavy metal and a trace element for human and animals. Ni is commonly used in metal industry as ingredient of stainless steels and other metals (Kabata-Pendias and Mukherjee 2007; Wuana and Okieimen, 2011). According to results, Ni levels in plant samples ranged between 1.380 ± 0.065 mg.kg⁻¹ (branch/autumn/Prince Island) and 27.215 ± 1.072 mg.kg⁻¹ (unwashed leaves/summer/Dilovasi District). Soil Ni contents were determined between 16.010 ± 0.598 mg.kg⁻¹ (autumn/Prince Island) and 42.754 ± 1.619 mg.kg⁻¹ (summer/Dilovasi District). Dilovasi District samples contained the highest Ni concentrations both in plant and soil while Prince Island samples have the lowest Ni concentrations.

The highest Ni levels in plant and soil were detected in summer in all stations. The lowest results were detected in winter in plant samples but the lowest result of soil samples were detected in autumn in all stations. Seasonal variation pattern remained the same for all stations. Results indicated that Ni concentrations in all plants at all stations tend to decrease from summer to winter, followed by an increase again in spring.

Prince Islands/Nickel (Ni) (mg.kg⁻¹)

Figure 3.61 Average Ni concentrations in Prince Island

Figure 3.62 Average Ni concentrations in Avenue

TEM Highway/Nickel (Ni) (mg.kg⁻¹)

Figure 3.63 Average Ni concentrations in TEM Highway

Figure 3.64 Average nickel (Ni) concentrations in Barbaros Boulevard

Dilovasi Disctrict/Nickel (Ni) (mg.kg⁻¹)

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.65 Average Ni concentrations in Dilovasi District

Figure 3.66 Removal rates of nickel (Ni) between unwashed and washed leaves.

The highest removal rate of Ni was detected as 22.7% from Dilovasi District in summer. The lowest was detected as 14.5% from TEM Highway in winter. Removal rate of Ni ranged between 15.4% and 22.7% for summer; 17.5% and 21.9% for autumn; 14.5% and 22.3% for winter; 15.9% and 22.0% for spring. Removal rate in terms of stations ranged between 17.1% and 17.6% for Prince Island; 16.6% and 18.2% for Bagdat Avenue; 14.5% and 19.5% for TEM Highway; 18.9% and 21.2% for Barbaros Boulevard; 21.9% and 22.7% for Dilovasi District. Changes in removal rate of Ni mainly depend on locality. The high level of Dilovasi District Ni content indicates industrial emission of Ni.

Ni is a microelement that is involved in the function of urease and some other important enzymes. Additionally, Ni is also involved in N metabolism (Broadley et al., 2012). Kabata-Pendias and Mukherjee, (2007) reported that the average Ni concentration in soil is 19- 22 mg.kg⁻¹. According to these values, Ni content in soil samples of Prince Island and Bagdat Avenue are within the normal range. Soil Ni contents of Tem Highway, Barbaros Boulevard and Dilovasi District are higher than the normal range. In relation with the high levels of soil Ni content, plant Ni contents were also at excessive levels in these stations.

Defermenter		Soil (mg.kg ⁻¹)		Plant	(mg.kg ⁻¹)	C	Mala
Kelerence	Organism	Control Study Site		Control Study Site		Country	Method
	Carpinus betulus		40.7-53.0	8.1 (L)	4.1-4.9 (L)	- TUR/Istanbul -	k0-INAA
Esen et al., (2016)	Quercus petraea	16.3		8.3 (L)	6.9-10.1 (L)		
	Tilia Argentea			6.5 (L)	3.8-4.1 (L)		
Ozen and Yaman (2015)	R. pseudoacacia			6	3-10	TUR/Bursa, Gaziantep	ICP-MS
Vural (2013)	R. pseudoacacia	1	10-37		5.41 (S)	TUR/Gumushane	ICP-AES
Yasar et al., (2010)	Cercis siliquastrum	15.07 Urt 5.34	an roadside- Control	4.47 (UwL) - 2.19 (WL)		TUR/Istanbul	ICP-OES
Samecka-Cymerman et al				0.8-1.0 (L)	1.3-3.9 (L)	~	
(2009)	K. pseudoacacia	<i>acacia</i> 0.7-0.9 8.9	8.9-17.8	1.3-2.7 (B)	2.6-5.4 (B)	Poland	ICP-MS
Tabari and Salehi (2009)	R. pseudoacacia	27.63	38.56	ND (L)	ND (L)	Iran	AAS

Table 3.10 Ni levels (L: leaf, uWL:unwashed leaf, WL:washed leaf, B: bark, S: branch)

Some studies are shown in Table 3.10 about Ni levels in soil and plant. Soil Ni content results of Esen et al., (2016) and Tabari and Salehi (2009) were higher than the results of this study. While plant Ni contents in all other studies were lower than the results of present study.

3.1.12 Lead (Pb)

Lead (Pb) is one of the most toxic and exposed pollutant for plants. In the year 2013 Pb is regarded as most toxic and hazardous heavy metal after arsenic according to occurance, toxicity and human exposure by Agency for Toxic Substances and Disease Registry (ATSDR) (Pourrut et al., 2011). According to results, Pb levels in plant samples ranged between 6.534±0.242 mg.kg⁻¹ (branch/summer/Prince Island) and 103.356±3.994 mg.kg⁻¹ (unwashed leaves/spring/Dilovasi District). Soil Pb contents were determined between 24.110±0.738 mg.kg⁻¹ (summer/Prince Island) and 112.868±2.781 mg.kg⁻¹ (spring/Dilovasi District). Dilovasi District samples contained the highest Pb concentrations both in plant and soil samples while Prince Island samples have the lowest.

The highest Pb concentrations were detected in spring at all stations however the lowest values were detected in summer at all stations for both plant and soil samples. Pb concentrations of all samples increased in relation with increased Pb concentrations in soil. Alexander et al., 2006 reported that members of *Fabaceae* family accumulated Pb at low levels in comparison with some other important families.

Prince Islands/Lead (Pb) (mg.kg⁻¹)

Summer Autumn Vinter Spring

Figure 3.67 Average Pb concentrations in Prince Islands.

Figure 3.68 Average Pb concentrations in Bagdat Avenue

TEM Highway/Lead (Pb) (mg.kg⁻¹)

Figure 3.69 Average Pb concentrations in TEM Highway

Barbaros Boulevard/Lead (Pb) (mg.kg⁻¹)

Figure 3.70 Average Pb concentrations in Barbaros Boulevard

Figure 3.71 Average Pb concentrations in Dilovasi Disctrict

Figure 3.72 Removal rates of Pb between unwashed and washed leaves

Removal rate of Pb ranged between 5.5% and 14.1% for summer; 7.9% and 13.9% for autumn; 8.1% and 13.8% for winter; 5.8% and 13.6% for spring. Removal rate in terms of stations ranged between 5.5% and 8.1% for Prince Island; 11.1% and 13.1% for Bagdat Avenue; 12.4% and 12.6% for TEM Highway; 13.8% and 14.1% for Barbaros Boulevard; 8.9% and 10.6% for Dilovasi District. The highest removal rate of Pb was detected as 14.1% from Barbaros Boulevard in summer. The lowest was detected as 5.5% from Prince Island in summer.

Changes in removal rate of Pb occurred in a narrow range and mainly dependent on locality. Removal percentage of Pb in Bagdat Avenue, TEM Highway and Barbaros Boulevard were detected to be higher than the other stations. These stations have a dense traffic flow and high level emission of Pb. This emission may be sourced from combustion of fuel. Prince Island doesn't have traffic or industrial facilities, Dilovasi District has relatively less traffic flow than the other locations, but it has heavy industrial facilities. According to the results it can be said that aerial emission of Pb is sourced from industrial activities.

		Soil (mg.kg ⁻¹)		Plan	t (mg.kg ⁻¹)		
Reference	Organism	Control	Study Site	Control	Treatment	Country/city	Method
A			11.2		11.3 (S)	Tuon	
Armaki (2016)	k. pseudoacacia	11	.2		9.7 (S)	Iran	ICP (OES)
Nadgorska-Socha et al., (2016)	R. pseudoacacia	75.76	117.02- 513.50	2.79 (L)	3.57-27.93 (L)	Poland	Flame AAS
Palowski ot al. (2016)	P psaudoacacia		_	11.	3-25.6 (L)	Poland	Flame 44S
1 alowski et al., (2010)	K. pseudoacacia			19.	3-35.0 (B)	Totalid	- 14110 / 1110
Tzvetkova and	D. maan da a a acia			14.9 (L) June	28.6 (L) June		
Petkova (2015)	K. pseudoacacia		-	22.2 (L) Sept.	30.7 (L) Sept	Bulgaria	AAS
Monfred et al. (2012)	D. maan da a a a ai a				2.3 (L)	Tuon	ICD (OES)
Momfeu et al., (2013)	K. pseudoacacia		-		2.6 (S)	ITAII	ICP (OES)
Vural (2013)	R. pseudoacacia	15-7	747			TUR/Gumushane	ICP-AES
				13.1 (WL)	4.9-25.7 (WL)		ICP-AES / AAS
Serbula et al., (2012)	R. pseudoacacia	32.3	29.6-96.5	23.3 (UwL)	22.3-58.9 (UwL)	Serbia	
				23.5 (B)	9.7-38.8 (B)		
Guney et al., (2010)		191 (Surf	ace Soil)	_			
		81.2 (20-cm	depth soil)	_		I UK/Istanbul	
Kaya et al., (2010)	R. pseudoacacia	1.2-4.1	27-602	1 (L)	3-1865 (L)	TUR/Gaziantep	ICP-MS
Jensen et al., (2010)	R. pseudoacacia			0.0888 (L)	0.222 (L)	USA	ICP-MS
Yener and Yarci				2.753-7.623 (L)			
(2010)	Alcea pallida	11.534-	61.952	0.52	4-2.303 (S)	TUR/Istanbul	AAS
					12 (L)		
Rahmonov (2009)	9) R. pseudoacacia				84 (B)	Poland	Flame AAS
					68 (S)		
Samecka-Cymerman	D. maan da a a a ai a	27 22	20.00	1.9-2.2 (L)	7.5-39 (L)	Dolond	ICD MS
et al., (2009)	k. pseudoacacia	21-32	30-99	1.2-1.9 (B)	32-93 (B)	Poland	ICP-MS
Tabari and Salehi (2009)	R. pseudoacacia	55.64	93.01	ND (L)	ND (L)	Iran	AAS
Mertens et al., (2004)	R. pseudoacacia	75.2 (Se	diment)		2.3 (L)	Belgium	Flame AAS
Celik et al., (2005)	R. pseudoacacia	34.260	74.86- 336.55	15.11 (UwL)	21.84- 206.2 (UwL)	TUR/Denizli	Flame AAS
Aksoy et al., (2000)	R. pseudoacacia	39 (Rural)	70-468	15.98 (UwL) 14.89 (WL)	26.67- 176.88(UwL) 21.04-62.42 (WL)	TUR/Kayseri	AAS

Table 3.11 Pb levels (L: leaf, uWL:unwashed leaf, WL:washed leaf, B: bark, S: branch)

Pb is a natural component of earth crust but its level increase due to anthropogenic effects. Pb mainly is mainly emitted from smelting, mining, combustion of leaded gasoline and Pb containing garbages. In soil of unpolluted sites, Pb levels were detected as 25 mg.kg⁻ ¹. Pb content in plant parts are detect as 0.1-10 mg.kg⁻¹ and above 30 mg.kg⁻¹ is considered as excessive or toxic for plants (Kabata - Pendias and Pendias, 2001). According to results of this study, soil Pb content of Prince Island is slightly above the normal limits while plant part Pb contents were above the expected limits. Pb content levels in soil and plant samples from the other stations were detected above the normal levels. Measured Pb levels in both soil and plant samples ranged from low to higher levels in Bagdat Avenue, TEM Highway, Barbaros Boulevard and Dilovasi District respectively.

There are some studies shown in Table 3.11 including Pb levels from different countries. Measured Pb level in soil samples of Nadgorska-Socha et al., (2016), Vural (2013), Serbula et al., (2012), Guney et al., (2010), Kaya et al., (2010), Yener and Yarci (2010), Samecka-Cymerman et al., (2009), Tabari and Salehi (2009), Mertens et al., (2004), Celik et al., (2005) and Aksoy et al., (2000) were higher than the normal range. Additionally, measured Pb levels in study of Nadgorska-Socha et al., (2016), Vural (2013), Guney et al., (2010), Kaya et al., (2010), Celik et al., (2005) and Aksoy et al., (2010), Celik et al., (2005) and Aksoy et al., (2000) were higher than the results of this study.

Measured Pb levels in plants samples of Nadgorska-Socha et al., (2016), Palowski et al., (2016), Tzvetkova and Petkova (2015), Serbula et al., (2012), Rahmonov (2009), Samecka-Cymerman et al., (2009), Celik et al., (2005) and Aksoy et al., (2000) were higher than the normal plant Pb content. Along with that measured Pb levels in plants samples of Kaya et al., (2010), Celik et al., (2005) and Aksoy et al., (2000) were higher than the results of this study. Pb pollution has reached the highest level in the Dilovasi Dictrict due to heavy industrial facilities.

Pourrut et al., (2011) reported that mineral nutrition status is affected by the high level of Pb. In relation with that, there are some positive correlation between Pb and Ca, Cd, Cr, Mn and Ni with .64, .91, .86, .96, .55 and .68 scores, respectively. There are not any significant negative correlation between Pb and any other element.

3.1.13 Zinc (Zn)

Zinc is an essential microelement for plants. Zn has structural, regulatory and catalytic functions. As a structural element Zn is found in structure of some proteins like proteins that have zinc-finger domains. Zn works with transcription factors for regulation of gene expression. Zn also acts as a cofactor for hundreds of enzymes which are the most important catalytic compounds of cell (Ricachenevsky et al., 2015).

According to our findings, Zn levels in plant samples ranged between 20.207 ± 1.066 (branch/ winter/ Prince Island) and 135.388 ± 3.547 mg.kg⁻¹ (unwashed leaves/ summer/ Dilovasi District). Soil Pb contents were determined as between 232.676 ± 6.305 (winter/ Prince Island) and 452.105 ± 12.177 mg.kg⁻¹ (summer/ Dilovasi District). Dilovasi District samples contained the highest Zn concentrations both in plant and soil samples while Prince Island samples has the lowest. Zn levels in all samples were detected as higher in summer and lower in winter and plant part Zn levels changed in relation with the increase in soil levels.

■ Summer ■ Autumn ■ Winter ■ Spring

Figure 3.73 Average Zn concentrations in Prince Islands.

Summer Autumn Winter Spring

Figure 3.74 Average Zn concentrations in Bagdat Avenue

Figure 3.75 Average Zn concentrations in TEM Highway.

120

Figure 3.76 Average Zn concentrations in Barbaros Boulevard.

Figure 3.77 Average Zn concentrations in Dilovasi District.

Figure 3.78 Removal rates of Zn between unwashed and washed leaves

Removal rate of Zn ranged between 5.7% and 11.7% for summer; 5.6% and 14.0% for autumn; 5.7% and 11.5% for winter; 5.8% and 13.8% for spring. Removal rate in terms of stations ranged between 5.7% and 7.9% for Prince Island; 5.6% and 5.8% for Bagdat Avenue; 10.0% and 11.8% for TEM Highway; 11.3% and 11.71% for Barbaros Boulevard; 10.9% and 14.0% for Dilovasi District. The highest removal rate of Pb was detected as 14.0% from Dilovasi Discrict in autumn. The lowest was detected as 5.6% from Bagdat Avenue in autumn. Prince Islands and Bagdat Avenue has lower removal rate of Zn. The other stations have high removal rates of Zn. Adachi and Tainosho (2004) reported that tire and brake dust is an important source of heavy metal emission. Especially tire dust contains and emits high proportions of Zn. As the traffic rate increases, the amount of heavy metal that is emitted to the environment increases. Thus it can be said that emission of Zn is caused by traffic in TEM Highway and Barbaros Boulevard stations. Additionally in Dilovasi Disctrict, Zn emission may be sourced from industrial facilities.

As a micronutrient element, Zn is taken up from soil mainly as a diavalent cation (Zn^{+2}). Average total Zn content in agricultural soils range from 3 to 770 mg.kg⁻¹ with an average of 65 mg.kg⁻¹ (Alloway, 2009; Storey, 2007). According to the results of this study, Zn content in soil ranged 232.676 to 452.105 mg.kg⁻¹. Thus Zn content in soils of all stations are within the expected range but above the world average.

Doforonco	Orgonism	Soil (mg.kg ⁻¹)	Plant	(mg.kg ⁻¹)	Country/aity	Method
Kelerence	Organishi	Control	Treatment	Control	Treatment	Country/city	Method
	Carpinus betulus			28.2 (L)	29.3-41.6 (L)		
Esen et al., (2016)	Quercus petraea	36	65.7-131	22.5 (L)	23.1-35.6 (L)	TUR/Istanbul	k0-INAA
	Tilia Argentea	-		17.7 (L)	26.5-32.2 (L)		
Nadgorska-Socha et al., (2016)	R. pseudoacacia	50.23	159.78- 1787.40	70.06 (L)	80.16-109.64 (L)	Poland	FAAS
Polowski ot ol. (2016)	P pseudoacacia			29.4-54.2 (L)		Poland	FAAS
1 alowski et al., (2010)	K. pseudoucuciu			36.6	-60.7 (B)	Tolalid	IAAS
Tzvetkova and Petkova (2015)	R. pseudoacacia				30.0 (L) June 19.0 (L) Sept	Bulgaria	AAS
Vural (2013)	R. pseudoacacia	76	5-477	8.58-47.0 (S)		TUR/Gumush	ICP-AES
				43.1 (WL)	32.0-100.3 (WL)	anc	
Serbula et al., (2012)	R. pseudoacacia	130.7	130.1-330.1	81 (UwL)	31.6-192.7 (UwL)	Serbia	ICP-AES / AAS
				109.9 (B)	110.1-4699.8 (B)		
Comment of (2010)		255 (Su	rface Soil)	_		TUD/Ictorbul	Flama AAS
Guney et al., (2010)		211 (20-с	m depth soil)			I UK/Istanbui	Fiance AAS
Jensen et al., (2010)	R. pseudoacacia			51.7 (L)	46.6 (L)	USA	ICP-MS
Yener and Yarci		24.960	110 001	21.467	-56.300 (L)	- TUD/Ictonbul	A A S
(2010)	Ассей раший	54.805	-110.021	11.567	-47.767 (S)	I UK/Istanbui	AAS
				200 (L)			
Rahmonov (2009)	R. pseudoacacia			96 (B)		Poland	FAAS
				1	16 (S)		
Samecka-Cymerman	P pseudoacacia	61 70	122 281	25-30 (L)	33-95 (L)	Poland	ICP MS
et al., (2009)	к. рзениойсисни	01-70	152-561	12-15 (B)	41-115 (B)	rolaliu	ICI -1415
Tabari and Salehi (2009)	R. pseudoacacia	148.77	99.77	30.62 (L)	20.62 (L)	Iran	AAS
Celik et al., (2005)	R. pseudoacacia	10.670	81.23- 506.43	13.02 (UwL) 11.53 (WL)	33.20-139.0 (UwL) 21.01-53.05 (WL)	TUR/Denizli	Flame AAS
Mertens et al., (2004)	R. pseudoacacia	358 (S	Sediment)	2	45 (L)	Belgium	Flame AAS
Alcov at al. (2000)	D neaudogagai-	63 (Dural)	106 1190	21 (UwL)	35-242 (UwL)	TUD/Kowow	A A S
AKSUY CI al., (2000)	л. pseudoacacia	us (Kural)	63 (Rural) 106-1189		26-98 (WL)	I UN/Kayser1	AAS

Table 3.12 Zn levels (L: leaf, UwL:unwashed leaf, WL:washed leaf, B: bark, S: branch)

Average Zn contents in plant parts range from 27 to 150 mg.kg⁻¹ and therewithal 100 - 400 mg.kg⁻¹ of Zn content can be excessive or toxic for different plants (Kabata-Pendias and Pendias, 2001). According to results of this study, Zn content in plant parts were detected between 20.207 and 135.388 mg.kg⁻¹ thereby it can be said that *R. pseudoacacia* plants have acquired Zn from its soil sufficiently and within the expected range.

Detected Zn content in soil and plant parts in some other studies shown at Table 3.12. Soil Zn content in study of Nadgorska-Socha et al., (2016), Vural (2013), Celik et al., (2005) and Aksoy et al., (2000) were detected higher than soil Zn content of this study. When considering Zn contents in plant parts, results of Serbula et al., (2012), Rahmonov (2009), Celik et al., (2005) and Aksoy et al., (2000) were higher than the results of this study. According to these results, it can be proposed that *R. pseudoacacia* plants growing on different ecological conditions have accumulated Zn in different amounts.

3.1.15 Statistical Analysis

	Multivariate Tests ^a									
	Effect		Value	F	Hypothesis df	Error df	Sig.			
		Pillai's Trace	1.000	355872,075 ^b	13.000	163.000	0.000			
		Wilks' Lambda	.000	355872,075 ^b	13.000	163.000	0.000			
	Intercept	Hotelling's Trace	28382.435	355872,075 ^b	13.000	163.000	0.000			
		Roy's Largest Root	28382.435	355872,075 ^b	13.000	163.000	0.000			
Between Subjects		Pillai's Trace	3.889	449.296	52.000	664.000	0.000			
		Wilks' Lambda	.000	3801.577	52.000	633.407	0.000			
	Locality	Hotelling's Trace	6376.298	19803.310	52.000	646.000	0.000			
		Roy's Largest Root	5560.385	71001,836 ^c	13.000	166.000	.000			
		Pillai's Trace	3.485	86.368	52.000	664.000	.000			
		Wilks' Lambda	.000	1039.136	52.000	633.407	0.000			
	Plant Part	Hotelling's Trace	7157.583	22229.800	52.000	646.000	0.000			
		Roy's Largest Root	6916.691	88320,829°	13.000	166.000	0.000			
		Pillai's Trace	8.202	18.699	208.000	2275.000	0.000			
	T 1°4 Ja	Wilks' Lambda	.000	84.131	208.000	1683.205	0.000			
	Locality * Plant Part	Hotelling's Trace	478.045	370.379	208.000	2095.000	0.000			
		Roy's Largest Root	264.670	2894,833°	16.000	175.000	.000			
		Pillai's Trace	1.000	20973,680 ^b	39.000	137.000	.000			
		Wilks' Lambda	.000	20973,680 ^b	39.000	137.000	.000			
Within Subjects	Seasons	Hotelling's Trace	5970.610	20973,680 ^b	39.000	137.000	.000			
		Roy's Largest Root	5970.610	20973,680 ^b	39.000	137.000	.000			
	Seasons * Locality	Pillai's Trace	3.628	35.023	156.000	560.000	.000			

Table 2.13 Results of Repeated Measures Multivariate Tests

	Wilks' Lambda	.000	246.167	156.000	548.690	0.000
	Hotelling's Trace	1481.260	1286.607	156.000	542.000	0.000
	Roy's Largest Root	1269.077	4555,661°	39.000	140.000	.000
	Pillai's Trace	3.250	15.563	156.000	560.000	.000
G	Wilks' Lambda	.000	95.266	156.000	548.690	0.000
Seasons * Plant Parts	Hotelling's Trace	1162.460	1009.701	156.000	542.000	0.000
	Roy's Largest Root	1100.479	3950,437°	39.000	140.000	.000
	Pillai's Trace	8.597	4.526	624.000	2432.000	.000
Seasons*	Wilks' Lambda	.000	12.360	624.000	2105.229	0.000
Locality * Plant Part	Hotelling's Trace	300.929	65.165	624.000	2162.000	0.000
	Roy's Largest Root	191.409	746,005°	39.000	152.000	.000
a. De	sign: Intercept + lo Within S	cality + plant Subjects Desi	part + locality gn: Season	* plantpart		
	ł). Exact statis	stic			

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

	Ca	Cd	Cr	Cu	Fe	K	Mg	Mn	Na	Ni	Pb	Zn
В	.132**	184**	.003	-,109**	,431**	,763**	,926**	.361**	.550**	.251**	006	.437**
Ca		.510**	.563**	.683**	.328**	185**	.101**	.434**	.107**	.307**	.638**	.249**
Cd			.832**	.918**	.319**	366**	195**	.470**	.102**	.610**	.913**	.361**
Cr				.828**	.713**	124**	$.087^{*}$.822**	.479**	.833**	.860**	.709**
Cu					.305**	406**	146**	.466**	.066	.591**	.956**	.342**
Fe						.436**	.597**	.975**	.883**	.787**	.408**	.923**
K							.844**	.334**	.657**	.264**	310**	.511**
Mg								.519**	.700**	.362**	039	.584**
Mn									.825**	.858**	.553**	.928**
Na										.719**	.193**	.924**
Ni											.677**	.904**
Pb												.446**
			**	Correlati	on is sign	ificant at t	he 0.01 lev	vel (2-taile	ed).			
	*. Correlation is significant at the 0.05 level (2-tailed).											

 Table 3.14 Pearson Correlation Matrix (R) scores.

Repeated Measures MANOVA test results are tabulated in Table 3.13. The results were obtained from analysis of plant parts and soil samples collected from same trees for 5 locations separately for all 4 seasons. All comparisons values difference is significant at the 0.01 (p) level. Homogeneous subsets (TUKEY HSD) results are also shown on the graphs. At the same time, all of these values Pearson Correlation and matrix results are shown in Table 3.14. When these results are examined; significant for B; Positive correlation between K, Mg, and Na (>0.55, >0.93), for Ca; Positive correlation between Cd, Cr, Cu, and Pb (>0.51, >0.68), for Cd; Positive correlation between Cr, Cu, Ni, and Pb (>0.61, >0.92), for Cr; Positive correlation between Cu, Fe, Mn, Ni, Pb, and Zn (>0.71, >0.86), for Cu; Positive correlation between Ni and Pb (>0.59, >0.96), for Fe; Positive correlation between Mg, Mn, Na, Ni, and Zn (>0.60, >0.98), for K; Positive correlation between Mn, Na, and Zn (>0.52, >0.70), for Mn; Positive correlation between Na, Ni, Pb, and Zn (>0.55, >0.93), for Na; Positive correlation between Ni and Zn (>0.72, >0.92), And finally for Ni; Positive correlation between Pb and Zn (>0.68, >0.90) have been identified.

3.2 Photosynthetic Pigment Analysis

Results of photosynthetic pigments analyzes are shown in Table 3.15. According to results photosynthetic contents ranged between 0.411 and 0.473 for *Ca*, 0.220 and 0.633 for *Cb*, 0.631 and 1.064 for Total *C*, 0.222 and 0.304 for Cx+c and 0.746 and 2.194 for *Ca/Cb*.

Station	Season	Ca	Cb	Total C	Cx+c	<i>C</i> a/ <i>C</i> b
	Summer	0.439^{**a}	0.527^{*a}	0.966 ^{*a}	0.240^{**ab}	0.867 ^b
Prince Island	Autumn	0.434 ^{**b}	0.414 ^{*c}	0.848 ^{*c}	0.256 ^{**b}	1.356 ^a
	Spring	0.460^{**a}	0.357 ^{*b}	0.817 ^{*b}	0.234 ^{**a}	1.357 ^b
Pagdat	Summer	0.432^{**a}	0.633 ^{*a}	1.064^{*a}	0.239**ab	0.746 ^b
	Autumn	0.422 ^{**b}	0.353*c	0.775 ^{*c}	0.233 ^{**b}	1.579 ^a
Avenue	Spring	0.456^{**a}	0.528 ^{*b}	0.983*b	0.304 ^{**a}	0.912 ^b
Barbaros	Summer	0.439 ^{**a}	0.579^{*a}	1.017^{*a}	0.252^{**ab}	0.798 ^b
Boulevard	Autumn	0.462 ^{**b}	0.343 ^{*c}	0.805 ^{*c}	0.262^{**b}	1.742 ^a
Douicvaru	Spring	0.429^{**a}	0.311 ^{*b}	0.739 ^{*b}	0.225^{**a}	1.440 ^b
TFM	Summer	0.473^{**a}	0.440^{*a}	0.913 ^{*a}	0.263**ab	1.146 ^b
	Autumn	0.411 ^{**b}	0.220^{*c}	0.631 ^{*c}	0.222^{**b}	2.194 ^a
ingnway -	Spring	0.459^{**a}	0.399 ^{*b}	0.857 ^{*b}	0.245 ^{**a}	1.259 ^b
Dilovası	Summer	0.439 ^{**a}	0.460^{*a}	0.899*a	0.236 ^{**ab}	1.191 ^b
District	Autumn	0.417 ^{**b}	0.253 ^{*c}	0.670 ^{*c}	0.229 ^{**b}	1.892ª
	Spring	0.466^{**a}	0.392 ^{*b}	0.858^{*b}	0.257^{**a}	1.232 ^b

Table 3.15 Concentrations of Cl a, Cl b Total Cl, Cx+x, and Cl a/Cl b with statistics.

Cl a: chlorophyll a, *Cl* b: chlorophyll a, Total *Cl*: Total chlorophyll, Cx+c: total caretinoid and *Cl* a/*Cl* b: Ratio of chlorophyll *a* to chlorophyll *b*. The mean difference is significant at **P<0.01 and *P<0.05 level by the Tukey's test and multivariate analysis of variance (MANOVA).

The highest Ca contents were detected at spring in Prince Island, Bagdat Avenue and Dilovasi Distcrict stations, and detected at autumn in Barbaros Boulevard and at summer in TEM Highway stations. The lowest Cl a contents were detected at autumn in Prince Island, Bagdat avenue, TEM Highway and Dilovasi Distcrict stations whereas at spring in Barbaros Boulevard station. Altough the lowest and highest values were determined at different seasons, the Cl a changed in the same narrow range in all stations. The highest Cl b contents were detected at summer in all stations, while the lowest content detected

at spring in Prince Island and Barbaros stations and at spring in others. In contrast to Cl a content, Cl b value changed in a wider range. Cx+c content also changed in a narrow range like Ca.

Statistical analysis showed that, all the photosynthetic pigments changed in the same pattern in term of season in all stations. The *Ca* content detected in autumn was included in different homogeneous subset. It can be suggested that, *Ca* changed in a different pattern due to the physiological changes at autumn. *Cb* content changed independently at all seasons. Cx+c changes were found in different homogeneous subsets in spring and autumn and close to these homogeneous subsets in summer.

It can be said that changes at photosynthetic pigment contents occurred at the same pattern for all sations. Thus photosynthetic pigments of *R. pseudoacacia* plants are limitedly affected by industrial and heavy traffic pollution.

3.3 Results of Total Protein analysis

Total protein analyses were conducted for summer, autumn and spring seasons. Total protein content was detected as 27.237 mg/ml at spring in Prince Island and 78.190 mg/ml at autumn in Bagdat Avenue (Table 3.16). Total protein contents of *R. pseudoacacia* plants changed at same pattern in relation with season in all stations. The highest protein content was detected at autumn while the lowest was detected at spring. The highest protein content at autumn may be related to the physiological activities of the plant and there are not any significant changes in total protein levels between stations. Thus it can be suggested that changes at total protein contents of R. *pseudoacacia* plants occurred independently from their environmental conditions.

Station	Summer	Autumn	Spring
Prince Island	45.688	61.907 ^{**ab}	27.237*b
Bagdat Avenue	45.744	78.190 ^{**a}	32.493 ^{*ab}
Barbaros Boulevard	43.700	46.479 ^{**b}	35.021 ^{*ab}
TEM Highway	52.189	70.052^{**a}	33.038 ^{*ab}
Dilovası District	47.749	72.132 ^{**a}	42.159 ^{*a}

Table 3.16 Total protein contents with statistics.

Results of statistical analysis revealed that, during the autumn period total protein contents of Barbaros Boulevard samples were separated into different homogeneous subset from other stations. Whereas in spring, total protein contents of Prince Island samples and Dilovasi District samples were separated from each other. These two stations were exposed to different environmental conditions. Thus this difference may be an outcome of different environmental effects on the plants. Ozyigit et. al. (2014) reported that total protein content of plants changes in relation with the heavy metal pollution as total protein content increase firstly at low levels. If heavy metal exposure on the plant increases, total protein content of plant usually decreases. Higher level of TP in Dilovasi Plants at spring may be an indicator of a high level of pollution.

Statistical analyses such as one way analyses of variance (ANOVA) with Tukey's post-hoc HSD were performed. The mean differences are significant at p<0.01 (**) and p<0.05 (*) levels.

3.4 Genetic Analyses

In this study, ITS1 and *trnL-trnF* intergenic spacer sequences and ISSR band data were used for analyzing phylogenetic relationships and genetic diversity analyses, respectively for *R. pseudoacacia* genotypes.

3.4.1 ISSR data

After the ISSR-PCR reactions, obtained DNA fragments were migrated in agarose gel and band profiles were scored as 1 for presence and 0 for absence. Only visible and distinguishable bands were chosen and scored. ISSR analyses conducted for 11 genotypes from Prince Islands, 12 genotypes from Bagdad Avenue, 12 genotypes from Barbaros Boulevard, 10 genotypes from Dilovasi District, 13 genotypes from TEM Highway and all genotypes at once as a single group. 15 ISSR primers were applied and 9 ISSR primers gave results with visible and distinguishable bands (Table 3.15). Total 100 loci were obtained from nine primers. These loci ranged in size from 200 to 1800 bp with an average of 11.1 bands formed per primer.

Table	3.17	Details	of nine	ISSR	primers	used	in	this	study,	including	primer	name,
amplic	con si	ze, band	number	s and p	olymorp	hism	rati	io				

			Amplicon		(n=58)		
No Primer		Name	Size (bp)	Amplified bands	Monomorphic Bands	Polymorphic Bands	Polymorphism (%)
1	ISSR 2	UBC811	200-1100	11	0	11	
2	ISSR 4	UBC818	200-1100	13	0	13	
3	ISSR 5	UBC820	300-1200	8	0	8	
4	ISSR 6	UBC823	300-1200	13	0	13	
5	ISSR 7	UBC827	200-1100	10	0	10	1000/
6	ISSR 8	UBC825	250-1800	12	0	12	100%
7	ISSR 10	UBC849	200-1200	12	0	12	
8	ISSR 11	UBC855	300-1200	10	0	10	
9	ISSR 12	UBC842	300-1000	11	0	11	
Т	otal numbe	r of amplifi	ed bands:	100	0	100	

Table 3.18 Summary of genetic variation statistics for all loci by using diploid ISSR data

 set with Popgene 32 software

(n=58)	PPL (%)	na	ne	h	Ι	Ht	Hs	Gst
Mean	- 100	2.0000	1.5325	0.3169	0.4811	0.3169	0.2220	0.2993
Highest		2.0000	1.9999	0.5000	0.6931	0.4998	0.4624	0.9464
Lowest	-	-	1.0178	0.0515	0.1221	0.0156	0.0151	0.0181

PPL: percentage of polymorphic loci, na: Observed number of alleles, ne: Effective number of alleles [Kimura and Crow (1964)], h: Nei's (1973) gene diversity, I: Shannon's information index [Lewontin (1972)], Ht: Total gene diversity, Hs: Within population gene diversity, Gst: genetic differentiation coefficient, n: Number of genotypes.

The rate of percentage of polymorphic loci (PPL) and effective number of alleles were observed for overall as 100% and 1.5325, respectively and shown in Table 3.16. Nei's (1973) gene diversity (h) ranged from 0.0515 to 0.5000 with an average of 0.3169. Shannon's information index (I) ranged from 0.1221 to 0.6931 with an average of 0.4811. Total gene diversity (Ht), within population gene diversity (Hs) and genetic differentiation coefficient (Gst) mean values were calculated as 0.3169, 0.2220 and 0.2993, respectively.

Table 3.19 Single-Population Descriptive Statistics by using Diploid ISSR Data Setwith Popgene 32 software

		Prince Isla	ands							
(n=11)	PPL (%)	na	ne	h	Ι					
Mean		1.7300	1.4186	0.2454	0.3693					
Highest	73	2.0000	1.9576	0.4990	0.6922					
Lowest		1.0000	1.0000	0.0000	0.0000					
		Bagdad Av	venue							
(n=12)	PPL (%)	na	ne	h	Ι					
Mean		1.5800	1.3796	0.2166	0.3200					
Highest	58	2.0000	2.0000	0.5000	0.6931					
Lowest		1.0000	1.0000	0.0000	0.0000					
Barbaros Boulevard										
(n=12)	PPL (%)	na	ne	h	Ι					
Mean		1.4600	1.2873	0.1654	0.2454					
Highest	46	2.0000	2.0000	0.5000	0.6931					
Lowest		1.0000	1.0000	0.0000	0.0000					
	-	Dilovasi Di	strict							
(n=10)	PPL (%)	na	ne	h	Ι					
Mean		1.7600	1.4192	0.2511	0.3809					
Highest	76	2.0000	1.9819	0.4954	0.6886					
Lowest		1.0000	1.0000	0.0000	0.0000					
TEM Highway										
(n=13)	PPL (%)	na	ne	h	Ι					
Mean		1.5900	1.4122	0.2317	0.3388					
Highest	59	2.0000	1.9969	0.4992	0.6924					
Lowest		1.0000	1.0000	0.0000	0.0000					

PPL: percentage of polymorphic loci, na: Observed number of alleles, ne: Effective number of alleles [Kimura and Crow (1964)], h: Nei's (1973) gene diversity, I: Shannon's information index [Lewontin (1972)], n: Number of genotypes.

The rate of PPL was observed as 73% for Prince Island, 58% for Bagdad Avenue, 46% for Barbaros Boulevard, 76% for Dilovasi District and %59 for TEM Highway. According to results, the highest genetic diversity was calculated for Dilovasi District and the lowest for Barbaros Boulevard (Table 3.17). From single-population descriptive statistics, h and I values were calculated for Prince Islands, Bagdad Avenue, Barbaros Boulevard, Dilovasi District and TEM Highway as 0.2454, 0.2166, 0.1654, 0.2511 and 0.2317, respectively for h; 0.3693, 0.3200, 0.2454, 0.3809 and 0.3388, respectively for I.

Figure 3.79 Dendrogram Based on Nei's (1978) Genetic distance by using UPGMA method with Popgene 32 software. The values on tree branches indicate the genetic distance of plant groups.

For revealing genetic distance a dendrogram constructed according to Nei's (1978) genetic distance by using unweighted pair group method with arithmetic mean (UPGMA) method in Popgene 32 software. The dendrogram is shown at Figure 3.81. Genetic distance values ranged from 1.7830 to 10.9899. According to our results, Prince Island and Barbaros Boulevard genotypes were found as genetically closest groups with 1.7830 genetic distance value. The most distant group is determined as TEM Highway genotypes with 10.9899 genetic distance value.

 Table 3.20 Nei's unbiased measures of genetic identity and genetic distance (Nei 1978)

 [Nei's genetic identity (above diagonal) and genetic distance (below diagonal)]

Genotype Groups	Prince Islands	Bagdad Avenue	Barbaros Boulevard	Dilovasi District	TEM Highway
Prince Islands	*****	0.8856	0.9650	0.9304	0.8155
Bagdad Avenue	0.1215	*****	0.9032	0.7840	0.8326
Barbaros Boulevard	0.0357	0.1018	****	0.9074	0.7976
Dilovasi District	0.0722	0.2433	0.0972	*****	0.7665
TEM Highway	0.2040	0.1833	0.2261	0.2659	*****

The lowest and highest Nei's unbiased measures of genetic distance values ranged between 0.0357 (between Prince Island and Barbaros Boulevard) and 0.2659 (between

TEM Highway and Dilovasi District). Genetic Identity values ranged between 0.7665 (between TEM Highway and Dilovasi District) and 0.9650 (between Prince Island and Barbaros Boulevard) in agreement with genetic distance. Genetic distance can be defined as genomic diversification among populations or species and is measured by using some mathematical methods (Nei, 1987). When genetic distance value is low, it can be considered that subject genotypes or taxa are closely related. It can be suggested that, Prince Island and Barbaros Boulevard genotypes may be the most genetically similar groups. Conversely,TEM Highway and Dilovasi District were determined as the most diverse group.

Figure 3.80 Principal Component Analysis (PCA) of *R. pseudoacacia* genotypes generated by using MVSP 3.22. The red triangles and yellow circles show the plant genotypes and major groups, respectively. The numbers on the axis1 and 2 indicate PCA scores.

Based on PCA case scores data, three major clusters were found and named as A, B and C (Figure 3.82). The group A consisted of only four genotypes from Dilovasi District. While all genotypes of TEM Highway clustered in group B, group C showed the mixture of other genotypes from other stations. Although most of Dilovasi genotypes were found in group C, some members were detected in group A, suggesting that environmental factors could be the cause of genomic alterations which resulted in divergence of these genotypes. In addition isolated group B which included all TEM genotypes can be explained by vegetative propagation of these plants by municipality activities.

3.4.2 Phylogenetic analyses

ITS1 and *trnL-trnF* intergenic spacer sequences were employed for revealing phylogenetic relationships in this study.

3.4.2.1 Internal transcribed spacer 1 (ITS1)

After PCR reactions, amplicons were migrated in 1.2% agarose gel and generated single bands in size of 250-350 bp long. After the sequencing process, raw sequences were aligned and edited. Length of edited sequenced were 239 bp and only included ITS1 sequence. Images of migrated bands are shown in Figure 3.83.

Figure 3.81 ITS1 amplicons in agarose gel. (M: 100-1000bp DNA ladder, the symbols on the wells show the genotype's names)

Sequences were submitted to NCBI GenBank database and accession numbers were acquired, which are shown in Table 3.19.

 Table 3.21 NCBI GenBank accession numbers and some charasteristics of ITS1

 sequences obtained from this study.

Genotype	Sequence Name	Length of sequences	GC Content (%)	NCBI GenBank Accession Number
Prince Island 1	PRI1_ITS1 (ADA1)		53.97	KY311818
Prince Island 10	PRI10_ITS (ADA10)		53.55	KY311819
Prince Island 4	PRI4_ITS1 (ADA4)		53.13	KY311820
Bagdad Avenue 3	BAG3_ITS1		53.56	KY311821
Bagdad Avenue 4	BAG4_ITS1		52.72	KY311822
Bagdad Avenue 8	BAG8_ITS1		53.13	KY311823
Barbaros Boulevard 10	BAR10_ITS1		53.14	KY311824
Barbaros Boulevard 11	BAR11_ITS1	239	53.56	KY311825
Barbaros Boulevard 12	BAR12_ITS1		53.97	KY311826
Dilovasi District 7	DIL7_ITS1		53.56	KY311827
Dilovasi District 8	DIL8_ITS1		56.56	KY311828
Dilovasi District 9	DIL9_ITS1		53.14	KY311829
TEM Highway 19	TEM19_ITS1		53.14	KY311830
TEM Highway 25	TEM25_ITS1		53.14	KY311831
TEM Highway 26	TEM26_ITS1		53.14	KY311832

ITS1 sequences were searched in nucleotide collection of NCBI to find and compare similar sequences by using NCBI MegaBlastn Suite. Top three similar sequences in results of MegaBlastn are shown in table 3.22.

Table 3.22 Details of top three ITS1 sequences similar to *R. pseudoacacia* genotypes in

 this study. The sequences retrieved from NCBI GenBank database.

Our Sequences	Similar Sequence retrieved from NCBI GenBank							
our sequences —	Organism	Family	Accession Number	Cover (%)	Identity (%)			
Duin en Islam d			JQ007359	99	93			
1 KV311818	R. Pseudoacacia	Fabaceae	AF174637	99	92			
1 K1511010			KU193707	99	92			
Prince Island 10 KY311819	R. Pseudoacacia	Fabaceae	JQ007359	99	93			
			AF174637	99	93			
			KU193707	99	93			
Prince Island 4 KY311820	R. Pseudoacacia	Fabaceae	JQ007413	99	93			
			AF174637	99	93			
			KU193707	99	92			
Bagdat 3 KY311821	R. Pseudoacacia	Fabaceae	JQ007359	99	93			
			AF174637	99	93			
			KU193707	99	93			
Bagdat 4 KY311822	R. Pseudoacacia	Fabaceae	JQ007413	99	93			
			JQ007359	99	93			
			AF174637	99	93			
Bagdat 8 KY311823	R. Pseudoacacia	Fabaceae	JQ007413	99	93			
			JQ007359	99	93			
			AF174637	99	92			
			JQ007413	99	93			
Barbaros 10	R. Pseudoacacia	Fabaceae	JQ007359	99	93			
KY311824			AF174637	99	92			
Barbaros 11 KY311825	R. Pseudoacacia	Fabaceae	JQ007413	99	92			
			JQ007359	99	92			
			AF174637	99	92			
Barbaros 12 KY311826	R. Pseudoacacia	Fabaceae	JO007359	99	93			
			AF174637	99	93			
			KU193707	99	93			
Dilovasi 7 KY311827	R. Pseudoacacia	Fabaceae	JO007359	99	93			
			AF174637	99	93			
			KU193707	99	93			
Dilovasi 8 KY311828	R. Pseudoacacia	Fabaceae	JO007413	99	93			
			JO007359	99	93			
			AF174637	99	92			
Dilovasi 9KY311829	R. Pseudoacacia	Fabaceae	JO007413	99	93			
			JO007359	99	93			
				99	92			
TEM 19 KY311830	R. Pseudoacacia	Fabaceae	JO007413	99	93			
			JO007359	99	93			
				99	92			
TEM 25 KY311831	R. Pseudoacacia	Fabaceae	JO007359	99	93			
			AF174637	99	93			
			KU193707	99	93			
			IO007413	99	93			
TEM 26 KY311832	R. Pseudoacacia	Fabaceae	10007359	00	03			
			ΔΕ17/627	00	95			
			AP1/403/	27	74			

Phylogenetic tree (Figure 3.84) was constructed by using ITS1 sequences obtained from this study. According to our results, two major groups (A and B) were observed and one genotype (Bagdat4) was separated distinctively from others.

Figure 3.82 Phylogenetic distribution of *R. pseudoacacia* ITS1 sequences. Phylogeny was constructed by MEGA6 using Maximum likelihood (ML) method for 1000 bootstraps.

Members of group A were also separated into two subgroups named as A1 and A2. The genotypes were homogeneously dispersed into the groups. Subgroup A2 was observed as the most similar as subgroup A1. These differences between subgroups A1 and A2 can be explained by the genomic rearrangement and variations in their genome by genomic events. Although coverage and identity values were found to be high, lower bootstrap values in phylogenetic tree may prove the weak phylogenetic relationship. These results could be related with the genomic variabilities in our genotypes.

The joining tree (Figure 3.85) was constructed by using both ITS1 sequences obtained from this study and retrieved from NCBI GenBank database. The tree was constructed to reveal phylogenetic relationships among *R. pseudoacacia* and same/other species at intraspecific level by using ML method.

Figure 3.83 The joining phylogenetic tree of ITS and ITS1 sequences with *R*. *pseudoacacia* and other plant species retrieved from NCBI GenBank database. Yellow cluster shows the obtained ITS1 sequences from this study.

According to phylogenetic tree, first main group is formed from studied genotypes of this study (yellow) and other *R. pseudoacacia* plants retrieved from GenBank (red). Second major group consisted members of *Fabaceae* (purple) and *Rosaceae* family (turquoise). Members of other taxa formed a third major group.

Sequencing of ITS region is one of the most popular DNA barcoding techniques and phylogenetic markers, and its widely used in analyzing phylogenetic relationships of different taxa (Porras-Alfaro et al., 2014). In this study, ITS1 region revealed the phylogenetic relationships of *R. pseudoacacia* plants with its relatives and other taxa.

Genotypes of this study and other *R. pseudoacacia* genotypes retrieved from NCBI GenBank database were clustered together and showed closest phylogenetic relationship. Also members of *Fabaceae* family were located on near branch to *R. pseudoacacia* genotypes in joining tree. This situation may be due to the high conservation of ITS1 region in *R. pseudoacacia* and its relatives. Additionally, it can be said that ITS1 region can be used as a marker to distinguish intraspecific levels.

3.4.2.2 trnL-trnF intergenic spacer

trnL-trnF intergenic spacer region of cpDNA is second phylogenetic marker used in this study for revealing phylogenetic relationships. Previous procedures were applied for *trnL-trnF* intergenic spacer region as applied for ITS1. *trnL-trnF* intergenic spacer DNA regions were amplificated and 450-500 bp long amplicons were obtained. The bands formed by the *trnL-trnF* intergenic spacer amplicons in the agarose gel are shown in the Figure 3.85.

Figure 3.84 *trnL-trnF* intergenic spacer amplicons in agarose gel. (M: 100-1000bp DNA ladder, the symbols on the wells show the genotype's names)

After the sequencing process, the raw sequences edited and final sequences submitted to NCBI GenBank database. GenBank accession numbers and some features of *trnL-trnF* intergenic spacer obtained in this study are shown in Table 3.23. Length of *trnL-trnF* intergenic spacer sequences were 453 bp.

Genotype	Sequence Name	Length of Sequences	GC content (%)	NCBI GenBank Accession Number	
Prince Island 1	Prince Island 1 PRI1_trnL-trnF (ADA1)		29.36	KY274204	
Prince Island 10	PRI10_trnL-trnF (ADA10)	-	29.14	KY290233	
Prince Island 4	PRI4_trnL-trnF (ADA4)		29.58	KY290234	
Bagdad Avenue 3	BAG3_trnL-trnF		29.58	KY290235	
Bagdad Avenue 4	BAG4_trnL-trnF	_	29.14	KY290236	
Bagdad Avenue 8	gdad Avenue 8 BAG8_trnL-trnF		29.36	KY290237	
Barbaros Boulevard 10	BAR10_trnL-trnF		29.80	KY290238	
Barbaros Boulevard 11	BAR11_trnL-trnF	453	29.36	KY290239	
Barbaros Boulevard 12	BAR12_trnL-trnF	_	29.36	KY290240	
Dilovasi District 7	DIL7_trnL-trnF		29.80	KY290241	
Dilovasi District 8	DIL8_trnL-trnF		29.58	KY290242	
Dilovasi District 9	DIL9_trnL-trnF	_	29.14	KY290243	
TEM Highway 19	TEM19_trnL-trnF		29.14	KY290244	
TEM Highway 25	TEM25_trnL-trnF		29.36	KY290245	
TEM Highway 26	TEM Highway 26 TEM26_trnL-trnF		29.58	KY290246	

Table 3.23 NCBI GenBank accession numbers and some charasteristics of *trnL-trnF* intergenic spacer sequences obtained from this study.

The sequences were searched in nucleotide collection of NCBI GenBank database to compare with our sequences. Basic Local Alignment Search Tool (BLASTn) of NCBI was used with "Highly similar sequences (Megablast)" option. Retrieved results of top three sequences per genotype are shown in Table 3.24.

Table 3.24 Details of top three *trnL-trnF* Intergenic spacer sequences similar to *R*.*pseudoacacia* genotypes in this study. The sequences retrieved from NCBI GenBankdatabase.

_	Similar Sequence retrieved from NCBI GenBank						
Our Sequences	Organism	Family	Accession Number	Cover (%)	Identity (%)		
	R. pseudoacacia		KJ468102	98	96		
Prince Island 1 –	Bobgunnia fistuloides	 Fabaceae	AY232778	94	97		
KY274204 –	Indigofera tinctoria		KJ468098	100	87		
	R. pseudoacacia		KJ468102	98	97		
Prince Island 4 –	Rohgunnia fistuloides	 Fabaceae	AY232778	94	87		
KY290234	Lecointea peruviana		AY232779	90	88		
	R pseudoacacia		KI468102	98	97		
Prince Island 10 KY290233	Robgunnia fistuloides	 Fahaceae	AY232778	94	88		
	Indigofera tinctoria		K1/68098	100	87		
	R Pseudoacacia		K1468102	08	07		
Bagdat 3 –	R. I Seudoucuciu	- Fabaaaa	AV222778	90			
KY290235 –	Lu dia of ong tin otonia		A1232776	94	07		
	Inalgofera incioria		KJ408098	90	8/		
Bagdat 4 –	<u>R. Pseudoacacia</u>		KJ468102	98	97		
KY290236 -	Bobgunnia fistuloides	Fabaceae	AY232778	94	8/		
	Lecointea peruviana		AY232779	90	88		
Bagdat 8 –	R. Pseudoacacia		KJ468102	98	97		
KY290237 -	Bobgunnia fistuloides	_ Fabaceae	AY232778	94	87		
	Indigofera tinctoria		KJ468098	100	87		
Barharos 10 -	R. Pseudoacacia		KJ468102	98	97		
KY290238 -	Bobgunnia fistuloides	Fabaceae	AY232778	94	88		
K12 70250	Indigofera tinctoria		KJ468098	100	87		
Barbaros 11 -	R. Pseudoacacia		KJ468102	98	97		
	Bobgunnia fistuloides	Fabaceae	AY232778	94	87		
K1270237	Indigofera tinctoria		KJ468098	100	87		
Barbaros 12	R. Pseudoacacia		KJ468102	98	96		
	Bobgunnia fistuloides	Fabaceae	AY232778	94	87		
K I 290240 -	Indigofera tinctoria	_	KJ468098	100	87		
Dilovasi 7	R. Pseudoacacia		KJ468102	98	97		
	Bobgunnia fistuloides	 Fabaceae	AY232778	94	88		
KY 290241 –	Indigofera tinctoria		KJ468098	100	87		
D ¹	R. Pseudoacacia		KJ468102	98	97		
Dilovasi 8 -	Bobgunnia fistuloides	 Fabaceae	AY232778	94	87		
KY290242 –	Indigofera tinctoria		KJ468098	100	87		
	R. Pseudoacacia		KJ468102	98	96		
Dilovasi 9 –	Bobgunnia fistuloides	 Fabaceae	AY232778	94	87		
KY290243	Indigofera tinctoria		KJ468098	100	86		
	R. Pseudoacacia		KJ468102	98	96		
TEM 19 KY290244	Bohgunnia fistuloides	 Fabaceae	AY232778	94	87		
	Indigofera tinctoria		KJ468098	92	88		
	R. Pseudoacacia		KJ468102	98	97		
TEM 25 KY290245	Rohgunnia fistuloides	 Fahaceae	AY232778	94	88		
	Indigofera tinctoria		K1468098	92	88		
	R Pseudoacacia		KI468107	98	97		
TEM 26 –	Robaunnia fistulaidas		AV222770	<u> </u>	87		
KY290246 –	Indiaofara tinatoria		KI468008	100	87		
	margojera uncioria		KJ400090	100	07		

According to our results, the most similar sequences to *trnL-trnF* intergenic spacer sequences are *R. pseudoacacia*, *Bobgunnia fistuloides*, *Indigofera tinctoria* and *Lecointea peruviana* with accession numbers of KJ468102, AY232778, KJ468098 and AY232779, respectively. Phylogenetic (Figure 3.86) tree was constructed to analyse phylogenetic relationships of *R. pseudoacacia* genotypes at interspecific level.

Two main group were identified in phylogenetic tree which were named as A and B. Group A further include two subgroups named as A1 and A2. Group B consists of only three *R. pseudoacacia* genotypes and show higher genetic similarty than the other subgroups (A1 and A2). When the groups are analyzed in terms of genotypes, there is a mixed distribution and lower bootsrapt values were identified in the phylogenetic tree. This situation may indicate the genetic variations in *trnL-trnF* intergenic spacer regions of *R. pseudoacacia* genotypes.

Figure 3.86 The joining phylogenetic tree of *trnL-trnF* intergenic spacer sequences with *R. pseudoacacia* and other plant species retrieved from NCBI GenBank database. Yellow cluster shows the obtained ITS1 sequences from this study.

The joining phylogenetic tree constructed by using both of *trnL-trnF* intergenic spacer sequences obtained in this study and retrieved from NCBI GenBank database. Total of 55 sequences were retrieved and selected from prominent families of vascular plants. According to results, studied *R. pseudoacacia* genotypes were clustered as yellow group with one *R. pseudoacacia* genotype (Accession Number: KP338329) retrieved from NCBI GenBank. The closest neighbor of *R. pseudoacacia* genotypes are members of *Fabaceae* family as red group. It can be suggested that *trnL-trnF* intergenic spacer sequences is an effective marker to discriminate genotypes at intraspesific level.

4. CONCLUSION

This study was conducted on two different aspects. Firstly, mineral element and heavy metal status, photosynthetic pigments and total protein content of *R. pseudoacacia* plants from different stations at all four seasons, which has different environmental conditions, has been investigated to reveal environmental pollution effects. According to the results, the conclusion and suggestions can be listed as follows;

The stations that have dense traffic (Bagdat Avenue, TEM Highway and Barbaros Boulevard) and industrial sites (Dilovasi District) are under influence of heavy metal pollution in different levels, when compered to the control station (Prince Island).

Two patterns of seasonal variations on element content were observed. All B, Ca, Cd, Cr, Cu, Fe, Mg, Mn and Pb levels show an increasing pattern in spring and autumn, and a decreasing pattern in summer and winter. Spring and winter values are relatively high when compared to autumn and summer. K, Na, Ni and Zn elements on the contrary, tend to decrease from summer to winter.

R. pseudoacacia is a widely accepted effective biomonitor for observing environmental pollution levels in nearly all types of areas. In this study, *R. pseudoacacia* individuals are observed to be well adapted to their environments in all stations. Additionally, airborne pollution of some elements can be easily determined by using *R. pseudoacacia* leaves. It may be suggested that *R. pseudoacacia* can be planted at polluted sites for ornamentation, reclamation and monitoring.

Second aspect aimed in this study is to reveal phylogenetic relationships and genetic diversity of *R. pseudoacacia* genotypes. According to results, the following conclusions and suggestions can be given;

In this study, genetic diversity level of *R. pseudoacacia* genotypes collected from urban ecosystem was investigated using nine ISSR markers and the obtained results were meaningful. According to the results ISSR marker systems can be applied effectively to understand genetic diversity level for *R. pseudoacacia* plants.

Based on values of genetic diversity level, Nei's values were found ranging from 0.165 to 0.251 and Shannon's values ranged from 0.245 to 0.381.

Apart from some samples collected from Dilovasi District, genotypes showed similar genetic structure in genetic analyses. The isolation of Dilovasi district can be explained with heavy industrial activities and consequently exposure of environmental pollution. In addition, the highest genetic diversity level for Nei's (0.251) and Shannon's (0.381) was found in Dilovasi District genotypes.

In phylogenetic analyses two genome regions (ITS1 from nuclear genome, trnL-trnF IGS from chloroplast genome) were used to investigate the phylogenetic relationship among genotypes. It was understood that ITS resolution power is stronger than trnL-trnF IGS region for phylogenetic analyses based on bootstrap values.

Among close relatives of *R. pseudoacacia*, *trnL-trnF* intergenic spacer region (94%) appeared to be more powerful than ITS1 region (91%) in distinguishing studied genotypes in joining phylogenetic trees.

According to results, it can be proposed that ISSR molecular markers, nuclear ITS1 region, and chloroplast *trnL-trnF* intergenic spacer region are effective genetic tools to analyze *R. pseudoacacia* genotypes in genetic studies.

REFERENCES

- 1. Akkaya M.S., Bhagwat A.A. and Cregan P.B. (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139.
- Akopyanz N, Bukanov NO, Westblom TU and Berg DE (1992) PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen *Helicobacter pylori*. Nucleic Acid Res. 20: 6221- 6225.
- Aksoy, A. (2008). Chicory (*Cichorium intybus* L.): A possible biomonitor of metal pollution. Pak. J. Bot, 40(2), 791-797.
- Aksoy, A., Hale, W. H., & Dixon, J. M. (1999). *Capsella bursa-pastoris* (L.) Medic. as a biomonitor of heavy metals. Science of the total environment, 226(2), 177-186.
- Aksoy, A., Şahin, U., & Duman, F. (2000). *Robinia pseudoacacia* L. as a posssible biomonitor of heavy metal pollution in Kayseri. Turkish Journal of Botany, 24(5), 279-284.
- Alexander, P. D., Alloway, B. J., & Dourado, A. M. (2006). Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 144(3), 736-745.
- Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31, 537–548
- Alzohairy, A. M., Gyulai, G., Ohm, H., Szabó, Z., Ragheb, S. M., Ali, M. A., ... & Bahieldin, A. (2015). Nuclear and Organelle Specific PCR Markers. Plant DNA Barcoding and Phylogenetics. 501-524. LAP LAMBERT Academic Publishing. Germany.
- Amtmann A, Sanders D. 1999. Mechanisms of Na⁺ uptake by plant cells. Advances in Botanical Research 29, 75–112.
- **10.** Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. Plant physiology, 24(1), 1.

- **11.** articles.extension.org/pages/32356/traditional-molecular-markers, accessed on 15/09/2016.
- Avise, J. C. (2012). Molecular markers, natural history and evolution. Springer Science & Business Media. 3-16.
- **13.** Back, K., Tan, D. X., & Reiter, R. J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of pineal research.
- 14. Badfar-Chaleshtori, S., Shiran, B., Kohgard, M., Mommeni, H., Hafizi, A., Khodambashi, M., ... & Sorkheh, K. (2012). Assessment of genetic diversity and structure of Imperial Crown (*Fritillaria imperialis* L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochemical Systematics and Ecology, 42, 35-48.
- Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., ... & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS one, 3(10), e3376.
- **16.** Bartlett, J. M., & Stirling, D. (2003). A short history of the polymerase chain reaction. PCR protocols, 3-6.
- 17. Bebeli P. J., Zhou Z., Somers D. J. and Gustafson J. P. (1997) PCR primed with mini satellite core sequences yields DNA fingerprinting probes in wheat. Theor. Appl. Genet., 95: 276-283.
- Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., & C Rubio, M. (2000). Reactive oxygen species and antioxidants in legume nodules. Physiologia plantarum, 109(4), 372-381.
- Becker, K., Schroeter-Kermani, C., Seiwert, M., Rüther, M., Conrad, A., Schulz, C., ... & Kolossa-Gehring, M. (2013). German health-related environmental monitoring: assessing time trends of the general population's exposure to heavy metals. International journal of hygiene and environmental health, 216(3), 250-254.
- 20. Beckman J. S. (1988) Oligonucleotide polymorphisms: A new tool for genomic genetics. Bio/Technology 6: 161-164.

- 21. Beckmann J. S. and Soller M. (1990) Towards a unified approach to genetic mapping of eukaryotes based on sequence tagged micro satellite sites. Bio/Technology 8:930-932.
- 22. Benito, B., Haro, R., Amtmann, A., Cuin, T. A., & Dreyer, I. (2014). The twins K⁺ and Na⁺ in plants. Journal of plant physiology, 171(9), 723-731.
- 23. Bingöl, D., Ay, Ü., Bozbaş, S. K., Uzgören, N. (2013). Chemometric evaluation of the heavy metals distribution in waters from the Dilovası region in Kocaeli, Turkey. Marine pollution bulletin, 68(1), 134-139.
- 24. Blevins, D. G., & Lukaszewski, K. M. (1998). Boron in plant structure and function. Annual review of plant biology, 49(1), 481-500.
- 25. Bo, S., Mei, L., Tongbin, C., Z. Y., Yunfeng, X. I. E., Xiaoyan, L. I., and Ding, G. A. O. (2009). Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. Journal of Environmental Sciences, 21(12), 1702-1709.
- 26. Brekken, A., & Steinnes, E. (2004). Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Science of the Total Environment, 326(1), 181-195.
- Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and Zhao, F., (2012). Function of nutrients: micronutrients. Marschner's Mineral Nutrition of Higher Plants. 3, 191-248. DOI:10.1016/B978-0-12-384905-2.00007-8 Elsevier Ltd. (chapter 7)
- 28. Butticè, Claudio (2015). "Nickel Compounds". In Colditz, Graham A. The SAGE Encyclopedia of Cancer and Society (Second ed.). Thousand Oaks: SAGE Publications, Inc. pp. 828–831. ISBN 9781483345734.
- 29. Cao, P. J., Yao, Q. F., Ding, B. Y., Zeng, H. Y., Zhong, Y. X., Fu, C. X., & Jin, X. F. (2006). Genetic diversity of *Sinojackia dolichocarpa* (Styracaceae), a species endangered and endemic to China, detected by inter-simple sequence repeat (ISSR). Biochemical Systematics and Ecology, 34(3), 231-239.
- 30. Casa A M, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S and Wessler SR. 2000. The MITE family Heartbreaker (Hbr): Molecular markers in maize. Proc. Natl. Acad. Sci (USA) 97: 1008310089.

- 31. Celik, A., Kartal, A. A., Akdoğan, A., & Kaska, Y. (2005). Determining the heavy metal pollution in Denizli (Turkey) by using *Robinia pseudo-acacia* L. Environment International, 31(1), 105-112.
- 32. Chen J. and Dai G. H., (2014). Effect of d-pinitol isolated and identified from *Robinia pseudoacacia* against cucumber powdery mildew. Scientia Horticulturae 176 (2014) 38–44
- **33.** Clemens, S., (2014). Zn and Fe biofortification: The right chemical environment for human bioavailability. Plant Science 225 (2014) 52–57.
- 34. Das, S., Raj, R., Mangwani, N., Dash, H. R., & Chakraborty, J. (2014). 2-Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. Microbial Biodegradation and Bioremediation, Elsevier, Oxford, 23-54.
- 35. Davis, J. M., & Keathley, D. E. (1992). Micropropagation of black locust (*Robinia pseudoacacia* L.). In High-Tech and Micropropagation II (pp. 25-39). Springer Berlin Heidelberg.
- 36. Doyle, J. J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull, 19, 11-15.
- 37. Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
- **38.** Durukal, E., Erdik, M., & Uçkan, E. (2008). Earthquake risk to industry in Istanbul and its management. Natural Hazards, 44(2), 199-212.
- **39.** Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: new light on an old problem. Annals of botany, 116(3), 313-319.
- 40. Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., Milian, F. M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing *Tillandsia usneoides* L. as biomonitor. Environmental Pollution, 145(1), 279-292.
- 41. Filipović-Trajković, R., Ilić, Z. S., Šunić, L., & Andjelković, S. (2012). The potential of different plant species for heavy metals accumulation and distribution. J Food Agric Environ, 10(1), 959-964.

- 42. Flavell A. J., Knox M. R., Pearce S. R. and Ellis T. H. N. (1998). Retro transposonbased insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal, 16: 643-650.
- 43. Fleischmann, R.; Adams, M.; White, O; Clayton, R.; Kirkness, E.; Kerlavage, A.; Bult, C.; Tomb, J.; Dougherty, B.; Merrick, J.; al., e. (1995). "Whole-genome random sequencing and assembly of *Haemophilus influenzae* Rd". Science. 269 (5223): 496–512. doi:10.1126/science.7542800. PMID 7542800.
- 44. Gajera, B. B., Kumar, N., Singh, A. S., Punvar, B. S., Ravikiran, R., Subhash, N., & Jadeja, G. C. (2010). Assessment of genetic diversity in castor (*Ricinus communis* L.) using RAPD and ISSR markers. Industrial Crops and Products, 32(3), 491-498.
- **45.** Gan, Y., Lim, Y. S., & Qiao, L. (2012). Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combustion and Flame, 159(4), 1732-1740.
- 46. Gibson, RS. Principles of Nutritional Assessment, 2nd ed. New York, NY: Oxford University Press, 2005.
- 47. Gillespie, J. J., Johnston, J. S., Cannone, J. J., & Gutell, R. R. (2006). Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of *Apis mellifera* (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect molecular biology, 15(5), 657-686.
- 48. Grodzicker T., Williams J., Sharp Pand Sambrook J. (1974) Physical mapping of temperature sensitive mutations. Cold Spring Harbor Symp. Quart. Biol. 39: 439-446.
- 49. Group, CBOL. P. W., Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., ... & Fazekas, A. J. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797.

- **50.** Gu W. K., Weeden N. F., Yu J. and Wallace D. H. (1995) Large-scale, costeffective screening of PCR products in marker-assited selection applications. Theor.Appl. Genet. 91:465-470.
- 51. Guo, X., Castillo-Ramírez, S., González, V., Bustos, P., Fernández-Vázquez, J. L., Santamaría, R. I., ... & Dávila, G. (2007). Rapid evolutionary change of common bean (*Phaseolus vulgaris* L.) plastome, and the genomic diversification of legume chloroplasts. BMC genomics, 8(1), 1.
- **52.** Gupta, U. C., & Solanki, H. A. (2013). Impact of boron deficiency on plant growth. International journal of bioassays, 2(07), 1048-1050.
- **53.** Hafeez, B., Khanif, Y. M., Saleem, M., (2013) Role of Zinc in Plant Nutrition-A Review, American Journal of Experimental Agriculture 3(2): 374-391, 2013
- **54.** Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
- 55. Hamzaoğlu, O., Etiler, N., Yavuz, C. I., Çağlayan, Ç. (2011). The causes of deaths in an industry-dense area: example of Dilovası (Kocaeli). Turkish Journal of Medical Sciences, 41(3), 369-375.
- 56. Hatada I., Hayashizaki Y., Hirotsune S., Komatsubara H. and Mukai T. (1991) A genome scanning method for higher organism using restriction sites as landmarks. Proc. Natl. Acad. Sci. USA, 88 : 397-400.
- 57. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, Ja., Møller I. S., and White, P., (2012) Functions of Macronutrients. In: Marshner P, editor. Marschner's Mineral Nutrition of Higher Plants, Third Edition, Academic Press Elsevier, London, UK. p.135-189.
- He, F. J., & MacGregor, G. A. (2008). Beneficial effects of potassium on human health. Physiologia Plantarum, 133(4), 725-735.
- 59. Hebert, P. D., Cywinska, A., & Ball, S. L. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1512), 313-321.

- **60.** Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biol, 2(10), e312.
- 61. <u>http://chem.libretexts.org/Core/Inorganic_Chemistry/Descriptive_Chemistry/Ele</u> <u>ments_Organized_by_Block/3_d-</u> <u>Block_Elements/Group_06%3A_Transition_Metals/Chemistry_of_Chromium</u>
- 62. http://dosb.com.tr/TR/Companies.aspx (accessed 16.10.2016)
- 63. http://www.adalar.bel.tr/eng/default.asp (accessed 12.10.2016)
- 64. http://www.ibb.gov.tr/sites/ks/tr-TR/0-Istanbul-Tanitim/konum/Pages/Nufus_ve_Demografik_Yapi.aspx (accessed 12.10.2016)
- 65. <u>http://www.kew.org/science-conservation/plants-fungi/robinia-pseudoacacia-black-locust accessed 26 August 2016</u>
- 66. https://en.wikipedia.org/wiki/Chromium#cite_note-ods-5
- 67. <u>https://en.wikipedia.org/wiki/Toxic_heavy_metal</u>
- 68. https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/#h2
- 69. Huang, C. Q., Liu, G. D., Bai, C. J., Wang, W. Q., Tang, J., & Yu, D. G. (2012). Exploring the genetic diversity of *Cynodon radiatus* (Poaceae) accessions using ISSR markers. Biochemical Systematics and Ecology, 45, 218-223.
- 70. Huntley, J. C. 1990. *Robinia pseudoacacia* L. black locust. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume
 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 755-761. [21825]
- 71. Järup, L. (2003). Hazards of heavy metal contamination. British medical bulletin, 68(1), 167-182.
- **72.** Jeffreys A. J., Wilson V. and Thein S. L. (1985) Hyper variable mini satellite regions in human DNA. Nature. 314: 67-73
- 73. Jordan S. A., and Humphries P. (1994) Single nucleotide polymorphism in exon2 of the BCP gene on 7q31-q35. Human Molecular Genetics 3:1915

- **74.** Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.
- 75. Kabata-Pendias, A., Pendias, H., 2001. Trace Elements in Soils and Plants, Third Edition. CRC Press, Boca Raton, USA.
- 76. Kalendar, R., Grob T., Regina M., Suoniemi A. and Schulman A. (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques Theor.Appl. Genet. 98: 704-711.
- 77. Käss, E., & Wink, M. (1997). Phylogenetic relationships in the Papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Molecular Phylogenetics and Evolution, 8(1), 65-88.
- 78. Kaya, G., Okumus, N., & Yaman, M. (2010). Lead, cadmium and copper concentrations in leaves of Nerium oleander L. and Robinia pseudoacacia L. as biomonitors of atmospheric pollution. Fresenious Environmental Bulletin, 19(4), 669-675.
- 79. Kılınç, M.; Kutbay, H.G. (2008): "Bitki Ekolojisi", Palme Yayıncılık 2. Baskı
- **80.** Kimura, Kimura M, Crow JF. (1964). The number of alleles that can be maintained in a finite population. Genetics. 49: 725–738. PMID: 14156929
- **81.** Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual review of plant biology, 63, 131-152.
- 82. Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environment international, 50, 47-55.
- 83. Lachman, J., Kotíková, Z., Zámečníková, B., Miholová, D., Száková, J., & Vodičková, H. (2015). Effect of cadmium stress on barley tissue damage and essential metal transport into plant. Open Life Sciences, 10(1), 30-39.
- 84. Landegren, U., Kaiser, R., Sanders, J. and Hood, L. (1988) DNA diagnostics. Molecular techniques and automation. Science 241: 1077-1080

- 85. Larkin, M. A., Blackshields G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R. et al. (2007). ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948.
- 86. Law, N.; Caudle, M; Pecoraro, V (1998). "Manganese Redox Enzymes and Model Systems: Properties, Structures, and Reactivity". Advances in Inorganic Chemistry. 46: 305. doi:10.1016/S0898-8838(08)60152-X.
- 87. Lee, Z. M. P., Bussema, C., & Schmidt, T. M. (2009). rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic acids research, 37(suppl 1), D489-D493.
- **88.** Lewontin, R.C.: "The apportionment of human diversity" Evol. Biol. 6 (1972) 381-398.
- **89.** Li, G. and Quiros (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455461.
- **90.** Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181(1), 1051-1058.
- 91. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
- **92.** Maathuis, F. J. (2014). Sodium in plants: perception, signalling, and regulation of sodium fluxes. Journal of experimental botany, 65(3), 849-858.
- 93. Maheswaran, M. (2004). Molecular Markers: History Features and Applications. Advanced Biotech August, 17-24.
- 94. Marinas I. C., Oprea E., Geana E.-I., Chifiriuc C., Lazar V. (2014). Antimicrobial and antioxidant activity of the vegetative and reproductive organs of *Robinia pseudoacacia*. J. Serb. Chem. Soc. 79 (0) 1–21 doi: 10.2298/JSC140304049M
- 95. Matsi, T., & Tsadilas, C. (2005). 1 Coal Fly Ash Application to Soils and its Effect on Boron Availability to Plants. Trace Elements in the Environment: Biogeochemistry, Biotechnology, and Bioremediation, 1.

- 96. Meng F., Peng M., Pang H., & Huang F. (2014). Comparison of photosynthesis and leaf ultrastructure on two black locust (*Robinia pseudoacacia* L.). Biochemical Systematics and Ecology 55 170-175
- **97.** Merhaut, J. D. (2007). Magnesium. Barker, A. V., & Pilbeam, D. J. (Eds.). Handbook of Plant Nutrition, CRC Press. 146-181
- 98. Mert, Z. G., and Akman, G. (2011). The Profile of the Organized Industrial Zones in Kocaeli/TURKEY. In ERSA conference papers (No. ersa11p1137). European Regional Science Association.
- **99.** Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment 33, 453–467..
- 100. Moody, P. W., & Bell, M. J. (2006). Availability of soil potassium and diagnostic soil tests. Soil Research, 44(3), 265-275.
- **101.** Morgante, M. and Vogel, J. (1994). Compound micro satellite primers for the detection of genetic polymorphisms. U. S. PatentAppl., 08/326456.
- 102. Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and Soil, 193(1-2), 181-198.
- **103.** Nagaoka, T., & Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. TAG Theoretical and Applied Genetics, 94(5), 597-602.
- **104.** Nei, M. (1987). Genetic distance and molecular phylogeny. Population genetics and fishery management, 193, 223.
- 105. Nei, M.: "Genetic distance between populations", Am. Nat. 106 (1973) 283-292
- 106. Niehaus, T. D., Nguyen, T. N., Gidda, S. K., ElBadawi-Sidhu, M., Lambrecht, J. A., McCarty, D. R., ... & Hanson, A. D. (2014). Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. The Plant cell, 26(7), 3010-3022.
- **107.** Nielsen, F. H. (2014). Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, 28(4), 383-387.
- **108.** OECD. (2008) OECD territorial reviews. Turkey: Istanbul 9789264043718; DOI: 10.1787/9789264043831-en. Paris, France.
- 109. Olias, M., Nieto, J. M., Sarmiento, A. M., Cerón, J. C., & Cánovas, C. R. (2004).
 Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain). Science of the total environment, 333(1), 267-281.
- **110.** Olsen, M., Hood, L., Cantor, C. and Botstein, D. (1989) A common language for physical mapping of the human genome. Science 245: 1434-1435.
- **111.** Orita, M., Suzuki, Y., Sekiya, T. and Hayashi, K., (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics 5:874-879
- 112. Ozyigit, I. I., Dogan, I., Demir, G., Eskin, B., Keskin, M., & Yalcin, I. E. (2013). Distribution of some elements in *Veronica scutellata* L. from Bolu, Turkey: soilplant interactions. Sains Malaysiana, 42(10), 1403-1407.
- 113. Paran, I. and Michelmore, R. W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet 85: 985-993
- 114. Poczai, P., & Hyvönen, J. (2011). Identification and characterization of plastid trnF (GAA) pseudogenes in four species of Solanum (Solanaceae). Biotechnology letters, 33(11), 2317-2323.
- 115. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. P., & Hyvönen, J. (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods, 9(1), 1.
- **116.** Porras-Alfaro, A., Liu, K. L., Kuske, C. R., & Xie, G. (2014). From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Applied and environmental microbiology, 80(3), 829-840.
- 117. Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. In Reviews of Environmental Contamination and Toxicology Volume 213 (pp. 113-136). Springer. New York.

- 118. Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., ... & Lefevre, I. (2012). Combined transcriptomic and physiological approaches reveal strong differences between short-and long-term response of rice (*Oryza sativa*) to iron toxicity. Plant, cell & environment, 35(10), 1837-1859.
- 119. Raghavendra, M. P., Nayaka, S. C., & Nuthan, B. R. (2016). Role of rhizosphere microflora in potassium solubilization. V.S. Meena et al. (eds.), In Potassium solubilizing microorganisms for sustainable agriculture (pp. 43-59). Springer India.
- **120.** Rahman, A. M., & Parvin, M. I. A. (2014). Study of medicinal uses on *Fabaceae* family at Rajshahi, Bangladesh. Research in Plant Sciences, 2(1), 6-8.
- 121. Reddy, M. P., Sarla, N., & Siddiq, E. A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128(1), 9-17.
- 122. Ricachenevsky, F. K., Menguer, P. K., Sperotto, R. A., & Fett, J. P. (2015). Got to hide your Zn away: molecular control of Zn accumulation and biotechnological applications. Plant Science, 236, 1-17.
- **123.** Rohde, W. (1996) Inverse sequence-tagged repeat (ISTR) analysis, a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. Journal of Genetics Breed. 50:249-261.
- 124. Romheld V., Marschner H., (1991). Function of Micronutrients in Plants, In: SSSA Book Series: 4. Micronutrients in Agriculture, 2nd Ed. (J. J. Mortvedt, ed). Soil Science Society of America, Madison, WI.
- 125. Rude RK. Magnesium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Baltimore, Mass: Lippincott Williams & Wilkins; 2012:159-75.
- **126.** Saiki RK, Bugawan TL, Horn GT, Mullis KB and Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 324: 163-6.

- 127. Sang, T., Crawford, D., & Stuessy, T. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of *Paeonia* (Paeoniaceae). American Journal of Botany, 84(8), 1120-1120.
- **128.** Sardans, J., & Peñuelas, J. (2015). Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 24(3), 261-275.
- 129. Sarwar, N., Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925-937.
- **130.** Schlötterer, C. (2004). The evolution of molecular markers-just a matter of fashion?. Nature Reviews Genetics, 5(1), 63-69.
- 131. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., ... & Miller, A. N. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. ISO 690
- 132. Schwarz, E. N., Ruhlman, T. A., Sabir, J. S., Hajrah, N. H., Alharbi, N. S., Al-Malki, A. L., ... & Jansen, R. K. (2015). Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. Journal of Systematics and Evolution, 53(5), 458-468.
- 133. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., ... & Ohto, C. (1986). The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. The EMBO journal, 5(9), 2043.
- 134. Small, R. L., Ryburn, J. A., Cronn, R. C., Seelanan, T., & Wendel, J. F. (1998). The tortoise and the hare: choosing between noncoding plastome and nuclear *Adh* sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 85(9), 1301-1315.
- 135. Soltis, D. E., and Soltis, P. S. (1998). Choosing an approach and an appropriate gene for phylogenetic analysis. In D. E. Soltis, P. S. Soltis, and J. J. Doyle [eds.], Molecular systematics of plants II: DNA sequencing, 1–42. Kluwer, Boston, Massachusetts, USA.

- **136.** Somma, M., and Querci, M. (2004). The analysis of food samples for the presence of genetically modified organisms. Training Course On, 1.
- 137. Sözen, E. (2010). Evaluation of ISSR markers to assess genetic variability and relationship among winter triticale (X *Triticosecale* Wittmack) cultivars. Pak. J. Bot, 42(4), 2755-2763. ISO 690
- **138.** Steinhorst, L., & Kudla, J. (2014). Signaling in cells and organisms-calcium holds the line. Current opinion in plant biology, 22, 14-21.
- 139. Stone, K. R. (2009). Robinia pseudoacacia. Fire Effects Information System,[Online]. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, United States. http://www.fs.fed.us/database/feis/ [2016, August 27].
- Storey, J. B., (2007) "Zinc", In Handbook of Plant Nutrition. Baker and Pilbeam (Eds.), 1. Edition., (pp. 411-436) CRC press., Boca Raton., USA.
- **141.** Stumpf, P. K. (2014). The biosynthesis of saturated fatty acids. The biochemistry of plants, 9, 121-136.
- 142. Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant molecular biology, 17(5), 1105-1109.
- 143. Talas-Oğraş, T., Ipekci, Z., Bajrovic, K., & Gözükırmızı, N. (2005). Antibacterial activity of seed proteins of *Robinia pseudoacacia*. Fitoterapia, 76(1), 67-72.
- **144.** Tamura K. and Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.
- 145. Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution30: 2725-2729.
- 146. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133-164). Springer Basel.

- 147. Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjold M, Ponder BJ., Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13: 718-725.
- 148. Thyssen J. P.; Linneberg A.; Menné T.; Johansen J. D. (2007). "The epidemiology of contact allergy in the general population—prevalence and main findings". Contact Dermatitis. 57 (5): 287–99. doi:10.1111/j.1600-0536.2007.01220.x. PMID 17937743.
- 149. Tian, F., Chang, C. J., Grutzner, J. B., Nichols, D. E., & McLaughlin, J. L. (2001). Robinlin: A novel bioactive homo-monoterpene from *Robinia pseudoacacia* L. (*Fabaceae*). Bioorganic & medicinal chemistry letters, 11(19), 2603-2606.
- **150.** TUIK.(2016).RoadMotorVehicles.21603.(http://www.tuik.gov.tr/PreHaberBultenleri.do?id=216039)12.10.2016
- 151. Tuna, A. L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., & Yagmur, B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59(2), 173-178.
- **152.** Tuncer, M., 2009. National Cancer Program 2009–2015. Republic of Turkey Ministry of Health, ISBN 978-975-590-285-2.
- 153. USDA, NRCS. 2016. The PLANTS Database (http://plants.usda.gov, 26 August 2016). National Plant Data Team, Greensboro, NC 27401-4901 USA.
- 154. Van der Wurff, A. W. G., Chan, Y. L., van Straalen, N. M. and Schouten, J. 2000. TE-AFLP: combining rapidity and robustness in DNA fingerprinting. NucleicAcids Res. 28: 105-109.
- **155.** Vatansever, R., Ozyigit, I. I., & Filiz, E. (2016). Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Applied Biochemistry and Biotechnology, 1-19.

- 156. Veitch, N. C., Elliott, P. C., Kite, G. C., & Lewis, G. P. (2010). Flavonoid glycosides of the black locust tree, Robinia pseudoacacia (Leguminosae). Phytochemistry, 71(4), 479-486.
- **157.** Volpe SL. Magnesium. In: Erdman JW, Macdonald IA, Zeisel SH, eds. Present Knowledge in Nutrition. 10th ed. Ames, Iowa; John Wiley & Sons, 2012:459-74.
- 158. White, T.J., T. Bruns, S. Lee, and J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M.A., D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, Inc., New York
- 159. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey. 1990. DNA polymorhism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.
- 160. Williams, M., Todd, G. D., Roney, N., Crawford, J., Coles, C., McClure, P. R., ... & Citra, M. (2012). Toxicological profile for manganese. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA).
- 161. Wink, M., & Mohamed, G. I. A. (2003). Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochemical Systematics and Ecology, 31(8), 897-917.
- 162. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011.
- **163.** Xu, J. H., Liu, Q., Hu, W., Wang, T., Xue, Q., & Messing, J. (2015). Dynamics of chloroplast genomes in green plants. Genomics, 106(4), 221-231.
- 164. Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany 76 167–179
- 165. Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 32(5), 667.

- **166.** Yasar, U., (2009). *Cercis siliquastrum* L. Subsp. *Siliquastrum* (*Fabaceae*)'un ağır metal kirliliğinde biomonitor olarak kullanimi. PhD Thesis, 1-4.
- 167. Yasar, U., Ozyigit, I. I., Serin, M., (2010). Judas tree (*Cercis siliquastrum* L. subsp. *siliquastrum*) as a possible biomonitor for Cr, Fe and Ni in Istanbul (Turkey). Romanian Biotechnological Letters, 15(1), 4979-4989.
- 168. Yasar, U., Ozyigit, I. I., Yalcin, I. E., Dogan, I. Demir, G., (2012). Determination of some heavy metals and mineral nutrients of bay tree (*Laurus nobilis* L.) in Bartın city, Turkey. Pak J Bot, 44, 81-89.
- **169.** Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchemical Journal, 99(1), 82-92.
- **170.** Yeh, F. C., Yang, R. C., Boyle, T. B., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology centre, University of Alberta, Canada, 10.
- 171. Yin, Z.; Jiang, H.; Lee, E. S. Y.; Ni, M.; Erikson, K. M.; Milatovic, D.; Bowman, A. B.; Aschner, M. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry. 112 (5): 1190–8.
- 172. Zietkiewicz, E., Rafalski, A., Labuda, D., 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176e183.
- 173. Zwenger, C., Dronke, F., 1861. Ueber Robinin, ein neues Glucosid aus den Blüthen der Acacien (*Robinia pseudacacia*) und dessen Zusammenhang mit Quercitrin. Ann. Chem. Pharm. Suppl. 1, 257–271.

SUPPLEMENTARY

Suppl.	1 -	Table	1	Boron	(B)	$(mg.kg^{-1})$

	Prince Island										
S	Season	Unwashed Leaf	Washed Leaf	Removed amount	Removal Rate (%)	Branch	Bark	Soil			
	Average	28.749	26.323	uniouni	111111 (70)	12,391	16.002	34,898			
Summer	St. Deviation	0.490	0.528	2.426	8.4	0.299	0.389	0.713			
	Average	38.129	35.188			16.200	21.636	43.455			
Autumn	St. Deviation	1.032	0.954	2.941	7.7	0.506	1.212	1.815			
	Average	34.949	32.133			15.004	19.463	39.248			
Winter	St. Deviation	0.823	0.748	2.816	8.1	0.532	0.398	0.990			
	Average	43.604	40.203			18.563	24.161	48,959			
Spring	St. Deviation	0.927	1.089	3.402	7.8	0.485	0.696	1.139			
	Subernution	0.027	Baod	at Avenue		01100	0.070				
		Unwashed	Washed	Removed	Removal						
Season		Leaf	Leaf	amount	Rate (%)	Branch	Bark	Soil			
	Average	23.508	20.451	uniouni	111111 (70)	8.007	13.698	28.420			
Summer	St. Deviation	0.571	0 345	3.058	13.0	0.164	0 244	0.601			
	Average	31 278	27 359			10 583	18 492	33 691			
Autumn	St Deviation	0.837	0 745	3.919	12.5	0.265	0.787	0.723			
	Average	28 364	24 931			9.675	16 805	31 477			
Winter	St Deviation	0 599	0.538	3.433	12.1	0.350	0.461	1 258			
	Average	35 596	31 264			12.121	20 979	40.410			
Spring	St Deviation	0.882	0.899	4.333	12.2	0.248	0.814	1 778			
	St. Deviation	0.002	TFN	l Highway		0.240	0.014	1.770			
		Unwashad	Washed	Removed	Removal						
S	Season	Leaf	Leaf	amount	Removal Rate (%)	Branch	Bark	Soil			
	Average	19.876	14 930	amount	Kate (70)	5 830	8 829	22 876			
Summer	St Deviation	0.371	0 323	4.946	24.9	0.146	0.027	0.459			
	A verage	26 395	19 994			7 730	11 907	26 206			
Autumn	St Deviation	0.796	0.943	6.401	24.3	0.195	0.451	0.596			
	A verage	24 230	18 190			7.046	10 776	24 268			
Winter	St Deviation	0.484	0.432	6.040	24.9	0.246	0.246	1 197			
	A verage	30.041	23 287			8 863	13 413	33 213			
Spring	St Deviation	0.811	0.763	6.754	22.5	0.227	0.300	0.946			
	St. Deviation	0.011	Barbar	os Roulevar	-d	0.227	0.200	0.710			
		Unwachod	Washad	Domovod	Domoval						
S	beason	Leaf	Leaf	amount	Removal Rate (%)	Branch	Bark	Soil			
	Average	18 450	14 033	amount	Kate (70)	4 884	7 666	22 072			
Summer	St. Deviation	0.356	0.235	4.417	23.9	0.058	0.147	0.264			
	Average	24 574	18 273			6 468	10.382	24 803			
Autumn	St. Deviation	0.588	0.679	6.300	25.6	0.163	0.435	0.457			
	Average	22.534	17.027			5 915	9 310	23 827			
Winter	St. Deviation	0.525	0.521	5.507	24.4	0.178	0.241	0.571			
	Average	27.920	21.032			7 373	11 751	28 535			
Spring	St Deviation	0.678	0 574	6.888	24.7	0.163	0.445	0.920			
	St. Deviation	0.070	Dilov	asi District		0.105	0.110	0.920			
		Unwachod	Weshed	Bomovod	Domoval						
Season		L oof	VV ashtu Loof	amount	Removal Rate (%)	Branch	Bark	Soil			
	Average	14 599	8 876	amount	Marc (70)	2.800	5 081	17 497			
Summer	St Deviation	0.280	0.120	5.723	39.2	0.067	0.121	0 357			
	Average	19 517	11 680			3 678	6.807	10.337			
Autumn	St Deviation	0.528	0 352	7.837	40.2	0.086	0.398	0 360			
	Average	17 631	10 732			3 411	6.256	18 637			
Winter	St Deviation	0.602	0 340	6.899	39.1	0.086	0.250	0.824			
	Average	22 196	13 385			4 184	7 766	25 906			
Spring	St Deviation	0.561	0 378	8.811	39.7	0 107	0.302	0.550			
	St. Deviation	0.501	0.540			0.107	0.502	0.557			

	Prince Island									
	1	Unwashed	Washed	Removed	Removal	Duonah	Daula	C.I		
	beason	Leaf	Leaf	amount	Rate (%)	Branch	Багк	501		
Summer	Average	17032.076	16500.672	531 404	3.1	9998.307	20003.901	20535.347		
Summer	St. Deviation	402.199	482.137	551.404	5.1	304.225	585.075	624.843		
Autumn	Average	28208.951	27419.856	789 095	2.8	16398.555	32259.537	29651.258		
Autumn	St. Deviation	754.250	766.106	107.075	2.0	322.177	918.291	1084.769		
Winter	Average	23110.249	22451.903	658.347	2.8	13507.313	26597.678	24268.010		
	St. Deviation	625.825	627.834		2.0	380.589	775.234	889.029		
Spring	Average	31414.618	30356.798	1057.820	3.4	18199.914	36276.290	37728.699		
-shime	St. Deviation	781.467	860.118			569.075	1477.620	1067.989		
			Baş	gdat Aven	ue					
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
			Leaf	amount	Rate (%)	10515 500		22010 521		
Summer	Average	17532.587	1/198.885	333.702	1.9	12/15.583	23292.333	23010.721		
	St. Deviation	520.706	491.573			298.786	695.940	573.292		
Autumn	Average	28978.272	27829.009	1149.264	4.0	20666.069	37698.463	30913.857		
	St. Deviation	683.812	693.054			409.346	958.311	852.238		
Winter	Average	23837.345	22903.595	933.750	3.9	16840.487	30978.299	25262.669		
	St. Deviation	732.945	//0.966			361.234	/66./52	825.751		
Spring	Average	32351.392	31/11.966	639.426	2.0	23217.196	42285.070	414/0.763		
	St. Deviation	10/1.082	970.585	N / TT - 1		640.007	1640.902	/05.480		
	TEM Highway									
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	A	Lear	Lear	amount	Rate (%)	14101 149	25800 220	26702 822		
Summer	Average St. Deviction	624 677	715 666	630.724	3.0	275 270	23890.220	20702.823		
	Average	34785 955	3300/ 603			23001.967	12230 867	33221 828		
Autumn	St Deviation	1522 722	926 914	791.262	2.3	485 289	839.045	1453 272		
	A verage	28221 698	27648.047			18663 207	34755 274	28229 914		
Winter	St Deviation	1069 710	696 886	- 573.651	2.0	657 861	834 591	1294 465		
	Average	38556.030	37437.405			25729.604	47031.407	46132.067		
Spring	St. Deviation	1174.737	1254.794	1118.625	2.9	756.695	1747.681	1169.107		
			Barba	aros Boule	vard					
		Unwashed	Washed	Removed	Removal			<i>a</i>		
8	eason	Leaf	Leaf	amount	Rate (%)	Branch	Bark	Soil		
Summar	Average	22913.437	22701.282	212 155	0.0	14748.996	26725.813	26331.559		
Summer	St. Deviation	552.040	433.870	212.135	0.9	342.447	637.633	787.315		
Autumn	Average	37868.840	37250.598	618 242	16	24092.767	43672.389	36497.588		
Autumn	St. Deviation	726.901	1217.352	010.242	1.0	531.163	942.221	1366.897		
Winter	Average	31236.677	30185.039	1051 638	34	19762.094	35836.726	29803.385		
	St. Deviation	655.773	769.494	1021.020	5.1	428.811	784.263	1129.146		
Spring	Average	42041.112	41696.168	344.944	0.8	26837.374	49163.725	48045.861		
~r8	St. Deviation	999.951	881.135			911.472	1132.986	1385.040		
			Dile	ovasi Distr	ict					
S	eason	Unwashed Leaf	Washed Leaf	Removed amount	Removal Rate (%)	Branch	Bark	Soil		
Summer	Average	25931.964	25197.419	731 516	20	16615.174	29863.831	30063.130		
Summer	St. Deviation	733.210	676.887	/ 54.540	2.0	371.827	491.525	625.418		
Autumn	Average	43548.539	42157.085	1301 /5/	3 7	27390.797	49081.118	42615.510		
Autuinii	St. Deviation	1680.228	1398.241	1371.434	5.2	555.251	1192.289	1012.275		
Winter	Average	35684.303	34593.001	1091 302	31	22491.059	40476.830	34984.563		
** IIICI	St. Deviation	1413.982	1256.151	1071.302	5.1	520.203	905.055	1166.363		
Spring –	Average	47726.482	46404.821	1321 661	1 28 -	30381.183	54655.701	55414.639		
~P1116	St. Deviation	1320.995	1265.576	1521.001	2.0	688.458	1066.560	1255.819		

Suppl. 2 - Table 2 Calcium (Ca) (mg.kg⁻¹)

			Prir	ce Islands				
		Unwashed	Washed	Removed	Removal			~ •
5	Season	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil
	Average	0.269	0.207	0.062	22.0	0.157	0.172	0.618
Summer	St. Deviation	0.005	0.004	0.062	23.0	0.003	0.003	0.011
A 4	Average	0.319	0.241	0.079	24.4	0.177	0.204	0.654
Autumn	St. Deviation	0.005	0.004	0.078	24.4	0.003	0.003	0.014
Winton	Average	0.291	0.220	0.072	24.6	0.162	0.188	0.611
winter	St. Deviation	0.010	0.007	0.072	24.0	0.006	0.007	0.014
Spring	Average	0.376	0.289	0.088	22.2	0.210	0.245	0.775
spring	St. Deviation	0.019	0.006	0.088	23.5	0.007	0.005	0.032
			Bago	lat Avenue				
	Season	Unwashed	Washed	Removed	Removal	Branch	Rark	Soil
		Leaf	Leaf	Amount	Rate (%)	Draiten	Dark	
Summer	Average	0.621	0.569	0.052	84	0.319	0.403	0.916
Junner	St. Deviation	0.012	0.010	0.052	0.1	0.006	0.007	0.017
Autumn	Average	0.746	0.675	- 0.071	9.5	0.370	0.487	0.996
	St. Deviation	0.013	0.011	01071	2.0	0.006	0.008	0.022
Winter	Average	0.683	0.615	- 0.068	10.0	0.338	0.445	0.924
	St. Deviation	0.023	0.020			0.011	0.015	0.020
Spring	Average	0.892	0.810	- 0.082	9.2	0.440	0.579	1.179
~8	St. Deviation	0.021	0.017			0.014	0.020	0.052
			TEN	1 Highway				
5	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil
	•		Leaf	Amount	Rate (%)	0.265	0.461	1 415
Summer	Average	0.744	0./1/	- 0.027	3.7	0.365	0.461	1.415
	St. Deviation	0.014	0.014			0.007	0.009	0.029
Autumn	Average St Deviation	0.918	0.049	0.069	7.5	0.429	0.339	1.373
	A vorego	0.010	0.014			0.007	0.010	1.446
Winter	St Deviation	0.038	0.775	0.063	7.5	0.393	0.017	0.053
	Average	1 106	1.021			0.013	0.663	1.870
Spring	St Deviation	0.026	0.022	- 0.085	7.7	0.012	0.003	0.085
	bu Deviation	0.020	Barbar	os Boulevard	1	0.015	0.020	0.005
		Unwashed	Washed	Removed	Removal			
5	Season	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil
	Average	1.069	0.911	0.150	14.0	0.537	0.756	1.977
Summer	St. Deviation	0.020	0.017	0.158	14.8	0.010	0.014	0.039
• .	Average	1.311	1.114	0.107	15.1	0.636	0.912	2.313
Autumn	St. Deviation	0.022	0.019	0.197	15.1	0.011	0.016	0.060
	Average	1.198	1.018	0.400		0.582	0.837	2.103
Winter	St. Deviation	0.039	0.033	- 0.180	15.0	0.019	0.029	0.068
	Average	1.546	1.328			0.756	1.081	2.762
Spring	St. Deviation	0.085	0.037	- 0.218	14.1	0.028	0.046	0.085
			Dilov	asi District				
		Unwashed	Washed	Removed	Removal			~ **
Season		Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil
C	Average	5.246	4.613	0.622	10.1	2.775	3.027	6.119
Summer	St. Deviation	0.097	0.084	0.033	12.1	0.061	0.056	0.114
A	Average	6.495	5.734	0.761	117	3.296	3.760	7.461
Autumn	St. Deviation	0.111	0.098	0.701	11./	0.056	0.064	0.161
Winton	Average	5.919	5.217	0 702	11.0	3.013	3.439	6.792
winter	St. Deviation	0.192	0.174	0.702	11.9	0.082	0.113	0.226
Enni	Average	7.799	6.841	0.057	7 12.3	3.953	4.451	8.853
opring	St. Deviation	0.161	0.188	0.757		0.083	0.203	0.282

Suppl. 3 - Table 3 Cadmium (Cd) (mg.kg⁻¹)

Prince Islands										
		Unwashed	Washed	Removed	Removal			a n		
5	beason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
Summor	Average	3.324	3.132	0 101	57	2.117	2.524	8.763		
Summer	St. Deviation	0.054	0.050	0.191	5.7	0.033	0.040	0.160		
Autumn	Average	4.124	3.854	0.271	6.6	2.512	3.183	9.460		
Autumn	St. Deviation	0.080	0.075	0.271	0.0	0.049	0.062	0.238		
Winter	Average	3.812	3.566	0.245	64	2.411	2.877	9.863		
	St. Deviation	0.089	0.049	0.213	0.1	0.032	0.044	0.417		
Spring	Average	4.330	4.097	0.233	5.4	2.753	3.300	11.323		
~18	St. Deviation	0.063	0.040			0.052	0.035	0.465		
			Bago	lat Avenue						
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	A	Lean		Amount	Rate (%)	2 277	1 602	11.055		
Summer	Average St. Deviation	0.081	4.903	0.222	4.3	0.055	4.005	0.207		
	A vorego	6.404	6 146			3 030	5 715	13 302		
Autumn	Average St Deviation	0.125	0.140	0.258	4.0	0.077	0.111	0.340		
	A vorogo	5.841	5.589 0.252 4.3	3 825	5 214	13 240				
Winter	St Deviation	0.080	0.077	0.252	4.3	0.080	0.100	0.460		
	Average	6 702	6.434	0.2684.0		4 381	6.057	15 572		
Spring St. Devia	St Deviation	0.064	0.434	- 0.268 4.0	4.0	0.108	0.037	0.202		
	St. Deviation	0.004		/ Highway		0.100	0.155	0.202		
		Unwashed	Washed	Removed	Removal					
S	Season	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
G	Average	6.528	6.082	0.446	6.9	4.128	5.559	18.326		
Summer	St. Deviation	0.104	0.100	0.446	0.8	0.065	0.088	0.291		
A 4	Average	7.891	7.478	0.414	5.2	5.082	6.825	21.290		
Autumn	St. Deviation	0.154	0.146	0.414	5.2	0.099	0.133	0.500		
Winton	Average	7.423	6.906	0.517	7.0	4.701	6.295	20.762		
winter	St. Deviation	0.107	0.100	0.517	7.0	0.064	0.115	0.410		
Contra	Average	8.496	7.940	0.557	6.6	5.388	7.283	24.028		
- Spring	St. Deviation	0.136	0.081	0.557	0.0	0.055	0.101	0.309		
			Barbar	os Boulevard	l					
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
		Leaf	Leaf	Amount	Rate (%)	5 207		21.204		
Summer	Average	9.210	7.945	1.265	13.7	5.207	6.445	21.204		
	St. Deviation	0.140	0.135			6.526	0.102	0.337		
Autumn	Average	0.224	9.730	1.766	15.4	0.520	0.155	25.494		
	St. Deviation	10.224	0.190			5.021	7 220	24 100		
Winter	St Deviation	0.145	9.044	1.451	13.8	0.082	0.106	0.343		
		12 027	10 395			6.826	8 474	27.914		
Spring	St Deviation	0.119	0.100	1.632	13.6	0.020	0.178	0.621		
	St. Deviation	0.117	Dilov	asi Disctrict		0.075	0.170	0.021		
		Unwashed	Washed	Removed	Removal					
S	Season	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
C	Average	16.047	14.084	1.062	10.0	13.266	16.054	28.921		
Summer	St. Deviation	0.282	0.235	1.963	12.2	0.210	0.254	0.456		
A	Average	20.737	17.270	2 4 67	167	17.093	20.077	36.517		
Autumn	St. Deviation	0.404	0.336	5.40/	10./	0.333	0.391	0.707		
Wintow	Average	18.375	16.053	2 2 2 2	12.6	15.196	18.339	33.037		
winter	St. Deviation	0.337	0.220	2.322	12.0	0.332	0.311	0.569		
Spains	Average	21.771	18.572	3 100	147	17.781	21.988	39.967		
opring	St. Deviation	0.603	0.434	5.177	14.7	0.889	0.938	1.386		

Suppl. 4 - Table 4 Chromium (Cr) (mg.kg⁻¹)

Scason Unvashed Leaf Kemoved Amount Removed Rate (%) Branch Bark Soil Summer St. Deviation 0.387 0.308 2.657 13.5 9.974 14.327 0.0749 Autumn St. Deviation 0.637 0.302 2.657 13.5 9.11898 17.241 23.134 Average 2.2277 19.288 3.019 13.6 11.248 16.247 22.969 Spring Average 2.8885 2.4555 4.349 15.1 13.908 20.240 2.6578 Summer St. Deviation 0.866 0.3384 Removed Amount Removed Removed Ret (%) Branch Bark Soil Summer Average 7.407 23.181 4.225 15.4 16.695 20.219 27.517 Autumn St. Deviation 0.590 0.445 4.722 15.4 0.332 0.400 0.598 Autumn Average 31.600 26.288 4.772 15.4 0.342 0.431 0.798 <		Prince Islands										
Joarding Leaf Amount Rate (%) Junch		aacon	Unwashed	Washed	Removed	Removal	Branch	Bork	Soil			
Summer Metric Average Average 19.687 (0.387) 17.030 (0.388) 2.657 (0.338) 13.5 (0.196) 9.974 (0.294) 14.327 (0.294) 20.749 (0.294) Autumn St. Deviation Average 0.671 0.322 (0.351) 3.019 13.6 11.248 (0.126) 16.247 (0.222) 23.31 (0.352) Winter St. Deviation Average 0.828 22.277 (0.522) 19.258 (0.532) 3.019 13.6 11.248 (0.315) 16.247 (0.522) 22.996 (0.532) Spring St. Deviation 0.866 0.388 4.349 15.1 13.908 (0.315) 0.317 0.772 Summer St. Deviation Leaf Mashed Leaf Removed Amount Removel Amount Removel Removal (0.332) Deviation 0.337 0.307 4.781 14.2 20.011 25.147 22.476 Autumn St. Deviation 0.537 0.307 4.781 14.2 20.219 0.267 31.039 Spring St. Deviation 0.544 0.442 4.772 15.4 18.901 22.953 31.039 Summer St. Deviation 0.588 0.554 5.338	۵ 	Jeason	Leaf	Leaf	Amount	Rate (%)	Diancii		501			
St. Deviation 0.387 0.378 0.196 0.294 0.411 Autumn Average 24.657 0.2094 3.753 15.2 0.196 0.224 0.332 Winter Average 22.277 19.258 3.019 13.6 11.248 16.247 22.296 Spring Average 28.885 24.355 4.349 15.1 13.908 20.240 0.525 Spring Average 0.366 0.388 4.349 15.1 13.908 20.240 0.525 Summer K. Deviation 0.366 0.388 4.349 15.1 13.908 20.240 0.537 0.317 0.772 Summer Average 0.590 0.465 4.225 15.4 16.695 20.219 27.517 Summer Average 31.600 26.288 4.772 15.4 18.901 22.597 0.400 Summer Average 31.554 5.538 14.0 24.260 9.4451 36.33	Summer	Average	19.687	17.030	2.657	13.5	9.974	14.327	20.749			
Autumn Netroge Average 24.657 20.904 20.922 3.753 3.753 15.2 11.898 1.298 17.241 1.248 22.134 1.0.126 Winter St. Deviation Average 0.392 0.321 0.392 3.019 13.6 11.248 16.24 1.248 22.996 0.222 0.232 0.236 Spring St. Deviation 0.362 24.535 4.349 15.1 13.908 0.315 0.317 0.772 Summer St. Deviation Leaf Removed Amount Removed Amount Removel Amount Bark Removel Amount Bark Soil Summer St. Deviation 0.544 0.465 4.225 15.4 16.695 20.219 27.517 Average St. Deviation 0.554 0.422 4.772 15.4 16.295 20.219 0.267 St. Deviation 0.554 5.538 14.0 24.260 29.457 38.33 St. Deviation 0.584 0.575 5.019 13.3 21.289 31.039 St. Deviation 0.544 0.475 5.019 13.3 24.260 29.472 0.421		St. Deviation	0.387	0.338			0.196	0.294	0.411			
St. Deviation 0.6/1 0.222 0.126 0.182 0.323 Winter Average 22.277 19.258 3.019 13.66 11.248 16.247 22.996 Spring Average 28.885 24.535 4.349 15.1 13.068 0.222 0.280 0.552 Summer Average 27.407 23.181 4.349 15.1 15.080 0.317 0.772 Summer Average 27.407 23.181 4.225 15.4 16.695 20.219 0.578 Autums Average 33.671 28.890 4.781 14.2 0.261 0.332 0.400 0.578 Minter St. Deviation 0.544 0.442 4.772 15.4 18.901 22.953 31.039 Spring Average 37.556 32.837 5.019 31.3<	Autumn	Average	24.657	20.904	3.753	15.2	11.898	17.241	23.134			
Winter Average 22.2/17 19.258 3.019 13.6 11.248 10.247 22.996 Spring Average 28.885 24.535 4.349 15.1 13.908 20.240 26.978 St. Deviation 0.866 0.388 4.349 15.1 13.908 20.240 26.978 St. Deviation 0.866 0.388 4.349 15.1 13.908 20.240 26.978 St. Deviation 0.590 0.465 4.225 15.4 16.695 20.219 27.517 Average 33.671 28.890 4.781 14.2 20.611 25.147 33.039 Minter Average 30.537 0.307 4.781 14.2 20.611 25.147 38.533 Spring St. Deviation 0.554 0.442 4.772 15.4 18.901 22.957 38.533 Spring St. Deviation 0.554 5.538 14.0 0.362 0.541 0.471 Superiation <th< th=""><th></th><th>St. Deviation</th><th>0.671</th><th>0.222</th><th></th><th></th><th>0.126</th><th>0.183</th><th>0.352</th></th<>		St. Deviation	0.671	0.222			0.126	0.183	0.352			
St. Deviation 0.322 0.331 0.222 0.288 0.325 Spring Average 28.885 24.335 4.349 15.1 13.5908 20.248 0.772 Summer St. Deviation 0.866 0.388 4.349 15.1 13.5908 20.247 0.772 Summer Average 27.407 23.181 Removed Leaf Removed Amount Removed Retoring Branch Bark Soil Autumn Average 33.671 28.890 4.781 14.2 0.312 0.400 0.594 Autumn Average 31.060 26.288 4.772 15.4 0.332 0.400 27.973 Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 Spring Average 37.856 3.019 13.3 21.289 25.621 34.266 Summer Average 37.857 5.019 13.3 21.289 23.621 34.266	Winter	Average	22.277	19.258	3.019	13.6	0.222	16.24/	22.996			
Spring Average 22.833 24.333 4.349 15.1 13.908 20.2470 20.974 Bagdat Avenue Season Unwashed Leaf Removed Momunt Removal Rate (%) Branch Bark Soil Summer Average 27.407 23.181 4.225 15.4 0.332 0.400 57.90 Average 33.671 28.890 4.781 14.2 20.611 25.147 32.476 Muture Average 33.671 28.890 4.781 14.2 20.611 25.147 32.476 St. Deviation 0.554 0.442 4.772 15.4 18.901 22.973 31.039 Spring St. Deviation 0.554 0.538 20.35 5.338 1.00 24.260 29.457 38.310.39 Superiation 0.544 0.422 7.135 1.52 21.289 25.621 0.466 Superiation 0.847 0.437 31.630 21.289 25.621 0.466		St. Deviation	0.392	0.351			12 009	0.286	0.525			
St. Deviation 0.313 0.313 0.317 0.313 0.321 0.400 0.531 0.201 0.313 0.219 0.1032 0.1032 0.1032 0.1032 0.1032 0.213 0.215 0.215 0.21	Spring	Average St. Deviation	28.885	24.555	4.349	15.1	0.215	20.240	20.978			
Season Unwashed Leaf Removed Amount Removed Rate (%) Branch Bark Soil Summer Average 27.407 23.181 4.225 15.4 16.695 20.219 27.517 Autumn Average 33.671 28.890 4.781 14.2 20.611 25.147 32.476 Minter Average 31.060 26.288 4.772 15.4 18.901 22.953 31.039 Winter Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 Spring Average 37.856 32.837 5.191 13.3 0.421 0.512 0.668 Summer Average 46.850 39.714 7.135 15.2 2.0420 29.457 0.952 Winter Average 44.2781 37.157 5.624 13.1 24.003 28.830 38.799 Winter Average 54.778 46.685 8.095 14.8 29.313 35.524 <		St. Deviation	0.800	0.300 D og	dot Aronne		0.315	0.317	0.772			
Season Cliwashed Leaf Remove Amount Remove Returns Branch Bark Soil Summer Average 27,407 23,181 4.225 15.4 16.695 20,219 27,517 Autumn Average 33,671 28,890 4.781 14.2 20,611 25,147 32,476 Minter Average 31,060 26,228 4,772 15.4 0.342 0,431 0,798 Spring Average 39,593 34,055 5,538 14.0 0.342 0,437 0,365 0,747 Season Unwashed Leaf Kemoval Amount Returns Removal Rate (%) Branch Bark Soil Autumn Average 37,856 32,837 5,019 13.3 0,421 0,512 0,686 Autumn Average 42,781 37,157 5,624 13.1 0,528 0,320 0,952 Winter Average 54,778 46,683 8,095 14.8 29,313 35,524 <th></th> <th></th> <th>Unwoohod</th> <th>Washad</th> <th>Domovod</th> <th>: Domovol</th> <th></th> <th></th> <th></th>			Unwoohod	Washad	Domovod	: Domovol						
Summer Average 27.407 23.181 Animal Fail (1/5) 16.695 20.219 27.517 Summer St. Deviation 0.590 0.465 4.225 15.4 16.695 20.219 0.267 0.332 0.400 0.598 Autumn Average 33.671 28.890 4.781 14.2 0.611 25.147 0.863 Winter Average 31.060 26.288 4.772 15.4 0.332 0.400 0.598 Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 0.863 Summer Average 37.855 32.837 5.019 13.3 21.289 25.621 34.266 Autumn Average 46.850 39.714 7.135 15.2 2.0262 0.328 0.374 0.932 Minter Average 44.781 37.157 5.624 13.1 0.422 0.328 0.734 0.688 Mutumn Average	S	eason	Leaf	VV asheu Leaf	Amount	Removal Rate (%)	Branch	Bark	Soil			
Summer St. Deviation 0.502 0.405 4.225 15.4 10.332 0.400 0.598 Autumn Average 33.071 28.890 4.781 14.2 20.611 25.14 Winter Average 31.060 26.288 4.772 15.4 18.901 22.953 0.307 0.786 Spring Average 31.060 26.288 4.772 15.4 18.901 22.953 0.365 0.747 St. Deviation 0.544 0.442 5.538 14.0 24.260 29.457 38.533 Otrage Marcage 37.856 32.837 5.019 13.3 0.421 0.512 0.686 Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 0.432 0.441 0.512 0.688 Minter Average 44.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 0.979 0.804 5.624		Average	27.407	23.181	Amount	Kate (70)	16.695	20.219	27.517			
Autumn Average 33.671 28.890 4.781 14.2 20.611 25.147 32.476 Winter Average 31.060 26.288 4.772 15.4 18.901 22.953 31.039 Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 Spring Average 37.856 32.876 0.342 0.431 0.778 Summer Average 37.856 32.837 0.362 0.431 0.778 Summer Average 4.856 Removed Leaf Ramount Rate (%) Branch Bark Soil Summer Average 46.850 39.714 7.135 15.2 0.421 20.032 0.320 0.952 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.689 Spring Average 50.316 43.376 6.940 13.8 29.313 35.524 49.299 St. Deviation <t< th=""><th>Summer</th><th>St. Deviation</th><th>0.590</th><th>0.465</th><th>4.225</th><th>15.4</th><th>0.332</th><th>0.400</th><th>0.598</th></t<>	Summer	St. Deviation	0.590	0.465	4.225	15.4	0.332	0.400	0.598			
Autumn St. Deviation 0.357 0.307 4.781 14.2 0.219 0.267 0.863 Winter Average 31.060 26.288 4.772 15.4 18.901 0.342 0.431 0.778 Spring Average 39.593 34.055 5.538 14.0 0.342 0.431 0.778 Spring Constant O.588 0.554 5.538 14.0 0.342 0.431 0.778 Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 0.686 Autumn Average 46.850 39.714 7.135 15.2 24.722 0.512 0.686 Autumn Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 Winter Average 50.79 0.804 Removed Removel Removel 92.931 35.524 49.290 St. Deviation 0.213 0.695 8.095 14.8 <		Average	33.671	28.890			20.611	25.147	32.476			
Winter Average 31.060 26.288 4.772 15.4 18.901 22.953 31.039 Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 34.266 Summer Average 4.850 39.714 7.135 15.2 24.722 0.262 0.321 0.952 Winter Average 42.781 37.157 5.624 13.1 24.022 0.328 0.734 0.689 Spring St. Deviation 0.497 0.422 7.135 15.2 24.722 0.734 0.689 Mutumn Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 0.795 0.669 6.755 16.8	Autumn	St. Deviation	0.357	0.307	4.781	14.2	0.219	0.267	0.863			
Winter St. Deviation 0.544 0.442 4./72 15.4 0.342 0.431 0.798 Spring Average 39.593 34.055 5.538 14.0 0.342 0.431 0.798 St. Deviation 0.588 0.554 5.538 14.0 24.260 29.457 38.533 Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 34.266 Summer Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 K. Deviation 0.497 0.422 7.135 15.2 0.262 0.320 0.952 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.669 6.755 16.8 24.606 28.123 35.614 St. Deviatio		Average	31.060	26.288	4 550	15 4	18.901	22.953	31.039			
Spring Average 39.593 34.055 5.538 14.0 24.260 29.457 38.533 St. Deviation 0.588 0.554 5.538 14.0 24.260 29.457 38.533 Season Unwashed Leaf Removed Average Removed 37.856 Removed 32.837 Removal Rate (%) Branch Bark Soil Autumn Average 46.850 39.714 7.135 15.2 21.289 25.621 0.686 Autumn Average 46.850 39.714 7.135 15.2 24.702 30.191 0.695 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.689 Spring Average 50.316 8.095 14.8 29.313 35.524 49.299 St. Deviation 0.795 0.669 6.755 16.8 24.606 28.123 0.713 Mutumn Average 50.316 43.376 6.940 13.8 28.604 35.357 <	Winter	St. Deviation	0.544	0.442	4.772	15.4	0.342	0.431	0.798			
Spring St. Deviation 0.588 0.554 5.338 14.0 0.365 0.548 0.747 TEX Highway Season Unwashed Kaenoval Removal Removal Rate (%) Branch Bark Soil Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 34.266 Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 Spring Average 40.233 33.468 Removal Removal 29.313 35.544 0.714 0.713 Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 0.714 0.713 Mutumn Average		Average	39.593	34.055	5 520	14.0	24.260	29.457	38.533			
$\begin{tabular}{ c c c c c c c } \hline V TEW Highway V as here V was here V V was here V V was here V V was here V V was here V	Spring	St. Deviation	0.588	0.554	5.538	14.0	0.365	0.548	0.747			
Season Unwashed Leaf Removed Amount Removal Rate (%) Branch Rate (%) Bark Soil Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 34.266 Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 St. Deviation 0.979 0.804 5.624 13.1 24.003 28.830 38.799 St. Deviation 0.979 0.804 5.624 13.1 24.003 28.830 38.799 St. Deviation 0.279 0.689 8.095 14.8 29.313 35.524 49.299 St. Deviation 0.795 0.669 6.755 16.8 24.606 28.123 35.614 Mutumn Average 50.316 43.376 6.940 13.8 28.604 35.57 44.635 Mutumn <td< th=""><th></th><th></th><th></th><th>TE</th><th>M Highway</th><th>7</th><th></th><th></th><th></th></td<>				TE	M Highway	7						
Season Leaf Amount Rate (%) Dranch Dark Son Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 0.686 Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.879 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.695 8.095 16.8 24.606 28.123 35.614 Summer Average 40.223 33.468 Amount Rate (%) Branch Bark Soil Autumn Average 50.316 43.376 6.940 13.8 28.604 35.537 1119 Winter	Sassan		Unwashed	Washed	Removed	Removal	Dronch	Doult	Call			
Summer Average 37.856 32.837 5.019 13.3 21.289 25.621 34.266 Autumn Average 46.850 39.714 7.135 15.2 0.421 0.512 0.686 Muturn St. Deviation 0.497 0.422 7.135 15.2 0.262 0.320 0.952 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.952 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.6695 8.095 14.8 29.313 35.524 49.299 Summer Average 40.223 33.468 Removal Barach Bark Soil Summer Average 50.316 43.376 6.940 13.8 24.606 28.123 0.713 Muturn Average 50.211 50.898 8.122 13.8 0.460 0.304 0.375	<u> </u>	beason	Leaf	Leaf	Amount	Rate (%)	Dranch	Dark	501			
St. Deviation 0.844 0.758 5.019 13.3 0.421 0.512 0.682 Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 St. Deviation 0.979 0.804 5.624 13.1 24.003 28.830 38.799 St. Deviation 0.979 0.804 5.624 13.1 24.003 28.830 38.799 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.695 8.095 16.8 24.606 28.123 0.689 Summer Average 40.223 33.468 6.755 16.8 24.604 35.357 44.635 Mutum Average 59.016 43.376 6.940 13.8 28.604 35.357 0.713 Mutum	Summer	Average	37.856	32.837	5.019	133	21.289	25.621	34.266			
Autumn Average 46.850 39.714 7.135 15.2 24.722 30.191 41.923 Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.952 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 Summer Average Mashed Removed Removal Rate (%) Branch Bark Soil Summer Average 50.316 43.376 6.755 16.8 24.606 28.123 0.713 Mutumn Average 50.316 43.376 6.940 13.8 0.304 0.535 0.713 Mutumn Average 59.021 50.898 8.122 13.8 0.33874 41.520	Jummer	St. Deviation	0.844	0.758	5.017	15.5	0.421	0.512	0.686			
Ninter Average 42.781 37.157 5.624 13.1 24.003 28.830 0.879 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 Season Unwashed Leaf Mathed Leaf Removal Amount Removal Rate (%) Branch Bark Soil Summer Average 50.316 43.376 6.755 16.8 24.606 28.123 35.614 Mutumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Minter Average 59.021 50.898 8.122 13.8 28.604 35.357 44.635 Spring Average 59.021 50.898 8.122 13.8 28.604 35.357 44.635 Spring Average 59.021 50.898 8.122 13.8 0.600	Autumn	Average	46.850	39.714	7 135	15.2	24.722	30.191	41.923			
Winter Average 42.781 37.157 5.624 13.1 24.003 28.830 38.799 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 Spring St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 Barbaros Boulevard Barbaros Boulevard Barbaros Boulevard Branch Bark Soil Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 35.614 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Winter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 St. Deviation 0.824 0.886 7.496 16.4 27.750 31.865 40.320 St. Deviation 0.976 0.820 8.122 13.8 0.384 0.640 1.553 St.		St. Deviation	0.497	0.422	/.155	10.2	0.262	0.320	0.952			
St. Deviation 0.979 0.804 0.528 0.734 0.689 Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 Barbaros Boulevard Barbaros Boulevard Removal Rate (%) Branch Bark Soil Season Unwashed Leaf Leaf Amount Rate (%) Branch Bark Soil Autumn Average 50.316 43.376 6.755 16.8 24.606 28.123 35.614 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 St. Deviation 0.824 0.886 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Summer Average 60.631 <th>Winter</th> <th>Average</th> <th>42.781</th> <th>37.157</th> <th>5.624</th> <th>13.1</th> <th>24.003</th> <th>28.830</th> <th>38.799</th>	Winter	Average	42.781	37.157	5.624	13.1	24.003	28.830	38.799			
Spring Average 54.778 46.683 8.095 14.8 29.313 35.524 49.299 1.211 St. Deviation 1.213 0.695 8.095 14.8 29.313 35.524 49.299 1.211 Season Unwashed Leaf Removed Amount Removal Rate (%) Branch Bark Soil Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 35.614 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 38.74 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 60.834 0.640 1.553 Spring Average 60.631 51.510 9.121 15.0 41.391 45.559		St. Deviation	0.979	0.804			0.528	0.734	0.689			
St. Deviation 1.213 0.695 0.804 0.530 1.211 Barbaros Boulevard Barbaros Boulevard Season Unwashed Leaf Kemoved Leaf Removed Amount Removal Rate (%) Branch Bark Soil Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 35.614 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 0.834 0.640 1.553 Summer Average 60.631 51.510 9.121 15.0 0.820 0.834 0.640 1.553 Summer Average 60.631 51.510 9.121 15.0 0.820 0.895 1.313 Summer Average 60.631 5	Spring	Average	54.778	46.683	8.095	14.8	29.313	35.524	49.299			
Season Unwashed Leaf Removed Amount Removal Rate (%) Branch Bark Soil Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 35.614 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 6.834 0.640 1.553 Summer Average 60.631 51.510 9.121 15.0 0.820 0.895 1.313 <		St. Deviation	1.213	0.695			0.804	0.530	1.211			
Season Unwashed Kenoved Removed Removal Rate (%) Branch Bark Soil Summer Average 40.223 33.468 6.755 16.8 24.606 28.123 35.614 0.713 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Summer Keason Unwashed Leaf Amount Removal Removal 83.874 41.520 52.186 Summer St. Deviation 0.976 0.820 8.122 13.8 60.834 0.640 1.553 Summer Average 60.631 51.510 9.241 <t< th=""><th></th><th></th><th>Thursday and</th><th>Barba</th><th>ros Bouleva</th><th>ard Demonal</th><th></th><th></th><th></th></t<>			Thursday and	Barba	ros Bouleva	ard Demonal						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	S	eason	Unwashed	wasned Loof	Amount	Removal Dete (%)	Branch	Bark	Soil			
Summer Average 53.760 6.755 16.8 24.806 20.125 53.814 Autumn Average 50.316 43.376 6.755 16.8 24.806 20.125 67.713 Autumn Average 50.316 43.376 6.940 13.8 28.604 35.357 44.635 Winter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Spring Average 60.631 51.510 9.121 13.8 33.874 41.520 52.186 Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Summer Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Autumn Average 68.995 58.635 10.360 15.0 47.135 52.015		Average	40 223	33.468	Amount	Kate (76)	24 606	28 123	35.614			
Autumn Average 50.316 43.376 6.940 13.8 6.8604 35.357 44.635 Minter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 Spring Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Mutumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Mutumn Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Mutumn Average 68.995 58.635 10.360 15.0 47.135	Summer	St Deviation	0 795	0.669	6.755	16.8	0 484	0 554	0.713			
Autumn Average 50.0 6.940 13.8 20.00 0.000 1100 Winter Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 St. Deviation 0.824 0.886 7.496 16.4 27.750 31.865 40.320 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 33.874 41.520 52.186 Unwashed Leaf Amount Removal Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Minter Average 68.995		Average	50.316	43.376			28.604	35,357	44.635			
Number Average 45.627 38.131 7.496 16.4 27.750 31.865 40.320 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 40.320 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 0.718 52.186 66.836 1.553 66.836 1.553 66.836 66.836 66.836 66.836 66.836 66.836 66.836 66.836 66.836 66.836 66.836 66.836	Autumn	St. Deviation	0.534	0.460	6.940	13.8	0.304	0.375	1.119			
Winter St. Deviation 0.824 0.886 7.496 16.4 0.600 0.579 0.718 Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 33.874 41.520 52.186 Unwashed Leaf Amount Removal Rate (%) Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782		Average	45.627	38.131			27.750	31.865	40.320			
Spring Average 59.021 50.898 8.122 13.8 33.874 41.520 52.186 St. Deviation 0.976 0.820 8.122 13.8 33.874 41.520 52.186 Dilovasi District Dilovasi District Branch Bark Soil 501 Season Unwashed Leaf Leaf Amount Removal Rate (%) Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Winter Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782	Winter	St. Deviation	0.824	0.886	7.496	16.4	0.600	0.579	0.718			
Spring St. Deviation 0.976 0.820 8.122 13.8 0.834 0.640 1.553 Dilovasi District Dilovasi District Dilovasi District Branch Bark Soil Season Unwashed Leaf Leaf Amount Removal Rate (%) Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782		Average	59.021	50.898	0.100	12.0	33.874	41.520	52.186			
Dilovasi District Season Unwashed Leaf Washed Leaf Removed Amount Removal Rate (%) Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Autumn Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Winter Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 1.391 10.635 11.6 63.543 71.032 103.782	Spring	St. Deviation	0.976	0.820	8.122	13.8	0.834	0.640	1.553			
Season Unwashed Leaf Washed Leaf Removed Amount Removal Rate (%) Branch Bark Soil Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Minter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Winter Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 1.363 1.055 2.931				Dilo	vasi Distric	t						
Summer Average 60.631 51.510 9.121 15.0 41.391 45.559 66.836 St. Deviation 1.322 1.021 9.121 15.0 41.391 45.559 66.836 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 St. Deviation 1.281 1.307 10.360 15.0 47.135 52.015 76.063 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring St. Deviation 1.920 1.391 10.635 11.6 1.363 1.055 2.931	S	eason	Unwashed Leaf	Washed Leaf	Removed Amount	Removal Rate (%)	Branch	Bark	Soil			
Summer St. Deviation 1.322 1.021 9.121 15.0 0.820 0.895 1.313 Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 Minter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Winter Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 1.363 1.055 2.931	C	Average	60.631	51.510	0.121	15.0	41.391	45.559	66.836			
Autumn Average 78.592 69.350 9.241 11.8 54.328 60.383 88.641 St. Deviation 0.834 0.736 9.241 11.8 0.577 0.641 2.181 Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Average 91.947 81.312 10.635 11.6 1.363 1.055 2.931	Summer	St. Deviation	1.322	1.021	9.121	15.0	0.820	0.895	1.313			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Autume	Average	78.592	69.350	0.241	11.9	54.328	60.383	88.641			
Winter Average 68.995 58.635 10.360 15.0 47.135 52.015 76.063 St. Deviation 1.281 1.307 10.360 15.0 47.135 52.015 1.783 Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 Spring Eviation 1.920 1.391 10.635 11.6 63.543 71.032 103.782	Autumn	St. Deviation	0.834	0.736	7.241	11.0	0.577	0.641	2.181			
St. Deviation1.2811.30710.50015.01.0851.5631.783SpringAverage91.94781.31210.63511.6 $\frac{63.543}{1.363}$ 71.032103.782St. Deviation1.9201.39110.63511.6 $\frac{63.543}{1.363}$ 71.032103.782	Winter	Average	68.995	58.635	10 360	15.0	47.135	52.015	76.063			
Spring Average 91.947 81.312 10.635 11.6 63.543 71.032 103.782 St. Deviation 1.920 1.391 10.635 11.6 1.363 1.055 2.931	Winter –	St. Deviation	1.281	1.307	10.500	15.0	1.085	1.563	1.783			
St. Deviation 1.920 1.391 1.000 1.363 1.055 2.931	Spring –	Average	91.947	81.312	10.635	11.6	63.543	71.032	103.782			
	~P****8	St. Deviation	1.920	1.391			1.363	1.055	2.931			

Suppl. 5 - Table 5 Copper (Cu) (mg.kg⁻¹)

Prince Islands										
	0000	Unwashed	Washed	Removed	Removal	Dronch	Doul	Soil		
	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Багк	5011		
Summor	Average	101.248	91.199	10.049	0 0	63.565	164.414	1767.070		
Summer	St. Deviation	2.247	2.038	10.047).)	1.188	3.659	39.478		
Autumn	Average	165.791	151.347	14 444	87	94.542	267.779	2129.075		
Autumn	St. Deviation	2.855	2.606	17.777	0.7	1.628	4.611	68.627		
Winter	Average	153.073	140.018	13 055	8 5	86.928	247.105	1974.109		
····	St. Deviation	3.034	2.694	15.055	0.5	2.210	5.004	75.638		
Spring	Average	177.265	160.698	16.567	9.3	110.972	288.346	3117.454		
	St. Deviation	4.064	2.758	10.507	7.5	3.508	6.185	72.923		
			Ba	gdat Avenue	9					
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
		Leaf	Leaf	Amount	Rate (%)					
Summer	Average	113.942	101.520	12.422	10.9	69.975	173.330	1813.222		
	St. Deviation	3.713	2.255			1.810	3.877	40.494		
Autumn	Average	200.024	180.638	19.387	9.7	120.446	302.883	2583.754		
	St. Deviation	3.445	3.111			2.074	5.216	83.558		
Winter	Average	183.665	166.178	17.487	9.5	110.427	277.740	2389.799		
	St. Deviation	5.163	4.065			3.471	8.611	89.744		
Spring	Average	208.765	190.139	18.626	8.9	124.068	314.493	3154.537		
I	St. Deviation	5.303	2.947			4.437	3.430	115.742		
				LM Highway						
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
			Leaf	Amount	Rate (%)	01.040	104.044	1004.047		
Summer	Average	132.020	115.859	16.161	12.2	81.049	184.344	1924.047		
	St. Deviation	2.948	2.574			1.906	4.115	42.969		
Autumn	Average	233.687	205.061	28.626	12.2	143.380	5.624	27/4.603		
	St. Deviation	4.024	3.331			2.469	201 452	153.317		
Winter	Average	212.800	187.341	25.525	12.0	2 209	301.452	2300.033		
	St. Deviation	225.974	218 540			3.298	228 502	2262 228		
Spring	St Deviation	233.874	210.340	17.334	7.3	2 569	5.626	01.000		
	St. Deviation	5.710	2.112 Dorb	amor Doulou	and	5.508	5.020	91.900		
		Unwochod	Washad	Domovod	nu Domovol					
S	eason	Logf	VV asheu Loof	Amount	Removal Rate (%)	Branch	Bark	Soil		
	Average	138 955	123 140	Amount	Kate (70)	83 976	186 875	1966 720		
Summer	St Deviation	3 166	2 290	15.814	11.4	1 875	4 271	43 938		
	Average	244 310	214 669			148 711	332.416	2797 478		
Autumn	St. Deviation	4.207	3.697	29.641	12.1	2.561	5.724	75.211		
	Average	223.396	196.542			137.038	306.177	2608.750		
Winter	St. Deviation	8.417	6.801	26.854	12.0	2.991	6.887	105.367		
	Average	246.083	227.279	10.001		159.036	348.922	3421.278		
Spring	St. Deviation	6.140	2.330	18.804	7.6	2.490	3.970	126.434		
			Dil	ovasi Distric	t					
		Unwashed	Washed	Removed	Removal					
S	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
	Average	163.248	142.062	01.104	10.0	97.055	201.835	2139.285		
Summer	St. Deviation	3.625	3.174	21.186	13.0	2.168	4.478	40.760		
	Average	296.275	258.857	07.410	10.7	177.005	366.840	3421.369		
Autumn	St. Deviation	5.102	4.458	57.418	12.6	3.048	6.317	57.161		
XX7	Average	271.371	238.235	22 127	12.2	163.736	338.942	3156.016		
Winter –	St. Deviation	9.120	5.658	55.137	12.2	3.148	6.585	73.918		
Spring –	Average	308.217	270.073	20 1 4 4	12.4 -	192.077	396.553	3756.504		
	St. Deviation	3.306	4.139	38.144		3.806	4.832	73.388		

Suppl. 6 - Table 6 Iron (Fe) (mg.kg⁻¹)

	Prince Islands										
S	leason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil			
u 	cason	Leaf	Leaf	Amount	Rate (%)	Dialicii					
Summer	Average	17026.936	16346.990	679.946	4.0	13448.485	15736.251	20047.094			
	St. Deviation	283.127	254.054			281.323	219.801	353.103			
Autumn	Average	14464.156	14074.462	389.694	2.7	11605.117	13499.323	18921.083			
	St. Deviation	197.665	192.340			158.594	184.480	518.808			
Winter	Average	12694.691	12369.577	325.114	2.6	10031.097	11883.835	16634.400			
	St. Deviation	199.526	217.934			399.474	245.633	549.545			
Spring	Average	15532.070	14898.904	633.166	4.1	12218.964	14261.977	19118.645			
	St. Deviation	3/1.60/	366.797			347.487	338.080	515.954			
			<u> </u>	Sagdat Avei	nue						
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil			
	A	Lear	Lear	Amount	Kate (%)	11922 501	14006.059	17226 425			
Summer	Average St. Deviation	240.222	210 704	1042.634	6.9	11855.591	281 021	1/320.435			
	St. Deviation	249.322	219.794			1/9.970	381.921	279.124			
Autumn	Average	12/55.550	11983.385	769.945	6.0	10201.592	11433.587	150/1.099			
	St. Deviation	1/4.288	103.700			139.414	10020.275	208.409			
Winter	Average St. Deviation	581.022	10401.734	904.152	8.0	8840.211	162 208	241 442			
	St. Deviation	381.922	1/0.4/0			278.295	103.298	341.443			
Spring	Average St. Deviction	13/03.855	221 120	907.002	6.6	10/82.160	12/70.280	15900.028			
	St. Deviation	321.231	331.129	TEM High-		227.984	480.761	558.750			
		Thursday	Weahed		Damanal						
S	eason	Loof	V asheu	Amount	Removal Doto (%)	Branch	Bark	Soil			
	Avorago	12732 600	11558 0/0	Amount	Kate (70)	10160 /20	11/17 622	16212 020			
Summer	St Doviation	212.000	207 253	1173.650	9.2	136 262	183 036	261 898			
	Average	10566 701	9646 108			8499 516	9603 999	14384 121			
Autumn	St Deviation	144 403	131 822	920.592	8.7	116 153	131 247	335 329			
	A verage	9301 668	8516 700			7469 894	8481 207	12563 607			
Winter	St Deviation	191 261	231.625	784.968	8.4	131 531	234 683	450 224			
	Average	11540 315	10509 546			9253 162	10404 444	14792.912			
Spring	St. Deviation	310.121	263,280	1030.769	8.9	181.055	262.801	357.852			
	50 2 0 1 10 10 11	0101121	Bar	·baros Boul	evard	1011000	2021001	0011002			
		Unwashed	Washed	Removed	Removal			~			
S	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil			
G	Average	12096.288	11538.746	557 540	1.0	9857.346	10499.294	15309.631			
Summer	St. Deviation	187.970	306.429	557.542	4.6	173.624	198.723	237.904			
•	Average	10241.682	9255.456	006 007	0.6	8103.143	8530.604	12962.485			
Autumn	St. Deviation	139.961	126.484	980.227	9.0	110.736	116.578	301.405			
Winton	Average	8992.411	8148.890	942 520	0.4	7084.292	7569.747	11311.939			
winter	St. Deviation	145.748	170.567	845.520	9.4	107.323	301.475	311.356			
Spring	Average	10974.806	10436.564	538 242	4.0	8980.650	9539.426	14030.700			
spring	St. Deviation	255.991	422.472	558.242	4.7	206.520	246.458	470.012			
			D	ilovasi Dist	rict						
6	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil			
		Leaf	Leaf	Amount	Rate (%)	Dialicii					
Summer	Average	9743.798	8720.331	1023 467	10.5	7890.791	8809.664	13375.820			
	St. Deviation	155.862	141.709	10201107	10.0	122.619	154.549	207.854			
Autumn	Average	8134.978	7086.059	1048.919	12.9	6365.958	7051.373	10592.138			
	St. Deviation	111.171	96.837	10.00017	- 2.7	86.996	96.363	209.682			
Winter	Average	7100.930	6209.397	891.533	12.6	5593.069	6132.529	9229.131			
	St. Deviation	121.206	90.170			95.772	149.089	231.342			
Spring –	Average	8844.876	7892.570	952.305	10.8	7160.655	7985.615	12118.502			
	St. Deviation	204.982	150.564			166.376	211.267	294.929			

Suppl. 7 - Table 7 Potassium (K) (mg.kg⁻¹)

Prince Islands										
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	cason	Leaf	Leaf	Amount	Rate (%)	Dranen	Dark			
Summer	Average	3417.441	3126.230	291 211	85	2285.519	2915.039	4166.854		
Summer	St. Deviation	102.116	93.142	271.211	0.5	74.432	88.578	147.013		
Autumn	Average	3754.495	3419.663	334 833	89	2496.916	3215.586	4499.405		
Autuinii	St. Deviation	58.221	53.029	554.055	0.9	38.720	49.864	179.457		
Wintor	Average	3502.323	3218.433	283 800	8.1	2350.942	2988.458	4276.617		
vv miter	St. Deviation	113.102	114.223	205.070	0.1	91.937	100.321	166.640		
Spring	Average	3882.824	3543.874	338.050	87	2592.717	3354.455	4672.004		
spring	St. Deviation	63.000	56.153	558.950	0.7	45.136	86.637	195.616		
			Ba	gdat Avenu	ie					
c	00000	Unwashed	Washed	Removed	Removal	Duonah	Doul	Sail		
ð	eason	Leaf	Leaf	Amount	Rate (%)	Dranch	Dark	5011		
Cummon	Average	3062.937	2558.627	504 210	16.5	2009.780	2207.030	3862.218		
Summer	St. Deviation	84.481	74.545	304.310	10.5	59.873	65.950	135.816		
	Average	3350.931	2816.667	524 265	15.0	2199.274	2448.488	4295.518		
Autumn	St. Deviation	51.963	43.678	554.205	15.9	34.104	37.969	137.171		
TT 7 * 4	Average	3142.091	2625.817	516074	16.4	2063.720	2272.823	3965.900		
Winter	St. Deviation	93.617	84.608	516.274	16.4	67.725	85.672	152.705		
a .	Average	3473.408	2929.401	544.000	15.7	2299.267	2570.097	4452.838		
Spring	St. Deviation	55.335	57.866	544.008	15.7	71.070	105.273	145.815		
			TF	EM Highwa	V					
~		Unwashed	Washed	Removed	Removal			~		
S	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
a	Average	2846.149	2026.466	040.000		1665.637	1872.756	3283.149		
Summer	St. Deviation	84.662	52.523	819.682	28.8	43.918	55.791	99.764		
	Average	3164.919	2233.153			1844.378	2114.106	3738.563		
Autumn	St. Deviation	49.079	34.630	931.766	29.4	28.601	32.784	100.755		
	Average	2916.653	2080.623			1714.134	1929.533	3387.957		
Winter	St. Deviation	92.306	56.711	836.030	28.7	51.580	70.676	147.297		
	Average	3280.528	2325.613			1942.074	2394.581	3896.907		
Spring	St. Deviation	52.231	51.650	954.916	29.1	95.469	108.534	138.415		
			Barh	aros Bouley	vard					
		Unwashed	Washed	Removed	Removal					
S	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
	Average	2766.506	1878.495			1528.083	1771.892	3094.578		
Summer	St. Deviation	82.432	65.611	888.012	32.1	49.884	53.842	141.197		
	Average	3058.276	2192.749			1784.609	2033.834	3585.256		
Autumn	St. Deviation	47.425	34.003	865.528	28.3	27.674	31.539	189,155		
	Average	2837.987	1931.796			1565.669	1820.415	3187,399		
Winter	St. Deviation	91,185	84,530	906.192	31.9	56.254	65.702	185 710		
	Average	3159 492	2284 734			1868 101	2142.959	3730.090		
Spring	St Deviation	54 331	53 175	874.758	27.7	63 507	109 021	218 915		
	St. Deviation	54.551	 	ovoci Distri	et	05.507	109.021	210.915		
		Unwochod	Washad	Pomovod	Domovol					
S	eason	Leaf	V ashcu Leaf	Amount	Rate (%)	Branch	Bark	Soil		
	Average	2140.063	1332 459	¹ introditi	1xutt (/0)	991 260	1367 625	2721 780		
Summer	St. Deviation	63.754	34,733	807.604	37.7	30.121	33,499	72 774		
	Average	2422 958	1499 000			1144 333	1512.651	3236 024		
Autumn	St Deviation	37 573	23 245	923.958	38.1	17 745	23 457	105 767		
	A versee	2194 423	1373 527			1021 661	1411 366	2808 455		
Winter	St Deviation	70.002	44 006	820.896	37.4	42 008	40 566	94 154		
Spring -	A vorage	2510 450	100/ 256		4 24.4	1/16 107	1878 712	3386 006		
	Average St Deviation	48 055	1504.030	614.594		33 /21	85 770	1/2 527		
	SI. Deviation	40.933	40.009			55.451	05.770	142.337		

Suppl. 8 - Table 8 Magnesium (Mg) (mg.kg⁻¹)

Prince Islands										
S	Season	Unwashed Leaf	Washed Leaf	Removed amount	Removal Rate (%)	Branch	Bark	Soil		
C	Average	51.177	42.192	0.005	17.6	24.740	78.208	389.210		
Summer	St. Deviation	1.108	0.923	8.985	17.0	0.553	1.645	8.465		
Autumn	Average	69.320	57.517	11 803	17.0	33.371	107.579	470.383		
Autumn	St. Deviation	1.239	1.028	11.005	17.0	0.597	1.923	12.042		
Winter	Average	60.489	50.118	10 371	17.1	29.184	93.715	413.017		
	St. Deviation	1.423	1.085	10.571	17.1	0.798	2.001	17.541		
Spring	Average	73.283	61.092	12 191	16.6	35.976	114.626	564.631		
	St. Deviation	2.437	1.895	12.171	10.0	1.401	2.013	18.922		
			Bago	lat Avenue						
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	•		Leaf	amount	Rate (%)	26.007	00.524	414.020		
Summer	Average	82.131	/0.51/	11.614	14.1	36.037	89.534	414.830		
	St. Deviation	1.808	1.527			0.788	1.957	9.082		
Autumn	Average	2.005	96.880	15.264	13.6	48.914	122.131	334.594		
	St. Deviation	2.005	1./32 94.726			0.874	2.183	13.097		
Winter	Average St Deviation	97.870	04.720	13.143	13.4	42.747	4 102	407.734		
	A vorago	118 522	102 212			52 620	120 305	503 201		
Spring	St Deviation	3 336	3 276	16.310	13.8	2 451	3 752	20.621		
St. Deviation		5.550		1 Highway		2.431	5.152	20.021		
		Unwashed	Washed	Removed	Removal					
S	Season	Leaf	Leaf	amount	Rate (%)	Branch	Bark	Soil		
~	Average	100.172	84.070			42.076	103.933	474.276		
Summer	St. Deviation	2.014	1.837	16.102	16.1	1.145	2.167	10.384		
	Average	138.452	117.565	20.007	15.1	58.498	145.253	638.453		
Autumn	St. Deviation	2.475	2.101	20.887	15.1	1.046	2.596	17.661		
Winton	Average	121.002	103.068	17.024	14.9	50.992	126.691	556.184		
winter	St. Deviation	3.162	3.349	17.934	14.0	1.126	2.897	19.742		
Spring	Average	146.828	122.381	24 447	167	67.957	153.750	682.312		
Spring	St. Deviation	3.524	4.898	24.447	10.7	3.784	3.786	19.147		
			Barbar	os Bouleva	rd					
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	A	Leat		amount	Rate (%)	45 820	107.057	497 222		
Summer	Average St. Deviction	2 208	1 604	15.657	14.9	43.839	2 299	487.252		
	St. Deviation	1/8 010	124 200			64.031	2.300	668 726		
Autumn	St Deviation	2 662	2 222	24.611	16.5	1 1/15	2 758	16.470		
	Average	130 127	108 754			55 985	135.078	583 229		
Winter	St Deviation	3 373	3 074	21.373	16.4	1 509	3 928	18 196		
	Average	155.981	133.241			77.672	168.970	702.152		
Spring	St. Deviation	1.572	4.555	22.740	14.6	6.579	3.850	19.475		
			Dilov	asi District						
	1	Unwashed	Washed	Removed	Removal	D	Deal	C . 1		
2	beason	Leaf	Leaf	amount	Rate (%)	Branch	Bark	5011		
Summor	Average	143.406	124.279	10 127	12.2	68.463	146.023	633.313		
Summer	St. Deviation	3.138	2.480	17.127	15.5	1.499	3.326	13.180		
Autumn	Average	205.749	172.866	32 883	16.0	96.706	211.943	900.886		
Autumn	St. Deviation	3.678	3.090	52.005	10.0	1.729	3.788	19.398		
Winter	Average	178.469	150.500	27,970	15.7	84.475	184.849	786.953		
	St. Deviation	3.624	3.130	21.910	10.1	2.132	4.214	21.841		
Spring –	Average	210.321	186.817	23.504	11.2	103.631	242.712	932.012		
	St. Deviation	4.260	6.853		11.2	3.060	7.392	16.726		

Suppl. 9 - Table 9 Manganese (Mn) (mg.kg⁻¹)

Prince Islands									
S	eason	Unwashed leaf	Washed Leaf	Removed Amount	Removal Rate (%)	Branch	Bark	Soil	
Cummon	Average	304.958	268.640	26 2 1 0	11.0	161.334	197.197	2449.783	
Summer	St. Deviation	9.606	7.793	30.319	11.9	4.588	5.901	71.939	
Autumn	Average	249.699	218.388	31 311	12.5	138.299	160.829	2128.253	
Autumn	St. Deviation	2.044	1.788	51.511	12.5	1.132	1.317	67.990	
Winter	Average	221.794	195.065	26 729	12.1	110.109	134.401	1802.195	
	St. Deviation	9.080	5.469	201122		3.584	3.423	64.205	
Spring -	Average	269.646	236.926	32.720	12.1	149.320	174.287	2300.677	
~F8	St. Deviation	4.908	2.139			2.785	1.830	77.978	
			Ba	gdat Avenu	e .				
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil	
	A	Leai	Lear	Amount	Rate (%)	141.004	161.850	2254 0.97	
Summer -	Average St Deviation	7 667	6 / 16	45.400	16.8	4 302	4 707	70 132	
	A verage	221.916	181 312			118 668	130 359	1875 931	
Autumn	St Deviation	1 817	1 484	40.604	18.3	0.972	1.067	32 025	
	A verage	196 449	164 525			101 960	105 144	1652.175	
Winter	St. Deviation	7.018	5.487	31.923	16.3	4.937	3.895	56.108	
~ .	Average	239.783	196.308			128.554	141.932	2028.230	
Spring -	St. Deviation	4.017	2.385	43.474	18.1	1.425	1.579	39.850	
			TE	M Highwa	v				
		Unwashed	Washed	Removed	Removal	D 1	D 1	a	
S	eason	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil	
Summar	Average	247.226	192.413	54 912	22.2	120.433	138.642	1979.174	
Summer	St. Deviation	7.160	5.568	54.815	22.2	3.367	4.149	56.648	
Autumn	Average	197.829	153.189	44 640	22.6	98.577	107.779	1545.988	
Autumn	St. Deviation	1.620	1.254	44.040	22.0	0.807	0.882	45.584	
Winter	Average	179.919	141.157	38 762	21.5	87.405	96.526	1443.375	
···inter	St. Deviation	6.989	4.776	30.702	21.5	3.602	4.354	50.926	
Spring	Average	214.390	166.655	47.735	22.3	107.008	117.429	1672.726	
Ski me	St. Deviation	2.239	1.638			0.923	1.466	48.336	
			Barba	aros Boulev	ard				
S	eason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil	
	A	Leaf	Leat	Amount	Rate (%)	112 022	107 011	1022 480	
Summer -	Average St. Deviation	240.365	6 3/18	51.748	21.5	3 207	3 707	52 127	
	Average	188 721	145.048			01 123	99.496	1/31 980	
Autumn -	St Deviation	1 545	1 188	43.673	23.1	0.746	0.815	58 831	
	Average	152,179	133.674			82.165	86.003	1397.340	
Winter	St. Deviation	5.795	4.370	18.506	12.2	4.510	3.614	52.062	
~ .	Average	204.695	156.591	10.101		98.869	108.461	1554.945	
Spring	St. Deviation	1.894	2.961	48.104	23.5	0.883	1.475	62.626	
			Dil	ovasi Distrie	et				
S	eason	Unwashed Leaf	Washed Leaf	Removed Amount	Removal Rate (%)	Branch	Bark	Soil	
C	Average	213.254	150.990	62.264	20.2	87.802	95.227	1651.652	
Summer	St. Deviation	6.574	5.950	02.204	29.2	2.543	3.581	50.783	
A	Average	167.708	117.981	40 727	20.7	68.812	73.101	1184.355	
Autumn	St. Deviation	1.373	0.966	49.121	29.1	0.563	0.598	30.179	
Wintor	Average	130.334	103.058	דדר דר	20.0	52.325	59.913	992.662	
winter .	St. Deviation	3.418	2.777	21.211	20.9	2.448	3.922	35.412	
Spring –	Average	181.871	129.434	52 437	28.8	74.710	79.924	1287.986	
	St. Deviation	1.721	3.849	52.157		0.640	1.658	33.360	

Suppl. 10- Table 10 Sodium (Na) (mg.kg⁻¹)

Prince Islands										
	loogon	Unwashed	Washed	Removed	Removal	Dronch	Donk	Sail		
<u> </u>	beason	Leaf	Leaf	Amount	Rate (%)	Dranch	Dark	5011		
Summer	Average	8.539	7.034	1.505	17.6	2.464	5.540	19.194		
Jumier	St. Deviation	0.343	0.277	11000	1710	0.096	0.228	0.745		
Autumn	Average	5.719	4.717	1.002	17.5	1.739	3.129	16.010		
	St. Deviation	0.092	0.076			0.028	0.050	0.598		
Winter	Average	4.823	3.975	0.848	17.6	1.380	3.056	16.662		
	St. Deviation	0.217	0.179			0.065	0.261	0.542		
Spring	Average	6.101	5.058	1.043	17.1	1.890	3.934	17.994		
	St. Deviation	0.319	0.270			0.083	0.233	0.603		
			Bag	dat Avenue						
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
			Leaf	Amount	Rate (%)	2 700	6 700	- 25.420		
Summer	Average	0.416	9.320	1.913	17.0	3.789	6.792	25.420		
	St. Deviation	0.416	0.361			0.131	0.254	0.995		
Autumn	Average	/.389	6.048	1.341	18.2	2.528	3.544	19.850		
	St. Deviation	0.119	0.097			0.041	0.057	0.645		
Winter -	Average	6.308	5.258	1.050	16.6	2.124	3.482	21.244		
	St. Deviation	0.286	0.227			0.096	0.388	1.302		
Spring	Average St. Deviction	8.030	0.0/1	1.359	16.9	2.811	4.780	21.831		
	St. Deviation	0.402	0.341	/ II: abarroar		0.148	0.330	1.349		
		TT		Highway	D					
S	beason	Unwashed	wasned Loof	Amount	Removal Doto (9/)	Branch	Bark	Soil		
	Avonago	16 506	14 041	Amount	Kate (%)	6.041	8 860	30.430		
Summer	St Deviation	0.657	0.614	2.555	15.4	0.041	0.345	1 107		
	A vorago	10.877	8 751			4 084	5.025	22 251		
Autumn	St Deviation	0.175	0.141	2.126	19.5	0.066	0.081	0.977		
	A verage	9 291	7 948			3 407	4 894	23.031		
Winter	St Deviation	0.450	0.395	1.343	14.5	0.161	0.359	0.512		
	Average	11 962	10.056			4 478	6 302	24 156		
Spring	St. Deviation	0.710	0.540	1.906	15.9	0.160	0.337	0.445		
		01110	Barhai	ros Rouleva	rd	01100	0.007	01110		
		Unwashed	Washed	Removed	Removal					
S	Season	Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Average	19.031	14.994	4.0.0-		6.421	10.166	35.268		
Summer	St. Deviation	0.759	0.600	4.037	21.2	0.253	0.401	1.072		
• •	Average	11.742	9.521	0.001	10.0	4.262	5.603	24.295		
Autumn	St. Deviation	0.189	0.153	2.221	18.9	0.069	0.090	0.902		
<b>XX</b> 7°4	Average	10.656	8.481	0.175	20.4	3.655	5.387	24.977		
winter	St. Deviation	0.550	0.419	2.175	20.4	0.186	0.338	0.850		
Sauina	Average	13.631	10.735	2 807	21.2	4.649	7.224	26.058		
spring	St. Deviation	0.705	0.577	2.097	21.2	0.285	0.401	0.648		
			Dilov	vasi Distric	t					
Season		Unwashed	Washed	Removed	Removal	Branch	Bark	Soil		
	A 110-1000	Leai	21.024	Amount	Kate (%)	10 797	14 741	12 751		
Summer	Average St Dominition	1 072	0.816	6.181	22.7	0.424	14./41	42.734		
		16 274	12 714			7 026	9.002	34 672		
Autumn	St Deviation	0.274	0.205	3.560	21.9	0.113	0.146	1 458		
	Average	15 030	11 681			6.042	8 250	36 804		
Winter –	St. Deviation	1 156	0 700	3.349	22.3	0.301	0.405	1 099		
	Average	19.339	15,090			7.769	10.445	38 893		
Spring -	St. Deviation	1.072	0.807	4.249	22.0 -	0.426	0.577	0.892		
	Su Deviation	1.072	0.007			0.720	0.277	0.072		

## Suppl. 11- Table 11 Nickel (Ni) (mg.kg⁻¹)

			Pri	nce Islands								
		Unwashed	Washed	Removed	Removal	Duonah	Dard	6.9				
Season		Leaf	Leaf	Amount	Rate (%)	Branch	Bark	5011				
Summer	Average	18.291	17.288	- 1.003	5 5	6.534	11.537	24.110				
	St. Deviation	0.564	0.562	1.005	5.5	0.242	0.244	0.738				
Autumn	Average	22.558	20.784	- 1.773	7.9	7.453	14.033	30.070				
	St. Deviation	0.455	0.419			0.150	0.283	0.999				
Winter	Average	21.580	19.828	- 1.752	8.1	7.116	13.490	28.705				
	St. Deviation	0.506	0.541			0.186	0.303	1.169				
Spring	Average	24.402	22.995	- 1.408	5.8	8.711	15.460	31.992				
	St. Deviation	0.963	0.717		0.0	0.262	0.529	0.818				
Bagdat Avenue												
Season		Unwashed	Washed	Removed	Removal	Branch	Bark	Soil				
~		Leaf	Leaf	Amount	<b>Rate (%)</b>							
Summer	Average	27.824	24.278	- 3.546	12.7	10.019	15.796	30.164				
	St. Deviation	1.001	0.809			0.287	0.486	0.994				
Autumn	Average	33.523	29.809	- 3.714	11.1	11.919	19.947	39.943				
	St. Deviation	0.676	0.601			0.240	0.402	1.341				
Winter	Average	31.921	28.317	- 3.604	11.3	11.327	18.982	38.036				
	St. Deviation	0.982	1.016			0.396	0.608	1.730				
Spring	Average	37.264	32.374	- 4.890	13.1	13.389	21.256	44.806				
	St. Deviation	1.394	1.206			0.462	1.374	2.616				
			TE	M Highway								
S	Season	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil				
		Leaf	Leat	Amount	Rate (%)	15,000	22.454	42 (94				
Summer Autumn	Average	39.525	34.527	4.998	12.6	15.909	25.454	42.084				
	St. Deviation	1.045	1.1//			10.324	20.602	<u> </u>				
	Average St. Deviation	0.006	43.197	6.171		0.302	0 500	1 550				
Winter	Avorago	16 989	41 123	- 5.865	12.5	18 528	28 258	49 725				
	St Deviation	1 487	1 285			0.502	0.904	3 650				
	A verage	52 699	46 175			21 270	31 275	65 238				
Spring	St. Deviation	1 444	2.010	6.524	12.4	0.846	1 074	2 681				
Rarbaros Roulevard												
		Unwashed	Washed	Removed	Removal							
Season		Leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil				
	Average	43.206	37.093	- 6.113	14.1	18.938	24.541	46.010				
Summer	St. Deviation	1.403	1.205			0.616	0.795	1.485				
	Average	54.656	47.046		10.0	23.272	32.077	64.572				
Autumn	St. Deviation	1.102	0.949	- 7.610	13.9	0.469	0.647	2.346				
Winter	Average	52.090	44.909	7 101	13.8	22.218	30.607	56.557				
	St. Deviation	1.515	1.181	- /.181		0.579	0.825	3.176				
Spring	Average	57.600	49.794	7 807	13.6	28.154	33.684	72.247				
	St. Deviation	1.958	2.345	- /.807		1.299	0.964	2.993				
Dilovasi District												
Season		Unwashed	Washed	Removed	Removal	Dronah	Borl-	Soil				
	9045011	Leaf	Leaf	Amount	Rate (%)	Dialiti	Dark	501				
Summer	Average	77.305	69.118	- 8,188	10.6	39.393	44.553	69.810				
	St. Deviation	2.521	2.144	0.100	10.0	1.249	1.447	2.214				
Autumn	Average	101.025	91.879	- 9,146	9.1	50.341	58.031	102.602				
	St. Deviation	2.038	1.853	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.015	1.170	4.105				
Winter	Average	96.182	87.577	8.605	8.9	48.093	55.254	90.127				
	St. Deviation	2.992	2.525	0.005	0.7	1.206	1.708	5.366				
Spring	Average	103.356	92.372	- 10.984	10.6	53.004	68.765	112.868				
	St. Deviation	3.994	4.419			2.893	4.236	2.781				

# Suppl. 12- Table 12 Lead (Pb) (mg.kg⁻¹)

			Pri	nce Islands							
		Unwashed	Washed	Removed	Removal			<i>a</i> <b>n</b>			
Season		leaf	Leaf	Amount	Rate (%)	Branch	Bark	Soil			
G	Average	80.392	75.819	4 570	57	31.844	48.109	342.640			
Summer	St. Deviation	2.049	1.975	- 4.572	5.7	0.829	1.335	9.098			
Autumn	Average	63.489	59.058	- 4.431	7.0	26.702	35.945	300.881			
	St. Deviation	1.658	1.536			0.694	0.935	6.971			
Winter	Average	48.950	45.611	- 3.339	6.8	20.207	27.476	232.676			
	St. Deviation	1.198	0.990			1.066	0.778	6.305			
C.	Average	71.095	66.166	- 4.930	6.9	29.878	40.218	335.489			
spring	St. Deviation	2.452	2.484			1.156	1.558	12.694			
Bagdat Avenue											
Saagan		Unwashed	Washed	Removed Remo	Removal	Branch	Bark	Soil			
	season	leaf	Leaf	Amount	Rate (%)	Dianch		501			
Summer	Average	97.470	91.804	- 5.666	5.8	40.733	62.101	383.424			
Summer	St. Deviation	2.559	2.333			1.072	1.641	9.986			
Autumn	Average	76.706	72.399	- 4307	5.6	33.592	45.433	318.966			
	St. Deviation	1.995	2.257	4.507		0.874	1.182	8.266			
Winter	Average	60.048	56.603	- 3.445	57	25.823	34.729	246.326			
	St. Deviation	3.056	2.378	5.115	5.7	0.522	0.981	6.443			
Spring	Average	86.170	81.202	- 1067	58	37.847	51.082	355.095			
	St. Deviation	3.120	3.506	4.907	5.0	1.383	1.844	12.368			
TEM Highway											
6	Saason	Unwashed	Washed	Removed	Removal	Branch	Bark	Soil			
C	season	leaf	Leaf	Amount	Rate (%)	Dianch		501			
Summer	Average	115.547	104.006	- 11.542 - 10.139 - 7.826	10.0 11.6 11.5	52.456	74.106	418.948			
	St. Deviation	3.009	2.825			1.608	2.068	10.564			
	Average	87.460	77.321			42.496	51.148	329.693			
	St. Deviation	2.275	2.041			1.105	1.330	10.900			
Winter	Average	68.288	60.462			32.514	38.993	254.989			
	St. Deviation	3.024	3.555			0.860	1.332	7.266			
Spring	Average	98.391	86.751	- 11.640	11.8	47.733	57.633	360.318			
~8	St. Deviation	3.555	2.323			1.729	2.108	8.953			
			Barba	ros Bouleva	ırd						
Season		Unwashed	Washed	Removed	Removal	Branch	Bark	Soil			
		leaf	Leaf	Amount	Rate (%)						
Summer	Average	120.658	106.569	- 14.089	11.7	55.053	/3.666	412.439			
	St. Deviation	2.416	3.339			1.488	1.939	10.977			
Autumn	Average	90.776	80.523	- 10.253 - 8.035	11.3 11.3	43.463	53.393	315.142			
	St. Deviation	2.361	2.095			1.130	1.389	10.110			
Winter	Average	/1.29/	2 824				41.114	258.023			
	St. Deviation	4.235	3.824			40.000	0.813	4.400			
Spring	Average	102.074	90.456	- 11.619	11.4	49.006	2 267	562.993			
	St. Deviation	3.685	3.273			1.810	3.267	5.615			
Dilovasi District											
Season		Unwashed	Washed	Removed	Removal Doto (9/)	Branch	Bark	Soil			
	Avorago	125 299	120.054	Alloulit	<b>Kate</b> (76)	67 169	01 265	452 105			
Summer	St Deviation	3 5/17	3 186	- 14.434	10.7	1 776	2 65/	432.103			
	Average	100 246	86 108			51 570	63 / 36	41/ 102			
Autumn	St Deviation	2 607	2 242	- 14.048	14.0	1 3/1	1 650	14 033			
	Average	89.055	79 311			40 258	49 401	319 803			
Winter	St Deviation	2,752	3 958	- 9.744	10.9	1 746	1 872	10 149			
	Average	113 055	97 468			58 263	71 705	427 333			
Spring	St. Deviation	4 190	3 842	- 15.588	13.8	2,234	2,799	8 151			
	Supermului		2.512					0.101			

## Suppl. 13- Table 13 Zinc (Zn) (mg.kg⁻¹)

#### RESUME

Name & Surname: M. Emin Uras

Date of Birth: 1982

#### **Education:**

Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, PhD (2011-2017)

Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, MSc (2006-2009)

Marmara University, Atatürk Faculty of Education, Department of Biology Teacher, BSc (1999-2005)

#### Papers:

**1.** Vatansever, R., Koc, I., Ozyigit, I. I., Sen, U., <u>Uras, M. E.</u>, Anjum, N. A., ... & Filiz, E. (2016). Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (*Solanum tuberosum* L.). Planta, 1-17. DOI 10.1007/s00425-016-2575-6

**2.** Vatansever, R., <u>Uras, M. E.</u>, Sen, U., Ozyigit, I. I., Filiz, E. (2016), Isolation of a transcription factor DREB1A gene from *Phaseolus vulgaris* and computational insights into its characterization; protein modelling, docking and mutagenesis, J Biomol Struct Dyn, 1-12.

**3.** Filiz, E., Vatansever, R., Ozyigit, I. I., <u>Uras, M. E</u>., Sen, U., Anjum, N. A., & Pereira, E. (2017). Genome-wide identification and expression profiling of EIL gene family in woody plant representative poplar (*Populus trichocarpa*). Archives of Biochemistry and Biophysics.