

DURAĞAN OLMAYAN ORTAMLARDA

KONUM-ZAMAN ANALİZİ YAPILARAK

PEKİŞTİRMELİ ÖĞRENME SAĞLAMAK

B U R A K M . G Ö NCÜ

YÜKSEK LİSANS TEZİ

Bilgisayar Mühendisliği

Anabilim Dalı

Bilgisayar Mühendisliği Programı

DANIŞMAN

Doç. Dr. M. Borahan TÜMER

İSTANBUL, 2017

MARMARA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

M A R M A R A U N I V E R S I T Y
I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

R E I N F O R C E M E N T L E A R N I N G I N

N O N - S T A T I O N A R Y E N V I R O N M E N T S

U S I N G S P A T I O T E M P O R A L A N A L Y S I S

BURAK M. GÖNCÜ

MASTER THESIS

Department of Computer Engineering

Thesis Supervisor

Assoc. Prof . M. Borahan TÜMER

ISTANBUL, 2017

MARMARA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Marmara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Öğrencisi Burak

Muhammed GÖNCÜ’nün “Reinforcement learning in non-stationary environments

using spatiotemporal alanalysis” başlıklı tez çalışması, 14 Eylül 2017 tarihinde

savunulmuş ve jüri üyeleri tarafından başarılı bulunmuştur.

Jüri Üyeleri

Doç. Dr. Borahan TÜMER (Danışman)

Marmara Üniversitesi ... (İMZA)

Prof.Dr. Çiğdem Eroğlu Erdem (Üye)

Marmara Üniversitesi ... (İMZA)

Prof. Dr. H. Levent Akın (Üye)

Boğaziçi Üniversitesi ... (İMZA)

ONAY

Marmara Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

……………………… tarih ve ……………………… sayılı kararı ile Burak Muhammed

GÖNCÜ’nün Bilgisayar Mühendisliği Anabilim Dalı Bilgisayar Mühendisliği

Programında Yüksek Lisans derecesi alması onanmıştır.

Fen Bilimleri Enstitüsü Müdürü

Prof. Dr. Bülent EKİCİ

M A R M A R A U N I V E R S I T Y I N S T I T U T E F O R G R A D U A T E

S T U D I E S I N P U R E A N D A P P L I E D S C I E N C E S

Burak Muhammed GÖNCÜ, a Master of Science student of Marmara University

Institute for Graduate Studies in Pure and Applied Sciences, defended his thesis entitled

“Reinforcement learning in non-stationary environments using spatiotemporal analysis”,

on September 14, 2017 and has been found to be satisfactory by the jury members.

Jury Members

Assoc. Dr. Borahan TÜMER (Advisor)

Marmara University ... (SIGN)

Prof.Dr. Çiğdem Eroğlu Erdem (Jury Member)

Marmara Üniversitesi .. (SIGN)

Prof. Dr. H. Levent Akın (Jury Member)

Boğaziçi Üniversitesi ... (SIGN)

A P PR O V A L

Marmara University Institute for Graduate Studies in Pure and Applied Sciences

Executive Committee approves that Burak Muhammed GÖNCÜ be granted the degree

of Master of Science in Department of Computer Engineering Program on

……………………… . (Resolution no:…………………….).

Director of the Institute

Prof. Dr. Bülent EKİCİ

i

ÖNSÖZ

Bu çalışmanın gerçekleştirilmesinde, bilgilerini ve tecrübelerini benimle paylaşan,

kendisine ne zaman danışsam bana kıymetli zamanını ayırıp sabırla ve büyük bir ilgiyle

bana faydalı olabilmek için elinden geleni yapan Doç. Dr. Borahan Tümer’e teşekkürü

bir borç biliyor ve şükranlarımı sunuyorum. Ayriyetten benim bu akademik süreçte bana

destek çıkıp, her türlü yardımı benden esirgemeyen kıymetli bölüm başkanımız, Prof. Dr.

Haluk Rahmi Topçuoğlu’ya sonsuz saygı ve teşekkürlerimi bir borç bilirim. Yine

çalışmamda konu, kaynak, yöntem ve manevi açıdan bana sürekli yardımda bulunan ve

gelecekteki hayatında çok daha başarılı olacağına inandığım kıymetli dostum ve

meslektaşım Erdem Emekligil’e de sonsuz teşekkürlerimi sunarım. Ayrıca kıymetli

zamanını benim bilgi ve birikim açısından büyümeme yardımcı olan Marmara

Üniversitesi, Bilgisayar Mühendisliğindeki hocalarımada teşekkürü ve bir borç bilir ve

şükranlarımı sunarım.

Teşekkürlerin az kalacağı İstanbul Teknik Üniversitesindeki hocalarımın da bana 4 yıllık

üniversite hayatım boyunca kazandırdıkları her şey için ve beni gelecekte söz sahibi

yapacak bilgilerle donattıkları için hepsine teker teker teşekkürlerimi sunuyorum ve son

olarak çalışmamda desteğini ve bana olan güvenini benden esirgemeyen ve beni bu

günlere sevgi ve saygı kelimelerinin anlamlarını bilecek şekilde yetiştirerek getiren ve

benden hiçbir zaman desteğini esirgemeyen bu hayattaki en büyük şansım olan aileme

sonsuz teşekkürler.

Eylül, 2017 Burak Muhammed Göncü

ii

TABLE OF CONTENTS

ÖNSÖZ ... i

ÖZET .. iv

ABSTRACT .. v

SYMBOLS .. vii

ABBREVIATIONS ... viii

LIST OF FIGURES .. ix

LIST OF TABLES ... x

1. INTRODUCTION .. 1

2. RELATED WORK .. 3

3. METHODOLOGY ... 6

3.1. Preliminaries .. 6

3.2. The Stochastic Process ... 7

3.3. Learning Algorithm ..12

4. RESULTS AND DISCUSSION .. 14

4.1. Cat and Mouse test environment ...14

4.2. Cat and Mouse test results ...14

4.3. Ms.Pacman test environment ...24

iii

4.4. Ms.Pacman test results ...25

5. CONCLUSION ... 27

6. Future Work ... 28

REFERENCES ... 29

CURRICULUM VIRTAE ... 31

iv

ÖZET

DURAĞAN OLMAYAN ORTAMLARDA KONUM-ZAMAN

ANALİZİ YAPILARAK ÖĞRENME SAĞLAMAK

Geleneksel pekiştirmeli öğrenme (PÖ) yöntemleri ortamın veya hedefin

değişkenlik gösterdiği durumlarda öğrenme sağlayamamaktadırlar. Bunun sebebi, PÖ

biriminin hali hazırda öğrenmiş olduğu ortamı sil baştan yeniden öğrenememesidir. Bu

sorunu çözmek amacıyla yavaş değişen ortamlarda, PÖ biriminin en son yaptığı eylemi

yapmasının teşvik edildiği sezgisel yaklaşımlar olsada [Sutton And Barto (1998),

Chapter9, Example9.3, p236-238], bunlar PÖ birimiyle aynı hızda hareket eden hedefler

için yeterince hızlı sonuç vermemektedirler. Bu yazıda, yukarda belirtilen hareketli

hedefler ve rekabet ortamını olduğu durumlar için yeni bir yöntem tartışacağız. Bu

sorunun çözümü için hedefin konum-zaman bilgisi kullanılarak hazırlanan Stokastik

süreç, PÖ döngüsünde PÖ biriminin ödüllendirme mekanizmasına iliştirilip sorunun

çözümü için modüler bir yaklaşım sağlamış olacağız. Ayriyetten bu çalışmamızda

yöntemimizin uygulanabilirliği ve performansını farklı problemler ile ölçüp Atari

Ms.Pacman oyunu ile değerlendireceğiz. Son olarak yazıda belirtilen yöntemin testleri

başarıyla tamamlayıp, hedef noktalarının başaralı bir şekilde tahminini sağladığını ve

gerekli stratejileri (pusu kurma, önünü kesme, hedefin amaçlarını anlama) uyguladığını

görmüş olacağız.

Eylül, 2017 Burak Muhammed Göncü

v

ABSTRACT

REINFORCEMENT LEARNING IN NON-STATIONARY

ENVIRONMENTS USING SPATIOTEMPORAL ANALYSIS

 Traditional reinforcement learning (RL) approaches fail to learn a policy to attain

a dynamic or non-stationary goal. The reason for this is that the RL agent cannot start

learning the changed environment from scratch once it has converged to a policy before

the environment has changed. While heuristic solutions where the RL agent is encouraged

to use least recently attempted actions are successful for slowly changing environments

[Sutton And Barto (1998), Chapter9, Example9.3, p236-238], they do not form a

sufficiently fast solution to follow a non-stationary goal state that moves with the same

velocity of the RL agent. In this paper, we will discuss a new approach to the problem

where there is an adversarial relation present between the dynamic goal and the RL agent.

To tackle this, the spatio-temporal information of the dynamic goal state is incorporated,

in terms of stochastic processes, as the rewards of the RL agent into the environment

model thus enabling a modular solution to the problem. In addition, in this paper we

present the method’s robustness using different mazes where we assess the performance

of our method and also test our algorithm with the Atari Ms.Pacman game for some

complex problem solving. Finally, the results of the experiments show that our method

successfully predicts the rival agent’s behavior and points of interest in which the rival

agent will pass through and ambush it at key positions.

September, 2017 Burak Muhammed Göncü

vi

vii

SYMBOLS

s : State s at a time instance t

𝐬′
 : The state transitioned by taking action a

a : Action taken by the agent according to its policy π

r : Reward/feedback returned by the environment by taking action a at state s

𝑸∗(𝒔, 𝒂) : Optimal value state action function (Bellman optimality principle)

𝑸(𝒔, 𝒂) : Value function of the state action pair

𝜸 : Discount rate

𝜶 : Learning rate

𝝅(𝒔, 𝒂) : Probability of taking action a at state s under the policy π

f(s, t) : Number of visits to state s at time t

c(s, t) : Number of catches at state s at time t

P(s, t) : Probability of dynamic goal being at s(t) at time t

viii

ABBREVIATIONS

RL : Reinforcement Learning

ANN : Artificial Neural Network

STRL : Spatio Temporal Reinforcement Learning

TD : Temporal Difference

CD : Context Detection

HRL : Hierarchical RL

DG : Distributed Generation

MC : Monte Carlo

SARSA : State Action Reward, next State next Action

RG : Residual Gradient

MDP : Markov Decision Processes

PS : Prioritized Sweeping

DQN : Deep Q-Network

ix

LIST OF FIGURES

Figure 3.1 The STRL Loop ... 9

Figure 3.2 Sample Stochastic process view ... 10

Figure 3.3 STRL backup diagram ... 11

Figure 4.1 Distribution of a random walk ... 15

Figure 4.2 Generic test maze (Maze 1) .. 16

Figure 4.3 Step count results of Maze 1.a ... 17

Figure 4.4 Step count results of Maze 1.b ... 18

Figure 4.5 Step count results of Maze 1.c ... 18

Figure 4.6 The TD of Maze 1.a ... 19

Figure 4.7 The TD of Maze 1.b ... 20

Figure 4.8 The TD of Maze 1.c ... 20

Figure 4.9 The varying speed test maze (Maze 2) ... 22

Figure 4.10 The step count of Maze 2 ... 23

Figure 4.11 The TD of Maze 2 .. 23

Figure 4.12 The first level of Atari Ms.Pacman .. 25

Figure 4.13 Running average reward of 5000 episode trainings of MS.Pacman. 26

x

LIST OF TABLES

Table 4.1 Comparison between different algorithms in Ms.Pacman 26

1

1. INTRODUCTION

Animals learn their environment by taking actions that lead to some consequences.

These consequences, in turn, contribute to their experience for learning their environment

and behaving as necessary for getting as high a chance to stay alive as possible. As in

nature, we use the similar principles to compute possibly optimal policies for

reinforcement learning (RL) problems. RL foundation is a generic method to learn and

optimize a behavior in an arbitrary environment. The problem of finding a near-optimal

policy for a stationary environment is well dealt with by classical RL algorithms such as

the TD learning algorithm by Sutton (1988), SARSA algorithm by Rummery and

Niranjan (1994) and the Q learning algorithm by Barto et al. (1989). These algorithms

generally envision the environment by a goal state which upon the visit of the agent will

maximize the average total reward of the goal state and by states that connect the start

state to the goal state. While classical RL algorithms provide satisfactory solutions for the

stationary environment problem, they fail in non-stationary environments which either

change the environment, the goal state or both at some time instances t. Some attempts to

solve this problem have been made such as the DG learning algorithm by Kaelbling

(1993) where the values are not a function of state action pairs but of a triplet of (s, a, g)

where the goal is considered to be dynamic. In this study, we present a method where an

RL agent learns to attain a dynamic goal in a grid world environment by making use of

the spatio-temporal position of the dynamic goal. The spatio-temporal position

information of the dynamic goal is represented by a stochastic process [Doob (1953)]

defining the probability p(s(t), t) that the dynamic goal is at some state s(t) at some time

instance t. The spatio-temporal position information is available to the RL agent in terms

of rewards/reinforcements provided whenever the agent reaches the dynamic goal during

its learning phase. Also because of the stochastic process our approach is superior to the

DG learning algorithm since our approach also takes the changing environment into

account using the stochastic process data. The novelty of our approach is that it

2

incorporates spatio-temporal information of the dynamic goal in terms of stochastic

processes so as to adjust the rewarding mechanism. The rewards are modified so that the

agent can learn how to attain a dynamic goal following a specific policy. As a result, the

agent learns the policy of a dynamic goal thus also learns the patterns and behaviors

inherently while also being robust. Finally, we will see that our method supports various

learning algorithms that can learn from a similar model such as SARSA, Q learning and

TD learning. The rest of the paper is planned as follows: in section 2, a brief discussion

is given on the most relevant previous work on reinforcement learning at non-stationary

environments. In section 3, we discuss our method in detail. First, the learning algorithm

is specified. Then we state how the spatio-temporal information is represented as a

stochastic process and is incorporated to the RL paradigm as a component of rewards. In

the last subsection, a variant of the work where the RL agent and dynamic goal have

different execution times of their actions is provided. In section 4, we first indicate the

test environments we use to conduct the experiments for the basic environment, the

environment where there is a different execution time for the dynamic goal and the RL

agent and finally we will compare the algorithm with Deep Q-Networks using the

MS.Pacman environment. We then proceed with the experimentation process and finally

share and discuss the results of the experiments for both situations. Finally, we conclude

and communicate a possible set of following works in sections 5 and 6, respectively. From

here on we will name the spatio-temporal RL algorithm as STRL for convenience.

3

2. RELATED WORK

Some efforts were made to deal with non-stationary environments which the

traditional algorithms fail to learn. One such solution is the RL-CD algorithm by Da Silva

et al. (2006) which aims to overcome this problem using predicted partial models of the

environment. These partial models are evaluated with a quality variable, which is a value

that determines how well this environment fits this model of the environment. For each

action, the model with the highest quality is selected to execute, when there is no other

model that passes the minimum quality threshold is present, a new model will be created

thus the context changes are detected when the model qualities fall below the minimum

quality threshold. An extension of the RL-CD which further improves on this by

incorporating the hierarchical RL is the HRL-CD algorithm by Yücesoy and Tümer

(2015) which attempts to detect context switches in a periodically changing environment

employing hierarchical RL (HRL) where during the search for context switches as in RL-

CD algorithm HRL-CD agent also builds up a partial model for each context detected and

looks for sub goals in these models to form options and use them to speed up the learning

especially in problems with large state spaces. HRL-CD’s option based policies stem from

the SMDPs by Sutton et.al., in which the policy consists of options where each option

consists of several actions. As such the general problem is broken down into several

smaller problems and the general strategy is being carried on over the options. Both RL-

CD and HRL-CD view the change as discrete regimes and thus prepare or use an existing

model for each context detection. Since both of these algorithms generate a model for

each context, their complexity grows as the number of contexts increases. To solve this

STRL rather than predicting contexts, predicts the general behavior/pattern of the change

in the goal. Furthermore, both of these algorithms only consider the change of the

environment model such as shifting obstacles or changing actions, they do not take the

effect of a moving or changing goal state into account which is supported by STRL. Due

to these two reasons, RL-CD and HRL-CD do not apply to our problem of catching a goal

that moves continuously and within some order. The DG learning algorithm by Kaelbling

4

(1993) takes the non-stationary goal state problem into account but since it generates a

value table for each (s,a,g) triplet for each new goal state, it has excessive memory

requirements and further in case the goal moves not randomly but within a specific order

it does not exploit this order. Since STRL uses stochastic data to predict the direction of

goal’s motion (i.e., where it is moving) and incorporate this into the RL algorithm, it can

efficiently find the goal state and further ambush it if necessary. Faußer and Schwenker

(2011) presents a solution for the problem of learning complex problems in short amounts

of time by using multiple agents acting as one and an ensemble of functions to construct

the policy such as TD and RG update formulas. They use a modified version of the TD

algorithm which uses parametrized state value functions instead of the classical state

value table. Their approach is to predict the parameters of the functions of the model thus

learning the problems much faster and to provide a good solution in a large MDP. But

even the approach of function approximation and by using multiple model functions, they

are still prone to highly non-stationary environments where the function is often times too

complex to get a good fitting policy. Śnieźyński (2009) approached the predator-prey

problem by using rule induction and multiple agents in one environment in which they

transfer knowledge, sensory data and new rules for certain situations. The rules are

generated using the AQ algorithm developed by Gehrke and Wojtusiak (2008). Using

these rules, the problem is solved as follows. The processing module is responsible for

keeping the basic learning process by managing the training data to learn new knowledge

and to receive the environment’s responses to the actions taken by this system from the

environment. After the necessary state and reward values are received from the

environment, the processing module will either execute a new action or learn new

knowledge which is needed to solve the problem represented by the current state moved

at by the environment. The processing module describes and transmits the current

problem needed to be learned to the learning module. In turn the learning module will

generate a near-optimal solution to the problem formulated by the processing module

using the previously generated knowledge. After that the processing module will use the

5

newly gained knowledge to solve the problem and will determine whether or not to store

this new knowledge in the generated knowledge bin. While this approach is good at

finding abstract rules to problems it requires multiple agents in an environment and

provided training data to solve the problems and devise rules for it. On the other hand,

there is a work done by Doya et al. (2002) which solves a hunting problem in order to

demonstrate his approach. Their approach views the nonstationary problem solution as a

mixture of experts, in which the experts represent the different models of the current

environment model. Kenji Doya et.al. utilize these models by using a soft-max selection

method to select the appropriate expert modules. Furthermore, recent studies in Deep

learning as the DQN (Deep Q-Network) algorithm by Mnih et al. (2015) promises near

human level solutions to complex high-dimensional learning problems such as playing

atari games which requires the agent to succeed in a wide variety of tasks.

6

3. METHODOLOGY

3.1. Preliminaries

Reinforcement learning (RL) is a behavioral learning paradigm where a learning

actor, the agent, learns how to behave from the accumulation of immediate rewards

received as a response to each action [Kaelbling et al. (1996); Sutton and Barto (1998)].

RL can be modeled as a Markov Decision Process (MDP), a sequential, discrete time,

decision making framework specified by four variables (s, a, s’, r) where s ∈ S and s’ ∈ S

∪{goal} are the current and next states of the environment, a is the current action the agent

executes and r ∈ R is the immediate reward provided to the agent in return to its current

action. Set up in discrete time (but can be generalized to continuous time), the agent

executes an action 𝑎𝑡 at the current state 𝑠𝑡 and receives an immediate reward 𝑟𝑡+1 in

return to 𝑎𝑡 and observes the next state 𝑠𝑡+1 the environment moves to. At each step, the

agent selects an action among possible actions by taking account of probabilities from

policy, π. The agent applies the policy to determine which action a to be chosen at state s.

In other words, the policy π(s,a) denotes the probability of taking action a at state s under

policy π. The agent selects actions at a state s with the purpose to maximize the expected

total reward.

𝑄(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝐸𝜋[∑ 𝛾𝑘 𝑟𝑡+𝑘+1 ∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.1)

where γ is the discount rate, 0≤γ ≤1.

The expected total reward for an action a at some state s is defined as the value

Q(s,a) of that state-action pair. The agent’s goal is to find the best policy that maximizes

the expected total reward or an optimal policy. Optimal policies are characterized by the

maximum or optimal action value. They are defined as in equation 3.2:

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎) (3.2)

Further an action with the optimal value must move the environment to a state

7

with a maximum expected return [Sutton and Barto (1998)]: This is the so-called Bellman

optimality principle. The Bellman optimality equation is given in equation 3.3:

Q∗(s, a) = E[rt+1 + γ max
b

Q∗(st+1, b) |st = s, at = a] (3.3)

In the context of RL, an environment model is defined by the transition probability

𝑃𝑠,𝑠′
𝑎 and return 𝑅𝑠,𝑠′

𝑎 for each possible triplet 〈𝑠, 𝑠′, 𝑎〉 of source state, destination state and

action. If the environment model is perfect, i.e., the pair (𝑃𝑠,𝑠′
𝑎 , 𝑅𝑠,𝑠′

𝑎) is available for each

〈𝑠, 𝑠′, 𝑎〉 then finding the optimal policy is a matter of value iteration and does not require

learning. This can be solved using dynamic programming. If, on the other hand, the model

is not perfectly available or perfect but it is extremely complex to obtain the optimal/near-

optimal policy through dynamic programming based methods then learning is required to

find a satisfactory (optimal, near-optimal or one that is sufficient for the given problem)

policy. In this case basic techniques such as Monte Carlo (MC) and Temporal Difference

(TD) are available for model-free RL and prioritized sweeping (PS) is available as one

model-based RL technique among many others in both classes of techniques.

3.2. The Stochastic Process

We will use the analogy of a cat and mouse in a maze to represent the problem,

which we devised to effectively test and represent this problem. We are attempting to

solve in this thesis the problem of the cat and mouse, but as we mentioned before this

method can be applied to any RL setting. We assume that the mouse has its path to the

cheese as a predefined path in the maze. Hence the mouse will represent the dynamic goal

of our problem. The cat (that is oblivious of the mouse’s start position, goal position and

the maze) will learn to catch the mouse using the reinforcement provided from the rewards

that are adjusted using the spatiotemporal stochastic process. In this setup, the cat fills up

two separate spatio-temporal tables below:

8

𝑓(𝑠, 𝑡) → 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑡 𝑣𝑖𝑠𝑖𝑡𝑠 𝑎𝑡 (𝑠, 𝑡) (3.4)

𝑐(𝑠, 𝑡) → 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑡 (𝑠, 𝑡) (3.5)

where 𝑓(𝑠, 𝑡) and 𝑐(𝑠, 𝑡) denote, respectively, the number of times the cat has been at

state s at time t and the cat has caught the mouse at state s at time t. Using these two

tables the agent forms a spatio-temporal distribution model for the mouse used to

estimate the other states probabilities at time t. The probability for each state s at time t

is calculated as follows:

𝑃(𝑠, 𝑡) =
𝑐(𝑠,𝑡)

 𝑓(𝑠,𝑡)
 (3.6)

These will produce a bi-variate distribution for each time instance (or step

number) t thus creating a three-dimensional distribution (a.k.a. spatio-temporal) data

[Doob (1953)] in the model supplied as a reinforcement to the agent. Because the model

is learned over time the cat gradually produces a better policy as long as the distribution

model is near optimal values. This enables the agent to even handle situations where the

environment also changes. This is due to the fact that the reinforcement that the agent

takes is a combination of the environment reward and stochastic process.

9

Figure 3.1 The STRL Loop

The STRL algorithm functions by injecting itself in between the reward mechanism

between the agent and the environment. This layer contains the spatio-temporal data

which is used to adjust the reward.

As can be seen in Figure 3.2, the cat caught the mouse around C1 and C2 in a time

instance t. After some finite time has passed the cat gathers enough data for the model so

that the model coefficients can be correctly predicted. Consequently, the correlation

variables can be predicted (represented as the blue lines) provided sufficient time is

allowed for learning variables µ, σ1 , σ2 of the model. Thus, using these as rewards

incorporated into the model gives the cat a clear goal towards the mean of the model

which acts as an artificial goal at a time instance t.

10

Figure 3.2 Sample Stochastic process view

This figure shows the frequency distribution of the catches of the cat sampled from the

stochastic process. Here the cat caught the mouse mainly at C1 and C2 at an arbitrary

time instance t.

To better understand the situation let us assume the case in Figure 3.3, where we

represent the agent's state in some arbitrary state Si. The agent has the option to choose

from various actions ranging from a1 to aK. Assuming the agent took the action a1 to

traverse to state Sj, it will get an adjusted reward of 𝑅
𝑠𝑖𝑠𝑗
𝑎1 ∗ 𝑃(𝑠𝑗 , 𝑡) thus actively

adjusting the environment’s reward to accommodate the non-stationary patterns of the

goal state. As seen in Eqn.3.8 the stochastic process 𝑃(𝑆𝑠𝑗 , 𝑗) will adjust the environment

reward at every action taken. Thus, we will maximize the expected total reward of a

problem where the goal is non-stationary.

11

Vπ(𝑠𝑖) = E𝜋[Rt ∗ P(st, t)|st = s] =

 = E𝜋[∑ 𝛾𝑘rt+k+1
∞
𝑘=0 ∗ P(st+k+1, t + k + 1)|st = s, at = a] =

 = ∑ 𝜋(𝑠𝑖, 𝑎)

𝑎

∑[𝑅
𝑠𝑖𝑠𝑗
𝑎 ∗ 𝑃(𝑆𝑠𝑗 , 𝑗) + 𝛾𝑉𝜋(𝑠𝑗)]

𝑗

 (3.7)

where 𝜸 is the discount rate, 0 ≤ 𝜸 ≤ 1 and the stochastic process 𝑃(𝑆𝑠𝑗 , 𝑗) is sufficiently

constructed with sampled values during training.

Figure 3.3 STRL backup diagram

The backup diagram of STRL providing the Recursive Value Functions the necessary

feedback signal adjustment from state Si to some arbitrary state S by taking some arbitrary

action a (Assuming a stationary environment with transition probabilities as 1).

12

3.3. Learning Algorithm

The cat performs an analysis on the general behavior of the mouse by sampling

the position-time (x, y, t) data of the catch point. Using these data, the cat gradually trains

a distribution of the spatio-temporal behavior of the mouse. The distribution model

follows a stochastic process [Doob (1953)]. Thus, the cat incorporates the stochastic

spatio-temporal or position time data of the mouse. We also expect that different step

sizes (speeds) of the agent will affect the means of these distributions at various time

instances. The cat integrates this distribution model into its learning process to reinforce

its state-action values.

Algorithm 1 General algorithm

We can implement the additional data from the stochastic process into the environment

model and combine it with the rewards to move the cat towards the mouse by simply

providing adjusted rewards (original environment reward multiplied by the weight of the

stochastic process) regarding the distribution model as follows;

Initialize Q(s, a) arbitrarily.

For each episode:

Repeat:

 Initialize s.

 Choose a from s using policy derived from Q.

 Take action a and observe r and 𝑠′.

 𝑃(𝑠, 𝑡) ⇐ 𝑐(𝑠, 𝑡) / 𝑓(𝑠, 𝑡)

 𝑟 ⇐ 𝑃(𝑠, 𝑡) ∗ 𝑟

 𝑄(𝑠, 𝑎) ⇐ 𝑄(𝑠, 𝑎) + 𝛼 ∗ [𝑟 + 𝛾 ∗ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]
 𝑠 ⇐ 𝑠’
 𝑡 ⇐ 𝑡 + 1
 𝑓(𝑠, 𝑡) ⇐ 𝑓(𝑠, 𝑡) + 1
 If Cat catches mouse then

 Train the stochastic process model with (x, y, t) as training data

 c(s, t)⇐c(s, t) + 1

 Terminate episode

 endif

until Reached MaxStepInEpisode is true or terminal state reached

13

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑅𝑒𝑤𝑎𝑟𝑑𝑠 = 𝑃(𝑠, 𝑡) × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 (3.8)

Since the method incorporates the stochastic process as part of the reward of the

environment it supports several classical algorithms such as SARSA, Q learning and TD

learning. A goal state that moves by a specific policy (i.e., a mouse running for a piece of

cheese) makes the relevant environment non-stationary. By using an approach as defined

above we could integrate the probability data from our stochastic process into the rewards

of the model, thus separating the stochastic process logic from the classic RL algorithm

and incorporating the stochastic process logic making its contribution as a part of

immediate rewards. In our example, we will use a modified Q learning algorithm

Rummery and Niranjan (1994) as the learning method of our cat as shown in Algorithm1,

that incorporates the reinforcement from the stochastic process.

14

4. RESULTS AND DISCUSSION

4.1. Cat and Mouse test environment

To test our method, we created an implementation of the problem using the dotRL

framework [Papis and Wawrzynski (2013)]. We created several environments where the

mazes have several choke points. By choke points we mean bottlenecks which, in case the

environment is represented as a graph, would have higher values of centrality than other

points in the graph. There are also variants of each maze where the agents start at different

positions to better understand the behavior of the agents in cases where the cat is near the

mouse start state, near the goal state or in equal distance to both of them. The main

components of our problem are:

Mouse : The dynamic goal that has a defined course from the start point to the cheese.

Cheese : The goal/end point for the mouse.

Cat : The RL agent which attempts to catch the mouse, which has a defined course to

the cheese.

In this paper, the basic environment of a grid world problem is modified to support

two agents and also to provide the foundations of a stochastic process based on the

rewarding scheme. The stochastic process is built with the catch point information and

visit frequencies. The mazes are constructed as a part of the data generation considering

the advantage and disadvantage of the agents’ position to each other. Each maze situation

is used to manifest how the algorithm performs depending upon the different initial

positions of the agents. An additional maze, which tests the speed of the algorithm, is also

created for testing. The STRL algorithm will be compared against the Q-learning

algorithm to provide some basis of the performance.

4.2. Cat and Mouse test results

To have a baseline of test results we prepare a test environment where we create a

grid world with no obstacles, in which the mouse starts with a predefined course which

15

will lead it to the cheese. The mouse begins at the start state (0,0) and moves by the

predefined course towards the goal (10,10). In the meantime, the cat moves in the grid

world using a random walk policy to catch the mouse. To log the instances of a catch the

cat logs the states (the memory of the cat) where the cat and the mouse coincide on the

same state (x, y).

Figure 4.1 Distribution of a random walk

The frequency of catches in the grid world (frequency, x, y). In a 10.000-episode

simulation.

In Figure 4.1 even in a time independent stochastic environment (cat is a random

walk agent in this experiment) we can clearly observe that the catches tend to accumulate

in the choke points (points in the environment that force the mouse to go through, can be

tunnels, doorways, spawn and goal) which are in this case the start and the goal state of

the mouse.

16

Figure 4.2 Generic test maze (Maze 1)

[Brown square: mouse, Blue square: cat, Red Square: cheese. Green Cross: Cats ambush

point] (a) the cat is in the middle of the cheese and spawn point of the mouse, which will

result the cat to move towards the mouse and ambush it near the tunnel at the middle-

bottom of the maze thus testing the general case/use of the STRL algorithm. (b)the cat is

near the goal of the mouse which, in turn, results in the cat to figure out that this choke

point is the goal of the mouse, thus trying to measure whether the STRL can detect points

of interests. (c) we measure whether the cat can catch/ambush the mouse in a limited

time frame (tight policy, no room for errors for the cat or it will wait for a full mouse

policy cycle) thus measuring its learning rate.

Moving onwards from these results we tested our approach in a maze which will

have three variations in which the start point of the cat is in equal distance to both the

start point of the mouse and the cheese, near the goal state of the mouse and near the

mouse start position, respectively, as shown in Figure 4.2(a), (b) and (c). The parameters

used for the experiments are as follows: ε = 0.1 (with a 0.0001 reduction after each

episode and a minimum boundary as 0.001) are selected to encourage exploration and to

build the spatio-temporal tables faster in the beginning, 𝜸= 0.95 as we want to have the

current value heavily depend on the future actions’ values and α= 0.1 to reach the optimal

policy faster in stable means. The spatio-temporal tables; f(s, t) and c(s, t) are initialized

with a zero value to form an empty frequency data. These values were based on the grid

17

world parameters suggested in Sutton and Barto (1998). The aim of this test is to find out

how well our algorithm detects points of interest and points of high centrality values

(a.k.a. choke points).

(a) STRL (b) Q-Learning

Figure 4.3 Step count results of Maze 1.a

The step count of the maze in Figure 4.2(a) for each episode. Policy convergence is

around the 400th episode for the STRL while the Q learning agent cannot converge and

does fluctuate.

In Figures 4.3, 4.4 and 4.5 the learning performance of STRL and flat Q-learning

in respective order are illustrated in terms of step counts for mazes in Figure 4.2 (a), (b)

and (c). In the same fashion, the maximum action value is shown in Figures 4.6, 4.7 and

4.8, respectively, for our algorithm and for flat Q-learning for the same mazes in Figure

4.2 (a), (b) and (c), in respective order.

In Figure 4.3(a) and (b) the number of step counts at which STRL and Q-learning

have converged to their policies, in respective order, for the maze in Figure 4.2 (a) are

shown throughout the learning process over episodes. We observe in Figure 4.3(a) that

STRL converges to its optimal policy around 350th episode while in Figure 4.3(b) the

step counts of Q-learning continuously tend to decay towards the optimal step count as

long as the cat catches the mouse at the same state. Whenever it does not abide to the

optimal policy, the catch-up increases the step count. The frequency of overshoots shows

the cat’s misses at the state that it used to catch the mouse at. The frequency of the misses

18

in Figure 4.5(b) is relatively lower than those in Figure 4.3(b) and Figure 4.4(b) since the

starting states of both the mouse and the cat are very close (see maze in Figure 4.2(c))

which makes the cat’s catch, which is near the mouse, highly probable.

(a) STRL (b) Q-Learning

Figure 4.4 Step count results of Maze 1.b

The step count of the maze in Figure 4.2(b) for each episode. Policy convergence is

around the 400th episode for the STRL while the Q learning agent cannot converge

because it forgets the already learned policy at each change.

(a) STRL (b) Q-Learning

Figure 4.5 Step count results of Maze 1.c

The step count of the maze in Figure 4.2(c) for each episode. Policy convergence is

around the 30th episode for the STRL while the Q learning agent cannot converge and

19

does fluctuate a little because of the distance to the goal.

At the same time, it never converges as we see from the continuous fluctuations

in Figure 4.5(b) at the bottom close to the horizontal axis; i.e., it continuously forgets

what it learned since there is no space for error; if it misses the mouse it needs to wait

until the mouse restarts running for the cheese again by restarting at its spawn point

(Mouse Spawn). When the mouse restarts its run, the cat, which implements the Q-

Learning algorithm, is highly likely to catch the mouse at its start state. Thus, the Q table

of the cat is reinforced for this catch state. Because the cat sometimes catches the mouse

in the general surrounding of the start state of the mouse, the cat policy quickly returns to

near optimal step counts between each relatively less occurring over shoots as it reinforces

this behavior at some time instance t.

(a) STRL (b) Q-Learning

Figure 4.6 The TD of Maze 1.a

The TD of the maze in Figure 4.2(a) for each episode. Policy convergence is around the

400th episode for the STRL while the Q learning agent’s TD values fluctuate.

In Figure 4.6(a) we see that the cat explores the maze and finds the mouse on some

occasions thus raising its temporal difference. After the convergence point around episode

400, the cat has learned the policy of the mouse thus the stabilization in the temporal

difference while the Q-learning agent in Figure 4.6(b) is unable to pick up the changes

and incorporate and thus never converges.

20

(a) STRL (b) Q-Learning

Figure 4.7 The TD of Maze 1.b

The TD of the maze in Figure 4.2(b) for each episode. Policy convergence is around the

400th episode for the STRL while the Q learning agent’s TD values fluctuate.

In Figure 4.7(a) the cat searches the same as in case Figure 4.2(a), but this time

the cat discovers the point of interest/choke point that is the goal state of the mouse around

episode 450 (the fluctuations are due to the exploration rate which can be adjusted) while

the Q-learning agent in Figure 4.7(b) still fails to converge to an optimal policy due to the

non-stationary goal.

(a) STRL (b) Q-Learning

Figure 4.8 The TD of Maze 1.c

The TD of the maze in Figure 4.2(c) for each episode. Policy convergence is around the

30th episode for the STRL while the Q-Learning agent’s TD values fluctuate a little

because of the distance to the goal.

21

Finally, at Figure 4.8(b) we can see that the cat struggled to find the mouse in the

limited time frame and oscillates without convergence. The reason that the agent struggles

is because there is no room for the cat’s policy to make a single error which will cause

the mouse to escape the cat thus increasing the step counts in the episode as the cat cannot

catch the mouse on its first run to the cheese. On Figure 4.8(a) we can see that at episode

30 the cat encounters the mouse on its second run, thus a non-optimal policy has occurred

since the optimal policy on the maze shown in Figure 4.2(c) is to catch the mouse while

it is still near the mouse’s spawn point. After that the cat, which incorporates STRL, learns

the point of interest and begins to catch the mouse, which stabilizes its TD values.

22

Additionally, we tested STRL to study a variant of the work where the STRL

agent and dynamic goal have different execution times of their actions in a specifically

designed maze. Here the cat is half as fast as the mouse thus has only two possible catch

points. The reason for that is that this maze also features cells not traversable by the cat

which are only available for the mouse to traverse.

Figure 4.9 The varying speed test maze (Maze 2)

Brown square: mouse, Blue square: cat, Red Square: cheese. Green B: Cats non-optimal

(a.k.a. Bad) ambush point, Green G: Cats optimal (a.k.a. Good) ambush point, Grey Cells:

Cells which only the mouse can traverse trough.

In Figure 4.9, point G is the optimal point of ambush for the cat since cat will

catch mouse sooner. This point is a difficult point to learn since the agent has no room for

an erroneous move to make which will cause the cat to miss the mouse. The cat can also

catch the mouse on point B but this will be a non-optimal policy and we will regard this

policy as a poor solution to the problem. In this test, the cat that uses the STRL algorithm

devises a policy that catches the mouse at Point G while the cat that uses the Q-Learning

algorithm catches the mouse at Point B. While both agents catch the mouse, the policy

learned by the STRL cat is an optimal policy since it catches the agent in 8 steps while

the Q-Learning agent catches the mouse in 12 steps by going to Point B as it can be seen

in Figure 4.10.

23

(a) STRL (b) Q-Learning

Figure 4.10 The step count of Maze 2

The step count of the maze in Figure 4.9 for each episode. The Policy converges around

the 300th episode in the STRL algorithm while the Q learning agent learns it around 350th

episode. The STRL agents final policy step length is 8, while the Q-Learning agents is

12.

(a) STRL (b) Q-Learning

Figure 4.11 The TD of Maze 2

The TD of the maze in Figure 4.9 for each episode. The STRL algorithm converges faster

than the Q-Learning algorithm.

24

On each test, the agent quickly picks up the general behavior and the correct

interest points of the mouse and creates an optimal policy in short number of episodes

while the Q-learning agent fluctuates or finds a non-optimal policy, thus failing to

converge to an optimal policy. This also proves the robustness of our approach. The

fluctuations in the TD values after the convergence point are due to the rate of exploration.

While we lower the exploration rate at each episode, we keep a non-zero exploration rate

at its minimum to let it further refine the policy if there is any possible improvement. Such

an approach could prove useful when we try to catch an agent which implements an

evasive behavior. Also, the exploration rate encourages the cat to discover new choke-

points at which it can catch the mouse more efficiently.

4.3. Ms.Pacman test environment

To test our method against other approaches, we tested our algorithm against the

Dynamic Q-Network (DQN) by Mnih et al. (2015). We used the Ms. Pacman benchmark

in their paper as a basis of our test which has several choke points. This test consists of our

agent (Pacman) which always begins at the same location each turn. The game also

features 4 nemesis AI units called “Ghosts”. Each ghost has its own behavior to follow;

the Red Ghost (Blinky) chases the Pacman when it is in its line of sight, the Pink Ghost

(Pinky) tries to ambush the Pacman ahead of it, the Blue Ghost (Inky) uses the position

and orientation of the Pacman and itself to determine its target destination and the Orange

Ghost (Clyde) is in a loop mode in some arbitrary path unless being disturbed by the

Pacman, in which case it will scatter around and loop again. The environment features

pellets which will add 10pts to the players score, by eating the Power Pellet (a.k.a. Capsule)

the player gains 50pts to their score and the Ghosts transition into a “Scared State” in

which the Pacman can eat them too. Each ghost eaten will reward the player with (100 *

2(ghost eat streak))pts. We will only use the first level of Ms.Pacman to compare STRL to DQN

as shown in Figure 4.12.

25

Figure 4.12 The first level of Atari Ms.Pacman

Red G denotes the spawn of the ghosts, which is inaccessible by the pacman. Green P

denotes the spawn of the pacman. Purple O's denote the capsules, which consumed will

change the state of the ghosts to scared so that the pacman can eat them within a certain

time frame. The gray areas marked as A and B are connected cells, meaning that the

pacman can go through one and can come out of the other side. The foods are denoted

as the little black dots across the maze.

4.4. Ms.Pacman test results

We implemented the STRL algorithm to play the MS. Pacman game which we

will compare ourselves to study case for the DQN algorithm by Mnih et al. (2015). For

this experiment, we have used the first level of the game as shown in Figure 4.12 since it

is also used by Mnih et al. (2015). In this experiment, we used the same parameters as the

DQN algorithm to ensure comparable results (ε= 1.0 (with a 0.0001 reduction after each

episode and a minimum boundary as 0.1), 𝜸 = 0.99 and α = 0.1. The spatio-temporal

tables; f(s, t) and c(s, t) are initialized with a zero value to form an empty frequency data.

26

Figure 4.13 Running average reward of 5000 episode trainings of MS.Pacman.

Table 4.1 Comparison between different algorithms in Ms.Pacman

 (Some results are taken from Mnih et al. (2015)).

 Avg. Score

Random play 307.3

SARSA 1227

DQN 2311± (525)

STRL 4556.15

Human 15693

As to the reduction of the state space complexity we used feature extraction as

part of our algorithm. We gave the agent the following x(s) feature vector;

 - The distance to the closest food.

 - The state of the ghosts (scared or normal).

 - The number of capsules left.

Using this x(s) we trained the agent in conjunction with STRL and obtained the results

as shown in Figure 4.13 in a span of 5000-episode learning. Our agent can learn policies

yielding a success rate of an average of 86.62% (Success is being measured whether the

agent can clear the level). Furthermore, our agent outperformed the DQN algorithm in

Ms.Pacman by 62% as shown in the comparison in Table 4.1.

27

5. CONCLUSION

According to our tests the cat learns the goal of the mouse and instead of chasing

the mouse it possibly attempts to ambush it or intercept it, thus, greatly increasing its

performance by reducing the learning time. In cases where the cat is near the spawn point

of the mouse, the cat tends to camp on the exit points of the mouse's lair. In cases where

the STRL agent and dynamic goal have different execution times, STRL tries to intercept

the dynamic goal ahead of its trajectory. Our results show that our algorithm exceeds

algorithms such as the Q-Learning algorithm which cannot converge to an optimal policy

fails at detecting the non-stationary goal state problem. STRL provides fast and reliable

solutions by detecting the dynamic goal in a non-stationary environment and deciphers

its pattern and learns its points of interest by detecting the context switches faster. As for

the Ms.Pacman test the STRL learns the environment in less episodes than DQN and

yields greater results by 62% which shows a promising field for further study. As this

thesis suggests, STRL can detect patterns of dynamic goal states, lead the RL agent to the

optimal solution faster using reward manipulation and is highly generic to use in a variety

of scenarios and can be combined with other RL techniques which can be studied even

further. Despite being a good solution to the dynamic goal problem, the algorithm uses a

stochastic process, which is at minimum, the size of the optimal policy Q* thus presenting

an extra memory requirement and it also requires an extra design consideration of the

problem formulation. As the results suggest this kind of a solution to the non-stationary

RL problem brings many interesting applications to the field.

28

6. Future Work

Several possible extensions of the current research may be the case where the

mouse is smart and tries to avoid the cat to further understand the nature of this approach.

In this context, the mouse could adopt an avoidance strategy while trying to reach the

goal. In such a scenario, we could feed the mouse with the catch points and allow the

mouse to develop a new policy by using the catch points and giving the mouse a bad

reward that will decay starting at time of catch. Thus, the mouse will possibly learn to

avoid the cat with each new policy. Further optimizations can be made by giving priority

to some states to encourage the camping ambush behavior. The solution to this problem

can be further investigated by analyzing cases where the mouse also implements an

evasive policy instead of a learned/predefined policy. Also further research should be

conducted on situations like which is observed in the Ms.Pacman problem. One can

implement other classic Atari games to further refine the algorithm and benchmark it with

algorithms such as the DQN. Furthermore, the extra memory requirement and the extra

input on the problem formulation might be further optimized with further research in this

field.

29

REFERENCES

Barto, A.G., Sutton, R.S., Watkins, C.J., 1989. Learning and sequential decision

making, in: Learning and computational neuroscience, Citeseer.

Da Silva, B.C., Basso, E.W., Bazzan, A.L., Engel, P.M., 2006. Dealing with non-

stationary environments using context detection, in: Proceedings of the 23rd

international conference on Machine learning, ACM. pp. 217–224.

Doob, J.L., 1953. Stochastic processes. volume 101. New York Wiley.

Doya, K., Samejima, K., Katagiri, K.i., Kawato, M., 2002. Multiple model based

reinforcement learning. Neural computation 14, 1347–1369.

Faußer, S., Schwenker, F., 2011. Ensemble methods for reinforcement learning with

function approximation, in: International Workshop on Multiple Classifier

Systems, Springer. pp. 56–65.

Gehrke, J.D., Wojtusiak, J., 2008. Traffic prediction for agent route planning, in:

International conference on computational science, Springer. pp. 692– 701.

Kaelbling, L.P.,1993. Learning to achieve goals, in: IJCAI, Citeseer.pp.1094– 1099.

Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement learning: A survey.

Journal of artificial intelligence research, 237–285.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,

Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.,2015. Human-

level control through deep reinforcement learning. Nature518, 529–533

Papis, B., Wawrzynski, P., 2013. dotrl: A platform for rapid reinforcement learning

methods development and validation, in: Computer Science and Information

Systems (FedCSIS), 2013 Federated Conference on, IEEE. pp. 129–136.

Rummery, G.A., Niranjan, M., 1994. On-line q-learning using connectionist systems.

Śnieźyński, B., 2009. Agent strategy generation by rule induction in predator prey

problem, in: International Conference on Computational Science, Springer. pp.

895–903.

30

Sutton, R.S.,1988. Learning to predict by the methods of temporal differences. Machine

learning 3, 9–44.

Sutton, R.S., Barto, A.G., 1998. Reinforcement learning: An introduction. volume 1.

MIT press Cambridge.

Sutton, Richard S., Doina Precup, and Satinder Singh., 1999. "Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning."

Artificial

intelligence 112.1-2 181-211.

Yücesoy, Y.E., Tümer, M.B., 2015. Hierarchical reinforcement learning with context

detection (hrl-cd). International Journal of Machine Learning and Computing 5,

353–358.

31

CURRICULUM VIRTAE

BURAK GÖNCÜ

Esenler Mah. Miraç Sok. No.: 10 D.: 9 Pendik/İstanbul

Phone: +90 (216) 397 74 27 / GSM: +90 (555) 538 85 80

E-Mail: bmgoncu@gmail.com

EDUCATION__

2014-Present: Marmara University (MS in Computer Engineering), ISTANBUL

2010-2014: Istanbul Technical University (BS in Computer Engineering),

ISTANBUL

2006-2010: Tuzla Anatolian Technical High school (Web Development),

ISTANBUL

WORK EXPERIENCE__

2014-Present: GAMEGOS (Game Developer), ISTANBUL

2013-2014: Microsoft (MSP), ISTANBUL

2012-2012: Wallit (Web Developer), SAN FRANCISCO

2011-2011: GuyGood (IOS Developer), ISTANBUL

PERSONAL INFORMATION__

Birth Date and Place: 08.09.1992 – Vienna /Austria

RESEARCH INTERESTS__

Artificial Intelligence

Machine and Reinforcement Learning

