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ÖZET 

BİR MİKROBİYAL TOPLULUK OLARAK PEYNİR STARTER 

KÜLTÜRLERİNİN METABOLİK AĞ-BAZLI ANALİZİ 

Doğada neredeyse hiç saf mikrobiyal kültür yoktur, aksine mikroorganizmalar diğer 

organizmalarla etkileşim halindedir ve farklı türler aynı habitatı paylaşır. Dolayısıyla, 

mikrobiyal topluluk çalışmaları, doğayı daha iyi anlayabilmemize yardımcı olur. Bu tez 

kapsamında bir mikrobiyal topluluk olan peynir starter kültürleri çalışılmıştır. Bu amaçla 

süt ürünleri kökenli ve peynir starter kültürlerinde sıklıkla kullanılan laktik asit 

bakterilerinden olan Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, 

Streptococcus thermophilus ve Leuconostoc mesenteroides, saf ve ko-kültür olarak 

büyütülmüşlerdir. L. lactis ve Leu. mesenteroides türlerinden oluşan ko-kültürler ile L. 

lactis ve S. thermophilus türlerinden oluşan ko-kültürler sırasıyla mezofilik ve termofilik 

starter ko-kültürleri temsil ettiği kabul edilmiştir. Saf ve ko-kültlerin metabolik 

kapasiteleri daha sonra dinamik metabolik ağ modelleme yaklaşımıyla kapsamlı olarak 

incelenmiştir. Dinamik modellerdeki substrat tüketim kinetiği, pH ve laktik asitin bir 

fonksiyonu olarak tanımlanmıştır. Kinetik parametreler, saf kültür deneyleri kullanılarak 

tahminlenmiş olup hem saf hem de ko-kültür modellerinde kullanılmıştır. Mezofilik ko-

kültür modelleri, pH’ın mezofilik ko-kültür biyokütle dinamiğini etkileyen en önemli 

fermantasyon parametresi olduğunu gösterdi ve bu modeller, Leu. mesenteroides 

büyümesinin L. lactis tarafından nasıl baskılandığını açıkladı. Mezofilik ko-kültürlerin 

aksine, termofilik ko-kültürlerde en önemli fermantasyon parametresi sıcaklıktı. L. lactis 

ve S. thermophilus saf kültürlerinin fermantasyon sıcaklığı farklı olduğundan, termofilik 

ko-kültürler ortalama bir sıcaklıkta büyütüldü. Termofilik ko-kültürde her bir türe ait 

substrat tüketim hızları, sıcaklık farkını yansıtacak bir katsayı ile çarpıldı ve ancak bu 

katsayı çarpımından sonra termofilik ko-kültürler deneysel koşulları simüle edebildi. 

Ayrıca, ko-kültür modelleri ko-kültür içerisindeki türlere ait tüm ekstraselüler metabolit 

üretim/tüketim hızlarını tahminledi. Deneysel olarak gerçekleştirilemeyen bu tahminler 

laktik asit bakterileri arasındaki potansiyel metabolik etkileşimleri de göstermiş oldu. 
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ABSTRACT 

METABOLIC NETWORK-BASED ANALYSIS OF CHEESE STARTER 

CULTURES AS A MICROBIAL COMMUNITY 

There is almost no pure culture in nature, but rather microorganisms are open to interact 

with other organisms, and different species share the same habitat. Therefore, microbial 

community studies enable nature to be understood better. Cheese starter cultures as a 

microbial community have been studied in this thesis. For this purpose, dairy-origin lactic 

acid bacteria (LAB), Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, 

Streptococcus thermophilus and Leuconostoc mesenteroides, which are commonly used 

LAB species in cheese starter cultures, were grown in pure and co-cultures. The co-

cultures composed of L. lactis and Leu. mesenteroides species and the co-cultures 

composed L. lactis and S. thermophilus species were assumed to represent mesophilic 

and thermophilic starter cultures, respectively. The metabolic capacities of the pure and 

co-cultures were then comprehensively investigated by the dynamic metabolic network 

modelling approaches in a quantitative manner. Substrate uptake kinetics in the dynamic 

models were defined as a function of pH and lactic acid. The kinetic parameters were 

estimated using the pure culture experiments, and they were used both in the pure and co-

culture models. The mesophilic co-culture models showed that pH was the major 

fermentation parameter that effects the co-culture biomass composition, and the models 

explained the mechanisms behind the suppression of the growth of Leu. mesenteroides 

by L. lactis strains in mesophilic starter cultures. Unlike the mesophilic co-cultures, 

temperature was the major fermentation parameter in thermophilic co-cultures. Since the 

fermentation temperature of the L. lactis and S. thermophilus pure cultures were different, 

the thermophilic co-cultures were grown at an average fermentation temperature. The 

thermophilic co-culture models could simulate the fermentations only after the individual 

substrate uptake rates, which are the model constraints, were multiplied by a strain-

specific correction coefficient reflecting the temperature difference. Furthermore, the co-

culture models estimated the individual production/consumption profiles of the various 

extracellular metabolites, as well as the potential metabolic interactions between the LAB 

in the co-cultures, which could not be obtained experimentally.   
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CLAIM OF ORIGINALITY 

In both artisanal and industrial fermentative foods, different types of microorganism 

coexist as a microbial community. Therefore, in order to get a better understanding of the 

food fermentation, they should be studied together as well. The metabolic network-based 

analysis which is one of the systems biology tools is a promising approach to investigate 

the metabolism of microbial communities in a holistic way. This thesis study focuses on 

the microbial communities of cheese starter cultures, and it handles the topic using the 

dynamic metabolic network modelling approach. Some noteworthy outputs of the study 

which are expected to contribute the related areas are as follows: 

• Lactic acid bacteria commonly used in cheese starter cultures were investigated 

using metabolic network modelling. To this aim, dynamic genome-scale 

metabolic models were reconstructed at both single-species and co-culture level. 

Although there are several studies about the metabolic modelling of lactic acid 

bacteria at single-species level (Flahaut et al., 2013; Oliveira et al., 2005; Pastink 

et al., 2009; Teusink et al., 2006; Vinay-Lara et al., 2014), this study is the first 

study which models the different LAB composing a microbial consortia via 

dynamic co-culture metabolic models. 

• Genome-scale metabolic model of Leu. mesenteroides subsp. cremoris which was 

one of the metabolic models used in the co-culture models, has been reconstructed 

for the first time within the scope of this thesis study. 

• In order to estimate the model parameters and to then compare the in-silico and 

in-vitro results, comprehensive bioreactor experiments were carried out for this 

study. LAB were grown in chemically defined medium as pure and co-cultures. 

Concentration profiles of biomass, glucose, organic acids and amino acids were 

obtained for pure and co-cultures. Relative microbial abundance profiles of the 

co-cultures were also estimated using a molecular-based approach (qPCR). 

• In addition to the compounds which were also obtained experimentally, the pure 

and co-culture models predicted the other extracellular compounds profiles 

including flavour metabolites.  

• The co-culture models estimated the potential metabolic interactions between 

LAB used.   
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SYMBOLS 

°C : Degree Celsius 
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µ : growth rate 

µmax : Maximum growth rate 

CO2 : Carbon dioxide 

KS : Michaelis-Menten constant 
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ABBREVIATION 

aa : Amino acids 

Ac : Acetic acid 
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Arg : Arginine 

Asn : Asparagine 

Asp : Aspartate 

bp : Base pair 

CDM : Chemically defined medium 

CFU : Colony forming unit 
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Cys : Cysteine 

dFBA : Dynamic flux balance analysis 

DOA : Dynamic optimization approach  

DyMMM : Dynamic Multispecies Metabolic Modelling 
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FBA : Flux balance analysis 

For : Formic acid 

FVA : Flux variability analysis 

gDW : gram dry weight 

Glc : Glucose 
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Gln : Glutamine 

Glu : Glutamate 

Gly : Glycine 

GSMM : Genome-scale metabolic model 

His : Histidine 

HPLC : High performance liquid chromatography  

Ile : Isoleucine 

KEGG : Kyoto Encyclopedia of Genes and Genomes 

l : Litre 

LAB : Lactic acid bacteria 

Lac : Lactic acid 

LacH : Undissociated lactic acid 

LB : Lower bound 

Leu : Leucine 

LLC : Lactococcus lactis subsp. cremoris 

LLL : Lactococcus lactis subsp. lactis 

LM : Leuconostoc mesenteroides 

LP : Linear programming 

Lys : Lysine 

Met : Methionine 

NLP : Nonlinear programming  

OD : Optical density 
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ODE : Ordinary differential equation 

Orn : Ornithine 

PCR : Polymerase chain reaction 

Phe : Phenylalanine 

Pro : Proline 

QP : Quadratic programming 

qPCR : Quantitative polymerase chain reaction 

rpm : Revolutions per minute 

SBML : Systems biology markup language 

Ser : Serine 

ST : Streptococcus thermophilus 

Thr : Threonine 

Trp : Tryptophan 

Tyr : Tyrosine 

UB : Upper bound 

Val : Valine 

3MOB : 3-Methyl-2-oxobutanoate 
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 INTRODUCTION 

Milk has been processed by humankind for millennia, and cheese is one of the oldest 

fermented dairy foods (Salque et al., 2013). Production of fermentative foods including 

cheese is rarely based on single species but is rather a combination of different 

microorganism species as a microbial community. The community members either 

naturally exist together or are chosen species based on desired product quality. Starter 

cultures are essential for industrial fermentative food production as they start the 

fermentation and assure the desired and standard final product. Cheese starter cultures as 

a microbial community is the scope of this thesis, and metabolic characterization of 

cheese starter cultures is studied by metabolic network-based microbial community 

modelling. Compared to the microbial communities in nature, cheese starter cultures are 

less complex, and they are composed of a couple of lactic acid bacteria, which makes 

them a good standard for microbial community modelling. In this section, after a brief 

discussion about lactic acid bacteria and cheese starter cultures, the methodology and 

mathematics behind the metabolic network-based analyses will be discussed. 

 

1.1. An Overview of Lactic Acid Bacteria and Cheese Starter Cultures  

Lactic acid bacteria (LAB) are gram-positive, non-sporulating and facultative anaerobic 

or microaerophilic organisms, and their main fermentation product is lactic acid (Gaspar 

et al., 2013; Kleerebezem and Hugenholtz, 2003). The most known habitats of LAB are 

plants, dairy foods and mucosal surfaces such as the human gastrointestinal system 

(Kleerebezem and Hugenholtz, 2003; Makarova et al., 2006). LAB belong to the phylum 

Firmicutes, class Bacilli and order Lactobacillales (Gaspar et al., 2013). Although the 

most LAB are known as industrially significant and considered as GRAS (Generally 

Regarded As Safe) organisms, not all bacteria in the order Lactobacillales are industrially 

relevant and GRAS (Hatti-Kaul et al., 2018). Some industrially important LAB genera 

are Lactococcus, Streptococcus, Leuconostoc, Lactobacillus, Enterococcus, Oenococcus 

and Pediococcus. They are used in fermented food manufacturing and play an important 

role in human nutrition as probiotics (de Vos, 1996; Klaenhammer et al., 2008; 

Kleerebezem and Hugenholtz, 2003; Makarova et al., 2006). Among these organisms, 
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Lactococcus, Streptococcus and Leuconostoc species are commonly used in cheese 

production as starter culture (Cogan and Hill, 1993), which is the main focus of this thesis. 

The main reason of the use of LAB in food manufacturing is their rapid lactic acid 

production during the fermentation, which extends the shelf life of the product as low pH 

prevents spoilage (de Vos, 1996; Kleerebezem and Hugenholtz, 2003). In addition to food 

safety and hygiene, lactic acid contributes to the final product characteristic such as 

texture (de Vos, 1996; Kleerebezem and Hugenholtz, 2003; Muñoz et al., 2011). There 

are two lactic acid production pathways in the LAB, which are the Embden–Meyerhof–

Parnas (EMP) pathway and the phosphoketolase pathway (PKP) (Gaspar et al., 2013) 

(Fig. 1.1). 

  

 

Figure 1.1. Central carbon metabolism pathways of LAB. (A) Embden–Meyerhof–

Parnas (EMP) pathway, (B) phosphoketolase pathway (PKP). This figure was taken 

from (Gaspar et al., 2013) 
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While the only major product of homolactic fermentation is lactic acid, significant amount 

of other fermentation products such as formic acid, acetic acid, CO2 and/or ethanol are 

also produced in heterolactic fermentation in addition to lactic acid (Gaspar et al., 2013; 

Kleerebezem and Hugenholtz, 2003).  LAB having EMP pathway such as Lactococcus 

lactis and Streptococcus thermophilus might exhibit either homolactic or heterolactic 

fermentation (Giaretta et al., 2018), while only heterolactic fermentation is observed in 

LAB having PKP such as Leuconostoc mesenteroides, and the fermentation through PKP 

is also called obligate heterolactic fermentation (Ganzle, 2015). Although L. lactis and S. 

thermophilus are mostly known as homolactic fermentative species, they can switch to 

mixed-acid fermentation under some conditions such as the change of the carbon source 

and continuous cultures at low dilution rate (Flahaut et al., 2013; Giaretta et al., 2018).  

The redox balance plays an important role on the final product composition (Garrigues et 

al., 1997).  

In homolactic fermentation through the EMP pathway, 1 mole of glucose is broken down 

into 2 moles of lactic acid, leading to the production of 2 moles of ATP. In obligate 

heterolactic fermentation, however, 1 mole of lactic acid is produced per 1 mole of 

glucose via the PKP, which yields only one ATP per glucose (Ganzle, 2015; Gaspar et 

al., 2013). In organisms with active PKP, lactic acid production acts as an ATP production 

source while ethanol production acts as redox balance under anaerobic conditions. Under 

cases of alternative electron sinks, such as aerobic conditions (Plihon et al., 1995) and co-

metabolism of citrate (Schmitt and Divies, 1992), ethanol can be substituted by acetate, 

which yields extra ATP. 

In traditional ways, cheese is made by LAB which are naturally present in milk or by the 

back-slopping technique, which is adding small portion of a previous batch of cheese to 

milk. In industrial cheese production, on the other hand, starter cultures, which are defined 

mixtures of purified and characterized LAB, are used to standardize the bulk production 

(Cogan and Hill, 1993; Leroy and De Vuyst, 2004; Powell et al., 2011). Acidification and 

flavour compound production are the main functions of the starter cultures in the cheese 

making. Lactic acid produced by LAB helps coagulation of the caseins in milk to form 

curd which affects the final moisture content of cheese, and consequently also affects the 

product texture (Powell et al., 2011). Low pH is the result of lactic acid production, and 

it prevents the growth of undesired microorganisms spoiling the milk fermentation or 
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pathogen organisms (Powell et al., 2011). Furthermore, LAB produce several flavour and 

aroma compounds that give the specific tastes of different cheeses (Smid and 

Kleerebezem, 2014; Smit et al., 2005; Yvon and Rijnen, 2001).  

Cheese making is a multi-step process; in addition to milk fermentation carried out by 

starter LAB, during the ripening of cheese  -and especially for artisanal cheeses- in the 

long term, other microorganisms such as non-starter LAB, propionic acid bacteria and 

even yeast might also contribute to the final form of the cheese (Blaya et al., 2018), but 

this study only focusses on the LAB used as starter cultures in industrial cheese 

production.  

Cheese starter cultures are composed of different LAB changing according to cheese 

being made and they can be distinguished as mesophilic and thermophilic starter cultures 

(Cogan and Hill, 1993). Mesophilic starter cultures are used in the cheese productions 

requiring the moderate temperature (~30°C) such as Cheddar and Dutch type cheese 

(Cogan and Hill, 1993; Smid et al., 2014). Mesophilic starter cultures consist of L. lactis 

and Leu. mesenteroides strains in which main functions are acidification and flavour 

formation, respectively (Erkus et al., 2013; Smid et al., 2014). Thermophilic starter 

cultures are used in the cheese productions requiring higher temperature such as Swiss 

and Italian cheese and are dominated by L. lactis and S. thermophilus strains (Cogan and 

Hill, 1993; Powell et al., 2011). A successful cheese production with desired functions 

such as aroma and texture depend on the starter cultures being used. The metabolic 

capacity of the individual organisms in the starter cultures and their co-cultures should be 

well characterized. Therefore, metabolic network-based analyses, with the advent of the 

next generation sequencing technology, have been recently used for the characterization 

of LAB used in starter cultures (de Vos, 2011; Teusink et al., 2011; Teusink and 

Molenaar, 2017), which give a more holistic point of view than classical microbiological 

approaches to better understand both species and the co-culture level metabolism of 

cheese starter cultures. 
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1.2. Metabolic Network-Based Analysis of LAB 

Understanding the metabolism of LAB may help to efficiently use them in the industry. 

Although the classical studies investigating LAB at external metabolite level give 

important insights for their metabolism, systems biology approaches (Kitano, 2002; 

Nielsen, 2017) are more promising to decipher the full metabolic potential of LAB at a 

genome scale. New generation sequencing technologies give an unprecedented view of 

the biodiversity and metabolic capacity of the microorganisms in food fermentation 

(Smid and Hugenholtz, 2010), and  various studies investigating the genomic 

characterization of LAB strains have been published (Douillard and de Vos, 2014; 

Makarova et al., 2006; O'Sullivan et al., 2009; Siezen and Bachmann, 2008). 

A metabolic network defines a set of biochemical reactions denoting interactions between 

compounds and their stoichiometry in the reactions. A metabolic network can be either a 

local pathway which consists of known reactions from literature, or a genome-scale 

metabolic network which is reconstructed using whole genome sequence. Finally, a 

genome-scale metabolic model (GSMM) systematizes the genome-scale metabolic 

network into a mathematical framework (Bordbar et al., 2014). 

GSMMs are very useful tools to investigate the metabolic patterns and capacities of 

organisms, and they have already been developed for quite a number of LAB, such as 

probiotic strains Lactobacillus plantarum (Teusink et al., 2006), Lactobacillus casei 

(Vinay-Lara et al., 2014); dairy-origin strains L. lactis subsp. lactis (Oliveira et al., 2005), 

L. lactis subsp. cremoris (Flahaut et al., 2013), S. thermophilus  (Pastink et al., 2009),  

Leu. mesenteroides (reconstructed for this study) and a plant-origin strain Leu. 

mesenteroides (Koduru et al., 2017). GSMMs are not only used to investigate the 

metabolic pattern of an organism, but also to compare the metabolic capacities of different 

organisms. The comparison of the dairy-origin LAB using GSMMs is also important for 

better understanding of the fermentation of the dairy foods where different LAB take part 

in co-culture.  

The metabolic networks, thereby GSMMs, their reconstruction and metabolic network-

based analyses for pure and microbial communities are discussed in the following 

sections. 
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1.2.1. Metabolic network reconstruction and constraint-based analysis of 

metabolic networks  

As science continues to develop itself, collective scientific knowledge increases. 

Databases used in biotechnology collect such cumulative knowledge/data and share them 

with the researchers wishing to make further research. There are several online metabolic 

network databases such as KEGG (Goto et al., 1997), BIGG (King et al., 2015b), 

MetaCyc (Caspi et al., 2015), BRENDA (Scheer et al., 2010), ModelSEED (Henry et al., 

2010), which store the data of metabolic pathways, their biochemical reactions and the 

genes/enzymes related to these reactions. And the online and offline tools such as 

ModelSEED (Henry et al., 2010) , AuReMe (Aite et al., 2018), CarveMe (Machado et al., 

2018), Merlin (Dias et al., 2010) and RAVEN (Wang et al., 2018) gather the reactions 

from the databases mentioned above based on the genome annotation of the organism of 

interest to reconstruct metabolic network models. 

The metabolic network models reconstructed by the reconstruction tools, which are also 

called draft metabolic network models, require additional manual curation. The manual 

curation of a draft metabolic network model is carried out according to experimental 

evidences, and some of the curation steps are adding extra reactions such as a species-

specific biomass reaction and adding the reactions missed by the reconstruction tool. A 

protocol was published to reconstruct a high quality and robust genome-scale metabolic 

model (Thiele and Palsson, 2010), describing each step necessary to build a genome-scale 

metabolic model. A genome-scale metabolic model of Leu. mesenteroides ATCC 19254 

was also reconstructed in this thesis study and reconstruction steps including manual 

curation were discussed in the following sections.  

One important issue that is worth to mention is the synonym names used to refer to 

metabolic network models, and the most common ones are metabolic model, metabolic 

network model, genome-scale metabolic network model or genome-scale metabolic 

model, which denotes the metabolic model composed of all reactions encoded by whole 

genome, and constraint-based metabolic model. Flux balance analysis (FBA) is a 

constraint-based optimization method and it analyses a metabolic model in quantitative 

manner. FBA calculates the metabolic flux rates through a metabolic network, which 



7 
 

enables the prediction of, for instance, the growth rate of an organism or the production 

rate of an industrially important metabolite (Orth et al., 2010). 

Methodology and mathematics behind the FBA were illustrated in Fig. 1.2 through a 

simple toy model. Metabolic reactions in the metabolic models are converted into a 

stoichiometric matrix in which rows and columns represent metabolites and reactions 

respectively (Fig. 1.2-D). FBA assumes steady-state conditions, which means that the 

concentrations of the metabolites in a cell are constant and the rate of change of the 

metabolites are zero over time (Bordbar et al., 2014; Maarleveld et al., 2013). At steady 

state, flux distribution vector (reaction rates of all reactions in the model, v) is determined 

by S.v=0, which defines a linear equation set (Fig. 1.2-F). As degrees of freedom is more 

than zero for this linear equation set, the flux distribution is estimated by linear 

programming (LP) (Fig. 1.2-G). The most common objective function (CTV) of the linear 

optimization problem of S.v=0 is biomass production. Solution space of this optimization 

problem can be narrowed down by some constraints such as reaction boundaries (lower 

and upper bounds of the reactions, LB≤v≤UB in Fig. 1.2-G) and experimentally obtained 

flux rates (Kauffman et al., 2003).  
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Figure 1.2. Methodology for constraint-based metabolic modelling. A) Toy model 

system comprising 6 reactions and 5 compounds. B) Reactions in the toy model. C) 

Differential mass balance equations. D) Stoichiometric matrix. E) Dynamic mass 

balance in matrix format. F) Steady-state mass balance in matrix format. G) Linear 

optimization problem. 

 

Because of alternate optima, which means the existence of more than one optimal solution 

with the same objective value, the flux distribution estimated by FBA is actually only one 

solution assuring the maximized objective. Flux variability analysis (FVA) calculates the 

minimum and maximum values of all reaction rates (flux span) at the optimal objection 

function value (Mahadevan and Schilling, 2003). Mathematical description of the linear 

programming for FVA can be written as follows: 

Glc X Lac 

Biomass 

V4 V1 V2 V5 

V3 

V6 

V1: Glc + ATP → X                                                              
V2: 0.9 X → 0.9 Lac + 1.9 ATP           
V3: 0.1 X + 0.7 ATP → Biomass      
V4: → Glc                
V5: Lac →                 
V6: Biomass → 

 

A 

B C 

E F 

Linear optimization 
problem 

Maximize Z=CTV    
Subject to: S.v=0 
  LB≤v
 ≤UB 

G 

D 
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Eq. 1.1 

 

1.2.2.  Dynamic flux balance analysis (dFBA) 

Output of classical FBA is flux distribution, which is the reaction rates of an organism in 

steady-state conditions, and FBA simulations are compared with experimental flux values 

at steady-state conditions, such as production rate of a fermentation product and growth 

rate in continuous culture, to check for their predictive capacity. However, FBA cannot 

simulate the dynamics of metabolites such as changing metabolite concentrations in batch 

culture over time. Hence, to simulate the dynamic conditions such as batch fermentation 

cultures, dynamic flux balance analysis (dFBA) is applied. dFBA is a constraint-based 

metabolic network analysis, combining FBA and kinetic modelling (Watanabe et al., 

2018). Compared to simplified unstructured models having limited predictive capacity 

(e.g. Monod model which relates the growth rate to the concentration of a single growth-

limiting substrate), dFBA models can predict the dynamic profiles of concentrations of 

biomass and all metabolites in a system (Hoffner et al., 2013). There are two main dFBA 

approaches, which are dynamic optimization approach (DOA) and static optimization 

approach (SOA) (Mahadevan et al., 2002). In the DOA, optimization problem is solved 

over the entire time of batch to obtain flux and metabolite concentration profiles 

(Mahadevan et al., 2002). Formulation of DOA results in nonlinear programming (NLP), 

and it is given below (Kleessen and Nikoloski, 2012):  

 

for i = 1 : # of reaction     

Maximize and minimize  Vi   

Subject to:   S.v=0  

    CTV=Zobj 

    LB≤V≤UB 
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   Eq. 1.2. 

 

where V, X and X0 are the vectors of reaction fluxes, metabolite concentrations and initial 

concentrations of the metabolites over time, respectively. Compared to SOA, DOA is 

rarely used because of the intractability of NLP  (Gomez et al., 2014). 

SOA divides the batch time into several time intervals and solves the optimization 

problem (i.e. classical FBA) for each time interval, which means SOA applies several 

LPs to estimate the process dynamics (Mahadevan et al., 2002). Simulation methodology 

of dFBA with SOA is illustrated in Fig. 1.3 for a model constrained by a substrate uptake 

kinetics, which is a function of metabolite concentration. In each time interval (i.e. each 

iteration for the numeric solution of ODE set), substrate uptake rates constraining the 

metabolic model change based on the substrate uptake kinetics, which is the function of 

metabolite (substrate and/or product) concentration. Subsequently, metabolic model 

embedded into dynamic mass balance equations (ODE set) estimates the flux distribution, 

and this flux distribution is used in ODE set to calculate the biomass and metabolite 

concentrations for each time interval. 

 

Maximize 
1

0

( )
t

t
f x dx∫  

Subject to: min min

min min

0 0

.

( )

dX S v
dt

v v v
x x x
X t X

=
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≤ ≤
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Figure 1.3. dFBA methodology with static optimization approach (SOA). X, S and P 

denote concentrations of biomass, substrates and products. (Note that: the term “S” in 

the metabolic model box represents stoichiometric matrix as mentioned in the text 

above) 

 

1.2.3. Microbial community metabolic modelling 

There are basically two approaches for metabolic network-based analysis of microbial 

communities, which are (i) supra-organism metabolic modelling approach that evaluates 

a whole microbial community as a single organism and (ii) multi-species metabolic 

modelling approach that considers individual microorganisms in the consortia and their 

metabolic interactions (Fig. 1.4). 

 

Substrate uptake 

kinetics 

Linear optimization 
problem 

Maximize Z=CTV    
Subject to: S.v=0 
  LB≤V≤UB 

Dynamic mass 

balance equations 

(ODE set) 

Model constraints (VS) 

X, S, P 

Flux distribution (µ, VS, VP) 

Metabolic 
model 
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Figure 1.4. Microbial community metabolic modelling approaches. (A) Single-species 

metabolic models represent the set of biochemical reactions. (B) Multi-species 

metabolic models integrate the individual metabolic networks and their interactions. (C) 

supra-organism metabolic models have single metabolic network reconstructed using 

metagenome sequencing. This figure was taken from (Borenstein, 2012). 

 

 Supra-organism metabolic modelling 

Supra-organism metabolic modelling takes whole microbial community as a single 

organism, which is also called pan-organism (Borenstein, 2012; Hanemaaijer et al., 2015; 

Succurro and Ebenhoh, 2018). This approach is used for complex microbial communities 

such as gut and soil microbiota, and metagenomic data is used to reconstruct the supra-

organism metabolic network. Metagenomics defines the investigation of genetic material 

of microbial communities, and metagenomic data is obtained from entire genome of a 

microbial community using next generation sequencing technology and bioinformatics 

tools (Wooley et al., 2010). In the first supra-organism metabolic model in literature 

(Rodríguez et al., 2006), the authors reconstructed a single stoichiometric matrix 

including the most common fermentative pathways such as lactate, acetate, ethanol, CO2, 

propionate, butyrate and H2 production pathways, which are catalysed by a mixed culture 

and biomass production of mixed culture. Others (Greenblum et al., 2012) used 

metagenomic data of human gut microbiome to reconstruct community-level metabolic 

networks, and they identified topological differences of these metabolic networks 

belonging to different people groups having obesity and inflammatory bowel disease. In 

another study (Tobalina et al., 2015), meta-proteomic data was used instead of meta-
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genomics to reconstruct context-specific metabolic network of a naphthalene degrading 

bacterial community, and FBA was applied for the context-specific metabolic network 

reconstructed. 

Although supra-organism metabolic models are able to better understand community-

level metabolic capacity of a microbial community, these models do not consider the 

metabolic behaviours of community members and their interactions. 

 

 Multi-species metabolic modelling 

Compared to the microbial communities reconstructed as supra-organism metabolic 

models, microbial communities reconstructed as multi-species metabolic models are less 

complex in terms of number of involved microorganism types, and such microbial 

communities are mostly called co-cultures, which can be also grown in laboratory 

conditions. Unlike supra-organism modelling, multi-species metabolic modelling allows 

compartmentalized metabolic network, and metabolic networks of the individual 

organisms are integrated to reconstruct a multi-species metabolic model (Biggs et al., 

2015; Gamboa-Rueda et al., 2015). Multi-species metabolic modelling approach can be 

separated into two sub-approaches, which are multi-species metabolic modelling under 

steady-state and dynamic conditions. If a co-culture grows under steady-state conditions, 

there is a metabolic dependency such as mutualism or cross-feeding among the co-culture 

members, and the first sub-approach is based on this fact. Community flux balance 

analysis (cFBA) (Khandelwal et al., 2013) integrates the genome-scale metabolic 

networks of individual community members, and it is formulated such that exchange 

reactions of the individual organisms are combined to allow metabolic interaction 

between organisms and environment (Fig. 1.5.). cFBA assumes balanced growth rates of 

individual organisms because of metabolic dependency between organisms. Hence, 

individual-level and community-level growth rates are equal, which is also single 

objective function. In addition to individual and community level metabolic capacity 

investigation, cFBA enables the prediction of the effect of the relative microbial 

abundance on community growth.   
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Figure 1.5. Community flux balance analysis (cFBA) framework. cFBA integrates the 

stoichiometric matrices of individual organisms to reconstruct a community model. This 

figure was taken from (Khandelwal et al., 2013) 

 

Another steady-state multi-species metabolic modelling framework is OptCom 

(Zomorrodi and Maranas, 2012). OptCom is suitable for well-characterized communities 

and it enables to simulate the different types of metabolic interactions such as mutualism, 

commensalism, parasitism and competition. OptCom applies bilevel optimization, where 

inner optimization is maximization of growth of individual organisms and, outer 

optimization is maximization of community growth.  

The dynamic multi-species metabolic modelling (DyMMM) or dynamic co-culture 

metabolic modelling is basically dFBA framework with static optimization approach, 

which is extended for microbial communities (Henson and Hanly, 2014). The dynamic 

multi-species metabolic modelling framework is illustrated for three-species co-culture 

in Fig. 1.6. Like dFBA, output of the DyMMM framework is the dynamic biomass and 

metabolite concentration profiles, which can be both species and community-level 

concentrations. Because metabolites consumed and produced are shared by all 
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community members, DyMMM allows metabolic interactions such as competition and 

cross-feeding. In this approach, individual metabolic models are constrained by 

individual substrate uptake kinetics, which are a function of community level metabolite 

concentrations. After the independent solution of the individual models by FBA, flux 

distributions are used in dynamic mass balance equations. Every iteration for the solution 

of the ODE set in dynamic mass balance equations gives new set of metabolite 

concentrations, which are subsequently used in substrate uptake kinetics (Fig. 1.6.). The 

dynamic multi-species metabolic modelling approach was used before in several studies 

(Hanemaaijer et al., 2017; Hanly and Henson, 2011; Zhuang et al., 2011; Zhuang et al., 

2012). 

 

 

Figure 1.6. Dynamic multi-species metabolic modelling framework for three-species 

microbial community. X, S, P denote concentrations of biomass, substrates and 

Strain specific flux distributions (µ, VS, VP) 

GSMM of 

strain A 
GSMM of 

strain B 

GSMM of 

strain C 

Substrate uptake kinetics 

VS=VS(S,P) 

VS,A VS,B VS,C 

X,S,P 
Dynamic mass 

balance equations 
(ODE set) 
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products; and µ, VS and VP denote growth, substrate uptake and product production 

rates, respectively. 

 

1.3. Aim and Overall Design of This Study 

The Monod model relates the microbial growth rate (µ) to the concentration of a single 

growth-limiting substrate (S) with the parameters µmax and KS (Monod, 1949) as shown 

in Eq. 1.3. 

 

maxS
K Ss

µ
µ =

+
     Eq. 1.3. 

 

The Luedeking-Piret model is based on the product formation which is proportional to 

growth, and it relates product rate (qP) to growth rate (µ) with a linear equation with the 

parameters A and B (Luedeking and Piret, 1959) as shown in Eq. 1.4. 

 

q A Bp µ= +      Eq. 1.4. 

 

Both the Monod and the Luedeking-Piret models are commonly used for the unstructured 

modelling of LAB fermentations, and they can explain the fundamental relationships 

between microbial growth, substrate consumption and product formation. Modified 

versions of the Monod and the Luedeking-Piret models applied to LAB fermentation, for 

example a model considering inhibitory compounds, can be found elsewhere 

(Bouguettoucha et al., 2011). On the other hand, the dynamic genome-scale metabolic 

models have a more comprehensive predictive capacity compared to the simple microbial 

kinetic models such as the Monod and the Luedeking-Piret models. A dynamic genome-

scale metabolic model considers the entire metabolic stoichiometry and enables to relate 

all the substrates and products not only to growth  but also to each other.    
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This thesis study aims for a better understanding of the dynamics in the LAB 

fermentations and metabolic capacities of cheese starter cultures at both single species 

and co-culture level using metabolic network-based analysis. To that end, LAB 

commonly used in cheese starter cultures were grown in a batch bioreactor, and 

experimental results were used to estimate the parameters of the dynamic metabolic 

models. Taking advantage of the dynamic metabolic modelling, it aimed to obtain more 

data on the fermentations, which previously could not be obtained by the experimental 

methods used. The individual compound profiles of LAB in the co-cultures, which also 

enables to estimate the potential metabolic interactions among LAB in the co-cultures, 

were also predicted by the metabolic models.  

This study was designed in two parts: experimental and computational (Fig. 1.7.). The 

experimental part consists of bioreactor experiments of both pure and co-cultures and 

subsequent experimental analyses, while the computational part consists of reconstruction 

and analysis of dynamic metabolic models for pure and co-cultures. 
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Figure 1.7. Overall design of the study. dFBA: dynamic flux balance analysis, 

DyMMM: dynamic multi-species metabolic modelling. 

 

In the experimental part, LAB species of L. lactis subsp. cremoris, L. lactis subsp. lactis, 

Leu. mesenteroides and S. thermophilus, which are commonly used LAB in cheese starter 

cultures, were grown in pure and co-cultures in batch cultures with chemically defined 

medium under anaerobic conditions. The co-cultures composed of L. lactis and Leu. 

mesenteroides species and the co-cultures composed of L. lactis and S. thermophilus 

species were assumed to represent mesophilic and thermophilic starter cultures, 

respectively. In bioreactor experiments, pH was not controlled to mimic cheese 

fermentation by starter cultures in which pH was allowed to follow its natural course 

(Bachmann et al., 2009; Cogan et al., 2007). Biomass, glucose as a carbon source, organic 

acids and amino acids concentration profiles of the pure and co-cultures and relative 

Commonly used LAB in cheese starter cultures 
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microbial abundance profiles of the co-cultures were obtained experimentally. Relative 

microbial abundance in a microbial community gives important insights about the 

community dynamics such as suppression or domination of the individual organisms and 

related changes in the medium composition. With classical microbiological methods, 

relative microbial abundance is obtained by counting the colony forming units (CFU) of 

survived microorganisms on agar plate with a selective growth medium (Bellengier et al., 

1997). Yet, the microorganisms used in this study are phylogenetically very close species, 

which are hardly distinguished using a selective medium. Thus, a molecular-based 

method (i.e. qPCR) was employed instead of CFU-based methods to estimate the relative 

abundance ratio.  

In the computational part, pure and co-culture experiments were then simulated by 

metabolic network-based analyses. Pure cultures were simulated by dFBA, while co-

cultures were simulated by the dynamic multi-species metabolic modelling approach. 

Undissociated lactic acid which is the protonated form of lactic acid and increasingly 

formed by low pH, was the rate limiting compound for all batches. Therefore, the 

substrate uptake kinetics in the dynamic models was defined with an empirical equation 

as a function of undissociated lactic acid. Strain-specific parameters used in substrate 

uptake kinetics were estimated using pure culture experiments and they were also used in 

dynamic co-culture models. Furthermore, a genome-scale metabolic model of dairy-

origin Leu. mesenteroides, which was also used in co-culture models, was reconstructed 

for the first time in this study. From genome sequences to manual curation of the 

metabolic model, all steps of the genome-scale metabolic model reconstruction were also 

discussed for this study.  
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 MATERIALS AND METHODS 

2.1. Organisms and Growth Medium 

Lactic acid bacteria used in this study were Lactococcus lactis subsp. cremoris MG1363, 

Lactococcus lactis subsp. lactis IL1403, Streptococcus thermophilus LMG 18311 and 

Leuconostoc mesenteroides subsp. cremoris ATCC 19254, which are dairy-origin lactic 

acid bacteria used in several experimental and metabolic network-based studies (Flahaut 

et al., 2013; Oliveira et al., 2005; Pastink et al., 2009; Solopova et al., 2012). The 

organisms were stored at -80°C in M17 medium (Terzaghi and Sandine, 1975) for L. 

lactis and S. thermophilus strains and in MRS medium (De Man et al., 1960) for Leu. 

mesenteroides, and both media were supplemented with 0.5% glucose and 15% glycerol. 

Chemically defined medium (CDM) described elsewhere (Otto et al., 1983)  and modified 

by others (Poolman and Konings, 1988) was used for the preparation of the inoculum and 

for the fermentation cultures (Table 2.1), and the CDM was filter-sterilized with 0.22 µm 

filters. This CDM was firstly described for L. lactis and then used for several LAB in 

literature with original recipe or by omitting some components based on the minimal 

requirements of related microorganism (Kim et al., 2012; Letort and Juillard, 2001). 

 

Table 2.1. Chemically defined medium (CDM) composition used in this study. 

  (g/L)   (g/L) 

Main Ingredients 
 

DNA precursor mix 
 

Glucose 10 Adenine 0.01 

K2HPO4 2.5 Guanine 0.01 

KH2PO4 3 Xanthine 0.01 

Na-acetate 1 Uracil 0.01 

(NH4)3-citrate 0.6 Vitamins 
 

Ascorbic acid 0.5 Pyridoxamine-HCl 0.005 

Amino acids 
 

D-biotin  0.01 

Alanine 0.24 6,8-thioctic acid 0.0025 

Arginine 0.125 Pyridoxine-HCl 0.002 
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Table.2.1. (Continued) 

Asparagine 0.35 Nicotinic acid 0.001 

Aspartate 0.46 Ca-(D+) pantothenate 0.001 

Cysteine 0.25 Riboflavin  0.001 

Glutamate 0.4 Thiamin-HCl 0.001 

Glutamine 0.39 Vitamin B12 0.001 

Glycine 0.175 Na-4-aminobenzoate 0.01 

Histidine 0.15 Orotic acid 0.005 

Isoleucine 0.21 2-deoxythymidine 0.005 

Leucine 0.475 Inosine 0.005 

Lysine 0.44 Folic acid 0.001 

Methionine 0.125 Trace metals 
 

Phenylalanine 0.275 MgCl2 × 6 H2O  0.2 

Proline 0.675 CaCl2 × 2 H2O 0.05 

Serine 0.34 MnSO4 x H2O 0.028 

Threonine 0.225 FeCl2 × 4 H2O 0.005 

Tryptophan 0.05 ZnSO4 × 7 H2O 0.005 

Tyrosine 0.29 CoCl2 × 6 H2O 0.0025 

Valine 0.325 CuSO4 × 5 H2O 0.0001 

 

2.2. Fermentation Conditions 

Stocked L. lactis and S. thermophilus strains were transferred to M17 agar plates 

including 0.5 % glucose, and stocked Leu. mesenteroides was transferred to MRS agar 

plates including 0.5 % glucose to obtain single colonies for inoculum preparation. Agar 

plates of L. lactis, S. thermophilus and Leu. mesenteroides strains were kept in incubator 

at 30°C, 37°C and 30°C, respectively. Single colonies of L. lactis and S. thermophilus 

strains were observed on agar plates after overnight incubation, while single colonies of 

Leu. mesenteroides were observed after two overnight incubations. The single colonies 

were then transferred to 50 ml inoculation medium in 50-ml falcon tubes and incubated 

in static culture with the same temperatures of the agar plates mentioned above.  
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Bioreactor experiments required for the study of genome-scale metabolic model 

reconstruction of Leu. mesenteroides was carried out in a 5-liter bioreactor (Minifors HT, 

Switzerland), while other pure and co-culture experiments of L. lactis, S. thermophilus 

and Leu. mesenteroides strains were carried out in 1-liter bioreactors (Biostat Q, B. Braun 

Biotech International). 

 

2.2.1. Fermentation conditions for the study of the genome-scale metabolic network 

reconstruction of Leu. mesenteroides 

Leu. mesenteroides was fermented under anaerobic conditions in a 5-liter stirred tank 

bioreactor (Minifors HT, Switzerland) with a working volume of 3 litters. Fermentation 

medium was deoxygenized with filter-sterilized pure N2 supply before inoculation, and 

anaerobic condition was maintained by filter-sterilized pure N2 supply with 0.5 vvm 

during fermentation. The bioreactor was inoculated with 2% (v/v) inoculum culture 

grown till late exponential phase. Anaerobic fermentation was carried out at constant 

temperature (30°C) with 100 rpm mixing rate and without pH control (starting pH: 6.8). 

 

2.2.2. Fermentation conditions for the pure and co-cultures 

Pure and co-culture fermentations were carried out under anaerobic conditions in a 1-litre 

stirred tank bioreactor (Biostat Q, B. Braun Biotech International) with a working volume 

of 0.6 litres at constant temperature and without pH control (initial pH: 6.8). Pure cultures 

of L. lactis, Leu. mesenteroides and S. thermophilus strains were fermented at 30°C, 30°C 

and 37°C, respectively, while mesophilic co-cultures comprised of L. lactis and Leu. 

mesenteroides strains and thermophilic co-cultures comprised of L. lactis and S. 

thermophilus strains were grown at 30°C and 33°C, respectively. Fermentation medium 

was deoxygenized with filter-sterilized pure N2 supply before inoculation and there was 

no gas supply after inoculation. Maintenance of the anaerobic conditions was assumed 

with slow mixing (50 rpm). For both pure and co-cultures, the bioreactor was inoculated 

with 2% (v/v) inoculum culture grown till late exponential phase. Starting biomass 

compositions of the co-cultures were 1:1 (OD:OD) and 1:1:1 (OD:OD:OD) for two and 



23 
 

three-species co-cultures respectively. For each different batch experiments (pure and co-

cultures), two independent culture replicates were run. 

 

2.3. Experimental Analyses 

 

2.3.1. Analysis of biomass and extracellular compounds  

Biomass concentration was determined using optical density (OD) measurements of 

fermentation culture at 600 nm, which was then correlated with corresponding biomass 

dry weight (gDW) values via a calibration graph. Based on this, one unit of optical density 

at 600 nm was taken to be equivalent to 0.37 g dry cell weight/l for all species, since they 

had similar OD/gDW slopes. Culture samples were centrifuged at 10000g for 10 minutes 

to separate biomass and supernatant, and cell free supernatant was used for glucose, 

organic acid and amino acid analyses.  

Glucose concentration was determined by reducing sugar analysis (Miller, 1959). Organic 

acid (lactic, formic, acetic and citric acids) concentrations were determined using HPLC 

with anion exchange column (IC-Pak Ion exclusion column (7 µm, 7.8 x 300 mm, 

Waters)) and UV detector with 2 mM H2SO4 as mobile phase and with 0.5 ml/min flow 

rate.  

Amino acids were quantified using HPLC with pre-column derivatization using phenyl 

isothiocyanate (PITC), following a modified version of the method described in literature 

(Shi et al., 2013). HPLC (LC20AD, Shimadzu) was equipped with a UV detector (254 

nm) and XSelect HSS C18 column (5 µm, 4.6 mm x 250 mm, Waters) maintained at 

36°C. Two mobile phases (0.1 M pH 6.5 sodium acetate buffer solution: acetonitrile 

(97:3(v/v)) and acetonitrile: water (4:1(v/v)) are used, at 0.9 ml/min.  

Undissociated lactic acid concentration increases with decreasing pH, and it is calculated 

via Henderson–Hasselbalch equation (Bouguettoucha et al., 2011) described in Eq. 2.1. 
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[ ][ ]
1 exp( - )

LacLacH
pH pKa

=
+     Eq. 2.1 

 

where [LacH], [Lac] and pKa are undissociated lactic acid concentration, total lactic acid 

concentration and logarithmic acid dissociation constant, respectively, and pKa is 3.86 

for lactic acid (https://pubchem.ncbi.nlm.nih.gov/compound/Lactic-acid). 

CO2 production of L. lactis and S. thermophilus strains showing homolactic fermentation 

pattern was assumed to be negligibly small compared to the total carbon outflow under 

anaerobic conditions as also stated in the literature (Jensen et al., 2001). Molar 

concentrations of ethanol and CO2 produced by Leu. mesenteroides were estimated based 

on the rate of glucose consumption following the stoichiometry observed in heterolactic 

fermentation of Leu. mesenteroides under anaerobic conditions with glucose as the only 

carbon source (Dols et al., 1997; Schmitt et al., 1992; Starrenburg and Hugenholtz, 1991), 

and this ratio was taken as rates of glucose:ethanol:CO2 = 1:1:1. For citrate and glucose 

co-metabolism of Leu. mesenteroides, production of one mole CO2 was also considered 

per one mole citrate consumed.  

 

2.3.2. Carbon balance 

The carbon balance was determined based on the sum of overall biomass produced and 

extracellular compounds consumed or produced (glucose, organic acids, ethanol and 

CO2) (see Appendix H for detailed carbon balance calculation). 

 

2.3.3. Estimation of the relative microbial abundance in co-cultures  

Quantitative-PCR (qPCR) method was employed for quantifying relative microbial 

abundance ratios of different bacterial strains during co-culturing. The gene-copy number 

ratios were assumed to be the biomass ratios of individual organisms, and individual 

biomass concentration profiles of co-cultures were calculated based on the gene-copy 

numbers. Total cell dry weight concentrations of the co-cultures were multiplied by the 

relative microbial abundance ratios to estimate the individual biomass concentrations. 
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DNA extraction was done using peqGOLD Bacterial DNA Kit (Peqlab, VWR, Vienna, 

Austria), according to manufacturer protocol, from 3 ml of culture. Isolated gDNA 

samples were quantified by absorbance at 260 nm wavelength using Nanodrop 

spectrophotometer (Nanodrop 2000) and diluted to give same concentrations. Dynamic 

strain abundances of individual members in co-cultures were determined by Q-RT-PCR 

using the primers given in Table 2.2 that are specific to target genomes and iTaq Universal 

SYBR Green Supermix (Biorad, CA, USA). Primer designs of S. thermophilus LMG 

18311 and Leu. mesenteroides ATCC 19254 were done using Primer3 (version 0.4.0) 

(Koressaar and Remm, 2007; Untergasser et al., 2012) and NetPrimer (PREMIER Biosoft 

International, Palo Alto, CA) online tools. The following PCR protocol was used for all 

samples: initial denaturation at 95°C for 5 minutes, 40 cycles of 95°C for 15 seconds, 

62°C for 30 seconds and a melting curve analysis with 0.5°C increments/5 second from 

65°C to 95°C using CFX96 Touch Real-Time PCR Detection System (BioRad, CA, 

USA).      

 

Table 2.2. 16S rRNA specific qPCR primers 

 

2.3.4. Analyses of essential amino acid requirements for Leu. mesenteroides 

Essential amino acid requirements of Leu. mesenteroides were determined by amino acid 

omission experiments, which is crucial for the metabolic network model reconstruction 

of Leu. mesenteroides. Centrifuged inoculum culture was washed twice and re-suspended 

with sterile pure water with 0.9 % NaCl. CDM broth with all amino acids (reference 

 
Forward primer 

sequences (5’-3’) 

Reverse primer 

sequences (5’-3’) 

PCR product 

size (bp) 

References 

L. lactis subsp. 

cremoris MG1363 

GTGCTTGCACCAA

TTTGAA 

GGGATCATCTTT

GAGTGAT 

163 (Pu et al., 

2002) 

L. lactis subsp. lactis 

IL1403 

GTACTTGTACCGA

CTGGAT 

GGGATCATCTTT

GAGTGAT 

163 (Pu et al., 

2002) 

S. thermophilus 

LMG 18311 

CGGGTGAGTAACG

CGTAGGT 

CGCCTAGGTGA

GCCATTACC 

177 This study 

Leu. mesenteroides 

ATCC 19254 

CCGCATCTTCACG

GGTATTT 

AGTTTCGGCGAA

GGTACGAA 

173 This study 
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culture) and CDM broths with omitted individual amino acids were inoculated (2 % v/v) 

using the amino acid-free inoculum culture.  They were incubated at 30ºC for 48 hours in 

static cultures. The OD of the cultures at 600 nm was then measured as an indication for 

growth. All experiments were repeated at least twice. 

 

2.4.Computational Analyses  

 

2.4.1. Genome Annotation 

Leu. mesenteroides subsp. cremoris ATCC 19254 was sequenced as part of the Human 

Microbiome Project (Human Microbiome Project, 2012a; Human Microbiome Project, 

2012b). The complete genome sequence of Leu. mesenteroides subsp. cremoris ATCC 

19254 (GenBank accession number GCA_000160595.1) is available online at National 

Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov). The 

genome sequence was imported into the RAST server (http://rast.nmpdr.org/) for gene 

calling and annotation (the statistics for the genome and annotation of Leu. mesenteroides 

ATCC 19254 can be found in Appendix F). 

 

2.4.2. Reconstruction of Leu. mesenteroides genome-scale metabolic network model  

A genome-scale metabolic draft model for Leu. mesenteroides subsp. cremoris ATCC 

19254 was generated using the ModelSEED database (Henry et al., 2010). The genome 

of Leu. mesenteroides ATCC 19254 was also uploaded to the following databases in order 

to recover the functions missing in the ModelSEED annotation: (i) MetaDraft (B.G. 

Olivier, 2018. [Online], https://systemsbioinformatics.github.io/metadraft) which 

generates genome-scale metabolic draft models based on existing well-curated models, 

(ii) a KEGG based database BlastKOALA (http://www.kegg.jp/blastkoala/) which gives 

genome annotations and related functions of the genome and (iii) TransportDB 2.0 

(www.membranetransport.org/) which lists membrane transport proteins. Experimental 

and literature-based studies were used for the manual curation of the draft model (see the 

https://github.com/ozcanemrah for the complete reaction list and related gene-reaction 

http://www.ncbi.nlm.nih.gov/
http://rast.nmpdr.org/
https://systemsbioinformatics.github.io/metadraft
http://www.kegg.jp/blastkoala/
http://www.membranetransport.org/
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associations). The biomass composition of Leu. mesenteroides used for the biomass 

reaction in the reconstructed model was obtained from the literature. Protein, lipid, DNA, 

RNA and polysaccharide contents as major biopolymers and compositions of building 

blocks such as amino acids, nucleotides and fatty acids forming these biopolymers are 

based on species or strain specific data (Bang et al., 2017; Harney et al., 1967; Tracey 

and Britz, 1989), while other minor compositions are based on the data of 

phylogenetically close LAB (Flahaut et al., 2013; Oliveira et al., 2005; Pastink et al., 

2009; Teusink et al., 2006; Vinay-Lara et al., 2014) (see the Appendix A for the details 

of biomass composition of Leu. mesenteroides). The values of growth associated 

maintenance (GAM, Kx) and non-growth associated maintenance (NGAM, matp) were 

calculated via Pirt Equation ( 0, =−−∑ ATPXiATP mKq µ ) using the experimental data 

(Dols et al., 1997) that estimates the rates of energy synthesis (qATP) with respect to growth 

rates (µ) for various sugar sources for Leu. mesenteroides in batch cultures (see Appendix 

B). Consequently, 30.651 mmol/gDW and 0.51 mmol/gDW/h were used as GAM and 

NGAM values for this study.  

 

2.4.3. GSMMs used in this study  

GSMMs of Leu. mesenteroides ATCC 19254, L. lactis subsp. cremoris MG1363 (Flahaut 

et al., 2013) and the revised version of S. thermophilus LMG 18311 (Pastink et al., 2009),  

which were the same strains as used in experiments, were used in this study.  

The GSMM of L. lactis subsp. cremoris MG1363 (Flahaut et al., 2013) was used to 

simulate the experimental data of both L. lactis subsp. cremoris and L. lactis subsp. lactis. 

Apart from the use of strain specific parameters, the exchange reactions of arginine, 

glutamine, histidine, isoleucine, leucine, methionine and valine were constrained as the 

model can only consume these amino acids for the simulation of L. lactis subsp. lactis, 

because L. lactis IL1403 is known to be unable to synthesize these amino acids (Aller et 

al., 2014; Cocaign-Bousquet et al., 1995; van Niel and Hahn-Hägerdal, 1999). 

The revision of the GSMM of S. thermophilus LMG 18311 (Pastink et al., 2009) was 

carried out with following steps: the draft GSMM of S. thermophilus LMG18311 was 

reconstructed using genome sequence of  S. thermophilus LMG 18311 (Bolotin et al., 



28 
 

2004) (GenBank accession number GCA_000011825.1) by MetaDraft (B.G. Olivier 

2018. [Online], https://systemsbioinformatics.github.io/metadraft). MetaDraft is fully 

compliant with and takes full advantage of the latest model encoding and storage 

standards in systems biology. New reaction set was compared with the reactions of 

original model, and only the reactions missed by the original model were added to the 

revised GSMM of S. thermophilus LMG18311 (See https://github.com/ozcanemrah for 

the revised S. thermophilus model in SBML format). The comparative reaction, 

metabolite and gene numbers of the GSMMs used were given in the Table 2.3. 

 

Table 2.3. The comparative reaction, metabolite and gene numbers of the genome-scale 

metabolic models used in this study. 

GSMM Reaction 

number 

Metabolite 

number 

Gene 

number 

Reference 

L. lactis 754 650 518 (Flahaut et al., 2013) 

S. thermophilus 829 886 429 Modified version of 

(Pastink et al., 2009) 

Leu. mesenteroides 1088 1129 559 This study 

 

2.4.4. Flux balance analysis for GSMM of Leu. mesenteroides  

Metabolic flux distributions were estimated via flux balance analysis (FBA) (Orth et al., 

2010) and flux variability analysis (FVA) (Mahadevan and Schilling, 2003). Biomass 

production was maximized as the objective function in FBA to obtain the metabolic flux 

distributions by constraining the carbon source and amino acid uptake rates to fixed and 

maximal values, respectively. Manual curation of the draft model and all constraint-based 

metabolic flux analyses were performed using COBRA Toolbox (Schellenberger et al., 

2011) in MATLAB environment with Gurobi6 (http://www.gurobi.com) as the 

optimization solver. 

 

 

https://systemsbioinformatics.github.io/metadraft
https://github.com/ozcanemrah
http://www.gurobi.com/
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2.4.5. The dynamic flux balance analysis (dFBA) for pure cultures 

Static optimization-based dFBA approach, which is based on dividing the batch time into 

several time intervals and estimating the flux distribution by FBA for each time interval 

(Mahadevan et al., 2002) was applied for the pure culture of L. lactis subsp. cremoris, L. 

lactis subsp. lactis, S. thermophilus and Leu. mesenteroides. dFBA solves a set of 

ordinary differential equations (ODE) numerically, and reaction rates such as growth rate 

(µ), glucose and amino acid utilization rates (VGlc, Vaa) and lactic acid production rate 

(VLac) in the ODE set (Eq. 2.2) are estimated by classical FBA for each iteration of the 

numeric solution.  

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

Glc

aa

Lac

other compounds

d biomass biomass
dt

d Glc V biomass
dt

d aa V biomass
dt

d Lac V biomass
dt

d other compounds V biomass
dt

µ=

= −

= −

=

=
  Eq. 2.2 

 

In Eq. 2.2, [Glc], [aa] and [Lac] are concentrations of glucose, amino acids and lactic acid 

respectively, while [other compounds] are the concentration of other extracellular 

compounds, which are formic acid, acetic acid, citric acid, ethanol, CO2, nucleic acids, 

vitamins and flavour metabolites. Since the unit of flux rate values was mmol/gDW/h, all 

concentrations predicted by dFBA were in the unit of mmol/L, and they were converted 

to g/L, which is the unit of experimentally obtained concentrations. Dynamic 

concentration profiles of biomass and extracellular compounds simulated by dFBA were 

then compared with experimental data. 

Glucose and amino acid uptake rates (VGlc and Vaa) were used as constraints for GSMMs, 

and both glucose and amino acids uptake kinetics were defined as an empirical function 

of undissociated lactic acid concentration (Eq. 2.3).  
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max, , min,exp( [ ])í i LacH i iV V K LacH V≤ − − −    Eq. 2.3 

 

where i denotes the indices for glucose or amino acids, V is the uptake rate of glucose or 

amino acids, Vmax, Vmin and KLacH are the parameters that denote maximum uptake rate, 

minimum uptake rate and undissociated lactic acid constant, respectively. In each time 

interval (i.e. one iteration of dFBA) glucose and amino acid uptake rates were calculated 

from the lactic acid concentration and used as flux constraints for the model; in return, 

the lactic acid concentration is updated by the calculated fluxes. Substrate uptake kinetics 

defined in Eq.2.3 only constrains maximum uptake rates. This means that the models can 

consume the corresponding substrates in less amounts, or they can even produce the 

related compounds. 

Assuming pH to be linearly correlated with lactic acid concentration, [LacH] term in Eq. 

2.1 can be written as in Eq. 2.4. 

 

1 2

[ ][ ]
1 exp( [ ] )

LacLacH
C Lac C

=
+ +    Eq. 2.4 

 

The constants C1 and C2 in Eq. 2.4 were estimated by non-linear regression of 

experimental [LacH] and [Lac] values using CFTool, which is a MATLAB application 

for fitting curves and surfaces to data (The MathWorksTM).  

Hence, combining Eq. 2.3 and Eq. 2.4, substrate uptake kinetics used in dFBA is shown 

in Eq. 2. 5. 

 

max min
1 2

[ ]exp( )
1 exp( [ ] )LacH

LacV V K V
c Lac c

≤ − − −
+ +  Eq. 2.5 
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In addition to substrate uptake kinetics constraining the GSMMs in dFBA, the yield of 

lactic acid produced per glucose consumed, (Y[Lac]/[Glc]) was also used as a reaction ratio 

constraint between glucose consumption and lactic acid production rates in GSMMs of 

L. lactis and S. thermophilus, which assures in-silico homolactic fermentation as observed 

in experiments. 

A set of metabolic fluxes that are required for the solution of the ODE set were obtained 

by two sequential optimizations. First one is a linear programming (LP) problem 

estimating the flux distribution with maximization of the growth rate, and the second 

optimization is a quadratic programming (QP) problem minimizing Euclidean norm, the 

sum of squares of absolute fluxes. QP applied in the flux analyses as a secondary 

optimization after LP is based on the principle of minimal use of enzyme resources 

achieving the primary objective (Ozcan and Cakir, 2016; Tarlak et al., 2014).  

 

2.4.6. Parameter estimation 

The parameters used in the substrate uptake kinetics were dynamically estimated using 

MEIGO optimization tool (Egea et al., 2014) in MATLAB, minimizing the optimization 

problem defined in Eq. 2.6.  

 

experimental 2

1 1
min ( ( , ) )

n t

j i jip j i
J y p t y

= =

= −∑∑
 Eq. 2.6 

 

subject to the system dynamics (Eq. 2.7) and parameter bounds (Eq. 2.8): 

 

( , )[ ]i
i

dy V y p biomass
dt

=
   Eq. 2.7 

,min ,maxi i ip p p≤ ≤     Eq. 2.8 
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where n is the number of dependent variables (concentrations of biomass, glucose, lactic 

acid and amino acids), t is time, y is the matrix of dependent variables, V is reaction rates, 

and p is parameters. Reaction rates at each iteration of the algorithm were calculated by 

the GSMM constrained by glucose and amino acid utilization rates. LSQNONLIN, which 

is a MATLAB algorithm solving non-linear least squares problems (The MathWorksTM), 

was used as the local solver in the optimization problem solved by MEIGO Toolbox. 

 

2.4.7. Dynamic co-culture metabolic modelling 

Dynamic co-culture metabolic modelling, also called dynamic multi-species metabolic 

modelling, used in this study is a dFBA framework adapted for co-cultures. Common 

metabolic pool, which is comprised of the compounds of fermentation medium and the 

compounds produced by the organisms, is shared by the organisms in the co-cultures, 

which allows the in-silico metabolic interactions such as competition and cross feeding. 

This framework was used before in several studies (Hanemaaijer et al., 2017; Hanly and 

Henson, 2011; Zhuang et al., 2011; Zhuang et al., 2012). Similar to dFBA for pure 

cultures, substrate uptake kinetics defined in Eq. 2.5 was used to constrain the models, 

which means total lactic acid produced by the individual members of the co-cultures 

affects the individual substrate uptake rates. The parameters that were estimated using 

pure culture experiments and then used in pure culture dFBA, were also used in dynamic 

co-culture metabolic modelling. Dynamic co-culture metabolic modelling framework is 

illustrated in Fig. 2.1. 
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Figure 2.1. Dynamic co-culture metabolic modelling framework. Lactic acid from 

common metabolites pool changes the individual substrate uptake rates for each time 

interval. The figure was adapted from (Zhuang et al., 2011). 

 

The ODE set in dynamic co-culture metabolic modelling is shown in Eq. 2.9. Solving this 

ODE set gives in-silico individual biomass and co-culture level compound concentration 

profiles during the batch fermentations. 

 

Vi ≤  

-Vmax,i e
(-Ki [LacH])-Vmin,i 

   

Common 

metabolites pool 

 [Lac] Vi
AX 
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Similar to dFBA for pure cultures, the metabolic flux distributions required for the 

solution of the ODE set were obtained by two sequential optimizations, which was 

applied for the individual models separately for each iteration.   

In pure and co-culture modelling, both LP and QP problems were solved by COBRA 

Toolbox (Schellenberger et al., 2011) in MATLAB environment with Gurobi6 

(http://www.gurobi.com) as the optimization solver. The ODE sets on Eq. 2.2 and Eq. 2.9 

were solved by ode45, which is a MATLAB function solving ODEs numerically based 

on the Runge-Kutta method. Finally, experimentally obtained initial biomass and 

compound concentrations were used as initial conditions for the solution of ODE sets.  

http://www.gurobi.com/
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 RESULTS AND DISCUSSION 

Results of this thesis were given under three parts, which are “genome-scale metabolic 

network model of Leu. mesenteroides”, “overview of the pure and co-culture batch 

results” and “the dynamic metabolic network modelling of pure and co-cultures”. In the 

first part, reconstruction and validation of a genome-scale metabolic model of Leu. 

mesenteroides, which was later used in the co-culture metabolic modelling, is discussed. 

In the second part, results of the pure and co-culture batch experiments (e.g. batch 

biomass and compound profiles, yields, carbon balances) are given. Finally, in the last 

part, reconstruction and computational analysis of the pure and co-culture metabolic 

models are discussed, and the computational results are compared with the experimental 

results. The co-culture fermentation dynamics affecting the biomass composition of the 

co-cultures and the potential metabolic interactions between LAB in the co-cultures 

estimated by the co-culture models are also discussed in the last part. 

 

3.1. Genome-Scale Metabolic Network Model of Leu. mesenteroides 

 

3.1.1. Model reconstruction and validation  

The draft metabolic model initially reconstructed by the automatic reconstruction tools 

(see Materials and Methods) was subsequently manually curated using our experimental 

data and literature-based results. After adding the species-specific biomass reaction, 

amino acid requirements were predicted by the draft model using FBA, through 

maximizing the growth rate while consecutively constraining the individual amino acid 

uptake rates to zero. Amino acid requirements predicted by the draft model were then 

compared with the experimental results, and inconsistencies between in-silico and in-

vitro results were used to manually curate the draft model (Table 3.1). 
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Table 3.1. Essential amino acids obtained via in-vitro and in-silico analyses. R: required 

for growth, NR: not required for growth. 

*Data shown are the averages of three repetitive cultures. Maximal optical densities observed were 

classified as amino acid required for growth (OD<0.20) and amino acid not required for growth (OD>0.20). 

 

  

Experimental results* 

(OD at 600 nm) 
Draft model Curated model 

Control 1.310 NR NR 

Alanine 1.187 R NR 

Arginine 0.060 NR NR 

Aspartate 1.204 NR NR 

Asparagine 1.258 R NR 

Cysteine 0.158 R R 

Glutamate 1.237 NR NR 

Glutamine 1.239 NR NR 

Glycine 1.253 NR NR 

Histidine 0.203 NR NR 

Isoleucine 0.089 NR NR 

Leucine 0.124 NR NR 

Lysine 0.068 R R 

Methionine 0.163 R R 

Phenylalanine 1.136 R NR 

Proline 1.266 NR NR 

Serine 1.251 NR NR 

Threonine 0.829 NR NR 

Tryptophan 0.082 NR NR 

Tyrosine 1.228 R NR 

Valine 0.093 NR NR 

Prediction ratio by models 12/20 16/20 
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Although there was no growth without alanine, asparagine, phenylalanine and tyrosine 

in-silico, Leu. mesenteroides grew without these amino acids in-vitro. This indicated that 

biosynthesis pathways of these amino acids were not complete or not available in the 

genome annotation of Leu. mesenteroides ATCC 19254. Therefore, the required reactions 

for the biosynthesis of alanine, asparagine, phenylalanine and tyrosine were added to the 

draft model based on the biosynthesis mechanisms observed on previous LAB metabolic 

models (Flahaut et al., 2013; Oliveira et al., 2005; Pastink et al., 2009; Teusink et al., 

2006).  

Arginine, tryptophan and the branched-chain amino acids (leucine, isoleucine and valine) 

were not essential according to the computational analysis with the draft model, however, 

they were identified as essential amino acids based on our experimental results. This 

unexpected result may be explained by the feedback inhibition of the synthesis of some 

amino acids in the presence of other amino acids, which was also reported in literature 

(Teusink et al., 2005). In that study, for example, although the complete pathway for 

tryptophan synthesis existed in genome annotation, no growth was observed when 

tryptophan was omitted from the medium, and a reasonable growth was observed when 

other aromatic amino acids (tyrosine or phenylalanine) were also omitted. This indicated 

that the presence of phenylalanine and tyrosine in the medium could inhibit the synthesis 

of tryptophan (Teusink et al., 2005). In-silico growth was observed with not only 

individual omission of the branched-chain amino acids (leucine, isoleucine and valine), 

but also simultaneous omission of these three amino acids. On the other hand, there was 

no in-silico growth with omission of glutamine and glutamate together, which shows that 

glutamate and glutamine are not synthesized individually but compensate each other if 

needed.  

Glucose 6-phosphate dehydrogenase (G6PDH) of Leu. mesenteroides can utilize either 

NAD and NADP, and this unusual dual coenzyme specificity of the G6PDH from Leu. 

mesenteroides was reported by several studies (Cosgrove et al., 1998; Levy, 1989; Levy 

et al., 1983; Naylor et al., 2001; Olive et al., 1971). Only NADP-specific G6PDH existed 

in the draft metabolic model, and it caused excessive production of NADPH, which was 

re-oxidized by biologically irrelevant ways in the network. Thus, NAD-specific G6PDH 

reaction was added to the draft model. In the final model, NADH generated by the NAD-
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specific G6PDH and NADPH generated by the NADP-specific G6PDH were re-oxidized 

in the reductive steps of heterolactic fermentation and biosynthesis of lipids, respectively.  

Upon manual curation, the final metabolic model contained 1129 metabolites and 1088 

reactions governed by 559 genes and is named as iLM.c559. The reconstructed model is 

available in SBML format at https://github.com/ozcanemrah.  

After manual curation, the model was compared with our anaerobic experimental data for 

validation (Table 3.2). Experimental results showed a typical heterolactic fermentation 

pattern; half of the carbon sources consumed were converted to lactate, and the rest of the 

carbon sources were converted to ethanol, acetate and CO2 (see Appendix C for the batch 

fermentation data). The consistency between experimental and computational growth 

rates provided a validation of the reconstructed genome-scale metabolic model, 

iLM.c559. It also showed that the calculated values of the energetic parameters (GAM 

and NGAM) used in the model were acceptable for Leu. mesenteroides. 

 

Table 3.2. Experimental and computational reaction rates of the co-metabolism of citrate 

and glucose for anaerobic fermentation of Leu. mesenteroides. The objective function 

(growth rate) flux value was obtained by FBA, and minimum and maximum in-silico flux 

values of production rates were obtained by FVA. Reaction rates for the experimental 

values were calculated for the exponential phase of batch fermentation (2-14 h). Uptake 

rates of amino acids obtained by experimental analysis were constrained as maximum 

uptake rates of amino acids in the model. See the Appendix D for the maximum amino 

acid uptake rates used. 

Reaction In-vitro reaction rates 

(mmol/gDW/h) 

In-silico reaction rates 

(mmol/gDW/h) 

Glucose uptake rate 5.03 5.03 (1) 

Citrate uptake rate  1.17 1.17 (1) 

Lactate production rate 5.29 4.80-5.80 

Ethanol production rate 5.03(2) 3.85-4.43 

Acetate production rate 1.53 1.38-1.76 

CO2 production rate 6.20(2) 5.88-6.94 
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Table. 3.2. (Continued) 

Flavour metabolite (3) 

production rate 

NM 0-0.77 

Growth rate (1/h) 0.15 0.14 
(1) Constrained value 
(2) Ethanol and CO2 were not measured experimentally, but they were calculated based on 

experimental consumption rates (see Experimental Procedures).  
(3) Flavour metabolites: the summed production rates of acetyl, diacetyl, 2,3-Butandiol, 4-Methyl-

2-oxopentanoate (4MOP), (S)-3-Methyl-2-oxopentanoate (3MOP) and 3-Methyl-2-oxobutanoate 
(3MOB) 

• NM: not measured 

 

3.1.2. Model-based investigation of heterolactic fermentation and flavour 

metabolism in Leu. mesenteroides in anaerobic conditions  

The reconstructed metabolic model showed that heterolactic fermentation of Leu. 

mesenteroides is governed by energy and redox balances, as stated by several studies 

(Koduru et al., 2017; Plihon et al., 1995; Schmitt et al., 1992). Glucose is metabolized 

through PKP where one glucose 6-phosphate is broken down into two branches resulting 

in equal molar of glyceraldehyde 3-phosphate and acetyl phosphate. When glucose is the 

sole carbon source, the branch where glyceraldehyde 3-phosphate is converted into lactate 

is redox balanced and produces ATP required for the cell, while on the other branch, 

acetyl-phosphate is converted into ethanol resulting in NADH oxidation or into acetate 

by acetate kinase resulting in ATP (Fig. 3.1).  
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Figure 3.1. Phosphoketolase pathway in the metabolic network of Leu. mesenteroides. 

Metabolites represented by red colour are major external metabolites produced. G6P: D-

Glucose 6-phosphate, G1P: D-Glucose 1-phosphate. 

 

The conversion of acetyl-phosphate into acetate or ethanol is governed by the redox 

balance and ATP requirement of the cell. At first, the reconstructed model was used to 

simulate this phenomenon under glucose-only anaerobic conditions. Product formation 

rates were calculated as a function of increase in the glucose consumption rates (Fig. 3.2-

A). The model predicted that glucose -as the only carbon source- was converted to lactate, 

ethanol and CO2 with almost equal glucose:product molar ratio of 

glucose:CO2:lactate:ethanol:acetate =1:1:1:1:0 (Fig. 3.2-A). This ratio was also observed 
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by several experimental studies for the anaerobic fermentation of Leu. mesenteroides 

(Bourel et al., 2003; LevataJovanovic and Sandine, 1996; Plihon et al., 1995).  

When citrate was used as the sole carbon source, in-silico growth was not observed, which 

is also consistent with an experimental study (Starrenburg and Hugenholtz, 1991). 

Furthermore, the co-metabolism of citrate and glucose under anaerobic conditions was 

simulated by the metabolic model by changing citrate rates at a fixed glucose 

consumption rate (Fig. 3.2-B). Because citrate acts as an electron acceptor, in-silico 

growth was stimulated by the co-utilization of citrate, again in agreement with the 

experimental studies associated with the citrate consumption of Leu. mesenteroides 

(Schmitt et al., 1992; Starrenburg and Hugenholtz, 1991). Conversion of pyruvate to 

lactate and acetyl-CoA to ethanol leads to the oxidation of NADH. In flux predictions, 

citrate contributes to the pyruvate pool through oxaloacetate decarboxylase (Fig. 3.3), 

which is also stated in literature (LevataJovanovic and Sandine, 1996). The pyruvate 

derived from citrate utilization increased the lactate production, which led to an increase 

in the oxidation of NADH. Therefore, the cell needed to make less ethanol for the 

oxidation of NADH, and hence some part of acetyl-phosphate could be converted to 

acetate by acetate kinase resulting in additional ATP production. Stimulation of growth 

could be explained by the increase in available ATP through acetate production. The 

increased lactate production with increased citrate, as well as the decreased ethanol 

formation, in our model prediction is consistent with the studies of (Schmitt et al., 1992) 

and (Schmitt and Divies, 1992) respectively. In addition to indirect contribution of citrate 

to acetate production by acetate kinase (rxn00225 in Fig. 3.1), citrate also directly 

contributes to the acetate pool by citrate oxaloacetate-lyase (rxn00265 in Fig. 3.3).  
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Figure 3.2. Effect of glucose and citrate uptake rates on metabolite production profile 

and growth rate, obtained by model simulations. Width of the flux profiles denotes flux 
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span obtained by FVA. (A) Product profiles with respect to glucose consumption rate 

when glucose is the sole carbon source, (B) Product profiles with co-metabolism of 

citrate and glucose. Glucose is fixed to a constant consumption rate (15 mmol/gDW/h) 

for this analysis. Maximum uptake rates of amino acids were constrained to 0.2 

mmol/gDW/h for (A) and (B). Flavour: the summed rates of acetyl, diacetyl, 2,3-

Butandiol, 4-Methyl-2-oxopentanoate (4MOP), (S)-3-Methyl-2-oxopentanoate (3MOP) 

and 3-Methyl-2-oxobutanoate (3MOB) 

 

Citrate utilization leads to the production of flavour metabolites in Leu. mesenteroides 

(LevataJovanovic and Sandine, 1996; Schmitt et al., 1992; Starrenburg and Hugenholtz, 

1991). In our model, flavour metabolites produced following the routes seen in Fig. 3.3 

are acetoin, diacetyl, 2,3-butanediol, 4-methyl-2-oxopentanoate (4MOP), (S)-3-methyl-

2-oxopentanoate (3MOP) and 3-methyl-2-oxobutanoate (3MOB), the last three of which 

are associated with amino acid metabolism. Flavour metabolite production was observed 

with not only co-metabolism of citrate and glucose (Fig. 3.2-B), but also with glucose as 

the only carbon source (Fig 2-A). However, significant production was only observed 

when the growth rate could not increase anymore due to amino acid limitation. Because 

of excess carbon and ATP, the flux span of products obtained by FVA widens after this 

point. Whereas minimum flux values of lactate and acetate production decreased, 

maximum flux values of flavour metabolites production increased. This result shows that 

the cell can divert the carbon sources to flavour production when it has no growth 

requirements (carbon or ATP) anymore. The amount of molar carbon required to reach 

the maximal growth rate, and hence flavour formation, was lower when glucose and 

citrate were co-metabolized compared to sole glucose consumption (Fig. 3.2). This may 

indicate how citrate can be advantageous for flavour production.  
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Figure 3.3. Flavour metabolite production associated with citrate metabolism. 

Metabolites represented by red colour are external metabolites produced. 4MOP: 4-

Methyl-2-oxopentanoate, 3MOP: (S)-3-Methyl-2-oxopentanoate and 3MOB: 3-Methyl-

2-oxobutanoate 

 

In line with our model predictions, the production of aromatic compounds was favored 

over the synthesis of other metabolites from citrate during the stationary phase 

(LevataJovanovic and Sandine, 1996). Moreover, a recent study about the aroma 

formation from a citrate-consuming dairy Lactococcus lactis at near-zero growth rates 

points out that some particular LAB can survive in long periods of nutrient limitation, as 

in the case of cheese ripening, and these LAB still contribute to the flavour formation 

(van Mastrigt et al., 2018). We therefore investigated the flavour metabolite production 

during co-metabolism of citrate and glucose at low growth rates in-silico: growth rate was 

fixed to near-zero values, and flux distributions were calculated constraining carbon and 
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nitrogen sources to low values to mimic nutrient limitation conditions, with the 

maximization of ATP production as the objective function. As expected, production of 

total flavour metabolites linearly increased, and acetate and lactate production decreased 

with decreasing growth rate (data not shown).  

 

3.1.3. Metabolic shift and stimulation of growth in Leu. mesenteroides under 

aerobic conditions 

Although acetate production by acetate kinase supplies ATP for the cell, significant 

amount of acetyl-phosphate is converted into ethanol to balance the redox state of the cell 

by producing NAD under anaerobic conditions. The bottleneck of obligate heterolactic 

Leu. mesenteroides due to energy and redox state could be overcome by aerobic 

fermentation. The reconstructed metabolic model was used to simulate aerobic conditions 

on growth and product formation characteristics of the organism. Simulation results 

showed that oxygen acted as another electron acceptor for Leu. mesenteroides, and 

NADH was oxidized by aerobic fermentation, which is also observed in the respiration 

of some LAB (Pedersen et al., 2012). The membrane-associated mechanisms of Leu. 

mesenteroides suggested by the metabolic model for aerobic conditions is illustrated in 

Fig. 3.4. Then, the protons extruded by the respiratory mechanism could be utilized by 

the F0F1-ATPase to generate ATP. In this two-step mechanism, NADH is not oxidized 

by oxygen directly, but rather NADH is oxidized by menaquinone or ubiquinone, which 

are re-oxidized by oxygen. This mechanism is also observed in some LAB (Pedersen et 

al., 2012), and it is different from that of NADH oxidases (NOX) that oxidize NADH 

directly using oxygen . 
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Figure 3.4. Respiration mechanisms mediated by menaquinone-8 and ubiquinone-8 in 

Leu. mesenteroides. 

 

Thus, under aerobic conditions, the requirement of ethanol production for re-oxidation of 

NADH decreases and acetate production increases. This phenomenon causes a metabolic 

shift between ethanol and acetate production and stimulates the cell growth (Fig. 3.5) due 

to ATP production by acetate kinase and F0F1-ATPase. Hence, the stoichiometric ratio 

of glucose:ethanol:acetate could be summarized as 1:1:0 and 1:0:1 for anaerobic and fully 

aerobic fermentation of Leu. mesenteroides respectively, which is also reported by several 

experimental studies associated with Leu. mesenteroides (Bourel et al., 2003; Dols et al., 

1997; Plihon et al., 1995). The same simulation also showed that increasing oxygen 

uptake rates had minimal effect on lactate and CO2 production rates (Fig. 3.5), in 

agreement with an experimental study (Plihon et al., 1995).  
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Figure 3.5. Model predictions on the metabolic shift between ethanol and acetate 

production by increasing oxygen uptake rate. Glucose uptake rate as only carbon source 

was fixed to 10 mmol/gDW/h, and maximum uptake rates of amino acids were fixed to 

0.2 mmol/gDW/h. Growth, ●; CO2, ■; lactate, 🗙🗙; acetate, ▲; ethanol, ▼; flavour, ★ 

 

The model also predicted flavour production with increasing oxygen uptake rate (Fig. 

3.5), but similar to the simulations in anaerobic conditions, significant amount of flavour 

metabolites production was observed only after the oxygen-induced growth increase 

saturated. Flux span patterns obtained by FVA (see Appendix E) was also similar to the 

co-metabolism of glucose and citrate in anaerobic condition, which was discussed above. 

 

3.1.4. Effect of different carbon sources on growth profiles in Leu. mesenteroides 

In addition to aerobic fermentation, another strategy to overcome the energy and redox 

state bottleneck in Leu. mesenteroides could be the use of different carbon sources. For 
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this purpose, growth and product profiles were simulated by the model for commonly 

used mono and disaccharides as carbon sources, the utilization mechanisms of which were 

illustrated in Fig. 3.6. Although lactose utilization is considered as weak in Leu. 

mesenteroides ATCC 19254 (LevataJovanovic and Sandine, 1996) and mannitol 

production via fructose utilization is absent in the genome of Leu. mesenteroides ATCC 

19254, the metabolic model includes the complete mechanism of the lactose and fructose 

utilization (Fig. 3.6). The latter is because an experimental study (Carvalheiro et al., 2011) 

reported that Leu. mesenteroides ATCC 19254 produced mannitol through the 

consumption of fructose, suggesting that this strain has a mannitol dehydrogenase 

activity. Furthermore, the model does not consider the dextran production through 

sucrose utilization due to the lack of related enzymes in Leu. mesenteroides subsp. 

cremoris. Dextran production was observed in Leu. mesenteroides subsp. dextranicum 

and subsp. mesenteroides strains (Naessens et al., 2005). A study investigating different 

Leuconostoc strains also stated that the strains identified as Leu. mesenteroides subsp. 

cremoris (20 of 60 Leuconostoc strains examined) did not produce dextran 

(LevataJovanovic and Sandine, 1996).  

 

 

Figure 3.6. Representation of the utilization of commonly used carbon sources by Leu. 

mesenteroides. G6P: Glucose 6-phosphate, G1P: Glucose 1-phosphate, F6P: Fructose 6-

phosphate, GAL1P: Galactose 1-phosphate 
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Consumption rates of monosaccharides (glucose and fructose) were fixed to twice the 

disaccharides (sucrose and lactose) consumption rates to simulate the equivalent carbon 

utilization rates. Another constraint was applied for the ethanol production in fructose 

growth by fixing its rate to zero according to the experimental study (Dols et al., 1997) 

because it was necessary for the simulation of non-zero mannitol production by fructose 

utilization. The model predicted the oxidation of NADH by mannitol production since 

the oxidation route via ethanol production was inactive in the fructose fermentation. The 

usage of significant amounts of the fructose for mannitol production led to the decrease 

in growth rate compared to other carbon sources. On the other hand, the growth was 

stimulated with the utilization of sucrose as a carbon source (Fig. 3.7) because less ATP 

was consumed per equivalent carbon utilization rate compared to the other carbon sources 

(Fig. 3.6). A decrease and increase of growth on fructose and sucrose, respectively, is 

consistent with literature (Dols et al., 1997). Although the consumed ATP per equivalent 

carbon utilization rate was the same for glucose and lactose, in-silico growth rate 

decreased with lactose utilization due to the difference in transport systems of these two 

sugar sources. Lactose is transferred by proton symport, which is the only transport 

mechanism for lactose in the model, whereas glucose is transferred by a 

phosphotransferase system (PTS), which is energetically more advantageous. Our model 

explains the reason behind this advantage. F0F1-ATPase is a membrane-bound enzyme 

that pumps out the intracellular proton using ATP in anaerobic conditions in LAB for pH 

homeostasis (Konings, 2002), and F0F1-ATPase in our model also has the same task for 

anaerobic conditions. Contrary to the proton symport used as a lactose transport system, 

the PTS, used as a glucose transport system in the model, does not introduce intracellular 

proton. Hence, F0F1-ATPase spent less ATP to pump protons out. 
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Figure 3.7. Effect of commonly used carbon sources on the metabolic products of Leu. 

mesenteroides in anaerobic condition predicted by the model. Uptake rates of 

monosaccharides (glucose and fructose) and disaccharides (lactose and sucrose) were 

constrained to 10 and 5 mmol/gDW/h respectively (without citrate uptake), and 

maximum uptake rates of amino acids were constrained to 0.2 mmol/gDW/h. Ethanol 

production via fructose fermentation was fixed to zero (Dols et al., 1997). Error bars 

denote flux span obtained by FVA 

 

3.1.5. Comparison of the GSMMs of Leu. mesenteroides subsp. cremoris and Leu. 

mesenteroides subsp. mesenteroides 

Although our model is the first GSMM of dairy-origin Leu. mesenteroides subsp. 

cremoris ATCC 19254, it is the second Leu. mesenteroides reconstruction in the literature 

after the plant-origin Leu. mesenteroides subsp. mesenteroides ATCC 8293 (Koduru et 

al., 2017). In terms of their genome sizes, the two subspecies are the most distinct ones 

among 17 subspecies (Chun et al., 2017). The plant-origin subspecies has the biggest 
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genome size among 17 subspecies (2.08 Mb) whereas the cheese-origin subspecies has 

the lowest genome size (1.74 Mb).  The difference is also reflected in the number of 

genes. The subspecies reconstructed and analysed in this work has around 300 genes less 

than the plant-origin subspecies. Genome comparison of dairy-origin Leu. mesenteroides 

ATCC 19254 and plant-origin Leu. mesenteroides ATCC 8293 show significant 

differences in the metabolism of the two, which include sucrose and amino acid 

metabolism in particular. (See Appendix G for the comparison of sucrose metabolism).  

Our individual amino acid omission experiments showed that the absence of histidine 

causes weak growth and eight amino acids (arginine, cysteine, isoleucine, leucine, lysine, 

methionine, tryptophan and valine) are required for the growth of the dairy-origin strain 

Leu. mesenteroides. However, only two amino acids (glutamine and valine) are essential 

for a plant-origin Leu. mesenteroides (Koduru et al., 2017). The amino acid auxotrophy 

differences between dairy and plant-origin Leu. mesenteroides  supports the hypothesis 

in a study which, by stating the difference in amino acid auxotrophies for the dairy and 

plant-origin lactic acid bacterium Lactococcus lactis, proposes that dairy strains originate 

from the plant niche  (Bachmann et al., 2012). In that study, plant-origin L. lactis strains 

propagated for 1000 generations in milk were adapted to milk environment, and they were 

able to use the milk proteins as a source of amino acids. Genome sequences of these 

strains revealed point mutations in loci related to amino acid biosynthesis (Bachmann et 

al., 2012).  

Upon simulation of our model, we realized an important difference in the redox state of 

the two models: In the plant-derived model, glucose 6-phosphate dehydrogenase 

(G6PDH) and phosphogluconate dehydrogenase (GND) reactions of PKP produce only 

NADPH, which is re-oxidized via futile cycles not related with PKP, and NADH oxidized 

in ethanol production is also produced by futile cycles not related with PKP. But in our 

model, both G6PDH and GND have dual coenzyme specificity, and NADH and NADPH 

produced in PKP were re-oxidized in the reductive steps of heterolactic fermentation and 

biosynthesis of lipid, respectively. Finally, the metabolic model reconstructed in this 

study additionally incorporated the citrate utilization and citrate related flavour 

metabolism, which was not considered in the plant-origin Leu. mesenteroides model. This 

allowed us to investigate the role of citrate metabolism and oxygen uptake on flavour 

formation. 
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3.2. Overview of The Pure and Co-Culture Batch Results 

The pure and co-cultures were grown in 1-litre batch bioreactor under anaerobic 

conditions, without pH maintenance and using chemically defined medium. Biomass, 

glucose, organic acids and amino acids concentrations were obtained using the hourly 

basis fermentations samples. 

 

3.2.1. Pure Culture Batch Profiles  

Pure cultures of L. lactis, S. thermophilus (ST) and Leu. mesenteroides (LM) strains were 

fermented in batch cultures until stationary phase. Although L. lactis subsp. cremoris 

(LLC) and L. lactis subsp. lactis (LLL) reached the stationary phase at the same time (Fig. 

3.8. and Fig. 3.9), the biomass yield of L. lactis subsp. cremoris was higher than L. lactis 

subsp. lactis (Table 3.3). S. thermophilus showed rapid growth and reached the stationary 

phase at 4th hour (Fig 3.10), while Leu. mesenteroides showed slower growth and reached 

the stationary phase at around 22nd hour (Fig. 3.11). L. lactis and S. thermophilus species 

showed homolactic fermentation in which main fermentation product was lactic acid, 

while Leu. mesenteroides being obligate heterolactic lactic acid bacterium (Chun et al., 

2017; Garvie, 1986) produced CO2 and ethanol in addition to lactic acid. The difference 

between homolactic and heterolactic fermentation could also be explained by the yield of 

lactic acid produced per glucose consumed, of which Leu. mesenteroides had the 

minimum yield among all strains (Table 3.3). 

 

Table 3.3. The yields and carbon balances of the pure cultures 

 YX/S, Biomass yield 

(g Biomass/ g Glc)* 

YP/S, Lactic acid 

yield (g Lac/ g Glc)  

Carbon 

balance (%) 

L. lactis subsp. 

cremoris 0.186±0.001 0.841±0.007 

 

93.06±0.95 

L. lactis subsp. 

lactis 0.171±0.001 0.833±0.000 

 

91.99±0.24 
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Table 3.3. (Continued) 

S. thermophilus 0.183±0.006 0.865±0.010 101.64±1.65 

Leu. mesenteroides 0.068±0.006 0.487±0.037 94.05±6.39 
*Since glucose consumption continued after growth inhibition, biomass yields were based on exponential 

growth phase.  

 

Low pH as a result of increasing organic acid, especially lactic acid, caused growth 

inhibition for all batches. Therefore, glucose was not consumed completely due to the pH 

inhibition on growth for all batches. But, after growth inhibition, glucose consumption 

and lactic acid production slightly continued, and the yield of lactic acid produced per 

glucose consumed was almost constant during all batches (Table 3.3). 

 

 

Figure 3.8. Pure culture batch profile of Lactococcus lactis subsp. cremoris (LLC). 

Points denote average values of two independent biological repetitions. Corresponding 

error bars are also given. 
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Figure 3.9. Pure culture batch profile of Lactococcus lactis subsp. lactis (LLL). Points 

denote average values of two independent biological repetitions. Corresponding error 

bars are also given. 

 

 

Figure 3.10. Pure culture batch profile of Streptococcus thermophilus (ST). Points 

denote average values of two independent biological repetitions. Corresponding error 
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bars are also given. Glucose, ■; lactic acid, ♦; pH, ▼; biomass, ●; acetic acid, ˟; formic 

acid, ★; citric acid, ▲ 

 

 

Figure 3.11. Pure culture batch profile of Leuconostoc mesenteroides (LM). Points 

denote average values of two independent biological repetitions. Corresponding error 

bars are also given. 

 

Acetic acid and formic acid concentrations were observed to be slightly decreased in 

batches of Lactococcus species and Leu. mesenteroides. This unexpected result might be 

due to their concentrations being lower than detectable range of HPLC. On the other hand, 

formic acid production was observed in S. thermophilus until stationary phase (Fig. 3.10). 

But omitting acetic and formic acid did not change the carbon balance significantly (data 

not shown). Furthermore, citrate was not consumed significantly in L. lactis and S. 

thermophilus strains, while Leu. mesenteroides, which is known as citrate consumer lactic 

acid bacteria (Smid and Kleerebezem, 2014), consumed all citrate before the stationary 

phase (Fig. 3.11).  

Fig. 3.12 shows biomass, glucose, lactic acid and pH profiles of the pure cultures, which 

enables to see a comparative picture of the pure cultures. Undissociated lactic acid, which 
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is the main  inhibitory component of lactic acid fermentation, is increasingly formed by 

low pH (Bouguettoucha et al., 2011), and it is calculated as given Eq. 2.1. The 

undissociated lactic acid is the important component for the metabolic modelling study 

part (section 3.3) and undissociated lactic acid profiles of the pure cultures are also given 

in the Fig. 3.12-D. 

 

 

Figure 3.12. Comparative profiles of biomass (A), glucose (B), total lactic acid (C), pH 

and undissociated lactic acid (LacH) (D) of the pure cultures. 

 

3.2.2. Co-Culture Batch Profiles  

The co-cultures composed of L. lactis and Leu. mesenteroides species and the co-cultures 

composed L. lactis and S. thermophilus species were assumed to represent mesophilic 

and thermophilic starter cultures respectively. The co-culture compositions used in this 

thesis are given in Table 3.4. 

 

 

A 

C D 

B 
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Table 3.4. The co-culture compositions in this study. 

Co-culture Composition 

Two-species mesophilic co-culture L. lactis subsp. cremoris - Leu. 

mesenteroides 

Three-species mesophilic co-culture L. lactis subsp. cremoris - L. lactis subsp. 

lactis- Leu. mesenteroides 

Two-species thermophilic co-culture L. lactis subsp. cremoris - S. 

thermophilus 

Three-species thermophilic co-culture L. lactis subsp. cremoris- L. lactis subsp. 

lactis- S. thermophilus 

 

Total biomass, glucose, organic acids and pH profiles of co-cultures are illustrated in Fig. 

3.13-3.16. As it can been seen in Table 3.5, both biomass and lactic acid yields of co-

cultures are between the yields of pure cultures that constitute the related co-cultures. 

This result showed that co-cultures did not create an advantage or disadvantage compared 

to pure cultures in terms of the yields. The fact that higher or lower fermentation yields 

of a co-culture than that of the pure cultures constituting the pure culture could strictly 

point out an interaction among the microorganisms. However, in this study, the 

intermediate fermentation yields of the co-culture do not prove a metabolic interaction. 

Potential metabolic interactions will be investigated via metabolic modelling analyses in 

section 3.3.4. 
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Figure 3.13. Batch profile of the co-culture comprised of Lactococcus lactis subsp. 

cremoris and Leu. mesenteroides (LLC-LM). Points denote average values of two 

independent biological repetitions. Corresponding error bars are also given. Glucose, ■; 

lactic acid, ♦; pH, ▼; biomass, ●; acetic acid, ˟; formic acid, ★; citric acid, ▲ 

 

 

Figure 3.14. Batch profile of the co-culture comprised of Lactococcus lactis subsp. 

cremoris, Lactococcus lactis subsp. lactis and Leu. mesenteroides (LLC-LM). Points 
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denote average values of two independent biological repetitions. Corresponding error 

bars are also given. Glucose, ■; lactic acid, ♦; pH, ▼; biomass, ●; acetic acid, ˟; formic 

acid, ★; citric acid, ▲ 

 

 

Figure 3.15. Batch profile of the co-culture comprised of Lactococcus lactis subsp. 

cremoris and S. thermophilus (LLC-ST). Points denote average values of two 

independent biological repetitions. Corresponding error bars are also given. 
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Figure 3.16. Batch profile of the co-culture comprised of Lactococcus lactis subsp. 

cremoris, Lactococcus lactis subsp. lactis and S. thermophilus (LLC-LLL-ST). Points 

denote average values of two independent biological repetitions. Corresponding error 

bars are also given. 

 

Table 3.5. The yields and carbon balances of the co-cultures 

 YX/S, Biomass yield 

(g Biomass/ g Glc) * 

YP/S, Lactic acid 

yield (g Lac/ g Glc) 

Carbon 

balance (%) 

LLC-LM 0.182±0.005 0.805±0.026 87.77±2.79 

LLC-LLL-LM 0.173±0.006 0.802±0.031 88.36±2.94 

LLC-ST 0.181±0.001 0.855±0.011 98.67±3.49 

LLC-LLL-ST 0.175±0.005 0.826±0.031 93.58±2.56 
*Since glucose consumption continued after growth inhibition, biomass yields were based on exponential 

growth phase.  

 

Among all pure and co-cultures, only carbon balances of mesophilic co-cultures were 

calculated as less than 90% (Table 3.5). Ethanol and CO2 produced by Leu. mesenteroides 

in pure culture were calculated based on the glucose consumption (see methods), and 
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since individual glucose consumption of Leu. mesenteroides could not be measured in co-

cultures experimentally, ethanol and CO2 were not considered in the carbon balance of 

mesophilic co-cultures.   

In addition of the yield comparison of pure and co-cultures, biomass, glucose and lactic 

acid profiles were also compared in Fig. 3.17. This results also showed that biomass, 

glucose and lactic acid profiles of co-cultures were located between the pure culture 

profiles. 

 

 

Figure 3.17. Comparative biomass, glucose and lactic acid profiles of pure and co-

cultures. (A) Mesophilic co-cultures and pure cultures constituting the co-cultures, (B) 

thermophilic co-cultures and pure cultures constituting the co-cultures 

A B 
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3.2.3. Individual biomass profiles in the co-cultures 

Relative microbial abundance in a microbial community gives important insights about 

the community dynamics such as suppression or domination of the individual organisms 

and related changes in the medium composition. Because the microorganisms used in this 

study are phylogenetically very close species that are hardly distinguished using classical 

microbiological methods such as colony counting on selective medium, we employed a 

molecular-based method, qPCR, to estimate relative abundance ratio (see Section 2.3.3). 

In all co-cultures, the domination of L. lactis subsp. cremoris was observed (Fig. 3.18). 

The final biomass concentration of Leu. mesenteroides in mesophilic co-cultures was far 

lower than the final biomass concentration of Leu. mesenteroides in pure culture. Low 

Leu. mesenteroides abundance, in other words the domination of L. lactis strains, in 

mesophilic co-cultures also explained the similar biomass, glucose and lactic acid profiles 

between pure culture of L. lactis strains and mesophilic co-cultures seen in Fig. 3.17-A. 

 

 

Figure 3.18. Individual biomass profiles of the co-culture members in the two-species 

mesophilic co-culture (A), the three-species mesophilic co-culture (B), the two-species 

thermophilic-co culture (C) and the three-species thermophilic co-culture (D). 

A B 

C D 
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Similar to mesophilic co-cultures, the final biomass concentration of L. lactis subsp. 

cremoris was higher than other co-culture members in the thermophilic co-cultures, 

although S. thermophilus dominated the co-cultures in the early phase of the batches (Fig. 

3.18-C, Fig. 3.18-D).  

The dynamics behind the biomass compositions in the co-cultures is discussed in Section 

3.3 through the co-culture metabolic models.  

 

3.2.4. Amino acid profiles of pure and co-cultures 

Amino acid profiles of the pure and co-cultures are given in Fig. 3.19 and Fig. 3.20 

comparatively. Since the chromatographic peaks of glutamine/glycine and 

alanine/proline pairs were overlapped, the profiles of these amino acids were given as a 

summation, while amino acid profiles of histidine and cysteine could not be detected by 

the methods used. 

Amino acid consumption profiles of pure cultures were mostly coupled with the biomass 

profiles, except some amino acids such as isoleucine and leucine in S. thermophilus pure 

culture, in which consumption trends continued after stationary phase. We also observed 

production of some amino acids in pure cultures, and these were methionine and tyrosine 

in L. lactis subsp. cremoris and S. thermophilus pure cultures, aspartate in  L. lactis subsp. 

lactis pure culture and asparagine in Leu. mesenteroides pure culture. On the other hand, 

asparagine, serine and threonine profiles in the L. lactis subsp. lactis pure culture, and 

asparagine and aspartate profiles in the Leu. mesenteroides pure culture showed 

increasing trend at the early phase of the culture and these amino acids started to be 

consumed afterwards.  

Due to low microbial abundance of Leu. mesenteroides in mesophilic co-cultures, amino 

acid profiles of two-species mesophilic co-culture showed similar profiles to that of L. 

lactis subsp. cremoris pure culture. But, unlike L. lactis subsp. cremoris pure culture, 

aspartate and tryptophan showed increasing trends in two-species mesophilic co-culture, 

which might be due to the possible contribution of Leu. mesenteroides. Although we 

observed a general similarity between the amino acid profiles of the two and three-species 
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mesophilic co-cultures especially before stationary phase, the effects of L. lactis subsp. 

lactis on the three-species co-culture were also observed. For instance, methionine 

consumption was observed in three-species co-culture in parallel with the need of L. lactis 

subsp. lactis observed in pure culture. Furthermore, the final concentrations of some 

amino acids in the three-species mesophilic co-culture such as lysine, phenylalanine and 

serine were higher than the two-species mesophilic co-culture (Fig. 3.19). 

 

 

Figure 3.19. Comparative amino acids profiles of L. lactis subsp. cremoris (LLC), L. 

lactis subsp. lactis (LLL) and Leu. mesenteroides (LM), two species mesophilic co-

culture (LLC-LM) and three-species mesophilic co-culture (LLC-LLL-LM). 

  

Final aspartate concentration of the two-species thermophilic co-culture and the final 

phenylalanine concentration of the two and three-species thermophilic co-cultures were 

respectively higher and lower than the pure cultures of the strains constituting the co-

cultures. The profiles of the other amino acids in the thermophilic co-cultures were 

between the amino acid profiles of the pure cultures. Similar to the three-species 

mesophilic co-culture, an effect of L. lactis subsp. lactis on the amino acid profiles of the 

three-species thermophilic co-culture was observed. For instance, the final aspartate 

concentrations increased in three-species thermophilic co-culture compared to two-

species thermophilic co-culture, because of the aspartate production of L. lactis subsp. 

lactis (Fig. 3.20).   
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Figure 3.20. Comparative amino acid profiles of L. lactis subsp. cremoris (LLC), L. 

lactis subsp. lactis (LLL) and S. thermophilus (ST), two species thermophilic co-culture 

(LLC-ST) and three-species thermophilic co-culture (LLC-LLL-ST). 

 

3.3. The Dynamic Metabolic Network Modelling of Pure and Co-Cultures 

 

3.3.1. Parameter estimation 

To mimic the cheese fermentation, pH was not controlled for all batches. Low pH as a 

result of increasing organic acid, especially lactic acid, concentration caused growth 

inhibition for all batches. Consequently, glucose and amino acids were not consumed 

completely for all batches. The main inhibitory component of lactic acid fermentation is 

the undissociated form of lactic acid, which is increasingly formed by low pH 

(Bouguettoucha et al., 2011). Compared to the dissociated form, the undissociated lactic 

acid is soluble within the cytoplasmic membrane and acidifies the cytoplasm (Gatje and 

Gottschalk, 1991; Mcdonald et al., 1990), which disturbs proton motive force and the 

related nutrient transport (Kashket, 1987; Konings, 2002). Hence, glucose and amino acid 

uptake kinetics used in the dynamic metabolic models were defined with an empirical 

equation (Eq. 2.3), which is a function of undissociated lactic acid, as glucose and amino 

acids were not the rate limiting compounds.  
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The strain specific parameters estimated by the dynamic parameter estimation approach 

(see methods) and used in substrate uptake kinetics were listed in Table 3.6.  

In substrate uptake kinetics, Vmax and Vmin define the maximum and minimum utilization 

rate before and after the low pH conditions respectively, while K[LacH] defines the effect 

of undissociated lactic acid on the rate. The bigger K[LacH] is, the earlier the inhibition for 

the rate is. In the dynamic parameter estimation, computational and experimental 

concentration values are compared such that the errors arising from computational and 

experimental reaction rate comparison are minimized. Experimental concentration values 

are the direct results of bioanalyses such as HPLC, while experimental reaction rate 

values are calculated using these experimental concentration values in relatively large 

time intervals, which might miss some dynamics for the system.  Hence, although the 

dynamic parameter estimation is computationally a time-consuming process (i.e. days), 

it was still preferred in this study for a more realistic parameter estimation. 

 

Table 3.6. The strain specific parameters used in the substrate uptake kinetics. The same 

parameters were used in both pure and co-culture models. The units of Vmax and Vmin are 

mmol/gDW/h, while the unit of K[LacH] is mmol-1. 

  
LLC LLL ST LM 

  
LLC LLL ST LM 

Glc Vmax 21.405 22.675 35.883 14.645 Thr Vmax 0.200 0.066 0.010 0.087 

  K[LacH] 0.182 0.129 0.752 0.178   K[LacH] 0.272 0.063 0.250 0.138 

  Vmin 0.196 0.001 1.294 0.474   Vmin 0.002 0.001 0.004 0.006 

Arg  Vmax 0.217 0.139 0.118 0.031 Trp Vmax 0.048 0.078 0.138 0.060 

  K[LacH] 0.140 0.124 0.235 0.064   K[LacH] 0.210 0.500 0.358 0.052 

  Vmin 0.003 0.001 0.002 0.000   Vmin 0.003 0.001 0.007 0.002 

Asn Vmax 0.328 0.144 0.292 -0.072 Tyr Vmax -0.051 0.000 -0.165 0.070 

  K[LacH] 0.280 0.183 0.591 0.083   K[LacH] 0.173 0.112 0.100 0.056 

  Vmin 0.002 0.001 0.006 0.000   Vmin 0.000 -0.001 0.000 0.000 

Asp Vmax 0.403 -0.400 0.240 0.083 Val Vmax 0.410 0.393 0.200 0.092 

  K[LacH] 0.312 0.216 0.321 0.161   K[LacH] 0.260 0.323 0.100 0.139 

  Vmin 0.003 -0.001 0.001 0.005   Vmin 0.003 0.001 0.004 0.000 

Glu Vmax 0.210 0.000 0.173 0.030 Gln Vmax 0.150 0.150 0.080 0.080 

  K[LacH] 0.286 0.390 0.755 0.272   K[LacH] 0.240 0.340 0.500 0.160 

  Vmin 0.001 -0.001 0.005 0.000   Vmin 0.005 0.003 0.003 0.001 
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Table 3.6. (Continued) 
Ile Vmax 0.214 0.334 0.232 0.071 Gly Vmax 0.150 0.150 0.080 0.080 

  K[LacH] 0.130 0.261 0.211 0.221   K[LacH] 0.240 0.340 0.500 0.160 

  Vmin 0.001 0.001 0.013 0.000   Vmin 0.005 0.003 0.003 0.001 

Leu Vmax 0.380 0.599 0.219 0.050 Ala Vmax 0.150 0.350 0.100 0.080 

  K[LacH] 0.175 0.400 0.534 0.052   K[LacH] 0.200 0.200 0.400 0.160 

  Vmin 0.010 0.001 0.012 0.006   Vmin 0.005 0.003 0.003 0.001 

Lys Vmax 0.129 0.194 0.219 0.193 Pro Vmax 0.150 0.150 0.100 0.080 

  K[LacH] 0.123 0.385 0.428 0.333   K[LacH] 0.200 0.200 0.400 0.160 

  Vmin 0.000 0.001 0.001 0.002   Vmin 0.005 0.003 0.002 0.001 

Met Vmax -0.015 0.170 -0.053 0.010 His Vmax 0.120 0.120 0.100 0.080 

  K[LacH] 0.450 0.151 0.265 0.294   K[LacH] 0.200 0.200 0.400 0.160 

  Vmin -0.001 0.001 -0.003 0.001   Vmin 0.005 0.003 0.003 0.001 

Phe Vmax 0.141 0.157 0.116 0.065 Cys Vmax 0.200 0.200 0.100 0.050 

  K[LacH] 0.180 0.321 0.229 0.227   K[LacH] 0.150 0.150 0.450 0.160 

  Vmin 0.001 0.005 0.001 0.000   Vmin 0.005 0.003 0.020 0.001 

Ser Vmax 0.364 0.168 0.238 0.090 Cit Vmax    12.00 

  K[LacH] 0.135 0.122 0.210 0.217   K[LacH]    20.00 

  Vmin 0.006 0.001 0.003 0.000   Vmin    0.020 

        C1 -0.112 -0.124 -0.147 -0.105 

        C2 5.382 5.728 6.924 5.531 

 

 

Because the HPLC peaks of glutamine and glycine, alanine and proline were overlapped, 

and also histidine and cysteine could not be detected by the current HPLC method used, 

these six amino acids were not considered in dynamic parameter estimation analysis. 

Since lack of the experimental evidence, the parameters used for the uptake kinetics of 

these six amino acids were chosen with the following criteria: A moderate value was 

chosen for the K[LacH] values which was in the range of K[LacH] values estimated by the 

dynamic parameter estimation analysis for the corresponding strain, while Vmax and Vmin 

values were chosen as much as minimum. All chosen parameters were aimed not to limit 

the in-silico growth.  

Citrate was not consumed significantly by pure cultures of L. lactis and S. thermophilus 

strains, while Leu. mesenteroides, which is known to be a citrate consumer lactic acid 
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bacteria (Smid and Kleerebezem, 2014), consumed all citrate before the stationary phase. 

Although the undissociated lactic acid was not the rate limiting compound for the citrate 

uptake rate in pure culture of Leu. mesenteroides, as the citrate was consumed before the 

undissociated lactic acid reached the rate limiting concentrations, citrate consumption by 

Leu. mesenteroides in the co-cultures was affected by acidic conditions. Hence, the 

substrate uptake kinetics defined in Eq. 2.5 was also used for citrate uptake, and the 

parameters used was estimated by  manually fitting, changing the kinetic parameters until 

the simulation agreed most with the experimental data. 

Finally, the batch specific parameters C1 and C2 in the substrate uptake kinetics were 

estimated by the non-linear regression of experimental [LacH] and [Lac] values using Eq. 

2.4. Through the parameters C1 and C2, the effect of pH was also considered in the 

substrate uptake kinetics. 

 

3.3.2. Dynamic flux balance analysis (dFBA) for pure cultures 

The GSMM of L. lactis (Flahaut et al., 2013), the revised GSMM of S. thermophilus 

(Pastink et al., 2009) and the GSMM of Leu. mesenteroides reconstructed in this thesis 

study were used for dFBA. Dynamically changing glucose and amino acid uptake rates 

of the GSMMs were constrained using the substrate uptake kinetics in Eq. 2.5 and the 

parameters listed in Table 3.6. Non-growth associated maintenance (NGAM) of L. lactis 

and Leu. mesenteroides models were fixed to 0.92 and 0.51 mmol/gDW/h respectively. 

The NGAM value of L. lactis was reported in the in the original model study (Flahaut et 

al., 2013), while the NGAM value of Leu. mesenteroides was calculated for this study 

(see Appendix B). Since NGAM of S. thermophilus model was not reported in the original 

model study (Pastink et al., 2009), the NGAM of S. thermophilus was fixed to 0.7 

mmol/gDW/h, which is the average of the values used for the two other microorganisms. 

Although L. lactis and S. thermophilus are mostly known as homolactic fermentative 

species, as also observed in our experiments, they can switch to mixed-acid fermentation 

in some conditions such as change of carbon source and continuous cultures at low 

dilution rate (Flahaut et al., 2013; Giaretta et al., 2018). Apart from glucose and amino 

acids uptake constraints, the experimental lactic acid yield (the ratio of lactic acid 
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production and glucose consumption rates) was also used as another constraint for 

GSMMs of L. lactis and S. thermophilus, which assured the homolactic fermentation 

observed in L. lactis and S. thermophilus strains. Without the lactic acid yield constraint, 

L. lactis and S. thermophilus models showed mixed acid fermentation, which produced 

acetic acid, formic acid and/or ethanol instead of lactic acid, as previously reported in the 

GSMM study of Lactobacillus plantarum (Teusink et al., 2006) and L. lactis (Flahaut et 

al., 2013; Oliveira et al., 2005). The reason behind the mixed acid fermentation preference 

of the models with biomass optimization is extra ATP gain with acetic acid production, 

and re-oxidization of NADH through formic acid and ethanol production in mixed acid 

fermentation, which is re-oxidized though lactic acid production in homolactic 

fermentation. GSMM of Leu. mesenteroides did not need the lactic acid yield constraint, 

as the organism is an obligate heterolactic fermentative lactic acid bacterium that uses 

phosphoketolase pathway and produces lactic acid and ethanol in anaerobic fermentation 

for ATP production and re-oxidation of NADH respectively. 

Biomass and extracellular metabolites profiles of the pure cultures of L. lactis, S. 

thermophilus and Leu. mesenteroides strains were then simulated by dFBA, and the 

model results were compared with experimental results (Fig. 3.22-3.25). Pure culture 

dFBA results showed that the models fitted closely to the experimental data, except for 

some amino acids.  

As discussed in Section 3.2., the experiments showed that glucose consumption slightly 

continued at the stationary phase where growth was inhibited by low pH. But in the dFBA 

models, growth was non-zero as substrate consumption continued, because of the fact that 

growth rate was maximized as an objective function and it was proportional with substrate 

uptake rates. On the other hand, we could simulate the experimental stationary phase by 

dFBA models although glucose consumption continued. As pH decreases, undissociated 

lactic acid concentration ([LacH]) increases, and exponential term of substrate uptake 

kinetics (i.e. max min- exp(- [ ]) -LacHV K LacH V , Eq. 2.3) goes to zero, and the substrate uptake 

rate converges to the term “-Vmin”. Therefore, at low pH, glucose uptake rate in the models 

was almost equal to the -Vmin value (table 3.6), and the major part of the ATP produced 

with minimum glucose uptake flux (-Vmin) was used in non-growth associated 

maintenance, which was already constrained with a constant value (Fig 3.22). 
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Figure 3.21. The route of the major part of ATP flux produced by minimal glucose 

uptake (-Vmin). 

 

But we still observed an increasing trend on in-silico biomass profile at stationary phase 

in S. thermophilus model, because Vmin value of this strain was high enough to produce 

ATP satisfying both NGAM and significant growth rate (Fig. 3.25).  

 

 

Figure 3.22. Batch culture profiles of L. lactis subsp. cremoris. Solid lines denote 

model results simulated by dFBA, while points denote average values of two 

independent biological repetitions. Corresponding error bars are also given. 

 

Glucose Lactic acid 
 

ATP 

Biomass Non-growth associated maintenance 
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Figure 3.23. Batch culture profiles of L. lactis subsp. lactis. Solid lines denote model 

results simulated by dFBA, while points denote average values of two independent 

biological repetitions. Corresponding error bars are also given. 

 

Amino acids profiles of the pure cultures were mostly coupled with biomass profiles (Fig. 

3.22-3.25). For some amino acids such as aspartate in the LLC culture, the models 

underestimated the experimental profiles because substrate uptake rates were constrained 

as maximum uptake rates (e. i. the constraints were fixed to only lower bound of the 

exchange reactions), which allowed the models to consume the corresponding substrates 

in less amounts, or they can even produce the related compounds, if required. The 

underestimated in-silico amino acid profiles showed that the models used less amino acids 

than that observed in the experiments. Excess amino acids that could not be predicted by 

the models might be used in other metabolisms not considered by these models, such as 

protein production of secondary metabolism.  

Methionine and tyrosine were experimentally produced in L. lactis subsp. cremoris and 

S. thermophilus batches. These amino acids were underestimated by the L. lactis model 

as the production of these amino acids dramatically decreased the growth. On the other 

hand, aspartate and asparagine were experimentally produced by L. lactis subsp. lactis 

and Leu. mesenteroides respectively, and the models of these species could simulate the 

productions. 
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Figure 3.24. Batch culture profiles of S. thermophilus. Solid lines denote model results 

simulated by dFBA, while points denote average values of two independent biological 

repetitions. Corresponding error bars are also given. 

 

 

Figure 3.25. Batch culture profiles of Leu. mesenteroides. Solid lines denote model 

results simulated by dFBA, while points denote average values of two independent 

biological repetitions. Corresponding error bars are also given. 
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When we zoomed in the early phase of biomass profiles, we observed that L. lactis models 

slightly overestimated the experimental values (Fig. 3.26). The reason behind this is the 

structure of substrate uptake kinetics (Eq. 2.5), where in-silico substrate uptake rate starts 

the uptake with its maximum value because of the minimal undissociated lactic acid 

concentration at the beginning of the batch. Because the growth rate is proportional with 

substrate uptake rates in the models, lag phase of growth observed in L. lactis pure culture 

experiments could not be simulated by the models. On the other hand, a significant lag 

phase was not observed in the S. thermophilus pure culture experiment, which was also 

confirmed by S. thermophilus model via an accurate biomass prediction in the early phase 

of the batch (Fig. 3.26). 

 

 

Figure 3.26. In-silico and in-vitro biomass profiles of pure cultures in the early phase. 

Solid lines denote model results simulated by dFBA, while points denote average values 

of two independent biological repetitions. Corresponding error bars are also given. 
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3.3.3. Dynamic co-culture metabolic modelling 

The dynamic co-culture metabolic models were reconstructed for two and three-species 

mesophilic and thermophilic co-cultures as illustrated in Fig. 3.27. The strain specific 

parameters estimated using the pure culture experiments (Table 3.6) and co-culture 

specific parameters C1 and C2 (Table 3.7), which consider the co-culture specific pH 

profiles, were used in the co-culture models.  

 

Table 3.7. Co-culture specific parameters, C1 and C2 

 Two species 

mesophilic co-

culture 

Three-species 

mesophilic co-

culture 

Two-species 

thermophilic 

co-culture 

Three species 

thermophilic 

co-culture 

C1 -0.111 -0.117 -0.126 -0.125 

C2 5.397 5.540 5.999 5.916 

 

 

Figure 3.27. Dynamic co-culture metabolic modelling structure.  i and j denote the 

indices for substrates (glucose and amino acids) and strains respectively. 

Common 
metabolite pool 

[Lac] 

Substrate uptake constraints 

ODE set (Eq. 2.9) 

Strain specific flux distributions 
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Co-culture specific C1 and C2 
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Mesophilic co-culture model results showed that the models fitted closely to the 

experimental data. The mesophilic co-culture models and experiments showed the 

domination of L. lactis species over Leu. mesenteroides, and the contribution of Leu. 

mesenteroides to the final biomass in two and three species co-cultures were around 6% 

and 3.5% respectively (Fig. 3.28). This result is consistent with the previous reports 

(Erkus et al., 2013; van Mastrigt et al., 2019) stating that the final biomass ratio of Leu. 

mesenteroides in long term (days) is around 1% in the mesophilic cheese starter cultures 

comprised of L. lactis and Leu. mesenteroides strains. 

The suppression of Leu. mesenteroides in the co-cultures could be explained by the rapid 

acidification of the medium by L. lactis strains. In other word, lactic acid pool mostly 

produced by L. lactis strains decreased the uptake rates of Leu. mesenteroides according 

to the substrate uptake kinetics, which made Leu. mesenteroides disadvantageous in the 

competition for sugar and amino acid source in co-cultures. Another reason for the 

suppression of Leu. mesenteroides could be the ATP yield of Leu. mesenteroides per 

molar glucose consumed. Leu. mesenteroides is obligate heterolactic lactic acid 

bacterium, and ATP yield of the obligate heterolactic fermentation is lower than 

homolactic fermentation as observed in L. lactis (Ganzle, 2015). On the other hand, unlike 

the pH-controlled co-culture of L. lactis and Leu. mesenteroides reported in literature (van 

Mastrigt et al., 2019), the disadvantageous nature of ATP yield was minor reason to 

explain the growth suppression of Leu. mesenteroides in our pH-uncontrolled study. Final 

biomass concentrations of Leu. mesenteroides in mesophilic co-cultures were 10-fold less 

than the ones produced in pure culture, which was the same result with a study 

investigating L. lactis and Leu. mesenteroides strains in pure and co-cultures in 

reconstituted skim milk (Bellengier et al., 1997). Furthermore, final biomass 

concentration of L. lactis subsp. lactis was lower than L. lactis subsp. cremoris in the 

three-species mesophilic co-culture, as observed in pure cultures.  
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Figure 3.28. Computational and experimental mesophilic co-culture profiles. A) Two-

species mesophilic co-culture comprised of L. lactis subsp. cremoris (LLC) and Leu. 

mesenteroides (LM). B) Three-species mesophilic co-culture comprised of L. lactis 

subsp. cremoris (LLC), L. lactis subsp. lactis (LLL) and Leu. mesenteroides (LM). 

Solid lines denote the co-culture model results, while points denote average values of 

two independent biological repetitions. Corresponding error bars are also given. 

 

A 

B 
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GSMMs of L. lactis and S. thermophilus were used for the reconstruction of the 

thermophilic co-culture models. Similar to the mesophilic co-cultures, L. lactis subsp. 

cremoris dominated the thermophilic co-cultures experimentally, but the preliminary 

analyses of thermophilic co-culture models showed the opposite, with S. thermophilus 

dominating the co-cultures in-silico. In addition to a possible interaction between S. 

thermophilus and L. lactis, which the co-culture models might miss, this unexpected 

result could be explained with the different fermentation temperature of L. lactis and S. 

thermophilic in pure and thermophilic co-cultures, which were 30°C, 37°C and 33°C 

respectively (see methods). When we focus on the growth performance of the L. lactis 

and S. thermophilus species based on the experimental growth rates with respect to pH 

values (Fig. 3.29), the growth performances of L. lactis and S. thermophilus strains were 

higher in the co-cultures and pure culture respectively at above the pH values causing the 

inhibitory effect (i.e. ~pH ≤ 5). This result is consistent with a study (Adamberg et al., 

2003), where the authors investigated the effect of different temperatures on growth rate 

for several LAB including L. lactis and S. thermophilus at optimal pH values of related 

species.  
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Figure 3.29. The growth performance of the L. lactis and S. thermophilus strains based 

on the experimental growth rate with respect to pH in pure and thermophilic co-cultures. 

Th2Sp and Th3Sp denote the two and three-species thermophilic co-cultures. L. lactis 

subsp. cremoris (LLC), L. lactis subsp. lactis (LLL) and S. thermophilus (ST). 

 

Because of the temperature difference,  the growth rate profile of L. lactis in the co-culture 

increased around 20%, while the growth rate profile of S. thermophilus in the co-culture 

decreased around 20%, compared to their pure cultures. Assuming the substrate uptake 

rates are coupled with growth rate, all substrate uptake rates of L. lactis and S. 

thermophilus were then multiplied by 1.2 and 0.8 respectively to consider the effect of 

different temperatures in pure and co-cultures on L. lactis and S. thermophilus, being 

around 20%. 

After multiplying all the substrate uptake rates by the correction coefficients, the 

domination of L. lactis subsp. cremoris in thermophilus co-cultures could be simulated 
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(Fig. 3.30). Two-species thermophilic co-culture model fitted closely to the experimental 

concentration profiles of individual biomass and co-culture level extracellular compounds 

(Fig. 3.30-A).   

 

 

Figure 3.30. Computational and experimental thermophilic co-culture profiles. A) Two-

species thermophilic co-culture comprised of L. lactis subsp. cremoris (LLC) and S. 

thermophilus (ST). B) Three-species thermophilic co-culture comprised of L. lactis 

subsp. cremoris (LLC), L. lactis subsp. lactis (LLL) and S. thermophilus (ST). Solid 

A 

B LLL 
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lines denote the co-culture model results, while points denote average values of two 

independent biological repetitions. Corresponding error bars are also given. 

 

Although individual biomass abundance ratio of L. lactis subsp. cremoris decreased in 

the early phase of the batch, its abundance increased afterwards, and this experimental 

result was also predicted by the model (Fig. 3.31). 

 

 

Figure 3.31. Individual biomass abundance ratio of L. lactis subsp. cremoris (LLC) in 

two-species thermophilic co-culture. Solid lines and points denote the model and 

average experimental results respectively. 

 

Although the three-species thermophilic co-culture model predicted the final individual 

biomass compositions of the organisms as L. lactis subsp. cremoris being the most and 

L. lactis subsp. lactis being the least  abundant species, the model could not predict the 

individual biomass profiles of L. lactis strains precisely (Fig. 3.30-B).  

Experimentally obtained individual biomass profiles in the co-cultures were not as 

smooth as those observed in pure cultures. We observed some fluctuations on the 

individual biomass profiles of co-culture especially at stationary phase, which could be 
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due to the estimation method of the relative microbial abundance (see Section 2.3.3). 

These small and instantaneous increase/decrease at the individual biomass profiles of all 

co-cultures at stationary phases were assumed acceptable as they showed the general 

biomass dynamics of the co-culture. On the other hand, individual biomass profiles of L. 

lactis subsp. cremoris and subsp. lactis increased and decreased respectively at the late 

phase of the three-species thermophilic co-culture, which was not expected because of 

the growth inhibition by acidic conditions discussed above.  

Experiments showed that glutamate, leucine and threonine were produced at the late 

phase of the three-species thermophilic co-culture, but the model could not simulate these 

productions, as the amino acids were consumed to assure the maximum growth rate, 

which is the objective function in the models. 

 

3.3.4. Individual flux rate profiles of co-culture members 

Although we monitored the co-culture level profiles of extracellular compounds (i.e. 

sugar source, organic acids and amino acids), the organism-level extracellular compound 

profiles of co-culture members could not be obtained experimentally. However, the co-

culture metabolic models estimated the individual extracellular flux rate profiles of 

glucose, organic acids, ethanol, CO2, amino acids, nucleic acids, vitamins and flavour 

compounds of co-culture members (Fig. 3.32-3.35), which also showed the potential 

metabolic interactions between the LAB in the co-cultures.  

Nucleic acids in the Fig. 3.32-3.35 are adenine, guanine and uracil; vitamins are folic 

acid, inosine, nicotinic acid, pantothenate, orotic acid, riboflavin, thiamine and thymidine; 

flavour compounds are 2 hydroxy 3 methyl butanoate, 2 hydroxy 3 methyl pentanoate, 2 

methylbutanal, 2 methylpropanoic acid, 3 methylbutanoic acid, acetaldehyde, 

methanethiol, hydrogen sulphide, phenylethyl alcohol, 4MOP, 3MOP, 3MOB. 

Individual flux rate profiles showed that utilization rates of the extracellular compounds 

were maximum in the early stage of the batches, where undissociated lactic acid 

concentrations were under the rate limiting levels. 
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Figure 3.32. Individual flux rate profiles of L. lactis subsp. cremoris (blue line) and 

Leu. mesenteroides (red line) in two-species mesophilic co-culture. Negative and 

positive flux values show consumption and production respectively. 
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In the two-species mesophilic co-culture, asparagine, methionine, proline and tryptophan 

were produced by one organism, while other consumed (Fig. 3.32). In the three-species 

mesophilic co-culture, asparagine, aspartate, methionine, phenylalanine, proline and 

tryptophan were the amino acids that one organism produced while the others consumed 

or vice versa (Fig. 3.33). The compounds produced by an organism and consumed by 

other(s) have cross-feeding potential between the organisms. 

In the two-species thermophilic co-culture, no compound, except adenine, was estimated 

by the model as being cross-fed between L. lactis and S. thermophilus (Fig. 3.34). But, in 

the three-species thermophilic co-culture, the model estimated that aspartate was 

produced, and methionine was consumed by L. lactis subsp. lactis, which was a different 

metabolic behaviour than other co-culture members (Fig. 3.35). 
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Figure 3.33. Individual flux rate profiles of L. lactis subsp. cremoris (blue line), L. 

lactis subsp. lactis (green line) and Leu. mesenteroides (red line) in three-species 

mesophilic co-culture. Negative and positive flux values show consumption and 

production respectively. 
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Figure 3.34. Individual flux rate profiles of L. lactis subsp. cremoris (blue line) and S. 

thermophilus (red line) in two-species thermophilic co-culture. Negative and positive 

flux values show consumption and production respectively. 
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There are several hypotheses about why microorganisms used in food fermentation 

processes produce flavour compounds (Carroll et al., 2016; Christiaens et al., 2014), and 

some mechanisms for flavour metabolite production could be inferred by our metabolic 

models. In the hypothetical analysis of the Leu. mesenteroides model in the section 3.12, 

we found that flavour formation occurred only after increased carbon uptake did not 

enhance growth rate anymore. In that analysis, although carbon uptake rate increased, 

growth was limited at some point because of the amino acid limitation, which suggested 

that flavour formation occurs under excess carbon and ATP. We expected the similar 

pattern in co-culture models because growth was limited by low pH and carbon source 

was kept being consumed. However, flux profiles of co-culture models showed that only 

hydrogen sulphide produced by L. lactis subsp. cremoris and acetaldehyde produced by 

S. thermophilus were produced after growth limitation, and the rest of the flavour 

metabolites production was coupled with growth (Fig. 3.32-3.35). 
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Figure 3.35. Individual flux rate profiles of L. lactis subsp. cremoris (blue line), L. 

lactis subsp. lactis (green line) and S. thermophilus (red line) in three-species 

thermophilic co-culture. Negative and positive flux values show consumption and 

production respectively. 
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 CONCLUSION AND RECOMMENDATIONS 

Thinking that different type of microorganisms living in the same habitat as a microbial 

community do not affect each other would be irrational. therefore, different types of lactic 

acid bacteria (LAB) coexisting in food fermentation affect each other and subsequently 

the product quality. In this thesis, lactic acid bacteria of cheese starter culture were  

investigated by comprehensive experimental and computational analyses in order to 

better understand their metabolic capacities both when they live alone and together. In 

this way, this study also intended to be an important contribution to the related areas. To 

this end, L. lactis subsp. cremoris, L. lactis subsp. lactis, S. thermophilus and Leu. 

mesenteroides, which are the LAB commonly used in cheese starter cultures, were grown 

in pure and co-cultures.  

In the experimental part, the LAB were fermented in a batch bioreactor as pure and co-

cultures. Biomass, glucose, organic acids and amino acids concentration profiles of pure 

and co-cultures were obtained experimentally. In the computational part, the pure and co-

cultures were simulated via dynamic metabolic models, and their fermentation dynamics 

and the metabolic capacities were comprehensively investigated. In addition to the 

experimentally obtained compound profiles, the metabolic models predicted the profiles 

of other extracellular compounds such as flavour metabolites. The co-culture metabolic 

models also predicted the individual compound profiles of LAB in the co-cultures, which 

enabled the estimation of potential metabolic interactions among LAB in the co-cultures. 

The results of the study were given in three subsections. In the first subsection (Section 

3.1), the reconstruction and validation of GSMM of Leu. mesenteroides was discussed.  

Although GSMMs of L. lactis and S. thermophilus existed in literature (Flahaut et al., 

2013; Pastink et al., 2009), GSMM of the dairy-origin Leu. mesenteroides was 

reconstructed for this thesis study for the first time.  The phosphoketolase pathway (PKP) 

is a unique feature of the obligate heterolactic fermentation, which leads to the production 

of lactate, ethanol and/or acetate, and the final product profile of PKP highly depends on 

the energetics and redox state of the organism. GSMM of Leu. mesenteroides explained 

the energetics and redox state mechanisms of the organism in full detail. Model 

simulations further showed that, in co-metabolism of citrate and glucose, no flavour 

compounds were produced when citrate could stimulate the formation of biomass. 
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Significant amounts of flavour metabolites (e.g., diacetyl and acetoin) were only 

produced when citrate could not enhance growth, which suggests that flavour formation 

only occurs under carbon and ATP excess. 

In the second subsection (Section 3.2), the experimental results were briefly discussed. 

Pure cultures of L. lactis and S. thermophilus species showed homolactic fermentation, 

and the pure culture of Leu. mesenteroides showed heterolactic fermentation. Biomass 

and product yields of the co-cultures were neither higher nor lower than the pure cultures 

of the co-culture members, which showed that the co-cultures did not create an advantage 

or a disadvantage compared to the pure cultures in terms of the yields. The effects of the 

fermentation dynamics on the pure and co-cultures were then discussed in the last 

subsection (Section 3.3.) through the dynamic metabolic models in a quantitative manner.  

In the third subsection (Section 3.3), batch fermentation profiles of the pure and co-

cultures were simulated by dFBA and dynamic co-culture metabolic models, respectively. 

All batch fermentations were carried out without pH control to mimic cheese 

fermentation, and none of the substrates were consumed completely for all batches due 

to pH inhibition. Hence, kinetic expressions based on the concentration of a rate-limiting 

substrate such as Michaelis-Menten Kinetics was not valid for this study. Rather, the 

lactic acid produced, which was the main reason of the low pH, was the growth-limiting 

compound for the experiments. Thus, the substrate uptake kinetics in the dynamic models 

was defined with an empirical equation as a function of lactic acid and pH. The strain-

specific parameters of the substrate uptake kinetics were estimated using pure culture 

experiments, and they were used both in single-strain and co-culture models.  

In Section 3.3.2, dFBA results showed that the in-silico concentration profiles of the 

biomass, glucose, lactic acid and most of the amino acids fitted closely to the 

experimental data. This showed that the calculated values of the parameters used in the 

models were acceptable for the study. In Section 3.3.3, LAB co-cultures were modelled 

with the dynamic co-culture metabolic modelling approach at genome-scale for the first 

time. Although the dynamic co-culture metabolic modelling can be applied to any type 

of microbial community, the studies that applied this approach before have used the 

consortia having pre-defined metabolic interactions such as cross-feeding (Hanemaaijer 

et al., 2017; Zhuang et al., 2011; Zhuang et al., 2012). This study is the first study that 

applied the dynamic co-culture metabolic modelling to a consortia having no known 
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metabolic interactions, but instead the co-culture models estimated the potential 

metabolic interactions among the microorganisms in the co-cultures. Although the co-

culture models estimated some potential cross-feedings at amino acid and nucleic acid 

level, they were not crucial for the co-cultures. Yet, the co-culture models explained the 

biomass, substrate and product dynamics of the co-culture fermentations in detail.  

The experiments were carried out in a chemically defined medium so that the amino acid 

utilization profiles of the pure and co-cultures could be obtained. Experimentally obtained 

amino acid utilization profiles were then used as a constraint for the metabolic models, 

and this increased the prediction capacity of the metabolic models.  

The chemically defined medium enables one to monitor medium components during 

fermentation, and this is important for the understanding of the metabolic capacity of the 

fermentation. However, some metabolic relationship patterns among microorganisms in 

a community might not be observed in the same way as they are observed in complex 

medium.  

Protease dependency is an example of the microbial community of LAB, which can be 

observed in a complex medium. Instead of free amino acids, the organic nitrogen source 

generally exists as big molecules in a complex medium, for example casein in milk. LAB 

having protease enzymes (Prt+) break down the casein into smaller polypeptides and 

amino acids, and LAB having no protease enzymes (Prt-) benefit from Prt+ LAB, 

consuming amino acids in the medium (Smid and Lacroix, 2013). In a study, the growth 

of a Prt- L. lactis strain was stimulated by a Prt+ L. lactis strain through supplying amino 

acids and peptides in cheese starter cultures in a complex medium. This relationship 

pattern had no negative effect on the Prt+ variant at the beginning of the co-culture. 

However,  this commensal relationship turned into a parasitism by rapid growth of the 

Prt- variant, because the Prt- variant had a higher growth rate and the Prt- variant 

dominated the co-culture (Fig. 4.1) (Smid and Lacroix, 2013). 
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Figure 4.1. Relationship pattern of Prt+ and Prt- variants of L. lactis strains in a cheese 

starter culture in a complex medium. (a) The Prt+ variant supplies the surplus peptides 

and amino acids for Prt- variants, this has no negative effect on the Prt+ variant, (b) If 

the growth rate of the Prt- variant is higher than that of the Prt+, microbial abundance of 

the Prt- variant increases, and this commensal relationship eventually turns into 

parasitism. This figure was taken from (Smid and Lacroix, 2013). 

 

Another example of a relationship pattern in the complex medium is associated with a 

flavour metabolite production. L. lactis SK110 strain does have protease enzyme but it 

lacks a decarboxylating enzyme for the production of 3-methylbutanal, while L. lactis 

B1157 strain has decarboxylating enzyme for the production of 3-methylbutanal but no 

protease enzyme. Hence, in order to produce the 3-methylbutanal in a complex medium, 

the co-culture of L. lactis SK110 and L. lactis B1157 is required. In a complex medium, 

L. lactis SK110 supplies leucine to L. lactis B1157 by breaking down casein into amino 

acids, and L. lactis SK110 uses leucine to produce the 3-methylbutanal by a 

decarboxylating enzyme (Fig. 4.2) (Ayad et al., 2001). 
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Figure 4.2. The co-culture of L. lactis SK110 and L. lactis B1157 in a complex 

medium. The metabolisms of these two strains complete each other to produce the 

flavour metabolite, 3-methylbutanal. Arrows denote the enzymatic activity. This figure 

was taken from (Pastink et al., 2008). 

 

As discussed above, the co-culture studies in a chemically defined medium give important 

insights about the metabolic capacity of a co-culture. However, the co-culture of interest 

should also be grown in a complex medium to learn more about the metabolic interactions 

among the microorganisms in the co-culture.  

Computational systems biology approaches have accelerated the studies on 

biotechnology for last two decades. The scientific developments have been rapid; thus, 

those approaches can swiftly become outdated. For instance, DNA microarray technology 

revolutionized transcriptome analysis by making it widely accessible (Heller, 2002). 

However, with the advent of the next generation sequencing technology, the RNA-seq 

technology has mostly replaced the DNA microarrays because of its advantages such as 

ability to detect novel transcripts and to quantify a larger range of expression level (Wang 

et al., 2009). Unlike DNA microarray, genome-scale metabolic modelling has still 

maintained its popularity and wide usage. However, some of the new generation 

metabolic modelling approaches can be alternative to the standard genome-scale 

metabolic modelling, as the simulations of the metabolic phenotype considering only 

metabolic network may not always predict the in-vivo behaviour. One of those new 

generation metabolic modelling approaches is the models of metabolism and 

macromolecular expression (ME-models), which calculates the metabolic flux 

distribution considering not only mass balances around the metabolites of a metabolic 

network but also the protein cost of the metabolism (King et al., 2015a; Lerman et al., 
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2012; O'Brien et al., 2013). The cell might prefer less ATP-efficient pathways at higher 

growth rates, which can be explained by the protein cost. The ATP-efficient pathways 

having high protein cost become a burden for a cell at high growth rate, and the cell 

switches to cheaper and less ATP-efficient pathways (Basan et al., 2015). The ME-model 

of E. coli simulated the metabolic shift and the protein limitation at high growth rates 

(O'Brien et al., 2013). The best-known metabolic shift observed in LAB is the switch 

from heterolactic to homolactic fermentation. Although mixed acid fermentation is more 

ATP-efficient than homolactic fermentation, most of LAB prefers homolactic 

fermentation at high growth rates (Teusink and Molenaar, 2017). The proteomic studies 

investigating the metabolic shift in L. lactis showed that the internal proteome level hardly 

changed, while the expression of membrane-associated processes was significantly 

affected at different growth rates (Goel et al., 2015; Teusink and Molenaar, 2017). As it 

was discussed in the Section 3.3.2, the GSMMs of  L. lactis and S. thermophilus tend to 

exhibit the mixed acid fermentation because of the ATP efficiency. The experimental 

lactic acid yield was used as a constraint for GSMMs of L. lactis and S. thermophilus to 

assure the homolactic fermentation which was experimentally observed in L. lactis and S. 

thermophilus strains. Extra constraints make a metabolic model more descriptive and less 

predictive. Yet, the lactic acid yield constraint was a mandatory solution for the GSMMs 

of L. lactis and S. thermophilus. Hence, to make less descriptive and more predictive co-

culture metabolic models, the protein efficiency and allocation (Chen and Nielsen, 2019) 

and even the biochemical thermodynamics including a Gibbs energy balance (Niebel et 

al., 2019) should be considered for the model reconstruction. This thesis study is expected 

not only to contribute the related areas, but also to inspire the future studies as pointed 

out above. 
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APPENDIX A 

Biomass composition of Leu. mesenteroides 

Biomass composition of Leu. mesenteroides used for biomass reaction in the 

reconstructed model was obtained based on literature data. Protein, lipid, DNA, RNA and 

polysaccharide contents as major biopolymers and some building blocks such as amino 

acids, nucleotides, fatty acids contents forming these biopolymers are based on species 

or strain specific data, while other compositions were based on the data of 

phylogenetically close bacteria.  

Overall Cellular Composition of Leu. mesenteroides  

Component Fraction % (w/w) MW (g/mol) mol. coeff. 

(mmol/gDW) 

Protein 29.7 (Bang et al., 2017) 96.42 2.7752 

Lipid 7.9 (Bang et al., 2017) 1075.40  (Oliveira et 

al., 2005) 

0.0735 

DNA 2.9 (Bang et al., 2017) 326.90 0.0887 

RNA 7.4 (Bang et al., 2017) 342.59 0.2160 

Polysaccharides 24.4 (Bang et al., 2017) 1871.90 (Oliveira et 

al., 2005) 

0.1303 

Lipoteichoic acid 

(LTA) 

6.05 (Oliveira et al., 2005; 

Teusink et al., 2006) 

5384.70 (Oliveira et 

al., 2005) 

0.0112 

Peptidoglycan 

(PG) 

13.15 (Oliveira et al., 

2005; Teusink et al., 

2006) 

991.00 (Oliveira et 

al., 2005) 

0.1327 

Rest 8.5   

 

Amino Acid Composition of the Protein Fraction in Leu. mesenteroides 

Amino acids 
 

Composi-

tion 

(%w/w) 

MW 

(g/mol)(f) 

(mol 

a.a/mol 

total 

Amino acids (mol a.a/       

mol total 

protein) 

(mol 

a.a/mol 

free 
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(a) Total mole amount of proline including 4-Hydroxyproline. 

(b) Assuming aspartate amount obtained by (Bang et al., 2017) is sum of 

equimolar amount of aspartate and asparagine. 

(c) Assuming glutamate amount obtained by (Bang et al., 2017) is sum of 

equimolar amount of glutamate and glutamine. 

(d) Total mole amount of lysine including hydroxylysine. 

(e) According to (Harney et al., 1967) alanine, glutamate and lysine are the major 

amino acids in peptidoglycan of Leu. mesenteroides. Molar amount of alanine, 

glutamate and lysine are re-calculated considering their contribution in 

peptidoglycan. 10% of alanine, glutamate and lysine are assumed that come 

from peptidoglycan. 

(Bang et al., 

2017)  

protein

) 

protein)(

e) 

Alanine 9.26 89.094 0.1039 Alanine 0.1039 0.0935 

Glycine 5.5 75.067 0.0733 Glycine 0.0733 0.0733 

Valine 4.89 117.148 0.0417 Valine 0.0417 0.0417 

Leucine 8.04 131.175 0.0613 Leucine 0.0613 0.0613 

Isoleucine 5.72 131.175 0.0436 Isoleucine 0.0436 0.0436 

Threonine 3.78 119.12 0.0317 Threonine 0.0317 0.0317 

Serine 2.95 105.093 0.0281 Serine 0.0281 0.0281 

Proline 3.21 115.132 0.0279 Proline(a) 0.0306 0.0306 

Aspartate (Asx) 6.87 133.103 0.0516 Aspartate 0.0258 0.0258 

Methionine 2.71 149.208 0.0182 Asparagine(b) 0.0258 0.0258 

4-Hydroxyproline 0.36 131.131 0.0027 Methionine 0.0182 0.0182 

Glutamate (Glx) 10.32 147.13 0.0701 Glutamate 0.0351 0.0316 

Phenylalanine 7.56 165.192 0.0458 Glutamine(c) 0.0351 0.0351 

Lysine 19.56 146.19 0.1338 Phenylalanine 0.0458 0.0458 

Histidine 5.68 155.157 0.0366 Lysine(d) 0.1354 0.1219 

Hydroxylysine 0.26 162.189 0.0016 Histidine 0.0366 0.0366 

Tyrosine 3.3 181.191 0.0182 Tyrosine 0.0182 0.0182 

Cysteine Not detected 121.154 
 

Arginine(g) 
 

0.0401 

Asparagine  132.119 
 

Tryptophan (g) 
 

0.0177 

Glutamine  146.146 
    

Arginine - 174.204     

Tryptophan - 204.229     

Average molecular weight of protein(h):  107.02 g/mol 
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(f) Molecular weights of amino acids are taken from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). 

(g) Average molar fractions of arginine and tryptophan in free protein are taken 

from the lactic acid bacteria metabolic models published (Flahaut et al., 2013; 

Oliveira et al., 2005; Pastink et al., 2009; Teusink et al., 2006; Vinay-Lara et 

al., 2014), because there is no data for arginine and tryptophan in original 

study (Bang et al., 2017). 

(h) Average molecular weight of protein is calculated by that sum of the molar 

amino acid fraction of free protein (the last column from left) multiplied by 

the molecular weight of the associated amino acids (the 3rd column from left). 

 

Nucleotide Composition 

DNA composition %(mol/mol)(a) MW (g/mol)(b) 

dAMP 31.05 331.225 

dTMP 31.05 322.21 

dCMP 18.95 307.199 

dGMP 18.95 347.224 

Average molecular weight of DNA(c): 326.9047 g/mol 

(a) The deoxyribonucleotide composition is based on the GC content of 37.9 % 

which is the exact GC content of Leu. mesenteroides ATCC 19254 obtained 

by RAST annotation tool (http://rast.nmpdr.org/). 

(b) Molecular weights of components are taken from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). 

 

RNA composition %(mol/mol)(a) MW (g/mol)(b) 

AMP 26.2 347.224 

TMP 21.6 324.182 

CMP 20 323.198 

GMP 32.2 363.223 

Average molecular weight of DNA: 342.5934 g/mol 

https://pubchem.ncbi.nlm.nih.gov/
http://rast.nmpdr.org/
https://pubchem.ncbi.nlm.nih.gov/
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(a) Based on E. coli (Wilkins and Pritchard, 1987). This content was also used for 

the studies reconstructing the lactic acid bacteria in the literature (Flahaut et 

al., 2013; Oliveira et al., 2005; Pastink et al., 2009; Teusink et al., 2006).  

(b) Molecular weights of components are taken from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). 

 

Lipid Composition  

Lipid composition %(mol/mol) (Oliveira et 

al., 2005) 

MW (g/mol) (Oliveira 

et al., 2005) 

Phosphatidylglycerol 18.9 754.3 

Cardiolipin  42.5  1413.6 

Lysophosphatidylglycerol 4.3 500.2 

Diglucosyl diacylgycerol 30.3 924.3 

Monoglucosyl diacylgycerol 4.0  762.3 

Average molecular weight of Lipid: 1075.4 g/mol 

 

Lipid fatty acid composition of Leu. mesenteroides 

 Lipid fatty acid composition of 

Leu. mesenteroides 

%(w/w)(a) %(w/w)  

(w/o 

others) 

MW (g/mol)  

(Oliveira et al., 

2005) 

mol/mol 

Tetradecanoic (myristic) acid 

(C14:0) 

6.3 6.7236 228.4 0.0753 

Hexadecanoic (palmitic) acid 

(C16:0) 

29.9 31.9104 256.4 0.3184 

Octadecanoic (stearic) acid 

(C18:1) 

40.9 43.6499 282.5 0.3953 

cis-9.10-methyleneoctadecenoic 

(dihydrosterculic) acid (C19-cyc-

9) 

16.6 17.7161 296.5 0.1529 

Others 6.3 
  

  

https://pubchem.ncbi.nlm.nih.gov/
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(a) Specific to Leu. mesenteroides ATCC 19254 (Tracey and Britz, 1989) 

 

Lipoteichoic Acid (LTA) Composition 

LTA composition %(mol/mol) (Oliveira et al., 2005) 

Glycerol phosphate 16 

L-alanine 6.08  

D-galactose  9.76  

Diglucosyl diacylglycerol  1  

Average molecular weight of LTA: 5384.7 g/mol(Oliveira et al., 2005) 

 

Peptidoglycan (PG) Composition 

PG composition %(mol/mol) (Oliveira et al., 2005) 

N-acetylmuramate 1 

N-acetyl-D-glucosamine 1 

L-alanine 1 

D-glutamate 1 

L-lysine 1 

D-alanine 1 

D-aspartate 1 

Average molecular weight of PG: 991.1 g/mol(Oliveira et al., 2005) 

 

Polysaccharide composition 

Polysaccharide composition %(mol/mol) (Oliveira et al., 2005) 

D-glucose 5.5 

D-rhamnose 5.6 

D-galactose 1 

Average molecular weight of polysaccharide: 1872.9 g/mol (Oliveira et al., 2005) 

 

Energy requirement for polymerisation of macromolecules 
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Process Energy required (Wilkins and Pritchard, 

1987) 

Protein synthesis and processing 4.306 mmol ATP / mmol amino acid 

RNA synthesis and processing 0.4 mmol ATP / mmol RNA (a) 

DNA synthesis and processing 1.372 mmol ATP / mmol DNA (a) 

 

(a) DNA assembly reaction can be simply described as DNAn + dNMP -> 

DNAn+1, where dNMP represents a deoxyribonucleotide monophosphate. 

However, as DNA synthesis takes deoxyribonucleotide triphosphates as 

precursors, DNA assembly costs an additional 2 mol ATP per mol DNA  

(Oliveira et al., 2005). 

 

Protein, DNA and RNA reactions and required ATP amounts are as follows: 

 

• 0.0281 L_Serine + 0.0316 L_Glutamate + 0.0733 Glycine + 0.0258 L_Aspartate 

+ 0.0458 L_Phenylalanine + 0.0935 L_Alanine + 0.0401 L_Arginine + 0.0613 

L_Leucine + 0.0351 L_Glutamine + 0.0306 L_Proline + 0.0182 L_Tyrosine + 

0.0182 L_Methionine + 0.0436 L_Isoleucine + 0.1219 L_Lysine + 0.0317 

L_Threonine + 0.0177 L_Tryptophan + 0.0366 L_Histidine + 0.0417 L_Valine + 

0.0258 L_Asparagine  + 3.5332 ATP + 3.5332 H2O -> 3.5332 H_c + 3.5332 ADP 

+ 3.5332 Phosphate + PROTEIN 

 

• 2.4 ATP + 0.2 CMP + 0.262 AMP + 0.216 UMP + 0.322 GMP  + 2.4 H2O -> 2.4 

H_c +  2.4 ADP + 2.4 Phosphate + RNA 

 

• 3.372 ATP + 0.1895 dCMP + 0.1895 dGMP + 0.3105 dAMP + 0.3105 dTMP  

GMP  + 3.372 H2O -> 3.372 H_c +  3.372 ADP + 3.372 Phosphate + DNA  
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Biomass Assembly 

 

In addition to the polymers mentioned above, some vitamin, co-factors and metal ions 

included into the biomass equation -with a low molar coefficient (10-5 mmol/gDW) to 

make sure it was not limiting in the simulations- to consider the vitamin, co-factor and 

metal ion requirements(Teusink et al., 2006). Vitamin, co-factors and metal ions added 

into the biomass reactions are selected according to the metabolites obtained by 

ModelSEED (http://modelseed.org/) automatic metabolic reconstruction tool. 

 

• 30.651 H2O + 5e-05 CoA + 30.651 ATP + 5e-05 NAD + 5e-05 Riboflavin + 5e-

05 Fe2 + 5e-05 Zn2 + 5e-05 Mg + 5e-05 Thiamin + 5e-05 K + 5e-05 fe3 + 5e-05 

Mn2 + 5e-05 Co2 + 5e-05 Cl_ + 5e-05 FAD + 5e-05 Folate + 5e-05 Sulfate + 5e-

05 Ca2 + 0.0735 LIPID + 0.0112 LTA + 0.1327 PG + 0.1303 POLYS + 2.7752 

PROTEIN + 0.0887 DNA + 0.216 RNA  -> 30.651 H + 30.651 ADP + 30.651 

Phosphate + BIOMASS_LM   

http://modelseed.org/
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APPENDIX B  

Energetic Requirement for the Growth and Non-growth Associated Maintenance of 

Leu. mesenteroides  

 

Growth associated maintenance is the amount of ATP required for biomass assembly 

from biopolymers, whereas non-growth associated maintenance (ATP maintenance rate) 

is the amount of ATP required to maintain the biomass that is not related to growth. 

Growth (Kx) and non-growth associated maintenance (matp) can be calculated by Pirt 

equation (Flahaut et al., 2013; Taymaz-Nikerel et al., 2010) 

 

0, =−−∑ ATPXiATP mKq µ  

 

Slope and intercept of the plot of total ATP rates (qATP, mmol/gDW/h) with respect to 

growth rates (μ, 1/h) give Kx and mATP respectively. In this study, growth (Kx) and non-

growth associated maintenance (matp) were estimated using the experimental data 

obtained in Dols et. al., (1997)(Dols et al., 1997) and the metabolic model reconstructed. 

Dols et. al., (1997)(Dols et al., 1997) obtained the rates of energy syntheses (qATP) for 

various sugar source for Leu. mesenteroides, and the rates of energy synthesis (qATP) were 

estimated using the theoretical stoichiometric ATP yield, which is 2 and 1 mole ATP per 

one mole lactate and acetate produced respectively.  However, such an approach causes 

potential errors due to omitting the whole cell metabolism that produces or consumes 

ATP with different mechanisms (Teusink et al., 2006). Hence, the measured fluxes were 

set as constraints for the genome-scale metabolic model reconstructed and FBA was used 

to calculate the maximal amount of ATP that could be generated. 

 

The quantitative values of the rates of energy synthesis (qATP) and corresponding growth 

rates (μ) from the original paper (Dols et al., 1997) were obtained via via GetData Graph 

Digitizer (http://www.getdata-graph-digitizer.com/).  

http://www.getdata-graph-digitizer.com/
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Growth associated maintenance  (Kx)  30.651 mmol/gDW 

Non-growth associated maintenance (matp) 0.5101 mmol/gDW/h 
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APPENDIX C 

Batch data used in the study of the metabolic model reconstruction of Leu. 

mesenteroides 

 

Carbon recovery (%) = 101.3 ± 2.4 % 
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APPENDIX D 

Maximum amino acid uptake rate constraints used in the study of metabolic model 

reconstruction of Leu. mesenteroides for the analysis in the table 3.2. 

 

Amino acid Maximum uptake 

rate 

(mmol/gDW/h) 

Amino acid Maximum uptake 

rate 

(mmol/gDW/h) 

Ala -0.08 Lys -0.193 

Arg -0.031 Met -0.01 

Asn -0.047 Phe -0.065 

Asp -0.083 Pro -0.08 

Gln -0.08 Ser -0.09 

Glu -0.03 Thr -0.087 

Gly -0.08 Trp -0.06 

Ile -0.071 Tyr -0.07 

Leu -0.05 Val -0.092 

Note: Cys and His could not be measured in our analyses. Maximum uptake rates 

of His and Cys were constrained to -0.03 mmol/gDW/h 
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APPENDIX E 

Flux span of Figure 3.5 obtained by FVA 
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APPENDIX F 

The statistics for the genome and annotation of Leu. mesenteroides ATCC 19254 
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APPENDIX G 

The comparison of sucrose metabolisms of dairy-origin Leu. mesenteroides ATCC 

19254 and plant-origin Leu. mesenteroides ATCC 8293 
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APPENDIX H  

Carbon balance calculation of pure and co-cultures 

Total compounds produced and consumed (g/L) 

 

Batch ΔBiomass ΔGlc ΔLac ΔFor ΔAc ΔCit 

LLC I 0.680 -4.150 3.519 -0.105 -0.220 -0.082 

LLC II 0.680 -4.228 3.525 -0.112 -0.233 -0.089 

LLL I 0.573 -3.929 3.274 -0.090 -0.150 -0.082 

LLL II 0.573 -3.867 3.223 -0.128 -0.147 -0.089 

ST I 0.694 -4.756 4.151 0.299 -0.102 -0.074 

ST II 0.669 -4.674 4.009 0.240 -0.114 -0.099 

LM I 0.514 -8.264 3.906 -0.052 -0.086 -0.422 

LM II 0.511 -6.887 3.478 -0.064 -0.087 -0.437 

LLC-LM I 0.734 -5.260 4.375 0.043 -0.092 -0.366 

LLC-LM II 0.747 -5.618 4.380 0.025 -0.116 -0.365 

LLC-LLL-LM I 0.705 -5.154 4.295 -0.004 -0.080 -0.278 

LLC-LLL-LM 

II 

0.682 -5.080 3.914 -0.014 -0.128 -0.195 

LLC-ST I 0.681 -4.465 3.767 -0.016 -0.139 -0.117 

LLC-ST II 0.663 -4.419 3.829 0.041 0.062 -0.120 

LLC-LLL-ST I 0.657 -4.696 3.737 -0.044 -0.094 -0.062 

LLC-LLL-ST II 0.667 -4.398 3.773 -0.066 -0.130 -0.103 

 

Compound Formula MW Carbon ratio 

Biomass(A) CH1.95O0.63N0.22P0.02S0.01 28.030 0.428 

Biomass(B) C(39.34%), O(23.88%), N(9,04%), H(6,72%), 

Others(6,72%) 

1 0.393 

Glc C6H12O6 180.000 0.400 

Lac C3H6O3 90.000 0.400 

For CH2O2 46.000 0.261 
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Ac C2H4O2 60.000 0.400 

Cit C6H8O7 192.000 0.375 

EtOH C2H6O 46.00 0.522 

CO2 CO2 44.00 0.273 
(A) Biomass formula used for the pure cultures of LLC, LLL and ST, and the co-cultures of LLC-LLL-ST 

and LLC-ST (Oliveira et al., 2005). 

(B) Biomass formula used for the pure cultures of LM (Koduru et al., 2017). 

 

Biomass formula used for the co-culture of LLC-LM and LLC-LLL-LM is the the average 

values of (A) and (B). 

 
 

LLC I LLC II LLC I LLL II ST I ST II LM I LM II 

C in 

biomass 
0.291 0.291 0.245 0.245 0.297 0.286 0.202 0.201 

C in Glc -1.660 -1.691 -1.572 -1.547 -1.902 -1.870 -3.306 -2.755 
C in Lac 1.407 1.410 1.310 1.289 1.660 1.603 1.562 1.391 
C in For -0.028 -0.029 -0.023 -0.033 0.078 0.063 -0.014 -0.017 
C in Ac -0.088 -0.093 -0.060 -0.059 -0.041 -0.046 -0.034 -0.035 
C in Cit -0.031 -0.034 -0.031 -0.033 -0.028 -0.037 -0.158 -0.164 
C in EtOH 

      
1.042 0.927 

C in CO2 
      

0.273 0.464 
C recovery 

(%) 
94.013 92.109 92.236 91.756 103.290 99.996 87.664 100.445 

         
 

LLC-

LM I 

LLC-

LM II 

LLC-

LLL-LM 

I 

LLC-

LLL-LM 

II 

LLC-ST 

I 

LLC-ST 

II 

LLC-

LLL-ST 

I 

LLC-

LLL-ST 

II 

C in 

biomass 
0.302 0.307 0.290 0.280 0.292 0.284 0.281 0.286 

C in Glc -2.104 -2.247 -2.062 -2.032 -1.786 -1.768 -1.879 -1.759 
C in Lac 1.750 1.752 1.718 1.566 1.507 1.531 1.495 1.509 
C in For 0.011 0.007 -0.001 -0.004 -0.004 0.011 -0.012 -0.017 
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C in Ac -0.037 -0.046 -0.032 -0.051 -0.056 0.025 -0.038 -0.052 
C in Cit -0.137 -0.137 -0.104 -0.073 -0.044 -0.045 -0.023 -0.039 
C recovery 

(%) 
90.564 84.978 91.300 85.419 95.186 102.169 91.021 96.139 

All carbon values in corresponding compounds are given as g/L 
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