

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

D R I V E R P R O F I L I N G U S I N G L O N G S H O R T

T E R M M E M O R Y (L S T M) A N D

C O N V O L U T I O N A L N E U R A L N E T W O R K

(C N N) M E T H O D S

ASLIHAN CURA

MASTER THESIS

Elect r ical and Elect ronic Engineering

Thesis Supervisor

Prof. Dr. Haluk Küçük

ISTANBUL, 2019

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

D R I V E R P R O F I L I N G U S I N G L O N G S H O R T

T E R M M E M O R Y (L S T M) A N D

C O N V O L U T I O N A L N E U R A L N E T W O R K

(C N N) M E T H O D S

ASLIHAN CURA

525014012

MASTER THESIS

Elect r ical and Elect ronic Engineering

Thesis Supervisor

Prof. Dr. Haluk Küçük

ISTANBUL, 2019

i

ii

PREFACE / ACKNOWLEDGMENT

I would like to thank to Prof. Dr. Haluk Küçük for his guidance, support and patience

throughout the course of this thesis work.

I would like to thank Otokar drivers for patience in data collection.

I would like to thank my husband Burak for his patience.

My mother and father Hatice and Mehmet were always supportive in every stage of my

life. I would like to express my sincere gratitude them.

Thanks to my lovely sister Elif for adding joy and smile to my life.

iii

Table of Contents

1- INTRODUCTION .. 1

1.1. Motivation and Overview .. 1

1.2. Purpose of the Thesis ... 2

1.3. Scope of Thesis ... 6

2. MATERIALS AND METHODS ... 7

2.1 Data Collection .. 7

2.2 Neural Networks ... 16

2.2.1 Supervise Learning .. 16

2.2.2 Reinforcement Learning ... 16

2.2.3 Unsupervised Learning ... 17

2.3 Feedforward Neural Network .. 17

2.4 Recurrent Neural Networks ... 18

2.5 Long Short Term Memory (LSTM) .. 19

2.5.1 Long Short Term Memory Structure .. 20

2.6 Classification with CNN ... 24

2.6.1 Differences Between 1D CNN and 2D CNN .. 26

2.6 Neural Network Parameter Optimization .. 27

2.6.1 Batch Size .. 27

2.6.2 Learning Rate ... 28

2.6.3 Training epoch ... 29

2.6.4 Selection of Optimization Algorithm ... 30

2.6.5 Activation Function ... 32

2.6.6 Number of Layers and Number of Neurons .. 33

iv

2.6.7 Overfitting & Underfitting .. 33

2.6.8 Feature Scaling ... 37

3. Results and Discussion .. 39

3.1 LSTM Training ... 39

3.2 Results for LSTM .. 48

3.3 CNN Training and Results ... 48

3.4 Results for CNN .. 59

4. CONCLUSION ... 60

References .. 62

v

ÖZET

UZUN KISA SÜRE BELLEKLİ ÖĞRENME VE EVRİŞİMLİ SİNİR

AĞLARI YÖNTEMLERİ İLE SÜRÜCÜ PROFİLLEME

Sürücü araç kullanım şekli, trafik güvenliği, yakıt tüketimi ve gaz emisyonu konuları

üzerinde son derece etkilidir. Bu çalışmada, trafik güvenliğini arttırmak için araçtan

toplanan verileri yapay sinir ağları kullanarak sınıflandırmak ve bu sayede sürücünün

davranış profilini çıkarmak amaçlanmıştır. Sürücü profillemesi üzerindeki yapılan

çalışmalar incelendiğinde, akıllı telefonlardan toplanan sensör verileri, kamera

görüntüleri ve aracın kendi verileri birlikte kullanılarak sürücü profili çıkarılma üzerine

yoğunlaşıldığı görülmüştür. Bu çalışmadaki ise sadece aracın; hız, motor devri, gaz

pedalı, fren pedalı, teker açısı ve ivmelenme gibi verileri kullanılarak sınıflandırma

yapılmıştır. Sınıflandırmada iki farklı derin öğrenme metodu kullanılmıştır. Zaman bağlı

veriler için sıklıkla kullanılan Uzun-Kısa Süreli Bellek (LSTM) ve görüntü işlemede

kullanılan ancak zamana bağlı verilerde de tercih edilen CNN (Convolutional Neural

Network) derin öğrenme metodu kullanılarak sınıflandırmadaki başarı oranları

incelenmiştir. Çalışma sonucunda CNN’in daha yüksek başarı sonuçları verdiği

gözlemlenmiştir.

vi

ABSTRACT

DRIVER PROFILING USING LONG SHORT TERM MEMORY

(LSTM) AND CONVOLUTIONAL NEURAL NETWORK (CNN)

METHODS

Driver profiling has a major impact on traffic safety, fuel consumption and gas emission.

The purpose of this work is to feed and train the neural network with the vehicle data and

classify the driver behavior. When the driver profiling studies are examined, the majority

of studies have classified the driver using sensor, image and vehicle data together. In this

study, only the vehicle data such as engine speed, torque, steering wheel angle etc. were

used. To classify driver, two different methods were implemented. One of them is Long

Short Term Memory (LSTM) Neural Network which is usually for time series data

classification and the other method is Convolutional Neural Network (CNN) which is

frequently used for image classification but also can be used for time series classification.

In the results section of this study, the success rates of two methods in classification were

analyzed and the outcomes indicated that Convolutional Neural Network provided higher

success rates.

vii

SYMBOLS

σ : Sigmoid

Ct : Current cell state

Ct-1 : Previous cell state

Xt : Input vector

ht : Output of the current cell

ht-1 : Output of the previous cell

b :Bias vector

W : Weight

ĈT : Candidate vector

viii

ABBREVATIONS

ANN : Artificial Neural Network

CNN : Convolutional Neural Network

DTW : Dynamic Time Warping

ECG : Electrocardiography

GMM : Gaussian Mixture Model

GPS : Global Positioning System

GRU : Gated Recurrent Neural Network

Tanh : Hyperbolic Tangent

HAR : Human Activity Recognition

IoT : Internet of Things

LSTM : Long Short Time Memory

NLP : Natural Language Processing

OBD : On Board Diagnostic

PHYD : Pay How You Drive

ReLU : Rectified Linear Unit

RNN : Recurrent Neural Network

SVM : Support Vector Machine

UBI : Usage Based Insurance

ix

LIST OF FIGURES

Figure 1. 1 Steps for creating a driver profile .. 2

Figure 2. 1 Otokar Arifiye test track .. 8

Figure 2. 2 Sakarya Karasu Road ... 8

Figure 2. 3 Can-Bus message format ... 12

Figure 2. 4 Can Bus records of the vehicle .. 13

Figure 2. 5 Messages separated and converted to csv file format 13

Figure 2. 6 Speed graph of vehicle in deceleration test ... 14

Figure 2. 7 Different neural network architectures [35] .. 18

Figure 2. 8 Recurrent Neural Network [36] ... 19

Figure 2. 9 Driver Profiling with LSTM topology... 20

Figure 2. 10 Internal structure of LSTM [38] .. 21

Figure 2. 11 Forget gate [39] ... 22

Figure 2. 12 Decision block for selection of new information to store in the cell [39] 23

Figure 2. 13 Forgetting the old information and adding the new information [39] 23

Figure 2. 14 Output information [39]... 24

Figure 2. 15 2-D convolution network for image classification [40] 25

Figure 2. 16 Feature extraction [41]... 25

Figure 2. 17 Dimension reduction with pooling layer [35] .. 26

Figure 2. 18 1D versus 2D convolution neural network [42] .. 27

Figure 2. 19 Effect of learning rate on gradient descent [43] .. 28

Figure 2. 20 Effect of learning rate on loss [35] .. 29

Figure 2. 21 Performance of different optimization algorithms for MNIST data set [44] 30

x

Figure 2. 22 Gradient Descent [45] .. 31

Figure 2. 23 Stochastic Gradient Descent [45] .. 31

Figure 2. 24 Common activation functions [47] .. 32

Figure 2. 25 Activation functions and their derivatives [45] ... 33

Figure 2. 26 Training and Test accuracy [48] .. 34

Figure 2. 27 Validation loss [49] ... 34

Figure 2. 28 Dropout application [51] ... 35

Figure 2. 29 Baseline model [50] ... 36

Figure 2. 30 Smaller model [50] .. 36

Figure 2. 31 Bigger model [50] .. 36

Figure 2. 32 Loss graph of different size networks [50] .. 37

Figure 3. 1 Network performance with three data sets. ... 41

Figure 3. 2 Loss and accuracy graph of network fed with aggressive & gentle 44

Figure 3. 3 Loss and accuracy graph of network with improved accuracy 44

Figure 3. 4 Loss and accuracy graph of network fed with aggressive & mild 47

Figure 3. 5 Loss and accuracy of network with improved accuracy 47

Figure 3. 6 CNN structure used in driver profiling .. 48

Figure 3. 7 Network performance for aggressive, mild and gentle driving are together ... 49

Figure 3. 8 Network success rates for train and test dataset when aggressive, mild and

gentle driving are together .. 50

Figure 3. 9 Loss and accuracy of the network trained with aggressive and mild data 54

Figure 3. 10 Loss and accuracy graph of network with higher accuracy 55

Figure 3. 11 Loss and accuracy of the network trained with aggressive and gentle data .. 58

Figure 3. 12 Loss and accuracy of the network with has higher accuracy 59

xi

LIST OF TABLES

Table 2. 1 Criteria for determining aggression and gentle in deceleration and speed tests . 9

Table 2. 2 Sample test scenario for deceleration .. 10

Table 2. 3 Messages and messages period ... 11

Table 2. 4 Deceleration start and end times ... 15

Table 3. 1 The effect hyperparameters and datasets on the success rate 40

Table 3. 2 Outputs of the network trained with aggressive & gentle dataset (* overfitting)

... 42

Table 3. 3 Outputs of the network which was trained with aggressive & mild 45

Table 3. 4 CNN architecture .. 51

Table 3. 5 Output of the network trained with aggressive & mild dataset (* overfitting) . 52

Table 3. 6 Outputs of the network trained with aggressive and gentle data (*

overfitting) .. 56

1

CHAPTER 1

1- INTRODUCTION

1.1. Motivation and Overview

Driving style has huge impact on traffic safety. Driver may be under the influence of

alcohol, narcotics or can be drowsy. Some drivers may endanger the traffic willingly. In

such cases, driving style becomes dangerous. According to Turkish Statistical Institutes

2017 road traffic accident data, in Turkey, 1,202,716 traffic accidents occurred. Among

those accidents 1,020,047 resulted in material loss and 182,669 caused a death or injury.

Looking at the 182,669 total faults causing accidents involving death or injury during in

2017, it was observed that 89.9% of faults were driver related, 8.5% of faults were

pedestrian faults, 0.7% of faults were road faults, 0.5% were vehicle faults and 0.4% were

passenger related [1].

As well as the traffic safety, driving style is also important criterion for fuel and energy

consumption. By changing driver style, energy and fuel consumption can be reduced [2],

[3]. Purpose of analyzing of vehicle data is to observe driver and determine driver

behavior. The result of the analysis aims to measure the aggressiveness of the driver to

help impose sanctions that may ultimately reduce aggressiveness.

In recent year, driver profiling has gained growing importance for insurance companies.

Usage Based Insurance (UBI) also known as Pay How You Drive (PHYD) systems has

recently been implemented [4]- [5]. The main idea is instead of a fixed cost, drivers are

expected to pay according to their driving behavior. In this insurance system, driver who

demonstrates aggressive breaking, line changing or over speeding, have to pay much more

than other drivers. This system increases traffic safety due to its deterrence, preventing

accidents and increasing the service life of the vehicle. At the same time, the driver's

behavior leads to inevitable saving in fuel / energy consumption. In addition to insurance

companies, the driver behavior profile is extremely important for companies that perform

fleet management and intercity transport. The behavior of the driver can be ameliorated

when the behavior of aggressive drivers is shared with them and the necessary warnings

are made.

2

1.2. Purpose of the Thesis

 The aim of this thesis is to classify driver behavior with two different methods which are

LSTM and CNN deep learning methods. For this purpose, data was collected from the

vehicle as shown in Figure 1.1 and fed to the network trained with TensorFlow library.

 When driver behavior studies examined, it was seen that, different methods and different

data types were used. Data was collected from three different data sources as below.

 OBD-II

 Smart Phones

 Cameras

Figure 1. 1 Steps for creating a driver profile

Some studies, used all data sources together, whereas some other used just one data source.

On Board Diagnostic (OBD) is a versatile electronic system which communicates with car

electronic system and collects vehicle parameters such as brake pedal position, fuel

consumption. The data from sensors such as magnetometer, acceleration, gyroscope and

GPS in the phone can be used with the smartphone fixed in the vehicle. In the same way,

3

the driver's behavior can be examined with the camera mounted in the vehicle and the

distance to other vehicles can be performed by monitoring the path and the aggression.

Examining the literature, it was observed that machine learning and artificial neural

network techniques were applied to driver behavior profiling. Sensor data such as

magnetometer, acceleration sensor and gyroscope of smart phones have been used to

identify behaviors such as sudden acceleration, deceleration, hard turn and sudden lane

change [6]. Dynamic Time Warping (DTW) and Bayesian Classification have been used

to reveal the risky behavior of the driver. With smartphone data, GPS and video camera

data was also used to classify driver behavior using DTW [7] method. To reveal the eco

driving behavior model in electric vehicles, besides the acceleration data from the

smartphone, speed data from vehicle Can Bus was collected for neural network training

[8]. In their study using acceleration data collected from mobile phone, Recurrent Neural

Network (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Neural

Network (GRU) neural network methods were used to classify driver behavior. Compared

to three different methods, the highest success rate was obtained from GRU [9]. In their

study, acceleration, engine speed information were obtained from OBD and were used to

determine the anomaly in the behavior of the driver using the Markov model, K-Means

clustering and Adaboost machine learning algorithms [10].

Some studies have been based on OBD and visual data from vehicle camera. In one of the

studies examined, lane tracking and vehicle tracking distance information was obtained

from the camera and vehicle speed and engine speed information was taken from CAN-

bus [11]. This information was modeled by using Gaussian Mixture model (GMM) and

converted into feature vectors. These vectors were classified using Support Vector

Machine (SVM) to detect aggressive driving behavior. In [12]; torque, engine revolutions

per minute, vehicle speed, torque, acceleration pedal position, throttle pedal position,

intake manifold pressure, accelerometer and GPS data provided by OBD device has been

used to identify the drunk driver. Collected data was interpreted with Logistic Regression

algorithm and classification was achieved with an accuracy of 82%. [13] used the same

data source and almost the same data but implemented GMM algorithm to perform driver

behavior analysis and further identification of aggressive behavior. In [14], acceleration,

deceleration and rotation data was used with SVM and K-means clustering machine

4

learning algorithms to identify driving style. Quintero et al. [15] proposed a method to

detect erratic driving behavior using GPS, OBD-II and other localization sensor data

supplied to a Feedforward Neural Network. To estimate the acceleration intend, Long

Short Term Memory Neural Network and Feedforward neural networks [16] were

compared which revealed that LSTM indicated favorable accuracies. In another study by

using GPS, OBD-II and car camera data, LSTM has been used to predict the subsequent

movement of a driver [17]. The difference of this study from the others discussed in the

literature is using LSTM method trained with the onboard data recorded by can-bus of the

car.

Convolution Neural Network (CNN or ConvNet) is a deep learning method which has

proven its success in image classification. CNN is also used to interpret time-dependent

data collected from a variety of domains including natural language processing (NLP),

medicine, and the Internet of Things (IoT).

In order to attain a meaningful information regarding the data, it is necessary to make

optimization with attribute inferences. The connections between neurons and layers and

the parameters learned result in very large computational difficulties with a classic neural

network model. Convolutional neural networks have been developed by Yann LeCun as

a solution to this challenge.

One-dimensional (1D) CNN is used for time-dependent data while 2-dimensional (2D)

CNN is used for image classification. CNN has been observed to be highly successful in

detecting arrhythmias from various data sources including electrocardiography (ECG) or

human motion detection using sensor data obtained from a cellular phone [18].

With the widespread use of wearable technologies, studies on the data collected from

these devices have achieved an accelerated pace with a considerable use in disease

diagnostics. Due to the elevated risk of cardiovascular complications, the importance of

automatic classification on live data has increased. Kiranyaz et al., with the help of

wearable devices, collected EEG data from each patient and trained 1-D CNN network

for a real time heart monitoring and anomaly detection [19] application. The other study

examined, normal beats, supraventricular ectopic beats, ventricular ectopic beats, fusion

beats classified with a 1D CNN [20] yielding a 97% accuracy rate. ECG data from the

MIT/BIH arrhythmia database were used for both studies. Unlike previous studies

5

examined, there were additional efforts using 2-D CNN to classify ECG signals yielding

better results than the success rate of Kiranyaz et al [21].

Biometrics is an automated system that measures the physical or behavioral uniqueness

of an individual and identifies it by comparing it with existing records. In other words,

instead of using personnel identification cards, magnetic cards, keys or passwords,

biometrics can be used to determine the individual's fingerprints, face, iris, handprints,

signature, DNA and retina with easy and convenient verification methods. One study

includes the design of a biometric system that classifies ECG signals using deep learning

methods [22]. The ECG can be used as a biometrics for verification purposes because it

provides detailed information about the electrical operation of the heart and this

information is extremely personalized. Four different ECG dataset (MITDB, FANTASIA,

NSRDB and QT) were used and SVM, KNN and 1-D CNN algorithms were compared.

CNN based algorithm achieved an accuracy of 81.33%, 96.95%, 94.73% and 92.85% on

the MITDB, FANTASIA, NSRDB and QT datasets respectively.

1-D CNN is frequently used in human activity recognition (HAR) studies. The data

collected from the acceleration sensor of a mobile phone was used to classify movements

as falling, sitting, jumping, running, walking, walking upstairs and walking downstairs

[23]- [24]- [25]. CNN provided higher success rates than the machine learning methods

such as SVM [26].

Examining the studies using CNN in driver profiling [27]- [28]- [29] to classify the driver

behavior based on driver images taken in the vehicle, the unsafe behavior during driving

condition could be detected. Gao et al. [30] studied to detect dangerous driving situation

using video information captured from the vehicle camera. Wang et al. [31] proposed two

methods, one using smartphone accelerometer and gyroscope sensor, they forecasted

vehicle speed with an LSTM network, while traffic light, stop lines and crosswalks were

detected using CNN method. Combining all this information, they focused on unsafe

driving detection. In another study [32], vehicle movement direction was predicted using

a hybrid combination of CNN and LSTM networks together. Acceleration data obtained

from a mobile phone was classified as braking, turn, acceleration and mixed indicating a

90.07% accuracy. Although there are similarities in our study vehicle data was used to

train LSTM and 1D-CNN networks separately by comparing their performance indices

6

independently. Examining the literature, no study 1D-CNN driver profiling based on

vehicle data has been found.

1.3. Scope of Thesis

In this thesis, the experimental work was based on the vehicle data collected from vehicle

can bus system. The studies have been performed in collaboration with Otokar Otomotiv

ve Savunma Sanayi A.Ş a bus and military vehicle manufacturer [33]. After creation of

test scenario, train, test and validation dataset were collected from Otokar test buses.

Driving tests were pursued for five days and the data was collected with five different

Otokar drivers sent to the test track. A neural networks model was developed using

TensorFlow [34] library which is an open source machine learning and neural network

framework. Computer with Intel Core i7-6600U CPU @2.60GHz was used. In the

literature reviewed there are studies using LSTM for driver profiling but no work on CNN

use for profiling has been encountered. In this thesis both LSTM and CNN methods were

used for driver profiling. CNN method provides a lot of inspiration due to its prominent

success in human activity recognition. In one study [18] three dimensional acceleration

data from the smartphone sensor was used providing 91% accuracy in classifying human

walking, steady, and running activities. Both human activity and driver profiling deal with

a time series data, making CNN method has been an interest of this study besides the

LSTM method. The comparison of two methods revealed that CNN handles the data much

faster providing a higher success rate than the LSTM network.

7

CHAPTER 2

2. MATERIALS AND METHODS

Speed, fuel consumption and similar data were collected from vehicle' Can Bus

communication system according to predetermined test scenarios. The start and end

times of the driving behavior were recorded during the test. Data were filtered according

to the start and end times of the driving behavior followed by a preconditioning before

feeding into the neural network.

 Data obtained from the vehicle is time dependent, therefore Long-Short Term Memory

(LSTM) and 1D Convolutional Neural Network was studied. Python 3.5 and TensorFlow

framework was used throughout this study.

Detailed information about data collection and neural networks will be explained in the

following sections.

2.1 Data Collection

In order to determine aggressive, mild and gentle driving, four different test scenarios

were created which were deceleration, engine speed, corner turning and lane change.

Deceleration, engine speed and corner turning tests were performed on the test track,

which was concrete floor of Otokar's Sakarya Arifiye campus illustrated in Figure 2.1.

8

Figure 2. 1 Otokar Arifiye test track

Line changing tests has been performed at Sakarya Karasu road which can be seen in

Figure 2.2. The pavement of the highway is asphalt. During the test days, weather was

clear and sunny and tests were completed with Otokar' five different drivers.

Figure 2. 2 Sakarya Karasu Road

9

66 deceleration tests, 36 engine speed tests, 3 corner turning tests and 5 lane change tests

have been completed successfully. One test was repeated five times in deceleration and

speed tests. For example, a deceleration test from 30 km speed to 0 km speed in 0-3

seconds was repeated five consecutive times. One test was repeated ten times in corner

turning and lane changing tests.

 In the deceleration and engine speed tests, the measure of aggressive, mild and gentle

behavior was determined by the time-lapse for aggressive, mild and gentle driving (Table

2.1). In the deceleration test, if the vehicle drops to a speed of 0 km in 0-3 seconds while

driving at a speed of 30 km, the behavior is labelled as aggressive. If the same test is

performed in 4-7 seconds it is labeled as mild driving, whereas a deceleration in 7-10

seconds is labeled as gentle driving (Table 2.1 and Table 2.2).

Table 2. 1 Criteria for determining aggression and gentle in deceleration and speed tests

Test Scenario 0 sec -3 sec 4 sec -7sec 7sec -10 sec

Deceleration Aggressive Mild Gentle

Engine Speed Aggressive Mild Gentle

The sample test scenario for deceleration is described in Table 2.2.

10

Table 2. 2 Sample test scenario for deceleration

Test No First

Speed(km/sec)

Last

Speed(km/sec)

Time

(Sec)

Number of

Test

1 50 0 0-3 5

2 50 0 4-7 5

3 50 0 8-10 5

4 70 20 0-3 5

5 70 20 4-7 5

6 70 20 8-10 5

In the acceleration tests, the speed parameters and driving time intervals were interpreted

using the performance graphics. The speed of the vehicle was determined by looking at

the engine speed graphics. In the corner turning and lane change tests, time intervals

were determined with the graphs of the lateral acceleration parameter and the wheel

angle parameter. The messages acquired from the vehicle and the period of these

messages are shown in Table 2.3.

11

Table 2. 3 Messages and messages period

Messages Period

Wheel Based Vehicle Speed 100 ms

Actual Retarder Percent Torque 100 ms

Brake Pedal Position 100 ms

Accelerator Pedal Position 50 ms

Percent Load At Current Speed 50 ms

Actual Engine Percent Torque engine speed dependent

Engine Speed engine speed dependent

Lateral Acceleration 10 ms

Longitudinal Acceleration 10 ms

Steering Wheel Angle 10 ms

Inlet Air Mass Flow Rate 50 ms

Fuel Rate 100 ms

The duration of aggressive driving data to be entered into artificial neural networks is

3.5 seconds, mild driving is 7 seconds and gentle driving is 10.5 seconds. Therefore, data

which takes less than 3 seconds was augmented to 3.5 seconds, this process was done by

repeating the last element up to 3.5 seconds. Likewise the mild driving data, which lasts

less than 7 seconds, was augmented to 7 seconds. Driving data was supplied in stacks of

3.5 seconds and hence mild driving data was fed to the network in two, gentle driving

data in three pieces. 70% of the collected dataset was allocated for training while 30%

was used for testing the trained network. The driving data was labelled as “1” for

12

aggressive, “2” for mild and “3” for gentle driving. The format of the messages obtained

from Otokar can be seen in Figure 2.3.

Figure 2. 3 Can-Bus message format

Can Bus messages from Otokar were recorded in the .asc file extension format (Figure

2.4) which contains the ID, content and the length of the incoming message.

13

Figure 2. 4 Can Bus records of the vehicle

Data parser code was written with python3 to separate incoming messages into

meaningful components such as speed, acceleration, fuel consumption. With this code,

messages read in .asc file was separated according to their IDs; as shown in Figure 2.5,

parsed into parameters such as speed, acceleration, fuel consumption, and brake pedal

position.

Figure 2. 5 Messages separated and converted to csv file format

14

In the same code, as shown in Figure 2.6, the necessary parameters such as speed, engine

rpm, etc. were plotted. With the help of these graphs, the time intervals of aggressive and

gentle driving were determined and the start and end times were recorded as in Table 2.4.

Figure 2. 6 Speed graph of vehicle in deceleration test

15

Table 2. 4 Deceleration start and end times

Test

No

Initial Speed

(km/sec)

Final Speed

(km/sec)

Time

(sec)

Number

of test

Start

Time

Stop

Time

Elapsed Time

(sec)

1 20 0 0-3 5 13,71 15,85 2,14

2 20 0 4-7 5 11,97 18,51 6,53

3 20 0 8-10 5 18,83 29,00 10,16

4 20 10 0-3 5 12,80 15,60 2,79

5 20 10 4-7 5 14,38 20,14 5,76

6 20 10 8-10 5 28,51 41,86 13,34

7 30 0 0-3 5 10,33 13,93 3,59

8 30 0 4-7 5 12,00 19,03 7,03

9 30 0 8-10 5 13,38 23,36 9,97

12 40 0 0-3 5 17,40 20,76 3,36

13 40 0 4-7 5 12,20 18,38 6,18

14 40 0 8-10 5 7,53 17,53 10,00

In the acceleration tests, graphics were interpreted by looking at the speed parameter and

determining the driving period intervals. In the engine speed test, time intervals were

determined by looking at the engine speed of the vehicle; in the corner turning and lane

change tests, the graphs of the lateral acceleration parameters together with the wheel

angle parameter were illustrated and the time intervals were designated.

16

2.2 Neural Networks

 Using the previously realized examples of an event, the relationship between the input

and output of the event to learn, and then predict the output of events that occurred is

referred to artificial neural networks.

 Artificial neural networks store information obtained during learning by weighted

connection between neuron cells. The information is stored in these networks, not in the

database. Learning can be defined as calculating weights between connections.

 It is possible to classify artificial neural networks according to their structures and

learning algorithms. In general there are 3 different learning strategies. These;

 Supervised Learning

 Reinforcement Learning

 Unsupervised Learning

2.2.1 Supervise Learning

In supervised learning, which is the most commonly used learning method in artificial

neural networks, an expected output is provided as an example case to the artificial

neural network and then the predicted output produced by the network was compared

with the real output by considering the difference between the two as an error. Usually,

the random picked weights are iteratively modified in a loop until the network error is

minimized.

2.2.2 Reinforcement Learning

In this system, the expert helps the learner system. Instead of showing the output set that

should be for each input set, the teacher expects the system to generate output for the

17

input shown to it, and generates a signal indicating that the output generated is true or

false. The system continues the learning process by taking this signal into consideration.

2.2.3 Unsupervised Learning

There is no supervision for this kind of learning that helps the system to learn. Only input

values are supplied to the system. The relationship between the parameters of the

samples are expected to be learned by the system itself.

Artificial neural networks are split into two according to the directions of the connections

between the neurons; these are feed forward and recurrent neural networks.

2.3 Feedforward Neural Network

In feedforward networks, the processor elements are usually divided into layers. Signals

are transmitted from the input layer to the output layer in one-way. In the feed-forward

ANN, the cells are arranged in layers and the outlets of the cells in a layer which become

an input to the next layer via weights. The input layer transmits the information it

receives from the external environment to the cells in the middle layer without any

modification. The information is processed in the middle and output layers and the

network output is determined as shown in Figure 2.7.

18

Figure 2. 7 Different neural network architectures [35]

Input layer: Each neuron in the input layer represents a different property in the data

set. It takes the inputs and transmits them to the next layer.

Hidden layer: A series of neurons in which each neuron has a weight assigned to it. It

takes the input from the previous layer and scales the inputs with weights, applies the

activation function, generates the result, and then transfers the data to the next layer.

Output layer: Generates the prediction for given inputs.

2.4 Recurrent Neural Networks

In a Recurrent Neural Networks, the output of at least one cell is given as input to itself

or to other cells, and usually the feedback is produced over a delay element. The

feedback can be between cells, between layers or can also be between cells in a layer.

Therefore, according to the method the feedback is generated, repetitive architectures

can be obtained in various structures and behaviors. A basic RNN given in Figure 2.8

shows that neurons can receive values from both input neurons and the output of the

hidden layers (Figure 2.8).

19

 Figure 2. 8 Recurrent Neural Network [36]

2.5 Long Short Term Memory (LSTM)

There is an approach based on previous information usage in Feedback (RNN)

architectures. For example, it is easy to predict the word ground in the sentence that

states trees grow in ground. But when the gap between contexts increases, it is very

difficult for the RNN to use information from the past. For example, “I grew up in

England …………., I can speak English fluently.” While guessing the “English” word

in this text, it can be estimated that it will be a language name based on the context of

the sentence, but it is necessary to keep the sentence at the beginning of the text in

memory to predict that the correct word is “English”. The long-term dependencies that

are possible in theory have been observed to lead to major problems in practice. In order

to solve this problem, as a special type of RNN which can learn long term dependencies,

Long Short Term Memory Networks (LSTM) can be used. Introduced by Hochreiter &

Schmidhuber (1997) [37], the network works well on a large variety of problems.

One of the methods of feedback artificial neural networks, LSTM neural networks; are

used for sentence completion, natural language processing, sensor data, i.e time-

dependent, sequential sensor data, understanding, classification and estimation purposes.

20

In driver behavior identification, the profile is intended to be extracted by using the

vehicle operational data recorded during a specific time interval. Since our data is time

dependent, Long Short Term Memory (LSTM) artificial neural network is more suitable

for our study. In the LSTM topology shown in Figure 2.9, the network was fed with 3.5

seconds data with 12 different components including speed and acceleration

measurements.

Figure 2. 9 Driver Profiling with LSTM topology

The 3.5-second data set can be considered as a matrix of 12 columns and 684 lines. The

learning algorithm was developed using the TensorFlow library. There are parameters

that determine the success of an artificial neural network and the success rate of the

training can be increased by changing the hyper parameters. These are variables such as

batch size, learning rate, training time (epoch), optimization algorithm, activation

function, number of layers and number of neurons. In order to increase the success rate,

changes were made both to hyper parameters and in data series with detailed information

given in the following sections.

 2.5.1 Long Short Term Memory Structure

In LSTM, there are two important parameters which are gates and cell states. Gate is a

way of transmitting on demand information. LSTM is organized with structures called

doors that can add or remove information to the cell state (Figure 2.10).

21

Figure 2. 10 Internal structure of LSTM [38]

The first step in an LSTM algorithm is to decide what information to discard from the cell

state. As shown in Figure 2.11, this decision is made by sigmoid layer which is called

“forget gate layer”.

22

Figure 2. 11 Forget gate [39]

Forget gate looks at ℎ𝑡−1 and 𝑥𝑡 and give output to the cell state 𝑐𝑡−1. Output is a number

between 0 and 1, where 1 stands for “keep this information”, 0 is for “don’t store

information”, “W” is weight and b is the bias term in Eq. 2.1.

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.1)

The next step is to decide which new information is stored in the cell. There are two parts.

First, input gate layer which contains a sigmoid layer, decides the values to be updated.

Then, a tanh layer creates an applicant vector Ĉ𝑇 which will be added to the cell state in

Eq. 2.2. As shown in Figure 2.12, the last stage is to combine sigmoid and tanh layers and

update the cell status.

23

Figure 2. 12 Decision block for selection of new information to store in the cell [39]

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.2)

 Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.3)

Then the old cell state Ct−1, is updated into the new cell state Ct. As shown in Figure

2.13, the old state Ct−1 is multiplied by ft and then it∗ĈT is added in Eq. 2.4. This is the

new applicant value scaled by how much it is desirable to update each state value. In the

previous language example, this is where the information about the old state is forgotten

and the new information is added.

Figure 2. 13 Forgetting the old information and adding the new information [39]

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡 (2.4)

24

Finally, comes the decision stage (Figure 2.14) based on filtered cell state. First, a

sigmoid layer is executed which decides the components of the cell state to extract. Then,

the cell state is fed through tanh and multiplied by the output of the sigmoid gate,

producing the output describing the decision in Eq. 2.5 and in Eq. 2.6. For the language

model case, this might be the output information about a verb that comes in the following

step due to a new topic.

Figure 2. 14 Output information [39]

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.5)

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡) (2.6)

2.6 Classification with CNN

CNN consists of a primary part for attribute subtraction and a secondary part for

classifying (Figure 2.15).

25

Figure 2. 15 2-D convolution network for image classification [40]

The primary part consists of convolution and pooling layers to extract meaningful

attributes (feature extraction) from the raw data. With the convolution layer, feature

extraction is performed. This layer is actually a simple filtering process. Some sources

use the word kernel instead of a filter. As the depth in the convolution layer increases

(Figure 2.16), the complex features of the data are extracted more accurately.

Figure 2. 16 Feature extraction [41]

26

Figure 2.17 shows the sub-sampling of the pooling layer. This layer minimizes the process

load by reducing the attributes which were determined in the convolution layer. However,

according to Hinton's capsule theory, due to loss of some important data, performance is

a compromise.

Figure 2. 17 Dimension reduction with pooling layer [35]

In the second part shown in Figure 2.15, the extracted attributes are transferred to the

Multi-Layer Perceptron neurons for classification task as in the classic layer of a neural

network.

2.6.1 Differences Between 1D CNN and 2D CNN

Although the definitions in the previous section imply that convolution neural networks

are more for image classification purposes, the same logic can be applied to one-

dimensional convolution neural networks to classify time-dependent data. 1D CNN

indicates the same features for 2D and 3D, with only the biggest difference in the direction

of the input data and the filters scanning the data.

27

Figure 2. 18 1D versus 2D convolution neural network [42]

In the example for natural language processing (Figure 2.18), each of the 9 words

represents a vector. The attribute extractor scrolls in one direction over each word

throughout the sentence. In the 2-D convolution sample, the 2x2 size filter moves both

horizontally and vertically on the image.

2.6 Neural Network Parameter Optimization

Artificial neural networks incorporate parameters that affect the success of the network.

which can be increased by changing the hyper-parameters described in detail below.

2.6.1 Batch Size

The amount of the data set in artificial neural networks increase the success of the

learning process. At the same time, the amount of the data set increases the time spent

for training and the size of the model obtained at the end of the learning. During the

learning phase of the network, learning all the data in the data set at the same time is

important in terms of learning time and memory. In each iteration of learning, gradient

descent is calculated in the network with backpropagation process to update the weights

28

accordingly. The higher the number of data in this computation, the more time it takes

to complete the process. To solve this problem; the data set is divided into small batches

and the training is performed with these small groups.

2.6.2 Learning Rate

In deep learning, the weights are updated with the backpropagation process. In this

process, the update of the weights is calculated by finding derivate multiplied by the

learning rate and subtracted from the previous weight parameters. Higher learning rates

cause an fluctuation, whereas weights updated with a small learning rate prolongs the

duration of learning (Figure 2.19).

Figure 2. 19 Effect of learning rate on gradient descent [43]

Effect of learning rate is shown in Figure 2.20, where the loss refers to the error and the

epoch refers to number of repetitions of the period.

29

Figure 2. 20 Effect of learning rate on loss [35]

When the training is initiated, the learning rate usually is assigned an initial value of 0.01,

and the most appropriate value can then be determined by testing 0.001 and 0.0001 lower

values and the effect on accuracy.

2.6.3 Training epoch

While the model is trained, not all of the data are included in the training at the same time.

The network takes data in pieces, the first part is trained, the performance of the model is

tested and the weights are updated using backpropagation. Then the model is re-trained

with the new data set and the weights are updated again. This process is repeated in each

training step to calculate the most suitable weight values for the model. Each of these

training steps is called an epoch.

As the number of epoch increases, the performance of the model increases significantly.

Since performance will increase in very small units after a certain epoch value, then at

this point training can be terminated.

30

2.6.4 Selection of Optimization Algorithm

Learning process in deep learning applications is basically an optimization problem

utilizing a variety of methods to find the optimal values for usually nonlinear problems.

Stochastic gradient descent, adagrad, adadelta, adam, adamax are widely utilized

optimization algorithms in Deep learning applications. There are differences in terms of

performance and speed between these algorithms and as an example the performance of

different algorithms for MNIST data set is shown in Figure 2.21.

Figure 2. 21 Performance of different optimization algorithms for MNIST data set [44]

Gradient Descent is a general optimization algorithm to find the most suitable solutions

for a wide variety of problems. The general idea of Gradient Descent is to set parameters

repeatedly to minimize a cost function (Figure 2.22). Learning rate is an important

hyperparameter for Gradient Descent. Batch Gradient Descent uses the entire training set

to calculate gradients at each step which slows the iteration down when the training set is

too large.

31

Figure 2. 22 Gradient Descent [45]

The Stochastic Gradient Descent selects a random sample at each step in the training set

and calculates gradients based on only one instance. This makes the algorithm faster

because there is little data to use in each iteration. It also receives large sets of training

data and only one instance should be in the memory during each iteration. Instead of

gradually decreasing to the minimum level, the cost function jumps up and down around

an average (Figure 2.23). In time, it approaches to the minimum level, but when it gets

there it oscillates without settling to a terminal point.

Figure 2. 23 Stochastic Gradient Descent [45]

32

Adagrad is a gradient-based algorithm. It adapts the learning rate to parameters, makes

smaller updates for frequent parameters when making major updates for sparse

parameters. It is used for natural language and computer vision problems.

Adadelta is an extension of Adagrad which attempts to reduce the rate of aggressive,

tediously reduced learning rate. Adadelta limits the accumulated previous gradient

window to a fixed size, instead of accumulating the total previous square gradients.

RMSprop was designed by the Geoffrey Hinton in a Coursera Class lecture [46]. The

RMS prop eliminates the need to adjust the learning rate and does this automatically.

Moreover, RMSProp selects a different learning rate for each parameter. RMSProp

generates its parameter updates using a momentum on a rescaled gradient.

Adam optimizer combines Adagrad and RMSprop. It is an adaptive learning rate

method. Rather than adjusting the parameter learning rates to the average initial baseline

in the RMSProp, Adam makes updates using the average of the first and second moments

of the gradients. Adam is an optimizer which provides fast and good results and it is

frequently used in deep learning studies.

2.6.5 Activation Function

Activation functions are used for nonlinear transformation processes in multilayer

artificial neural networks. The output of hidden layers is normalized by some activation

functions to calculate the gradient in hidden layers (Figure 2.24).

Figure 2. 24 Common activation functions [47]

33

The sigmoid function range between 0 and 1, tanh function range between -1 and 1,

Rectified Linear Unit (ReLU) function ranges from 0 to infinity.

ReLU is currently the most used activation function in the deep learning studies and

specifically in almost all Convolutional neural networks studies.

Activation functions are used with gradient descent to update weights. The purpose is to

obtain easy derivatives which are shown in Figure 2.25.

Figure 2. 25 Activation functions and their derivatives [45]

2.6.6 Number of Layers and Number of Neurons

There is no method to determine the number of layers in a network or the number of

neurons in the layers. Starting with a single layer or two layers, it is possible to increase

the success rate by making changes in hyper parameters. The number of layers and the

number of neurons can then be increased as needed.

2.6.7 Overfitting & Underfitting

If neural networks are trained with a small number of epochs, the model cannot learn well,

reducing the success of the training and test processes indicating an under-fitting. If

trained with too many epochs, model memorizes the training sets leading to overfitting.

When this occurs, training set pose higher accuracy (it is almost 1.0 or so close to 1.0),

whereas validation loss starts to increase while the test set settle to a lower accuracy. The

34

accuracy of the network is determined by the ratio of the correctly classified cases to all

of the samples.

Accuracy and loss graphics of training and test sets are usually plot against each other to

comprehend the overfitting or underfitting problems. If the difference between training

accuracy and test accuracy is increasing (Figure 2.26), the model starts overfitting and the

training is terminated.

Figure 2. 26 Training and Test accuracy [48]

Similarly, overfitting occurs due to the increase in the value of validation loss (Figure

2.27).

Figure 2. 27 Validation loss [49]

35

In order to prevent overfitting during the training process, model capacity can be reduced

or dropout technique can be used [50].

Dropout technique was proposed by Srivastava, at al. [51] where randomly selected

neurons are ignored during training (Figure 2.28). In the dropout technique p

hyperparameter is determined (0≤p≤1) to determine the probability of which outputs of

layers will be dropped out or which outputs of layers will be kept in the model. 1.0

indicates no dropout, while 0.0 means no outputs from the layer. A common value is a

probability of 0.5. Dropout makes the network less sensitive. In this way, the network

becomes insensitive to very fine details, such as noise in the data alleviating the problem

of overfitting.

Figure 2. 28 Dropout application [51]

Figure 2.29, figure 2.30 and figure 2.31 show the number of parameters for models with

different size using Keras framework which is a high-level neural network API, written

in Python and capable of running on top of TensorFlow [52].

36

Figure 2. 29 Baseline model [50]

Figure 2. 30 Smaller model [50]

Figure 2. 31 Bigger model [50]

As shown in Figure 2.32, blue dotted line represents baseline network validation loss,

blue straight line represents train loss, yellow dotted line shows smaller networks

37

validation loss, yellow straight line indicates training loss, green dotted line represent

bigger networks validation loss, green straight line represent training loss. As shown in

Figure 2.32, bigger network almost begins overfitting after just one epoch. Bigger

capacity means less training loss, but also less accuracy for the test set.

Figure 2. 32 Loss graph of different size networks [50]

2.6.8 Feature Scaling

It was observed that the performance of the network increases when pre-processing is

applied to the data before training. Machine learning algorithms do not perform well when

numerical inputs are on different scales. There are two common ways in which all features

pose the same scale: min-max scaling (normalization) and standardization. Normalizing

is, finding the minimum and maximum values of the data and rescaling the data to be

between 0 and 1 or -1 to 1 if there are negative values in Eq. 2.7.

𝑋𝑐ℎ𝑎𝑛𝑔𝑒𝑑 =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(2.7)

 Standardization rescales the data to possess a mean (μ) value of 0 and standard deviation

(σ) of 1 (unit variance) in Eq. 2.8.

38

𝑋𝑐ℎ𝑎𝑛𝑔𝑒𝑑 =

𝑋 − µ

𝜎

(2.8)

In our study we supplied the data through a standardization procedure before feeding to

the network.

39

CHAPTER 3

3. Results and Discussion

3.1 LSTM Training

There are 12 input parameters and 3 outputs. Input parameters are components as speed,

engine speed, fuel consumption. The output parameter is an indicator with a value of 1

for aggressive driving, 2 for mild driving and 3 for gentle driving.

Data from the vehicle were split into two stacks with 603 training series and 402 test

series. Each series contains 684 parameters; this indicates that our time series corresponds

to 3.5 seconds. Data was standardized before feeding to the network. The process was

programmed by using Python language and Numpy library [53].

Adam optimizer for cost minimization, and ReLU for activation function was used in each

LSTM neuron. Dropout regularization with a value of 0.5 was added to prevent

overfitting. As a result of the testing trials, learning rate was determined as 0.0001

providing the best result at this value. Gradient clipping was added to prevent exploding

gradients during back propagation. A gradient threshold was added with a gradient

clipping with a value between -1 and 1, and then the gradients that exceed this threshold

were minimized to match the norms.

40

Table 3. 1 The effect hyperparameters and datasets on the success rate

A
cc

u
ra

cy

7
0
.2

%

6
9
.1

%

6
6
.6

%

6
3
.6

%

9
1
.8

%

8
1
.1

%

7
1
.2

%

E
p
o
ch

8
0
0

1
0
0
0

1
0
0
0

5
0
0

4
0
0

4
0
0

4
0
0

N
eu

ro
n
s

3
2

2
0

3
2

3
2

3
2

3
2

3
2

H
id

d
en

L
ay

er
s

2

5

2

4

2

2

2

L
ea

rn
in

g

R
at

e

1
0

-3

1
0

-3

1
0

-4

1
0

-3

1
0

-4

1
0

-4

1
0

-4

B
at

ch

S
iz

e

1
0
0

5
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

8
-1

0
 s

ec

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

N
o
n

E
x
is

t

4
-7

 s
ec

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

N
o
n

E
x
is

t

E
x
is

t

0
-3

 s
ec

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

E
x
is

t

N
o
n

F
ea

tu
re

s

1
2

1
2

9

4

1
2

9

4

1
2

1
2

1
2

In the initial tests, the network was fed with 0-3 seconds, 4-7 seconds and 8-10 seconds

data. The success of the network was improved by altering the hyperparameters as seen

in Table 3.1 with a maximum rate of 70%.

41

Figure 3. 1 Network performance with three data sets.

In Figure 3.1, red line correspond to training loss, blue line corresponds to training

accuracy. In the graph (Figure 3.1) the training loss refers to the difference between the

estimated result and the actual result, which the network attempts to reduce during

training. The rate indicates the accuracy of the estimates made using the test data denoting

that it can classify the driving data supplied to it correctly. As can be seen in the Figure

3.1, the success rate could not be improved to the desired rates. Training the network with

different batch size, epoch value, number of hidden layers and number of neurons did not

provide any improvement with the success rate.

To overcome this problem, the network was modified to binary classification, by feeding

the training datasets in three different combinations as aggressive-gentle, aggressive-mild

and mild-gentle. Aggressive - gentle dataset contains 546 train, 234 test set. Aggressive -

mild dataset contains 430 train, 185 test set. Mild – gentle dataset contains 577 train, 247

test sets. It was observed that the success rate increased when the network was fed with

aggressive and mild dataset or aggressive and gentle dataset.

Network was fed with aggressive and gentle driving data yielding a 92.3% accuracy in

validation dataset and 88.5% accuracy in test dataset with a 2 layer, 27 neurons network

configuration. At the same time, aggressive and mild driving data was supplied to the

42

network to observe its response to the untrained aggressive and gentle driving data and

75 % accuracy was obtained (Table 3.2).

Loss and accuracy graphs of the network which was fed with aggressive and gentle driving

data shown in Figure 3.2. As seen in above Figure 3.2.c and Figure 3.2.f, overfitting

occurred in the network trained with 1000 epoch.

Table 3. 2 Outputs of the network trained with aggressive & gentle dataset (* overfitting)

Number

of

Neurons

Number

of

Layers

Epoch Validation

Loss

Validation

dataset

accuracy

Aggressive

& gentle

test dataset

accuracy

Aggressive

& mild test

dataset

accuracy

27 2 500 0.27 92.3% 88.5% 75%

20 1 500 0.249 87.7% 81.2% 72.2%

30* 1 1000 0.438 88% 84.6% 79%

20 2 500 0.311 89.7% 83.3% 75%

20 4 500 0.228 92.3% 78.2% 73%

27* 2 1000 0.423 91.4% 85.8% 79.1%

43

a. 27 neurons, 2 layers

b. 20 neurons, 1 layer

c. 30 neurons, 1 layer

d. 20 neurons, 2 layer

44

Figure 3. 2 Loss and accuracy graph of network fed with aggressive & gentle

As shown in Figure 3.3, loss and accuracy graph of network trained with 2 layer, 27

neurons and 500 epoch. Figure 3.3 exhibits higher accuracy rates.

Figure 3. 3 Loss and accuracy graph of network with improved accuracy

e. 20 neurons, 4 layer

f. 27 neurons, 2 layer

45

When network was fed with aggressive and mild data together, the outcome was generated

with lower accuracy, as shown in Table 3.3. Loss and accuracy graphs of the network

which was fed with aggressive and mild driving data as shown in Figure 3.4.

Table 3. 3 Outputs of the network which was trained with aggressive & mild

Number

of

Neurons

Number

of

Layers

Epoch Validation

Loss

Validation

dataset

accuracy

Aggressive

& mild test

dataset

accuracy

Aggressive

& gentle test

dataset

accuracy

20 1 500 0.395 83.7 % 61.1% 70.8%

30 1 1000 0.427 85.3% 68% 80.2%

27 2 1000 0.521 84.3% 65.2% 64%

27 2 500 0.395 87.2% 59.7% 64.5%

20 3 500 0.389 84.8% 68% 66%

20 3 1000 0.391 85.2% 69.5% 73.9%

46

a. 20 neurons, 1 layer

b. 30 neurons, 1 layer

c. 27 neurons, 2 layer

d. 27 neurons, 2 layer

47

Figure 3. 4 Loss and accuracy graph of network fed with aggressive & mild

Network provided the best results with 85.2% accuracy for validation dataset and 69.5 %

for test dataset. At the same time, aggressive and gentle driving data was supplied to the

network to observe its response to untrained aggressive and gentle driving data. The

network generated low accuracy result with rates of 73.9%. Figure 3.5 exhibits the loss

and accuracy graph of network trained with 3 layer, 20 neurons and 1000 epoch.

Figure 3. 5 Loss and accuracy of network with improved accuracy

e. 20 neurons, 3 layer

f. 20 neurons, 3 layers

48

3.2 Results for LSTM

In this study, data collected from the vehicle using LSTM deep learning method is

classified as aggressive driving and gentle driving data. The effects of changes in

hyperparameters on LSTM network were observed. When the network is fed with data

suitable for classification, it was observed that the success rate increased significantly.

The most important criteria for correct classification is to feed the network with the

appropriate data. It was determined that changes in the number of layers or neurons were

inadequate in increasing the success rate when specifically using data not suitable for

classification.

Looking at the training results, it was observed that the network had difficulty in

distinguish between 8-10 seconds driving behavior and 4-7 seconds driving data. The

highest success rate obtained was about 92.3% for the validation dataset and 88.5% for

the test dataset, when 0-3 seconds and 8-10 seconds data were combined.

3.3 CNN Training and Results

The convolutional layers are formed using one-dimensional filters moving within the

sequence of data while learning during training. In many CNN architectures, as the

number of layers increase, the number of filters increase. Each convolution is followed

by pooling layers to reduce the sequence length. CNN structure used for driver profiling

is shown in Figure 3.6.

Figure 3. 6 CNN structure used in driver profiling

49

As mentioned previously, 0-3 sec data was aggressive, 4-7 sec mild and 8-10 sec data was

assigned a label for gentle driving. In the previous LSTM study, it was observed that the

network could not exceed the success rate of 70% when classifying aggressive driving,

mild-driving and gentle driving cases together. However, it was also determined that the

reason for the failure was, the difficulty of CNN with distinguishing between mild and

gentle driving data. In Figure 3.7 and Figure 3.8, it is obvious that during learning the

network cannot exceed the success rate of 73.2%.

Figure 3. 7 Network performance for aggressive, mild and gentle driving are together

50

Figure 3. 8 Network success rates for train and test dataset when aggressive, mild and

gentle driving are together

For this reason, instead of training three driving data together, the network was modified

for binary classification. Only aggressive-mild and aggressive-gentle combinations were

studied.

There are 430 samples in the training set for aggressive and mild driving data and 185

samples in the test set. There are 546 samples in the training set for aggressive and gentle

driving data and 234 samples in the test set. Learning rate was selected as 0.0001 and the

batch size was varied according to the data set. Batch size of 86 for aggressive and mild

driving data set and the batch size of 78 for aggressive and gentle driving data were used.

The number of layers and epoch were used as optimization parameters and the success

rate of the network was increased by the changing these parameters.

As shown in Table 3.4, each convolution layer was followed by pooling layer to reduce

sequence length, then proceeding with a dropout regularization of 0.5 to prevent

overfitting, and then finalized with a fully connected layer. Adam optimizer for cost

minimization, and ReLU for activation function was used in each convolution. 4 layer

CNN architecture was trained and tested as shown in Table 3.4. These different CNN

51

architectures were supplied with different data combinations. Results of training and

testing was illustrated in Table 3.5 and Figure 3.9.

Table 3. 4 CNN architecture

1 Layer 2 Layer 3 Layer 4 Layer

Conv1 (filter 24) Conv1 (filter 24) Conv1 (filter 24) Conv1 (filter 24)

Max pooling (2) Max pooling (2) Max pooling (2) Max pooling (2)

Dropout 0.5 Conv2 (filter 48) Conv2 (filter 48) Conv2 (filter 48)

Fully Connected Max Pooling (2) Max Pooling (2) Max Pooling (2)

 Dropout 0.5 Conv3 (filter 96) Conv3 (filter 96)

 Full Connected Max pooling (2) Max pooling (2)

 Dropout 0.5 Conv4 (filter 192)

 Fully Connected Max Pooling (2)

 Dropout 0.5

 Fully Connected

The success rate of classification of aggressive and mild driving data can be seen in Table

3.5. The response of the network to the gentle driving data that it has not fed before can

be seen in Figure 3.9. When Table 3.5 is examined, the success of the network in

classifying aggressive and mild driving data is less than its success in classifying

aggressive and gentle driving data. The highest success rate was achieved with 2 layers

and 500 epochs in aggressive and mild driving cases. Network provided 87.7% accuracy

for validation dataset and 91% accuracy for the test dataset. Although it is not trained with

gentle driving data, it is obvious that it can distinguish between aggressive and gentle

52

driving much better. It provides 97% accuracy for aggressive-gentle driving dataset.

Another crucial issue is that overfitting occurs as the number of layers increases or when

the network is trained for a long period of time.

Table 3. 5 Output of the network trained with aggressive & mild dataset (* overfitting)

Number

of

layers

Epoch Loss at

validation

dataset

Accuracy at

validation

dataset

Aggressive

& mild test

dataset

accuracy

Aggressive

& gentle test

dataset

accuracy

1 500 0.355 83.7% 81.9% 91.6%

2 300 0.308 85.4% 88.8% 97.9%

2 500 0.29 87.7% 91% 97%

2 1000 0.31 87.7% 86.1% 94%

3 300 0.314 85.8% 81.9% 95.8%

3 500 0.294 88.8% 77% 94%

3* 1000 0.513 87.1% 83.3% 93.75%

4* 500 0.395 87.1% 83.3% 95.9%

4* 1000 0.553 86.5% 77.7% 91.6%

As shown in Figures 3.9.g, Figures 3.9.h and Figures 3.9.j, the loss value for the validation

data increase after a while and this is an indication of the beginning of the memorization

of the network. It is also obvious that when the success of the training attains a value of

1.0, the network begins to memorize the data. While the network exhibits a high success

rate in the training data, it becomes difficult to classifying the test data. To avoid

53

memorization, the layers of the network can be reduced or training can be stopped when

the memorization becomes evident.

a. 1 layer, 500 epoch

b. 2 layer, 300 epoch

c. 2 layer, 500 epoch

d. 2 layer, 1000 epoch

54

e. 3 layer, 300 epoch

f. 3 layer, 500 epoch

g. 3 layer, 1000 epoch

h. 4 layer, 500 epoch

j. 4 layer, 1000 epoch

Figure 3. 9 Loss and accuracy of the network trained with aggressive and mild data

55

Figure 3.10 indicates the highest accuracy rate for the network which was trained with 2

layers and 500 epoch.

Figure 3. 10 Loss and accuracy graph of network with higher accuracy

Training results for aggressive and gentle driving data are shown in Table 3.6. Network

successfully classified aggressive and gentle driving test data. The highest success rate

was achieved in 2 layers and 500 epochs in aggressive and gentle driving cases. Network

provided 93.5% accuracy for validation dataset and 94.7% accuracy for test dataset.

Although it was trained with mild driving data, it is obvious that it could distinguish

between aggressive and mild with 88.8% accuracy.

56

Table 3. 6 Outputs of the network trained with aggressive and gentle data (* overfitting)

Number

of

layers

Epoch Loss at

validation

dataset

Accuracy

at

validation

dataset

Aggressive &

gentle test

dataset

accuracy

Aggressive &

mild test

dataset

accuracy

1 500 0.167 94% 92.7% 88%

2 200 0.189 92.3% 94.7% 81.9%

2 500 0.212 93.5% 94.7% 88.8%

2 1000 0.238 93.1% 91.6% 75%

3 300 0.2 94% 94.7% 80.5%

3 500 0.216 93.5% 95.8% 73.6%

3* 1000 0.327 94.1% 93.7% 69.4%

4* 500 0.290 93% 91.66% 67%

4* 1000 0.616 93.6% 88.5% 70.8%

As seen from Figures 3.11.g, Figure 3.11.h and Figure 3.11.j, since the network

memorized the data, the loss in the verification data began to increase after a while.

57

a. 1 layer, 500 epoch

b. 2 layer, 200 epoch

c. 2 layer, 500 epoch

d. 2 layer, 1000 epoch

e. 3 layer, 300 epoch

f. 3 layer, 500 epoch

58

g. 3 layer, 1000 epoch

h. 4 layer, 500 epoch

j. 4 layer, 100 epoch

Figure 3. 11 Loss and accuracy of the network trained with aggressive and gentle data

Figure 3.12 indicates the highest accuracy rate obtained for the network which was

trained with 2 layer and 500 epoch.

59

Figure 3. 12 Loss and accuracy of the network with has higher accuracy

3.4 Results for CNN

It was concluded that CNN provides high success in classifying aggressive - mild and

aggressive - gentle driving data collected from the vehicle. As a result, 1D CNN provided

more success than LSTM. During the tests, it took longer time to train the LSTM and to

obtain the classification results from the LSTM-trained network. On the other hand

however CNN did output faster results.

60

CHAPTER 4

4. CONCLUSION

It is very important to determine the driver's behavior for insurance and passenger

transportation related companies. Such institutions aim to implement a payment system

or sanction according to the behavior of the driver. In the following years, a driver profile

will be determined for each driver and a punishment - reward system will be established

to prevent traffic accidents. The aim in this study was to designate the behavior profile of

the driver with 12 different parameters collected from the vehicle Can Bus

communication system. When the studies on driver profiling are examined, it has been

observed that there were significant number of studies on machine learning and deep

learning. It has been observed that LSTM deep learning method was used in most of the

studies which were based on additional time-dependent sensor data. The motivation of

this research is based on the fact that there is no study on driver profiling with LSTM deep

learning method relying on can-bus vehicle data. At the same time, it has drawn our

attention that 1D CNN was used on time-dependent data with prominent achievements.

In the literature no study has been encountered on CNN training with only vehicle data

which created a motivation to use, 1D CNN for driver profiling.

Aggressive driving, mild driving and gentle driving data were collected from an Otokar

vehicle. Collected data was pre-processed, labeled and fed into the neural network. LSTM

and CNN models were separately trained and assessed in terms of accuracy in classifying

the test data. Both methods demonstrated 70% success rates in classifying three different

driving modes. After careful examination, the difficulty was with classification of the

mild driving and gentle driving. This is possibly, due to the similarities between mild and

gentle driving, where mild and gentle driving data last for 7 sec and 9 sec respectively.

Therefore, the network sometimes, could not make the correct classification. For this

reason, the network was fed with aggressive - mild driving and aggressive - gentle driving

data in binary combinations.

61

LSTM network was fed with aggressive and gentle driving data, providing 92.3%

accuracy for validation dataset and 88.5% accuracy for the test dataset. When this network

was fed together with 0-3 sec and 4-7 sec, best results was 85.2% for validation dataset

and 69.5 % for the test dataset.

1D-CNN was feed with aggressive and mild driving data, providing 87.7% accuracy for

validation dataset and 91% accuracy for the test dataset. When this network was fed with

aggressive and gentle driving data, it provided 93.5% accuracy for validation dataset and

94.7% accuracy for the test dataset.

As a result, 1D CNN was more successful than LSTM in classifying the driver profile.

CNN achieved high success in extracting important features from the raw data with the

filters it contains. Therefore, CNN learned the driver’s distinguishing parameters better

than LSTM. During the tests, LSTM takes longer time, whereas CNN works with a much

faster response. For example, one prediction was lasted 0.5 ms for CNN and one

prediction was lasted 25 ms for LSTM method implementation.

62

References

[1] Ö. HEMDİL, "Karayolu Trafik Kaza İstatistikleri, 2017," 27 June 2018. [Online].

Available: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27668.

[2] A. A. Malikopoulos and J. P. Aguilar, "Optimization of driving styles for fuel

economy improvement," Anchorage, AK, USA, 2012.

[3] J. E. Meseguer, C. K. Toh, C. T. Calafate, J. C. Cano and P. Manzoni,

"Drivingstyles: a mobile platform for driving styles and fuel consumption

characterization," Journal of Communications and Networks, vol. 19, no. 2, pp.

162-168, 2017.

[4] D. I. Tselentis, G. Yannis and E. I. Vlahogianni, "Innovative Insurance Schemes:

Pay as/how You Drive," Science Direct, vol. 14, pp. 362-371, 27 June 2016.

[5] W. Nai, Y. Chen, Y. Yu, F. Zhang, D. Dong and W. Zheng, "Effective presenting

method for different driving styles based on hexagonal eye diagram applied in

pay-how-you-drive vehicle insurance," in 2016 IEEE International Conference

on Big Data Analysis (ICBDA), Hangzhou, China, 2016.

[6] H. Eren, S. Makinist and A. Yilmaz, "Estimating driving behavior by a

smartphone," in 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares,

Spain, 2012.

[7] D. A. Johnson and M. M. Trivedi, "Driving style recognition using a smartphone

as a sensor platform," in 2011 14th International IEEE Conference on Intelligent

Transportation Systems (ITSC), Washington, DC, USA, 2011.

[8] A. D. Alvarez, F. S. Garcia, J. E. Naranjo, J. J. Anaya and F. Jimenez, "Modeling

the Driving Behavior of Electric Vehicles Using Smartphones and Neural

63

Networks," IEEE Intelligent Transportation Systems Magazine , vol. 6, no. 3, pp.

44-53, 21 July 2014.

[9] E. Carvalho, B. V. Ferreira, J. Ferreira, C. d. Souza, V. H. Carvalho, Y. Suhara,

A. S. Pentland and P. Gustavo, "Exploiting the use of recurrent neural networks

for driver behavior profiling," in 2017 International Joint Conference on Neural

Networks (IJCNN), Anchorage, AK, USA, 2017.

[10] B. Nirmali, S. Wickramasinghe, T. Munasinghe, C. R. Amalraj and D. H.

Bandara, "Vehicular data acquisition and analytics system for real-time driver

behavior monitoring and anomaly detection," in 2017 IEEE International

Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri

Lanka, 2017.

[11] Ö. Kumtepe, E. Yüncü and G. B. Akar, "A multimodal approach for aggressive

driving detection," in 2016 24th Signal Processing and Communication

Application Conference (SIU), Zonguldak, Turkey, 2016.

[12] A. E. B. Masri, H. Artail and H. Akkary, "Toward self-policing: Detecting drunk

driving behaviors through sampling CAN bus data," in 2017 International

Conference on Electrical and Computing Technologies and Applications

(ICECTA), Ras Al Khaimah, United Arab Emirates, 2017.

[13] J. Carmona, M. A. Miguel, D. Martin, F. Garcia and A. Escalera, "Embedded

system for driver behavior analysis based on GMM," in 2016 IEEE Intelligent

Vehicles Symposium (IV), Gothenburg, Sweden, 2016.

[14] M. V. Ly, S. Martin and M. M. Trivedi, "Driver classification and driving style

recognition using inertial sensors," in 2013 IEEE Intelligent Vehicles Symposium

(IV), Gold Coast, QLD, Australia, 2013.

64

[15] G. C. M. Quintero, J. A. Lopez and J. M. Rua, "Intelligent erratic driving

diagnosis based on artificial neural networks," in 2010 IEEE ANDESCON,

Bogota, Colombia, 2010.

[16] J. Morton, T. A. Wheeler and M. J. Kochenderfer, "Analysis of Recurrent Neural

Networks for Probabilistic Modeling of Driver Behavior," IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 5, pp. 1289-1298, 13 September

2016.

[17] A. Klusek, M. Kurdziel, M. Paciorek, P. Wawryka and W. Turek, "Driver

Profiling by Using LSTM Networks with Kalman Filtering," in 2018 IEEE

Intelligent Vehicles Symposium (IV), Changshu, China, 2018.

[18] S. M. Lee, S. M. Yoon and H. Cho, "Human activity recognition from

accelerometer data using Convolutional Neural Network," in 2017 IEEE

International Conference on Big Data and Smart Computing (BigComp), Jeju,

South Korea, 2017.

[19] S. Kiranyaz, T. Ince and M. Gabbouj, "Real-Time Patient-Specific ECG

Classification by 1-D Convolutional Neural Networks," IEEE Transactions on

Biomedical Engineering, vol. 63, no. 3, 2015.

[20] D. Li, J. Zhang, Q. Zhang and X. Wei, "Classification of ECG signals based on

1D convolution neural network," in 2017 IEEE 19th International Conference on

e-Health Networking, Applications and Services (Healthcom), Dalian, China,

2017.

[21] X. Zhai and C. Tin, "Automated ECG Classification Using Dual Heartbeat

Coupling Based on Convolutional Neural Network," IEEE Access, vol. 6, 2018.

[22] M. Deshmane and S. Madhe, "ECG Based Biometric Human Identification Using

Convolutional Neural Network in Smart Health Applications," in 2018 Fourth

65

International Conference on Computing Communication Control and Automation

(ICCUBEA), Pune, India, India, 2018.

[23] Y. Chen and Y. Xue, "A Deep Learning Approach to Human Activity

Recognition Based on Single Accelerometer," in 2015 IEEE International

Conference on Systems, Man, and Cybernetics, Kowloon, China, 2015.

[24] T. Zebin, P. J. Scully and K. B. Ozanyan, "Human activity recognition with

inertial sensors using a deep learning approach," in 2016 IEEE SENSORS,

Orlando, FL, USA, 2016.

[25] M. Z. Uddin and M. M. Hassan, "Activity Recognition for Cognitive Assistance

Using Body Sensors Data and Deep Convolutional Neural Network," IEEE

Sensors Journal, 2018.

[26] A. H. Fakhrulddin, X. Fei and H. Li, "Convolutional neural networks (CNN)

based human fall detection on Body Sensor Networks (BSN) sensor data," in 2017

4th International Conference on Systems and Informatics (ICSAI), Hangzhou,

China, 2017.

[27] Y.-T. Pang , S.-W. Syu, Y.-C. Huang and B.-H. Chen , "An Advanced Deep

Framework for Recognition of Distracted Driving Behaviors," in 2018 IEEE 7th

Global Conference on Consumer Electronics (GCCE), Nara, Japan, 2018.

[28] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis and F.-Y. Wang, "Driver Activity

Recognition for Intelligent Vehicles: A Deep Learning Approach," IEEE

Transactions on Vehicular Technology(in press), 2019.

[29] S. Yan, Y. Teng, J. S. Smith and B. Zhang, "Driver Behavior Recognition Based

on Deep Convolutional Neural Networks," in 2016 12th International Conference

on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD), Changsha, China, 2016.

66

[30] Z. Gao, Y. Liu, J. Y. Zheng, R. Yu, X. Wang and P. Sun, "Predicting Hazardous

Driving Events Using Multi-Modal Deep Learning Based on Video Motion

Profile and Kinematics Data," in 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), Hawaii, USA, 2018.

[31] Q. Wang, Y. Liu, J. Liu, Y. Gu and S. Kamijo, "Critical Areas Detection and

Vehicle Speed Estimation System Towards Intersection-Related Driving

Behavior Analysis," in 2018 IEEE International Conference on Consumer

Electronics (ICCE), 2018.

[32] S. H. Sanchez, R. F. Pozo and L. A. H. Gomez, "Estimating Vehicle Movement

Direction from Smartphone Accelerometers Using Deep Neural Networks,"

sensors, 2018.

[33] Otokar. [Online]. Available: https://www.otokar.com.tr/tr. [Accessed 19 May

2019].

[34] "Tensorflow," [Online]. Available: https://www.tensorflow.org/. [Accessed 19

May 2019].

[35] A. Karpathy, "CS231n: Convolutional Neural Networks for Visual Recognition,"

[Online]. Available: http://cs231n.github.io/. [Accessed 19 May 2019].

[36] W. D. Mulder, S. Bethard and M. F. Moens, "A survey on the application of

recurrent neural networks to statistical language modeling," Computer Speech &

Language, vol. 30, no. 1, 17 September 2014.

[37] S. Hochreiter and J. Schmidhuber, "Long Short-term Memory," Neural

Computation, 1997.

[38] S. Yan, "Understanding LSTM and its diagrams," [Online]. Available:

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-

37e2f46f1714. [Accessed 25 May 2019].

67

[39] C. Colah, "Understanding LSTM Networks," [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 19

May 2019].

[40] [Online]. Available: https://www.mathworks.com/videos/introduction-to-deep-

learning-what-are-convolutional-neural-networks--1489512765771.html.

[Accessed 21 May 2019].

[41] A. Deshpande, 21 May 2019. [Online]. Available:

https://adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-

Know-About.html.

[42] N. Ackermann. [Online]. Available: https://blog.goodaudience.com/introduction-

to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf.

[Accessed 22 May 2019].

[43] J. Jordan, "Setting the learning rate of your neural network.," [Online]. Available:

https://www.jeremyjordan.me/nn-learning-rate/. [Accessed 19 May 2019].

[44] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," in 3rd

International Conference for Learning Representations, San Diego, 2015.

[45] A. Geron, Hands-On Machine Learning with Scikit-Learn and Tensorflow,

O'Reilly, 2017.

[46] T. Tieleman, "Neural Networks for Machine Learning," [Online]. Available:

http://www.cs.toronto.edu/~tijmen/csc321/. [Accessed 19 May 2019].

[47] A. Moujahid, "A Practical Introduction to Deep Learning with Caffe and Python,"

[Online]. Available: http://adilmoujahid.com/posts/2016/06/introduction-deep-

learning-python-caffe/. [Accessed 19 May 2019].

68

[48] [Online]. Available: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-

early-stopping. [Accessed 19 May 2019].

[49] "Another look into overfitting," [Online]. Available:

https://medium.com/randomai/another-look-into-over-fitting-33e15b044a5e.

[Accessed 19 May 2019].

[50] "Explore overfitting and underfitting," [Online]. Available:

https://www.tensorflow.org/tutorials/keras/overfit_and_underfit. [Accessed 19

May 2019].

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

"Dropout: A Simple Way to Prevent Neural Networks from overfitting," Journal

of Machine Learning Research 15 (2014), pp. 1929-1958.

[52] "Keras: The Python Deep Learning library," 19 May 2019. [Online]. Available:

https://keras.io/.

[53] "scientific computing library for Python," [Online]. Available:

https://www.numpy.org/. [Accessed 25 May 2019].

