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ÖZET 

UZUN KISA SÜRE BELLEKLİ ÖĞRENME VE EVRİŞİMLİ SİNİR 

AĞLARI YÖNTEMLERİ İLE SÜRÜCÜ PROFİLLEME 

Sürücü araç kullanım şekli, trafik güvenliği, yakıt tüketimi ve gaz emisyonu konuları 

üzerinde son derece etkilidir. Bu çalışmada, trafik güvenliğini arttırmak için araçtan 

toplanan verileri yapay sinir ağları kullanarak sınıflandırmak ve bu sayede sürücünün 

davranış profilini çıkarmak amaçlanmıştır.  Sürücü profillemesi üzerindeki yapılan 

çalışmalar incelendiğinde, akıllı telefonlardan toplanan sensör verileri, kamera 

görüntüleri ve aracın kendi verileri  birlikte kullanılarak sürücü profili çıkarılma üzerine 

yoğunlaşıldığı görülmüştür. Bu çalışmadaki ise sadece aracın; hız, motor devri, gaz 

pedalı, fren pedalı, teker açısı ve ivmelenme gibi verileri kullanılarak sınıflandırma 

yapılmıştır. Sınıflandırmada iki farklı derin öğrenme metodu kullanılmıştır. Zaman bağlı 

veriler için sıklıkla kullanılan Uzun-Kısa Süreli Bellek (LSTM) ve görüntü işlemede 

kullanılan ancak zamana bağlı verilerde de tercih edilen CNN (Convolutional Neural 

Network) derin öğrenme metodu kullanılarak sınıflandırmadaki başarı oranları 

incelenmiştir.  Çalışma sonucunda CNN’in daha yüksek başarı sonuçları verdiği 

gözlemlenmiştir. 
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ABSTRACT 

DRIVER PROFILING USING LONG SHORT TERM MEMORY 

(LSTM) AND CONVOLUTIONAL NEURAL NETWORK (CNN) 

METHODS 

Driver profiling has a major impact on traffic safety, fuel consumption and gas emission. 

The purpose of this work is to feed and train the neural network with the vehicle data and 

classify the driver behavior. When the driver profiling studies are examined, the majority 

of studies have classified the driver using sensor, image and vehicle data together. In this 

study, only the vehicle data such as engine speed, torque, steering wheel angle etc. were 

used. To classify driver, two different methods were implemented. One of them is Long 

Short Term Memory (LSTM) Neural Network which is usually for time series data 

classification and the other method is Convolutional Neural Network (CNN) which is 

frequently used for image classification but also can be used for time series classification. 

In the results section of this study, the success rates of two methods in classification were 

analyzed and the outcomes indicated that Convolutional Neural Network provided higher 

success rates. 
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SYMBOLS 

σ              : Sigmoid 

Ct              : Current cell state 

Ct-1                : Previous cell state 

Xt                : Input vector 

ht                      : Output of the current cell 

ht-1                   : Output of the previous cell 

b                :Bias vector  

W              : Weight 

ĈT              : Candidate vector 
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ABBREVATIONS 

 

ANN         : Artificial Neural Network 

CNN         : Convolutional Neural Network 

DTW        : Dynamic Time Warping 

ECG         : Electrocardiography  

GMM       : Gaussian Mixture Model 

GPS          : Global Positioning System  

GRU         : Gated Recurrent Neural Network  

Tanh         : Hyperbolic Tangent  

HAR         : Human Activity Recognition  

IoT           : Internet of Things  

LSTM      : Long Short Time Memory 

NLP         : Natural Language Processing  

OBD        : On Board Diagnostic  

PHYD     : Pay How You Drive  

ReLU      : Rectified Linear Unit  

RNN        : Recurrent Neural Network 

SVM        : Support Vector Machine 

UBI          : Usage Based Insurance  
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CHAPTER 1 

1- INTRODUCTION 

 

1.1. Motivation and Overview 

Driving style has huge impact on traffic safety. Driver may be under the influence of 

alcohol, narcotics or can be drowsy. Some drivers may endanger the traffic willingly. In 

such cases, driving style becomes dangerous. According to Turkish Statistical Institutes 

2017 road traffic accident data, in Turkey, 1,202,716 traffic accidents occurred. Among 

those accidents 1,020,047 resulted in material loss and 182,669 caused a death or injury. 

Looking at the 182,669 total faults causing accidents involving death or injury during in 

2017, it was observed that 89.9% of faults were driver related, 8.5% of faults were 

pedestrian faults, 0.7% of faults were road faults, 0.5% were vehicle faults and 0.4% were 

passenger related [1]. 

As well as the traffic safety, driving style is also important criterion for fuel and energy 

consumption. By changing driver style, energy and fuel consumption can be reduced [2], 

[3]. Purpose of analyzing of vehicle data is to observe driver and determine driver 

behavior. The result of the analysis aims to measure the aggressiveness of the driver to 

help impose sanctions that may ultimately reduce aggressiveness. 

In recent year, driver profiling has gained growing importance for insurance companies. 

Usage Based Insurance (UBI) also known as Pay How You Drive (PHYD) systems has 

recently been implemented [4]- [5]. The main idea is instead of a fixed cost, drivers are 

expected to pay according to their driving behavior.  In this insurance system, driver who 

demonstrates aggressive breaking, line changing or over speeding, have to pay much more 

than other drivers. This system increases traffic safety due to its deterrence, preventing 

accidents and increasing the service life of the vehicle. At the same time, the driver's 

behavior leads to inevitable saving in fuel / energy consumption. In addition to insurance 

companies, the driver behavior profile is extremely important for companies that perform 

fleet management and intercity transport. The behavior of the driver can be ameliorated 

when the behavior of aggressive drivers is shared with them and the necessary warnings 

are made. 
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1.2. Purpose of the Thesis 

 

  The aim of this thesis is to classify driver behavior with two different methods which are 

LSTM and CNN deep learning methods. For this purpose, data was collected from the 

vehicle as shown in Figure 1.1 and fed to the network trained with TensorFlow library. 

  When driver behavior studies examined, it was seen that, different methods and different 

data types were used.  Data was collected from three different data sources as below. 

 OBD-II 

 Smart Phones 

 Cameras 

 

Figure 1. 1 Steps for creating a driver profile 

 

Some studies, used all data sources together, whereas some other used just one data source. 

On Board Diagnostic (OBD) is a versatile electronic system which communicates with car 

electronic system and collects vehicle parameters such as brake pedal position, fuel 

consumption. The data from sensors such as magnetometer, acceleration, gyroscope and 

GPS in the phone can be used with the smartphone fixed in the vehicle. In the same way, 
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the driver's behavior can be examined with the camera mounted in the vehicle and the 

distance to other vehicles can be performed by monitoring the path and the aggression.  

Examining the literature, it was observed that machine learning and artificial neural 

network techniques were applied to driver behavior profiling. Sensor data such as 

magnetometer, acceleration sensor and gyroscope of smart phones have been used to 

identify behaviors such as sudden acceleration, deceleration, hard turn and sudden lane 

change [6]. Dynamic Time Warping (DTW) and Bayesian Classification have been used 

to reveal the risky behavior of the driver.  With smartphone data, GPS and video camera 

data was also used to classify driver behavior using DTW [7] method. To reveal the eco 

driving behavior model in electric vehicles, besides the acceleration data from the 

smartphone, speed data from vehicle Can Bus was collected for neural network training 

[8].  In their study using acceleration data collected from mobile phone, Recurrent Neural 

Network (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Neural 

Network (GRU) neural network methods were used to classify driver behavior. Compared 

to three different methods, the highest success rate was obtained from GRU [9].  In their 

study, acceleration, engine speed information were obtained from OBD and were used to 

determine the anomaly in the behavior of the driver using the Markov model, K-Means 

clustering and Adaboost machine learning algorithms [10]. 

Some studies have been based on OBD and visual data from vehicle camera. In one of the 

studies examined, lane tracking and vehicle tracking distance information was obtained 

from the camera and vehicle speed and engine speed information was taken from CAN-

bus [11]. This information was modeled by using Gaussian Mixture model (GMM) and 

converted into feature vectors. These vectors were classified using Support Vector 

Machine (SVM) to detect aggressive driving behavior. In [12]; torque, engine revolutions 

per minute, vehicle speed, torque, acceleration pedal position, throttle pedal position, 

intake manifold pressure, accelerometer and GPS data provided by OBD device has been 

used to identify the drunk driver. Collected data was interpreted with Logistic Regression 

algorithm and classification was achieved with an accuracy of 82%. [13] used the same 

data source and almost the same data but implemented GMM algorithm to perform driver 

behavior analysis and further identification of aggressive behavior. In [14], acceleration, 

deceleration and rotation data was used with SVM and K-means clustering machine 
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learning algorithms to identify driving style. Quintero et al. [15] proposed a method to 

detect erratic driving behavior using GPS, OBD-II and other localization sensor data 

supplied to a Feedforward Neural Network. To estimate the acceleration intend, Long 

Short Term Memory Neural Network and Feedforward neural networks [16] were 

compared which revealed that LSTM indicated favorable accuracies. In another study by 

using GPS, OBD-II and car camera data, LSTM has been used to predict the subsequent 

movement of a driver [17]. The difference of this study from the others discussed in the 

literature is using LSTM method trained with the onboard data recorded by can-bus of the 

car.  

Convolution Neural Network (CNN or ConvNet) is a deep learning method which has 

proven its success in image classification. CNN is also used to interpret time-dependent 

data collected from a variety of domains including natural language processing (NLP), 

medicine, and the Internet of Things (IoT). 

In order to attain a meaningful information regarding the data, it is necessary to make 

optimization with attribute inferences. The connections between neurons and layers and 

the parameters learned result in very large computational difficulties with a classic neural 

network model. Convolutional neural networks have been developed by Yann LeCun as 

a solution to this challenge. 

One-dimensional (1D) CNN is used for time-dependent data while 2-dimensional (2D) 

CNN is used for image classification.  CNN has been observed to be highly successful in 

detecting arrhythmias from various data sources including electrocardiography (ECG) or 

human motion detection using sensor data obtained from a cellular phone [18].  

With the widespread use of wearable technologies, studies on the data collected from 

these devices have achieved an accelerated pace with a considerable use in disease 

diagnostics. Due to the elevated risk of cardiovascular complications, the importance of 

automatic classification on live data has increased. Kiranyaz et al., with the help of 

wearable devices, collected EEG data from each patient and trained 1-D CNN network 

for a real time heart monitoring and anomaly detection [19] application. The other study 

examined,  normal beats, supraventricular ectopic beats, ventricular ectopic beats, fusion 

beats classified with a 1D CNN [20] yielding a 97% accuracy rate. ECG data from the 

MIT/BIH arrhythmia database were used for both studies. Unlike previous studies 
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examined, there were additional efforts using 2-D CNN to classify ECG signals yielding 

better results than the success rate of Kiranyaz et al [21].  

Biometrics is an automated system that measures the physical or behavioral uniqueness 

of an individual and identifies it by comparing it with existing records. In other words, 

instead of using personnel identification cards, magnetic cards, keys or passwords, 

biometrics can be used to determine the individual's fingerprints, face, iris, handprints, 

signature, DNA and retina with easy and convenient verification methods. One study 

includes the design of a biometric system that classifies ECG signals using deep learning 

methods [22]. The ECG can be used as a biometrics for verification purposes because it 

provides detailed information about the electrical operation of the heart and this 

information is extremely personalized. Four different ECG dataset (MITDB, FANTASIA, 

NSRDB and QT) were used and SVM, KNN and 1-D CNN algorithms were compared. 

CNN based algorithm achieved an accuracy of 81.33%, 96.95%, 94.73% and 92.85% on 

the MITDB, FANTASIA, NSRDB and QT datasets respectively. 

1-D CNN is frequently used in human activity recognition (HAR) studies. The data 

collected from the acceleration sensor of a mobile phone was used to classify movements 

as falling, sitting, jumping, running, walking, walking upstairs and walking downstairs 

[23]- [24]- [25]. CNN provided higher success rates than the machine learning methods 

such as SVM [26]. 

Examining the studies using CNN in driver profiling [27]- [28]- [29] to classify the driver 

behavior based on driver images taken in the vehicle, the unsafe behavior during driving 

condition could be detected. Gao et al. [30] studied to detect dangerous driving situation 

using video information captured from the vehicle camera. Wang et al. [31] proposed two 

methods, one using smartphone accelerometer and gyroscope sensor, they forecasted 

vehicle speed with an LSTM network, while traffic light, stop lines and crosswalks were 

detected using CNN method. Combining all this information, they focused on unsafe 

driving detection. In another study [32], vehicle movement direction was predicted using 

a hybrid combination of CNN and LSTM networks together. Acceleration data obtained 

from a mobile phone was classified as braking, turn, acceleration and mixed indicating a 

90.07% accuracy. Although there are similarities in our study vehicle data was used to 

train LSTM and 1D-CNN networks separately by comparing their performance indices 
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independently. Examining the literature, no study 1D-CNN driver profiling based on 

vehicle data has been found. 

 

1.3. Scope of Thesis 

In this thesis, the experimental work was based on the vehicle data collected from vehicle 

can bus system. The studies have been performed in collaboration with Otokar Otomotiv 

ve Savunma Sanayi A.Ş a bus and military vehicle manufacturer [33]. After creation of 

test scenario, train, test and validation dataset were collected from Otokar test buses. 

Driving tests were pursued for five days and the data was collected with five different 

Otokar drivers sent to the test track. A neural networks model was developed using 

TensorFlow [34] library which is an open source machine learning and neural network 

framework. Computer with Intel Core i7-6600U CPU @2.60GHz was used. In the 

literature reviewed there are studies using LSTM for driver profiling but no work on CNN 

use for profiling has been encountered. In this thesis both LSTM and CNN methods were 

used for driver profiling. CNN method provides a lot of inspiration due to its prominent 

success in human activity recognition. In one study [18] three dimensional acceleration 

data from the smartphone sensor was used providing 91% accuracy in classifying human 

walking, steady, and running activities. Both human activity and driver profiling deal with 

a time series data, making CNN method has been an interest of this study besides the 

LSTM method. The comparison of two methods revealed that CNN handles the data much 

faster providing a higher success rate than the LSTM network. 
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CHAPTER 2 

 

2. MATERIALS AND METHODS 

 

Speed, fuel consumption and similar data were collected from vehicle' Can Bus 

communication system according to predetermined test scenarios. The start and end 

times of the driving behavior were recorded during the test.  Data were filtered according 

to the start and end times of the driving behavior followed by a preconditioning before 

feeding into the neural network. 

 Data obtained from the vehicle is time dependent, therefore Long-Short Term Memory 

(LSTM) and 1D Convolutional Neural Network was studied. Python 3.5 and TensorFlow 

framework was used throughout this study. 

Detailed information about data collection and neural networks will be explained in the 

following sections. 

 

2.1 Data Collection 

 

In order to determine aggressive, mild and gentle driving, four different test scenarios 

were created which were deceleration, engine speed, corner turning and lane change. 

Deceleration, engine speed and corner turning tests were performed on the test track, 

which was concrete floor of Otokar's Sakarya Arifiye campus illustrated in Figure 2.1. 

 

 



 

8 

 

 

 

Figure 2. 1 Otokar Arifiye test track 

 

Line changing tests has been performed at Sakarya Karasu road which can be seen in 

Figure 2.2. The pavement of the highway is asphalt.  During the test days, weather was 

clear and sunny and tests were completed with Otokar' five different drivers. 

 

Figure 2. 2 Sakarya Karasu Road 
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66 deceleration tests, 36 engine speed tests, 3 corner turning tests and 5 lane change tests 

have been completed successfully. One test was repeated five times in deceleration and 

speed tests. For example, a deceleration test from 30 km speed to 0 km speed in 0-3 

seconds was repeated five consecutive times. One test was repeated ten times in corner 

turning and lane changing tests. 

 In the deceleration and engine speed tests, the measure of aggressive, mild and gentle 

behavior was determined by the time-lapse for aggressive, mild and gentle driving (Table 

2.1). In the deceleration test, if the vehicle drops to a speed of 0 km in 0-3 seconds while 

driving at a speed of 30 km, the behavior is labelled as aggressive. If the same test is 

performed in 4-7 seconds it is labeled as mild driving, whereas a deceleration in 7-10 

seconds is labeled as gentle driving (Table 2.1 and Table 2.2). 

 

Table 2. 1 Criteria for determining aggression and gentle in deceleration and speed tests 

Test Scenario 0 sec -3 sec  4 sec -7sec  7sec -10 sec 

Deceleration Aggressive Mild Gentle 

Engine Speed Aggressive Mild Gentle 

 

The sample test scenario for deceleration is described in Table 2.2. 
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Table 2. 2 Sample test scenario for deceleration 

Test No First 

Speed(km/sec) 

Last 

Speed(km/sec) 

Time 

(Sec) 

Number of 

Test 

1 50 0 0-3 5 

2 50 0 4-7 5 

3 50 0 8-10 5 

4 70 20 0-3 5 

5 70 20 4-7 5 

6 70 20 8-10 5 

 

In the acceleration tests, the speed parameters and driving time intervals were interpreted 

using the performance graphics. The speed of the vehicle was determined by looking at 

the engine speed graphics. In the corner turning and lane change tests, time intervals 

were determined with the graphs of the lateral acceleration parameter and the wheel 

angle parameter. The messages acquired from the vehicle and the period of these 

messages are shown in Table 2.3.  

 

 

 

 

 

 

 



 

11 

 

 

Table 2. 3 Messages and messages period 

Messages Period 

Wheel Based Vehicle Speed 100 ms 

Actual Retarder Percent Torque 100 ms 

Brake Pedal Position 100 ms 

Accelerator Pedal Position 50 ms 

Percent Load At Current Speed 50 ms 

Actual Engine Percent Torque engine speed dependent 

Engine Speed engine speed dependent 

Lateral Acceleration 10 ms 

Longitudinal Acceleration 10 ms 

Steering Wheel Angle 10 ms 

Inlet Air Mass Flow Rate 50 ms 

Fuel Rate 100 ms 

 

The duration of aggressive driving data to be entered into artificial neural networks is 

3.5 seconds, mild driving is 7 seconds and gentle driving is 10.5 seconds. Therefore, data 

which takes less than 3 seconds was augmented to 3.5 seconds, this process was done by 

repeating the last element up to 3.5 seconds. Likewise the mild driving data, which lasts 

less than 7 seconds, was augmented to 7 seconds. Driving data was supplied in stacks of 

3.5 seconds and hence mild driving data was fed to the network in two, gentle driving 

data in three pieces. 70% of the collected dataset was allocated for training while 30% 

was used for testing the trained network. The driving data was labelled as “1” for 
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aggressive, “2” for mild and “3” for gentle driving. The format of the messages obtained 

from Otokar can be seen in Figure 2.3. 

 

 

Figure 2. 3 Can-Bus message format  

 

Can Bus messages from Otokar were recorded in the .asc file extension format (Figure 

2.4) which contains the ID, content and the length of the incoming message. 
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Figure 2. 4 Can Bus records of the vehicle 

 

Data parser code was written with python3 to separate incoming messages into 

meaningful components such as speed, acceleration, fuel consumption. With this code, 

messages read in .asc file was separated according to their IDs; as shown in Figure 2.5, 

parsed into parameters such as speed, acceleration, fuel consumption, and brake pedal 

position. 

 

Figure 2. 5 Messages separated and converted to csv file format 
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In the same code, as shown in Figure 2.6, the necessary parameters such as speed, engine 

rpm, etc. were plotted. With the help of these graphs, the time intervals of aggressive and 

gentle driving were determined and the start and end times were recorded as in Table 2.4. 

 

Figure 2. 6 Speed graph of vehicle in deceleration test 
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Table 2. 4 Deceleration start and end times 

Test 

No 

Initial Speed 

(km/sec) 

Final Speed 

(km/sec) 

Time 

(sec) 

Number 

of test 

Start 

Time 

Stop 

Time 

Elapsed Time 

(sec) 

1 20 0 0-3 5 13,71 15,85 2,14 

2 20 0 4-7 5 11,97 18,51 6,53 

3 20 0 8-10 5 18,83 29,00 10,16 

4 20 10 0-3 5 12,80 15,60 2,79 

5 20 10 4-7 5 14,38 20,14 5,76 

6 20 10 8-10 5 28,51 41,86 13,34 

7 30 0 0-3 5 10,33 13,93 3,59 

8 30 0 4-7 5 12,00 19,03 7,03 

9 30 0 8-10 5 13,38 23,36 9,97 

12 40 0 0-3 5 17,40 20,76 3,36 

13 40 0 4-7 5 12,20 18,38 6,18 

14 40 0 8-10 5 7,53 17,53 10,00 

 

In the acceleration tests, graphics were interpreted by looking at the speed parameter and 

determining the driving period intervals. In the engine speed test, time intervals were 

determined by looking at the engine speed of the vehicle; in the corner turning and lane 

change tests, the graphs of the lateral acceleration parameters together with the wheel 

angle parameter were illustrated and the time intervals were designated. 
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2.2 Neural Networks 

 

 Using the previously realized examples of an event, the relationship between the input 

and output of the event to learn, and then predict the output of events that occurred is 

referred to artificial neural networks. 

 Artificial neural networks store information obtained during learning by weighted 

connection between neuron cells. The information is stored in these networks, not in the 

database. Learning can be defined as calculating weights between connections. 

 It is possible to classify artificial neural networks according to their structures and 

learning algorithms. In general there are 3 different learning strategies. These; 

 Supervised Learning 

 Reinforcement Learning 

 Unsupervised Learning 

2.2.1 Supervise Learning 

 

In supervised learning, which is the most commonly used learning method in artificial 

neural networks, an expected output is provided as an example case to the artificial 

neural network and then the predicted output produced by the network was compared 

with the real output by considering the difference between the two as an error. Usually, 

the random picked weights are iteratively modified in a loop until the network error is 

minimized. 

 

2.2.2 Reinforcement Learning 

 

In this system, the expert helps the learner system. Instead of showing the output set that 

should be for each input set, the teacher expects the system to generate output for the 
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input shown to it, and generates a signal indicating that the output generated is true or 

false. The system continues the learning process by taking this signal into consideration. 

 

2.2.3 Unsupervised Learning 

 

There is no supervision for this kind of learning that helps the system to learn. Only input 

values are supplied to the system. The relationship between the parameters of the 

samples are expected to be learned by the system itself.  

Artificial neural networks are split into two according to the directions of the connections 

between the neurons; these are feed forward and recurrent neural networks. 

 

2.3 Feedforward Neural Network 

 

In feedforward networks, the processor elements are usually divided into layers. Signals 

are transmitted from the input layer to the output layer in one-way. In the feed-forward 

ANN, the cells are arranged in layers and the outlets of the cells in a layer which become 

an input to the next layer via weights. The input layer transmits the information it 

receives from the external environment to the cells in the middle layer without any 

modification. The information is processed in the middle and output layers and the 

network output is determined as shown in Figure 2.7. 



 

18 

 

 

 

 

Figure 2. 7 Different neural network architectures [35] 

Input layer: Each neuron in the input layer represents a different property in the data 

set. It takes the inputs and transmits them to the next layer. 

Hidden layer: A series of neurons in which each neuron has a weight assigned to it. It 

takes the input from the previous layer and scales the inputs with weights, applies the 

activation function, generates the result, and then transfers the data to the next layer. 

Output layer: Generates the prediction for given inputs. 

 

2.4 Recurrent Neural Networks 

 

In a Recurrent Neural Networks, the output of at least one cell is given as input to itself 

or to other cells, and usually the feedback is produced over a delay element. The 

feedback can be between cells, between layers or can also be between cells in a layer. 

Therefore, according to the method the feedback is generated, repetitive architectures 

can be obtained in various structures and behaviors. A basic RNN given in Figure 2.8 

shows that neurons can receive values from both input neurons and the output of the 

hidden layers (Figure 2.8). 
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  Figure 2. 8 Recurrent Neural Network [36] 

 

2.5 Long Short Term Memory (LSTM) 

 

There is an approach based on previous information usage in Feedback (RNN) 

architectures. For example, it is easy to predict the word ground in the sentence that 

states trees grow in ground. But when the gap between contexts increases, it is very 

difficult for the RNN to use information from the past. For example, “I grew up in 

England ………….,   I can speak English fluently.” While guessing the “English” word 

in this text, it can be estimated that it will be a language name based on the context of 

the sentence, but it is necessary to keep the sentence at the beginning of the text in 

memory to predict that the correct word is “English”. The long-term dependencies that 

are possible in theory have been observed to lead to major problems in practice. In order 

to solve this problem, as a special type of RNN which can learn long term dependencies, 

Long Short Term Memory Networks (LSTM) can be used. Introduced by Hochreiter & 

Schmidhuber (1997) [37], the network works well on a large variety of problems. 

One of the methods of feedback artificial neural networks, LSTM neural networks; are 

used for sentence completion, natural language processing, sensor data, i.e time-

dependent, sequential sensor data, understanding, classification and estimation purposes. 
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In driver behavior identification, the profile is intended to be extracted by using the 

vehicle operational data recorded during a specific time interval. Since our data is time 

dependent, Long Short Term Memory (LSTM) artificial neural network is more suitable 

for our study. In the LSTM topology shown in Figure 2.9, the network was fed with 3.5 

seconds data with 12 different components including speed and acceleration 

measurements. 

 

Figure 2. 9 Driver Profiling with LSTM topology 

 

The 3.5-second data set can be considered as a matrix of 12 columns and 684 lines. The 

learning algorithm was developed using the TensorFlow library. There are parameters 

that determine the success of an artificial neural network and the success rate of the 

training can be increased by changing the hyper parameters. These are variables such as 

batch size, learning rate, training time (epoch), optimization algorithm, activation 

function, number of layers and number of neurons. In order to increase the success rate, 

changes were made both to hyper parameters and in data series with detailed information 

given in the following sections. 

 

 2.5.1 Long Short Term Memory Structure 

 

In LSTM, there are two important parameters which are gates and cell states. Gate is a 

way of transmitting on demand information. LSTM is organized with structures called 

doors that can add or remove information to the cell state (Figure 2.10).  
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Figure 2. 10 Internal structure of LSTM [38] 

 

The first step in an LSTM algorithm is to decide what information to discard from the cell 

state. As shown in Figure 2.11, this decision is made by sigmoid layer which is called 

“forget gate layer”. 
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Figure 2. 11 Forget gate [39] 

Forget gate looks at ℎ𝑡−1 and 𝑥𝑡 and give output to the cell state 𝑐𝑡−1. Output is a number 

between 0 and 1, where 1 stands for “keep this information”, 0 is for “don’t store 

information”, “W” is weight and b is the bias term in Eq. 2.1. 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.1) 

 

The next step is to decide which new information is stored in the cell. There are two parts. 

First, input gate layer which contains a sigmoid layer, decides the values  to be updated. 

Then, a tanh layer creates an applicant vector Ĉ𝑇  which will be added to the cell state in 

Eq. 2.2. As shown in Figure 2.12, the last stage is to combine sigmoid and tanh layers and 

update the cell status. 
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Figure 2. 12 Decision block for selection of new information to store in the cell [39] 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.2) 

 Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.3) 

Then the old cell state Ct−1, is updated into the new cell state Ct. As shown in Figure 

2.13, the old state Ct−1 is multiplied by ft and then it∗ĈT is added in Eq. 2.4. This is the 

new applicant value scaled by how much it is desirable to update each state value. In the 

previous language example, this is where the information about the old state is forgotten 

and the new information is added. 

 

Figure 2. 13 Forgetting the old information and adding the new information [39] 

 𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡 (2.4) 
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Finally, comes the decision stage (Figure 2.14) based on filtered cell state. First, a 

sigmoid layer is executed which decides the components of the cell state to extract. Then, 

the cell state is fed through tanh and multiplied by the output of the sigmoid gate, 

producing the output describing the decision in Eq. 2.5 and in Eq. 2.6. For the language 

model case, this might be the output information about a verb that comes in the following 

step due to a new topic. 

 

Figure 2. 14 Output information [39] 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.5) 

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡) (2.6) 

   

2.6 Classification with CNN 

 

CNN consists of a primary part for attribute subtraction and a secondary part for 

classifying (Figure 2.15). 



 

25 

 

 

 

Figure 2. 15 2-D convolution network for image classification [40] 

The primary part consists of convolution and pooling layers to extract meaningful 

attributes (feature extraction) from the raw data. With the convolution layer, feature 

extraction is performed. This layer is actually a simple filtering process. Some sources 

use the word kernel instead of a filter. As the depth in the convolution layer increases 

(Figure 2.16), the complex features of the data are extracted more accurately. 

 

Figure 2. 16 Feature extraction [41] 
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Figure 2.17 shows the sub-sampling of the pooling layer. This layer minimizes the process 

load by reducing the attributes which were determined in the convolution layer. However, 

according to Hinton's capsule theory, due to loss of some important data, performance is 

a compromise. 

 

Figure 2. 17 Dimension reduction with pooling layer [35] 

 

In the second part shown in Figure 2.15, the extracted attributes are transferred to the 

Multi-Layer Perceptron neurons for classification task as in the classic layer of a neural 

network. 

 

2.6.1 Differences Between 1D CNN and 2D CNN 

 

Although the definitions in the previous section imply that convolution neural networks 

are more for image classification purposes, the same logic can be applied to one-

dimensional convolution neural networks to classify time-dependent data. 1D CNN 

indicates the same features for 2D and 3D, with only the biggest difference in the direction 

of the input data and the filters scanning the data. 
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Figure 2. 18 1D versus 2D convolution neural network [42] 

 

In the example for natural language processing (Figure 2.18), each of the 9 words 

represents a vector. The attribute extractor scrolls in one direction over each word 

throughout the sentence. In the 2-D convolution sample, the 2x2 size filter moves both 

horizontally and vertically on the image. 

 

2.6 Neural Network Parameter Optimization 

 

Artificial neural networks incorporate parameters that affect the success of the network. 

which can be increased by changing the hyper-parameters described in detail below. 

 

2.6.1 Batch Size 

 

The amount of the data set in artificial neural networks increase the success of the 

learning process. At the same time, the amount of the data set increases the time spent 

for training and the size of the model obtained at the end of the learning. During the 

learning phase of the network, learning all the data in the data set at the same time is 

important in terms of learning time and memory. In each iteration of learning, gradient 

descent is calculated in the network with backpropagation process to update the weights 
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accordingly. The higher the number of data in this computation, the more time it takes 

to complete the process. To solve this problem; the data set is divided into small batches 

and the training is performed with these small groups. 

 

2.6.2 Learning Rate 

 

In deep learning, the weights are updated with the backpropagation process. In this 

process, the update of the weights is calculated by finding derivate multiplied by the 

learning rate and subtracted from the previous weight parameters. Higher learning rates 

cause an fluctuation, whereas weights updated with a small learning rate prolongs the 

duration of learning (Figure 2.19).  

 

Figure 2. 19 Effect of learning rate on gradient descent [43] 

 

Effect of learning rate is shown in Figure 2.20, where the loss refers to the error and the 

epoch refers to number of repetitions of the period. 
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Figure 2. 20 Effect of learning rate on loss [35] 

 

When the training is initiated, the learning rate usually is assigned an initial value of 0.01, 

and the most appropriate value can then be determined by testing 0.001 and 0.0001 lower 

values and the effect on accuracy. 

 

2.6.3 Training epoch 

 

While the model is trained, not all of the data are included in the training at the same time. 

The network takes data in pieces, the first part is trained, the performance of the model is 

tested and the weights are updated using backpropagation. Then the model is re-trained 

with the new data set and the weights are updated again. This process is repeated in each 

training step to calculate the most suitable weight values for the model. Each of these 

training steps is called an epoch. 

As the number of epoch increases, the performance of the model increases significantly. 

Since performance will increase in very small units after a certain epoch value, then at 

this point training can be terminated. 
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2.6.4 Selection of Optimization Algorithm 

 

Learning process in deep learning applications is basically an optimization problem 

utilizing a variety of methods to find the optimal values for usually nonlinear problems. 

Stochastic gradient descent, adagrad, adadelta, adam, adamax are widely utilized 

optimization algorithms in Deep learning applications. There are differences in terms of 

performance and speed between these algorithms and as an example the performance of 

different algorithms for MNIST data set is shown in Figure 2.21. 

 

Figure 2. 21 Performance of different optimization algorithms for MNIST data set [44]  

 

Gradient Descent is a general optimization algorithm to find the most suitable solutions 

for a wide variety of problems. The general idea of Gradient Descent is to set parameters 

repeatedly to minimize a cost function (Figure 2.22). Learning rate is an important 

hyperparameter for Gradient Descent. Batch Gradient Descent uses the entire training set 

to calculate gradients at each step which slows the iteration down when the training set is 

too large.  
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Figure 2. 22 Gradient Descent [45]  

 

The Stochastic Gradient Descent selects a random sample at each step in the training set 

and calculates gradients based on only one instance. This makes the algorithm faster 

because there is little data to use in each iteration. It also receives large sets of training 

data and only one instance should be in the memory during each iteration. Instead of 

gradually decreasing to the minimum level, the cost function jumps up and down around 

an average (Figure 2.23). In time, it approaches to the minimum level, but when it gets 

there it oscillates without settling to a terminal point. 

 

Figure 2. 23 Stochastic Gradient Descent [45]  
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Adagrad is a gradient-based algorithm. It adapts the learning rate to parameters, makes 

smaller updates for frequent parameters when making major updates for sparse 

parameters. It is used for natural language and computer vision problems. 

Adadelta is an extension of Adagrad which attempts to reduce the rate of aggressive, 

tediously reduced learning rate. Adadelta limits the accumulated previous gradient 

window to a fixed size, instead of accumulating the total previous square gradients. 

RMSprop was designed by the Geoffrey Hinton in a Coursera Class lecture [46]. The 

RMS prop eliminates the need to adjust the learning rate and does this automatically. 

Moreover, RMSProp selects a different learning rate for each parameter. RMSProp 

generates its parameter updates using a momentum on a rescaled gradient. 

Adam optimizer combines Adagrad and RMSprop. It is an adaptive learning rate 

method. Rather than adjusting the parameter learning rates to the average initial baseline 

in the RMSProp, Adam makes updates using the average of the first and second moments 

of the gradients. Adam is an optimizer which provides fast and good results and it is 

frequently used in deep learning studies. 

 

2.6.5 Activation Function 

 

Activation functions are used for nonlinear transformation processes in multilayer 

artificial neural networks. The output of hidden layers is normalized by some activation 

functions to calculate the gradient in hidden layers (Figure 2.24). 

 

Figure 2. 24 Common activation functions [47]  
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The sigmoid function range between 0 and 1, tanh function range between -1 and 1, 

Rectified Linear Unit (ReLU) function ranges from 0 to infinity. 

ReLU is currently the most used activation function in the deep learning studies and 

specifically in almost all Convolutional neural networks studies. 

Activation functions are used with gradient descent to update weights. The purpose is to 

obtain easy derivatives which are shown in Figure 2.25. 

 

Figure 2. 25 Activation functions and their derivatives [45] 

 

2.6.6 Number of Layers and Number of Neurons 

 

There is no method to determine the number of layers in a network or the number of 

neurons in the layers. Starting with a single layer or two layers, it is possible to increase 

the success rate by making changes in hyper parameters. The number of layers and the 

number of neurons can then be increased as needed. 

2.6.7 Overfitting & Underfitting 

 

If neural networks are trained with a small number of epochs, the model cannot learn well, 

reducing the success of the training and test processes indicating an under-fitting.  If 

trained with too many epochs, model memorizes the training sets leading to overfitting. 

When this occurs, training set pose higher accuracy (it is almost 1.0 or so close to 1.0), 

whereas validation loss starts to increase while the test set settle to a lower accuracy. The 
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accuracy of the network is determined by the ratio of the correctly classified cases to all 

of the samples. 

Accuracy and loss graphics of training and test sets are usually plot against each other to 

comprehend the overfitting or underfitting problems. If the difference between training 

accuracy and test accuracy is increasing (Figure 2.26), the model starts overfitting and the 

training is terminated.  

 

 

Figure 2. 26 Training and Test accuracy [48] 

Similarly, overfitting occurs due to the increase in the value of validation loss (Figure 

2.27).  

 

Figure 2. 27 Validation loss [49] 
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In order to prevent overfitting during the training process, model capacity can be reduced 

or dropout technique can be used [50]. 

Dropout technique was proposed by Srivastava, at al. [51] where randomly selected 

neurons are ignored during training (Figure 2.28). In the dropout technique p 

hyperparameter is determined (0≤p≤1) to determine the probability of which outputs of 

layers will be dropped out or which outputs of layers will be kept in the model. 1.0 

indicates no dropout, while 0.0 means no outputs from the layer. A common value is a 

probability of 0.5. Dropout makes the network less sensitive. In this way, the network 

becomes insensitive to very fine details, such as noise in the data alleviating the problem 

of overfitting. 

 

Figure 2. 28 Dropout application [51] 

Figure 2.29, figure 2.30 and figure 2.31 show the number of parameters for models with 

different size using Keras framework which is a high-level neural network API, written 

in Python and capable of running on top of TensorFlow [52].  
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Figure 2. 29 Baseline model [50] 

 

 

Figure 2. 30 Smaller model [50] 

 

 

Figure 2. 31 Bigger model [50] 

 

As shown in Figure 2.32, blue dotted line represents baseline network validation loss, 

blue straight line represents train loss, yellow dotted line shows smaller networks 
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validation loss, yellow straight line indicates training loss, green dotted line represent 

bigger networks validation loss, green straight line represent training loss. As shown in 

Figure 2.32, bigger network almost begins overfitting after just one epoch. Bigger 

capacity means less training loss, but also less accuracy for the test set. 

 

Figure 2. 32 Loss graph of different size networks [50] 

 

2.6.8 Feature Scaling 

 

It was observed that the performance of the network increases when pre-processing is 

applied to the data before training. Machine learning algorithms do not perform well when 

numerical inputs are on different scales. There are two common ways in which all features 

pose the same scale: min-max scaling (normalization) and standardization. Normalizing 

is, finding the minimum and maximum values of the data and rescaling the data to be 

between 0 and 1 or -1 to 1 if there are negative values in Eq. 2.7. 

 
𝑋𝑐ℎ𝑎𝑛𝑔𝑒𝑑 =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(2.7) 

 Standardization rescales the data to possess a mean (μ) value of 0 and standard deviation 

(σ) of 1 (unit variance) in Eq. 2.8. 
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𝑋𝑐ℎ𝑎𝑛𝑔𝑒𝑑 =

𝑋 − µ

𝜎
 

(2.8) 

In our study we supplied the data through a standardization procedure before feeding to 

the network. 
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CHAPTER 3 

 

3. Results and Discussion 

 

3.1 LSTM Training 

 

There are 12 input parameters and 3 outputs. Input parameters are components as speed, 

engine speed, fuel consumption. The output parameter is an indicator with a value of 1 

for aggressive driving, 2 for mild driving and 3 for gentle driving. 

Data from the vehicle were split into two stacks with 603 training series and 402 test 

series. Each series contains 684 parameters; this indicates that our time series corresponds 

to 3.5 seconds. Data was standardized before feeding to the network. The process was 

programmed by using Python language and Numpy library [53]. 

Adam optimizer for cost minimization, and ReLU for activation function was used in each 

LSTM neuron. Dropout regularization with a value of 0.5 was added to prevent 

overfitting. As a result of the testing trials, learning rate was determined as 0.0001 

providing the best result at this value.  Gradient clipping was added to prevent exploding 

gradients during back propagation. A gradient threshold was added with a gradient 

clipping with a value between -1 and 1, and then the gradients that exceed this threshold 

were minimized to match the norms. 
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Table 3. 1 The effect hyperparameters and datasets on the success rate 

A
cc

u
ra

cy
 

7
0
.2

%
 

6
9
.1

%
 

6
6
.6

%
 

6
3
.6

%
 

9
1
.8

%
 

8
1
.1

%
 

7
1
.2

%
 

E
p
o
ch

 

8
0
0
 

1
0
0
0
 

1
0
0
0
 

5
0
0
 

4
0
0
 

4
0
0
 

4
0
0
 

N
eu

ro
n
s 

3
2
 

2
0
 

3
2
 

3
2
 

3
2
 

3
2
 

3
2
 

H
id

d
en

 

L
ay

er
s 

2
 

5
 

2
 

4
 

2
 

2
 

2
 

L
ea

rn
in

g
 

R
at

e 

1
0

-3
 

1
0

-3
 

1
0

-4
 

1
0

-3
 

1
0

-4
 

1
0

-4
 

1
0

-4
 

B
at

ch
 

S
iz

e 

1
0
0

 

5
0

 

1
0
0

 

1
0
0

 

1
0
0

 

1
0
0

 

1
0
0

 

8
-1

0
 s

ec
 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

N
o
n
 

E
x
is

t 

4
-7

 s
ec

 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

N
o
n
 

E
x
is

t 

E
x
is

t 

0
-3

 s
ec

 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

E
x
is

t 

N
o
n

 

F
ea

tu
re

s 

1
2
 

1
2
 

9
 

4
  

1
2
 

9
 

4
 

1
2
 

1
2
 

1
2
 

 

In the initial tests, the network was fed with 0-3 seconds, 4-7 seconds and 8-10 seconds 

data. The success of the network was improved by altering the hyperparameters as seen 

in Table 3.1 with a maximum rate of 70%. 
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Figure 3. 1 Network performance with three data sets. 

 

In Figure 3.1, red line correspond to training loss, blue line corresponds to training 

accuracy. In the graph (Figure 3.1) the training loss refers to the difference between the 

estimated result and the actual result, which the network attempts to reduce during 

training. The rate indicates the accuracy of the estimates made using the test data denoting 

that it can classify the driving data supplied to it correctly. As can be seen in the Figure 

3.1, the success rate could not be improved to the desired rates. Training the network with 

different batch size, epoch value, number of hidden layers and number of neurons did not 

provide any improvement with the success rate. 

To overcome this problem, the network was modified to binary classification, by feeding 

the training datasets in three different combinations as aggressive-gentle, aggressive-mild 

and mild-gentle. Aggressive - gentle dataset contains 546 train, 234 test set. Aggressive - 

mild dataset contains 430 train, 185 test set. Mild – gentle dataset contains 577 train, 247 

test sets. It was observed that the success rate increased when the network was fed with 

aggressive and mild dataset or aggressive and gentle dataset.  

Network was fed with aggressive and gentle driving data yielding a 92.3% accuracy in 

validation dataset and 88.5% accuracy in test dataset with a 2 layer, 27 neurons network 

configuration. At the same time, aggressive and mild driving data was supplied to the 
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network to observe its response to the untrained aggressive and gentle driving data and 

75 % accuracy was obtained (Table 3.2). 

Loss and accuracy graphs of the network which was fed with aggressive and gentle driving 

data shown in Figure 3.2. As seen in above Figure 3.2.c and Figure 3.2.f, overfitting 

occurred in the network trained with 1000 epoch. 

 

Table 3. 2 Outputs of the network trained with aggressive & gentle dataset (* overfitting) 

Number 

of 

Neurons 

Number 

of  

Layers 

Epoch Validation 

Loss 

Validation 

dataset 

accuracy 

Aggressive 

& gentle 

test dataset 

accuracy 

Aggressive 

& mild test 

dataset 

accuracy 

27 2 500 0.27 92.3% 88.5% 75% 

20 1 500 0.249 87.7% 81.2% 72.2% 

30* 1 1000 0.438 88% 84.6% 79% 

20 2 500 0.311 89.7% 83.3% 75% 

20 4 500 0.228 92.3% 78.2% 73% 

27* 2 1000 0.423 91.4% 85.8% 79.1% 
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a. 27 neurons, 2 layers 

 

b. 20 neurons, 1 layer 

 

c. 30 neurons, 1 layer 

 

d.  20 neurons, 2 layer                                   
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Figure 3. 2  Loss and accuracy graph of network fed with aggressive & gentle 

 

As shown in Figure 3.3, loss and accuracy graph of network trained with 2 layer, 27 

neurons and 500 epoch. Figure 3.3 exhibits higher accuracy rates.  

 

Figure 3. 3 Loss and accuracy graph of network with improved accuracy 

 

e. 20 neurons, 4 layer 

 

f. 27 neurons, 2 layer 
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When network was fed with aggressive and mild data together, the outcome was generated 

with lower accuracy, as shown in Table 3.3. Loss and accuracy graphs of the network 

which was fed with aggressive and mild driving data as shown in Figure 3.4.  

Table 3. 3 Outputs of the network which was trained with aggressive & mild 

Number 

of 

Neurons 

Number 

of  

Layers 

Epoch Validation 

Loss 

Validation 

dataset 

accuracy 

Aggressive 

& mild test 

dataset 

accuracy 

Aggressive 

& gentle test 

dataset 

accuracy 

20 1 500 0.395 83.7 % 61.1% 70.8% 

30 1 1000 0.427 85.3% 68% 80.2% 

27 2 1000 0.521 84.3% 65.2% 64% 

27 2 500 0.395 87.2% 59.7% 64.5% 

20 3 500 0.389 84.8% 68% 66% 

20 3 1000 0.391 85.2% 69.5% 73.9% 
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a. 20 neurons, 1 layer 

 

b. 30 neurons, 1 layer 

 

c. 27 neurons, 2 layer 

 

d. 27 neurons, 2 layer 
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Figure 3. 4 Loss and accuracy graph of network fed with aggressive & mild 

Network provided the best results with 85.2% accuracy for validation dataset and 69.5 % 

for test dataset. At the same time, aggressive and gentle driving data was supplied to the 

network to observe its response to untrained aggressive and gentle driving data. The 

network generated low accuracy result with rates of 73.9%. Figure 3.5 exhibits the loss 

and accuracy graph of network trained with 3 layer, 20 neurons and 1000 epoch. 

 

 

Figure 3. 5 Loss and accuracy of network with improved accuracy 

 

e. 20 neurons, 3 layer 

 

f. 20 neurons, 3 layers 
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3.2 Results for LSTM 

 

In this study, data collected from the vehicle using LSTM deep learning method is 

classified as aggressive driving and gentle driving data. The effects of changes in 

hyperparameters on LSTM network were observed. When the network is fed with data 

suitable for classification, it was observed that the success rate increased significantly. 

The most important criteria for correct classification is to feed the network with the 

appropriate data. It was determined that changes in the number of layers or neurons were 

inadequate in increasing the success rate when specifically using data not suitable for 

classification.  

Looking at the training results, it was observed that the network had difficulty in 

distinguish between 8-10 seconds driving behavior and 4-7 seconds driving data. The 

highest success rate obtained was about 92.3% for the validation dataset and 88.5% for 

the test dataset, when 0-3 seconds and 8-10 seconds data were combined. 

 

3.3 CNN Training and Results 

 

The convolutional layers are formed using one-dimensional filters moving within the 

sequence of data while learning during training. In many CNN architectures, as the 

number of layers increase, the number of filters increase. Each convolution is followed 

by pooling layers to reduce the sequence length. CNN structure used for driver profiling 

is shown in Figure 3.6. 

 

Figure 3. 6 CNN structure used in driver profiling 
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As mentioned previously, 0-3 sec data was aggressive, 4-7 sec mild and 8-10 sec data was 

assigned a label for gentle driving. In the previous LSTM study, it was observed that the 

network could not exceed the success rate of 70% when classifying aggressive driving, 

mild-driving and gentle driving cases together. However, it was also determined that the 

reason for the failure was, the difficulty of CNN with distinguishing between mild and 

gentle driving data. In Figure 3.7 and Figure 3.8, it is obvious that during learning the 

network cannot exceed the success rate of 73.2%. 

 

Figure 3. 7 Network performance for aggressive, mild and gentle driving are together 
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Figure 3. 8 Network success rates for train and test dataset when aggressive, mild and 

gentle driving are together 

 

For this reason, instead of training three driving data together, the network was modified 

for binary classification. Only aggressive-mild and aggressive-gentle combinations were 

studied.  

There are 430 samples in the training set for aggressive and mild driving data and 185 

samples in the test set. There are 546 samples in the training set for aggressive and gentle 

driving data and 234 samples in the test set. Learning rate was selected as 0.0001 and the 

batch size was varied according to the data set. Batch size of 86 for aggressive and mild 

driving data set and the batch size of 78 for aggressive and gentle driving data were used. 

The number of layers and epoch were used as optimization parameters and the success 

rate of the network was increased by the changing these parameters. 

As shown in Table 3.4, each convolution layer was followed by pooling layer to reduce 

sequence length, then proceeding with a dropout regularization of 0.5 to prevent 

overfitting, and then finalized with a fully connected layer. Adam optimizer for cost 

minimization, and ReLU for activation function was used in each convolution. 4 layer 

CNN architecture was trained and tested as shown in Table 3.4. These different CNN 
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architectures were supplied with different data combinations. Results of training and 

testing was illustrated in Table 3.5 and Figure 3.9. 

 

Table 3. 4 CNN architecture 

1 Layer 2 Layer 3 Layer 4 Layer 

Conv1 (filter 24) Conv1 (filter 24) Conv1 (filter 24) Conv1 (filter 24) 

Max pooling (2) Max pooling (2) Max pooling (2) Max pooling (2) 

Dropout 0.5 Conv2 (filter 48) Conv2 (filter 48) Conv2 (filter 48) 

Fully Connected Max Pooling (2) Max Pooling (2) Max Pooling (2) 

 Dropout 0.5 Conv3 (filter 96) Conv3 (filter 96) 

 Full Connected Max pooling (2) Max pooling (2) 

  Dropout 0.5 Conv4 (filter 192) 

  Fully Connected Max Pooling (2) 

   Dropout 0.5 

   Fully Connected 

 

The success rate of classification of aggressive and mild driving data can be seen in Table 

3.5. The response of the network to the gentle driving data that it has not fed before can 

be seen in Figure 3.9. When Table 3.5 is examined, the success of the network in 

classifying aggressive and mild driving data is less than its success in classifying 

aggressive and gentle driving data. The highest success rate was achieved with 2 layers 

and 500 epochs in aggressive and mild driving cases. Network provided 87.7% accuracy 

for validation dataset and 91% accuracy for the test dataset. Although it is not trained with 

gentle driving data, it is obvious that it can distinguish between aggressive and gentle 
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driving much better. It provides 97% accuracy for aggressive-gentle driving dataset. 

Another crucial issue is that overfitting occurs as the number of layers increases or when 

the network is trained for a long period of time.  

 

Table 3. 5 Output of the network trained with aggressive & mild dataset (* overfitting) 

Number 

of 

layers 

Epoch Loss at 

validation 

dataset 

Accuracy at 

validation 

dataset 

Aggressive 

& mild test 

dataset 

accuracy 

Aggressive 

& gentle test 

dataset 

accuracy 

1 500 0.355 83.7% 81.9% 91.6% 

2 300 0.308 85.4% 88.8% 97.9% 

2 500 0.29 87.7% 91% 97% 

2 1000 0.31 87.7% 86.1% 94% 

3 300 0.314 85.8% 81.9% 95.8% 

3 500 0.294 88.8% 77% 94% 

3* 1000 0.513 87.1% 83.3% 93.75% 

4* 500 0.395 87.1% 83.3% 95.9% 

4* 1000 0.553 86.5% 77.7% 91.6% 

 

As shown in Figures 3.9.g, Figures 3.9.h and Figures 3.9.j, the loss value for the validation 

data increase after a while and this is an indication of the beginning of the memorization 

of the network. It is also obvious that when the success of the training attains a value of 

1.0, the network begins to memorize the data. While the network exhibits a high success 

rate in the training data, it becomes difficult to classifying the test data. To avoid 
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memorization, the layers of the network can be reduced or training can be stopped when 

the memorization becomes evident.  

 

 
a. 1 layer, 500 epoch 

 
b. 2 layer, 300 epoch 

 
c. 2 layer, 500 epoch 

 
d. 2 layer, 1000 epoch 
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e. 3 layer, 300 epoch 

 
f. 3 layer, 500 epoch 

 
g. 3 layer, 1000 epoch 

 
h. 4 layer, 500 epoch 

 
j. 4 layer, 1000 epoch 

Figure 3. 9 Loss and accuracy of the network trained with aggressive and mild data 
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Figure 3.10 indicates the highest accuracy rate for the network which was trained with 2 

layers and 500 epoch.  

 

Figure 3. 10 Loss and accuracy graph of network with higher accuracy 

Training results for aggressive and gentle driving data are shown in Table 3.6. Network 

successfully classified aggressive and gentle driving test data. The highest success rate 

was achieved in 2 layers and 500 epochs in aggressive and gentle driving cases. Network 

provided 93.5% accuracy for validation dataset and 94.7% accuracy for test dataset. 

Although it was trained with mild driving data, it is obvious that it could distinguish 

between aggressive and mild with 88.8% accuracy. 
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Table 3. 6 Outputs of the network trained with aggressive and gentle data (* overfitting) 

Number 

of 

layers 

Epoch Loss at 

validation 

dataset 

Accuracy 

at 

validation 

dataset 

Aggressive & 

gentle test 

dataset 

accuracy 

Aggressive & 

mild test 

dataset 

accuracy 

1 500 0.167 94% 92.7% 88% 

2 200 0.189 92.3% 94.7% 81.9% 

2 500 0.212 93.5% 94.7% 88.8% 

2 1000 0.238 93.1% 91.6% 75% 

3 300 0.2 94% 94.7% 80.5% 

3 500 0.216 93.5% 95.8% 73.6% 

3* 1000 0.327 94.1% 93.7% 69.4% 

4* 500 0.290 93% 91.66% 67% 

4* 1000 0.616 93.6% 88.5% 70.8% 

 

As seen from Figures 3.11.g, Figure 3.11.h and Figure 3.11.j, since the network 

memorized the data, the loss in the verification data began to increase after a while. 
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a. 1 layer, 500 epoch 

 
b. 2 layer, 200 epoch 

 
c. 2 layer, 500 epoch 

 
d. 2 layer, 1000 epoch 

 

 
e. 3 layer, 300 epoch 

 
f. 3 layer, 500 epoch 
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g. 3 layer, 1000 epoch 

 
h. 4 layer, 500 epoch 

 
j. 4 layer, 100 epoch 

Figure 3. 11 Loss and accuracy of the network trained with aggressive and gentle data 

Figure 3.12 indicates the highest accuracy rate obtained for the network which was 

trained with 2 layer and 500 epoch.  
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Figure 3. 12 Loss and accuracy of the network with has higher accuracy 

 

3.4 Results for CNN 

 

It was concluded that CNN provides high success in classifying aggressive - mild and 

aggressive - gentle driving data collected from the vehicle. As a result, 1D CNN provided 

more success than LSTM. During the tests, it took longer time to train the LSTM and to 

obtain the classification results from the LSTM-trained network. On the other hand 

however CNN did output faster results. 
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CHAPTER 4 

 

4. CONCLUSION 

 

It is very important to determine the driver's behavior for insurance and passenger 

transportation related companies. Such institutions aim to implement a payment system 

or sanction according to the behavior of the driver. In the following years, a driver profile 

will be determined for each driver and a punishment - reward system will be established 

to prevent traffic accidents. The aim in this study was to designate the behavior profile of 

the driver with 12 different parameters collected from the vehicle Can Bus 

communication system. When the studies on driver profiling are examined, it has been 

observed that there were significant number of studies on machine learning and deep 

learning. It has been observed that LSTM deep learning method was used in most of the 

studies which were based on additional time-dependent sensor data. The motivation of 

this research is based on the fact that there is no study on driver profiling with LSTM deep 

learning method relying on can-bus vehicle data. At the same time, it has drawn our 

attention that 1D CNN was used on time-dependent data with prominent achievements. 

In the literature no study has been encountered on CNN training with only vehicle data 

which created a motivation to use, 1D CNN for driver profiling. 

Aggressive driving, mild driving and gentle driving data were collected from an Otokar 

vehicle. Collected data was pre-processed, labeled and fed into the neural network. LSTM 

and CNN models were separately trained and assessed in terms of accuracy in classifying 

the test data. Both methods demonstrated 70% success rates in classifying three different 

driving modes. After careful examination, the difficulty was with classification of the 

mild driving and gentle driving. This is possibly, due to the similarities between mild and 

gentle driving, where mild and gentle driving data last for 7 sec and 9 sec respectively. 

Therefore, the network sometimes, could not make the correct classification. For this 

reason, the network was fed with aggressive - mild driving and aggressive - gentle driving 

data in binary combinations. 
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LSTM network was fed with aggressive and gentle driving data, providing 92.3% 

accuracy for validation dataset and 88.5% accuracy for the test dataset. When this network 

was fed together with 0-3 sec and 4-7 sec, best results was 85.2% for validation dataset 

and 69.5 % for the test dataset. 

1D-CNN was feed with aggressive and mild driving data, providing 87.7% accuracy for 

validation dataset and 91% accuracy for the test dataset. When this network was fed with 

aggressive and gentle driving data, it provided 93.5% accuracy for validation dataset and 

94.7% accuracy for the test dataset. 

As a result, 1D CNN was more successful than LSTM in classifying the driver profile. 

CNN achieved high success in extracting important features from the raw data with the 

filters it contains. Therefore, CNN learned the driver’s distinguishing parameters better 

than LSTM. During the tests, LSTM takes longer time, whereas CNN works with a much 

faster response. For example, one prediction was lasted 0.5 ms for CNN and one 

prediction was lasted 25 ms for LSTM method implementation. 
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