
 

 

 

 

M A R M A R A  U N I V E R S I T Y  

I N S T I T U T E  F O R  G R A D U A T E  S T U D I E S  

I N  P U R E  A N D  A P P L I E D  S C I E N C E S   

 

M u l t i v a r i a t e  T i m e  S e r i e s  C l u s t e r i n g  u s i n g  

V a r i a b l e  O r d e r  M a r k o v  M o d e l s  a n d  i t s  

A p p l i c a t i o n s  o n  C y b e r - P h y s i c a l  S y s t e m s  

BARIŞ  GÜN SÜRMELİ  

M AS T E R T H ESIS  

Department  of  Computer  Sc ience  and  Engineer ing  

Thes is  Superv isor  

Assoc. Prof .  Dr . Borahan Tümer 

ISTANBUL,  2019



 

 

 

M A R M A R A  U N I V E R S I T Y  

I N S T I T U T E  F O R  G R A D U A T E  S T U D I E S  

I N  P U R E  A N D  A P P L I E D  S C I E N C E S   

 

M u l t i v a r i a t e  T i m e  S e r i e s  C l u s t e r i n g  u s i n g  

V a r i a b l e  O r d e r  M a r k o v  M o d e l s  a n d  i t s  

A p p l i c a t i o n s  o n  C y b e r - P h y s i c a l  S y s t e m s  

BARIŞ  GÜN SÜRMELİ  

M AS T E R T H ESIS  

Department  of  Computer  Sc ience  and  Engineer ing  

Thes is  Superv isor  

Assoc. Prof .  Dr . Borahan Tümer 

ISTANBUL,  201 9

(524115017) 





ACKNOWLEDGEMENT 

 

I would like to thank European Union’s Horizon 2020 research and innovation 

programme, for funding the IMPROVE research project under grant agreement No. 

678867 that I worked in for two and a half years which included a large part of my thesis 

study. 

I would like to thank my advisor Assoc. Prof. Borahan TÜMER for his support 

throughout my thesis and making it available for me to work in the project IMPROVE 

and his big effort to make the MInD-NET laboratory available to the students that worked 

in the project. 

Besides my advisor, I would like to thank Assist. Prof. Dr. Peter SCHÜLLER for his 

scientific support and continuous personal guidance.  

I would also like to thank to my colleagues and dear friends in the IMPROVE project, 

Bilal DİNÇ, Ezdin ASLANCI, Kutalmış COŞKUN and Feyza EKSEN for their support 

and collaboration. 

I also feel the need to thank to my dear friends Ozan OĞUZ, Kemal Toprak UÇAR, Olkan 

KOÇAK and Sibel KAHRAMAN for their support in my submission process and to 

Zeynep KUMRALBAŞ for her precious review and feedback. 

Last but not the least, I would like to thank to my family, especially my elder brother 

Salih İlker SÜRMELİ for their priceless support throughout my life. 

 

 

 

 

 

 

5.2019        BARIŞ GÜN SÜRMELİ 
 

  
i 



Table of Contents 

1 INTRODUCTION................................................................................................. 1 

2 PRELIMINARIES ................................................................................................ 5 

2.1 Multivariate Time Series Clustering ................................................................ 5 

2.2 Markov Models............................................................................................... 6 

2.3 Variable Order Markov Models (VOMMs) ..................................................... 6 

2.4 Suffix Trees (STs) ........................................................................................... 7 

2.5 Probabilistic Suffix Trees (PSTs) .................................................................... 7 

2.6 Hidden Markov Models (HMMs) .................................................................... 9 

3 RELATED WORK ............................................................................................. 11 

4 METHODOLOGY .............................................................................................. 14 

4.1 Preprocessing - Averaging and Dimensionality Reduction ............................ 14 

4.2 VOMM MTS Modelling and Comparison ..................................................... 15 

4.2.1 Discretization ......................................................................................... 15 

4.2.2 VOMM Learning ................................................................................... 16 

4.2.3 VOMM Comparison .............................................................................. 25 

4.3 HMM MTS Modelling and Comparison ....................................................... 32 

4.4 Principal Component Analysis MTS Modelling and Comparison .................. 32 

4.5 MTS Clustering ............................................................................................ 33 

5 COMPLEXITY ANALYSIS ............................................................................... 35 

6 EXPERIMENTAL EVALUATION .................................................................... 37 

6.1 Lego Demonstrator Data ............................................................................... 37 

6.2 Arçelik Hydraulic Press Machine Data .......................................................... 38 

6.3 Setup ............................................................................................................ 39 

6.4 Results .......................................................................................................... 40 

6.5 Discussion .................................................................................................... 45 

7 CONCLUSION ................................................................................................... 49 

8 REFERENCES ................................................................................................... 52 

Appendix A. Determining the Number of Clusters in VOMM MTS Clustering ........... 60 

Appendix B. Discretization on a Subset of the Data set and Interpolation on the Rest.. 60 

Appendix C. Applications on a Non-CPS Data Set ...................................................... 61 

 

ii 



ABSTRACT 

 

Multivariate Time Series Clustering using Variable Order 

Markov Models and its Applications on Cyber-Physical 

Systems 

 

Keywords: Multivariate Time Series Clustering, Variable Order Markov Models, Cyber-

Physical Systems 

 

Multivariate Time Series (MTS) data obtained from Cyber-Physical Systems carry 

resourceful information about the internal characteristics of the system. As one of the 

exploratory Machine Learning methods, Multivariate Time Series Clustering can enable 

one to discover the similarities and differences of the manifested behavior in different 

working periods/cycles of a system. This information can then be used as a prior 

knowledge for tasks such as anomaly detection, system maintenance or root-cause 

analysis. In this thesis, we make use of the statistical method, Variable Order Markov 

Models (VOMMs) to model each individual MTS and present a new metric to calculate 

the distances between those VOMMs. The VOMMs are then clustered with respect to 

these pairwise distances to complete the MTS Clustering task. Two other MTS Clustering 

methods which use Hidden Markov Models and Principal Component Analysis to model 

the MTSs are also explained. The superiority of the proposed method is confirmed with 

the experiments on two data sets; one obtained from a cyber-physical lab demonstrator 

and one from an industrial dishwasher production plant. A new VOMM construction 

method as well as the computational complexity of the three MTS Clustering methods 

are also discussed.
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ÖZET 

 

Değişken Dereceli Markov Zincirleri Kullanılarak Çok 

Değişkenli Zaman Serilerinin Kümelenmesi ve Siber-Fiziksel 

Üretim Sistemlerinde Uygulamaları 

 

Anahtar Kelimeler: Çok-değişkenli Zaman Serileri Kümelemesi, Değişken Dereceli 

Markov Zincirleri, Siber-Fiziksel Sistemler 

 

Siber-Fiziksel Sistemler’den elde edilen Çok-değişkenli Zaman Serileri (CZS) verisi, 

sistemin karakteristik özellikleri hakkında değerli bilgiler içermektedir. Bir Makine 

Öğrenmesi yöntemi olan, Çok-değişkenli Zaman Serileri (CZS) Kümelemesi, sistemin 

değişik çalışma aralıklarında gösterdiği davranışların arasındaki benzerlikleri açığa 

çıkarmak için kullanılabilir. Sistem hakkındaki bu bilgiler, hata tespiti, sistem bakımı ve 

kök neden analizi gibi görevlerin gerçekleştirilmesi için ön bilgi sağlayabilir. Bu tezde, 

her bir CZS‘yi, istatistiksel bir yöntem olan Değişken Dereceli Markov Zincirleri 

(DDMZ) ile modellenmiş, ve elde edilen bu modelleri karşılaştırarak aralarındaki 

uzaklıkları/benzerlikleri hesaplamak için kullanılmak üzere yeni bir metrik sunulmuştur. 

Elde edilen bu ikili uzaklıklar baz alınarak DDMZ’ler kümelendirilmiş ve bu şekilde CZS 

Kümelemesi görevi sonuçlandırılmıştır. Biri Gizli Markov Modelleri, diğeri ise Temel 

Bileşenler Analizi kullanarak CZS’leri modelleyen iki yöntem karşılaştırma amacıyla 

açıklanmıştır. Sunulan yöntemin üstünlüğü, biri siber-fiziksel laboratuvar göstericisinden 

elde edilmiş, diğeri ise endüstriyel bulaşık makinesi üretim fabrikasından elde edilmiş iki 

veri seti üzerinde yapılan deneylerle doğrulanmıştır. Ayrıca, yeni bir DDMZ öğrenme 

yöntemi sunulmuş ve üç CZS Kümeleme yöntemi için hesaplama karmaşıklığı 

tartışılmıştır. 
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SYMBOLS 

 

a : Window size for data averaging 

d : Number of dimensions of a data matrix 

k : Number of data point clusters 

mk : Number of model clusters  

t : Minimum number of occurrences of a sub-sequence to be kept in a 

   Probabilistic Suffix Tree, Pruning parameter 

ts : A set of time series 

C : A set of clusters 

I : Weighting parameter for Enhanced Probabilistic Suffix Tree Matching  

L : Maximum length of any sub-sequence to be kept in a Probabilistic Suffix 

   Tree, Pruning parameter 

N : Number of data points in a data set 

W : Number of iterations for Baum-Welch algorithm 

α : Weighting parameter for Principal Component Analysis Multivariate  

   Time Series Clustering method 

μ : A Set of Multivariate Time Series 

μcon : Concatenated μ 

μavg : Averaged μavg 

μu : μavg with reduced dimensionality 

σ : A symbol, one state of a Markov Model 

Σ : Set of symbols, state space of a Markov Model 
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A B B R E V I A T I O N S  

 

AI : Artificial Intelligence 

CPS : Cyber-Physical Systems 

EPSTM : Enhanced Probabilistic Suffix Tree Matching 

HMM : Hidden Markov Models 

ML : Machine Learning 

MTS : Multivariate Time Series 

MTSC : Multivariate Time Series Clustering 

PCA : Principal Component Analysis 

PST : Probabilistic Suffix Tree 

PSTM : Probabilistic Suffix Tree Matching 

ST : Suffix Tree 

TS : Time Series 

TSC : Time Series Clustering 

VOMM : Variable Order Markov Models 
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1 INTRODUCTION 

Cyber-physical systems (CPSs) are one of the biggest focus of current technological era. 

They are systems that introduce intelligent components that can learn, solve problems, self-

maintain, communicate and help each other. Their ongoing integration in manufacturing 

systems besides other innovative concepts such as Cloud Computing [1], Virtual Reality [2] 

and Internet of Things [3] resulted in a new industrial revolution: Industry 4.0 [4]. Referred 

to as the next generation of automation, CPS are rapidly replacing conventional 

manufacturing technologies in systems such as production plants, automobile systems or 

robotic systems.  

An application area as CPS with such high impact required the employment of existing 

Artificial Intelligence (AI) methods, as well as sparking the development of new domain 

specific methods. Amongst those, Machine Learning (ML) methods promise the automatic 

analysis and processing of vast amounts of data which are mostly impractical to analyze 

manually. 

One of the most critical issues in manufacturing systems is the everlasting and miscellaneous 

faults or anomalies which result in high costs and performance degradation in production. 

Sensor data collected from such systems carry critical information about the system status. 

Therefore, automatic analysis and processing of data can be a remedy to this problem by 

detecting, identifying and even finding the root cause of anomalies well before they occur. 

For this end, ML techniques are employed that can automatically learn from the sensor data 

the characteristics of the target system (i.e., the system under consideration). 

In industrial and medical informatics as well as many other fields such as econometrics or 

weather and earthquake prediction, the collected data consist of data points that are stamped 

with the temporal information and ordered with respect to time. Most commonly, these time 

stamps have a constant difference, also called the sampling period. This type of data is 

referred to as Time Series (TS). Time series analysis is a well-studied area in the literature [5]. 

If the data include only one feature which may for example be the recordings of a temperature 

sensor, then they are called Univariate Time Series. If data contain a collection of features 
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whose values recorded synchronously, it is referred to as Multivariate Time Series (MTS).  

Most of the systems tend to manifest relations between events that occur together or closer 

in time rather than ones that occur further apart. TS data are therefore crucial for appropriate 

methods to extract information about temporal patterns of events and causal relationships 

between those events. 

One of the useful data analysis methods is clustering or cluster analysis [6]. The goal of 

clustering is to find groups of data points with each group manifesting significant similarity 

within and relative separability outside the group. The similarity of objects is calculated by 

well-defined metrics. These metrics can be defined: to comprise/include maximum possible 

features of objects or the relevant domain-specific aspects of the application. It is applied in 

any area where exploration of such relations is relevant as clustering of images in image 

processing [7], detecting outliers [8] or extracting information about social groups in social 

network analysis [9]. In the field of industrial systems this may provide information about 

internal characteristics of the system behavior.  

Time series clustering (TSC) refers to two types of problems in the literature. One is 

clustering the time series data points which can reveal similar values recorded within specific 

timespans. In the other problem, time series data recorded in different intervals and referred 

to as time series objects are considered as data points and these are clustered. In CPS, this 

enables one to identify the time intervals that the behavior of the system is similar at. 

Extraction of such information from the manufacturing systems can then be utilized for the 

sake of the critical tasks such as mode or anomaly detection [10-12] and root cause analysis 

[13]. In this study we will be dealing with the latter type of these two problems and by TSC 

we will refer to this problem. 

As one might expect, when more than one features is involved the problem is referred to as 

MTS Clustering. MTS clustering is applied to the data collected from the systems in several 

fields such as dynamometers [14], earthquake analysis [15], cyber-physical systems [9]. 

While some of the methods deal directly with raw time series objects [16] some of them work 

with their higher level abstractions/representations instead which are also referred to as  

model-based methods [17, 18].  
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One of the preferable methods among powerful mathematical tools to analyze TS data are 

Markov Models [6]. They can be used to learn the system models that include information 

of temporal dependencies such as sequential and/or cyclic ordering of events that occur in 

that system. These dependencies or significant temporal patterns can reveal the underlying 

characteristics and behavior of the target system that TS data are obtained from. In Markov 

Models, a system is assumed to be at one of a finite number of possible states during a specific 

time step. In practice, this time step can be as short as or longer than the sampling period of 

the data obtained from the system. A type of Markov Models is Hidden Markov Models 

(HMMs). In HMMs the observations do not explicitly correspond to states and the states are 

hidden, but the observations are assumed to provide information that can be used to estimate 

the hidden states. Both regular Markov Models and HMMs assume dependencies of identical 

context length. This is insufficient for analyzing a target system where dependencies with 

different context lengths may exist. A common such domain is natural language processing 

where one has to study words with different lengths. Variable order Markov models 

(VOMMs) [19] can be a much better choice to tackle this problem, which can represent 

temporal dependencies of variably long patterns by allowing dependencies between the 

events that occur within variably many time steps. 

As to the novelty of this work, the contributions are six-fold and listed in the following: 

• We propose an MTS Clustering method which  

1. learns the significant patterns that are manifested in MTS as VOMMs, 

2. compares them, and,  

3. clusters them regarding the results of this comparison. 

• We propose a VOMM construction algorithm, which is easy to understand and 

implement while having comparable complexity to the algorithms proposed in the literature. 

• We propose  

1. an improved version of our VOMM comparison formula PSTM [10], and, 

2. a linear time comparison algorithm which realizes the proposed formula, 
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• We compare PSTM to a recently proposed Frobenius Intersection VOMM 

comparison method, 

• We analyze, test and evaluate our MTS Clustering method with two different methods 

proposed in the literature, one PCA-based [17] and one HMM-based [18] MTS Clustering 

and confirm the superiority of our method on two industrial datasets, (1) semi-physical Lego 

Lab Demonstrator Data and (2) real world Arçelik [20] Hydraulic Press Machine Data, and 

finally 

• We discuss the time complexity of the proposed methods and show that the proposed 

method has comparable performance regarding performance while having better clustering 

accuracy. 

In Section 2, we summarize the MTS Clustering Problem, VOMMs as well as their 

realization method PSTs and HMMs. Related work is discussed in Section 3. In Section 4 we 

discuss how each MTS model is learned, how distances between these models are calculated, 

and how we perform clustering using the calculated distances. In Section 5 we give an 

extensive complexity analysis of the presented methods. Section 6 contains our experiments 

and a discussion of the results. We conclude the paper in Section 7. 
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2 PRELIMINARIES 

2.1 Multivariate Time Series Clustering 

Time series (TS) data include time information so that points are ordered with respect to time 

and the corresponding time label for each consecutive point couple have a constant 

difference. If t = {t1, t2, t3, …, tN} are time steps tn that subsequently increase by a constant, 

then a time series can be written as ts = {ts1, ts2, ts3 … tsN} where each element tsn corresponds 

to a time unit in tn. 

If points in data have more than one dimension it is referred to as multivariate data. In 

multivariate data, each data point is a d dimensional vector. Accordingly, if time series data 

have multivariate data points, it is referred to as Multivariate Time Series. Then an MTS can 

be written as M = {m1, m2...mN} where each element mn = [x1 x2 x3 … xd], a d dimensional 

vector, corresponds to a time unit in tn. 

Given a set of MTSs μ = {M1 M2 ... MX} where each Mx has a number of d-dimensional data 

points and a set of clusters C = {c1, c2 ... cL}, the MTS Clustering problem can be defined 

as finding a mapping from each Mx in μ to a cl, where each cl holds Mxs displaying a 

significant similarity. An example scenario where this problem applies is visualized in Figure 

1. 

Clustering is applied either to MTSs or their corresponding higher-level abstractions i.e. 

models, either way a similarity or distance metric should be defined to calculate the distances. 

In this study we limit our scope so that each MTS is considered to have exactly d-dimensional 

data points. 
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2.2 Markov Models 

Stochastic processes are processes that explain the change of random variable(s) in time. 

They are used to represent real world system processes (industrial, biological, chemical 

etc.) where values of those variables for a specific time step is considered to explain the 

state of the system at that moment. Markov property is defined as a property of a 

stochastic process so that system’s next state being dependent only on the current state 

of the system and independent of its previous states [21]. Markov Models are 

probabilistic models that have Markov property. Such a property of a model enables 

tractability and feasibility of its estimation. An extension to this definition is the nth-

order Markov Models where the next state is dependent on the n most recent states of 

the system before the current state. If the state space of the modeled system is given by 

the symbols of the alphabet Σ = {S1, S2, ...Sk } then nth-order Markov Model is defined by 

two components, (1) the initial state probability vector 𝑃(𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ where S ∈ Σ and (2) the 

transition matrix that contains the probabilities of the system going to a state following the 

last n states the system has been at, or the context, P(St+1|St−n+1St−n+2...St).  

2.3 Variable Order Markov Models (VOMMs) 

Another extension to Markov Model definition is Variable Order Markov Models [19]. 

Unlike nth order Markov Models which contain only probabilities of state transitions from 

Figure 1: An example visualization of Time Series (TS) data. Such data can be obtained by 

recording the value in equally spaced time steps that a sensor measures which is placed in a 

Cyber-Physical System. One can conclude that the system behaves differently in different 

periods of time and those different types of behavior manifest themselves in the data by 

different patterns (as separated by lines and shown with different colors in the figure). 

Considering each of the periods as different TS objects, clustering techniques can be applied 

to find out different groups of periods, such that in each group, only the TSs that correspond 

to a certain behavior exist. 
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the state sequences with context length n, VOMMs contain the probability information for 

state sequences of different length/order with a maximum length of L. Rather than keeping 

information for all the possible state sequences for permutations of the symbols of Σ and all 

possible lengths up to L, the information for specific sequences are kept in the model 

depending on the significance of the sequence regarding the data. This significance is 

determined by observing the occurrence frequency of the sequence in the data. The higher 

the occurrence frequency, the more probable that the sequence will be stored in the model. 

This property yields several advantages over the Markov models with a fixed order such as 

tractability; where the model can be estimated by employing a reasonable amount of 

computational resources, adaptivity; where it can be used to represent the behavior of real-

world processes such as the processes in an industrial plant or frequently occurring patterns 

in biological structures such as in protein sequences expressivity;  the model can extract 

information about more diverse types of behavior, lower computational complexity; where 

the model is much more efficient by means of space and time compared to overall complexity 

of the fixed order Markov models from 1st, 2nd, …, Lth order combined. 

2.4 Suffix Trees (STs) 

Suffix trees are representations of any sequence which provide minimum-cost (i.e., by a 

minimum number of operations) accessibility to any sub-sequence of that sequence by 

traversing the tree from its root to leaves. By concatenating the subsequences on the edges 

for traversal of each path from root node to a specific leaf node yields a unique suffix of the 

sequence. An internal/non-leaf node exists if and only if more than one suffix shares a 

subsequence and this subsequence is kept in that internal node (see Fig. 1 (top)). Depending 

on the purpose of use, nodes may be used to keep the concatenation of the subsequences that are on 

the edges in the path from the root to that node. 

2.5 Probabilistic Suffix Trees (PSTs) 

Probabilistic Suffix Trees [22] are one way to realize VOMMs. They are related to Suffix 

Trees and have similar structure as they can be constructed upon STs as a probabilistic 

variation [23] or directly as PSTs [22]. Different formulations of PST exist in the literature 

[24, 25] as explained in [23] and in this thesis, following explanation is based on the 
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formulation in [25]. A PST of a sequence contain probabilistic information about the 

subsequences that represent the characteristics of the sequence in a concise way. Each node 

contains a subsequence and a probability vector that keeps the probabilities of the occurrence of each 

symbol in the alphabet following that subsequence. Subsequences that occur in the sequence will 

not be in the PST if;  (1) it does not appear in the modeled sequence more than a minimum occurrence 

parameter t (t pruning) or (2) the subsequence is longer than the maximum length L (L pruning). In 

other words, t prunes the subsequences that does not occur significantly many times and the detail of 

the model is limited by L. The probability information is added to the nodes in the form of a 

probability vector that keeps the probabilities of each symbol/state occurring after the corresponding 

subsequence/state sequence of the node. An example sequence and its constructed PST is shown in 

Fig. 1 (bottom). One should notice the difference in the ordering of nodes which have parent-

children relation in STs and PSTs: the subsequences of the nodes are extending from the 

beginning of the subsequence in PSTs (A → BA) and vice versa in STs (A → AB). This is so 

since nth level in the PST corresponds to nth order in Markov models and this structure 

enable optimal complexity for subsequence search in the tree for prediction. For example, if 

P(A|AB) is requested, longest suffix of the given subsequence AB will be searched in the tree 

as it is the most relevant information. In the case of the PST in Figure 1, AB is in the tree and 

the probability P(B|CA) = 0.5 will be obtained. If P(B|AA) is requested, CB is not in the tree 

and the model will use the most relevant information as a prediction: P(B|A) = 0.4. Therefore, 

for P(A|AB), this structure of the PST allows one to access the node of B and then access that 

of AB if it exists in the PST, which is done in O(m) time given the length of the subsequence 

is m. 
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Figure 2: (top) Suffix Tree of the sequence ABACACABAC$. Each path from root to a leaf 

node corresponds to one suffix of the sequence where $ represents the end of the sequence. 

(bottom) Probabilistic Suffix Tree of the sequence ABACACABAC ($ is removed for 

simplicity) where t = 2 and L = 3. 

2.6 Hidden Markov Models (HMMs) 

In Hidden Markov Models, the state sequence and the state space are assumed to be non-

observable. Observable data are called Observations and the goal is to estimate the 

underlying behavior of the system for the hidden states via processing the information 

extracted from these observations. If the set of hidden states is Q and set of observations are 

O, HMM is represented by three parameters: (1) initial state probability vector Π, (2) 

transition matrix A which holds the transition probabilities from each state to any other state 

and (3) emission matrix B that consists of the probabilities for each hidden state that any 

observation is to be observed while the system is actually in that state. Most common way of 
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learning these parameters is the Baum-Welch algorithm [26] which is an Expectation-

Maximization algorithm. Baum-Welch algorithm makes use of a forward-backward 

procedure. 
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3 RELATED WORK 

There is extensive work done in data analysis literature on Time Series Analysis [27]. 

Application fields include but not limited to; health informatics [28, 29], cyber-physical 

systems [5] and bioinformatics [30-32], seismology, meteorology, econometrics as well as 

signal detection and estimation. 

The analysis generally aims process monitoring, tracking business metrics or forecasting the 

values of a variable or predicting the behavior of the analyzed system. Technically, methods 

try to extract the patterns manifested in the data over time which may be disguised by noise. 

First approaches to time series analysis started with visually observing the simple records 

gathered by tracking the features/variables regarding specific processes, such as the number 

of an item sold per day over a time period. The analyzers tried to relate the specific changes 

of the features and the environmental incidents occur concurrently. Technological evolutions 

resulted in both appearance of large-scale systems that require more complex analysis and 

possibility to record time series data with much higher frequency and including many features 

at the same time.  This led the analyzers to use machine based, automated systems as well as 

integrating complex mathematical models. 

Conventional methods of time series analysis include modelling approaches where the goal 

is to extract meaningful statistics or patterns from the data by explaining it with specific 

mathematical functions such as auto-correlation function or spectral density function [33]. 

These methods are generally applied in areas such as signal processing, control engineering 

and electronics. They are classified into two, Frequency Domain Methods which include 

spectral and wavelet analysis and Time Domain methods which include auto-correlation 

analysis.  

Machine Learning (ML) methods are also employed to learn the models of the time series 

data with less or without explicit instructions compared to conventional methods. These 

include model learning techniques such as Artificial Neural Networks, Support Vector 

Machines or Markov Techniques [6]. 

ML techniques are extensively used for forecasting. A review of such techniques is given in 
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[34] which classified these techniques into global and local learning techniques. In TS 

forecasting task, Local learning approach is preferable as it does not assume the underlying 

system that emits the TS data to maintain a specific behavior all the time. Instead, it focuses 

on local patterns that may be manifested in the data and tries to extract them independent 

from each other. VOMMs also enable local learning by extracting cycles/order of sequences, 

namely context, occur in different time intervals in the TS data. 

A comprehensive work on the methods that has been proposed on TS Clustering problem is 

presented in [35]. It includes categorizations of the methods by many aspects such as: 

• Representation method, namely if the raw time series are directly compared or their 

higher-level abstractions/models are constructed in prior and these are compared,  

• Comparison method, raw time series distance calculation method or if the models of 

the TS are constructed, then comparison technique of the models, 

• Clustering method which is used once the distances between TSs are calculated. 

Collection of the methods in the following ten years are surveyed in [36]. Presented methods 

mainly applicable for Univariate Time Series which includes the well-known successful 

method SAX [37], number of methods that can deal with Multivariate Time Series are 

relatively low. 

An important distinction between the existing MTS Analysis methods is that while most 

directly works on multivariate, possibly continuous data, some uses discretization or 

symbolization methods [38] that transforms them to univariate data and limits the data space 

to a finite set of symbols. Discretization is generally followed by employing appropriate 

model learning methods, for instance statistical methods like Markov Models [39]. Various 

ways to do the discretization task are presented in the literature; Probability Density Function 

partitioning [37], employing decision trees to divide the data space [40], via clustering the 

data points [40], using self-organizing maps [41, 42] or mining temporal-interval relation 

patterns [43]. 

Methods for anomaly detection including Markov model-based representations of data are 

surveyed in [11].  
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VOMMs are applied in many areas for classification and prediction tasks [22, 44, 45]. As a 

common way of realization, Probabilistic Suffix Trees (PSTs) [24, 25]. [23, 46] showed that 

it is possible to construct PSTs in linear time. Application areas of PSTs include but not 

limited to bioinformatics [22, 23, 44, 46], outlier detection [47] and cyber-physical systems. 

The applications in bioinformatics contain protein family prediction, where the state 

sequence alphabet is the types of amino acids and the models of those sequences are learned 

as PSTs. Then, by running new protein sequences on those learned models which correspond 

to each of the family, the probabilities of the sequences falling into one of the families are 

calculated. In the same way, PSTs are also used for DNA binding site classification. Another 

area that VOMMs are extensively applied is lossless text compression [48-50]. Thanks to 

their concise structure, VOMMs enable such compression with their ability to not keep 

redundant prefixes of the substrings in the text as in Suffix Trees. Another interesting field 

of use is music generation [51], where the VOMM is trained with a data set of songs with 

specific music style. Then the learned conditional probabilities of the model are used so that 

the most likely state sequences according to the model are combined to generate music of 

that style. VOMMs were specifically found successful of capturing the stylistic information. 

Another Markovian Technique, Hidden Markov Models [6] are also applied in similar areas 

as in bioinformatics [52]. A comparison of VOMMs and HMMs is given in [22] and 

superiority of VOMMs over HMMs with respect to performance while having comparable 

prediction power is shown. Other unsupervised methods in cyber-physical systems employed 

Probabilistic Automata, Bayesian Networks and Self-Organizing Maps [53, 54, 42]. 

Unlike the method proposed in this thesis, state-of-the-art methods for classification of input 

sequences employ PSTs, simulate a run of the test sequences on PST models learned in a 

training phase to decide which class the sequences belong to. A method that was introduced in 

[55] used (non-probabilistic) STs by representing them as a vector space document model and 

compared them for clustering. 
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4 METHODOLOGY 

Here we will describe three different approaches to solve the MTS Clustering (MTSC) 

problem. All methods follow three main steps: (1) model learning, (2) comparison and (3) 

clustering where in (1) the characteristic information of the MTS is learned as a model, in (2) 

the learned models are compared to obtain a dissimilarity matrix that contains pairwise 

distances between models, and in (3) MTS are clustered using the dissimilarity matrix. 

In this section, we explain three different methods that deal with MTS Clustering (MTSC) 

task. All methods share three subtasks where one’s output is the input of the next: first, the 

construction of higher-level abstractions/models of the MTSs. Second, the comparison of all 

constructed models which yields a dissimilarity matrix and third, clustering the MTSs using 

the dissimilarity matrix. 

In sections 4.2 through 4.4, we describe the model learning and comparison steps for each of 

the 3 clustering methods. Since we apply the same preprocessing step for all 3 methods and 

clustering techniques on the dissimilarity matrices, we discuss them in sections 4.1 and 4.5, 

respectively. 

In section 4.1 we describe the common data preprocessing techniques applied in all three 

methods. Sections 4.2, 4.3 and 4.4 clarify the unique parts of the methods which consist of 

the model construction and the comparison of those models. In section 4.5 we discuss the 

common clustering techniques that are applied commonly for all three methods. 

4.1 Preprocessing - Averaging and Dimensionality Reduction 

One of the characteristics of time series data obtained from cyber-physical systems is that the 

sampling rate is usually so high that changes in the behavior of the system are rarely 

observed. Another effect of the high sampling rate is that instantaneous distortions in the 

sensor values may occur. Therefore, without an appropriate preprocessing, the parts of the 

data with useful information might be masked or dominated by noise fluctuations or by the 

large intervals where there is no change. To avoid this, in this study we apply averaging on 

the time series. Consider that Mcon with size N x d is the concatenation of all MTSs and it is 

then divided into windows which contain a data points. Then each window is a matrix with 
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size a x d. Averaging is done so that each window is replaced with a d dimensional data point 

which, for each dimension, consists of an average of a values in the window for that 

dimension. Averaged dataset is referred to as Mavg which has the size N/a x d. 

Industrial data may contain an extraordinarily high number of variables/features which may 

require a very high amount of computational power to process. As an attempt to deal with 

this and reduce the noise, PCA is applied and d dimensional Mavg is transformed to a u 

dimensional Mu where u < d in VOMM and HMM MTS Clustering methods. This is not done 

for PCA MTS clustering since it already applies PCA in its model construction step. 

Therefore, following steps are applied on Mu for VOMM and HMM Clustering and on Mavg 

for PCA Clustering. 

4.2 VOMM MTS Modelling and Comparison 

In this section, we present the steps of (1) model construction and (2) comparison of the 

method proposed for VOMM MTS Clustering. VOMMs are not directly constructed upon 

the preprocessed MTSs (Mu), they are first transformed to a one-dimensional, 

categorical/symbolic sequences. This is done by mapping each data point in Mu to a symbol 

 of a finite alphabet . To achieve this, all data points in the dataset are clustered regardless 

of their time information, as they were a static dataset instead of time series data. For each 

cluster, data points in that cluster are labeled with a unique symbol . Replacing the data 

points with these labels, the MTSs Mx in μ (see 2.1) are reconstructed as sequences px which 

forms the set of sequences P. For each sequence px in the set of sequences P which 

corresponds to the MTS Mx in μ, a separate VOMM φx is constructed to form the set of 

VOMMs Φ. these VOMMs are compared pairwise with respect to distance metrics which 

will be explained in section 4.2.3. 

4.2.1 Discretization 

Discretization is accomplished by clustering applied on Mu where each of the l clusters are 

labeled with a unique symbol  from a finite alphabet Σ with size l. Accordingly, by replacing 

the data points in Mu with the label of the cluster they fall in, a discrete sequence is obtained. 

We refer to this task as data point clustering throughout this paper to be able to distinguish 
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this from the other clustering task we perform in the final step of our MTS Clustering method 

to group the learned VOMMs. 

To discretize the data set, clustering is applied on Mu. Each one of the l clusters are labeled 

with a unique symbol  of a finite alphabet Σ with size l. According to this labeling, for each 

MTS, data points in that MTS are replaced by their corresponding label. As a result, for each 

MTS, a discrete, univariate sequence is constructed from tokens. In order to distinguish the 

clustering applied here from the clustering that is applied when clustering the VOMMs (see 

section 4.5), we refer this one here as data point clustering throughout this paper. 

Data sets stemming from industrial systems typically contain a large amount of data points. 

Therefore, it is challenging to obtain stable results in a reasonable amount of time. We use 

Ward’s Hierarchical Agglomerative Clustering [56], a deterministic method with acceptable 

time complexity of O(n2) where n is the number of data points. 

4.2.2 VOMM Learning 

For each of the discrete sequences px obtained corresponding to MTS mx, a VOMM is learned 

so that each of Mx in μ (see 2.1) corresponds to a VOMM φx of a set Φ of VOMM’s. VOMMs 

are learned as PSTs.  

In [23] a PST construction algorithm referred to as AV-2 is proposed which constructs PSTs of 

sequences by first obtaining the ST and then pruning the nodes of the ST, adding the probability 

vectors and then adding the reverse suffix links (rsuf’s introduced in [46]). The rsufs allow one 

to access the probabilities P(σ3|σ2) and P(σ3|σ2σ1) consequently, and therefore enable the 

optimal subsequence search explained in section 2.5. The STs are constructed by the method lazy 

suffix tree proposed in [57] which, while having O(n2) worst-case complexity, in practice, is 

shown to outperform other ST construction methods which have linear worst-case complexity 

such as the well-known theoretically optimal algorithm proposed by Ukkonen in [58]. Likewise, 

in [23], AV-2 is experimentally shown to outperform the theoretically linear time PST 

construction algorithm proposed in [46]. It is also argued in [23], the linear time algorithm 

proposed in [46] is quite complex. However, one of the complexities of the approach is the 

addition of rsuf’s which is also used in [23].  
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We propose a PST construction algorithm which employs the sequence traversal technique used 

in lazy suffix tree algorithm, but unlike AV-2, PST construction does not follow a ST construction; 

instead they are constructed directly in the structure explained in section 2.5 as explained below. 

Therefore, while having the same complexity properties, we believe that our method is simpler 

to understand and implement. 

PST Construction is accomplished in two main phases. In the first phase which we call 

subsequence extraction, for each one of the subsequences that are eligible to be kept in the 

model, a node object is initiated that keeps the subsequence. Then the next symbol probability 

vector for the subsequence is calculated and kept in the initiated node which is added to a 

“node list.” In the second phase which we call a tree construction, PST is constructed by 

inserting the nodes as in the structure explained in section 2.5. 

Concretely, PST Construction from a sequence starts with initiating a “suffix index list” (SIL) 

that keeps the indices to the first characters of all suffixes of the sequence. If SIL is 

implemented as an array, these indices are enough to represent and access to the suffixes of 

the sequence in O(1) time.  

The subsequence extraction phase of PST construction algorithm consists of three main steps: 

(1) Find the longest prefix of the suffixes represented in the SIL and increment all the indexes 

in the SIL by the length of the longest prefix, (2) initiate nodes with all the prefixes of the 

longest prefix and add them a list called “node list”, ( ) sort and group the elements of SIL 

with respect to the characters that incremented indexes in SIL. Recursively, for each group 

new SILs are initiated and same three steps are applied. Notice that by incrementing the 

indexes in step (1) the represented suffixes change accordingly. The indexes that are larger 

than the length of the sequence or L (see 2.5) are immediately removed from the list they 

belong to. No list is created, nor the steps are applied for the groups with less than t elements 

(see 2.5). Subsequence extraction phase is visualized in figure 2. 

Tree construction phase is similar to subsequence extraction phase. Instead of the SIL, 

following steps are accomplished recursively with the node list obtained in subsequence 

extraction phase: (1) Find the node with the shortest subsequence, S, in node list. (2) Insert 

S to the tree and remove it from node list. (3) Counting sort and group the node list according 
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to the nth last element of their subsequence where n is initially 1 and incremented as the 

processed depth level of the tree at that moment increases. Recursively for each group, new 

“node list”s are initiated and same steps are applied. Note that for any node list that contains 

the nodes with the subsequences in the form of ΔS, there is only one node with the shortest 

subsequence S that will be the root of the subtree that will be built with that node list. Tree 

construction phase is visualized in figure 3.   

As in [57], sorting the suffixes are done using Counting Sort [59] which has worst-case 

complexity O(n + k) where n is the number of elements to be sorted and k is the range of 

distinct keys to be sorted. Therefore, it has linear complexity if k is not significantly greater 

than n. In the case of sorting suffixes, keys are the elements of the symbol alphabet Σ (see 

2.4). In the context of MTSC using VOMMs, the size of Σ is expected to be much smaller 

than the size of the modeled sequences and eventually number of their suffixes and therefore 

Counting Sort takes linear time and appropriate to use. 
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Figure 3:  Visualization of subsequence extraction phase (done depth-first by recursion) of VOMM construction procedure applied 

on the sequence ABACACABAC where t = 2 and L = 3. Initially, indexes in SIL correspond to the first characters of the suffixes 

of the sequence. Then in each step/call, nodes with the prefixes of the longest common prefix (LCP) and their probability vectors 

are added to the Node List. Then the indexes in SIL are grouped with respect to the characters corresponding to them in the 

sequence. Grouped indexes are incremented to the characters that follow the LCP and new SILs are created with each of those 

groups. In the following steps, these procedure is applied to the new SILs. Return of each call of the recursion is shown with the 

blue arrows.
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Table 1: The Node List. Sub-sequences and the probability vectors of each node to be 

inserted in the PST are shown. 
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A detailed pseudocode of the PST Construction Algorithm is given below. 

Class Node: 

1. Initialize(this, Subsequence) 

1. this.Sbsq := Subsequence 

2. this.Probs := []   // Probability vector 

3. this.Children := an array of Null pointers with the size of the Alphabet 

CONST_PST (Sequence, Alphabet) 

1. SIL := Suffix Index List, indexes of all suffixes in the Sequence 

2. Global Var. Node List := [] 

3. Global Var. seq := Sequence 

4. GET_NODES (SIL) 

5. Global Var. alph := Alphabet 

6. PST Root := BUILD_TREE (Null, Node List, 0, -1) 

7. Return 

GET_NODES (SIL) 

1. Find the length of longest common prefix, LLCP  

2. BrnchNode := GET_PREFIX_NODES(SIL[any element], LLCP) 

3. Increment all the elements of SIL by LLCP, remove anyone reach size(Sequence) 

4. If LLCP <= L: 

1. Counting sort the SIL wrt. Characters in Sequence indexed by elements of 

SIL 

2. Initiate a “Group SIL” that keeps for each of σ in alph, a list of indexes 

which satisfies σ   seq[SIL]  

3. For i from 1 to size(alph):   // set the probability vector for current node 

1. BrnchNode.Probs[i] := size(Group SIL[i]) / size(SIL) 

4. For i from 1 to size(alph): 

1. If size(Group SIL[i]) >= t   // t-Pruning 
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1. GET_NODES (Group SIL[i]) 

5. Return 

GET_PREFIX_NODES(First, LLCP) 

// initiate nodes with the prefixes of longest common prefix and add them to Node List 

1. For i from 1 to LLCP:   

1. If i <= L:   // L-Pruning  

1. Current Node = Node (Sequence[First : First + i]) 

2. If i != LLCP: 

1. Set Current Node.Probs so that the corresponding probability 

value for Sequence[First + i + 1] is 1 and other values are 0 

3. Else: 

1. Branching Node := Current Node 

2. Else: 

1. Break 

3. Add Current Node to the Node List 

2. Return Branching Node 

BUILD_TREE (Root, Node List, CT, childIndex) 

1. S = Node in the Node List with the shortest subsequence 

2. If childIndex != -1, Root.Children[childIndex] := S 

3. Remove S from Group Node List 

4. CT := CT + 1 

5. Sort (Counting sort) the nodes in the Node List wrt. Node.Sbsq[size(Node.Sbsq) - 

CT] 

6. For each character σ in the alph initiate a “Group Node List” which keeps the nodes 

that satisfy σ   Node.Sbsq[size(Node.Sbsq) - CT] 

7. For i from 1 to size(alph): 

1. BUILD_TREE (S, Group Node List, CT, i) 

8. Return S 
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Figure 4: Visualization of the construction phase (depth-first by recursion) following the sub-sequence extraction shown in Figure 

2. In each step/call, node with the shortest subsequence is inserted to the tree as a child of the node inserted in the previous level 

of the currently processed branch of the tree. Remaining nodes are grouped according to the nth last character of their sub-sequence 

(shown as PT) where n is initially 1 and incremented as processed depth level of the tree at that moment increases. New Node Lists 

are created with those groups and the same procedure is applied in the following steps to those Node Lists.  
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Figure 3 Continued 
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4.2.3 VOMM Comparison 

To obtain a dissimilarity matrix that contains the pairwise distances of all VOMMs in Φ, a 

distance metric should be formalized for comparing any pair of VOMMs. We use two 

different VOMM comparison methods: we propose Enhanced PST Matching which is an 

improved version of PST Matching (PSTM) [10] and compare it to Frobenius Intersection 

proposed in [60]. 

Enhanced PST Matching: We start shortly explaining PSTM method [10]. 

PSTM calculates the distance between two PSTs by two aspects, (1) Probability Distance, 

which calculates the differences of the values of the same model parameter, namely 

probabilities of the occurrence of same type of observation and (2) Structural Distance, 

calculates the structural differences between two trees which actually occur when a model 

parameter/node exists in one model/tree and not in the other. 

Consider two sequences A and B and PSTs constructed from these sequences T1 and T2 

respectively. We define two sets, {A1, A2, ..., AN} and {B1, B2, . . ., BM},  respectively contain the 

subsequences that exist in nodes {K1, K2, ..., KN}, and {R1, R2, ..., RM}  of the trees T1 and T2. 

Then the distance formula is given as: 

𝐶𝑇1,𝑇2
= ∑∑𝑥𝑖𝑗

𝑀

𝑗

𝑁

𝑖

ω𝑖𝑗(𝑑𝑖𝑗𝐼/𝐿𝑖𝑗 + (1 − 𝐼)δ𝑖𝑗ϵ𝑖𝑗/2) (4.1) 

This measure is calculated pairwise for all nodes Ki and Rj in two PSTs, namely each node in 

one tree is compared to the all other nodes in the other tree. Components of the formula are 

as follows. 

xij ∈ {0, 1} is 1 only if Ai is the prefix of Bj or vice versa and they are the closest such pair in 

length. This stands for assuring that either the same parameters/subsequences are compared 

to each other or in the case that a parameter/subsequence only exists in one model, then it is 

compared to the closest subsequence in the other tree. All the other comparisons in fact has 

zero contribution to total difference between two trees and in practice they are not done 
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(realization algorithm will be explained shortly), but they theoretically exist for consistency 

in the formula 1. 

ω𝑖𝑗 keeps the average of the frequency of Ai and Bj being observed in A and B respectively: 

ω𝑖𝑗  = (P (Ai) + P (Bj))/2. This weights the distance contributions of node comparisons in 

a way that the more subsequences of the compared nodes are observed in their 

corresponding sequences the more the contribution will be. Therefore, it prioritizes the 

information obtained from the sequences with more occurrences, namely with more 

witnesses. 

I scales the contribution of two types of distance types: Probability distance and structural 

distance. The contribution of structural distance increases as I increases where contribution 

of probability distance decreases and vice versa. 

dij holds the differences between the lengths of the subsequences Ai and Bj : 

𝑑𝑖𝑗 =  𝑎𝑏𝑠(| 𝐴𝑖 |  −  | 𝐵𝑖 |) (4.2) 

where |X| indicates the length of the subsequence X. The term is normalized by Lij which is 

the larger of the two subsequences’ lengths. 

δij is the main component of the probability distance calculation: it holds the absolute values 

of the element-vise differences in the probability vector of two nodes Ki and Mj: 

δij   =   ∑   ∣ (PAi
⃗⃗⃗⃗  ⃗)

k
  − (PBj

⃗⃗⃗⃗  ⃗)
k

k ∈ Σ

| (4.3) 

The term is normalized by 2 which is its maximum possible value of the difference between 

two probability vectors which happens when vectors have right angle between them. 

ϵij  ∈  {0, 1} is  1  only  if  Ai  =  Bj . When 0, since the subsequences are not the same, a comparison 

of probabilities does not apply. 

In Enhanced PST Matching, instead of ω𝑖𝑗, WT1,T2 is introduced which is the total number 

of pairs of nodes that are compared in comparison of two PSTs that have a non-zero 

contribution (when xij is 1) to the total distance. Distance formula in Enhanced PSTM is given 
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as: 

𝐶𝑇1,𝑇2
=

1

𝑊𝑇1,𝑇2

(∑∑𝑥𝑖𝑗(𝑑𝑖𝑗𝐼/𝐿𝑖𝑗 + (1 − 𝐼)δ𝑖𝑗ϵ𝑖𝑗/2)

𝑀

𝑗

𝑁

𝑖

) (4.4) 

WT1,T2  normalizes each comparison of two PSTs by the total number of node comparisons 

done. This comes in handy in the following situation: consider two comparisons of two node 

pairs, namely in one hand trees T1 and T2 are compared which are the models of sequences 

A and B and in the other hand T3 and T4 are compared which are the models of the sequences 

C and D. Assume that the system which is the data obtained from has two type of behavior. 

Further assume that system has behavior 1 when sequences A and B are recorded and 

behavior 2 when C and D are recorded. If the total length of the sequences A and B is 

significantly larger than total length of C and D, then trees T1 and T2 would tend to have 

significantly higher number of nodes than that of the trees T3 and T4. In this case, even the 

distances calculated in these two comparisons are expected to be similar since in both 

comparisons, system manifests the same behavior in the data of compared periods, the 

distance values would be highly affected from the mentioned size difference. By introducing 

WT1,T2
, MTS Clustering is intended to work successfully even if the lengths of the MTSs in 

the data set are different. 

We follow a procedure to realize EPSTM which operates in linear time with respect to the 

number of nodes in the larger PST as following. Starting from the root nodes of the compared 

PSTs a recursive procedure is applied so that, first, subsequences in the nodes are compared 

and if they are same, probability distance is calculated, if not, structural distance is calculated. 

Then the children of the nodes are traversed simultaneously. For all symbols in the alphabet, 

if a child that has a subsequence that starts with a specific symbol exists in both trees, these 

two children nodes are compared, if not, the node without the child and the child of the node 

with the child is compared. Naturally, for any node couple, if both compared nodes are the 

children of the nodes compared in the last step, probability distance will be calculated 

because their subsequences will be the same. If not, structural distance will be calculated 

since their subsequences will not be the same. Procedure is visualized in Figure 4. 
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Figure 5: Visualization of the steps of PST Comparison (depth-first by recursion). If nodes 

with a specific sub-sequence exist in both trees, Probability Distance is calculated. If not, 

Structural Distance is calculated between the most relevant nodes. For each step, the nodes 

that are compared are shown with green arrows and the type of comparison is given below. 
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Pseudocode of the EPSTM algorithm is given below: 

EPSTM(Root1, Root2, Alph) 

1. If Root1.Subsequence = Root2.Subsequence 

1. Total Distance = Total Distance + I 

2. Else: 

1. Total Distance = Total Distance + d 

3. For i from 0 to len(Alph): 

1. If Root1.Children[i] != Null and Root2.Children[i] != Null  

i. EPSTM(Root1.Children[i] , Root2.Children[i] , Alph) 

2. Else if Root1.Children[i] = Null and Root2.Children[i] != Null  

i. EPSTM(Root1, Root2.Children[i] , Alph) 

3. Else if Root1.Children[i] != Null and Root2.Children[i] = Null  

i. EPSTM(Root1.Children[i] , Root2, Alph) 

4. Else 

i. Continue 

4. Return 

Frobenius Intersection: Frobenius Intersection, presented in [60] and shown to have 

superior success to PSTM on genomics data, is a more simplistic formulation that calculates 

only probability information differences between two PSTs, in a root mean square manner. 

A comparison is calculated only if the subsequences of the compared nodes are the same in 

both trees. It is a modification of the method presented in [61] which makes use of Frobenius 

Norm as a base method to compare two HMMs. Formulation is as follows: 

𝐹𝐼𝑇1,𝑇2
= √

1

∣ 𝑆𝑖 ∣
∑ ∑((𝑃𝐴𝑖

⃗⃗⃗⃗  ⃗)
𝑘
− (𝑃𝐵𝑗

⃗⃗ ⃗⃗  ⃗)
𝑘
)
2

𝑘∈Σ𝑠∈𝑆𝑖

 (4.5) 

VOMM MTS Clustering is visualized in figure 5. 
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Figure 6: Steps of VOMM MTS Clustering 
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4.3 HMM MTS Modelling and Comparison 

Several HMM based methods are proposed in MTS Analysis in the literature such as [18, 39, 

62]. If the observable space is infinitely large as it is in MTS with d possibly continuous 

variables, it is impractical to learn an emission matrix which contains probabilities for each 

possible observable. To tackle this, a common approach which is also used in this study is to 

learn B as a set of multivariate Gaussian distributions that are fit on observable space, where 

each element corresponds to one hidden state of the HMM [63, 64]. 

For each MTS, an HMM is learned and the pairwise distances between these HMMs are 

calculated to obtain a dissimilarity matrix. 

A collection of metrics that have been proposed in the literature to calculate a distance 

between pairwise HMMs are presented in [60]. Here we use a metric based on Frobenius 

matrix norm, which is used as a baseline metric in [61]. The idea and complexity are similar 

to those of the distance metrics presented in 4.2.3. 

Frobenius norm is the root mean square of the elements of a matrix: 

||𝑀||
𝐹

= √∑∑𝑎𝑖𝑗

𝑗𝑖

 (4.6) 

Then the distance between two HMMs λ1 and λ2 are the sum of Frobenius norms of the 

differences between their transition and emission matrices: 

𝑑𝐹(𝜆1, 𝜆2) = ||𝐴1 − 𝐴2|| + ||𝐵1 − 𝐵2|| (4.7) 

4.4 Principal Component Analysis MTS Modelling and Comparison 

[17] proposed a PCA based MTSC method, which compares two MTS; MTS1 and MTS2, by 

two criteria, (1) the pairwise angle θij between the first k principal components and (2) the 

spatial distance between the data points. 

The contribution of the angle between the principal components are calculated as follows: 
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𝑆𝑝𝑐𝑎 =
∑ ∑ (λ𝑖

(1)
λ𝑗
(2)

)𝑐𝑜𝑠θ𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1

∑ ∑ λ𝑖
(1)𝑘

𝑗=1
𝑘
𝑖=1 λ𝑗

(2)
 (4.8) 

To weight the contribution of the distance between the principal components, the PCs are 

weighted with their explained variance. This is done by multiplying the eigenvalues of the 

PCs being compared since the explained variance of a PC is proportional to the corresponding 

eigenvalue. λ(1) and λ(2) are the i’th eigenvalues of the covariance matrices of MTS1 and 

MTS2 respectively. 

𝑆𝑝𝑐𝑎 only takes into account the spatial orientation of the data but it is inadequate in the 

situations where the spatial orientation of the data matrices is similar, but the data points are 

located far in the data space. Therefore, a spatial distance formulation which is originally 

defined in [17] is given as follows: 

𝑆𝑑𝑖𝑠𝑡 = 2 × [1 −
1

√2𝜋
∫ 𝑒−𝑧2/2𝑑𝑧

Φ

−∞

] (4.9) 

Where: 

Φ = (𝑥2̅̅ ̅ − 𝑥1̅̅̅)Σ1
∗−1(𝑥2̅̅ ̅ − 𝑥1̅̅̅)

𝑇 (4.10) 

x̄1 and x̄2 are sample mean row vectors and Σ1 is the covariance matrix for dataset MT S1 and 

Σ∗
1
−1 is the pseudo-inverse of MT S1 calculated using singular value decomposition. 

4.5 MTS Clustering 

Based on the obtained dissimilarity matrix, clustering is applied to the models to classify the 

MTS. Experiments are done using three different clustering methods, (1) k-means, (2) 

Hierarchical DBSCAN [65], (3) k-medoids. Our experiments showed that k-means method 

does not perform well and gives unstable results even with high number of iterations. A 

complex method such as HDBSCAN took too many iterations to converge to a stable 

clustering result and also had poor robustness to the parameters. k-medoids method 

performed the best out of these three clustering methods and experiments showed that it is 
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also easier to automatically determine the optimal/suboptimal clustering parameters (see 

section 5). To limit the scope of this study, a detailed description or experimental evaluation 

for k-means and Hierarchical DBSCAN methods will not be given. 

K-medoids chooses data points as centers (medoids or exemplars) and minimizes an arbitrary 

metric of distance between these centers and the points assigned to clusters. A medoid can 

be defined as the object of a cluster whose average dissimilarity to all the objects in the cluster 

is minimal, i.e., it is the most centrally located point in the cluster. We use a common 

realization of k-medoids approach, Partitioning Around Medoids algorithm [66]. 
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5 COMPLEXITY ANALYSIS 

Preprocessing: If n is the average number of data points in the MTSs in the data set and r is 

the number of MTSs, averaging step takes O(nr) time since it can be done by accumulating 

the data point values and dividing them by P in a single run on the data set. It is shown in 

[67] that PCA can be applied approximately in O(d2nr) to reduce the dimensionality from d 

to u. 

VOMM MTS Learning and Comparison: Agglomerative Clustering method for data point 

clustering has the complexity of O(u(nr)2) [56]. For all this steps up to this point, O(nr) can 

be substituted by O(N) where N is the size of the complete data set since these steps are 

applied on all data points regardless of which MTS they belong to. VOMM Learning is 

dominated by the subsequence extraction phase (see 4.2.2) which has the complexity of O(nL) 

where n is the size of the MTS and the corresponding discrete sequence that VOMM 

represents and L is the maximum order that is allowed in the VOMM. This is so since sorting 

operation is done L times where each sorting takes O(n) time. Construction of models of all 

MTS therefore takes O(NL). VOMM comparison can be done by one to one comparison of 

each node pair in both trees, therefore the complexity can be written as O(g|Σ|) where g is 

the average number of nodes in one VOMM and |Σ| is the alphabet size. VOMMs are claimed 

to be concise which is enabled by pruning and therefore, g << n in practice. Therefore, the 

complexity of VOMM comparison is O(n|Σ|). The calculation of the dissimilarity matrix 

takes O(nr2|Σ|). We know that L << N, then the complexity of VOMM MTS learning and 

comparison is O(d2N + uN 2 + r2n|Σ|). 

HMM MTS Learning and Comparison: Baum-Welch algorithm that has the complexity 

of O(n|Σ|2) for each iteration [6] where |Σ| is the number of hidden states. When MTS is the 

input and the emissions are learned as Multivariate Gaussian distributions, complexity is 

dominated by calculation of the covariance matrices if |Σ| < d.  This is so since calculating 

the covariance matrix requires mT m operation, which has the complexity of O(u2n).  If we 

call the number of iterations needed for convergence W, then the complexity of learning the 

HMMs of all MTSs in the dataset is O(u2WN ). Naturally, W is expected to be larger as the 
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size of the data set grows. Comparing a pair of HMMs with Frobenius Norm is O(u2|Σ|) 

where |Σ| is the number of hidden states, since there is one covariance matrix for each state 

which has the shape u×u. Accordingly, calculating the dissimilarity matrix takes O(r2d2|Σ|). In 

total HMM MTS learning and comparison takes O(d2N + u2WN + r2u2|Σ|). 

PCA MTS Learning and Comparison: If the complexity of applying PCA on a MTS is 

O(d2n), then applying PCA on all MTSs will take O(d2N). If the data is projected on a u 

dimensional space, calculation of Spca between two MTS PCA models will take O(u3) since; 

the cosine of the angle of two vectors is the quotient of their dot product that takes O(u) to 

calculate and cosine operation is done pairwise for all the covariance matrices of the MTSs. 

Computation of Φ in Sdist is dominated by the calculation of pseudo-inverse of Σ that is done 

by Singular Value Decomposition which has the complexity of O(u2d) [68]. Since u2d > u3, 

the computation of the dissimilarity matrix takes O(d2N + r2u2d). 

MTS Clustering: Finally, k-medoids takes O(k(r − k)2) for each iteration where one should 

note that r << n in general case. 

The terms that make the difference in three approaches are uN 2 + r2n|Σ|, u2WN + r2u2|Σ| 

and r2u2d respectively.  the last term is highly unlikely to be larger than the first two in 

general unless the data dimensionality is extremely high. Therefore, we can say that PCA 

MTSC is the most efficient method in time. The second parts of the first two terms are 

expected to have no large difference and in fact the terms are dominated by their first parts 

with the existence of N. If Baum-Welch algorithm (see section 2.5) converges in few 

iterations as in section 6 then uW <  N  will hold and we can conclude that HMM MTSC  is 

practically more efficient than VOMM MTSC. Nevertheless, it is possible to use only a subset 

of the dataset for the preprocessing and data point clustering (see section 4.2.1) steps as 

explained in Appendix B which can drastically decrease the complexity of VOMM MTSC. 
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6 EXPERIMENTAL EVALUATION 

6.1 Lego Demonstrator Data 

The Lego Demonstrator is shown in Figure 6. A Lego piece is carried from its initial position 

in the magazine to the conveyor belt and placed on one of the two sticks. 

One run of the demonstrator uses six input Lego pieces to produces two products on the two 

sticks on the conveyor belt, by stacking three of the incoming pieces to the first stick and the 

other three incoming pieces to the second stick on the conveyor belt. Input pieces are 

processed sequentially. To simulate product variation in the system, the order of sticks that 

are used for placing the input piece is varied. For example, if we name one of the sticks as 1 

and the other one as 2, one run may have the stick sequence 1→1→2→1→2→2 to place all 

six pieces. 

This setup produces a sensor and actuator data sequence similar to a real industrial plant. 

Concretely for each run we obtain a MTS log consisting of voltage and current values for 

two control units (Lego Bricks), sensor output one touch sensor used for stick alignment, 

moreover motor information (speed, angle, and motor command) for five motors. Overall 

this yields 20 signals that are logged each 250 ms: 2 real, 12 integer, and 6 binary signals. 

The data used in experiments in this paper was obtained from 107 runs. Each run moves 6 

Lego pieces and produces 2 products. 

Labels: Production sequences (i.e., the order of sticks) are logged and used as the true labels 

of the MTSs.  We use three distinct product types where the underlying sequence is 

2→1→2→1→2→1, 2→2→2→1→1→1 and 2→1→2→2→1→1 respectively, and we per-

formed 36, 36, 35 runs for each product type. 

Conveyor Arm 

Stick

1 

Pusher  Magazine 

Figure 7: Lego Demonstrator Photo 
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Table 2: List of all parameters for all methods and their settings used for experiments. 

6.2 Arçelik Hydraulic Press Machine Data 

Arçelik Hydraulic Press Machine is one of the key components of the dishwasher plants of 

Arçelik.  It shapes the metal plates with pressure which are then used to cover the cage of 

Method Prm Description 
Settings 

Demonst. Arcelik 

Preprocessing 

a 
Averaging parameter,  

data frame size to be averaged. 2,  … 15 

d 

The number of dimensions the data 

reduced to by PCA  

(applied on the whole data set). 

7, 10, 15 4, 5, 6 

VOMM MTS 

 Modelling 

and  

Comparison 

k 
Number of clusters for data point 

clustering, see 4.2.1. 
2,3, ... 10 

t Minimum support parameter, see 4.2.2. 1,2, …   

L 
Maximum subsequence length 

parameter, see also 4.2.2. 
1,2, …   

I 

Ratio of contributions of dissimilarity 

and probability distance, see 4.2.3 (Only 

for Enhanced PSTM). 

0.1, 0.2, … 1 

HMM MTS  

Modelling and  

Comparison 

S 
The number of hidden states to be 

modelled, see 2.6. 
2,  , … 10 

W 

Number of iterations of the Baum-

Welch algorithm. It is more probable to 

achieve higher levels of convergence 

with higher number of iterations. 

2, 4, 6, 8, 10, 25, 50, 

100, 1000, 

 1200, 1400, 1600, 

1800, 2000 

PCA MTS  

Modelling and  

Comparison 

d 

The number of dimensions the data 

reduced to by PCA  

(applied to each MTS seperately)  see 

4.4. 

7, 10, 15 4, 5, 6 

α 
Ratio of contributions of two distance 

types Spca and Sdist,  see 4.4. 
0.1, 0.2, … 1 

Model  

Clustering 
mk 

Number of clusters for model clustering, 

see 4.5.  
2, 3, 4, 5, 6 
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the dishwasher machine. Machine can stop due to many reasons; planned stoppages such as 

holidays or because there is an anomaly. Sensor data is continuously recorded with six 

different variables such as pressure, oil level and temperature. Many types of anomalies may 

occur as the machine is running such as electrical or mechanical anomalies etc. Each of the 

stoppages are recorded as either planned stoppage or anomaly with the root cause. These 

periods are used as MTSs, and the stoppage reason information are used as the true labels for 

applying MTS Clustering. The data set we used in the experiments is from one week of life 

time of the dishwasher plant. The sensor data of the periods that the machine is running are 

the MTSs to be clustered and the reasons of the stoppages after that period are used as the 

labels. This setup is visualized in Figure 7. 

In total there are 56 MTSs where 51 of them are recorded when the system behavior is 

expected to be normal, and 5 are recorded in anomalous periods of 3 type; 1 mechanical 

errors, 1 electrical and 3 mold error. 

6.3 Setup 

The parameters and their settings for each method are given in Table 2. For each method and 

data set, we perform experimental runs for all combinations of all the shown parameter 

values. 

Predicted clusters are compared with real clusters of VOMMs and scores are calculated as 

Adjusted Rand Index [69] which is a corrected-for-chance version of the commonly used 

clustering metric Rand Index. Rand Index score of clustering result is scaled with the average 

success of a random clustering method (expected score). 

Given a set S of n elements and two clusterings: C =  {C1, C2, . . . , Cr}, D =

Figure 8: Demonstration of the setup of the Arcelik Hydraulic Press Machine Data 
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 {D1, D2, . . . , Ds} of these elements, the overlap between C and D can be summarized in a 

contingency table [𝑛𝑖𝑗] where each entry denotes the number of objects in common between  

Ci and Dj: 𝑛𝑖𝑗  = |Xi ∩  Yj|. Given that ai = ni1 + ni1 +…+ nir and bj = nj1 + nj1 +…+ njs, 

adjusted rand index is defined as: 

𝐴𝑅𝐼 =  

∑ (𝑛𝑖𝑗

2
)𝑖𝑗 − 

[∑ (𝑎𝑖
2
)𝑖 ∑ (𝑏𝑗

2
)𝑗 ]

(𝑛
2
)

⁄

1
2
[∑ (𝑎𝑖

2
)𝑖 + ∑ (𝑏𝑗

2
)𝑗 ]  −  

[∑ (𝑎𝑖
2
)𝑖 ∑ (𝑏𝑗

2
)𝑗 ]

(𝑛
2
)

⁄

  (5.1) 

6.4 Results 

As it can be seen from the Tables 7 and 8, VOMM MTSC method with Enhanced PST 

Matching distance achieves up to 0.75 ARI on Marmara demonstrator data and achieves up 

to 0.61 ARI on Arçelik hydrolic machine data. VOMM MTSC with Frobenius Intersection 

distance results with 0.64 to 0.41 ARIs respectively. HMM MTSC cannot achieve a 

significantly higher success than a random clustering for Lego Demonstrator data with at 

highest 0.06 ARI, but it can achieve up to 0.29 ARI on Arçelik data, see Table 5 & 6. PCA 

MTSC did not perform better than a random clustering, at highest 0.04 ARI on demonstrator 

data and 0.03 on Arçelik data were achieved, see Table 3 & 4. 

Combinations of parameter values are shown in the result tables, other combinations of the 

values either give worse results or there is no significant difference from the closest shown 

value in the table. About results regarding to parameter settings we can say the following. 

VOMM MTSC: Since Demonstrator data has three different types of MTS, naturally best 

results were obtained with mk = 3.  For Arçelik data there are four different types of MTS and 

best results are obtained with mk values 3, 4 and 5 correspondingly. Best results are achieved 

with k  =  2 and k  =  3 on the Lego Demonstrator data set and on Arçelik Press Machine 

data set, k values 5, 6 and 7 gave the best results. We see that d does not have a high impact on 

the results with the settings mentioned above, but experiments on Demonstrator Data showed 

that using whole the variance achieved slightly worse results. The best values for a was 6 and 

7 for Demonstrator Data where for Arçelik Data even 8, 9 and 10 achieved highest results, no 
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significant difference is observed with other values. For t, on both data sets we see that range 

of values 4, 5, 6 gives the best results and there is no significant success difference between 

these settings. The success slightly increases as the L value increases up to 7 for both data 

sets and higher values give similar results to this value. VOMM MTSC with Frobenius 

Intersection distance showed very similar responses to the parameter settings mentioned up 

this point and therefore a separate table of results for it will not be given. Regarding I for 

EPSTM distance, for Demonstrator data only I  =  0.5 is shown and values between 0.3 − 0.7 

gave exactly the same results. For Arçelik data, I = 0.1 gave best results and the other values 

gave worse results. 
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Table 3: Adjusted Rand Index Results of PCA MTS Clustering done with the combinations 

of parameters explained in table 2 on Demonstrator Data. Adjusted RAND Index (ARI) is 

used for scoring. 

 

HMM MTSC: By analyzing Table 6, we observe that the success increases by using higher 

number of hidden states up to S = 4, but there is no improvement with S > 4. Best results are 

α=

a d mk= 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

5 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

7 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

10 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

15 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

3 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

5 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

7 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

10 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

15 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

3 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00

10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

15 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

7 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

10 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

15 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00

15 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00

3 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.00 0.03 0.03 0.03

5 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01

7 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

10 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5 -0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 -0.01 0.00 0.00 0.01

7 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

10 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

15 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

3 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00

10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

15 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00

3 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 -0.01

5 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00

7 -0.01 0.00 0.01 0.01 -0.01 0.00 0.01 0.01 -0.01 0.00 0.01 0.01 -0.01 0.00 0.01 0.01 -0.01 0.00 0.01 0.01

10 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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achieved at mk = 2 since actually HMM MTSC could distinguish only one of the anomalous 

MTS and the rest were clustered in the same cluster with normal MTS. Here PCA did not 

have a high impact on the results. Averaging also had little impact on the success and ds = 9 

and a = 10 gave the best results, while other settings gave slightly worse results. We also see 

that at W = 8 the model parameters already converge regardless of other hyper-parameter 

settings. 

Table 4: Adjusted Rand Index Results of PCA MTS Clustering done with the combinations 

of parameters explained in table 2 on Arcelik Data. Adjusted RAND Index (ARI) is used for 

scoring. 

 

 

 

α=

a d mk= 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01

4 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00

5 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00

6 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00

3 -0.03 0.01 0.01 0.01 -0.03 0.01 0.01 0.01 -0.03 0.01 0.01 0.01 -0.03 0.01 0.01 0.01 -0.03 0.01 0.01 0.01

4 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02

5 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02

6 0.00 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 -0.02 0.00 -0.01 -0.01 -0.02

3 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05

4 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04

5 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04

6 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01

3 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04

4 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04

5 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05 -0.03 -0.04 -0.04 -0.05

6 0.01 -0.01 -0.01 -0.02 0.01 -0.01 -0.01 -0.02 0.01 -0.01 -0.01 -0.02 0.01 -0.01 -0.01 -0.02 0.01 -0.01 -0.01 -0.02

3 -0.03 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02

4 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.04 -0.04

5 0.01 0.00 -0.01 -0.01 0.01 0.00 -0.01 -0.01 0.01 0.00 -0.01 -0.01 0.01 0.00 -0.01 -0.01 0.01 0.00 -0.01 -0.01

6 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01 0.01 0.00 0.00 -0.01

3 -0.03 -0.01 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02

4 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02

5 0.01 -0.02 -0.02 -0.02 0.01 -0.02 -0.02 -0.02 0.01 -0.02 -0.02 -0.02 0.01 -0.02 -0.02 -0.02 0.01 -0.02 -0.02 -0.02

6 0.01 -0.01 -0.02 -0.02 0.01 -0.01 -0.02 -0.02 0.01 -0.01 -0.02 -0.02 0.01 -0.01 -0.02 -0.02 0.01 -0.01 -0.02 -0.02
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Table 5: Adjusted Rand Index Results of HMM MTS Clustering done with the combinations 

of parameters explained in table 2 on Demonstrator Data. Adjusted RAND Index (ARI) is 

used for scoring. 

 

a =

S W mk d = 7 10 15 7 10 15 7 10 15 7 10 15 7 10 15

2 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.05 0.00 0.03 0.00 0.00 0.00 -0.01 -0.01 0.01

3 -0.01 -0.01 0.01 0.00 0.01 0.00 0.03 -0.01 0.01 0.00 -0.01 0.00 -0.01 -0.01 0.01

4 -0.01 0.00 0.01 -0.01 0.01 -0.01 0.02 -0.01 0.01 0.00 0.00 0.01 -0.01 0.00 0.01

5 -0.01 0.00 0.01 0.00 0.01 -0.01 0.01 -0.01 0.00 0.00 0.00 0.01 -0.01 0.00 0.00

2 -0.01 -0.01 0.00 -0.01 0.01 0.01 0.01 0.01 0.02 -0.01 0.01 -0.01 -0.01 0.04 0.01

3 -0.01 -0.01 -0.01 -0.01 0.01 0.00 -0.01 0.00 0.00 -0.02 0.00 -0.01 -0.01 0.05 0.02

4 -0.01 -0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 -0.01 -0.01 0.05 0.00

5 -0.01 -0.01 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 -0.01 0.05 0.01

2 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.02 0.02 0.02 0.00 0.00 0.00 -0.01 -0.01 0.00

3 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.03 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.01

4 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.03 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.01

5 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 -0.01 -0.01 0.00 -0.01 0.02 -0.01 0.01 0.02 0.04 0.00 -0.01 -0.01 0.00 -0.01 -0.01

3 -0.01 -0.01 -0.01 -0.01 0.03 0.00 0.01 0.06 0.03 0.00 0.00 -0.01 0.00 0.00 0.00

4 -0.01 -0.02 -0.01 -0.01 0.03 0.00 0.01 0.06 0.02 0.00 0.00 0.00 -0.01 0.01 0.00

5 -0.01 -0.02 -0.01 -0.01 0.03 -0.01 0.01 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00

2 -0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.01 0.03 0.02 0.00 0.00 0.01 0.02 0.00

3 -0.02 0.00 0.00 0.00 -0.01 -0.01 0.00 0.01 0.03 0.01 0.00 0.00 0.01 0.01 0.00

4 -0.01 -0.01 0.01 0.00 0.00 -0.01 0.02 0.01 0.02 0.00 -0.01 -0.01 0.00 0.00 -0.01

5 -0.01 -0.01 0.01 0.00 0.00 -0.01 0.02 0.00 0.01 0.01 -0.01 -0.01 0.00 0.00 0.00

2 -0.01 -0.01 0.01 -0.01 0.00 0.03 0.02 0.01 0.01 0.02 -0.01 0.01 0.02 0.02 0.01

3 -0.02 -0.01 0.01 -0.01 -0.01 0.02 0.02 0.01 0.00 0.01 -0.01 0.00 0.01 0.02 0.01

4 -0.02 -0.01 0.01 -0.01 -0.01 0.03 0.01 0.02 0.02 0.01 -0.01 0.00 0.01 0.01 0.00

5 -0.02 0.00 0.01 -0.01 -0.01 0.03 0.00 0.00 0.01 0.00 -0.01 0.01 0.02 0.01 0.02

2 -0.01 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.01 0.02 0.00 -0.01 0.00 0.01 0.01 0.01

3 -0.01 0.01 0.00 -0.01 -0.01 -0.01 0.00 0.02 0.01 0.00 0.00 -0.01 0.01 0.00 0.01

4 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.02 0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00

5 0.00 0.00 -0.01 0.00 -0.01 -0.01 0.01 0.02 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00

2 0.00 -0.01 0.01 0.00 -0.01 -0.01 0.04 -0.01 -0.01 0.00 0.00 0.00 0.00 0.02 0.02

3 0.00 -0.01 0.02 0.01 -0.01 -0.01 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02

4 -0.01 -0.01 0.00 0.00 -0.01 -0.01 0.03 0.00 0.00 0.00 -0.01 0.01 -0.01 0.02 0.02

5 -0.01 -0.01 0.00 0.00 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.04 0.00

2 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 0.02 0.00

3 0.00 0.00 -0.01 -0.01 -0.01 0.00 -0.01 0.01 0.00 -0.01 -0.01 -0.01 0.00 0.01 -0.01

4 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.02 0.02 -0.01 0.01 -0.01 -0.01 0.01 -0.01

5 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.01 0.02 -0.02 0.00 0.00 -0.01 -0.01 0.00

2 0.00 0.00 0.01 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

3 0.00 -0.02 0.00 0.00 -0.01 -0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.01 -0.01 -0.01

4 0.01 -0.02 0.00 0.00 -0.02 -0.01 0.02 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.01

5 0.01 -0.01 -0.01 -0.01 -0.02 -0.01 0.02 -0.01 0.02 0.00 -0.01 0.01 0.03 -0.01 0.01

2 0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.01 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01

3 0.00 0.00 -0.01 0.00 -0.01 -0.01 0.00 0.02 0.00 0.00 0.00 0.00 -0.01 0.00 0.00

4 0.00 0.00 -0.01 0.01 -0.01 -0.01 0.00 0.01 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00

5 0.00 0.02 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.01 -0.01

2 -0.01 0.00 0.02 0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.03 -0.01 -0.01 0.00 -0.01

3 0.02 0.00 0.01 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.03 -0.01 0.02 -0.01 0.00

4 0.01 0.01 0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 -0.01 0.03 -0.01 0.01 0.00 0.01

5 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 0.00 0.00 0.00 0.02
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6.5 Discussion 

Success of VOMM with k = 2 with Demonstrator data can be explained by the clusters that 

consist of the data points that corresponds to placements on two different sticks, see 6.1. 

Arçelik Hydraulic Press Machine arm has 3 degrees of freedom which can be related to the 

success on Arçelik data with k values around 6. PCA yields noise elimination in variance up 

to some degree and therefore d values 7, 10 and 15 gives better results than d = 26. No such 

contribution observed in Arçelik data which may be due enterprise quality sensors tend to 

record the data with lower noise rate. We observe that t values lower than 4 is not high enough 

for pruning away the noise while using higher values than 6 can cause loss of information. 

Another important observation is that appropriate settings of t make the method more robust 

to the averaging. For both data sets, when t is higher than 6, even higher information loss 

occurs as a increases to the values higher than 8. On the other hand, when t is lower than 

4, high values of a makes the significant information mix up with the noise. Naturally, as 

L increases longer sub-sequences can be kept in the model which allows characterization of 

higher detail (very high values bring potential of overfitting). I seems to have very little effect 

on the results on Demonstrator data. While in Arçelik data, higher values than 0.1 decreases 

the results to 0.29 which is the highest score achieved with HMM (same clustering structure 

is obtained). 
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Table 6: Adjusted Rand Index Results of HMM MTS Clustering done with the combinations 

of parameters explained in table 2 on Demonstrator Data. Adjusted RAND Index (ARI) is 

used for scoring. 

 

In HMM MSTC on Arçelik data, increasing the number of hidden states makes it possible to 

keep more detail about system characteristics in the model.  As expected, higher number of 

iterations (W ≥ 8) allow more accurate modelling with higher levels of convergence. A 

combination of high number of states and high number of iterations also allows the method 

a=

S W mk d= 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

2 0.02 0.03 0.03 0.02 0.02 0.02 -0.01 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.01 0.00

3 -0.01 -0.03 -0.03 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.04

4 -0.02 -0.05 -0.04 -0.01 -0.02 0.00 -0.01 0.00 -0.02 0.01 0.01 0.00 0.00 0.00 0.01

2 0.02 0.03 0.03 0.02 0.02 0.02 -0.01 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.01 0.00

3 -0.01 -0.03 -0.03 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.04

4 -0.02 -0.04 -0.04 -0.01 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02

2 0.02 0.03 0.04 0.02 0.02 0.03 -0.01 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.01 0.00

3 -0.01 -0.03 -0.03 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.04

4 -0.02 -0.04 -0.04 -0.01 -0.02 -0.03 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.02

2 0.08 0.08 0.12 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 -0.01 -0.01 0.00

3 -0.01 -0.01 0.00 -0.03 -0.02 -0.03 -0.01 0.00 -0.01 -0.02 -0.03 -0.03 0.03 -0.04 0.00

4 -0.03 -0.02 -0.01 -0.03 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.02 -0.02 0.00 0.00 -0.01

2 -0.01 0.00 -0.01 0.04 0.06 0.01 0.04 0.29 0.29 0.02 0.14 0.29 0.02 0.29 0.29

3 0.00 0.02 0.02 -0.01 -0.01 0.00 0.01 0.08 0.05 0.00 0.00 0.08 0.07 0.04 0.04

4 0.00 0.01 0.00 -0.03 -0.02 -0.01 -0.01 0.03 0.02 -0.01 -0.02 0.04 0.04 0.08 0.02

2 -0.01 0.00 -0.01 0.29 0.06 0.01 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.00 0.02 0.03 0.11 0.00 0.00 0.11 0.08 0.05 0.08 0.05 0.07 0.07 0.04 0.04

4 0.00 0.01 0.00 0.03 -0.02 0.00 0.05 0.03 0.02 0.04 0.03 0.04 0.04 0.08 0.02

2 -0.01 0.00 -0.01 0.29 0.06 0.01 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.00 0.02 0.03 0.11 0.00 0.00 0.11 0.08 0.06 0.08 0.05 0.07 0.07 0.04 0.04

4 0.00 0.01 0.00 0.03 -0.02 0.00 0.05 0.03 0.00 0.04 0.03 0.04 0.05 0.09 0.02

2 0.02 0.02 0.00 0.29 0.00 0.02 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.04 0.00 0.01 0.12 0.03 0.00 0.09 0.10 0.06 0.06 0.05 0.06 0.04 0.05 0.05

4 0.00 0.00 0.00 0.03 0.01 -0.01 0.04 0.01 0.01 0.01 0.01 0.04 0.03 0.03 0.06

2 0.01 0.06 0.01 0.00 -0.01 -0.01 -0.01 0.03 -0.03 0.01 0.00 0.00 -0.02 0.29 0.29

3 0.02 0.01 -0.02 -0.02 0.01 0.00 -0.01 0.02 0.00 -0.01 -0.02 0.05 0.01 0.04 0.05

4 -0.01 0.00 -0.03 -0.01 -0.01 -0.02 0.01 0.02 0.02 0.00 0.01 0.02 0.03 0.02 0.03

2 0.01 0.07 0.01 0.00 -0.02 -0.01 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.06 0.01 -0.02 -0.02 0.01 -0.01 0.04 0.04 0.04 0.07 0.05 0.05 0.04 0.04 0.05

4 0.04 0.00 -0.03 0.01 -0.01 -0.02 0.03 0.04 0.03 0.03 0.01 0.02 0.05 0.03 0.03

2 0.29 0.02 0.29 0.29 -0.02 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.06 0.01 0.06 0.05 0.01 0.04 0.06 0.05 0.04 0.07 0.05 0.05 0.04 0.04 0.05

4 0.04 0.00 0.04 0.02 -0.01 0.03 0.03 0.05 0.03 0.03 0.01 0.03 0.05 0.03 0.03

2 0.29 -0.01 0.29 0.29 0.01 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

3 0.08 0.01 0.10 0.04 0.02 0.04 0.06 0.04 0.06 0.05 0.05 0.10 0.15 0.04 0.06

4 0.04 0.04 0.02 0.06 0.02 0.04 0.04 0.02 0.03 0.01 0.04 0.05 0.03 0.01 0.02
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to be robust to the different values of other parameters. 

The failure of all the methods to achieve a perfect clustering of MTS on these data sets may 

be due to several reasons. Calibrating the Lego Demonstrator components are challenging. 

Bad calibrations can result in change of the applied force by the motors and/or the time of 

accomplishing specific actions. Such changes might not be visible with eye but can affect the 

complete cycle of the demonstrator and the corresponding recorded MTS. In Arçelik Data, the 

assumption of ”the manifestation of the anomalies only occurs in the MTS that is recorded 

just before the anomaly” (see 6.2) might be inaccurate and the deviation from the normal 

behavior might be happening much earlier. Considering these factors, a perfectly accurate 

clustering might be even impossible with the available setup and data sets. 

Table 7: Adjusted Rand Index Results of VOMM MTS Clustering done with the 

combinations of parameters explained in table 2 on Arcelik Data. Adjusted RAND Index 

(ARI) is used for scoring. 

 

The poor performance of PCA MTSC shows the requirement for a more powerful method such 

as Markov Models, which can capture temporal dependencies of internal states of the system. 

Despite the high complexity of HMM MTSC method, it is outperformed by VOMM MTSC 

a=

d=

t L mk vk= 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7

3 0.3 -0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.2 0.0 0.1 0.2 0.1 -0.1 0.2 -0.1 -0.1 0.1 0.1 -0.1

4 0.2 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.2 0.1 0.1 0.0 0.1 0.3 0.0 -0.1 0.2 0.1 0.1 0.1 0.1 0.1

5 0.2 0.0 0.1 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.1 0.0 0.2 0.3 0.1 0.0 0.0 0.1 0.2 0.0 -0.1 0.3 0.1 0.1 0.1 0.1 0.0

3 0.53 0.1 0.2 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.44 0.1 0.0 0.4 0.2 0.61 0.0 0.2 0.2

4 0.4 0.1 0.2 0.0 0.3 0.3 0.1 0.5 0.0 0.1 0.2 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.4 0.1 0.0 0.3 0.3 0.53 0.0 0.2 0.3

5 0.4 0.0 0.3 0.0 0.3 0.3 0.1 0.4 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.3 0.2 0.0 0.3 0.3 0.47 0.0 0.3 0.3

3 0.4 0.1 0.1 0.0 0.4 0.4 0.1 0.4 0.0 0.1 0.2 -0.1 0.2 0.1 0.2 0.0 0.1 0.1 0.3 0.1 -0.1 0.4 0.3 0.4 -0.1 0.4 0.4

4 0.3 0.2 0.2 0.0 0.3 0.3 0.1 0.5 0.0 0.0 0.2 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.2 0.2 -0.1 0.3 0.3 0.3 0.0 0.3 0.3

5 0.3 0.2 0.2 0.1 0.3 0.3 0.1 0.4 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.0 0.1 0.0 0.2 0.1 -0.1 0.3 0.2 0.3 0.0 0.3 0.3

3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.1 0.3 0.0 0.1 0.4 0.1 0.2 0.1 0.2 0.2

4 0.4 0.0 0.1 0.0 0.1 0.3 0.3 0.4 0.0 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.0 0.1 0.3 0.0 0.0 0.3 0.1 0.3 0.0 0.2 0.1

5 0.4 0.1 0.1 0.0 0.3 0.2 0.4 0.4 0.0 0.1 0.1 0.0 0.4 0.2 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.1 0.3 0.0 0.1 0.1

3 0.4 0.2 0.1 0.0 0.1 0.1 0.1 0.53 0.1 0.1 0.1 -0.1 0.2 0.2 0.1 0.1 0.0 0.1 0.2 0.2 0.1 0.1 0.4 0.3 0.0 0.4 0.1

4 0.3 0.1 0.3 0.0 0.1 0.1 0.1 0.4 0.0 0.1 0.1 -0.1 0.2 0.4 0.1 0.0 0.0 0.1 0.2 0.3 0.0 0.2 0.3 0.4 0.0 0.3 0.1

5 0.4 0.2 0.1 0.0 0.1 0.1 0.1 0.4 0.1 0.0 0.1 0.1 0.1 0.3 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.3 0.4 0.0 0.2 0.1

3 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.2 0.0 0.0 -0.1 0.3 0.2 0.0 0.1 0.0 0.1 0.2 0.3 0.1 0.1 0.1 0.2 0.0 0.1 0.2

4 0.1 0.1 0.3 0.0 0.1 0.1 0.1 0.4 0.4 0.0 0.2 -0.1 0.3 0.3 0.2 0.0 0.0 0.0 0.2 0.3 0.1 0.2 0.2 0.3 0.0 0.2 0.3

5 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.4 0.3 0.0 0.1 0.1 0.2 0.3 0.1 0.0 0.1 0.0 0.2 0.2 0.1 0.2 0.2 0.3 0.0 0.2 0.3

3 0.2 0.2 0.0 0.1 0.4 0.5 0.2 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.0 0.1 -0.1 -0.1 0.0 -0.1 -0.1

4 0.4 0.1 0.0 0.0 0.3 0.4 0.1 0.4 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.5 0.1 0.0 0.2 -0.1 0.0 0.0 -0.1 0.0

5 0.3 0.1 0.0 0.0 0.3 0.4 0.2 0.4 0.0 0.0 0.1 0.1 0.1 0.3 0.1 0.0 0.0 0.0 0.4 0.2 0.0 0.2 0.1 0.0 0.0 0.1 0.3

3 0.4 0.2 0.0 0.0 0.1 0.3 0.2 0.3 0.2 0.1 0.1 0.2 0.5 0.2 0.1 0.0 0.1 0.1 0.2 0.3 0.0 0.1 0.1 0.0 0.0 0.1 0.1

4 0.3 0.1 0.1 0.0 0.1 0.3 0.3 0.4 0.2 0.0 0.1 0.2 0.4 0.4 0.1 0.0 0.1 0.0 0.3 0.3 0.0 0.2 0.0 0.0 0.0 0.1 0.2

5 0.3 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.1 0.0 0.1 0.1 0.4 0.3 0.1 0.0 0.1 0.0 0.3 0.2 0.0 0.2 0.2 0.1 0.0 0.2 0.2

3 0.1 0.1 0.1 0.0 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.1 0.0 0.1 0.3 0.0 0.1 0.1 0.1 0.0 0.1 0.1

4 0.1 0.1 0.2 0.0 0.3 0.3 0.3 0.3 0.1 0.0 0.1 0.1 0.3 0.3 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.2

5 0.1 0.1 0.2 0.1 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.3 0.3 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.2 0.1 0.2 0.2
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method, which also has better performance in the manner of time complexity. This can be 

expected since that VOMMs can fit better to the variations of the length of the patterns in the 

data and such variations occur with a high frequency in the data from industrial area. The 

drawback of VOMM MTSC is the high number of parameters; the desired settings for 

clustering parameters can be estimated by the clustering evaluation methods up to some 

degree. 
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7 CONCLUSION 

The challenges in collecting labelled data in the industrial systems is one of the important 

issues in tasks such as anomaly detection or behavior identification applied on these systems. 

Therefore, detection of the system modes from the sensory data which lacks human expert 

labels is a real-world example of the well-studied Multivariate Time Series Clustering prob- 

lem. We proposed a novel method and compared it with the two existing MTS Clustering 

methods and confirmed the superiority of the proposed method on two industrial data sets. 

Success on distinguishing normal and anomalous modes of the system is also tested by using 

one data set which is recorded in a period where the system went through several normal and 

anomalous modes. We also presented an extensive complexity analysis and comparison of 

these three methods. 

Expert knowledge can help for the setting of hyper-parameters in VOMM MTS Clustering 

up to some degree. L should be set to a small number preferably L < 10, so while significant 

information is still represented in the model and time and space complexity is not 

overwhelmed. While PCA has some contribution in the success, the method is robust to 

parameter d in experiments showed in general a setting that will result in 90% explained 

variance is appropriate. One should set a considering the record frequency of the sensor data, 

high frequency requires high values of a. One approach to set mk and k is using clustering 

validation techniques as presented in Appendix A. The experiments on Demonstrator data 

with clustering validation gave promising results while in Arçelik data it gave worse results, 

this introduces the requirement of further study in this sub-task. Parameters t and I should be 

adjusted experimentally with the existing labelled data. An appropriate choice of t brings 

robustness to the method against parameter a. 
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Table 8: Adjusted Rand Index Results of VOMM MTS Clustering done with the 

combinations of parameters explained in table 2 on Demonstrator Data. Adjusted RAND 

Index (ARI) is used for scoring. 

 

 

a=

d=

t L mk vk= 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

3 0.2 0.3 0.0 0.2 0.1 0.0 0.2 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.1

4 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.0 0.0 0.4 0.4 0.0 0.3 0.3 0.1 0.3 0.0 0.0 0.1 0.5 0.0 0.0 0.4 0.0 0.1 0.0 0.0

5 0.1 0.3 0.0 0.1 0.4 0.0 0.1 0.3 0.0 0.3 0.4 0.0 0.3 0.2 0.1 0.3 0.0 0.0 0.1 0.5 0.0 0.1 0.5 0.1 0.0 0.4 0.1

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.2 0.0 0.0 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1

3 0.3 0.3 0.0 0.3 0.1 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.4 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1

4 0.3 0.3 0.0 0.3 0.4 0.0 0.3 0.0 0.1 0.4 0.1 0.0 0.2 0.1 0.1 0.4 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.0 0.1 0.0 0.1

5 0.4 0.4 0.0 0.4 0.5 0.1 0.4 0.1 0.1 0.3 0.5 0.0 0.3 0.5 0.1 0.3 0.0 0.1 0.1 0.2 0.0 0.1 0.4 0.0 0.1 0.2 0.1

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.1

3 0.5 0.1 0.0 0.5 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.5 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.1

4 0.5 0.5 0.0 0.5 0.4 0.1 0.5 0.0 0.0 0.3 0.1 0.0 0.2 0.1 0.1 0.3 0.0 0.2 0.1 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0

5 0.4 0.5 0.0 0.4 0.4 0.1 0.4 0.1 0.1 0.3 0.2 0.0 0.3 0.3 0.1 0.3 0.0 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.2 0.1 0.1

2 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.2 0.3 0.0 0.2 0.1 0.0 0.2 0.0 0.1 0.3 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1

4 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.0 0.0 0.4 0.4 0.1 0.3 0.3 0.0 0.3 0.0 0.0 0.1 0.5 0.0 0.0 0.4 0.0 0.1 0.0 0.0

5 0.3 0.3 0.0 0.3 0.4 0.0 0.3 0.3 0.0 0.3 0.4 0.1 0.3 0.2 0.0 0.3 0.0 0.1 0.1 0.5 0.0 0.1 0.5 0.0 0.0 0.4 0.0

2 0.3 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0

3 0.3 0.3 0.0 0.3 0.1 0.0 0.3 0.0 0.1 0.3 0.0 0.0 0.3 0.0 0.0 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1

4 0.4 0.3 0.0 0.4 0.4 0.0 0.4 0.0 0.0 0.4 0.1 0.1 0.2 0.1 0.0 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.4 0.0 0.1 0.0 0.0

5 0.3 0.4 0.0 0.3 0.5 0.0 0.3 0.1 0.0 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.0 0.0 0.1 0.2 0.0 0.1 0.4 0.1 0.1 0.2 0.0

2 0.5 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0

3 0.5 0.1 0.0 0.5 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.5 0.0 0.0 0.1 0.1 0.0 0.2 0.0 0.0 0.1 0.1 0.1

4 0.4 0.5 0.0 0.4 0.4 0.0 0.4 0.0 0.0 0.3 0.1 0.1 0.2 0.1 0.0 0.3 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0

5 0.3 0.5 0.0 0.3 0.4 0.0 0.3 0.1 0.0 0.3 0.2 0.1 0.3 0.3 0.1 0.3 0.0 0.0 0.1 0.1 0.0 0.3 0.1 0.1 0.2 0.1 0.0

2 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.2 0.3 0.0 0.2 0.1 0.0 0.2 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0

4 0.2 0.3 0.0 0.2 0.3 0.0 0.2 0.0 0.0 0.4 0.4 0.0 0.3 0.3 0.0 0.3 0.0 0.0 0.1 0.5 0.0 0.0 0.4 0.1 0.1 0.0 0.0

5 0.3 0.3 0.0 0.3 0.4 0.0 0.3 0.3 0.0 0.3 0.4 0.0 0.3 0.2 0.0 0.3 0.0 0.0 0.1 0.5 0.0 0.1 0.5 0.1 0.0 0.4 0.0

2 0.3 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0

3 0.3 0.3 0.0 0.3 0.1 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.4 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0

4 0.4 0.3 0.0 0.4 0.4 0.0 0.4 0.0 0.0 0.4 0.1 0.0 0.2 0.1 0.0 0.4 0.0 0.1 0.1 0.1 0.0 0.0 0.4 0.1 0.1 0.0 0.0

5 0.3 0.4 0.0 0.3 0.5 0.0 0.3 0.1 0.0 0.3 0.5 0.0 0.3 0.5 0.0 0.3 0.0 0.1 0.1 0.2 0.0 0.1 0.4 0.1 0.1 0.2 0.0

2 0.5 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.0

3 0.5 0.1 0.0 0.5 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.5 0.0 0.1 0.1 0.1 0.0 0.2 0.0 0.1 0.1 0.1 0.1

4 0.4 0.5 0.0 0.4 0.4 0.0 0.4 0.0 0.0 0.3 0.1 0.0 0.2 0.1 0.0 0.3 0.0 0.1 0.1 0.1 0.0 0.3 0.1 0.1 0.2 0.1 0.0

5 0.3 0.5 0.0 0.3 0.4 0.0 0.3 0.1 0.0 0.3 0.2 0.0 0.3 0.3 0.0 0.3 0.0 0.1 0.1 0.1 0.0 0.3 0.1 0.1 0.2 0.1 0.0

2 0.2 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0

3 0.2 0.1 0.1 0.2 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0

4 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.0 0.1 0.0 0.2 0.1 0.0 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0

5 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.1 0.3 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1

2 0.3 0.1 0.1 0.3 0.1 0.0 0.3 0.1 0.0 0.5 0.3 0.1 0.4 0.0 0.0 0.4 0.2 0.1 0.3 0.2 0.0 0.4 0.2 0.1 0.3 0.1 0.0

3 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.0 0.3 0.2 0.2 0.2 0.1 0.2 0.4 0.1 0.1 0.3 0.3 0.1 0.4 0.3 0.2 0.3 0.3 0.1

4 0.4 0.2 0.1 0.4 0.2 0.1 0.4 0.2 0.1 0.4 0.2 0.1 0.1 0.2 0.2 0.4 0.3 0.1 0.3 0.2 0.1 0.3 0.4 0.1 0.3 0.3 0.1

5 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.1 0.3 0.3 0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.3 0.1 0.3 0.2 0.1

2 0.5 0.1 0.2 0.5 0.1 0.0 0.5 0.1 0.0 0.5 0.3 0.1 0.4 0.3 0.0 0.56 0.3 0.3 0.2 0.3 0.0 0.2 0.2 0.1 0.2 0.2 0.0

3 0.5 0.2 0.2 0.5 0.2 0.1 0.5 0.2 0.1 0.71 0.2 0.1 0.71 0.2 0.2 0.5 0.3 0.2 0.75 0.3 0.1 0.63 0.3 0.2 0.70 0.3 0.1

4 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.3 0.0 0.4 0.3 0.2 0.3 0.5 0.2 0.3 0.3 0.1 0.4 0.5 0.1 0.4 0.3 0.2 0.4 0.3 0.2

5 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.1 0.4 0.5 0.2 0.4 0.5 0.3 0.3 0.3 0.1 0.3 0.5 0.2 0.3 0.4 0.1 0.3 0.3 0.2
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We conclude that VOMM MTS Clustering is bound to errors, but it is still significantly 

successful in identifying similarities and differences of the characteristics of the MTS in the 

applications where the labeled data are hard to obtain. This is experimentally shown on one 

physical demonstrator data and one real world industrial system data. Learned clusters with 

the proposed method can be used as preliminary information/models for dealing with 

important tasks such as anomaly detection or root-cause analysis in industrial systems. 
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Appendix A. Determining the Number of Clusters in VOMM MTS Clustering 

Estimating the real number of clusters in the data is an important challenge. Since in 

clustering problem, we do not have a labeled data, we require an unsupervised method also 

to determine the number of clusters. One solution that is commonly used in the literature is 

to find the number of clusters that optimize a clustering validation metric. There are many 

different formulations of this validation metric, but commonly two criteria considered; (1) the 

distance of the objects within the clusters should be minimized and (2) the distance between 

the clusters should be maximized. We used various formulations, for both data point clustering 

and model clustering steps which will be explained in next sections. 

Data Point Clustering: [70] proposed a method that calculates 30 different clustering 

validation metric formulas and applies majority rule between them to determine the optimal 

number of clusters. Most of the formulas require the exact positions of the data points in the 

space, while some of them can be calculated using only the pairwise distance values between 

them. In data point clustering step, since we have the exact positions, we can calculate all 30 

formulas which are explained in [70]. 

VOMM Clustering: In VOMM Clustering step, we do not have the spatial position 

information of the VOMMs in the feature space, instead, we only have the pairwise distances 

between VOMMs and therefore we used the metrics that only require the distances such as 

Silhouette Index, Frey Index, Dunn Index. For the sake of simplicity, we do not apply majority 

rule here and use the Frey Index [71] that gave the best empirical results. 

Results: By using majority rule method for data point clustering and silhouette method for 

model clustering, up to 0.44 and 0.21 ARI is achieved on the Lego Demonstrator and Arçelik 

Press Machine data respectively. 

Appendix B. Discretization on a Subset of the Data set and Interpolation on the Rest 

To learn the data point clustering structure in VOMM MTSC, preprocessing (see 4.1) and 

discretization (see 4.2.1) steps can be applied on a subset of the data set instead of the 

complete data set. After the clustering is constructed, a classifier can be trained using the 
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clusters as classes and cluster predictions as class labels. Using the learned preprocessing 

parameters and the classifier, remaining data points in the data set can be classified. Naturally 

this approach assumes the subset of the data points can be a good representative sample of 

the underlying clustering structure of the data points of the modeled system. Our experiments 

shown that for both data sets, exactly same clustering structures and same MTSC results are 

obtained by learning such a classifier with only 25% of the data. The classifier that is learned 

was Nearest Neighbor Classifier [6]. This can be a promising remedy to high complexity of 

the discretization part in the VOMM MTSC complexity, uN 2 (see 5), since it is reduced h2 

times using a h times smaller data set. In this case of course, complexity of classification 

should be added to the overall complexity. 

Appendix C. Applications on a Non-CPS Data Set   

To test the applicability of the VOMM MTS clustering on MTS data from systems other than 

CPS, we applied the three presented MTS Clustering methods Human Activity Sensing 

Consortium (HASC) [72] data set. HASC provides data sets that are collected with the 

sensors that are placed on different agents while they perform different activities such as 

walking, jogging, skipping etc. Consortium organizes competitions where different methods 

proposed by the competitors try to identify the different types of movements by analyzing 

the sensory data. 

To carry out experiments, we took a subset of the data set of the HASC 2014 competition 

[73] which contains 3 types of movements; walking, jogging and skipping, collected from 6 

different people. 18 MTSs of have 3 classes since the goal of the competition is to identify 

different types of movements. There were three sensors placed on the agents therefore the 

data are three dimensional. The ranges of the parameters that are tested are same as the ones 

used on CPS data sets except that the dimensionality reduction is skipped since the 

dimensionality of the data set is low. The results of the experiments are shown in the Tables 

9, 10 and 11. 

We can observe from the tables that VOMM MTS clustering was again bound to mistakes, 

but it outperformed the other methods and gave promising results. It can also be seen from 
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the tables 7 and 9 that in the parameter settings that lead to success, there is a high similarity 

with the settings used for the experiments on the Arcelik data set. This is a sign that the range 

of the good values for the parameter are stable for various data sets or the data obtained from 

different sources. Best results are obtained when mk is set to 2 and analysis of the clustering 

structure reveals the reason; the MTSs correspond to jogging and walking fall into same 

cluster, but the skipping move is clearly distinguished from those two. From table 11 we see 

that HMM MTS clustering performs better than a random clustering for only a very specific 

combination of the parameter values. It is also observed from table 10 that PCA MTS 

clustering performed better than a random clustering for HASC data set for a high range of 

parameter settings, however, the level of the success is still limited. 

 

a=

k=

t L mk I= 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

2 -0.01 -0.01 -0.01 -0.05 0.01 0.01 0.35 -0.01 0.29 -0.03 0.04 0.13 0.2 0.04 0.25 0.05 0.25 0.35

3 0.12 0.12 0.12 0.14 -0.02 -0.02 0.12 0.12 0.14 0.09 0.08 0.18 0.11 0.02 0.26 0.01 0.18 0.26

4 0.03 0.03 0.05 0.11 -0.03 0.11 0.16 0.12 0.11 0.09 0.1 0.07 0.14 0.01 0.25 0.01 0.16 0.27

2 -0.01 -0.01 0.08 0.2 -0.07 0.01 0.35 0.04 0.29 0.15 0.04 0.25 0.2 0.04 0.35 -0.02 0.25 0.29

3 0.12 0.12 0.12 0.14 0.01 -0.02 0.26 0.12 0.2 0.14 0.06 0.24 0.13 0.02 0.2 0.03 0.18 0.29

4 0.06 0.06 0.03 0.11 0 0.27 0.16 0.16 0.17 0.1 0.07 0.03 0.08 0.17 0.2 0.03 0.25 0.3

2 0.35 -0.01 0.08 0.35 -0.07 -0.07 0.35 0.04 0.29 0.25 0.04 0.15 0.2 0.04 0.35 0.15 0.2 0.15

3 0.18 0.12 0.12 0.14 -0.02 0.2 0.12 0.12 0.14 0.14 0 0.24 0.13 0.05 0.2 0.01 -0.07 0.35

4 0.2 0.15 0.11 0.18 0 0.27 0.16 0.2 0.17 0.11 0.14 0.3 0.08 0.17 0.2 0.01 0.03 0.03

2 -0.07 -0.01 -0.07 0.01 -0.07 -0.07 0.35 -0.01 0.15 0.15 0.04 0.04 0.35 0.08 0.25 0.15 0.54 0.05

3 0.12 0.12 0.02 0.12 -0.06 0.12 0.18 0.12 0.15 0.12 0.09 0.21 0.18 0.06 0.26 0.11 0.26 0.12

4 0.06 0.06 0.05 0.11 -0.07 0.11 0.11 0.12 0.11 0.09 0.11 0.17 0.2 0.04 0.2 0.04 0.29 0.21

2 -0.05 -0.01 0.01 -0.07 -0.07 -0.05 0.35 -0.01 0.15 0.15 0.15 0.04 0.35 0.08 0.54 0.05 0.46 0.05

3 0.12 0.12 0.02 0.12 -0.09 0.12 0.25 0.12 0.09 0.12 0.14 0.14 0.26 0.06 0.36 0.06 0.26 0.23

4 0.11 0.06 0.03 0.11 -0.07 0.11 0.16 0.25 0.1 0.12 0.07 0.2 0.2 0.17 0.2 0.01 0.27 0.21

2 0.35 -0.01 -0.07 -0.07 -0.07 0.35 0.35 -0.01 0.15 0.15 0.15 0.04 0.35 0.04 0.54 0.05 0.46 -0.04

3 0.29 0.12 0.02 0.12 -0.08 0.26 0.26 0.12 0.08 0.14 0.14 0.14 0.35 0.05 0.36 0.06 0.3 0.21

4 0.24 0.25 0.07 0.11 -0.1 0.35 0.16 0.2 0.08 0.12 0.14 0.2 0.2 0.11 0.28 0.01 0.17 0.21

2 -0.07 -0.01 0.54 0.2 0.36 0.01 0.35 -0.01 0.13 0.13 0.13 -0.01 -0.02 -0.01 0.25 0.08 0.36 0.05

3 0.12 0.12 0.18 0.12 0.29 0.12 0.18 0.12 0.15 0.14 0.17 0.21 0.11 0.02 0.37 0.05 0.26 0.08

4 0.06 0.11 0.07 0.11 0.24 0.11 0.11 0.14 0.11 0.12 0.07 0.2 0.08 0.07 0.24 0.04 0.3 0.21

2 -0.05 -0.01 0.46 0.2 0.36 0.01 0.35 -0.02 0.13 0.13 0.25 -0.01 0.35 -0.01 0.36 0.05 0.36 0.01

3 0.12 0.12 0.26 0.12 0.2 0.26 0.2 0.14 0.15 0.12 0.17 0.09 0.26 0.02 0.35 0.06 0.12 0.21

4 0.16 0.16 0.11 0.11 0.17 0.35 0.11 0.14 0.1 0.12 0.07 0.13 0.2 0.17 0.37 0.07 -0.01 0.21

2 0.2 -0.01 0.2 0.2 0.29 0.29 0.35 0.15 0.13 0.15 0.25 -0.01 0.35 -0.02 0.08 0.06 -0.05 0.01

3 0.18 0.12 0.37 0.12 0.27 0.2 0.26 0.14 0.11 0.14 0.17 0.09 0.13 0.03 0.09 0.09 0.21 0.21

4 0.2 0.16 0.33 0.11 0.24 0.28 0.16 0.15 0.08 0.12 0.14 0.2 0.2 0.15 0.21 0.02 0.14 0.11

4 5 6

2 3 4 2 3 4 2 4

3

4

5

5

6

7

5

6

7

5

6

7

3

Table 9: Adjusted Rand Index Results of VOMM MTS Clustering done with the 

combinations of parameters explained in table 2 on HASC Data. Adjusted RAND Index 

(ARI) is used for scoring. 
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Table 10: Adjusted Rand Index Results of PCA MTS Clustering done with the combinations 

of parameters explained in table 2 on HASC Data. Adjusted RAND Index (ARI) is used for 

scoring. 

 

Table 11: Adjusted Rand Index Results of HMM MTS Clustering done with the combinations 

of parameters explained in table 2 on HASC Data. Adjusted RAND Index (ARI) is used for 

scoring. 

 

 

We conclude that, VOMM MTS clustering method is a promising candidate to be applied on 

data from various sources and this is confirmed with the results of the experiments on a real-

world data set of human activity sensing field. 

α= 0.4 0.5 0.6
DS D mk= 3 4 6 7 13 14 3 4 6 7 13 14 3 4 5 6 7 13 14
8 2 0.01 0.03 -0.04 -0.03 0.03 0.00 0.01 0.03 -0.04 -0.03 0.03 0.00 0.01 0.03 0.00 -0.04 -0.03 0.03 0.00

3 0.10 0.15 0.08 0.08 0.10 0.04 0.10 0.15 0.08 0.08 0.10 0.04 0.10 0.15 0.15 0.08 0.08 0.10 0.04
9 2 0.01 0.03 0.05 0.02 0.03 0.00 0.01 0.03 0.05 0.02 0.03 0.00 0.01 0.03 0.00 0.05 0.02 0.03 0.00

3 0.10 0.15 0.08 0.08 0.22 0.12 0.10 0.15 0.08 0.08 0.22 0.12 0.10 0.15 0.15 0.08 0.08 0.22 0.12
10 2 -0.10 -0.01 -0.01 -0.02 0.03 0.00 -0.10 -0.01 -0.01 -0.02 0.03 0.00 -0.10 -0.01 -0.02 -0.01 -0.02 0.03 0.00

3 0.10 0.15 0.11 0.08 0.22 0.12 0.10 0.15 0.11 0.08 0.22 0.12 0.10 0.15 0.15 0.11 0.08 0.22 0.12
11 2 0.03 0.06 0.01 0.04 0.03 0.00 0.03 0.06 0.01 0.04 0.03 0.00 0.03 0.06 0.04 0.01 0.04 0.03 0.00

3 0.10 0.15 0.11 0.08 0.22 0.12 0.10 0.15 0.11 0.08 0.22 0.12 0.10 0.15 0.15 0.11 0.08 0.22 0.12
12 2 0.23 0.01 -0.01 0.07 0.03 0.00 0.23 0.01 -0.01 0.07 0.03 0.00 0.23 0.01 -0.02 -0.01 0.07 0.03 0.00

3 0.10 0.15 0.23 0.08 0.10 0.04 0.10 0.15 0.23 0.08 0.10 0.04 0.10 0.15 0.15 0.23 0.08 0.10 0.04
13 2 -0.02 0.03 0.01 0.04 0.03 0.00 -0.02 0.03 0.01 0.04 0.03 0.00 -0.02 0.03 0.01 0.01 0.04 0.03 0.00

3 0.10 0.15 0.23 0.08 0.22 0.12 0.10 0.15 0.23 0.08 0.22 0.12 0.10 0.15 0.15 0.23 0.08 0.22 0.12
14 2 -0.02 0.03 0.00 0.04 0.03 0.00 -0.02 0.03 0.00 0.04 0.03 0.00 -0.02 0.03 0.04 0.00 0.04 0.03 0.00

3 0.10 0.15 0.08 0.08 0.06 0.00 0.10 0.15 0.08 0.08 0.06 0.00 0.10 0.15 0.15 0.08 0.08 0.06 0.00
15 2 0.03 0.03 0.19 0.04 0.03 0.04 0.03 0.03 0.19 0.04 0.03 0.04 0.03 0.03 0.12 0.19 0.04 0.03 0.04

3 0.10 0.15 0.23 0.08 0.06 0.12 0.10 0.15 0.23 0.08 0.06 0.12 0.10 0.15 0.15 0.23 0.08 0.06 0.12

a=
S W mk= 3 4 5 3 4 5 3 4 5 3 4 5

3 -0.10 -0.10 -0.10 -0.02 0.12 0.07 0.00 -0.01 -0.01 -0.01 -0.02 -0.01
4 -0.10 0.11 0.12 -0.02 0.12 0.07 0.20 -0.01 -0.01 -0.01 -0.02 -0.01
5 0.29 0.11 0.12 -0.02 -0.03 0.08 0.20 0.23 0.23 -0.01 -0.02 -0.01
6 0.29 0.11 0.12 -0.02 -0.03 0.08 0.20 0.23 0.23 -0.01 -0.02 -0.02
7 0.29 0.11 0.12 -0.02 -0.03 0.07 0.00 0.16 0.19 -0.01 -0.02 -0.02
3 0.05 -0.01 -0.03 -0.02 -0.07 -0.07 -0.03 -0.10 -0.09 0.02 -0.01 -0.03
4 0.01 -0.01 -0.03 -0.02 -0.07 -0.07 -0.05 -0.10 -0.09 0.02 -0.01 -0.03
5 -0.01 -0.01 -0.03 -0.02 -0.07 -0.07 -0.05 -0.10 -0.09 -0.01 -0.03 -0.03
6 -0.01 -0.01 -0.10 -0.02 -0.03 -0.04 -0.05 -0.10 -0.09 -0.01 -0.03 -0.03
7 -0.01 -0.01 -0.10 -0.02 -0.03 -0.04 -0.05 -0.10 -0.09 -0.01 -0.03 -0.03
3 -0.03 0.11 -0.03 -0.01 -0.05 -0.03 -0.03 -0.02 -0.02 -0.03 -0.05 -0.09
4 0.02 -0.01 -0.01 -0.01 -0.05 -0.03 -0.03 -0.03 -0.02 -0.03 -0.05 -0.09
5 0.02 -0.01 -0.01 -0.01 -0.05 -0.03 -0.03 -0.03 0.00 -0.01 -0.05 -0.09
6 0.02 -0.01 0.10 -0.01 -0.05 -0.03 -0.03 -0.03 0.00 -0.01 -0.05 -0.09
7 0.02 -0.01 0.10 -0.01 -0.05 -0.03 -0.03 -0.03 -0.02 -0.01 -0.05 -0.09
3 -0.04 -0.02 -0.01 -0.06 -0.02 -0.04 -0.03 -0.04 -0.07 -0.02 -0.05 -0.05
4 -0.04 -0.02 -0.01 -0.06 -0.02 -0.05 -0.03 -0.04 -0.07 -0.02 -0.05 -0.05
5 -0.04 -0.02 -0.01 -0.06 -0.02 -0.05 -0.02 -0.05 0.05 -0.02 -0.05 -0.05
6 -0.04 -0.02 -0.01 -0.06 -0.02 -0.05 -0.02 -0.05 0.05 -0.02 -0.05 -0.05
7 -0.04 -0.02 -0.01 -0.06 -0.02 -0.01 -0.02 -0.05 0.12 -0.02 -0.05 -0.10
3 -0.03 -0.02 -0.04 0.01 -0.02 0.02 -0.05 -0.05 0.04 -0.05 -0.05 -0.09
4 -0.03 -0.02 -0.04 0.01 -0.02 -0.01 0.12 0.10 0.09 -0.05 -0.04 -0.08
5 -0.03 -0.02 -0.04 -0.02 -0.05 -0.04 -0.01 0.01 -0.02 -0.05 -0.04 -0.08
6 -0.03 -0.02 -0.04 -0.02 -0.05 -0.04 -0.01 -0.05 -0.02 -0.05 -0.04 -0.08
7 -0.03 -0.04 -0.08 -0.02 -0.05 -0.04 -0.01 -0.05 -0.02 -0.03 -0.04 -0.08

6 7

2

3

4

5

6

4 5



   
 

 
 

Barış Gün Sürmeli 

Address: inIT – Institute Industrial IT  

Technische Hochschule Ostwestfalen-Lippe  

Campusallee 6 32657 Lemgo 

Phone: + 49 (0) 5261 / 702 – 5754  

Email: baris.suermeli@th-owl.de 

 

SUMMARY  An artificial  intelligence  enthusiast  who  likes  to    develop  

machine  learning  methods and apply them in the industry. 

 

WORK 

EXPERIENCE 
July 2018 - Present 

Research Assistant, SMARTPas Research Project, Institute 

Industrial IT, Lemgo, Germany 

• Working on developing and applying Machine Learning 

methods on data obtained from food and beverages with the 

aim of safer sterilization. 

Jan 2016 - July 2018 

Researcher, IMPROVE Research Project, Marmara University, 

Turkey 

• Worked on developing and applying Machine Learning 

methods with the aim of cost reduction in industrial Cyber-

Physical Systems. 

June 2015 – July 2015 

Trainee, Marmara University, Turkey 

• Worked on manual co-referencing In Turkish Natural 

Language with Prof. Dr. Peter Schüller. Improved the 

capabilities of an existing NLP tool (GATE). Annotated co-

references in articles and co-authored a Turkish Co-

reference Annotation Manual. 

  



   
 

 
 

EDUCATION 

 

 201 –Present 

MSc. Computer Science, Marmara University, Istanbul, Turkey 

 

2012   201  

BSc. Computer Science & Engineering, Marmara University, 

Istanbul, Turkey 

 

PUBLICATIONS  201  

Sürmeli, B. G., Eksen, F., Dinç, B., Schüller, P.,   Tümer, B. 

(201 , July). Un  supervised mode detection in cyber physical 

systems using variable order Markov models. In Industrial 

Informatics (INDIN), 201  IEEE 1 th International Conference on 

(pp.   1    ). IEEE. 

 

201  

Schüller, P., Cıngıllı, K., Tunçer,  F., Sürmeli, B. G., Pekel,  A., 

Karatay,  A. H.,   Karakaş, H. E. (201 ). Marmara Turkish 

Coreference Corpus and Coreference Resolution Baseline. arXiv 

preprint arXiv:1 0 .01   . (under minor revision at Natural 

Language Engineering) 

 




