T.C. SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ARTIMLI ŞEKİLLENDİRME YÖNTEMİNİN OTOMOTİV SEKTÖRÜ UYGULAMALARINA YÖNELİK OLARAK GELİŞTİRİLMESİ

DOKTORA TEZİ

Ömer SEÇGİN

Enstitü Anabilim Dalı

: MAKİNA MÜHENDİSLİĞİ

Tez Danışmanı

: Prof. Dr. İbrahim ÖZSERT

Mayıs 2019

T.C. SAKARYA UYGULAMALI BİLİMLER ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ARTIMLI ŞEKİLLENDİRME YÖNTEMİNİN OTOMOTİV SEKTÖRÜ UYGULAMALARINA YÖNELİK OLARAK GELİŞTİRİLMESİ

DOKTORA TEZİ

Ömer SEÇGİN

•

Enstitü Anabilim Dalı

MAKİNA MÜHENDİSLİĞİ

Bu tez 28/05/2019 tarihinde aşağıdaki jüri tarafından oybirliği/oyçokluğu ile kabul edilmiştir.

Prof. Dr.

Durmuş KARAYÈL Jüri Başkanı

Prof. Dr. İbrahim ÖZSERT Üye

Doç. Dr. **Mehmet ÇALIŞKAN** Üye

Dr. Öğr. Üy. **Osman Hamdi METE** Üye

Dr. Ogr. Uy. Sedat İRİÇ Üye

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

mer SECGIN 28/05/2019

TEŞEKKÜR

Doktora eğitimim süresince bilgi ve tecrübelerinden yararlandığım, bilgi ve desteğini almaktan çekinmediğim, doktora çalışmamın planlanmasından yazılmasına kadar tüm süreçlerde yardımlarını esirgemeyen değerli danışman hocam Prof. Dr. İbrahim ÖZSERT'e teşekkürlerimi sunarım.

Tez çalışmalarım esnasında sürekli danıştığım, desteklerini esirgemeyen hocalarım Prof. Dr. Durmuş KARAYEL'e, Doç. Dr. Mehmet ÇALIŞKAN'a ve Doç. Dr. Ergün NART'a ayrı ayrı teşekkürlerimi sunarım.

Deneysel çalışmaların gerçekleştirilmesi aşamasında laboratuvar olanakları konusunda yardımlarını esirgemeyen Piri Reis Üniversitesi Denizcilik Fakültesi dekanı Prof. Dr. Süleyman ÖZKAYNAK'a ve teknisyen Mahir YILDIRIM'a ayrı ayrı teşekkürlerimi sunarım. Deneyimlerinden yararlandığım hocam Doç. Dr. M. Ziya SÖĞÜT'e ayrıca teşekkür ederim.

Bugünlere gelmemde büyük emekleri olan ve her zaman yanımda hissettiğim başta babam, annem ve eşim olmak üzere aileme sonsuz şükranlarımı sunarım.

Ayrıca bu çalışmanın maddi açıdan desteklenmesine olanak sağlayan Sakarya Üniversitesi rektörlüğü ve bilimsel araştırma projeleri komisyon başkanlığına (Proje No: 2016-09-06-002) teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	vii
TABLOLAR LİSTESİ	XV
ÖZET	xxii
SUMMARY	xxiii

BÖLÜM 1.

GİRİS	 		

BÖLÜM 2.

LİTERATÜR ARAŞTIRMASI 4

BÖLÜM 3.

MATERYAL VE YÖNTEM	13
3.1. Materyal	13
3.2. Yöntem	16
3.2.1. Deney Düzeneğinin Geliştirilmesi	16
3.2.2. Deneylerin Yürütülmesi	
3.2.3. Et Kalınlığının Belirlenmesi	27
3.2.4. Yüzey Pürüzlülüğünün Belirlenmesi	
3.2.5. Şekillendirme Kuvvetinin Belirlenmesi	
3.2.6. İstatistiksel Analiz	
3.2.6.1. Sinyal / Gürültü (S/N) Analizi	
3.2.6.2. Varyans Analizi	

3.2.6.3. Cevap Yüzey Metodu	38
3.2.6.4. Gri İlişkisel Analiz	38
3.2.7. Geri esneme analizi	39
3.2.8. Sonlu Elemanlar Analizi	41
3.2.8.1. Modelin Geliştirilmesi	41
3.2.8.2. Çözüm Ağı (Mesh) Optimizasyonu	45

BÖLÜM 4.

DENEYSEL ÇALIŞMALARIN SONUÇLARI
4.1. DKP 37 Sacı İle İlgili Deneyler 49
4.1.1. DKP 37 Sacının 40° Eksenel Simetrik Koni Formu Deneyleri
49
4.1.1.1. Şekillendirme Kuvvetleri
4.1.1.2. Yüzey Pürüzlülüğü
4.1.1.3. Et Kalınlığı Değişimi
4.1.1.4. Doğrulama Deneyleri ve Sonuçların
Değerlendirilmesi
4.1.2. DKP37 Sacının 60° Eksenel Simetrik Koni Formu Deneyleri
63
4.1.2.1. Şekillendirme Kuvvetleri
4.1.2.2. Yüzey Pürüzlülüğü
4.1.2.3. Et Kalınlığı Değişimi
4.1.2.4. Doğrulama Deneyleri ve Sonuçların
Değerlendirilmesi
4.1.3. DKP37 Sacının 40° Kare Piramit Formu Denevleri
4.1.3.1. Sekillendirme Kuvvetleri
4.1.3.2. Yüzev Pürüzlülüğü
4.1.3.3. Et Kalınlığı Değisimi
4134 Doğrulama Denevleri ve Sonucların
Değerlendirilmesi 88
4.1.4 DKP37 Sacurun 60° Kare Piramit Formu Denevleri 89
A 1 A 1 Sekillendirma Kusuatlari
4.1.4.1. Şekmendinine Kuvvenen

4.1.4.2.	Yüzey Pürüzli	ilüğü		
4.1.4.3.	Et Kalınlığı D	eğişimi		
4.1.4.4.	Doğrulama	Deneyleri	ve	Sonuçların
Değe	rlendirilmesi			
4.1.5. DP600 S	acının 40° Ekse	enel Simetrik K	Coni Form	u Deneyleri
102				
4.1.5.1.	Şekillendirme	Kuvvetleri		
4.1.5.2.	Yüzey Pürüzli	ilüğü		
4.1.5.3.	Et Kalınlığı D	eğişimi		
4.1.5.4.	Doğrulama	Deneyleri	ve	Sonuçların
Değe	rlendirilmesi			
4.1.6. DP600 S	acının 60° Ekse	enel Simetrik K	loni Form	u Deneyleri
115				
4.1.6.1.	Şekillendirme	Kuvvetleri		115
4.1.6.2.	Yüzey Pürüzli	ilüğü		118
4.1.6.3.	Et Kalınlığı D	eğişimi		
4.1.6.4.	Doğrulama	Deneyleri	ve	Sonuçların
4.1.6.4. Değe	Doğrulama rlendirilmesi	Deneyleri	ve	Sonuçların 127
4.1.6.4. Değe 4.1.7. DP600 S	Doğrulama rlendirilmesi acının 40° Kare	Deneyleri Piramit Form	ve u Deneyle	Sonuçların 127 ri 128
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme	Deneyleri Piramit Form Kuvvetleri	ve u Deneyle	Sonuçların 127 ri 128 128
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü	Deneyleri e Piramit Form Kuvvetleri ilüğü	ve u Deneyle	Sonuçların 127 ri 128 128 128 131
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi	ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri	ve u Deneyle 	Sonuçların 127 ri 128 128 128 131 135 Sonuçların
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri	ve u Deneyle ve	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi acının 60° Kare	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri e Piramit Form	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi acının 60° Kare Şekillendirme	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri e Piramit Form Kuvvetleri	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1. 4.1.8.2.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi acının 60° Kare Şekillendirme Yüzey Pürüzlü	Deneyleri e Piramit Form Kuvvetleri ilüğü Deneyleri e Piramit Form Kuvvetleri ilüğü	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141 141
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1. 4.1.8.2. 4.1.8.3.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi acının 60° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141 141 144 144
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1. 4.1.8.2. 4.1.8.3. 4.1.8.4.	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi acının 60° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri Kuvvetleri ilüğü eğişimi Deneyleri	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141 141 141 144 147 Sonuçların
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1. 4.1.8.2. 4.1.8.3. 4.1.8.4. Değe	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri Kuvvetleri ilüğü eğişimi Deneyleri	ve u Deneyle ve u Deneyle	Sonuçların 127 ri 128 128 128 131 135 Sonuçların 139 ri 141 141 141 144 147 Sonuçların 152
4.1.6.4. Değe 4.1.7. DP600 S 4.1.7.1. 4.1.7.2. 4.1.7.3. 4.1.7.4. Değe 4.1.8. DP600 S 4.1.8.1. 4.1.8.2. 4.1.8.3. 4.1.8.3. 4.1.8.4. Değe 4.2. Parametre Etkil	Doğrulama rlendirilmesi acının 40° Kare Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi Şekillendirme Yüzey Pürüzlü Et Kalınlığı D Doğrulama rlendirilmesi eşimlerinin Ge	Deneyleri e Piramit Form Kuvvetleri ilüğü eğişimi Deneyleri kuvvetleri ilüğü eğişimi Deneyleri Deneyleri nel Değerlendi	ve u Deneyle ve u Deneyle ve rilmesi Ve	Sonuçların

4.3. Sonlu Elemanlar Analizi Sonuçları İle Deneysel Sonuçların	
Karşılaştırılması	165
4.4. Geri Esneme Analizi	173
4.5. Deney Süreleri	190
4.6. Maliyet Hesaplamaları	191
4.7. Otomotiv Endüstrisine Yönelik Çalışmalar	192

BÖLÜM 5.

SONUÇ	
,	

KAYNAKLAR	
ÖZGEÇMİŞ	

SİMGELER VE KISALTMALAR LİSTESİ

А	: Artım miktarı
ANOVA	: Varyans analizi
D	: Form takımı çapı
F	: İlerleme
Fz	: Düşey doğrultudaki şekillendirme kuvveti
КО	: Düzeltilmiş Kareler Ortalaması
KT	: Düzeltilmiş Kareler Toplamı
Р	: Sıkma basıncı
R	: Form takımı yarı çapı
Ra	: Ortalama yüzey pürüzlülüğü
RP	: Referans noktası
R-sq	: Düzeltilmiş R kare
S/N	: Sinyal/Gürültü
SD	: Serbestlik derecesi
t	: Et kalınlığı
TPIF_RL	: Kayar artımlı şekillendirme yöntemi
U1	: X ekseni doğrultusunda yer değiştirme
U2	: Y ekseni doğrultusunda yer değiştirme
U3	: Z ekseni doğrultusunda yer değiştirme
Х	: X ekseni
Y	: Y ekseni
Ζ	: Z ekseni
α	: Şekillendirme açısı

ŞEKİLLER LİSTESİ

Şekil 1.1. Artımlı şekillendirme yöntemi çeşitleri.	2
Şekil 2.1. Artımlı şekillendirme işlem adımları	5
Şekil 2.2. Sinüs kanununun gösterimi	8
Şekil 2.3. Kafatası implantı	9
Şekil 2.4. Yüzey pürüzlülüğü oluşumu	9
Şekil 3.1. DAHLIH MCV 860 CNC freze tezgâhı.	14
Şekil 3.2. Eksenel simetrik koni deney numunesi ve ölçüleri	15
Şekil 3.3. Kare piramit deney numunesi ve ölçüleri	16
Şekil 3.4. Pnömatik klemp baskı kuvveti ölçümü	17
Şekil 3.5. Baskı plakalı artımlı şekillendirme deney seti	18
Şekil 3.6. Baskı plakalı artımlı şekillendirme deney seti genel görünümü	
Şekil 3.7. Rulmanlı baskı sistemi	19
Şekil 3.8. Eksenel simetrik parçada kayar artımlı şekillendirme yönteminin kullar	nımı
	20
Şekil 3.9. Geliştirilen deney setinden şekillendirme işleminin başladığı an	21
Şekil 3.10. Kayar artımlı şekillendirme yöntemi	21
Şekil 3.11. Kayar Artımlı Şekillendirme yöntemi ile sacın şekillendirilmesi	22
Şekil 3.12. Spiral takım yolu	23
Şekil 3.13. Deneylerde şekillendirilen parçalar	25
Şekil 3.14. Deneylerde şekillendirilen saclardan örnek	26
Şekil 3.15 Tez çalışmalarının planı	27
Şekil 3.16. Et kalınlığı ölçümü	
Şekil 3.17. Yüzey pürüzlülüğü ölçümü	
Şekil 3.18. Kuvvet ölçüm sistemi mekanik tasarımı	30
	•

Şekil 3.20. Kuvvet ölçme sistemi arayüzü	31
Şekil 3.21. Kuvvet ölçme sistemi blok diyagramı	31
Şekil 3.22. Kuvvet ölçüm sistemi	32
Şekil 3.23. Kalibrasyon çalışmaları	33
Şekil 3.24. X ekseni ölçüm değerleri (kg-Newton)	33
Şekil 3.25. Y ekseni ölçüm değerleri (kg-Newton)	34
Şekil 3.26. Z ekseni ölçüm değerleri (kg-Newton)	34
Şekil 3.27. Z ekseni 20 dakikalık ölçüm deneyi	35
Şekil 3.28. Yirmi dakika boyunca yük uygulama deney sonuçları	36
Şekil 3.29. Kare prizma parçanın 3D tarama anında bir görüntü	40
Şekil 3.30. GOM ATOS CORE optik 3d tarayıcı ile sacın modelinin oluşturulması	40
Şekil 3.31. Artımlı şekillendirme yönteminin sonlu elemanlar simülasyonu	41
Şekil 3.32. Sonlu elemanlar analizinde kullanılan bileşenler	42
Şekil 3.33. Sınır şartları	44
Şekil 3.34. Sac dışındaki diğer parçaların çözüm ağlarının oluşturulması	44
Şekil 3.35. Sacın çözüm ağının oluşturulması	45
Şekil 3.36. Çözüm ağı optimizasyonu	47
Şekil 4.1. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme	
kuvveti S/N oranları	51
Şekil 4.2. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme	
kuvveti (Fz) parametre etkileşimleri	52
Şekil 4.3. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey	
pürüzlülükleri (Ra)	54
Şekil 4.4. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
S/N oranları	55
Şekil 4.5. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
(Ra) parametre etkileşimleri	56
Şekil 4.6. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et	
kalınlığı dağılımları	59
Şekil 4.7. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı S/N	
oranları	60

Şekil 4.8. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı	
parametre etkileşimleri	61
Şekil 4.9. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme	
kuvveti S/N oranları	65
Şekil 4.10. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme	
kuvveti (Fz) parametre etkileşimleri	66
Şekil 4.11. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen	
yüzey pürüzlülükleri (Ra)	68
Şekil 4.12. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
S/N oranları	68
Şekil 4.13. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
(Ra) parametre etkileşimleri	70
Şekil 4.14. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et	
kalınlığı dağılımları	71
Şekil 4.15. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı S/N	
oranları	73
Şekil 4.16. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı	
parametre etkileşimleri	74
Şekil 4.17. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme	
kuvveti S/N oranları	78
Şekil 4.18. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme	
kuvveti (Fz) parametre etkileşimleri	79
Şekil 4.19. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey	
pürüzlülükleri (Ra)	81
Şekil 4.20. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N	
oranları	82
Şekil 4.21. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra)	
parametre etkileşimleri	83
Şekil 4.22. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen et	
kalınlığı dağılımları	84
Şekil 4.23. DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı S/N	
oranları	86

Şekil 4.24.	DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı parametre	
	etkileşimleri	38
Şekil 4.25.	. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme	
	kuvveti S/N oranları) 1
Şekil 4.26.	. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme	
	kuvveti (Fz) parametre etkileşimleri) 2
Şekil 4.27.	DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey	
	pürüzlülükleri (Ra)) 3
Şekil 4.28.	DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N	
	oranları) 5
Şekil 4.29.	DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra)	
	parametre etkileşimleri) 6
Şekil 4.30	. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen et	
	kalınlığı dağılımları) 7
Şekil 4.31.	DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı S/N oranları	
) 9
Şekil 4.32.	DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı parametre	
	etkileşimleri10)0
Şekil 4.33.	DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme	
	kuvveti (Fz) S/N oranları)4
Şekil 4.34.	DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme	
	kuvveti (Fz) parametre etkileşimleri10)5
Şekil 4.35.	DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey	
	pürüzlülükleri10)6
Şekil 4.36.	DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
	S/N oranları)8
Şekil 4.37.	DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
	(Ra) parametre etkileşimleri)9
Şekil 4.38.	DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et	
	kalınlığı dağılımları11	1
Şekil 4.39.	DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı S/N	
	oranları11	2

Şekil 4.40. DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı
parametre etkileşimleri113
Şekil 4.41. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvveti S/N oranları117
Şekil 4.42. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvveti (Fz) parametre etkileşimleri118
Şekil 4.43. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen yüzey
pürüzlülükleri119
Şekil 4.44. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü
S/N oranları120
Şekil 4.45. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü
(Ra) parametre etkileşimleri121
Şekil 4.46. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et
kalınlığı dağılımları123
Şekil 4.47. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı S/N
oranları126
Şekil 4.48. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı
parametre etkileşimleri127
Şekil 4.49. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvveti S/N oranları130
Şekil 4.50. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvveti (Fz) parametre etkileşimleri131
Şekil 4.51. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey
pürüzlülükleri133
Şekil 4.52. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N
oranları133
Şekil 4.53. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra)
parametre etkileşimleri134
Şekil 4.54. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen et kalınlığı
dağılımları137
Şekil 4.55. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı S/N oranları

Şekil 4.56. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı parametre	2
etkileşimleri	.139
Şekil 4.57. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme)
kuvveti S/N oranları	.143
Şekil 4.58. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme	2
kuvveti (Fz) parametre etkileşimleri	.144
Şekil 4.59. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey	1
pürüzlülükleri	.145
Şekil 4.60. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N	1
oranları	.146
Şekil 4.61. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra)
parametre etkileşimleri	.147
Şekil 4.62. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen et kalınlığ	1
dağılımları	.148
Şekil 4.63. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı S/N oranlar	1
	.150
Şekil 4.64. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı parametre	2
etkileşimleri	.151
Şekil 4.65. Et kalınlığı dağılımının ölçümü için yol tanımlanması	.165
Şekil 4.66. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlener	1
et kalınlığı dağılımları	.167
Şekil 4.67. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlener	1
et kalınlığı dağılımları	.168
Şekil 4.68. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlener	1
gerilmeler	.169
Şekil 4.69. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlener	1
gerilmeler	.170
Şekil 4.70. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlener	1
gerilmeler	.171
Şekil 4.71. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlener	1
gerilmeler	.172

- Şekil 4.73. DKP37 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .174
- Şekil 4.74. DKP37 sacının 40° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. 175
- Şekil 4.75. DKP37 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .175
- Şekil 4.76. DKP37 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .176

- Şekil 4.79. DKP37 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .178
- Şekil 4.80. DKP37 sacının 60° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. 179
- Şekil 4.81. DKP37 sacının 60° kare piramit geometride şekillendirme işlemlerindeki
 13 numaralı deneyinden elde edilen numunenin geri esneme ölçümü...... 179

- Şekil 4.84. DP600 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .181

- Şekil 4.87. DP600 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. 183
- Şekil 4.89. DP600 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .185
- Şekil 4.90. DP600 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .185
- Şekil 4.92. DP600 sacının 60° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .187
- Şekil 4.93. DP600 sacının 60° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü. .187
- Şekil 4.95. Otobüs teker üstü sacı artımlı şekillendirme üretim çalışmaları......193

TABLOLAR LİSTESİ

Tablo 3.1. DKP 37 sacının kimyasal özellikleri	.13
Tablo 3.2. DP600 sacının kimyasal özellikleri	.14
Tablo 3.3. Piston baskı kuvvetleri	.17
Tablo 3.4. Deney parametreleri ve seviyeleri	.23
Tablo 3.5. Deney plan1	.24
Tablo 3.6. Toplam deney sayısı	.25
Tablo 3.7. Deneylerde kullanılan yükler	.32
Tablo 3.8. Çözüm ağı optimizasyonu	.46
Tablo 4.1. Deney numunelerinin kodlama sistemi	.49
Tablo 4.2. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen	
kuvvetler	.50
Tablo 4.3. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde, şekillendirme	
kuvvetleri faktör seviyelerinin S/N oranı tablosu	.50
Tablo 4.4. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme	
kuvvetleri varyans analizi tablosu	.51
Tablo 4.5. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey	
pürüzlülükleri (Ra)	.53
Tablo 4.6. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
faktör seviyelerinin S/N oranı tablosu	.54
Tablo 4.7. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü	
varyans analizi tablosu	.55
Tablo 4.8. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde oluşan et	
kalınlığı dağılımları	.58
Tablo 4.9. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et	
kalınlığı faktör seviyelerinin S/N oranı tablosu	.59

Tablo 4.10. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı varyans
analizi tablosu60
Tablo 4.11. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde deney
faktörlerinin optimum seviyeleri62
Tablo 4.12. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen
kuvvetler64
Tablo 4.13. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvvetine göre faktör seviyelerinin S/N oranı tablosu64
Tablo 4.14. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvveti varyans analizi tablosu65
Tablo 4.15. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen
yüzey pürüzlülükleri (Ra)67
Tablo 4.16. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey
pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu
Tablo 4.17. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü
varyans analizi tablosu69
Tablo 4.18. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et
kalınlığı dağılımları72
Tablo 4.19. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığına
göre faktör seviyelerinin S/N oranı tablosu73
Tablo 4.20. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı varyans
analizi tablosu74
Tablo 4.21. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde deney
faktörlerinin optimum seviyeleri75
Tablo 4.22. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen
kuvvetler77
Tablo 4.23. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvvetine göre faktör seviyelerinin S/N oranı tablosu77
Tablo 4.24. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvveti varyans analizi tablosu
Tablo 4.25. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey
pürüzlülükleri (Ra)80

Tablo 4.26. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü	ne
göre faktör seviyelerinin S/N oranı tablosu	81
Tablo 4.27. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüş	ğü
varyans analizi tablosu	82
Tablo 4.28. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen	et
kalınlığı dağılımları	85
Tablo 4.29. DKP 37 sacının 40° kare piramit şekillendirilmesinde et kalınlığına gö	re
faktör seviyelerinin S/N oranı tablosu	86
Tablo 4.30. DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı varya	ns
analizi tablosu	87
Tablo 4.31. DKP 37 sacının 40° kare piramit şekillendirilmesinde deney faktörlerin	in
optimum seviyeleri	88
Tablo 4.32. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlen	en
kuvvetler	90
Tablo 4.33. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirr	ne
kuvvetine göre faktör seviyelerinin S/N oranı tablosu	91
Tablo 4.34. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirr	ne
kuvveti varyans analizi tablosu	92
Tablo 4.35. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen yüz	ey
pürüzlülükleri (Ra)	94
Tablo 4.36. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü	ne
göre faktör seviyelerinin S/N oranı tablosu	94
Tablo 4.37. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüş	ğü
varyans analizi tablosu	95
Tablo 4.38. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen	et
kalınlığı dağılımları	98
Tablo 4.39. DKP 37 sacının 60° kare piramit şekillendirilmesinde et kalınlığına gö	re
faktör seviyelerinin S/N oranı tablosu	99
Tablo 4.40. DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı varya	ns
analizi tablosu	100
Tablo 4.41. DKP 37 sacının 60° kare piramit şekillendirilmesinde deney faktörlerin	in
optimum seviyeleri	101

Tablo 4.42. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen
kuvvetler103
Tablo 4.43. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme
kuvvetine (Fz) göre faktör seviyelerinin S/N oranı tablosu103
Tablo 4.44. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme
kuvveti varyans analizi tablosu104
Tablo 4.45. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen
yüzey pürüzlülükleri (Ra)106
Tablo 4.46. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey
pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu107
Tablo 4.47. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü
varyans analizi tablosu108
Tablo 4.48. DP600 sacının 40° eksenel şekillendirilmesinde belirlenen et kalınlığı
dağılımları110
Tablo 4.49. DP600 sacının 40° eksenel simetrik şekillendirilmesinde et kalınlığına
göre faktör seviyelerinin S/N oranı tablosu112
Tablo 4.50. DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı varyans
analizi tablosu113
Tablo 4.51. DP600 sacının 40° eksenel simetrik şekillendirilmesinde deney
faktörlerinin optimum seviyeleri114
Tablo 4.52. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen
kuvvetler116
Tablo 4.53. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvvetine göre faktör seviyelerinin S/N oranı tablosu116
Tablo 4.54. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme
kuvveti varyans analizi tablosu117
Tablo 4.55. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen
yüzey pürüzlülükleri (Ra)119
Tablo 4.56. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey
pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu120
Tablo 4.57. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü
varyans analizi tablosu121

Tablo 4.58. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et
kalınlığı dağılımları124
Tablo 4.59. DP600 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığına
göre faktör seviyelerinin S/N oranı tablosu125
Tablo 4.60. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı varyans
analizi tablosu126
Tablo 4.61. DP600 sacının 60° eksenel simetrik şekillendirilmesinde deney
faktörlerinin optimum seviyeleri127
Tablo 4.62. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen kuvvetler
Tablo 4.63. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvvetine göre faktör seviyelerinin S/N oranı tablosu
Tablo 4.64. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme
kuvveti varyans analizi tablosu130
Tablo 4.65. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey
pürüzlülükleri (Ra)132
Tablo 4.66. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğüne
göre faktör seviyelerinin S/N oranı tablosu133
Tablo 4.67. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü
varyans analizi tablosu134
Tablo 4.68. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen et
kalınlığı dağılımları136
Tablo 4.69. DP600 sacının 40° kare piramit şekillendirilmesinde et kalınlığına göre
faktör seviyelerinin S/N oranı tablosu137
Tablo 4.70. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı varyans
analizi tablosu138
Tablo 4.71. DP600 sacının 40° kare piramit şekillendirilmesinde deney faktörlerinin
optimum seviyeleri140
Tablo 4.72. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen kuvvetler
Tablo 4.73. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme
kuvvetine göre faktör seviyelerinin S/N oranı tablosu 142

Tablo 4.74. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme	
kuvveti varyans analizi tablosu143	3
Tablo 4.75. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey	
pürüzlülükleri (Ra)144	4
Tablo 4.76. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğüne	
göre faktör seviyelerinin S/N oranı tablosu14	5
Tablo 4.77. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü	
varyans analizi tablosu140	5
Tablo 4.78. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen et	
kalınlığı dağılımları149	9
Tablo 4.79. DP600 sacının 60° kare piramit şekillendirilmesinde et kalınlığına göre	
faktör seviyelerinin S/N oranı tablosu150)
Tablo 4.80. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı varyans	
analizi tablosu15	1
Tablo 4.81. DP600 sacının 60° kare piramit şekillendirilmesinde deney faktörlerinin	
optimum seviyeleri152	2
Tablo 4.82. DKP 37 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz15	5
Tablo 4.83. DKP 37 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz150	5
Tablo 4.84. DKP 37 sacının 40° kare piramit şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz15	7
Tablo 4.85. DKP 37 sacının 60° kare piramit şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz158	3
Tablo 4.86. DP 600 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz159	9
Tablo 4.87. DP 600 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz160)
Tablo 4.88. DP 600 sacının 40° kare piramit şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz16	1
Tablo 4.89. DP 600 sacının 60° kare piramit şekillendirme deneyleri sonucunda	
yapılan Gri İlişkisel Analiz162	2

Tablo 4.90. Şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığını birlikte)
optimize eden deney parametre seviyeleri	.163
Tablo 4.91. Sadece yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden deney	7
parametre seviyeleri	.163
Tablo 4.92. Geri esneme miktarları	.189
Tablo 4.93. Deney süreleri	.191
Tablo 4.94. Sac metal kalıbı ile prototip üretim maliyeti	.192

ARTIMLI ŞEKİLLENDİRME YÖNTEMİNİN OTOMOTİV SEKTÖRÜ UYGULAMALARINA YÖNELİK OLARAK GELİŞTİRİLMESİ

ÖZET

Bu çalışmada, artımlı şekillendirme yöntemi üzerinde yenilik yapılarak "Kayar Artımlı Şekillendirme" yöntemi geliştirilmiştir. Geleneksel olarak artımlı şekillendirme yönteminde sac kenarlarından iş bağlama aparatına sabitlenmektedir. Sabitleme işlemi için cıvata veya klempler kullanılmaktadır. Şekillendirme esnasında sacın akışı engellendiği için, sacın et kalınlığında büyük değişimler meydana gelmektedir. Bu değişimleri azaltmak için, bu tezin özgün yönü olarak, sacın akışına izin verecek şekilde bir aparat tasarlanmıştır. Böylece et kalınlığının daha homojen olmasına çalışılmıştır.

Çalışma kapsamında geliştirilen Kayar Artımlı Şekillendirme (TPIF_RL) yöntemi ile DKP 37 ve DP600 saclarının şekillendirilebilirliği araştırılmıştır. Şekillendirme esnasında oluşan şekillendirme kuvvetleri belirlenmiştir. Deney sonucunda her bir numunenin et kalınlığı ve yüzey pürüzlülükleri ölçülmüştür. Bu üç bağımlı değişken için (şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığı) şekillendirme parametrelerinin optimizasyonu yapılmıştır. Daha sonra varyans analizi yapılmış ve parametrelerin birbirleri ile etkileşimleri incelenmiştir. Bu üç bağımlı değişkenin tahmini için %95 güven aralığında ikinci dereceden analitik denklemler oluşturulmuştur. Ayrıca, gri istatistiksel analiz yöntemi ile her üç bağımlı değişkeni birlikte optimize eden parametre seviyeleri belirlenmiştir.

Giriş bölümünde artımlı şekillendirme yöntemi kısaca anlatılmıştır. Literatür araştırması bölümünde artımlı şekillendirme ile ilgili daha önce yapılmış çalışmalardan örnekler verilerek, yöntem detaylı şekilde tanımlanmıştır. Materyal bölümünde, çalışma kapsamında kullanılan sacların özellikleri verilmiştir. Yöntem bölümünde ise bu çalışma kapsamında geliştirilmiş olan Kayar Artımlı Şekillendirme yöntemi ile araştırmada kullanılan ölçme ve değerlendirme yöntemleri açıklanmıştır. Deneysel çalışmaların sonuçları bölümünde deney sonuçları, parametrelerin optimizasyon çalışmaları, varyans analizi ve parametrelerin etkileşimleri incelenmiştir. Gri istatistiksel analiz ile optimum parametre seviyeleri belirlenmiştir. Ayrıca sonlu elemanlar analizi ile deneysel sonuçlar karşılaştırılarak geliştirilen sonlu elemanlar modelinin doğruluğu gösterilmiştir. Geri esneme analizi yapılarak deney sonunda sacların esneme miktarları belirlenmiştir. Prototip üretimi için, geliştirilen yöntem ile derin çekme yönteminin maliyet analizleri yapılarak kıyaslanmış ve geliştirilen yöntemin maliyet avantajı gösterilmiştir. Sonuç bölümünde ise yöntemin etkin kullanılabilirliğine ilişkin değerlendirmeler yapılmıştır.

Anahtar kelimeler: Artımlı şekillendirme, kayar artımlı şekillendirme, et kalınlığı dağılımı, şekillendirme kuvveti, metal şekillendirme, DKP 37, DP600, Cad/Cam, Cae

DEVELOPMENT OF INCREMENTAL FORMING METHOD FOR AUTOMOTIVE SECTOR APPLICATIONS

SUMMARY

In this study, "rolling blank holder incremental forming method" was developed by improving the traditional incremental forming method. In the traditional incremental forming method, sheet is fixed to the work holder apparatus from the sheet edges. Bolts or clamps were used for fixing. Since the flow of the sheet is prevented during forming, large changes occur in the wall thickness. In order to minimize these changes, an apparatus has been designed to allow the flow of the sheet as the original aspect of this thesis. This apparatus permits the flow of the sheet during forming. Thus, the wall thickness was more homogeneous.

In this study, the formability of DKP 37 and DP600 sheets was investigated by using Rolling Blank Holder Incremental Forming (TPIF_RL) method. The forming forces that occur during the forming were determined. As a result of the experiment, the wall thickness and surface roughness of each sample were measured. For these three dependent variables (shaping force, surface roughness and wall thickness), the forming parameters were optimized. Then, variance analysis was performed and the interaction of the parameters with each other was investigated. In addition, second order analytical equations were created in the 95% confidence interval for the estimation of these three dependent variables.

In the introduction section, the method of incremental forming was briefly explained. In the literature research, the method was described in detail by giving examples from previous studies on incremental forming. In the material section, the properties of the sheets used in the study were given. In the method section, Rolling Blank Holder Incremental Forming method developed in this study was explained. In addition, the parameters examined in the experiments and the evaluation methods of the test results were explained. The finite element model of the developed method was also defined. In the experimental results section experimental results, optimization of parameters, analysis of variance and interaction of parameters were investigated. In addition, by comparing the finite element analysis and experimental results, accuracy of the developed finite element model was shown. Springback analysis was performed. For the prototype production, the cost analysis of the deep drawing method was compared with the developed method. Then, the cost advantage of the developed method was shown. In the results section, evaluations were made regarding the effective usability of the method.

Keywords: Incremental forming, rolling blankholder incremental forming method, sheet thickness distribution, forming forces, sheet forming, DKP37, DP600, Cad/Cam, Cae

BÖLÜM 1. GİRİŞ

Günümüz imalat sanayiinde hızlı ve ucuz prototip üretimi büyük bir öneme sahiptir. Üretilen prototipin nihai ürün ile aynı özelliklere sahip olması ürün testleri ve değerlendirme aşamasında sanayicilere büyük kolaylıklar sağlamaktadır.

Artımlı şekillendirme, CNC tezgahlarda belirli bir takım yolunu izleyen küçük bir form takımının saca lokal baskı uygulayarak sacı şekillendirdiği yeni ve esnek bir prototip üretim yöntemidir. Özel bir pres kalıbına ihtiyaç duyulmadığı için bu yöntem hızlı ve ucuz prototip üretimi için idealdir.

DKP37 sacından üretilen metal parçalar otomotiv, havacılık, denizcilik, ev eşyaları gibi çok farklı alanlarda kullanılmaktadır. Genellikle bu parçalar derin çekme, sıvama, kesme gibi operasyonlarla şekillendirilmektedir. Ancak bu operasyonlarda genellikle pahalı ve üretimi zor kalıpların kullanıldığı görülmektedir. Oysa üretim maliyetlerini etkileyen bu durum için daha uygun prototip üretim yöntemleri tercih edilebilir. Bu çalışmada önerilen artımlı şekillendirme yöntemi diğer uygulamalara nazaran ucuz ve pratik bir sac şekillendirme yöntemi olarak değerlendirilmektedir (Malyer & Müftüoğlu, 2015). Bu yöntemin en önemli adımı, şekillendirilecek saca uygun bir form takımı seçilmesidir. Daha sonra form takımının parçanın yüzeyini takip edebildiği takım yolu oluşturulur. Sac, kenarlarından iş bağlama aparatına tutturulur. Form takımı oluşturulan takım yolunu takip ederek saca istenen formu verir.

Otomotiv sektöründe çelik saclar yaygın olarak kullanılmaktadır. Bu sacların kalınlıklarının azaltılması özellikle yakıt sarfiyatı açısından önem taşımaktadır. Fakat emniyet açısından sacların dayanımlarının da yüksek olması istenmektedir. İşte bu noktada çift fazlı, yüksek mukavemetli saclar gündeme gelmektedir. Bu özellikleri taşıyan DP600 sacı otomotiv sektöründe kullanılmaktadır (Çavuşoğlu & Gürün, 2014).

Artımlı şekillendirme yöntemi iki ana gruba ayrılmaktadır. İlki, tek noktadan temaslı artımlı şekillendirme yöntemi diğeri ise iki noktadan temaslı artımlı şekillendirme yöntemidir (S. B. M. Echrif & Hrairi, 2011). Artımlı şekillendirme yöntemi ve alt dalları Şekil 1.1'de gösterilmiştir.

Şekil 1.1. Artımlı şekillendirme yöntemi çeşitleri (Arfa, Bahloul, & Belhadjsalah, 2013).

Tek noktadan temaslı artımlı şekillendirme yönteminde sac, içi boş bir iş bağlama aparatı üzerine sabitlenir. Form takımının hareketiyle sac boşluğa doğru itilerek şekillendirilir. İki noktadan temaslı artımlı şekillendirme yönteminde ise sacın alt tarafında şekillendirilmek istenen geometrinin bir modeli bulunur. Sac, bu model üzerine sıvanarak şekillendirilir. Bahsedilen bu iş bağlama aparatı ve form takımı hızlı ve ucuz bir şekilde üretilebilmektedir. Artımlı şekillendirme yönteminin en önemli avantajı pahalı zımba ve kalıplara ihtiyaç duyulmamasıdır. Ayrıca, lokal deformasyon oluştuğu için şekillendirilebilirlik oranı da yüksektir. Bu yöntemle, özellikle uzama oranı küçük olan saclar rahatlıkla şekillendirilebilir (Pathak, 2017). Şekillendirme sırasında en büyük gerilme parça tabanında oluşur. Artımlı şekillendirme yöntemi bu gerilmeden olumsuz etkilenir. Et kalınlığı değişikliğinde bu gerilme önemli bir rol oynamaktadır (Hussain, Gao, & Hayat, 2011). Artım miktarı, ilerleme hızı gibi parametreler değiştirilerek bu gerilmenin azaltılması gerekmektedir.

Bu çalışmanın amacı, artımlı şekillendirme yönteminin makine ve otomotiv olmak üzere farklı sektörlere yönelik uygulanabilirliğini etkileyen parametrelerin optimum değerlerini belirleyerek uygun prototip üretim kalitesinin sağlamaktır. Bu amaçla anılan endüstrilerde yaygın olarak kullanılan olan DKP37 ve DP600 sacları deney materyali olarak seçilmiştir. Sıkma basıncı, artım miktarı, form takımı çapı ve ilerleme hızı deney parametreleri olarak seçilmiştir. Şekillendirme açısı olarak 40° ve 60° seçilmiştir. Parça geometrisi olarak eksenel simetrik koni ve kare piramit olmak üzere iki farklı geometri incelenmiştir. Şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığı açısından sonuçlar incelenerek optimum parametre seviyeleri belirlenmiş, parametrelerin birbirleri ile ilişkileri de incelenmiştir. Şekillendirilen parçalar 3D kamera ile taranarak geri esneme miktarları belirlenmiştir. Ayrıca çalışmanın sonunda farklı otomotiv parçaları şekillendirilerek yöntemin otomotiv sektörüne uygulanabilirliği gösterilmiştir.

BÖLÜM 2. LİTERATÜR ARAŞTIRMASI

Otomotiv ve imalat sektöründe ürün geliştirme sürecinin en uzun aşamalarından biri prototip üretimidir. Tasarımı geliştirilen araç ya da makinanın çeşitli özelliklerinin test edilmesi gerekmektedir. Bu testlere bağlı olarak elde edilen bilgilerin değerlendirilip gerekli görülen değişikliklerin düzenlenmesi sınırlı sayıda üretilen prototiplerle yapılmaktadır. Prototip imalatı için, seri üretimde kullanılan yöntemlerle elde edilecek olan nihai ürüne benzer (hem geometrik hem de mekanik / malzeme) ürünün üretilebileceği yenilikçi yöntemler, prototip imalatında öne çıkmaktadır (Baranoğlu, Music, Tamer, Sakin, & Durgun, 2012; B. Lu, Ou, Shi, Long, & Chen, 2014).

Prototip imalatındaki yenilikçi yöntemlerden biri de artımlı şekillendirme yöntemidir. Artımlı şekillendirme yöntemi, yeni ve özgün bir üretim teknolojisi olup mevcut CNC tezgâhlarla, pres kalıbına ihtiyaç duyulmaksızın şekillendirme yapılabilen ekonomik ve hızlı bir prototip üretim yöntemidir. Artımlı metal şekillendirme prosesinde parametrelerden biri de işlem esnasında sac ile temas eden noktanın sayısıdır. Sadece bir form takımı kullanıldığında temas noktası tektir. Şekillendirme için kullanılan ana takımın karşısında bir takım daha kullanıldığında veya sacın alt tarafında destek kullanıldığında ise temas sayısı ikidir. Bu yöntemlerden birincisi tek noktadan teması esasına dayanan ve sacın alt tarafından destek gerektirmeyen tek noktadan temaslı artımlı şekillendirme yöntemidir. Diğeri ise iki noktadan temaslı artımlı şekillendirme yöntemidir. İki noktadan temaslı artımlı şekillendirme işleminde eksenel simetrisi olmayan parçalar da şekillendirilebilmektedir (Câmara, 2009).

Artımlı şekillendirme yöntemi CNC freze ve torna tezgâhlarının yanı sıra robot kollar yardımıyla da yapılabilmektedir. Şekillendirilecek metal plaka özel iş bağlama aparatına cıvatalar ile sabitlenir. CAM programlarından elde edilen takım yolları kullanılarak metal plaka küresel uçlu bir takım ile baskı uygulanarak şekillendirilir. Şekil 2.1'de artımlı şekillendirme yönteminin işlem adımları verilmiştir.

Şekil 2.1. Artımlı şekillendirme işlem adımları (Paramo & Benitez, 2014)

Artımlı şekillendirme kavramı ilk kez 1967 yılında gündeme gelmiştir. O dönemde CNC tezgâhlar ve katı modelleme imkânı olmadığı için kullanılamamıştır. Önerilen yöntem için 'kalıpsız - dieless' adıyla patent alınmıştır (Nimbalkar & Nandedkar, 2013). CNC tezgâhların gelişmesi ile bu yöntem yine gündeme gelmiş ve büyük yankı uyandırmıştır. Literatürde artımlı şekillendirme yöntemi ile ilgili yapılmış çeşitli çalışmalar bulunmaktadır. Çalışmalar alüminyum alaşımlarının ve paslanmaz çelik sacların artımlı şekillendirilmesi üzerine yoğunlaşmıştır (Mugendiran & Gnanavelbabu, 2014). Ayrıca medikal implant olarak kullanılan küçük boyutlu parçaların da artımlı şekillendirilmesi hakkında çalışmalar mevcuttur (R Araújo, Teixeira, Silva, Reis, & Martins, 2013; Vanhove, Carette, Vancleef, & Duflou, 2017).

Kim ve Park çalışmalarında 0,3 mm kalınlığındaki alüminyum sacın artımlı şekillendirilebilirliğini incelemişlerdir (Kim & Park, 2002). Takım çapı, takım tipi, sürtünme, ilerleme hızı gibi parametrelerin etkilerini araştırmışlardır. Yaptıkları deneylerde 5 mm, 10 mm ve 15 mm çaplı küresel uçlu ve ucunda bilye bulunan takımlar kullanmışlardır. Deneylerde yukarıda tanımlanan parametrelerin etkilerini kuru ve yağlı

olmak üzere araştırılmışlardır. PAM-STAMP programı ile simülasyon yaparak deney sonuçlarıyla kıyaslama yapmışlar ve sonuç olarak bilyeli takımların küresel uçlu takımlardan daha etkili olduğunu, yağlamanın işlem verimi açısından önemli olduğunu ortaya koymuşlardır.

Iseki çalışmasında 0,3 mm kalınlığında tavlanmış alüminyum sacın artımlı şekillendirilebilirliğini; bilyeli takımın uç radyüsü, kalıp radyüsü ve kalıp boşluğunun şekillendirmeye etkilerini deneysel ve teorik olarak araştırmıştır (Iseki, 2001). Ayrıca deneylerde kuvvet ölçümü de yaparak ANSYS programı ile gerçekleştirdiği simülasyon sonuçlarını karşılaştırmış, deney ve simülasyon sonuçlarının birbirleri ile örtüştüğünü belirlemiştir.

Park ve Kim tek noktadan temaslı artımlı şekillendirme ve alttan destekli artımlı şekillendirme yöntemlerini kıyaslamışlardır (Park & Kim, 2003). Deneylerde 0,3 mm kalınlığındaki alüminyum sacdan farklı tip geometriye sahip modelleri başarıyla şekillendirmişlerdir. Artım miktarı olarak 0,2 mm, takım ilerlemesi olarak 25 mm/s almışlardır. PAM-STAMP programı ile simülasyon yaparak deney sonuçlarıyla kıyaslama yapmışlardır. Tek noktadan temaslı artımlı şekillendirme yönteminde, köşelerde yırtılmaların meydana geldiğini belirtmişlerdir. İki noktadan temaslı artımlı şekillendirme yönteminde ise düzenli gerilme dağılımı oluştuğu için bu yöntemin daha verimli olduğunu belirlemişlerdir. Köşeleri veya keskin kenarları olmayan parçalarda tek noktadan temaslı artımlı şekillendirme yönteminde ise düzenli gerilme dağılımı oluştuğu için bu yöntemin daha verimli olduğunu belirlemişlerdir. Köşeleri veya keskin kenarları olmayan parçalarda tek noktadan temaslı artımlı şekillendirme yönteminde ise düzenli gerilme dağılımı oluştuğu için bu yöntemin daha verimli olduğunu belirlemişlerdir. Köşeleri veya keskin kenarları olmayan parçalarda tek noktadan temaslı artımlı şekillendirme yönteminin de iyi sonuçlar verdiğini ortaya koymuşlardır.

Pohlak ve arkadaşları, çalışmalarında 1 mm kalınlığında %99,6 saflığa sahip tavlanmış alüminyum sacın alttan destekli ve desteksiz olmak üzere iki farklı yöntemle artımlı şekillendirilebilirliğini araştırmışlardır (Pohlak, Küttner, Majak, Karjust, & Sutt, 2004). Alttan destekli artımlı şekillendirme yöntemi daha pahalı olmasına rağmen bu yöntem ile daha doğru bir geometri elde edilebileceğini ortaya koymuşlardır.

Ambrogio ve arkadaşları, 1 mm kalınlığındaki DDQ sacının artımlı şekillendirilebilirliğini araştırmışlardır (G. Ambrogio, De Napoli, Filice, Gagliardi, &

Muzzupappa, 2005). 0,5 mm artım miktarı, 1000 mm/dakika ilerleme hızı ve 11 mm çaplı form takımı kullanılarak ayak bileği destek implantını başarı ile üretmişlerdir.

Mumcu, Al–1050-H14 sacının artımlı şekillendirilebilirliğini araştırarak limit şekillendirme açısının 61° olduğunu belirlemiştir (Mumcu, 2009). Hirt ve arkadaşları çalışmalarında 1 mm ve 1,5 mm kalınlığındaki yumuşak çelik sacların artımlı şekillendirilebilirliğini incelemişlerdir (Hirt, Ames, Bambach, & Kopp, 2004). Söz konusu olan saclar için 60° olan şekillendirme limitinin, kademeli şekillendirme yöntemi ile 81°'ye kadar çıkartılabileceğini göstermişlerdir. Deneylerini 45° başlangıç açısı ve 3°-5° kademeli artımlar kullanarak yapmışlardır. Deneysel çalışmaların yanı sıra ABAQUS/explicit kullanarak sonlu elemanlar analizi de yapmışlardır.

Verbert ve arkadaşları çalışmalarında, AA3103 sacının çok kademeli artımlı şekillendirilmesini araştırmışlardır (Verbert vd., 2008). Bu yöntem sayesinde saca 90° açı vermeyi başarmışlardır. Deneysel çalışmanın yanı sıra sonlu eleman analizi de yapmışlardır. Deney ve simülasyon sonuçlarının birbirleriyle uyumlu olduğunu göstermişlerdir.

Al-Ghamdi ve Hussain çalışmalarında farklı saclarda takım radyüsü/et kalınlığı oranının şekillendirilebilirliğe etkisini araştırmışlar (K. A. Al-Ghamdi & Hussain, 2015). Optimum takım yarıçapının et kalınlığının 2,2 katı olduğunu belirtmişlerdir. Çok küçük yarıçaplı takım kullanıldığında, form takımının kesici takım gibi davrandığını ve stabil olmayan deformasyon oluştuğunu saptamışlardır.

Behera ve arkadaşları TiGr1 sacının tek noktadan temaslı artımlı şekillendirme yöntemi ile şekillendirilebilirliğini araştırmışlar, implantlarda kullanılan bu sacın istenilen toleranslarda şekillendirilemediğini ifade etmişlerdir (Behera, Lu, & Ou, 2016).

Daleffe ve arkadaşları TiGr2 sacının tek noktadan temaslı artımlı şekillendirme yöntemi ile şekillendirilebilirliğini araştırmışlardır (Daleffe, Schaeffer, Fritzen, & Castelan, 2013). Maksimum çekme açısını 47°, takım ile temas eden bölgedeki yüzey pürüzlülüğünü 5,19

μm, diğer yüzeydeki yüzey pürüzlülüğünü 4,5 μm olarak bulmuşlar. Başlangıçtaki et kalınlığı 0,5 mm olan sacın 0,25 mm'ye kadar inceldiğini görmüşlerdir.

Artımlı şekillendirme sonucunda oluşan en küçük et kalınlığını tahmin etmek için bazı araştırmacılar sinüs kanununu kullanmaktadırlar (Brosius, 2014; Y. Li vd., 2014; Lingam, Bansal, & Reddy, 2016; Mohammadi, Vanhove, Van Bael, & Duflou, 2016). Sinüs kanunu Eşitlik 2.1'de verilmiştir. Sinüs kanununda kullanılan terimler Şekil 2.2'de gösterilmiştir.

Şekil 2.2. Sinüs kanununun gösterimi (Brosius, 2014)

$$t_1 = t_0 * \sin(90 - \alpha) \tag{2.1}$$

Buradaki t_1 sacın şekillendirme sonrası tahmini et kalınlığıdır. t_0 ise sacın ilk et kalınlığıdır (Şekil 2.2). Sinüs kanunuyla işlem yapılırken şekillendirilen yüzeyde et kalınlığı değişiminin homojen olduğu ve et kalınlığının her yerde aynı olduğu kabul edilmektedir. Et kalınlığı hesaplanırken malzeme özellikleri dikkate alınmadığı için, hesaplanan et kalınlığı yakın olmakla birlikte gerçek durumdan biraz daha yüksek çıkmaktadır.

Artımlı şekillendirme yöntemi makine, otomotiv, biyomedikal, havacılık vb. farklı alanlara uygulanabilmektedir. Araghi ve arkadaşları çalışmalarında Airbus A320'ye ait bir şase destek parçasını bu yöntemle başarılı olarak şekillendirmişlerdir (Araghi vd., 2011).

Li ve arkadaşları da başka bir uçak parçasının artımlı şekillendirme yöntemi ile şekillendirilebilirliğini araştırmışlardır (X. Li, Han, Yu, Zhang, & Li, 2016). Çalışma sonucunda alüminyum-bakır-magnezyum alaşımından bir uçak parçasını başarılı olarak şekillendirmişlerdir.

Literatür incelendiğinde artımlı şekillendirme yöntemi ile implant üretimine yönelik çalışmalar da görülmektedir. Araştırmacılar bu alandaki çalışmalarında özellikle kafatası implantı üretimine yoğunlaşmışlardır (Giuseppina Ambrogio vd., 2017; Rogério Araújo vd., 2014; Bagudanch vd., 2015; B. Lu vd., 2014; Vanhove vd., 2017). Şekil 2.3'de artımlı şekillendirme yöntemi ile üretilen bir kafatası implantı gösterilmiştir.

Şekil 2.3. Kafatası implantı (Castelan vd., 2014)

Artımlı şekillendirme sonrası sac yüzeyinde takım yolu izleri oluşabilmektedir. Bu izlerin büyüklükleri şekillendirme parametrelerine bağlı olarak değişkenlik göstermektedir. Artımlı şekillendirme yönteminde yüzey pürüzlülüğü oluşumu Şekil 2.4'de verilmiştir.

Şekil 2.4. Yüzey pürüzlülüğü oluşumu (Salah B. M. Echrif & Hrairi, 2014)

Artım miktarı (A), form takımının parçanın etrafında bir tam tur dönüşünde düşey eksendeki hareket miktarıdır. Artım miktarı yüzey pürüzlülüğünü doğrudan etkilemektedir. Artım miktarı büyüdükçe dikey yönde hareket miktarı artmaktadır. Dolayısıyla Şekil 2.4'de gösterilen ardışık takım sınırları ile levha teğet noktaları arasında kalan alan (dolu olarak taranmış alan) da artmaktadır (Salah B. M. Echrif & Hrairi, 2014). Bu alanın artması yüzey pürüzlülüğünü artırmaktadır. Artım miktarının azalması ise taralı alanı azaltmaktadır. Bu da yüzey pürüzlülüğünün azalmasına neden olmaktadır. Kuşkusuz takım geçişleri arasında kalan bu tepecik kesitlerinin büyüklüğü artım miktarının yanı sıra takım çapına da bağlı olduğu söylenebilir.

Şekillendirme esnasında uygulanan lokal baskı kaldırıldığında sacda geri esneme oluşmaktadır. Geri esnemenin büyüklüğü sacın malzeme yapısı ve şekillendirme parametreleri ile doğrudan ilgilidir. Pohlak ve arkadaşları çalışmalarında 1mm kalınlığındaki alüminyum sacın şekillendirme sonrasında yaklaşık 1,5 mm esnediğini görmüşlerdir (Pohlak vd., 2004). Asghari ve arkadaşları 1,5 mm kalınlığındaki Al 1050 sacını şekillendirmişlerdir (Asghari, Sarband, & Habibnia, 2017). Deneyler neticesinde geri esnemenin 1,8 mm olabildiğini görmüşlerdir.

Bayram ve Köksal yaptıkları çalışmada AA 2024 sacının artımlı şekillendirilebilirliğini araştırmışlardır (Bayram & Köksal, N., 2015). Çalışmada bor yağı ve sıvama yağını yağlayıcı olarak kullanmışlardır. Bu yağlayıcıların şekillendirme üzerinde etkilerinin olmadığını belirlemişlerdir. Ayrıca, 500 adetten az olan parti üretimlerinde artımlı şekillendirme yönteminin pres kalıplarıyla üretim yöntemine göre çok daha ekonomik olduğunu bildirmişlerdir.

Malyer ve Müftüoğlu DC01 sacından değişken açılı geometriye sahip bir parçanın artımlı şekillendirme yöntemi ile üretilebilirliğini araştırmışlardır (Malyer & Müftüoğlu, 2015). Sacı farklı yağlayıcı ve takım kaplamaları ile şekillendirmişlerdir. Form takımının CrCN ile kaplanmasının ve derin çekme yağının kullanılmasının en iyi geometrik doğruluğu verdiğinin göstermişlerdir.
Literatüre göre, artımlı şekillendirme yöntemi, prototip üretimi için (Lehtinen, Väisänen, & Salmi, 2015) ekonomik olmasının yanı sıra küçük hacimli üretim işlemlerinde de ekonomiktir (Duc-toan, Seung-Han, Dong-Won, Tae-Hoon, & Young-Suk, 2011; H. Lu, Kearney, Liu, Daniel, & Meehan, 2016; Najafabady & Ghaei, 2016; Otsu, Ogawa, & Muranaka, 2017). Cooper ve Gutowski otomotiv sektörün için 250 adet parçanın prototip üretiminde artımlı şekillendirme yönteminin oldukça büyük bir maliyet avantajı sağladığını göstermişlerdir (Cooper & Gutowski, 2018). Altta model bulunan artımlı şekillendirme yöntemi tek noktadan temaslı artımlı şekillendirme yöntemine göre daha pahalıdır (Isidore, 2014).

Arshad, yüksek lisans çalışmasında artımlı şekillendirme için maliyet analizi yapmıştır ve bu yöntemin küçük hacimli üretim partileri için maliyet açısından verimli olduğunu belirtmiştir (Saad Arshad, 2012). Küçük hacimli üretimlerde artımlı şekillendirme yönteminin derin çekme yöntemine göre yaklaşık 21 kat daha ekonomik olduğunu göstermiştir.

Eksteen, yüksek lisans çalışmasında artımlı şekillendirme yöntemi ile protez üretimi gerçekleştirmiştir (Eksteen, 2013). Çalışma kapsamında maliyet analizi de yapmıştır. Geleneksel artoplasti yöntemine göre artımlı şekillendirme yöntemi ile implant üretiminin %45 daha ekonomik olduğunu göstermiştir.

sadece Artımlı şekillendirme yöntemiyle metaller değil, plastikler de şekillendirilebilmektedir. Sakin ve Durgun çalışmalarında, artımlı şekillendirme yöntemiyle PE ve PA levhaların şekillendirilebilirliğini araştırmışlardır (Sakin & Durgun, 2013). Araştırmacılar sacı kenarlarından cıvatalarla sabitleyerek iş bağlama aparatına tutturarak şekillendirmişlerdir. Şekillendirme neticesinde oluşan geometrik sapmaların otomotiv endüstrisinde kabul edilebilen limitlerin dışında olduğunu belirtmişlerdir. Anılan yazarlar bir başka çalışmalarındaysa (Durgun & Sakin, 2016) DC04 sacından araç çamurluğunun şekillendirilmesini araştırmışlardır. Anılan çalışmada sacın altında modeli bulunan ve tek noktadan temaslı artımlı şekillendirme yöntemleri kullanılmıştır. Tek noktadan temaslı artımlı şekillendirme yönteminde geri esneme miktarının otomotiv sektöründe kabul edilebilir limitlerin dışında olduğunu belirlemişlerdir. Sacın altında modeli bulunan artımlı şekillendirme yöntemindeyse geri esnemenin daha az olduğunu tespit etmişlerdir.

Deneylerde kullanılan parametrelere bağlı olarak sacda yırtılmalar oluşabilmektedir (Davarpanah, Mirkouei, Yu, Malhotra, & Pilla, 2015; Desai, Desai, & Raval, 2014; Tamer vd., 2013). Deney parametreleri optimize edilerek yırtılma önlenebilmektedir. Ambrogio ve arkadaşları bir milimetre kalınlığındaki AL1050-O sacının artımlı şekillendirilebilirliğini araştırmışlardır (G. Ambrogio, Filice, Gagliardi, & Micari, 2005). Koni ve kare piramit geometrilerinin şekillendirilmesinde et kalınlığı değişimini araştırmışlardır. Ayrıca deneysel sonuçları Dynaform programı ile yaptıkları simülasyon sonuçları ile karşılaştırarak sonuçların örtüştüğünü göstermişlerdir.

BÖLÜM 3. MATERYAL VE YÖNTEM

3.1. Materyal

Bu çalışmada DKP37 ve DP600 sacları şekillendirilmiştir. DKP saclar endüstride yaygın olarak kullanılmaktadır (Karataş, 2009; Mutlu, 2012). DKP37, sıcak haddeleme işleminden sonra oluşan oksit tabakası asitle temizlenmiş sacdır (Kurtuluş, 2007). Deneylerde 1 mm kalınlığında, akma gerilmesi 276,5 MPa, çekme gerilmesi ise 365,7 MPa olan DKP 37 sacı şekillendirilmiştir. Bu sacın young modülü 210000 MPa, poisson oranı 0,3'tür. Sertliği ise 44.264 HB'dir. Bu sac, makine ve beyaz eşya endüstrisinde yaygın olarak kullanılmaktadır. Bu nedenle bu çalışmada DKP37 sacı tercih edilmiştir. Saca ait kimyasal özellikler Tablo 3.1'de verilmiştir.

С	Mn	Р	Cr	S	Ni
0,0962	0,414	0,0174	0,00751	0,0187	0,00916
Al	Nb	Ti	Sn	Sn	Fe
0,0148	0,00204	0,00028	0,00251	0,00251	99,42

Tablo 3.1. DKP 37 sacının kimyasal özellikleri (Bal, 2007)

DP600 sacı otomotiv endüstrisinde yaygın olarak kullanılmaktadır (Çavuşoğlu & Gürün, 2014; Şen, 2018; R. Uzun, 2016). Özellikle tavan destek sacı, travers, kapı kirişi, tampon vb bölgelerde kullanılmaktadır (Esener & Fırat, 2014; Kiliç & Öztürk, 2016; Yıldırım, 2017). Bu çalışmada, DKP37sacının yanı sıra, 1 mm kalınlığa sahip DP600 sacının da kayar artımlı şekillendirme yöntemi ile şekillendirilebilirliği araştırılmıştır. Kullanılan DP600 sacının akma gerilmesi 422 MPa, kopma gerilmesi ise 641 MPa'dır. DP600 sacının young modülü 206824 MPa, poisson oranı 0,3'tür. Sertliği ise 147 HB'dir. DP600 sacının kimyasal özellikleri Tablo 3.2'de verilmiştir.

Tablo 3.2. DP600 sacının kimyasal özellikleri (Çavuşoğlu & Gürün, 2014)

С	Mn	Мо	Cr	Si
0,1	1,523	0,196	0,197	0,157

Deneyler DAHLIH MCV 860 CNC freze tezgahında yapılmıştır. Tezgâhın işleme kapasitesi 950 mm X 550 mm'dir. Tezgâhın kesme hareket hızı maksimum 10 m/dak'dır. İş mili motor gücü 11 kW'dır. Deneylerin yapıldığı CNC freze tezgâhı Şekil 3.1'de verilmiştir.

Şekil 3.1. DAHLIH MCV 860 CNC freze tezgâhı.

Şekil 3.2 ve Şekil 3.3'de şekli verilmiş olan, yatayla 40° ve 60° (α) açılı eksenel simetrik ve kare piramit geometriye sahip parçalar şekillendirilmiştir. Literatür incelendiğinde artımlı şekillendirme üzerindeki en etkili faktörlerin ilerleme hızı, artım miktarı ve form takımı çapı olduğu görülmektedir (Fan, Gao, Hussain, & Wu, 2008; Liu, Li, Daniel, & Meehan, 2014; Wu, Reis, Pires, Santos, & Da Rocha, 2012). Bu çalışmada da bu faktörlerin etkileri incelenmiştir.

Şekil 3.2. Eksenel simetrik koni deney numunesi ve ölçüleri ($\alpha\!=\!\!40^\circ$)

Şekil 3.3. Kare piramit deney numunesi ve ölçüleri (α =40°)

3.2. Yöntem

3.2.1. Deney Düzeneğinin Geliştirilmesi

Geleneksel artımlı şekillendirme yönteminde şekillendirilecek sac, kenarlarından iş bağlama aparatına sabitlenmektedir. Sabitleme işlemi için cıvata veya klempler kullanılmaktadır (Bahloul, Arfa, & Belhadjsalah, 2014; Hapsari, Ben, Richard, Thibaud, & Malécot, 2017; Said, Mars, Wali, & Dammak, 2017; Z. Zhang vd., 2016). Şekillendirme esnasında sacın kenarlarının hareketi engellendiği için, sacın et kalınlığında büyük değişimler meydana gelmektedir (Attanasio, Ceretti, Giardini, & Mazzoni, 2008; Markanday & Nagarajan, 2018). Bu değişimleri en aza indirebilmek için, bu çalışmada, sacın akışına izin verecek yeni bir yöntem geliştirilmiştir. Böylece et kalınlığının daha homojen olacağı öngörülmüştür.

Geliştirilen bu yöntemde sacı, iş bağlama aparatına tutturmak için Şekil 3.4'de gösterilen pnömatik klemp kullanılmıştır. Pnömatik klempe farklı basınçlar uygulanarak elde edilen sıkma kuvvetleri ölçülmüştür. Farklı basınçlardaki ölçümler sonucunda oluşan kuvvetler Tablo 3.3'de verilmiştir.

Şekil 3.4. Pnömatik klemp baskı kuvveti ölçümü.

Basınç	Ölçülen Kuvvet
(bar)	(Newton)
1	76,823
2	187,28
3	229,021
6	604,392
9	1039,02

Tablo 3.3. Piston baskı kuvvetleri.

Bu çalışma kapsamında ilk geliştirilen deney setinde pnömatik klemplerin ucuna plakalar yerleştirilmiştir. İlk deney setinde, her bir kenarda iki klemp bulunacak şekilde toplam 8

klemp kullanılmıştır. Şekil 3.5 ve Şekil 3.6'de bu çalışma kapsamında ilk geliştirilen baskı plakalı artımlı şekillendirme iş bağlama aparatının genel görünümü verilmiştir.

Şekil 3.5. Baskı plakalı artımlı şekillendirme deney seti.

Kompresörden gelen basınçlı hava, şartlandırıcıdan geçirilerek deneyde kullanılacak seviyeye ayarlanmaktadır. Hazırlanan deney setinde 5 yollu 3 konumlu yön kontrol valfi kullanılmıştır. Yön kontrol valfinin uçlarına 2 adet distribütör bağlanmıştır (Şekil 3.6).

Şekil 3.6. Baskı plakalı artımlı şekillendirme deney seti genel görünümü.

Şekil 3.5'de verilen 8 pnömatik klempin kullanıldığı sistemde farklı basınçlarla bir dizi deney yapılmıştır. Bu ön deneylerde 0,5 bar, 1 bar, 2 bar, 3 bar, 6 bar ve 9 bar olmak üzere altı farklı sıkma basıncı kullanılmıştır. Çok küçük sıkma basınçları kullanılmasına rağmen deneylerde sacın sabit kaldığı (modele doğru akmadığı) görülmüştür. Sacın akışını sağlamak için her bir kenardaki pnömatik klemp adedi bire düşürülmüştür. Sonraki deneyler toplam dört adet pnömatik klemp kullanılarak yapılmıştır. Bu deneylerde 1 bar sıkma basıncında sacın model üzerine çok az aktığı gözlemlenmiştir. Diğer basınçlarda sıkma kuvveti büyük geldiği için sacın model üzerine akmadığı gözlemlenmiştir. O nedenle pnömatik klemplere bağlı olan plakalar sökülmüştür. Sacın akışını kolaylaştırmak için Şekil 3.7'da gösterilen rulmanlı baskı sistemi geliştirilmiştir. Bu sistemde pnömatik klempin ucuna bilyeli rulman yerleştirilmiştir. Geliştirilen rulmanlı baskı sistemiyle saca hem kuvvet uygulanmakta hem de sacın modele doğru akışına izin verilmektedir. Rulmanlı baskı sisteminin kullanıldığı ön deneylerde 1 bar ve 2 bar basınçlarda sacın model üzerine akabildiği gözlemlenmiştir. Sıkma basıncı olarak 9 bar kullanıldığında ise, sıkma kuvveti çok büyük olduğu için sac modele doğru akamamaktadır.

Şekil 3.7. Rulmanlı baskı sistemi.

Şekil 3.8'de bu çalışma kapsamında geliştirilen, dört adet pnömatik klempin kullanıldığı kayar artımlı şekillendirme yöntemine (TPIF_RL) ait deneylerden bir görünüm verilmiştir.

A

B

Şekil 3.8. Eksenel simetrik parçada kayar artımlı şekillendirme yönteminin kullanımı. A: Deney anı, B: Deney sonrasında elde edilen parça.

Bu çalışmada pnömatik klemplere 2 bar basınç uygulanarak oluşturulan sıkma kuvveti, sacın model üzerine doğru akmasına izin verecek seviyededir. 9 bar basınç uygulanarak oluşturulan sıkma kuvvetinde ise sacın akmasına izin verilmediği için 9 bar basınç geleneksel artımlı şekillendirme yöntemini temsil etmektedir.

Bu çalışma kapsamında geliştirilen deney seti üzerinde şekillendirme işleminin başladığı an Şekil 3.9'da verilmiştir. Geliştirilen kayar artımlı şekillendirme yönteminin (TPIF_RL) detaylı izahı ise Şekil 3.10'da verilmiştir (Seçgin & Özsert, 2018). Sacın alt tarafında üretilmek istenen geometrinin modeli bulunmaktadır. Sac, form takımının hareketi ile bu model üzerine sıvanmaktadır. İşlem esnasında rijitliği sağlamak için, sac kenarlarına çizgisel kuvvet uygulayan baskı plakaları kullanılmıştır. Baskı plakalarının saca uyguladığı kuvvet pnömatik klemplerle kontrol edilmektedir.

Şekil 3.9. Geliştirilen deney setinden şekillendirme işleminin başladığı an

Şekil 3.10. Kayar artımlı şekillendirme yöntemi

Burada,

- S-T: Form takımının temas etmediği bölge
- T: Şekillendirmeye başlanılan nokta
- T-U: Şekillendirilmiş bölge
- U-V: Yığılma bölgesi
- V-W: Şekillendirilmemiş gergin bölge

W: Sıkma kuvvetinin uygulandığı noktaW-X: Şekillendirilmemiş ve gergin olmayan bölgeY-Z: Sacın tutucu çerçeveye temas ettiği bölge

Sacın tutturulduğu plaka (sac tutucu çerçeve) köşelerinde bulunan silindirik kolonlar boyunca aşağı-yukarı hareket edebilmektedir. Şekillendirme esnasında sac tutucu kendi ağırlığıyla aşağı doğru kaymaktadır. Sac tutucu çerçevenin aşağı-yukarı hareketini kolaylaştırabilmek için sac tutucunun köşelerine bilyeli yataklar yerleştirilmiştir. Bilyeli yataklar kolon üzerinde rahatlıkla hareket edebilmektedir. Şekil 3.11'da şekillendirme esnasından bir görünüm verilmiştir.

Geleneksel artımlı şekillendirme yönteminde sac, kenarlarından cıvatalarla sabitlenmektedir. Bu çalışmada geliştirilen TPIF-RL yönteminde ise sac, kenarlarından cıvatalarla sabitlenmemekte, derin çekme yönteminde olduğu gibi baskı plakası ile saca kuvvet uygulanmaktadır. Derin çekme işleminde baskı plakası kuvveti şekillendirmeyi büyük oranda etkilemektedir. Baskı plakası kuvveti olması gerekenden az geldiğinde kırışıklık (ondülasyon), fazla geldiğinde ise yırtılmalar oluşmaktadır (Aytaç, 2007; Özbay, 2012; Ünal, 2011). Geliştirilen yöntemde, derin çekmede görülen bu olumsuzluklar görülmemektedir.

Şekil 3.11. Kayar Artımlı Şekillendirme yöntemi ile sacın şekillendirilmesi

3.2.2. Deneylerin Yürütülmesi

Geliştirilen kayar artımlı artımlı şekillendirme yönteminde farklı malzemelerin şekillendirilmesi değişik klemp basıncı (sıkma basıncı), ilerleme hızı, artım miktarı ve form takımı çapı bağımsız değişkenleri dikkate alınarak incelenmiştir. Tablo 3.4'de bu çalışma kapsamında kullanılan deney parametreleri ve seviyeleri verilmiştir.

E-14%	Seviyeler			D
Faktor	1	2	3	Birim
Basınç	2	9	-	bar
İlerleme Hızı	500	1000	1500	mm/dak
Artım Miktarı	0,25	0,5	0,75	mm
Form Takımı Çapı	5	10	15	mm

Tablo 3.4. Deney parametreleri ve seviyeleri

Et kalınlığı dağılımının daha homojen olmasını sağladığı için spiral takım yolu kullanılarak parçalar şekillendirilmiştir (Blaga & Oleksik, 2013; Cao, Lu, Ou, Long, & Chen, 2016; Davarpanah, Zhang, Bansal, Cao, & Malhotra, 2016; Duflou vd., 2010; Hussain & Gao, 2007; Khazaali & Fereshteh-Saniee, 2016; Mulay, Ben, Ismail, & Kocanda, 2017). Deneylerde kullanılan spiral takım yolu Şekil 3.12'de verilmiştir.

Şekil 3.12. Spiral takım yolu

Şekillendirmeye olumlu etkisinden dolayı birçok araştırmacı fener milini serbest bırakmıştır (Centeno, Bagudanch, Martínez-Donaire, García-Romeu, & Vallellano, 2014;

Ingarao, Vanhove, Kellens, & Duflou, 2014; Montanari, Cristino, Silva, & Martins, 2013). Bu çalışmada da fener miline devir verilmemiştir. Şekillendirme esnasında oluşan kuvvetlerin etkisiyle form takımı kendiliğinden 35-40 dev/dak ile dönebilmektedir. Programda ayrı bir devir kodu tanımlanmamıştır. Literatür incelendiğinde artımlı şekillendirme yönteminde yağlayıcı olarak molibden disülfit (MoS2) kullanımının iyi sonuç verdiği görülmüştür (Azevedo vd., 2015; Hussain vd., 2008; B. Lu vd., 2015; Q. Zhang vd., 2010). O nedenle bu çalışmada da yağlayıcı olarak MoS2 kullanılmıştır.

Bir çok araştırmacı, deney tasarımı ve yeterli deney sayısını belirlemek amacıyla Taguchi metodunu kullanmıştır (Elcioglu, Yazicioglu, Alpaslan, & Anagun, 2018; Kotcioglu, Khalaji, & Cansiz, 2018; Pant & Rai, 2018; Ugrasen vd., 2018). Bu çalışmada da deney tasarımı Taguchi metoduna göre yapılmış ve L18 ortogonal dizini ele alınarak her bir geometri için 18'er deney yapılmıştır. Deneylerde kullanılan deney planı Tablo 3.5'de verilmiştir.

		and the second sec		
Deney No	Basınç	İlerleme Hızı	Artım miktarı	Form Takımı Çapı
1	2	500	0,25	5
2	2	500	0,5	10
3	2	500	0,75	15
4	2	1000	0,25	5
5	2	1000	0,5	10
6	2	1000	0,75	15
7	2	1500	0,25	10
8	2	1500	0,5	15
9	2	1500	0,75	5
10	9	500	0,25	15
11	9	500	0,5	5
12	9	500	0,75	10
13	9	1000	0,25	10
14	9	1000	0,5	15
15	9	1000	0,75	5
16	9	1500	0,25	15
17	9	1500	0,5	5
18	9	1500	0.75	10

Tablo 3.5. Deney planı

Tablo 3.5'de verilen deney seti kullanılarak iki farklı sac ve dört farklı geometri için toplam 144 deney yapılmıştır. Deney planına ait detaylar Tablo 3.6'da verilmiştir.

Sac cinsi	Açı	Geometri	Yapılacak deney sayısı	Toplam deney sayısı	
DKP37 —	400	Eksenel simetrik koni	18		
	40	Kare piramit	18		
	(0)	Eksenel simetrik koni	18		
	60°	Kare piramit	18	144	
DP600 —	109	Eksenel simetrik koni	18	144	
	40-	Kare piramit	18	-	
	Eksenel simetrik k		18	-	
	00-	Kare piramit	18	-	

Tablo 3.6. Toplam deney sayısı

Şekil 3.13 ve Şekil 3.14'de bu çalışma kapsamında şekillendirilen saclardan örnekler verilmiştir.

B

Şekil 3.13. Deneylerde şekillendirilen parçalar. A: 40° eksenel simetrik, B: 60° eksenel simetrik, C: 40° kare piramit, D: 60° kare piramit

Şekil 3.14. Deneylerde şekillendirilen saclardan örnek (40° kare piramit)

Tez çalışmalarına ait çalışma planı, Şekil 3.15'te akış diyagramı formunda verilmiştir.

Şekil 3.15 Tez çalışmalarının planı

3.2.3. Et Kalınlığının Belirlenmesi

Deneyler sonucunda elde edilen numuneler parça merkezinden başlayarak beşer milimetre aralıklarla markalanmıştır. Daha sonra 0,01 mm hassasiyetli Mitutoyo Absolute 543-682 komparatör ile parçaların et kalınlıkları ölçülmüştür. Kullanılan komparatörün ölçüm aralığı 0-12,7 mm doğruluğu ise 0,02 mm'dir. Şekil 3.16'te et kalınlıklarının ölçümünde kullanılan ölçüm aparatı verilmiştir.

Şekil 3.16. Et kalınlığı ölçümü. A: Et kalınlığı ölçümünde kullanılan komparatör saati. B: Et kalınlığı ölçüm aparatı, C: Et kalınlığı ölçme işlemi.

3.2.4. Yüzey Pürüzlülüğünün Belirlenmesi

Yüzey pürüzlülüğü ölçümleri Mahr MarSurf PS1 yüzey pürüzlülük ölçüm cihazı ile yapılmıştır. Cihazın ölçüm aralığı 350 µm'dir. Örnekleme sayısı 5, örnekleme uzunluğu ise 12,5 mm'dir. Ölçümler form takımının saca temas ettiği işlenmiş bölgeden yapılmıştır. Her bir parça üçer defa ölçülmüştür. Daha sonra bu ölçümlerin aritmetik ortalaması alınarak parçanın yüzey pürüzlülüğü belirlenmiştir. Şekil 3.17'da yüzey pürüzlülüğü ölçüm anından bir görüntü verilmiştir.

Şekil 3.17. Yüzey pürüzlülüğü ölçümü. A: yüzey pürüzlülük ölçüm cihazı. B: Yüzey pürüzlülüğü ölçüm anı.

3.2.5. Şekillendirme Kuvvetinin Belirlenmesi

Kuvvet ölçümleri tarafımızdan geliştirilmiş olan üç eksenli kuvvet ölçüm sistemiyle yapılmıştır. Anılan kuvvet ölçüm sisteminin montaj çizimi Şekil 3.18'de verilmiştir. Kuvvet ölçüm sisteminde kullanılmış olan yük hücrelerinin kapasiteleri 1000 kg, hassasiyetleri ise 0,2 kg'dır. X ve Y yönlerindeki kuvveti ölçmek için S tipi yük hücreleri kullanılmıştır (BAYKON BT604). Düşey yöndeki kuvveti belirlemek için ise platform tipi yük hücresi kullanılmıştır (BAYKON BP320).

Mekanik tasarım Solidworks programı kullanılarak yapılmıştır (Şekil 3.18). Kuvvet ölçme esnasında X veya Y eksenine paralel olmayan kuvvetlerin doğru ölçülebilmesi için X ve Y eksenlerinde lineer kızaklar kullanılmıştır (Şekil 3.18.B). Önce tüm parçalar 1:1 ölçeğinde çizilmiş daha sonra tasarım programında montajları yapılmıştır. Daha sonra parçalar CNC freze tezgâhında işlenerek üretilmiştir.

Mekanik montaj tamamlandıktan sonra elektronik montaj aşamasına geçilmiştir. Her bir yük hücresinden alınan sinyaller ayrı ayrı transmitterlere iletilerek (Baykon TX13) işlenmektedir (Baykon, 2016). Transmitterler loadcellden gelen milivolt çıkış sinyalini işleyerek 4-20 mA analog çıkış olarak vermektedir. 3 adet transmitterden (TX13) çıkan akım bilgileri National Instruments USB-6003 veri toplama kartında toplanmaktadır (NI USB-6003 Catalog, 2014). Veri toplama kartı ile bilgisayar USB kablosu ile bağlanmıştır. Elektronik montaj görünümü Şekil 3.19'de verilmiştir.

Labview 2017 programı kullanılarak bir arayüz hazırlanmıştır (Şekil 3.20). Bu arayüzde 3 farklı yük hücresinden alınan yük verisi görselleştirilmiştir. Ayrıca ölçülen değerler *.tdms uzantılı olarak dosyaya kaydedilmektedir.

Şekil 3.18. Kuvvet ölçüm sistemi mekanik tasarımı. A: Perspektif görünüm. B: Detaylar.

Şekil 3.19. Elektronik montaj

Şekil 3.20. Kuvvet ölçme sistemi arayüzü

Geliştirilen arayüz kullanıcı dostudur. Kullanıcı örnekleme frekansı, dönüştürme katsayısı ve dosya kayıt yolunu tanımlayıp ölçüme başlamaktadır. Deney sonunda arayüzdeki "stop" butonuna basarak kuvvet ölçümünü sonlandırmaktadır. Kuvvet ölçme sistemi blok diyagramı Şekil 3.21'de verilmiştir. Talaşlı imalatı yapılıp montajı tamamlanan kuvvet ölçme sistemi Şekil 3.22'de verilmiştir.

Şekil 3.21. Kuvvet ölçme sistemi blok diyagramı

Şekil 3.22. Kuvvet ölçüm sistemi

Geliştirilen kuvvet ölçme sisteminin kalibrasyon çalışmaları ASTM E74-13'e göre yapılmıştır (ASTM, 2013). Yük hücrelerinin tümü 1 ton kapasiteli olduğundan dolayı öncelikle toplam 100 kg'lık kuvvet ikişer kez uygulanmıştır. Daha sonra Tablo 3.7'de gösterilen yükler ikişer kez uygulanmıştır (Şekil 3.23). Yük uygulama işlemi Tablo 3.7'deki sıraya göre küçükten büyüğe doğru olarak gerçekleştirilmiştir. İkişer defa ölçülen kuvvetlerin (Newton) ortalamaları alınmıştır.

Yük No	Kullanılan Yük (kg)
1. yük	10,6
2. yük	20,6
3. yük	30,7
4. yük	40,5
5. yük	50,6
6. yük	60,2
7. yük	70,2
8. yük	80,3
9. yük	90,1
10. yük	100,2

Tablo 3.7. Deneylerde kullanılan yükler.

Şekil 3.23. Kalibrasyon çalışmaları

Şekil 3.24'de X ekseni için Yük-Kuvvet grafiği verilmiştir. Şekil 3.25'de Y ekseni için Yük-Kuvvet grafiği verilmiştir. Şekil 3.26'de ise Z ekseni için Yük-Kuvvet grafiği verilmiştir. Her bir grafik için lineer regresyon analizi yapılmıştır. Regresyon analizinde elde edilen R² değerleri:

X ekseni için: $R^2 = 0,99998797$

Y ekseni için: $R^2 = 0,9999485$

Z ekseni için: $R^2 = 0,999997287$

olarak hesaplanmıştır. Bu da kg-N eğrilerinin neredeyse lineer olduğunu göstermektedir. Regresyon katsayılarının 1'e yakın olması geliştirilen kuvvet ölçme sisteminin ölçüm hassasiyetinin yüksek olduğunu ve doğru ölçüm yaptığını göstermektedir.

Şekil 3.24. X ekseni ölçüm değerleri (kg-Newton)

Şekil 3.25. Y ekseni ölçüm değerleri (kg-Newton)

Şekil 3.26. Z ekseni ölçüm değerleri (kg-Newton)

Sıralı yükleme işlemi tamamlandıktan sonra ölçüm kararlılığını tespit etmek için yük hücrelerine 20 dakika boyunca 100,2 kg'lık sabit yük uygulanmıştır (Şekil 3.27).

Şekil 3.27. Z ekseni 20 dakikalık ölçüm deneyi

Her bir eksen için 20 dakika boyunca alınan kuvvet ölçüm verileri Şekil 3.28'de gösterilmiştir. Ölçümlerde sapma olmadığı gözlemlenmiştir. Bu bulgular, geliştirilen kuvvet ölçüm sisteminin kararlı olduğunu göstermektedir.

Deneyler öncesinde iş bağlama aparatı, kuvvet ölçüm sisteminin üzerine bağlanmıştır. Kuvvet ölçüm sisteminde ölçülen kuvvetler, veri toplama kartında toplandıktan sonra USB bağlantısı ile bilgisayara aktarılmıştır. Daha sonra bilgisayarda kuvvet grafikleri oluşturulmuştur. Z ekseni doğrultusunda belirlenen kuvvetlerin en büyük değeri alınarak parametre optimizasyonları yapılmıştır.

Şekil 3.28. Yirmi dakika boyunca yük uygulama deney sonuçları. A) X ekseni, B) Y ekseni, C) Z ekseni

3.2.6. İstatistiksel Analiz

3.2.6.1. Sinyal / Gürültü (S/N) Analizi

Taguchi metodu ile işlem değişkenleri basit ve hızlı bir şekilde optimize edilebilmektedir. Bu yöntemde ortogonal dizinler kullanılarak deney tasarımı yapılmaktadır. Kullanılacak ortogonal dizin deney faktörleri ve seviyelerine göre belirlenmektedir (Uttarwar, Raini, & Malwad, 2015). Bir çok araştırmacı artımlı şekillendirmeyle ilgili çalışmalarında Taguchi metodunu kullanmıştır (Khalid A Al-Ghamdi & Hussain, 2017; Awankar, Rathi, & Brahmagiri, 2015; Baruah, Pandivelan, & Jeevanantham, 2017; Kumar, Devendar, & Reddy, 2017; Shanmuganatan & Senthil Kumar, 2013; Vigneshwaran, Kumar, & Shanmuganatan, 2015). Taguchi metodunda, sonuçları analiz edebilmek için sinyal/gürültü (S/N) oranı kullanılır (Gulati, Aryal, Katyal, & Goswami, 2016). Deneylerden elde edilen sonuçlar S/N oranına çevrilerek değerlendirilir. S/N oranı ne kadar büyük olursa ideal değere o kadar yaklaşılmış olur.

Deneyler, Taguchi metoduna göre yapıldıktan sonra, numuneler ölçülmüştür. Ölçüm sonuçlarına göre S/N oranları hesaplanmıştır. Elde edilen S/N oranları kıyaslanarak optimum parametre seviyeleri belirlenmiştir. S/N oranları hesaplanırken hedeflenen sonucun "en büyük olanı en iyidir" veya "en küçük olanı en iyidir" durumuna göre farklı eşitlikler kullanılmaktadır. Yüzey pürüzlülüğünün ve şekillendirme kuvvetinin küçük olması istenmektedir. O nedenle bu iki bağımlı değişkenin analizlerinde Eşitlik 3.1'de verilen "en küçük en iyidir" eşitliği kullanılmıştır (Kıvak, Samtas, & Çiçek, 2012; Toprak, İ., Çağlar, M., Çolak, Kıran, & Bayhan, 2012). Et kalınlığının ise daha büyük olması istenir. O nedenle et kalınlığının analizinde Eşitlik 3.2'de verilen "en büyük en iyidir" eşitliği kullanılmıştır (Kıvak, Samtaş, & Çiçek, 2012; A. Uzun, Eski, & Çelik, 2017).

$$\frac{s}{N} = -10.\log\left(\frac{1}{n} \cdot \sum_{i=1}^{n} Y_i^2\right)$$
(3.1)

$$\frac{s}{N} = -10\left(\log\left(\frac{\Sigma_{\gamma^2}}{n}\right)\right) \tag{3.2}$$

burada, Y: performans karakteristiğidir, n: deney sayısıdır.

3.2.6.2. Varyans Analizi

Parametreler arasındaki etkilerin belirlenmesi için varyans analizi kullanılmaktadır (Bilici, Bakır, Bozkurt, & Çalış, 2016; A. Uzun vd., 2017). Bu çalışmada da deney sonuçlarına göre kullanılarak şekillendirme kuvveti (Fz), yüzey pürüzlülüğü ve et kalınlığı değişimi için ayrı ayrı varyans analizi (ANOVA) yapılmıştır. Deney parametrelerinin etkileşimleri %95 güven aralığına göre belirlenerek verilmiştir.

3.2.6.3. Cevap Yüzey Metodu

Cevap yüzey metodu, bağımsız değişkenlerin bağımlı değişken üzerindeki etkilerini inceleyerek optimize edilmesini amaçlayan matematiksel ve istatistiksel tekniklerin bileşimidir (Çiftçi & Aktaş, 2015; Kilickap, Yardimeden, & Çelik, 2017; Koyunbakan & Ünüvar, 2012). Bu metot, performans karakteristikleri ile parametreleri arasındaki ilişkinin analizi, modellenmesi ve optimum parametre seviyesinin belirlenmesi için yaygın olarak kullanılmaktadır (Boyacı, Baynal, & Özdin, 2017; Motorcu, Ekici, & Kuş, 2015). Öncelikle incelenecek olan parametreler seçilip deney tasarımı yapılır. Sonuçlara yönelik tahminler ve doğrusal model katsayıları hesaplanır. Daha sonra ikinci-seviye model oluşturulur. Bu çalışmada S/N analizinden sonra cevap yüzey metodu kullanılarak parametreler arasındaki etkileşimler belirlenmiştir. S/N analizi ve varyans analizleri Minitab 18 programın kullanılarak yapılmıştır (Minitab Inc., 2017).

Deneyler sonucunda parametrelerin etkileşimlerini gösteren kontur grafikleri çizilmiştir. Toplam dört bağımsız değişken ve üç bağımlı değişken için 18 farklı kontur grafiği oluşturulmuştur. Okuma kolaylığı için her bir bağımlı değişkene göre altılı gruplar halinde verilmiştir.

3.2.6.4. Gri İlişkisel Analiz

Gri ilişkisel analiz yöntemi çok kriterli karar yöntemlerinden biridir. Anılan yöntem hem analiz hem de karar verme aracıdır. Bu yöntemle birden fazla bağımlı değişken seviyesini aynı anda optimize edecek parametre seviyeleri elde edilebilmektedir (Asghari, Shamsi Sarband, & Habibnia, 2017; Panda, Sahoo, & Rout, 2016).

Gri ilişkisel analiz yönteminde siyah renk, bilgiye sahip olunmadığını, beyaz renk ise bilgiye tamamen sahip olunduğu anlamına gelmektedir. Gri renk ise siyah ile beyaz arasındaki bilginin ilişkisini göstermektedir (Yılmaz & Güngör, 2010). Yöntem beş ana adımdan oluşmaktadır. İlk önce karar matrisi oluşturulur. Bu matriste deneyler sonucunda elde edilen bağımlı değişken değerleri sıra ile bulunmaktadır (Senger & Albayrak, 2016). Daha sonra veriler normalize edilir. Bağımlı değişkenlerin sahip olduğu değerler birbirlerinden çok farklı olabilmektedir. Verilerin bu haliyle birbirleri ile kıyaslanabilmesi mümkün değildir. Verilerin sıfır ile bir arasında normalize edilmesi gerekmektedir. Normalizasyon işleminde her bir bağımsız değişkenin en büyük değerinin mi optimum olduğu, yoksa en küçük değerinin mi optimum olduğuna dikkat edilmesi gerekmektedir.

Normalizasyon yapıldıktan sonra gri ilişki katsayısı hesaplanır. Gri ilişkisel analiz yönteminde hesaplanan ana değişken gri ilişki katsayısıdır. Gri ilişki katsayısı belirlendikten sonra aynı deney seviyesi için tüm bağımlı değişkenlerin etkileşimini gösteren gri ilişki dereceleri hesaplanır. Son olarak da gri ilişkisel sıralama yapılır. Bunun için gri ilişki dereceleri büyükten küçüğe sıralanır. Gri ilişki derecesi büyük olan deney optimum parametrelerin olduğu deneydir. Bu deneyde kullanılan parametre seviyeleri belirlenerek optimum seviyeler olarak tanımlanır.

3.2.7. Geri esneme analizi

Geri esneme analizleri için öncelikle, şekillendirilen parçalar 3d tarayıcı ile taranarak nokta bulutları oluşturulmuştur. Daha sonra parçanın *.stl formatında geometrisi oluşturulmuştur. Tarama işlemleri GOM ATOS CORE optik 3d tarayıcı kullanılarak yapılmıştır. Bu tarayıcının tarama alanı 200x150 mm, çözünürlüğü ise 0,08 mm'dir.

GOM Inspect arayüzü kullanılarak şekillendirilmek istenen geometrinin geometrisi ile tarama sonucunda elde edilen geometri karşılaştırılmış ve geri esneme miktarları elde edilmiştir. Şekil 3.29'de kare prizma parçanın 3d tarama anında bir görüntü verilmiştir. Şekil 3.30'da ise GOM ATOS CORE optik 3d tarayıcı ile sacın modelinin oluşturulma anından bir görüntü verilmiştir.

Şekil 3.29. Kare prizma parçanın 3D tarama anında bir görüntü.

Şekil 3.30. GOM ATOS CORE optik 3d tarayıcı ile sacın modelinin oluşturulması.

3.2.8. Sonlu Elemanlar Analizi

3.2.8.1. Modelin Geliştirilmesi

Bu çalışmada, geliştirilen Kayar Artımlı Şekillendirme yönteminin sonlu elemanlar analizi de yapılmıştır. Analiz DKP 37 sacından üretilen parçalar için yapılmıştır. Literatür incelendiğinde, artımlı şekillendirme yönteminin sonlu elemanlar analizlerinde genellikle ABAQUS programının kullanıldığı görülmektedir (Choudhary, Chaudhary, & Sharma, 2015; Gatea, Lu, Ou, & McCartney, 2015; Gatea, Ou, Lu, & Mccartney, 2017; Reddy, 2017). Bu çalışmada da sonlu elemanlar analizi için ABAQUS programı kullanılmıştır. Çözücü olarak, ekplisit yöntem kullanılmıştır. Şekil 3.31'da bu tez çalışmasında geliştirilen kayar artımlı şekillendirme yönteminin sonlu elemanlar modeli verilmiştir.

Şekil 3.31. Artımlı şekillendirme yönteminin sonlu elemanlar simülasyonu.

Form takımı, sac tutucu çerçeve (baskı plakası) ve model "ayrık rijit" olarak modellenmiştir. Sac ise "şekillendirilebilir" olarak modellenmiştir. Tüm bileşenler, deneylerde kullanılan ölçülerde modellenmiştir. Analizde kullanılan bileşenler Şekil 3.32'de verilmiştir.

Şekil 3.32. Sonlu elemanlar analizinde kullanılan bileşenler. A) Sac tutucu çerçeve (Sac tutucu). B) Model. C) Form takımı. D) Sac

Bileşenlerin konum ve hareket kontrolü için referans noktaları (RP) oluşturulmuştur. Sacın ve sac tutucu çerçevenin sağ üst köşesine, modelin üst orta noktasına, form takımının ise ucunun ortasına referans noktaları tanımlanmıştır.

DKP 37 sacının young modülü 210000 MPa, poisson oranı 0,3'tür. Çekme deneyinden elde edilen akma gerilmesi ve plastiklik gerinim değerleri plastik özellikler olarak girilmiştir. Sac kesiti, homojen kabuk olarak tanımlanmıştır.

Analizin çözümü için üç farklı adım oluşturulmuştur. Bunlardan ilki, analizin başladığı ve sınır şartlarının tanımlandığı adımdır. İkincisi, şekillendirme işleminin yapıldığı adımdır ("Sekil_Verme" adımı). Üçüncüsü ise form takımının sacdan ayrılarak uzaklaştığı (başlangıç noktasına geri döndüğü) adımdır ("Yukari_Cikma" adımı).

Ekplisit analiz yönteminde çözüm süresini kısaltmak için kütle ölçeklendirme (mass scaling) kullanılmaktadır (Esmaeilpour vd., 2018; Moayedfar, Hanaei, Rani, Bin Musa, & Momeni, 2018; Ndip-Agbor vd., 2016). Bu çalışmada da aynı amaçla kütle ölçeklendirme kullanılmıştır. Kütle ölçeklendirme oranı olarak 0,0008 kullanılmıştır.

Form takımı, sac ve sac tutucu çerçevenin hareketleri genlik (amplutide) ile tanımlanmıştır. Genlik tanımlama işleminde her bir deney için CAM programından elde edilen takım yolu verileri kullanılmıştır (Seçgin, Ata, & Özsert, 2018). Bu takım yolu verilerinin zamana bağlı değişimleri sonlu elemanlar programında kullanılan genlikleri

vermektedir. Form takımı, sac ve sac tutucu çerçevenin şekillendirme adımı ile yukarı çıkış adımındaki hareketleri için ayrı ayrı genlikler tanımlanmıştır.

"Sac ile model" arasında, "sac ile baskı plakası" (sac tutucu çerçeve) arasında ve "sac ile form takımı" arasında ayrı ayrı "yüzey-yüzey" temas özelliği tanımlanmıştır. Daha sonra sınır şartları oluşturulmuştur. Sac tutucu çerçevenin referans nokrası seçilerek dönmeye karşı sınırlandırılmıştır. Bu sınır şartı, tüm adımlar boyunca devam ettirilmiştir. Sac tutucu çerçevenin X ve Y yönlerinde hareket etmesini engellemek için sac tutucu çerçevenin referans noktası seçilerek U1 ve U2 yönlerinde hareketi engellenmiştir. Bu sınır şartı tüm adımlar boyunca devam ettirilmiştir. Sac tutucu çerçevenin Z yönünde hareketi form takımının hareketine bağlı olacak şekilde düzenlenmiştir. Bu düzenleme için daha önceden tanımlama "Sekil_Verme" adımında düzenlenmiştir. Daha sonra "Yukari_Cikma" adımında tekrar düzenleme yapılmıştır.

Form takımının X yönündeki hareketi de deneylerde kullanılan takım yolundan alınan verilerle düzenlenmiştir. Her iki adım için ayrı ayrı tanımlanan genliklerle takımın X, Y ve Z yönlerindeki hareketleri oluşturulmuştur. Sacın altında bulunan model, ankastre olarak tanımlanmış olup bu tanımlama tüm adımlar boyunca aynı şekilde sürdürülmüştür. Sac tutucu çerçevede (baskı plakasında) olduğu gibi sacın Z yönündeki hareketi daha önce oluşturulan genlik ile tanımlanmıştır (Seçgin vd., 2018). Deneysel çalışmalarda rijitliği artırmak için sac, ortasından cıvata ile model üzerine sabitlenmiştir. Sonlu elamanlar analizinde de sacın ortasında bulunan delik hem dönmeye hem de ötelenmeye karşı sabitlenmiştir. Oluşturulan sınır şartları Şekil 3.33'de verilmiştir.

Sac tutucu çerçevenin (baskı plakasının) referans noktası seçilerek, sac tutucu çerçevenin ağırlığı -267 N olarak tanımlanmıştır. Pnömatik klemplerle saca uygulanan sıkma kuvvetini temsil etmek için RP1, RP2, RP3 ve RP4 referans noktalarına kuvvet uygulanmıştır. Bu noktalar deneylerde pnömatik klemplerin saca baskı uyguladığı bölgelerdedir. 2 bar sıkma basıncının kullanıldığı analizlerde -187 N uygulanmıştır. 9 bar sıkma basıncının kullanıldığı analizlerde ise -1039 N uygulanmıştır.

Şekil 3.33. Sınır şartları

Sac dışındaki diğer parçalar "ayrık rijit" olarak modellenmiştir. Literatür incelendiğinde "ayrık rijit" olarak modellenen parçaların çözüm ağlarının R3D4 eleman ile oluşturulduğu görülmektedir (Hashemi, Hoseinpour Gollo, & Seyedkashi, 2015; Xue vd., 2016; H. Zhang & Dong, 2015; J. Zhang, Zhan, Yang, Jiang, & Han, 2012). Bu çalışmada da "ayrık rijit" olarak modellenen parçaların çözüm ağı R3D4 eleman (dört düğüm noktalı rijit kabuk eleman) tipi ile oluşturulmuştur. Bu parçaların çözüm ağı oluşturulmuş görüntüleri Şekil 3.34'de verilmiştir.

Şekil 3.34. Sac dışındaki diğer parçaların çözüm ağlarının oluşturulması

Hesaplama süresini azaltmak için form takımının temas etmediği kısımlar büyük elemanlara bölünürken, form takımının saca temas ettiği bölgeler ise daha küçük elemanlara bölünmüştür. Bu işlem için partition komutu kullanılarak sac dilimlenmiştir. Sac üzerine sıkma kuvvetinin uygulandığı bölge de benzer şekilde bölünmüştür. Daha sonra sıkma kuvvetinin uygulandığı bu alanların ortalarına referans noktaları (RP1, RP2, RP3 ve RP4) tanımlanmıştır. Her bir referans noktası kendi bulunduğu alan ile "eşleştirilmiş (coupling)" olarak tanımlanmıştır. Böylece noktaya uygulanan kuvvetin bu alana etki etmesi sağlanmıştır. Sacın çözüm ağı Şekil 3.35'de verilmiştir.

Şekil 3.35. Sacın çözüm ağının oluşturulması

3.2.8.2. Çözüm Ağı (Mesh) Optimizasyonu

Çok küçük boyutlu eleman kullanıldığında çözüm süresi çok uzun sürmektedir. Büyük elemanlar kullanıldığında ise çözüm süresi kısalmakta fakat çözüm hassasiyeti de azalmaktadır. Bu da analiz sonuçlarını deneysel sonuçlardan uzaklaştırmaktadır. Optimum eleman boyutunu belirlemek için çözüm ağı optimizasyonu yapılmıştır. Bunun için diğer parametreler sabit tutularak farklı ölçülerdeki eleman boyutları kullanılarak analizler yapılmıştır. Literatüre göre, çözüm ağı optimizasyonu işleminde, analizler sonucunda oluşan eşdeğer plastik gerinimin (PEEQ) maksimum ve minimum seviyelerinin farkı alınmaktadır (Bagherifard & Guagliano, 2011; Nair, 2011). Daha sonra, bulunan bu farkın grafiği çizdirilmektedir. Grafik eğiminin yataya yaklaştığı değer optimum değer olarak alınmaktadır.

Bu çalışmada eleman boyutu olarak 15 mm, 10 mm, 4 mm, 2,5 mm, 2 mm ve 1 mm olmak üzere altı farklı eleman boyutu ile sacın çözüm ağı oluşturularak optimizasyon çalışması yapılmıştır. Yapılan optimizasyon çalışması Tablo 3.8'de verilmiştir.

Eleman boyutu (mm)	Eleman sayısı	Maksimum PEEQ	Minimum PEEQ	PEEQ arasındaki fark
1	26198	0,4294	0,01019	0,41921
2	7214	1,215	0,1013	1,1137
2,5	4720	1,43	0,1195	1,3105
4	2622	6,231	0,5192	5,7118
10	1060	6,885	0,008316	6,876684
15	1112	27,8	2,317	25,483

Tablo 3.8. Çözüm ağı optimizasyonu

Tablo 3.8'den elde edilen grafik Şekil 3.36'de verilmiştir. Tablo 3.8 ve Şekil 3.36 birlikte incelendiğinde, 2,5 mm elaman boyutu kullanıldığında toplam 4720 elaman oluştuğu görülmektedir. Bu eleman sayısında eğri yataya yaklaşmaktadır. O nedenle form takımının sac ile temas ettiği bölgede 2,5 mm boyutlu elemanlar kullanılmıştır. Form takımının saca temas etmediği bölgede ise 10 mm boyundaki elemanlar kullanılmıştır. Literatür incelendiğinde, şekillendirme işlemlerinde S4R elaman tipi kullanıldığı görülmektedir (Belchior vd., 2013; Han vd., 2013; Irthiea, Green, Hashim, & Kriama, 2014; Yaman, 2010; Zein, El Sherbiny, Abd-Rabou, & El shazly, 2014). Bu çalışmada da sacın çözüm ağı oluşturulurken S4R elaman tipi (şekil değiştirme kabiliyetine sahip kabuk eleman) kullanılmıştır.

Şekil 3.36. Çözüm ağı optimizasyonu

BÖLÜM 4. DENEYSEL ÇALIŞMALARIN SONUÇLARI

Geleneksel artımlı şekillendirme yönteminde sac, kenarlarından sabitlenirken bu çalışmada geliştirilen Kayar Artımlı Şekillendirme yönteminde ise sacın şekillendirme esnasında model üzerine akması sağlanmıştır. Bu çalışmada, 1 mm kalınlığında DKP37 sacı ile DP600 sacının kayar artımlı şekillendirme yöntemiyle şekillendirilebilirliği araştırılmıştır.

Tüm deneyler Tablo 3.5'de verilen deney planına göre yapılmıştır. Her bir sac çeşidinde (malzemede) dört farklı geometri için 72 ayrı deney yapılmıştır (4x18=72). Çalışmada iki farklı sacın şekillendirilebilirliği araştırıldığı için toplam 144 deney yapılmıştır. Deney esnasında oluşan şekillendirme kuvvetleri kaydedilmiş olup maksimum şekillendirme kuvveti optimize edilmiştir. Deneyler sonucunda her bir numunenin yüzey pürüzlülüğü ve et kalınlığı dağılımları ölçülmüştür. Daha sonra her bir deney seti için yüzey pürüzlülüğü ve et kalınlığı optimizasyonları yapılmıştır.

Deney sonuçlarının sunulmasında deney parametrelerini belirten bir kodlama sistemi geliştirilmiştir. Tablo 4.1'de bu kodlama sistemi verilmiştir. Saclar, deneylerden sonra bu kodlama sistemine göre markalanmıştır. Bu deney kodu beş kısıma ayrılmıştır. İlk kısımda yöntemin İngilizce kısaltması (TPIF_RL) yazılmaktadır. İkinci kısıma şekillendirme açısı yazılmaktadır. Üçüncü kısıma şekillendirme tipi, dördüncü kısıma ise deneyde kullanılan sacın cinsi yazılmaktadır. Son kısıma ise L18 deney setine göre deney numarası yazılmaktadır. Son kısımda kullanılan L18 deney seti Tablo 3.5'te verilmişti.

Bu kısaltma sistemine göre; "TPIF_RL_60D_ES_DP600_5" kodu, DP600 sacının 60° eksenel simetrik formda şekillendirilmesi işleminde 5 numaralı deney setine göre şekillendirildiğini göstermektedir. TPIF_RL_40D_PR_DKP_12" kodu ise, DKP 37

sacının 40° kare piramit formda şekillendirilmesi işleminde 12 numaralı deney setine göre şekillendirildiğini göstermektedir.

	1. Kısım	2. Kısım	3. Kısım	4. Kısım	5. Kısım
Anlamı	Yöntem	Şekillendirme Açısı	Şekillendirme Tipi	Malzeme Cinsi	Deney Numarası
Alabileceği	TPIF_RL (Kayar artımlı	40D: 40°	ES: Eksenel Simetrik	DKP 37	1-18
değer	şekillendirme yöntemi)	60D: 60°	PR: Kare Piramit	DP 600	1~10

Tablo 4.1. Deney numun	elerinin kodlama	sistemi
------------------------	------------------	---------

4.1. DKP 37 Sacı İle İlgili Deneyler

4.1.1. DKP 37 Sacının 40° Eksenel Simetrik Koni Formu Deneyleri

4.1.1.1. Şekillendirme Kuvvetleri

DKP 37 sacının 40° eksenel simetrik şekillendirme deneylerinde belirlenen şekillendirme kuvvetleri Tablo 4.2'de verilmiştir. Tablonun ilk bölümünde deneylerde kullanılan parametre seviyeleri, ikinci bölümünde deney esnasında belirlenen kuvvetler verilmiştir. Son bölümde ise Z ekseni yönünde oluşan kuvvetler için yapılan sinyal gürültü analizi sonucunda elde edilen sinyal gürültü oranları verilmiştir.

Tablo 4.2 incelendiğinde 9 bar sıkma basıncı, 1500 mm/dak ilerleme hızı, 0,75 mm artım miktarı ve çapı 10 mm olan form takımının kullanıldığı 18 numaralı deneyde en büyük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. En küçük şekillendirme kuvvetinin ise 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde oluştuğu görülmektedir. Bu deneyde S/N oranı da en büyük değerini almıştır.

	TI	PIF_RL_40D	_ES					
Deney No	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	FZ-S/N
1	2	500	0,25	5	894,12	907,94	1295,55	-62,2491
2	2	500	0,5	10	709,25	1097,73	2005,75	-66,0456
3	2	500	0,75	15	629,33	663,13	1953,13	-65,8146
4	2	1000	0,25	5	965,60	766,98	1405,69	-62,9578
5	2	1000	0,5	10	740,44	973,37	2021,44	-66,1132
6	2	1000	0,75	15	637,45	640,99	2015,89	-66,0893
7	2	1500	0,25	10	472,08	493,52	1532,18	-63,7062
8	2	1500	0,5	15	592,29	573,28	1917,51	-65,6548
9	2	1500	0,75	5	1073,79	951,88	1645,91	-64,3281
10	9	500	0,25	15	476,63	483,43	1734,81	-64,7851
11	9	500	0,5	5	650,12	659,55	1534,47	-63,7191
12	9	500	0,75	10	827,84	1289,80	2024,06	-66,1245
13	9	1000	0,25	10	667,66	952,54	1512,57	-63,5943
14	9	1000	0,5	15	569,22	562,21	1931,56	-65,7182
15	9	1000	0,75	5	989,64	924,21	1529,56	-63,6914
16	9	1500	0,25	15	474,03	472,04	1723,37	-64,7276
17	9	1500	0,5	5	852,86	833,06	1443,93	-63,1909
18	9	1500	0,75	10	880,47	1302,17	2043,01	-66,2054

Tablo 4.2. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen kuvvetler

DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen şekillendirme kuvvetlerinin (Fz) istatistiksel analizleri Tablo 4.3, Şekil 4.1, Tablo 4.4 ve Şekil 4.2'de verilmiştir.

Tablo 4.3. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde, şekillendirme kuvvetleri faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-64,77	-64,79	-63,67	-63,36
0 1 11 1	2	-64,64	-64,69	-65,07	-65,30
Şekillendirme	3		-64,64	-65,38	-65,46
Kuvven (FZ)	Delta	0,13	0,15	1,71	2,11
	Sıralama	4	3	2	1

Şekil 4.1. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti S/N oranları.

	Sekillendirm	e Ki	ivveti			
Kaynak		(R-sq: %	95,88	3)		
	SD	КТ		КО	F	Р
Model	13	1054	178	81091	7,16	0,036
Doğrusal	4	7396	77	184919	16,32	0,01
Basınç	1	4747		4747	0,42	0,553
İlerleme Hızı	1	4927		4927	0,43	0,546
Artım Miktarı	1	2979	98	297998	26,3	0,007
Form Takımı Çapı	1	3088	71	308871	27,26	0,006
Kare	3	1723	07	57436	5,07	0,075
İlerleme hızı*İlerleme Hızı	1	2		2	0	0,991
Artım Miktarı*Artım Miktarı	1	6112	8	61128	5,4	0,081
Form Takımı Çapı*Form Takımı Çapı	1	1063	04	106304	9,38	0,038
2 Yönlü Etkileşim	6	4496	8	7495	0,66	0,69
Basınç*İlerleme Hızı	1	728		728	0,06	0,812
Basınç*Artım Miktarı	1	380		380	0,03	0,864
Basınç*Form Takımı Çapı	1	2514	7	25147	2,22	0,211
İlerleme Hızı*Artım Miktarı	1	1046		1046	0,09	0,776
İlerleme Hızı*Form Takımı Çapı	1	2683		2683	0,24	0,652
Artım Miktarı*Form Takımı Çapı	1	281		281	0,02	0,882
Hata	4	4532	1	11330		
Toplam	17	1099	499	825572		

Tablo 4.4. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvvetleri varyans analizi tablosu

Şekil 4.2. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Anılan tablo ve şekiller incelendiğinde şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.4). Ancak Şekil 4.1'de verilen S/N analizi sonuçları dikkate alındığında form takımı çapının etkisi ön plana çıkmaktadır.

İkili etkileşimler incelendiğinde parametreler arasında istatiksel olarak önemli bir etki bulunamamıştır (Tablo 4.4). Bununla birlikte, Şekil 4.2'den form takımı çapı ile artım miktarının birlikte artmasının şekillendirme kuvvetini kayda değer şekilde artırdığı görülebilmektedir. Anılan grafik incelendiğinde, basınç ve ilerleme hızının parametre seviyeleri arasında önemli bir fark olmadığı görülebilmektedir.

Şekillendirme kuvveti optimum parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 5 mm'dir (Tablo 4.3 ve Şekil 4.1).

4.1.1.2. Yüzey Pürüzlülüğü

DKP 37 sacının 40° eksenel simetrik şekillendirme deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülmüş ve sonrasında ölçümlerin ortalamaları alınmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri ve S/N oranları Tablo 4.5'de verilmiştir.

	ТР	IF_RL_40	D_ES			Ra	(µm)		
Deney No	Basınç	İlerleme hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	2,704	2,259	2,372	2,445	-7,76558
2	2	500	0,5	10	4,862	4,754	5,155	4,924	-13,8458
3	2	500	0,75	15	0,677	0,723	0,705	0,702	3,077383
4	2	1000	0,25	5	4,690	5,829	4,891	5,137	-14,2136
5	2	1000	0,5	10	6,399	6,706	6,310	6,472	-16,2203
6	2	1000	0,75	15	0,668	0,693	0,736	0,699	3,110456
7	2	1500	0,25	10	6,113	6,160	5,235	5,836	-15,3223
8	2	1500	0,5	15	0,609	0,602	0,717	0,643	3,840285
9	2	1500	0,75	5	10,480	9,560	10,250	10,097	-20,0836
10	9	500	0,25	15	0,686	0,551	0,613	0,617	4,198991
11	9	500	0,5	5	3,385	3,009	2,702	3,032	-9,63458
12	9	500	0,75	10	4,907	4,975	5,082	4,988	-13,9585
13	9	1000	0,25	10	1,110	1,002	1,229	1,114	-0,9351
14	9	1000	0,5	15	0,600	0,513	0,652	0,588	4,607531
15	9	1000	0,75	5	5,421	5,194	5,085	5,233	-14,3756
16	9	1500	0,25	15	0,777	0,799	0,833	0,803	1,905689
17	9	1500	0,5	5	4,000	3,933	2,812	3,582	-11,0817
18	9	1500	0,75	10	4,503	4,726	4,746	4,658	-13,3646

Tablo 4.5. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Şekil 4.3'de deneyler neticesinde belirlenen yüzey pürüzlülükleri verilmiştir. Tablo 4.5 ve Şekil 4.3 birlikte incelendiğinde, 15 mm çaplı form takımının kullanıldığı 6, 8, 14 gibi deneylerde yüzey pürüzlülüğünün diğer deneylere göre daha az çıktığı görülebilir. Form takımı çapının artması takım geçişleri arasında kalan tepecik kesitlerinin küçültmektedir (Şekil 2.4). Bu nedenle form takımı çapının artması yüzey pürüzlülüğünü azaltmaktadır. Tablo 4.5 incelendiğinde en küçük yüzey pürüzlülüğünün 14 numaralı deneyde oluştuğu görülmektedir. Bu deneyin S/N oranı da diğer deneylere göre en büyük seviyeye sahiptir.

Şekil 4.3. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde, yüzey pürüzlülüğü için deney sonuçlarına göre yapılan istatistiksel analizler (S/N analizi, varyans analizi) Tablo 4.6, Şekil 4.4, Tablo 4.7 ve Şekil 4.5'te verilmiştir.

Tablo 4.6. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-8,603	-6,321	-5,355	-12,859
	2	-5,849	-6,338	-7,056	-12,274
Yüzey Pürüzlülüğü (Ra)	3		-9,018	-9,266	3,457
	Delta	2,754	2,696	3,910	16,316
	Sıra	3	4	2	1

Şekil 4.4. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak		Yüzey Pürüz (R-sq: %97	l ülüğü ,92)		
	SD	КТ	КО	F	Р
Model	13	121,321	9,3324	14,5	0,01
Doğrusal	4	65,166	16,2915	25,3	0,004
Basınç	1	13,795	13,7952	21,43	0,01
İlerleme Hızı	1	1,738	1,7384	2,7	0,176
Artım Miktarı	1	11,792	11,7922	18,32	0,013
Form Takımı Çapı	1	33,471	33,4706	51,99	0,002
Kare	3	9,542	3,1807	4,94	0,078
İlerleme Hızı*İlerleme Hızı	1	0	0	0	1
Artım Miktarı*Artım Miktarı	1	0,48	0,4797	0,75	0,437
Form Takımı Çapı*Form Takımı Çapı	1	8,929	8,9286	13,87	0,02
2 Yönlü Etkileşim	6	28,344	4,724	7,34	0,037
Basınç*İlerleme Hızı	1	1,226	1,2259	1,9	0,24
Basınç*Artım Miktarı	1	0,188	0,188	0,29	0,618
Basınç*Form Takımı Çapı	1	7,384	7,3842	11,47	0,028
İlerleme Hızı*Artım Miktarı	1	1,907	1,9072	2,96	0,16
İlerleme Hızı*Form Takımı Çapı	1	1,743	1,7432	2,71	0,175
Artım Miktarı*Form Takımı Çapı	1	5,336	5,3359	8,29	0,045
Hata	4	2,575	0,6438		
Toplam	17	123,896	88,6329		

Tablo 4.7. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

Şekil 4.5. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

Anılan tablo ve şekiller incelendiğinde yüzey pürüzlülüğüne form takımı çapı ve basınç çok önemli düzeyde ($p \le 0,01$), artım miktarı ise önemli düzeyde ($p \le 0,05$) etkili olmuş (Tablo 4.7) ancak bu parametreler arasında form takımı çapının etkisi öne çıkmıştır (Tablo 4.6 ve Şekil 4.4).

İkili etkileşimler incelendiğinde, form takımı çapının etkisi basınç ve artım miktarına bağlı olarak önemli düzeyde ($p \le 0.05$) değişmiştir. Bu durum Şekil 4.5'te de görülebilmektedir.

Yüzey pürüzlülüğü optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm olduğu söylenebilir (Tablo 4.6 ve Şekil 4.4). Bununla birlikte özellikle ilerleme miktarının ilk iki seviyesinin birbirleri ile çok yakın olduğu belirtilebilir.

4.1.1.3. Et Kalınlığı Değişimi

DKP 37 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda elde edilen parçalar, merkezden başlanılarak beşer milimetre aralıklarla markalanmıştır. Markalanan bu noktalardan et kalınlıkları ölçülerek parçalara ait kalınlık dağılımları elde edilmiştir. Bu et kalınlığı dağılımları Tablo 4.8'de verilmiştir. Tablonun son sütunda en küçük et kalınlığına göre hesaplanmış olan sinyal gürültü oranları verilmiştir. Ayrıca Şekil 4.6'da da et kalınlığı dağılımı grafik olarak verilmiştir. Sıkma basıncı olarak 9 bar basıncın kullanıldığı deneylerdeki et kalınlığının, 2 bar basıncın kullanıldığı deneylere göre daha az olduğu söylenebilir. Buna karşın Tablo 4.8'e göre en küçük et kalınlığı 0,75 mm olarak 4 numaralı deneyde görülmüştür. Et kalınlığındaki maksimum incelme oranı %25'dir. Deneyler neticesinde elde edilen büyük et kalınlığı 10 numaralı deneyde oluşmuştur. Buna bağlı olarak, et kalınlığı için en büyük S/N oranı da 10 numaralı deneyde oluşmuştur.

Şekil 4.6 incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Maksimum incelme parça tabanında meydana gelmektedir. Maksimum incelme 2 bar basınç, 1000 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve 5 mm form takımı çapının kullanıldığı 4 numaralı deneyde oluşmuştur. Form takımı çapının küçük olması parça üzerinde yüzey pürüzlülüğünü artırdığı gibi et kalınlığını da incelmesine neden olmaktadır.

	TPI	F_RL_40D	_ES		Merkezden Uzaklık (mm)																
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	t-S/N
1	2	500	0,25	5	1,03	1,03	1,02	0,85	0,8	0,82	0,79	0,8	0,8	0,8	0,79	0,94	1,03	1,03	1,03	1,03	-2,04746
2	2	500	0,5	10	1,03	1,03	1,02	0,94	0,85	0,82	0,81	0,82	0,81	0,8	0,8	0,86	1,06	1,03	1,03	1,03	-1,93820
3	2	500	0,75	15	1,03	1,03	1,02	1,03	0,82	0,82	0,82	0,82	0,82	0,81	0,81	0,97	1,02	1,02	1,02	1,02	-1,83030
4	2	1000	0,25	5	1,03	1,03	1,03	0,92	0,81	0,78	0,78	0,78	0,78	0,75	0,78	0,95	1,04	1,03	1,03	1,03	-2,49877
5	2	1000	0,5	10	1,03	1,03	1,02	0,98	0,88	0,83	0,84	0,85	0,83	0,8	0,8	0,95	1,02	1,02	1,02	1,02	-1,93820
6	2	1000	0,75	15	1,03	1,03	1,03	0,95	0,85	0,84	0,84	0,84	0,82	0,81	0,79	0,9	1,01	1,03	1,03	1,03	-2,04746
7	2	1500	0,25	10	1,03	1,03	1,03	1	0,83	0,81	0,82	0,82	0,82	0,81	0,79	0,97	1,03	1,02	1,03	1,03	-2,04746
8	2	1500	0,5	15	1,03	1,03	1	0,97	0,83	0,82	0,82	0,82	0,81	0,81	0,79	0,94	1,03	1,03	1,03	1,03	-2,04746
9	2	1500	0,75	5	1,03	1,03	1,03	0,93	0,83	0,8	0,78	0,77	0,77	0,77	0,77	0,92	1,01	1,03	1,03	1,03	-2,27019
2 bar sıkm	a basıncı	na göre orta	ılama et ka	lınlıkları	1,03	1,03	1,02	0,95	0,83	0,82	0,81	0,81	0,81	0,80	0,79	0,93	1,03	1,03	1,03	1,03	
10	9	500	0,25	15	1,03	1,03	1,03	0,99	0,86	0,82	0,82	0,82	0,83	0,82	0,82	0,82	0,96	1,03	1,03	1,03	-1,72372
11	9	500	0,5	5	1,03	1,03	1,01	0,94	0,82	0,81	0,80	0,80	0,79	0,78	0,78	0,93	1,04	1,03	1,03	1,03	-2,15811
12	9	500	0,75	10	1,03	1,03	1,03	1,02	0,83	0,79	0,81	0,81	0,80	0,79	0,76	0,80	1,03	1,03	1,03	1,03	-2,38373
13	9	1000	0,25	10	1,03	1,03	1,01	0,93	0,81	0,80	0,80	0,80	0,79	0,78	0,78	0,91	1,03	1,03	1,03	1,03	-2,15811
14	9	1000	0,5	15	1,03	1,03	1,02	0,94	0,85	0,82	0,84	0,82	0,80	0,80	0,79	0,93	1,03	1,03	1,03	1,03	-2,04746
15	9	1000	0,75	5	1,03	1,03	1,03	0,96	0,78	0,80	0,80	0,78	0,77	0,77	0,77	0,95	1,03	1,03	1,03	1,03	-2,27019
16	9	1500	0,25	15	1,03	1,03	1,03	0,94	0,85	0,82	0,82	0,81	0,82	0,84	0,84	0,96	1,01	1,02	1,02	1,03	-1,83030
17	9	1500	0,5	5	1,03	1,03	1,02	0,92	0,83	0,80	0,79	0,79	0,78	0,80	0,80	0,94	1,01	1,03	1,03	1,03	-2,15811
18	9	1500	0,75	10	1,03	1,03	1,01	0,97	0,84	0,80	0,80	0,81	0,80	0,77	0,78	0,87	1,05	1,03	1,03	1,03	-2,27019
9 bar sıkm	a basıncı	na göre orta	ılama et ka	lınlıkları	1,03	1,03	1,02	0,96	0,83	0,81	0,81	0,80	0,80	0,79	0,79	0,90	1,02	1,03	1,03	1,03	

Tablo 4.8. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde oluşan et kalınlığı dağılımları

Şekil 4.6. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

Tablo 4.9, Şekil 4.7, Tablo 4.10 ve Şekil 4.8'de DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde et kalınlığı için yapılan istatistiksel analizler verilmiştir.

Tablo 4.9. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-2,074	-2,014	-2,051	-2,234
	2	-2,111	-2,160	-2,048	-2,123
Et Kalınlığı	3		-2,104	-2,179	-1,921
	Delta	0,037	0,146	0,131	0,313
	Sıra	4	2	3	1

Şekil 4.7. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı S/N oranları.

Kavnak	Et Kalınlığı								
Tuynun		(R-sq: %8	37,91)						
	SD	КТ	КО	F	Р				
Model	13	0,004947	0,000381	2,24	0,227				
Doğrusal	4	0,002196	0,000549	3,23	0,141				
Basınç	1	0,00044	0,00044	2,58	0,183				
İlerleme Hızı	1	0,000567	0,000567	3,33	0,142				
Artım Miktarı	1	0,000653	0,000653	3,84	0,122				
Form Takımı Çapı	1	0,001312	0,001312	7,71	0,05				
Kare	3	0,00017	0,000057	0,33	0,804				
İlerleme Hızı*İlerleme Hızı	1	0,000121	0,000121	0,71	0,447				
Artım Miktarı*Artım Miktarı	1	0,000034	0,000034	0,2	0,678				
Form Takımı Çapı*Form Takımı Çapı	1	0,000017	0,000017	0,1	0,766				
2 Yönlü Etkileşim	6	0,001331	0,000222	1,3	0,416				
Basınç*İlerleme Hızı	1	0,000567	0,000567	3,33	0,142				
Basınç*Artım Miktarı	1	0,000035	0,000035	0,2	0,676				
Basınç*Form Takımı Çapı	1	0,000243	0,000243	1,43	0,298				
İlerleme Hızı*Artım Miktarı	1	0,000043	0,000043	0,25	0,643				
İlerleme Hızı*Form Takımı Çapı	1	0,00003	0,00003	0,17	0,698				
Artım Miktarı*Form Takımı Çapı	1	0,000623	0,000623	3,66	0,128				
Hata	4	0,000681	0,00017						
Toplam	17	0,005628	0,004855						

Tablo 4.10. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı varyans analizi tablosu

Şekil 4.8. DKP 37 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde, et kalınlığında form takım çapı önemli düzeyde $(p \le 0.05)$ etkili olmuş diğer faktörlerin etkisi istatiksel olarak etkili bulunmamıştır (Tablo 4.10).

İkili etkileşimler incelendiğinde parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.10). Bununla birlikte form takımı çapının etkisi basınç ve artım miktarından bir miktar etkilenmiş, bu parametreler form takımı çapının etkisinin tersine etki ederek et kalınlığının bir miktar azalmasına yol açmıştır (Şekil 4.8).

Et kalınlığı optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir (Tablo 4.9, Şekil 4.7).

4.1.1.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

S/N analizi sonucunda elde edilen optimum faktör seviyeleri Tablo 4.11'de verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Bağımlı değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	1500	0,25	5
Yüzey pürüzlülüğü	9	500	0,25	15
Et kalınlığı	2	500	0,5	15

Tablo 4.11. DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Daha önce yapılan deneylerde belirlenen sonuçlarla (Tablo 4.2, Tablo 4.5 ve Tablo 4.8) optimum faktör seviyeleri (Tablo 4.11) kullanılarak yapılan deney sonuçları karşılaştırıldığında 1295,55 N olan şekillendirme kuvvetinin 1282,02 N, 0,588 μ m olan yüzey pürüzlülüğünün 0,549 μ m, 0,75 mm olan et kalınlığının 0,82 mm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturulmuştur. Şekillendirme kuvveti için elde edilen regresyon denklemi Eşitlik 4.1'de, yüzey pürüzlülüğünün tahmini için elde edilen regresyon denklemi Eşitlik 4.2'de, en küçük et kalınlığını veren regresyon denklemi ise Eşitlik 4.3'de verilmiştir.

 $F_{z} = 300 - 52,9 * P - 0,208 * F + 2900 * A + 158,9 * D - 0,000003 * F^{2} - 2163 * A^{2} - 7,13 * D^{2} + 0,0049 * P * F + 9,2 * P * A + 3,74 * P * D + 0,108 * F * A + 0,0086 * F * D - 7,4 * A * D$ (4.1)

 $R_{a} = -7,27 - 0,859 * P + 0,00647 * F + 24,96 * A + 1,251 * D - 6,06 * A^{2} - 0,0653 * D^{2} - 0,000203 * P * F + 0,205 * P * A + 0,0642 * P * D - 0,00461 * F * A - 0,00022 * F * D - 1,025 * A * D$ (4.2)

 $T_{min} = 0.7617 - 0.00109 * P - 0.000087 * F + 0.117 * A + 0.00938 * D - 0.051 * A^{2} + 0.000091 * D^{2} + 0.000004 * P * F - 0.00278 * P * A - 0.000368 * P * D + 0.000022 * F * A - 0.000001 * F * D - 0.01108 * A * D$ (4.3)

DKP 37 sacının 40° eksenel simetrik şekillendirme deneylerinde şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde ($p \le 0,01$) etkilidir. Deney parametrelerinin şekillendirme kuvveti (Fz) üzerine ikili etkileşimleri incelendiğinde, form takımının etkisinin artım miktarından etkilendiği görülebilmektedir. Yüzey pürüzlülüğü için yapılan varyans analizine göre basınç ve form takımı çapı çok önemli düzeyde ($p \le 0,01$) etkilidir. Artım miktarı ise önemli düzeyde ($p \le 0,05$) etkilidir. İkili etkileşimleri incelendiğinde, form takımının çapının etkisinin artım miktarına ve basınca bağlı olarak değiştiği görülmektedir. Et kalınlığı için yapılan varyans analizine göre form takımı çapı önemli düzeyde ($p \le 0,05$) etkilidir.

4.1.2. DKP37 Sacının 60° Eksenel Simetrik Koni Formu Deneyleri

4.1.2.1. Şekillendirme Kuvvetleri

DKP 37 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda belirlenen şekillendirme kuvvetleri Tablo 4.12'de verilmiştir. Tablonun sağ tarafında sinyal-gürültü analizi sonucunda elde edilen S/N oranları verilmiştir. Tablo incelendiğinde 9 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,5 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 11 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. En büyük ilk üç şekillendirme kuvveti 15 mm çaplı form takımının kullanıldığı deneylerde oluştuğu görülmüştür. İlerleme hızı ile artım miktarının büyümesinin de şekillendirme kuvvetini arttırdığı görülmektedir.

Tablo 4.13, Şekil 4.9, Tablo 4.14 ve Şekil 4.10'da DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde, şekillendirme kuvveti (Fz) için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler verilmiştir.

	TP	[F_RL_60]	D_ES					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N
1	2	500	0,25	5	568,25	887,43	1730,56	-64,7638
2	2	500	0,5	10	695,93	720,75	1663,89	-64,4225
3	2	500	0,75	15	923,36	952,54	1988,11	-65,9688
4	2	1000	0,25	5	874,62	985,09	1596,56	-64,0637
5	2	1000	0,5	10	709,90	727,59	1776,32	-64,9904
6	2	1000	0,75	15	931,48	969,14	2042,69	-66,204
7	2	1500	0,25	10	593,26	619,51	1584,14	-63,9959
8	2	1500	0,5	15	856,43	880,27	1942,68	-65,768
9	2	1500	0,75	5	897,04	989,97	1641,01	-64,3022
10	9	500	0,25	15	773,91	790,42	1750,50	-64,8632
11	9	500	0,5	5	695,93	941,47	1490,02	-63,4638
12	9	500	0,75	10	761,89	797,58	1707,03	-64,6448
13	9	1000	0,25	10	675,46	673,22	1645,59	-64,3264
14	9	1000	0,5	15	857,73	891,01	1935,49	-65,7358
15	9	1000	0,75	5	886,65	855,20	1534,79	-63,721
16	9	1500	0,25	15	768,06	785,53	1757,36	-64,8972
17	9	1500	0,5	5	814,52	1004,62	1686,11	-64,5377
18	9	1500	0,75	10	771,63	798,23	1770,11	-64,96

Tablo 4.12. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen kuvvetler

Tablo 4.13. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-64,94	-64,69	-64,49	-64,14
	2	-64,57	-64,84	-64,82	-64,56
Şekillendirme Kuvveti (Fz)	3		-64,74	-64,97	-65,57
(12)	Delta	0,37	0,15	0,48	1,43
	Sıra	3	4	2	1

Şekil 4.9. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti S/N oranları

Kaynak	Şek	xillendirme K	uvveti		
	SD	<u>(K-sq. %94,4</u> KT	KO	F	P
Model	13	389996	30000	5,25	0,061
Doğrusal	4	227004	56751	9,94	0,024
Basınç	1	594	594	0,1	0,763
İlerleme Hızı	1	7378	7378	1,29	0,319
Artım Miktarı	1	25148	25148	4,4	0,104
Form Takımı Çapı	1	162293	162293	28,42	0,006
Kare	3	13353	4451	0,78	0,564
İlerleme Hızı*İlerleme Hızı	1	136	136	0,02	0,885
Artım Miktarı*Artım Miktarı	1	3156	3156	0,55	0,498
Form Takımı Çapı*Form Takımı Çapı	1	10392	10392	1,82	0,249
2 Yönlü Etkileşim	6	56926	9488	1,66	0,324
Basınç*İlerleme Hızı	1	2762	2762	0,48	0,525
Basınç*Artım Miktarı	1	107	107	0,02	0,898
Basınç*Form Takımı Çapı	1	2062	2062	0,36	0,58
İlerleme Hızı*Artım Miktarı	1	7344	7344	1,29	0,32
İlerleme Hızı*Form Takımı Çapı	1	151	151	0,03	0,879
Artım Miktarı*Form Takımı Çapı	1	28067	28067	4,92	0,091
Hata	4	22840	5710		
Toplam	17	412837	255300		

Tablo 4.14. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

Şekil 4.10. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde, şekillendirme kuvveti üzerinde form takımı çapının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.14). Bu etki Şekil 4.9'da da görülebilmektedir.

İkili etkileşimler incelendiğinde (Tablo 4.14), parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır. Ayrıca, Şekil 4.10'dan artım miktarı ile form takımı çapı değeri birlikte büyüdüğünde şekillendirme kuvveti de büyüdüğü anlaşılmaktadır.

Şekillendirme kuvveti için optimum şekillendirme parametre seviyeleri basınç 9 bar, ilerleme hızı 500 mm/dak, artım miktarı 0,25 mm, form takımı çapı 5 mm olduğu söylenebilir (Tablo 4.13 ve Şekil 4.9). Fakat bu tablo ve şekil birlikte incelendiğinde, form takımı çapı dışındaki diğer bağımsız değişkenlerin parametre seviyeleri arasında büyük bir fark olmadığı görülebilmektedir.

4.1.2.2. Yüzey Pürüzlülüğü

DKP 37 sacının 60° eksenel simetrik şekillendirilme deneyleri sonucunda elde edilen her bir parçanın yüzey pürüzlülükleri (Ra) üçer defa ölçülerek ortalamaları alınmış ve bu ortalamalara göre sinyal-gürültü analizi yapılarak elde edilen S/N değerleri Tablo 4.15'de verilmiştir. Tablo 4.15 incelendiğinde en düşük yüzey pürüzlülüğünün 10 mm çaplı form takımının kullanıldığı 7, 12 ve 13 numaralı deneylerde elde edildiği, en yüksek yüzey pürüzlülüğünün ise 5 mm çaplı form takımının kullanıldığı 9, 11 ve 15 numaralı deneylerde oluştuğu görülmektedir. Bu sonuçlar Şekil 4.11'de grafiksel olarak görülmektedir. Sonuç olarak, en küçük yüzey pürüzlülüğünün 7 numaralı deneyde oluştuğu görülmektedir.

	TPIF_RL_60D_ES						Ra (µm)				
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı		1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N	
1	2	500	0,25	5		2,979	3,105	3,751	3,278	-10,3131	
2	2	500	0,5	10		0,838	0,966	0,864	0,889	1,018709	
3	2	500	0,75	15		1,264	1,174	1,401	1,280	-2,14194	
4	2	1000	0,25	5		3,992	3,467	3,238	3,566	-11,0428	
5	2	1000	0,5	10		0,903	0,903	0,959	0,922	0,708522	
6	2	1000	0,75	15		1,164	1,121	1,391	1,225	-1,76508	
7	2	1500	0,25	10		0,339	0,377	0,373	0,363	8,801867	
8	2	1500	0,5	15		1,192	1,398	1,322	1,304	-2,30555	
9	2	1500	0,75	5		6,123	6,856	6,036	6,338	-16,0395	
10	9	500	0,25	15		1,068	1,195	1,091	1,118	-0,96884	
11	9	500	0,5	5		5,488	5,795	5,214	5,499	-14,8057	
12	9	500	0,75	10		0,723	0,780	0,749	0,751	2,491057	
13	9	1000	0,25	10		0,766	0,744	0,754	0,755	2,444897	
14	9	1000	0,5	15		1,231	1,089	1,164	1,161	-1,29914	
15	9	1000	0,75	5		4,754	4,386	4,812	4,651	-13,3503	
16	9	1500	0,25	15		0,892	0,972	0,922	0,929	0,642803	
17	9	1500	0,5	5		4,240	4,554	4,557	4,450	-12,9679	
18	9	1500	0,75	10		0,774	0,924	0,799	0,832	1,594054	

Tablo 4.15. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde, yüzey pürüzlülüğü için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.16, Şekil 4.12, Tablo 4.17 ve Şekil 4.13'de verilmiştir.

Şekil 4.11. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Tablo 4.16. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-3,675	-4,120	-1,739	-13,087
	2	-4,024	-4,051	-4,942	2,843
Yüzey Pürüzlülüğü (Ra)	3		-3,379	-4,869	-1,306
	Delta	0,349	0,741	3,203	15,930
	Sıra	4	3	2	1

Şekil 4.12. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Anılan şekil ve tablolar incelendiğinde, yüzey pürüzlülüğü üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$), artım miktarı ise önemli düzeyde ($p \le 0,05$) etkilidir (Tablo 4.17). Bu durum S/N analizi ile de uyuşmaktadır (Tablo 4.16 ve Şekil 4.12).

İkili etkileşimlere göre artım miktarının etkisi basınca bağlı olarak önemli düzeyde ($p \le 0,05$) değişmiştir (Tablo 4.17). Bu durum Şekil 4.13'te verilen kontür grafiğinde de görülebilmektedir.

Yüzey pürüzlülüğü için optimum parametre seviyelerinin basınç için 2 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 10 mm'dir (Tablo 4.16 ve Şekil 4.12). Bununla birlikte 15 mm çaplı form takımının da iyi sonuçlar verdiği söylenebilir.

Karmak		Yüzey Pürüz	lülüğü		
Каупак		(R-sq: %99	9,37)		
	SD	KT	KO	F	Р
Model	13	60,9646	4,6896	48,56	0,001
Doğrusal	4	28,7577	7,1894	74,45	0,001
Basınç	1	0	0	0	0,998
İlerleme Hızı	1	0,0559	0,0559	0,58	0,489
Artım Miktarı	1	1,7616	1,7616	18,24	0,013
Form Takımı Çapı	1	28,1482	28,1482	291,48	0
Kare	3	12,2597	4,0866	42,32	0,002
İlerleme Hızı*İlerleme Hızı	1	0,101	0,101	1,05	0,364
Artım Miktarı*Artım Miktarı	1	0,3203	0,3203	3,32	0,143
Form Takımı Çapı*Form Takımı Çapı	1	11,8598	11,8598	122,81	0
2 Yönlü Etkileşim	6	3,737	0,6228	6,45	0,046
Basınç*İlerleme Hızı	1	0,7031	0,7031	7,28	0,054
Basınç*Artım Miktarı	1	1,6554	1,6554	17,14	0,014
Basınç*Form Takımı Çapı	1	0,0661	0,0661	0,68	0,455
İlerleme Hızı*Artım Miktarı	1	0	0	0	0,988
İlerleme Hızı*Form Takımı Çapı	1	0,0532	0,0532	0,55	0,499
Artım Miktarı*Form Takımı Çapı	1	0,0876	0,0876	0,91	0,395
Hata	4	0,3863	0,0966		
Toplam	17	61,3509	44,9088		

Tablo 4.17. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

Şekil 4.13. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

4.1.2.3. Et Kalınlığı Değişimi

Deneyler sonucunda elde edilen numunelerin kalınlık dağılımları çıkartılarak Tablo 4.18'de verilmiştir. Tablodan, 9 bar basıncın kullanıldığı deneylerde, 2 bar basıncın kullanıldığı deneylere göre daha düşük et kalınlıklarının oluştuğu görülebilmektedir. Et kalınlığı dağılımları Şekil 4.14'de ise grafik olarak verilmiştir. Şekil incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Şekilden parça tabanında maksimum incelmenin meydana geldiği görülmektedir. Maksimum incelme 5 mm form takımı çapının kullanıldığı 11 ve 15 numaralı deneylerde oluşmuştur.

Şekil 4.14. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

	Т	PIF_RL_60I	D_ES						N	1erkezd	en Uzal	dık (mr	n)					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	t-S/N
1	2	500	0,25	5	1,02	1,02	1,01	0,96	0,87	0,54	0,55	0,71	0,99	0,99	1,01	1,02	1,02	-5,35212
2	2	500	0,5	10	1,02	1,02	0,99	0,98	0,91	0,67	0,6	0,6	0,8	0,95	1,02	1,02	1,02	-4,43697
3	2	500	0,75	15	1,02	1,02	1	0,95	0,91	0,59	0,56	0,69	0,82	0,99	1,02	1,02	1,02	-5,03624
4	2	1000	0,25	5	1,02	1,02	1,02	0,95	0,85	0,56	0,56	0,55	0,69	0,95	1,02	1,02	1,02	-5,19275
5	2	1000	0,5	10	1,02	1,02	0,95	0,95	0,9	0,6	0,58	0,68	0,82	0,9	1,02	1,02	1,02	-4,73144
6	2	1000	0,75	15	1,02	1,02	1,02	0,96	0,9	0,6	0,57	0,57	0,82	0,96	1,02	1,02	1,02	-4,88250
7	2	1500	0,25	10	1,02	1,02	0,98	0,94	0,88	0,6	0,55	0,58	0,83	0,98	1,02	1,02	1,02	-5,19275
8	2	1500	0,5	15	1,02	1,02	1,01	0,94	0,85	0,56	0,59	0,64	0,78	0,95	1,03	1,02	1,02	-5,03624
9	2	1500	0,75	5	1,02	1,02	1,02	0,95	0,78	0,55	0,62	0,59	0,81	0,94	1,03	1,02	1,02	-5,19275
2 bar	sıkma basır	ncına göre or	talama et kalı	ınlıkları	1,02	1,02	1,00	0,95	0,87	0,59	0,58	0,62	0,82	0,96	1,02	1,02	1,02	
10	9	500	0,25	15	1,02	1,02	0,99	0,95	0,95	0,55	0,60	0,65	0,89	0,99	1,02	1,02	1,02	-5,19275
11	9	500	0,5	5	1,02	1,02	1,00	0,91	0,75	0,58	0,52	0,76	0,79	1,00	1,02	1,02	1,02	-5,67993
12	9	500	0,75	10	1,02	1,02	0,99	0,93	0,90	0,60	0,55	0,60	0,80	1,03	1,02	1,02	1,02	-5,19275
13	9	1000	0,25	10	1,02	1,02	0,98	0,96	0,94	0,60	0,57	0,59	0,90	1,00	1,02	1,02	1,02	-4,88250
14	9	1000	0,5	15	1,02	1,02	1,00	0,95	0,92	0,56	0,57	0,60	0,81	1,00	1,02	1,02	1,02	-5,03624
15	9	1000	0,75	5	1,02	1,02	1,00	0,93	0,79	0,52	0,52	0,56	0,90	0,98	1,02	1,02	1,02	-5,67993
16	9	1500	0,25	15	1,02	1,02	1,00	0,90	0,84	0,59	0,58	0,64	0,90	1,03	1,02	1,02	1,02	-4,73144
17	9	1500	0,5	5	1,02	1,02	1,01	0,93	0,80	0,54	0,55	0,66	0,95	1,00	1,02	1,02	1,02	-5,35212
18	9	1500	0,75	10	1,02	1,02	1,00	0,99	0,92	0,64	0,57	0,56	0,87	0,96	1,02	1,02	1,02	-5,03624
9 bar	sıkma basır	ncına göre or	talama et kalı	ınlıkları	1,02	1,02	1,00	0,94	0,87	0,58	0,56	0,62	0,87	1,00	1,02	1,02	1,02	

Tablo 4.18. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

DKP 37 sacının 60° eksenel simetrik şekillendirilmesi sonucunda et kalınlığını optimize etmek için yapılan istatistiksel analizler Tablo 4.19, Şekil 4.15, Tablo 4.20 ve Şekil 4.16'da verilmiştir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım miktarı	Form Takımı Çapı
	1	-5,006	-5,148	-5,091	-5,408
	2	-5,198	-5,068	-5,045	-4,912
Et Kalınlığı	3		-5,090	-5,170	-4,986
	Delta	0,192	0,081	0,125	0,496
	Sıra	2	4	3	1

Tablo 4.19. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.15. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı S/N oranları

Anılan şekil ve tablolar incelendiğinde, hiçbir bağımsız değişken et kalınlığını önemli düzeyde ($p \le 0,05$) etkili değildir (Tablo 4.20). Bununla birlikte basınç ve form takımı çapının etkilerinin ön plana çıktığı görülebilmektedir.

İkili etkileşimler incelendiğinde basıncın etkisi ilerleme hızına bağlı olarak biraz önemli düzeyde ($p \le 0,1$) değişmiştir (Tablo 4.20). Bu etki Şekil 4.16'da da görülmektedir.

Et kalınlığı optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için ise 10 mm'dir (Tablo

4.19 ve Şekil 4.15). Bununla birlikte 15 mm çaplı form takımının da iyi sonuçlar verdiği söylenebilir (Şekil 4.15).

Kaynak		Et K (R-sa)	Xalınlığı : %92.78)		
	SD	KT	КО	F	Р
Model	13	0,006335	0,000487	3,96	0,097
Doğrusal	4	0,001174	0,000293	2,38	0,211
Basınç	1	0,000554	0,000554	4,5	0,101
İlerleme Hızı	1	0,000009	0,000009	0,07	0,8
Artım Miktarı	1	0,000029	0,000029	0,23	0,653
Form Takımı Çapı	1	0,000493	0,000493	4	0,116
Kare	3	0,002069	0,00069	5,6	0,065
İlerleme Hızı*İlerleme Hızı	1	0,000061	0,000061	0,49	0,522
Artım Miktarı*Artım Miktarı	1	0,000257	0,000257	2,09	0,222
Form Takımı Çapı*Form Takımı Çapı	1	0,001679	0,001679	13,64	0,021
2 Yönlü Etkileşim	6	0,001896	0,000316	2,57	0,19
Basınç*İlerleme Hızı	1	0,000797	0,000797	6,47	0,064
Basınç*Artım Miktarı	1	0,00048	0,00048	3,89	0,12
Basınç*Form Takımı Çapı	1	0,000326	0,000326	2,64	0,179
İlerleme Hızı*Artım Miktarı	1	0,000019	0,000019	0,15	0,715
İlerleme Hızı*Form Takımı Çapı	1	0,000058	0,000058	0,47	0,53
Artım Miktarı*Form Takımı Çapı	1	0,000026	0,000026	0,21	0,671
Hata	4	0,000493	0,000123		
Toplam	17	0,006828	0,004911		

Tablo 4.20. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı varyans analizi tablosu

Şekil 4.16. DKP 37 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı parametre etkileşimleri

4.1.2.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

Tablo 4.21'de S/N analizi sonucunda elde edilen optimum faktör seviyeleri verilmiştir. Tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Tablo 4.21. DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	500	0,25	5
Yüzey pürüzlülüğü	2	1500	0,25	10
Et kalınlığı	2	1000	0,5	10

Deneylerde belirlenen sonuçlarla (Tablo 4.12, Tablo 4.15 ve Tablo 4.18) optimum faktör seviyeleri (Tablo 4.21) kullanılarak yapılan deney sonuçları karşılaştırıldığında 1490,02 N olan şekillendirme kuvvetinin 1472,22 N, 0,363 µm olan yüzey pürüzlülüğünün 0,342 µm, 0,52 mm olan et kalınlığının 0,58 mm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturularak sırasıyla Eşitlik 4.4, Eşitlik 4.5 ve Eşitlik 4.6'da verilmiştir.

$$F_{z} = 1925 - 20 * P - 0,072 * F - 273 * A - 55,3 * D - 0,000024 * F^{2} - 491 * A^{2} + 2,23 * D^{2} + 0,0096 * P * F - 4,9 * P * A + 1,07 * P * D + 0,286 * F * A - 0,0021 * F * D + 74,3 * A * D$$

$$(4.4)$$

 $R_{a} = 8,36 + 0,396 * P - 0,0007 * F + 11,62 * A - 1,912 * D + 0,000001 * F^{2} - 4,95 * A^{2} + 0,0753 * D^{2} - 0,000153 * P * F - 0,608 * P * A + 0,00607 * P * D - 0,00002 * F * A + 0,000039 * F * D - 0,131 * A * D$ (4.5)

$$T_{min} = 0,4447 - 0,00627 * P + 0,242 * A + 0,0171 * D - 0,1403 * A^{2} - 0,000896 * D^{2} + 0,000005 * P * F - 0,01034 * P * A + * 0,000426P * D + 0,000015 * F * A + 0,000001 * F * D - 0,00226 * A * D$$

$$(4.6)$$

DKP 37 sacının 60° eksenel simetrik şekillendirme deneyleri için yapılan varyans analizlerine göre şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde (p $\leq 0,01$) etkilidir. Yüzey pürüzlülüğü üzerinde form takımı çapının çok önemli düzeyde (p $\leq 0,01$), artım miktarının ise önemli düzeyde (p $\leq 0,05$) etkili olduğu görülmektedir. Et kalınlığı üzerinde hiçbir bağımsız değişkenin önemli düzeyde (p $\leq 0,05$) etkili olmadığı görülmektedir. Ancak basınç ve form takımı çapının bir miktar etkili olduğu görülmektedir (p $\leq 0,15$).

4.1.3. DKP37 Sacının 40° Kare Piramit Formu Deneyleri

4.1.3.1. Şekillendirme Kuvvetleri

DKP37 sacının 40° kare piramit formunda şekillendirme deneyleri sırasında belirlenen şekillendirme kuvvetleri ve sinyal gürültü analizi sonucunda elde edilen S/N oranları Tablo 4.22'de verilmiştir. Tablo incelendiğinde 9 bar sıkma basıncı, 1500 mm/dak ilerleme hızı, 0,5 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 17 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. Küçük şekillendirme kuvvetlerinin oluştuğu deneyler incelendiğinde, bu deneylerde form takımı çapının 5 mm olarak alındığı görülmektedir. Bu da form takımı çapının şekillendirme kuvveti üzerinde etkili bir parametre olduğunu göstermektedir.

Tablo 4.23, Şekil 4.17, Tablo 4.24 ve Şekil 4.18'de DKP37 sacının 40° kare piramit formunda şekillendirme deneyleri neticesinde belirlenen şekillendirme kuvvetlerinin istatistiksel analizleri verilmiştir.

	TPI	F_RL_40I	D_PR						
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N	
1	2	500	0,25	5	717,37	708,70	1372,69	-62,7514	
2	2	500	0,5	10	562,72	584,67	1979,61	-65,9316	
3	2	500	0,75	15	570,20	649,78	2638,50	-68,4271	
4	2	1000	0,25	5	641,35	640,34	1368,76	-62,7266	
5	2	1000	0,5	10	539,98	552,77	2002,81	-66,0328	
6	2	1000	0,75	15	549,73	590,53	2696,02	-68,6145	
7	2	1500	0,25	10	583,84	594,76	1731,87	-64,7703	
8	2	1500	0,5	15	483,12	486,68	2593,39	-68,2774	
9	2	1500	0,75	5	1380,17	1152,09	1424,32	-63,0722	
10	9	500	0,25	15	373,63	384,79	2175,38	-66,7507	
11	9	500	0,5	5	793,40	907,94	1416,81	-63,0262	
12	9	500	0,75	10	601,06	609,74	1992,68	-65,9888	
13	9	1000	0,25	10	531,21	399,77	1675,00	-64,4803	
14	9	1000	0,5	15	501,64	496,45	2471,16	-67,858	
15	9	1000	0,75	5	1872,71	1549,90	1799,20	-65,1016	
16	9	1500	0,25	15	621,85	537,14	2159,69	-66,6878	
17	9	1500	0,5	5	1028,63	966,21	1357,98	-62,6579	
18	9	1500	0,75	10	582,87	613,97	1999,87	-66,02	

Tablo 4.22. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen kuvvetler

Tablo 4.23. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-65,62	-65,48	-64,69	-63,22
	2	-65,40	-65,80	-65,63	-65,54
Şekillendirme Kuvveti	3		-65,25	-66,20	-67,77
(12)	Delta	0,23	0,55	1,51	4,55
	Sıralama	4	3	2	1

Şekil 4.17. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti S/N oranları

	Şekillendirme Kuvveti (R-sq: %99,93)					
Kaynak						
	SD	КТ	KO	F	Р	
Model	13	3541264	272405	437,17	0	
Doğrusal	4	2538695	634674	1018,57	0	
Basınç	1	44856	44856	71,99	0,001	
İlerleme Hızı	1	16890	16890	27,11	0,006	
Artım Miktarı	1	144964	144964	232,65	0	
Form Takımı Çapı	1	2117666	2117666	3398,57	0	
Kare	3	78009	26003	41,73	0,002	
İlerleme Hızı*İlerleme Hızı	1	48698	48698	78,15	0,001	
Artım Miktarı*Artım Miktarı	1	318	318	0,51	0,514	
Form Takımı Çapı*Form Takımı Çapı	1	31451	31451	50,47	0,002	
2 Yönlü Etkileşim	6	87514	14586	23,41	0,004	
Basınç*İlerleme Hızı	1	9010	9010	14,46	0,019	
Basınç*Artım Miktarı	1	43230	43230	69,38	0,001	
Basınç*Form Takımı Çapı	1	28713	28713	46,08	0,002	
İlerleme Hızı*Artım Miktarı	1	2477	2477	3,97	0,117	
İlerleme Hızı*Form Takımı Çapı	1	3347	3347	5,37	0,081	
Artım Miktarı*Form Takımı Çapı	1	13163	13163	21,12	0,01	
Hata	4	2492	623			
Toplam	17	3543757	2505406			

Tablo 4.24. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

Şekil 4.18. DKP 37 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde, şekillendirme kuvveti üzerinde bütün bağımsız değişkenler (basınç, ilerleme hızı, form takımı çapı ve artım miktarı) çok önemli düzeyde $(p \le 0.01)$ etkilidir (Tablo 4.24).

İkili etkileşimler incelendiğinde basıncın etkisi artım miktarı ve form takımı çapına bağlı olarak çok önemli düzeyde ($p \le 0,01$), ilerleme hızı ise önemli düzeyde ($p \le 0,05$) değişmiştir (Tablo 4.24). Bu durum grafiği Şekil 4.18'de verilen kontür grafiğinde de görülebilmektedir.

Şekillendirme kuvveti optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir (Tablo 4.23 ve Şekil 4.17). Fakat Tablo 4.23'te verilen delta satırına dikkat edildiğinde basınç ve ilerleme hızının parametre seviyelerinin şekillendirme kuvveti üzerinde önemli bir farkı olmadığı anlaşılmaktadır.

4.1.3.2. Yüzey Pürüzlülüğü

Şekillendirme deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülerek ölçümlerin ortalamaları alınmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri ve S/N analizi sonucunda elde edilen S/N oranları Tablo 4.25'de verilmiştir. Yüzey pürüzlülüğünün, 15 mm çaplı form takımının kullanıldığı 7, 10, 14 gibi deneylerde diğer deneylere göre daha az çıktığı görülmektedir. Yüzey pürüzlülüğü, 5 mm

çaplı form takımının kullanıldığı deneylerde diğer deneylere göre daha yüksek çıkmıştır. Form takımının küçük olması ile birlikte artım miktarının büyük olduğu 9 ve 15 numaralı deneylerde yüzey pürüzlülüğü ortalamanın çok üzerinde oluşmuştur. Bu durum Şekil 4.19'da net olarak görülmektedir.

TPIF_RL_40D_PR			Ra (µm)						
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	0,807	0,815	0,801	0,808	1,855357
2	2	500	0,5	10	1,176	1,112	0,859	1,049	-0,41551
3	2	500	0,75	15	0,724	0,854	0,830	0,803	1,909295
4	2	1000	0,25	5	0,807	0,810	0,773	0,797	1,974467
5	2	1000	0,5	10	0,759	0,793	0,885	0,812	1,805315
6	2	1000	0,75	15	0,859	0,738	0,800	0,799	1,949064
7	2	1500	0,25	10	0,689	0,617	0,559	0,622	4,128848
8	2	1500	0,5	15	0,820	0,784	0,778	0,794	2,00359
9	2	1500	0,75	5	6,391	5,519	5,479	5,796	-15,2631
10	9	500	0,25	15	0,407	0,470	0,391	0,423	7,48004
11	9	500	0,5	5	1,118	1,339	1,403	1,287	-2,18932
12	9	500	0,75	10	1,581	1,682	1,742	1,668	-4,44566
13	9	1000	0,25	10	0,710	0,767	0,741	0,739	2,623194
14	9	1000	0,5	15	0,469	0,514	0,663	0,549	5,213828
15	9	1000	0,75	5	14,580	13,740	11,110	13,143	-22,3741
16	9	1500	0,25	15	0,800	0,650	0,659	0,703	3,060893
17	9	1500	0,5	5	1,633	1,567	1,900	1,700	-4,60898
18	9	1500	0,75	10	1,528	1,693	1,545	1,589	-4,02066

Tablo 4.25. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Şekil 4.19. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde, yukarıda verilen deney sonuçlarına göre yüzey pürüzlülüğü için yapılan istatistiksel analizler Tablo 4.26, Şekil 4.20, Tablo 4.27 ve Şekil 4.21'de verilmiştir.

Tablo 4.26. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-0,00585	0,69903	3,52047	-6,76761
	2	-2,14009	-1,46804	0,30149	-0,05408
Yüzey Pürüzlülüğü (Ra)	3		-2,44989	-7,04085	3,60279
	Delta	2,13424	3,14893	10,56132	10,37039
	Sıra	4	3	1	2

Şekil 4.20. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak	Yüzey Pürüzlülüğü (R-sq: %96,33)				
	SD	KT	КО	F	Р
Model	13	152,72	11,7477	8,07	0,029
Doğrusal	4	26,092	6,523	4,48	0,088
Basınç	1	8,842	8,8424	6,08	0,069
İlerleme Hızı	1	3,922	3,9225	2,7	0,176
Artım Miktarı	1	6,798	6,7979	4,67	0,097
Form Takımı Çapı	1	6,655	6,6548	4,57	0,099
Kare	3	45,224	15,0748	10,36	0,023
İlerleme Hızı*İlerleme Hızı	1	22,017	22,0168	15,13	0,018
Artım Miktarı*Artım Miktarı	1	12,803	12,8025	8,8	0,041
Form Takımı Çapı*Form Takımı Çapı	1	11,919	11,9187	8,19	0,046
2 Yönlü Etkileşim	6	61,392	10,2321	7,03	0,04
Basınç*İlerleme Hızı	1	5,29	5,2903	3,64	0,129
Basınç*Artım Miktarı	1	10,173	10,1729	6,99	0,057
Basınç*Form Takımı Çapı	1	10,277	10,2771	7,06	0,057
İlerleme Hızı*Artım Miktarı	1	0,006	0,0061	0	0,952
İlerleme Hızı*Form Takımı Çapı	1	0	0,0002	0	0,992
Artım Miktarı*Form Takımı Çapı	1	58,961	58,961	40,52	0,003
Hata	4	5,82	1,4551		
Toplam	17	158,54	159,1183		

Tablo 4.27. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu
Anılan şekil ve tablolar incelendiğinde yüzey pürüzlülüğü üzerinde hiçbir bağımsız değişkenin önemli düzeyde ($p \le 0.05$) etkili olmadığı anlaşılmaktadır (Tablo 4.27). Fakat basıncın etkisi ön plana çıkmıştır.

İkili etkileşimler incelendiğinde basınç değerinin büyümesinin yüzey pürüzlülüğünü artırdığı görülebilmektedir (Şekil 4.21). Özellikle artım miktarı ile form takımı çapının ikili etkileşimi yüzey pürüzlülüğünü çok önemli düzeyde ($p \le 0.01$) etkilemektedir.

Yüzey pürüzlülüğü optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir (Tablo 4.26 ve Şekil 4.20).

Şekil 4.21. DKP 37 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

4.1.3.3. Et Kalınlığı Değişimi

DKP37 sacının 40° kare piramit formunda şekillendirilmesi sonucunda elde edilen parçaların et kalınlıkları ölçülerek kalınlık dağılımları elde edilmiştir ve bu dağılımlar Tablo 4.28'de verilmiştir. Şekil 4.22'de ise et kalınlığı dağılımı grafik olarak verilmiştir. Tablo 4.28 ve Şekil 4.22 incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Şekillendirilen yüzeyin alt ve üst bölgelerindeki incelme birbirlerine yakındır. Maksimum incelme 5 mm çaplı form takımının kullanıldığı 9 numaralı deneyde oluşmuştur. Form takımı çapının küçük olması yüzey pürüzlülüğünü artırdığı gibi et kalınlığının da incelmesine neden olmaktadır.

Şekil 4.22. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

	TI	PIF_RL_40I	D_PR								Merk	ezden I	Uzaklık	k (mm)							
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	t-S/N
1	2	500	0,25	5	1,08	1,08	1,08	1	0,8	0,79	0,8	0,8	0,8	0,8	0,8	0,8	0,85	1,08	1,08	1,08	-2,04746
2	2	500	0,5	10	1,08	1,08	1,08	1	0,82	0,82	0,81	0,8	0,8	0,79	0,79	0,78	0,85	1,08	1,08	1,08	-2,15811
3	2	500	0,75	15	1,08	1,08	1,08	0,99	0,85	0,82	0,81	0,81	0,8	0,78	0,79	0,79	0,85	1,08	1,08	1,08	-2,15811
4	2	1000	0,25	5	1,08	1,08	1,08	1	0,8	0,8	0,8	0,8	0,8	0,79	0,8	0,78	0,88	1,08	1,08	1,08	-2,15811
5	2	1000	0,5	10	1,08	1,08	1,08	1	0,81	0,8	0,8	0,8	0,8	0,77	0,78	0,78	0,87	1,08	1,08	1,08	-2,27019
6	2	1000	0,75	15	1,08	1,08	1,08	1,02	0,85	0,81	0,8	0,81	0,8	0,78	0,78	0,79	0,9	1,08	1,08	1,08	-2,15811
7	2	1500	0,25	10	1,08	1,08	1,08	1,02	0,84	0,8	0,81	0,81	0,81	0,8	0,8	0,81	0,88	1,08	1,08	1,08	-1,93820
8	2	1500	0,5	15	1,08	1,08	1,08	1,01	0,85	0,83	0,83	0,81	0,81	0,81	0,8	0,83	0,87	1,08	1,08	1,08	-1,93820
9	2	1500	0,75	5	1,08	1,08	1,08	0,98	0,8	0,8	0,8	0,8	0,78	0,79	0,79	0,77	0,83	1,08	1,08	1,08	-2,27019
2 bar sı	kma basın	cına göre or	talama et ka	ılınlıkları	1,08	1,08	1,08	1,00	0,82	0,81	0,81	0,80	0,80	0,79	0,79	0,79	0,86	1,08	1,08	1,08	
10	9	500	0,25	15	1,08	1,08	1,08	1,00	0,82	0,81	0,82	0,81	0,81	0,79	0,80	0,80	0,89	1,08	1,08	1,08	-2,04746
11	9	500	0,5	5	1,08	1,08	1,08	1,01	0,82	0,80	0,79	0,80	0,80	0,81	0,80	0,80	0,84	1,08	1,08	1,08	-2,04746
12	9	500	0,75	10	1,08	1,08	1,08	1,00	0,84	0,79	0,79	0,81	0,80	0,78	0,78	0,77	0,86	1,08	1,08	1,08	-2,27019
13	9	1000	0,25	10	1,08	1,08	1,08	1,00	0,83	0,81	0,80	0,80	0,81	0,80	0,79	0,79	0,84	1,08	1,08	1,08	-2,04746
14	9	1000	0,5	15	1,08	1,08	1,08	1,01	0,84	0,83	0,82	0,81	0,81	0,81	0,80	0,81	0,86	1,08	1,08	1,08	-1,93820
15	9	1000	0,75	5	1,08	1,08	1,08	1,00	0,84	0,84	0,84	0,84	0,80	0,78	0,78	0,79	0,86	1,08	1,08	1,08	-2,15811
16	9	1500	0,25	15	1,08	1,08	1,08	1,00	0,86	0,84	0,82	0,82	0,80	0,80	0,80	0,81	0,84	1,08	1,08	1,08	-1,93820
17	9	1500	0,5	5	1,08	1,08	1,08	0,98	0,79	0,79	0,78	0,79	0,79	0,79	0,78	0,79	0,83	1,08	1,08	1,08	-2,15811
18	9	1500	0,75	10	1,08	1,08	1,08	1,00	0,84	0,80	0,81	0,82	0,81	0,79	0,79	0,78	0,86	1,08	1,08	1,08	-2,15811
9 bar sı	kma basın	cına göre or	talama et ka	ılınlıkları	1,08	1,08	1,08	1,00	0,83	0,81	0,81	0,81	0,80	0,79	0,79	0,79	0,85	1,08	1,08	1,08	

Tablo 4.28. DKP 37 sacının 40° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

DKP 37 sacının 40° kare piramit şekillendirilmesinde oluşan et kalınlığının iyileştirilmesi için yapılan istatistiksel analizler Tablo 4.29, Şekil 4.23, Tablo 4.30 ve Şekil 4.24'te verilmiştir.

Anılan şekil ve tablolar incelendiğinde, et kalınlığı üzerinde değişkenlerden hiçbirinin et kalınlığı üzerinde önemli düzeyde ($p \le 0.05$) etkili olmadığı görülmektedir (Tablo 4.30). Bununla birlikte artım miktarı biraz önemlidir ($p \le 0.1$). Bu durum Şekil 4.23'te de görülebilmektedir.

Tablo 4.29. DKP 37 sacının 40° kare piramit şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-2,122	-2,121	-2,029	-2,140
	2	-2,085	-2,122	-2,085	-2,140
Et Kalınlığı	3		-2,067	-2,195	-2,030
	Delta	0,037	0,055	0,166	0,111
	Sıra	4	3	1	2

Şekil 4.23. DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı S/N oranları.

Kaynak		Et Kalı (R-sa: %)	nlığı 81 (19)		
	SD	KT	KO	F	Р
Model	13	0,0015	0,000115	1,32	0,429
Doğrusal	4	0,00075	0,000187	2,14	0,239
Basınç	1	0,000031	0,000031	0,35	0,584
İlerleme Hızı	1	0,000061	0,000061	0,7	0,451
Artım Miktarı	1	0,000414	0,000414	4,74	0,095
Form Takımı Çapı	1	0,00028	0,00028	3,2	0,148
Kare	3	0,000152	0,000051	0,58	0,659
İlerleme Hızı*İlerleme Hızı	1	0,000023	0,000023	0,27	0,634
Artım Miktarı*Artım Miktarı	1	0,000001	0,000001	0,01	0,929
Form Takımı Çapı*Form Takımı Çapı	1	0,000125	0,000125	1,43	0,298
2 Yönlü Etkileşim	6	0,00025	0,000042	0,48	0,801
Basınç*İlerleme Hızı	1	0,000007	0,000007	0,08	0,795
Basınç*Artım Miktarı	1	0,000034	0,000034	0,39	0,567
Basınç*Form Takımı Çapı	1	0,000028	0,000028	0,32	0,603
İlerleme Hızı*Artım Miktarı	1	0,000001	0,000001	0,01	0,927
İlerleme Hızı*Form Takımı Çapı	1	0,000079	0,000079	0,9	0,395
Artım Miktarı*Form Takımı Çapı	1	0	0	0	1
Hata	4	0,00035	0,000087		
Toplam	17	0,00185	0,001171		

Tablo 4.30. DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

İkili etkileşimler incelendiğinde (Tablo 4.30), parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır. Şekil 4.24'te verilen kontur grafiği incelendiğinde özellikle artım miktarı değişiminin et kalınlığı üzerinde diğer parametrelere göre daha belirleyici olduğu görülebilmektedir. Artım miktarının büyümesi ile et kalınlığı azalmaktadır. Form takımı çapının artması ise et kalınlığını artırmaktadır. Form takımı çapının bu etkisi basınç ve ilerleme hızından etkilenmektedir.

Tablo 4.29 ve Şekil 4.23 incelendiğinde, et kalınlığı için optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm olduğu söylenebilir.

Şekil 4.24. DKP 37 sacının 40° kare piramit şekillendirilmesi et kalınlığı parametre etkileşimleri

4.1.3.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

S/N analizi sonucunda elde edilen optimum faktör seviyeleri Tablo 4.31'de verilmiştir. Tabloda verilen optimum seviyelere göre her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	1500	0,25	5
Yüzey pürüzlülüğü	2	500	0,25	15
Et kalınlığı	9	1500	0,25	15

Tablo 4.31. DKP 37 sacının 40° kare piramit şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Tablo 4.31'de verilen optimum faktör seviyeleri kullanılarak yapılan doğrulama deneyleri sonuçları ile Tablo 4.22, Tablo 4.25 ve Tablo 4.28'de verilen deneysel sonuçlar karşılaştırıldığında 1357,98 N olan şekillendirme kuvvetinin 1171,36 N, 0,423 µm olan yüzey pürüzlülüğünün 0,412 µm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür. Tablo 4.31'de verilen optimum faktör seviyeleri incelendiğinde bu faktör seviyelerinin 10 numaralı deney ile aynı olduğu görülmektedir. O nedenle et kalınlığı için ayrı bir doğrulama deneyi yapmaya gerek duyulmamıştır.

İstatiksel analizler sonucunda şekillendirme kuvveti için elde edilen regresyon denklemi Eşitlik 4.7'de, yüzey pürüzlülüğünün tahmini için elde edilen regresyon denklemi Eşitlik 4.8'de, en küçük et kalınlığını veren regresyon denklemi ise Eşitlik 4.9'da verilmiştir.

 $F_{z} = 717 - 44,58 * P + 0,558 * F + 532 * A + 69,8 * D - 0,0000458 * F^{2} - 156 * A^{2} + 3,878 * D^{2} + 0,01737 * P * F + 98,2 * P * A - 4,001 * P * D + 0,1662 * F * A + 0,00966 * F * D - 50,9 * A * D$ (4.7)

 $R_{a} = -5,62 - 0,672 * P + 0,016 * F - 1,3 * A + 0,414 * D - 0,00001 * F^{2} + 31,3 * A^{2} + 0,0755 * D^{2} + 0,000421 * P * F + 1,506 * P * A - 0,0757 * P * D - 0,00026 * F * A + 0,000002 * F * D - 3,407 * A * D$ (4.8)

 $T_{min} = 0,8217 + 0,00082 * P - 0,000029 * F - 0,041 * A - 0,00443 * D - 0,0077 * A^{2} + 0,000244 * D^{2} + 0,00275 * P * A - 0,000124 * P * D + 0,000003 * F * A + 0,000001 * F * D$ (4.9)

Deneyler sonucunda yapılan varyans analizine göre şekillendirme kuvveti üzerinde tüm parametreler (basınç, ilerleme hızı, form takımı çapı ve artım miktarı) çok önemli düzeyde ($p \le 0,01$) etkilidir. Yüzey pürüzlülüğü ve et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde ($p \le 0,05$) etkili değildir.

4.1.4. DKP37 Sacının 60° Kare Piramit Formu Deneyleri

4.1.4.1. Şekillendirme Kuvvetleri

DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen şekillendirme kuvvetleri Tablo 4.32'de verilmiştir. Tablonun ilk bölümünde deneylerde kullanılan parametre seviyeleri verilmiştir. İkinci bölümde belirlenen kuvvetler verilmiştir. Son bölümde ise sinyal gürültü analizi sonucunda elde edilen S/N oranları verilmiştir. Tablo 4.32 incelendiğinde 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. En büyük şekillendirme kuvvetinin oluştuğu ilk üç deneye bakıldığında hepsinde form takımı çapının 15 mm olduğu görülmektedir. Bu da büyük form takımı çapı kullanımının şekillendirme kuvvetini artırdığını göstermektedir.

	ТР	IF_RL_60I	D_PR					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Iaksimum Fy (N)Maksimum Fz (N)793,671316,80849,991816,19918,351985,161012,761345,89701,541707,03942,772038,76684,941650,16921,281946,271133,211532,18869,521859,99752,331435,11870,501809,33657,271570,74919,331954,771112,051484,46877,341838,42923,561490,34670,941753,44	Fz-S/N
1	2	500	0,25	5	655,97	793,67	1316,80	-62,3904
2	2	500	0,5	10	695,93	849,99	1816,19	-65,1832
3	2	500	0,75	15	896,39	918,35	1985,16	-65,9559
4	2	1000	0,25	5	950,65	1012,76	1345,89	-62,5802
5	2	1000	0,5	10	634,85	701,54	1707,03	-64,6448
6	2	1000	0,75	15	915,89	942,77	2038,76	-66,1873
7	2	1500	0,25	10	737,52	684,94	1650,16	-64,3505
8	2	1500	0,5	15	923,03	921,28	1946,27	-65,7841
9	2	1500	0,75	5	1121,22	1133,21	1532,18	-63,7062
10	9	500	0,25	15	853,18	869,52	1859,99	-65,3902
11	9	500	0,5	5	842,78	752,33	1435,11	-63,1377
12	9	500	0,75	10	790,48	870,50	1809,33	-65,1504
13	9	1000	0,25	10	632,58	657,27	1570,74	-63,9221
14	9	1000	0,5	15	906,79	919,33	1954,77	-65,8219
15	9	1000	0,75	5	1218,04	1112,05	1484,46	-63,4314
16	9	1500	0,25	15	861,95	877,34	1838,42	-65,2889
17	9	1500	0,5	5	1081,91	923,56	1490,34	-63,4657
18	9	1500	0,75	10	699,18	670,94	1753,44	-64,8778

Tablo 4.32. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen kuvvetler

DKP 37 sacının DKP 37 sacının 60° kare piramit şekillendirilmesinde, yukarıda verilen deney sonuçlarına göre şekillendirme kuvveti (Fz) için yapılan istatistiksel analizler Tablo 4.33, Şekil 4.25, Tablo 4.34 ve Şekil 4.26'da verilmiştir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-64,53	-64,53	-63,99	-63,12
	2	-64,50	-64,43	-64,67	-64,69
Şekillendirme Kuvveti	3		-64,58	-64,88	-65,74
	Delta	0,03	0,15	0,90	2,62
	Sıralama	4	3	2	1

Tablo 4.33. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.25. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti S/N oranları

Anılan şekil ve tablolar incelendiğinde şekillendirme kuvveti üzerinde form takımı çapının çok önemli düzeyde ($p \le 0,01$), artım miktarının ise önemli düzeyde ($p \le 0,05$) etkili olduğu görülmektedir (Tablo 4.34). Bu etki Şekil 4.25'te de görülebilmektedir.

İkili etkileşimler incelendiğinde (Tablo 4.34), parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır. Fakat Şekil 4.26'da verilen kontur grafiği incelendiğinde form takımı çapının şekillendirme kuvveti üzerinde belirleyici bir etkisi olduğu görülebilmektedir. Form takımı çapı büyüdükçe şekillendirme kuvveti de önemli oranda büyümektedir. Form takımı çapının bu etkisi artım miktarından etkilenirken, diğer bağımsız değişkenlerin ve etkileşimlerinin şekillendirme kuvveti üzerinde anlamlı bir etkisinin olmadığı görülmektedir.

Kaynak	Şo	e <mark>killendirme K</mark> (R-sq: %98,	Kuvveti 76)		
	SD	КТ	KO	F	Р
Model	13	863840	66449	24,51	0,004
Doğrusal	4	564369	141092	52,04	0,001
Basınç	1	1343	1343	0,5	0,52
İlerleme Hızı	1	106	106	0,04	0,853
Artım Miktarı	1	50219	50219	18,52	0,013
Form Takımı Çapı	1	446072	446072	164,51	0
Kare	3	12186	4062	1,5	0,343
İlerleme Hızı*İlerleme Hızı	1	1055	1055	0,39	0,567
Artım Miktarı*Artım Miktarı	1	8796	8796	3,24	0,146
Form Takımı Çapı*Form Takımı Çapı	1	2378	2378	0,88	0,402
2 Yönlü Etkileşim	6	3518	586	0,22	0,952
Basınç*İlerleme Hızı	1	2	2	0	0,982
Basınç*Artım Miktarı	1	164	164	0,06	0,818
Basınç*Form Takımı Çapı	1	344	344	0,13	0,74
İlerleme Hızı*Artım Miktarı	1	736	736	0,27	0,63
İlerleme Hızı*Form Takımı Çapı	1	1944	1944	0,72	0,445
Artım Miktarı*Form Takımı Çapı	1	281	281	0,1	0,764
Hata	4	10846	2711		
Toplam	17	874685	516151		

Tablo 4.34. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.26. DKP 37 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Tablo 4.33 ve Şekil 4.25 incelendiğinde, şekillendirme kuvveti optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm olduğu söylenebilir. Bu grafikten basınç ve ilerleme parametre seviyeleri arasında kayda değer bir fark olmadığı anlaşılmaktadır.

4.1.4.2. Yüzey Pürüzlülüğü

DKP 37 sacının 60° kare piramit şekillendirilmesi deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülerek ortalamaları alınmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri ve deneyler sonucunda elde edilen S/N oranları

Tablo 4.35'de verilmiştir. 10 mm çaplı form takımının kullanıldığı 7, 13, 18 gibi deneylerde yüzey pürüzlülüğünün, diğer deneylere göre daha az çıktığı görülebilmektedir. 5 mm çaplı form takımının kullanıldığı 4, 9 ve 15 numaralı deneylerde ise yüzey pürüzlülüğü, diğer deneylere göre daha yüksek çıkmıştır. Bu durum Şekil 4.27'de görülebilmektedir.

Şekil 4.27. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

	TPI	F_RL_60I	D_PR			Ra	(µm)		
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	1,153	1,323	1,234	1,237	-1,84739
2	2	500	0,5	10	1,364	1,204	1,006	1,191	-1,51824
3	2	500	0,75	15	1,013	0,997	1,064	1,025	-0,21448
4	2	1000	0,25	5	2,280	4,453	2,541	3,091	-9,80198
5	2	1000	0,5	10	1,022	0,925	0,960	0,969	0,273524
6	2	1000	0,75	15	1,170	1,162	1,065	1,132	-1,07693
7	2	1500	0,25	10	0,998	0,943	0,883	0,941	0,528208
8	2	1500	0,5	15	1,041	0,999	1,160	1,067	-0,56329
9	2	1500	0,75	5	2,972	3,157	3,583	3,237	-10,2029
10	9	500	0,25	15	1,251	1,103	1,151	1,168	-1,34886
11	9	500	0,5	5	2,368	2,068	2,235	2,224	-6,9427
12	9	500	0,75	10	1,122	1,107	1,481	1,237	-1,84739
13	9	1000	0,25	10	0,718	0,599	0,542	0,620	4,152166
14	9	1000	0,5	15	1,311	1,199	1,271	1,260	-2,00741
15	9	1000	0,75	5	2,627	3,577	2,637	2,947	-9,3876
16	9	1500	0,25	15	1,021	1,061	1,233	1,105	-0,86725
17	9	1500	0,5	5	2,537	2,223	2,266	2,342	-7,39174
18	9	1500	0,75	10	0,947	0,672	0,837	0,819	1,734322

Tablo 4.35. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

DKP 37 sacının 60° kare piramit şekillendirilmesinde, yüzey pürüzlülüğü için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.36, Şekil 4.28, Tablo 4.37 ve Şekil 4.29'da verilmiştir.

Tablo 4.36. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-2,7137	-2,2865	-1,5309	-7,5957
	2	-2,6563	-2,9747	-3,0250	0,5538
Yüzey Pürüzlülüğü (Ra)	3		-2,7938	-3,4992	-1,0130
	Delta	0,0574	0,6882	1,9683	8,1495
	Sıra	4	3	2	1

Şekil 4.28. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak		Yüzey Pürüzl (R-sq: %92,	l ülüğü ,91)		
	SD	KT	КО	F	Р
Model	13	10,9572	0,84286	4,03	0,094
Doğrusal	4	4,1342	1,03355	4,94	0,075
Basınç	1	0,1081	0,10814	0,52	0,512
İlerleme Hızı	1	0,0266	0,02657	0,13	0,739
Artım Miktarı	1	0,3375	0,33747	1,61	0,273
Form Takımı Çapı	1	3,713	3,71302	17,76	0,014
Kare	3	3,2514	1,08379	5,18	0,073
İlerleme Hızı*İlerleme Hızı	1	0,272	0,27205	1,3	0,318
Artım Miktarı*Artım Miktarı	1	0,0361	0,03607	0,17	0,699
Form Takımı Çapı*Form Takımı Çapı	1	3,0114	3,01141	14,41	0,019
2 Yönlü Etkileşim	6	1,4915	0,24858	1,19	0,453
Basınç*İlerleme Hızı	1	0,1238	0,12383	0,59	0,484
Basınç*Artım Miktarı	1	0,0212	0,02116	0,1	0,766
Basınç*Form Takımı Çapı	1	0,1772	0,17724	0,85	0,409
İlerleme Hızı*Artım Miktarı	1	0,3512	0,35123	1,68	0,265
İlerleme Hızı*Form Takımı Çapı	1	0,2737	0,27371	1,31	0,316
Artım Miktarı*Form Takımı Çapı	1	0,2326	0,23262	1,11	0,351
Hata	4	0,8362	0,20904		
Toplam	17	11,7934	8,89356		

Tablo 4.37. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.29. DKP 37 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

Bahsedilen şekil ve tablolar incelendiğinde yüzey pürüzlülüğü üzerinde form takımı çapının önemli düzeyde ($p \le 0.05$) etkili olduğu görülmektedir (Tablo 4.37). Bu sonuç Şekil 4.28'de verilen S/N analizinde de görülebilmektedir.

İkili etkileşimler incelendiğinde (Tablo 4.37), parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır. Şekil 4.29'da verilen kontur grafiği incelendiğinde, form takımı çapının yüzey pürüzlülüğü üzerinde belirleyici bir parametre olduğu görülmektedir. Form takımı çapının büyümesi ile yüzey pürüzlülüğü azalmaktadır. Form takımı çapının diğer parametrelerle etkileşimleri dikkate alındığında, diğer parametrelerin form takımının bu etkisini değiştirmediği görülmektedir.

Tablo 4.36 ve Şekil 4.28'e göre göre basıncın parametre seviyeleri arasında önemli bir fark olmamakla birlikte, yüzey pürüzlülüğünün optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 10 mm olduğu söylenebilir. Ayrıca, bu grafikten 15 mm form takımı çapı kullanımının da iyi sonuçlar verdiği görülebilir.

4.1.4.3. Et Kalınlığı Değişimi

DKP 37 sacının 60° kare piramit şekillendirme deneyleri sonucunda elde edilen parçalar, merkezden başlanılarak beşer milimetre aralıklarla markalanmıştır. Markalanan bu noktalardan et kalınlıkları ölçülmüştür. Böylece parçaya ait elde edilen kalınlık dağılımı Tablo 4.38'de verilmiştir. 9 bar basıncın kullanıldığı deneylerde, et kalınlığı, 2 bar basıncın kullanıldığı deneylere göre daha az oluşmuştur. Şekil 4.30'da et kalınlığı dağılımı grafik olarak verilmiştir. Şekil incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir.

Şekil 4.30. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

	TP	IF_RL_60D_	PR						Ν	lerkezd	en Uzal	klık (mi	n)					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	t-S/N
1	2	500	0,25	5	1,01	1,01	1,01	0,94	0,52	0,53	0,55	0,58	0,6	1,01	1,01	1,01	1,01	-5,67993
2	2	500	0,5	10	1,01	1,01	1,01	0,96	0,65	0,57	0,57	0,58	0,58	0,98	1,01	1,01	1,01	-4,88250
3	2	500	0,75	15	1,01	1,01	1,01	0,99	0,69	0,52	0,6	0,6	0,64	1	1,01	1,01	1,01	-5,67993
4	2	1000	0,25	5	1,01	1,01	1,01	0,85	0,52	0,52	0,52	0,52	0,74	1,01	1,01	1,01	1,01	-5,67993
5	2	1000	0,5	10	1,01	1,01	1,01	0,99	0,69	0,58	0,6	0,57	0,62	0,9	1,01	1,01	1,01	-4,88250
6	2	1000	0,75	15	1,01	1,01	1,01	1	0,69	0,52	0,56	0,59	0,7	1,01	1,01	1,01	1,01	-5,67993
7	2	1500	0,25	10	1,01	1,01	1,01	0,94	0,64	0,59	0,6	0,6	0,62	1,01	1,01	1,01	1,01	-4,58296
8	2	1500	0,5	15	1,01	1,01	1,01	0,92	0,68	0,59	0,63	0,58	0,8	0,94	1,01	1,01	1,01	-4,73144
9	2	1500	0,75	5	1,01	1,01	1,01	0,84	0,55	0,49	0,55	0,52	0,5	0,89	1,01	1,01	1,01	-6,19608
2 bar s	ıkma basınd	cına göre orta	lama et kalın	lıkları	1,01	1,01	1,01	0,94	0,63	0,55	0,58	0,57	0,64	0,97	1,01	1,01	1,01	
10	9	500	0,25	15	1,01	1,01	1,01	0,94	0,53	0,44	0,52	0,53	0,74	0,98	1,01	1,01	1,01	-7,13095
11	9	500	0,5	5	1,01	1,01	1,01	0,85	0,48	0,48	0,50	0,50	0,66	1,00	1,01	1,01	1,01	-6,37518
12	9	500	0,75	10	1,01	1,01	1,01	0,93	0,64	0,54	0,60	0,53	0,56	0,90	1,01	1,01	1,01	-5,51448
13	9	1000	0,25	10	1,01	1,01	1,01	0,95	0,65	0,53	0,55	0,58	0,60	0,95	1,01	1,01	1,01	-5,51448
14	9	1000	0,5	15	1,01	1,01	1,01	0,85	0,55	0,54	0,52	0,53	0,69	0,86	1,01	1,01	1,01	-5,67993
15	9	1000	0,75	5	1,01	1,01	1,01	0,85	0,50	0,50	0,50	0,53	0,51	1,01	1,01	1,01	1,01	-6,02060
16	9	1500	0,25	15	1,01	1,01	1,01	0,98	0,63	0,53	0,57	0,56	0,70	0,99	1,01	1,01	1,01	-5,51448
17	9	1500	0,5	5	1,01	1,01	1,01	0,95	0,54	0,58	0,53	0,53	0,68	1,01	1,01	1,01	1,01	-5,51448
18	9	1500	0,75	10	1,01	1,01	1,01	0,93	0,67	0,60	0,64	0,60	0,63	1,01	1,01	1,01	1,01	-4,43697
9 bar s	ıkma basınd	cına göre orta	lama et kalın	lıkları	1,01	1,01	1,01	0,91	0,58	0,53	0,55	0,54	0,64	0,97	1,01	1,01	1,01	

Tablo 4.38. DKP 37 sacının 60° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

Tablo 4.39, Şekil 4.31, Tablo 4.40 ve Şekil 4.32'de DKP 37 sacının 60° kare piramit şekillendirilmesinde et kalınlığı için yapılan istatistiksel analizler verilmiştir.

Anılan şekil ve tablolar incelendiğinde et kalınlığı üzerinde ilerleme hızının çok önemli düzeyde ($p \le 0.01$), basınç ve form takımı çapının ise önemli düzeyde ($p \le 0.05$) etkili olduğu görülmektedir (Tablo 4.40).

İlerleme Hızı Bağımlı Değişken Seviye Basınç Artım Miktarı Form Takımı Çapı 1 -5,333 -5,877 -5,684 -5,911 2 -5,745 -5,576 -5,344 -4,969 3 -5,163 -5,588 -5,736 Et Kalınlığı

0,714

2

0,339

4

0,942

1

Delta

Sıra

0,412

3

Tablo 4.39. DKP 37 sacının 60° kare piramit şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.31. DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı S/N oranları

Kaynak		Et Ka (R-sq: %	lınlığı 699,16)		
	SD	KT	КО	F	Р
Model	13	0,027567	0,002121	36,47	0,002
Doğrusal	4	0,009717	0,002429	41,78	0,002
Basınç	1	0,001114	0,001114	19,16	0,012
İlerleme Hızı	1	0,005308	0,005308	91,3	0,001
Artım Miktarı	1	0,000048	0,000048	0,82	0,417
Form Takımı Çapı	1	0,001195	0,001195	20,56	0,011
Kare	3	0,0075	0,0025	43	0,002
İlerleme Hızı*İlerleme Hızı	1	0,000165	0,000165	2,84	0,167
Artım Miktarı*Artım Miktarı	1	0,00057	0,00057	9,8	0,035
Form Takımı Çapı*Form Takımı Çapı	1	0,006736	0,006736	115,86	0
2 Yönlü Etkileşim	6	0,006412	0,001069	18,38	0,007
Basınç*İlerleme Hızı	1	0,001327	0,001327	22,82	0,009
Basınç*Artım Miktarı	1	0,001285	0,001285	22,09	0,009
Basınç*Form Takımı Çapı	1	0,000111	0,000111	1,91	0,239
İlerleme Hızı*Artım Miktarı	1	0,000005	0,000005	0,08	0,789
İlerleme Hızı*Form Takımı Çapı	1	0,000474	0,000474	8,16	0,046
Artım Miktarı*Form Takımı Çapı	1	0,000144	0,000144	2,48	0,19
Hata	4	0,000233	0,000058		
Toplam	17	0,0278	0,01854		

Tablo 4.40. DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.32. DKP 37 sacının 60° kare piramit şekillendirilmesi et kalınlığı parametre etkileşimleri

İkili etkileşimler incelendiğinde (Tablo 4.40) ilerleme hızının etkisinin basınca bağlı olarak çok önemli düzeyde ($p \le 0,01$), form takımı çapına bağlı olarak ise önemli düzeyde ($p \le 0,05$) değiştiği görülebilmektedir. Bu etki Şekil 4.32'de verilen kontur grafiğinde de görülebilmektedir.

Tablo 4.39 ve Şekil 4.31'e göre et kalınlığının optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 10 mm'dir.

4.1.4.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

DKP 37 sacının 60° kare piramit şekillendirme deneyleri için elde edilen optimum faktör seviyeleri Tablo 4.41'de verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	1000	0,25	5
Yüzey pürüzlülüğü	9	500	0,25	10
Et kalınlığı	2	1500	0,5	10

Tablo 4.41. DKP 37 sacının 60° kare piramit şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Tablo 4.32, Tablo 4.35 ve Tablo 4.38'de verilen deney sonuçlarıyla optimum faktör seviyeleri (Tablo 4.41) kullanılarak yapılan deney sonuçları karşılaştırıldığında 1316,8 N olan şekillendirme kuvvetinin 1310 N, 0,62 µm olan yüzey pürüzlülüğünün 0,605 µm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür. Tablo 4.41'de verilen, et kalınlığı için optimum faktör seviyeleri ile 7 numaralı deney faktör seviyelerinin aynı olduğu görülmüştür. O nedenle et kalınlığı için ayrı bir optimizasyon deneyine gerek duyulmamıştır.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturulmuştur. Bu denklemler sırasıyla Eşitlik 4.10, Eşitlik 4.11 ve Eşitlik 4.12'de verilmiştir.

 $F_{z} = 729 - 10,3 * P - 0,021 * F + 1289 * A + 80,3 * D + 0,000067 * F^{2} - 820 * A^{2} - 1,07 * D^{2} - 0,00023 * P * F + 6,0 * P * A + 0,44 * P * D - 0,091 * F * A - 0,00736 * F * D - 7,4 * A * D$ (4.10)

$$R_{a} = 1,96 - 0,098 * P + 0,00449 * F + 6,28 * A - 0,764 * D - 0,000001 * F^{2} - 1,66 * A^{2} + 0,0379 * D^{2} - 0,000064 * P * F + 0,069 * P * A + 0,0099 * P * D - 0,00198 * F * A - 0,000087 * F * D - 0,214 * A * D$$

$$(4.11)$$

$$T_{min} = 0,4259 - 0,0155 * P - 0,000076 * F + 0,08 * A + 0,03356 * D - 0,2088 * A^{2} - 0,001795 * D^{2} + 000007 * P * F + 0,01693 * P * A - 0,000249 * P * D - 0,000007 * F * A + 0,000004 * F * D + 0,00533 * A * D$$

$$(4.12)$$

DKP 37 sacının 60° kare piramit şekillendirmesinde, şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$) etkiliyken artım miktarı ise önemli düzeyde ($p \le 0,05$) etkilidir. Yüzey pürüzlülüğü üzerinde form takımı çapı önemli düzeyde ($p \le 0,05$) etkilidir. Et kalınlığı üzerinde ilerleme hızı çok önemli düzeyde ($p \le 0,01$) etkiliyken basınç ve form takımı çapı ise önemli düzeyde ($p \le 0,05$) etkilidir.

4.1.5. DP600 Sacının 40° Eksenel Simetrik Koni Formu Deneyleri

4.1.5.1. Şekillendirme Kuvvetleri

DP600 sacının 40° eksenel simetrik koni formunda şekillendirme deneyleri neticesinde belirlenen şekillendirme kuvvetleri ve sinyal gürültü analizi neticesinde elde edilen S/N oranları Tablo 4.42'de verilmiştir. Tablonun ilk bölümünde deneylerde kullanılan parametre seviyeleri verilmiştir. İkinci bölümde deneylerde belirlenen kuvvetler, son bölümde ise S/N oranları verilmiştir. Tablo incelendiğinde 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir.

TPIF_RL_40D_ES								
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N
1	2	500	0,25	5	529,26	503,29	1889,08	-65,5250
2	2	500	0,5	10	1132,27	1339,93	3132,34	-69,9174
3	2	500	0,75	15	1099,13	936,26	3185,61	-70,0639
4	2	1000	0,25	5	549,08	486,36	1944,96	-65,7782
5	2	1000	0,5	10	1536,77	1349,05	3451,98	-70,7614
6	2	1000	0,75	15	1105,95	933,98	3264,05	-70,2751
7	2	1500	0,25	10	587,09	626,67	2512,01	-68,0004
8	2	1500	0,5	15	979,89	849,99	3098,67	-69,8235
9	2	1500	0,75	5	1553,01	1469,17	2446,32	-67,7703
10	9	500	0,25	15	741,09	762,42	2634,90	-68,4153
11	9	500	0,5	5	698,21	665,08	2103,15	-66,4574
12	9	500	0,75	10	900,29	903,05	2849,63	-69,0958
13	9	1000	0,25	10	638,42	636,43	2295,98	-67,2194
14	9	1000	0,5	15	889,25	867,89	2984,94	-69,4987
15	9	1000	0,75	5	825,24	849,99	2216,56	-66,9136
16	9	1500	0,25	15	741,09	751,35	2628,37	-68,3937
17	9	1500	0,5	5	662,14	653,36	2107,73	-66,4763
18	9	1500	0,75	10	1243,71	1334,07	3180,38	-70,0496

Tablo 4.42. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen kuvvetler

DP 600 sacının 40° eksenel simetrik şekillendirilmesinde, şekillendirme kuvveti (Fz) için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.43, Şekil 4.33, Tablo 4.44 ve Şekil 4.34'de verilmiştir.

Tablo 4.43. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvvetine (Fz) göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-68,66	-68,25	-67,22	-66,49
	2	-68,06	-68,41	-68,82	-69,17
Şekillendirme Kuvveti	3		-68,42	-69,03	-69,41
(12)	Delta	0,60	0,17	1,81	2,92
	Sıra	3	4	2	1

Şekil 4.33. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti (Fz) S/N oranları

Kaynak			Şekille (F	endirme K R-sq: %96,9	uvveti 9)		
		SD	、 、	КТ	КО	F	Р
Model	13			4084420	314186	9,61	0,021
Doğrusal	4			2579974	644994	19,73	0,007
Basınç	1			192043	192043	5,88	0,072
İlerleme Hızı	1			114	114	0	0,956
Artım Miktarı	1			591640	591640	18,1	0,013
Form Takımı Çapı	1			1427023	1427023	43,66	0,003
Kare	3			693561	231187	7,07	0,045
İlerleme Hızı*İlerleme Hızı	1			15237	15237	0,47	0,532
Artım Miktarı*Artım Miktarı	1			196353	196353	6,01	0,07
Form Takımı Çapı*Form Takımı Çapı	1			454369	454369	13,9	0,02
2 Yönlü Etkileşim	6			109365	18227	0,56	0,751
Basınç*İlerleme Hızı	1			33048	33048	1,01	0,372
Basınç*Artım Miktarı	1			2055	2055	0,06	0,814
Basınç*Form Takımı Çapı	1			7650	7650	0,23	0,654
İlerleme Hızı*Artım Miktarı	1			23988	23988	0,73	0,44
İlerleme Hızı*Form Takımı Çapı	1			249	249	0,01	0,935
Artım Miktarı*Form Takımı Çapı	1			17451	17451	0,53	0,505
Hata	4			130731	32683		
Toplam	17			4215151	2993903		

Tablo 4.44. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.34. DP600 sacının 40° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Bahsedilen şekil ve tablolar incelendiğinde şekillendirme kuvveti üzerinde form takımı çapının çok önemli düzeyde ($p \le 0,01$), artım miktarının ise önemli düzeyde ($p \le 0,05$) etkili olduğu görülmektedir (Tablo 4.44). Bu durum Şekil 4.33'de verilen S/N analizinde de görülebilmektedir.

İkili etkileşimler incelendiğinde parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.44). Fakat Şekil 4.34'de verilen kontur grafiğine göre diğer parametrelerle kıyaslandığında form takımı çapının şekillendirme kuvveti üzerinde daha belirleyici olduğu görülebilmektedir.

Tablo 4.43 ve Şekil 4.33'e göre şekillendirme kuvveti optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm olduğu söylenebilir.

4.1.5.2. Yüzey Pürüzlülüğü

Tablo 4.45'de DP600 sacının 40° eksenel simetrik koni formunda şekillendirme deneyleri neticesinde belirlenen yüzey pürüzlülükleri ve S/N oranları verilmiştir. Yüzey pürüzlülüğü, 5 mm çaplı form takımının kullanıldığı deneylerde diğer deneylere göre daha yüksek çıkmıştır. Form takımının küçük olması ile birlikte artım miktarının büyük olduğu 9 ve 15 numaralı deneylerde yüzey pürüzlülüğü ortalamanın çok üzerinde oluşmuştur. Bu durum Şekil 4.35'de de net olarak görülmektedir.

	TP	IF_RL_40	D_ES			Ra (μm)		
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	0,879	0,573	0,776	0,743	2,5841
2	2	500	0,5	10	0,886	0,779	0,711	0,792	2,0255
3	2	500	0,75	15	0,636	0,623	0,636	0,632	3,9902
4	2	1000	0,25	5	0,610	0,526	0,681	0,606	4,3553
5	2	1000	0,5	10	0,556	0,620	0,541	0,572	4,8470
6	2	1000	0,75	15	0,669	0,674	0,574	0,639	3,8900
7	2	1500	0,25	10	0,506	0,522	0,519	0,516	5,7526
8	2	1500	0,5	15	0,551	0,553	0,500	0,535	5,4383
9	2	1500	0,75	5	3,380	3,416	2,580	3,125	-9,8979
10	9	500	0,25	15	0,560	0,621	0,744	0,642	3,8538
11	9	500	0,5	5	1,795	1,213	1,039	1,349	-2,6002
12	9	500	0,75	10	1,446	1,410	1,259	1,372	-2,745
13	9	1000	0,25	10	0,792	0,612	0,738	0,714	2,9260
14	9	1000	0,5	15	0,558	0,584	0,680	0,607	4,3315
15	9	1000	0,75	5	3,517	3,533	3,530	3,527	-10,947
16	9	1500	0,25	15	0,655	0,699	0,888	0,747	2,5297
17	9	1500	0,5	5	3,004	2,736	2,169	2,636	-8,4200
18	9	1500	0,75	10	1,519	1,554	1,540	1,538	-3,7372

Tablo 4.45. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Şekil 4.35. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri

DP 600 sacının 40° eksenel simetrik şekillendirilmesinde, yüzey pürüzlülüğünün iyileştirilmesi için deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.46, Şekil 4.36, Tablo 4.47 ve Şekil 4.37'de verilmiştir.

Anılan şekil ve tablolar incelendiğinde yüzey pürüzlülüğü form takımı çapının çok önemli düzeyde ($p \le 0,01$), artım miktarının ise önemli düzeyde ($p \le 0,05$) etkili olduğu görülmektedir (Tablo 4.47). Bu durum Şekil 4.36'da verilen S/N analizinde görülebilmektedir.

İkili etkileşimler incelendiğinde form takımı çapı ile artım miktarının etkileşiminin önemli düzeyde ($p \le 0,05$) etkili olduğu görülmektedir (Tablo 4.47). Ayrıca Şekil 4.37'den diğer parametrelerle kıyaslandığında, form takımı çapının yüzey pürüzlülüğü üzerinde belirleyici bir parametre olduğu görülmektedir. Form takımı çapının bu etkisinin artım miktarından etkilenmiştir.

Tablo 4.46 ve Şekil 4.36'ya göre yüzey pürüzlülüğünün optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	2,5539	1,1847	3,6669	-4,1543
	2	-1,6454	1,5671	0,9370	1,5115
Yüzey Pürüzlülüğü (Ra)	3		-1,3891	-3,2412	4,0056
	Delta	4,1993	2,9562	6,9081	8,1599
	Sıra	3	4	2	1

Tablo 4.46. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.36. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak		Yüzey Pürüz (R-sa: %97	lülüğü 7.7)		
	SD	KT	KO	F	Р
Model	13	14,7719	1,1363	13,08	0,012
Doğrusal	4	3,8556	0,9639	11,1	0,019
Basınç	1	0,0277	0,02768	0,32	0,603
İlerleme Hızı	1	0,1586	0,15861	1,83	0,248
Artım Miktarı	1	1,3666	1,3666	15,73	0,017
Form Takımı Çapı	1	2,9998	2,99979	34,54	0,004
Kare	3	0,7448	0,24827	2,86	0,168
İlerleme Hızı*İlerleme Hızı	1	0,0142	0,01421	0,16	0,707
Artım Miktarı*Artım Miktarı	1	0,1075	0,10746	1,24	0,328
Form Takımı Çapı*Form Takımı Çapı	1	0,6166	0,61659	7,1	0,056
2 Yönlü Etkileşim	6	2,0552	0,34253	3,94	0,103
Basınç*İlerleme Hızı	1	0,1706	0,17063	1,96	0,234
Basınç*Artım Miktarı	1	0,0218	0,02181	0,25	0,643
Basınç*Form Takımı Çapı	1	0,15	0,14996	1,73	0,259
İlerleme Hızı*Artım Miktarı	1	0	0,00001	0	0,991
İlerleme Hızı*Form Takımı Çapı	1	0,2493	0,24933	2,87	0,165
Artım Miktarı*Form Takımı Çapı	1	1,4996	1,49955	17,27	0,014
Hata	4	0,3474	0,08685		
Toplam	17	15,1193	7,46908		

Tablo 4.47. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.37. DP600 sacının 40° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

4.1.5.3. Et Kalınlığı Değişimi

DP600 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda elde edilen parçalar, merkezden başlanılarak beşer milimetre aralıklarla markalanmıştır. Markalanan bu noktalardan et kalınlıkları ölçülerek parçaya ait kalınlık dağılımı elde edilmiştir. Et kalınlığı dağılımı Tablo 4.48'de verilmiştir. 2 bar basıncın kullanıldığı 8, ve 9 numaralı deneylerde et kalınlığı diğer deneylere göre daha büyük çıkmıştır. 9 bar basıncın kullanıldığı deneylerde ise et kalınlığı, 2 bar basıncın kullanıldığı deneylere göre daha az oluşmuştur.

Şekil 4.38'de et kalınlığı dağılımı grafik olarak verilmiştir. Şekil incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Maksimum incelme 9 bar basınç, 1500 mm/dak ilerleme hızı, 0,75 mm artım miktarı ve 10 mm form takımı çapının kullanıldığı 18 numaralı deneyde oluşmuştur.

	TP	PIF_RL_40I	D_ES		Merkezden Uzaklık (mm)																
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	t-S/N
1	2	500	0,25	5	1,03	1,03	1,03	0,98	0,83	0,81	0,8	0,8	0,81	0,8	0,8	0,9	1,03	1,03	1,03	1,03	-1,93820
2	2	500	0,5	10	1,03	1,03	1,03	0,95	0,85	0,85	0,83	0,83	0,83	0,82	0,79	0,86	1,01	1,03	1,03	1,03	-2,04746
3	2	500	0,75	15	1,03	1,03	1,03	1	0,89	0,84	0,84	0,84	0,84	0,81	0,81	0,9	1,02	1,03	1,03	1,03	-1,83030
4	2	1000	0,25	5	1,03	1,03	1,03	0,99	0,83	0,8	0,8	0,8	0,8	0,8	0,8	0,86	1,01	1,03	1,03	1,03	-1,93820
5	2	1000	0,5	10	1,03	1,03	1,03	0,97	0,83	0,82	0,82	0,82	0,82	0,82	0,77	0,82	1	1,03	1,03	1,03	-2,27019
6	2	1000	0,75	15	1,03	1,03	1,03	0,99	0,89	0,85	0,85	0,85	0,84	0,84	0,81	0,89	1,03	1,03	1,03	1,03	-1,83030
7	2	1500	0,25	10	1,03	1,03	1,03	0,99	0,85	0,83	0,83	0,83	0,83	0,82	0,82	0,91	1,03	1,03	1,03	1,03	-1,72372
8	2	1500	0,5	15	1,03	1,03	1,03	1,01	0,89	0,84	0,84	0,85	0,84	0,83	0,82	0,93	1,05	1,03	1,03	1,03	-1,72372
9	2	1500	0,75	5	1,03	1,03	1,03	0,99	0,8	0,81	0,81	0,79	0,79	0,78	0,77	0,88	1,03	1,03	1,03	1,03	-2,27019
21	oar sıkma	basıncına g kalınlıklaı	öre ortalarr rı	na et	1,03	1,03	1,03	0,99	0,85	0,83	0,82	0,82	0,82	0,81	0,80	0,88	1,02	1,03	1,03	1,03	
10	9	500	0,25	15	1,03	1,03	1,03	1,00	0,89	0,81	0,80	0,82	0,83	0,83	0,79	0,86	1,01	1,03	1,03	1,03	-2,04746
11	9	500	0,5	5	1,03	1,03	1,03	0,98	0,83	0,82	0,81	0,80	0,80	0,80	0,79	0,91	1,03	1,03	1,03	1,03	-2,04746
12	9	500	0,75	10	1,03	1,03	1,03	1,00	0,88	0,82	0,81	0,80	0,79	0,78	0,78	0,87	1,01	1,03	1,03	1,03	-2,15811
13	9	1000	0,25	10	1,03	1,03	1,03	0,99	0,84	0,82	0,82	0,80	0,80	0,78	0,79	0,89	1,05	1,03	1,03	1,03	-2,15811
14	9	1000	0,5	15	1,03	1,03	1,03	0,99	0,86	0,83	0,81	0,81	0,81	0,81	0,81	0,89	1,02	1,03	1,03	1,03	-1,83030
15	9	1000	0,75	5	1,03	1,03	1,03	0,99	0,82	0,80	0,80	0,80	0,77	0,79	0,77	0,87	1,03	1,03	1,03	1,03	-2,27019
16	9	1500	0,25	15	1,03	1,03	1,03	0,99	0,86	0,81	0,81	0,81	0,81	0,81	0,80	0,89	1,02	1,03	1,03	1,03	-1,93820
17	9	1500	0,5	5	1,03	1,03	1,03	1,00	0,82	0,80	0,80	0,80	0,79	0,80	0,79	0,88	1,03	1,03	1,03	1,03	-2,04746
18	9	1500	0,75	10	1,03	1,03	1,03	0,99	0,84	0,82	0,82	0,82	0,83	0,75	0,67	0,88	1,01	1,03	1,03	1,03	-3,47850
91	oar sıkma	basıncına g kalınlıklaı	öre ortalarr rı	na et	1,03	1,03	1,03	0,99	0,85	0,81	0,81	0,81	0,80	0,79	0,78	0,88	1,02	1,03	1,03	1,03	

Tablo 4.48. DP600 sacının 40° eksenel şekillendirilmesinde belirlenen et kalınlığı dağılımları

Şekil 4.38. DP600 sacının 40° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

DP 600 sacının 40° eksenel simetrik şekillendirilmesinde et kalınlığının iyileştirilmesi için yapılan istatistiksel analizler Tablo 4.49, Şekil 4.39, Tablo 4.50 ve Şekil 4.40'da verilmiştir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-1,952	-2,011	-1,957	-2,085
	2	-2,220	-2,050	-1,994	-2,306
Et Kalınlığı	3		-2,197	-2,306	-1,867
	Delta	0,267	0,185	0,349	0,439
	Sıra	3	4	2	1

Tablo 4.49. DP600 sacının 40° eksenel simetrik şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.39. DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı S/N oranları

Bahsedilen şekil ve tablolar incelendiğinde et kalınlığı üzerinde hiçbir bağımsız değişkenin önemli düzeyde ($p \le 0.05$) etkili olmadığı anlaşılmaktadır (Tablo 4.50). Bununla birlikte form takımı çapı bir miktar etkilidir ($p \le 0.1$).

Şekil 4.40'da verilen ikili etkileşimler incelendiğinde basıncın artmasının et kalınlığını bir miktar azalttığı görülmektedir. Benzer şekilde artım miktarı değerinin büyümesi de azaltıcı etki yapmaktadır. Artım miktarının bu etkisi özellikle ilerleme hızından etkilenmektedir (Tablo 4.50).

Tablo 4.49 ve Şekil 4.39'a göre et kalınlığı optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Ayrıca, Tablo 4.49'un delta satırında verilen S/N oranlarının farkları dikkate alındığında ilerleme hızının ikinci seviyesinin de ortalamanın üzerinde sonuç

verdiği görülmektedir. Buna göre ilerleme hızı olarak 500 mm/dak yerine 1000 mm/dak da kullanıldığında et kalınlığında çok fazla değişiklik olmayacak, ancak işlem süresi yarı yarıya azalacaktır.

Vornali		Et Kalı	nlığı		
Каупак		(R-sq: %	87,59)		
	SD	KT	KO	F	Р
Model	13	0,016608	0,001278	2,17	0,237
Doğrusal	4	0,003318	0,000829	1,41	0,374
Basınç	1	0,001517	0,001517	2,58	0,184
İlerleme Hızı	1	0,000548	0,000548	0,93	0,389
Artım Miktarı	1	0,002004	0,002004	3,41	0,139
Form Takımı Çapı	1	0,000045	0,000045	0,08	0,796
Kare	3	0,004234	0,001411	2,4	0,209
İlerleme Hızı*İlerleme Hızı	1	0,000064	0,000064	0,11	0,757
Artım Miktarı*Artım Miktarı	1	0,000465	0,000465	0,79	0,424
Form Takımı Çapı*Form Takımı Çapı	1	0,003792	0,003792	6,45	0,064
2 Yönlü Etkileşim	6	0,005758	0,00096	1,63	0,331
Basınç*İlerleme Hızı	1	0,000819	0,000819	1,39	0,303
Basınç*Artım Miktarı	1	0,000027	0,000027	0,05	0,841
Basınç*Form Takımı Çapı	1	0,000017	0,000017	0,03	0,872
İlerleme Hızı*Artım Miktarı	1	0,003763	0,003763	6,4	0,065
İlerleme Hızı*Form Takımı Çapı	1	0,000089	0,000089	0,15	0,717
Artım Miktarı*Form Takımı Çapı	1	0	0	0	1
Hata	4	0,002354	0,000588		
Toplam	17	0,018961	0,013738		

Tablo 4.50. DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.40. DP600 sacının 40° eksenel simetrik şekillendirilmesi et kalınlığı parametre etkileşimleri

4.1.5.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

Tablo 4.51'de DP600 sacının 40° eksenel simetrik şekillendirilmesinde deney sonuçlarının S/N analizi ile elde edilen optimum faktör seviyeleri verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Tablo 4.51. DP600 sacının 40° eksenel simetrik şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	500	0,25	5
Yüzey pürüzlülüğü	2	1000	0,25	15
Et kalınlığı	2	500	0,25	15

Deneylerde belirlenen sonuçlarla (Tablo 4.42, Tablo 4.45 ve Tablo 4.48) optimum faktör seviyeleri kullanılarak yapılan deney sonuçları karşılaştırıldığında 1889,08 N olan şekillendirme kuvvetinin 1856,39 N, 0,516 µm olan yüzey pürüzlülüğünün 0,503 µm, 0,67 mm olan et kalınlığının 0,79 mm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

İstatistiksel analizler sonucunda, şekillendirme kuvveti için elde edilen regresyon denklemi Eşitlik 4.13'de, yüzey pürüzlülüğünün tahmini için elde edilen regresyon denklemi Eşitlik 4.14'de, en küçük et kalınlığını veren regresyon denklemi ise Eşitlik 4.15'de verilmiştir.

$$F_{z} = -504 - 102.1 * P + 0.038 * F + 4985 * A + 400 * D - 0.000256 *$$

$$F^{2} - 3876 * A^{2} - 14.74 * D^{2} + 0.0333 * P * F + 21.4 * P * A + 2.07 * P *$$

$$D + 0.517 * F * A + 0.0026 * F * D - 58.6 * A * D$$
(4.13)

$$R_{a} = -0.36 - 0.005 * P + 0.00117 * F + 3.95 * A - 0.068 * D + 2.87 *$$

$$A^{2} + 0.01717 * D^{2} + 0.000076 * P * F + 0.07 * P * A - 0.00914 * P *$$

$$D - 0.000011 * F * A - 0.000083 * F * D - 0.543 * A * D$$
(4.14)

$$T_{min} = 0,7491 + 0.00411 * P + 0.000165 * F + 0.34 * A - 0.0243 *$$

$$D - 0.189 * A^{2} + 0.001347 * D^{2} - 0.000005 * P * F - 0.0024 * P *$$

$$A - 0.000098 * P * D - 0.000205 * F * A - 0.000002 * F * D$$
(4.15)

Yapılan varyans analizlerine göre şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$), artım miktarı ise önemli düzeyde ($p \le 0,05$) etkilidir. Yüzey pürüzlülüğü üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$), artım miktarı ise önemli düzeyde ($p \le 0,05$) etkilidir. Et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde ($p \le 0,05$) etkili değildir. Fakat form takımı çapı bir miktar etkilidir ($p \le 0,1$).

4.1.6. DP600 Sacının 60° Eksenel Simetrik Koni Formu Deneyleri

4.1.6.1. Şekillendirme Kuvvetleri

DP600 sacının 60° eksenel simetrik deneyleri neticesinde belirlenen şekillendirme kuvvetleri Tablo 4.52'de verilmiştir. Tablonun ilk bölümünde deneylerde kullanılan parametre seviyeleri verilmiştir. İkinci bölümde belirlenen kuvvetler son bölümde ise S/N oranları verilmiştir. Tablo 4.52 incelendiğinde 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. En küçük şekillendirme kuvvetinin oluştuğu ilk üç deneye bakıldığında hepsinde de form takımı çapının 5 mm olduğu görülmektedir. Bu da form takımı çapının şekillendirme kuvveti üzerinde etkili bir parametre olduğunu göstermektedir.

DP 600 sacının 60° eksenel simetrik şekillendirilmesinde, şekillendirme kuvveti (Fz) için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.53, Şekil 4.41, Tablo 4.54 ve Şekil 4.42'de verilmiştir.

Anılan şekil ve tablolar incelendiğinde şekillendirme kuvveti üzerinde artım miktarı ve form takımı çapı çok önemli düzeyde ($p \le 0,01$) etkilidir (Tablo 4.54). Bu sonuç Şekil 4.41'de de görülebilmektedir.

İkili etkileşimler incelendiğinde (Tablo 4.54), form takımı çapının ilerleme hızına bağlı olarak önemli düzeyde değişmiştir ($p \le 0,05$). Şekil 4.42'de verilen kontur grafiğine göre şekillendirme kuvveti (Fz) üzerinde belirleyiciliği en yüksek olan parametre form takımı çapıdır. Form takımı çapının küçülmesi, şekillendirme kuvvetini de azaltmaktadır.

	ТР	IF_RL_601	D_ES					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N
1	2	500	0,25	5	795,02	768,93	1911,63	-65,6281
2	2	500	0,5	10	1251,83	1180,74	2541,10	-68,1004
3	2	500	0,75	15	1533,19	1508,89	3100,96	-69,8299
4	2	1000	0,25	5	772,61	772,19	1926,66	-65,6961
5	2	1000	0,5	10	1201,80	1141,35	2546,98	-68,1205
6	2	1000	0,75	15	1561,13	1476,33	3125,80	-69,8992
7	2	1500	0,25	10	1074,11	1012,11	2378,34	-67,5255
8	2	1500	0,5	15	1447,09	1373,79	2961,08	-69,4290
9	2	1500	0,75	5	967,55	996,48	2225,38	-66,9481
10	9	500	0,25	15	1383,41	1258,87	2798,32	-68,9379
11	9	500	0,5	5	897,04	909,89	2077,00	-66,3487
12	9	500	0,75	10	1266,13	1304,45	2636,54	-68,4207
13	9	1000	0,25	10	1019,20	1043,36	2315,26	-67,2920
14	9	1000	0,5	15	1411,03	1408,29	3017,29	-69,5923
15	9	1000	0,75	5	963,32	984,76	2191,07	-66,8131
16	9	1500	0,25	15	1217,39	1244,22	2729,36	-68,7212
17	9	1500	0,5	5	885,67	916,40	2128,64	-66,5621
18	9	1500	0,75	10	1333,38	1350,35	2652,22	-68,4722

Tablo 4.52. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen kuvvetler

Tablo 4.53. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
Şekillendirme Kuvveti (Fz)	1	-67,91	-67,88	-67,30	-66,33
	2	-67,91	-67,90	-68,03	-67,99
	3		-67,94	-68,40	-69,40
	Delta	0,00	0,07	1,10	3,07
	Sıra	4	3	2	1

Şekil 4.41. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti S/N oranları

Kaynak		Şekillendirme Kuvveti (R-sq: %99.92)			
	SD	КТ	КО	F	Р
Model	13	26258	354 201989	390,05	0
Doğrusal	4	17973	310 449327	867,67	0
Basınç	1	116	116	0,22	0,66
İlerleme Hızı	1	300	300	0,58	0,489
Artım Miktarı	1	16260	162601	313,99	0
Form Takımı Çapı	1	14110	044 1411044	2724,78	0
Kare	3	10733	3 3578	6,91	0,046
İlerleme Hızı*İlerleme Hızı	1	61	61	0,12	0,749
Artım Miktarı*Artım Miktarı	1	10428	3 10428	20,14	0,011
Form Takımı Çapı*Form Takımı Çapı	1	271	271	0,52	0,51
2 Yönlü Etkileşim	6	6636	1106	2,14	0,241
Basınç*İlerleme Hızı	1	330	330	0,64	0,47
Basınç*Artım Miktarı	1	890	890	1,72	0,26
Basınç*Form Takımı Çapı	1	177	177	0,34	0,59
İlerleme Hızı*Artım Miktarı	1	215	215	0,42	0,554
İlerleme Hızı*Form Takımı Çapı	1	4526	4526	8,74	0,042
Artım Miktarı*Form Takımı Çapı	1	1175	1175	2,27	0,206
Hata	4	2071	518		
Toplam	17	26279	926 1592652		

Tablo 4.54. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Tablo 4.53 ve Şekil 4.41'e göre şekillendirme kuvveti optimum şekillendirme parametre seviyelerinin basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm olduğu söylenebilir. Anılan tablo ve grafiğe göre basınç ve ilerleme hızının parametre seviyeleri arasında anlamlı bir fark yoktur.

Şekil 4.42. DP600 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

4.1.6.2. Yüzey Pürüzlülüğü

DP600 sacının 60° eksenel simetrik şekillendirme deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülerek ölçümlerin ortalamaları alınmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri Tablo 4.55'de verilmiştir. Yüzey pürüzlülüğü, 5 mm çaplı form takımının kullanıldığı deneylerde diğer deneylere göre daha yüksek çıkmıştır. Form takımının küçük olması ile birlikte artım miktarının büyük olduğu 9 ve 11 numaralı deneylerde yüzey pürüzlülüğü ortalamanın çok üzerinde oluşmuştur. Bu durum Şekil 4.43'de net olarak görülmektedir.

DP 600 sacının 60° eksenel simetrik şekillendirilmesinde, yüzey pürüzlülüğünün iyileştirilmesi için deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.56, Şekil 4.44, Tablo 4.57 ve Şekil 4.45'de verilmiştir.
	ТР	IF_RL_60I	D_ES			Ra	(µm)		
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	1,016	0,985	0,846	0,949	0,45468
2	2	500	0,5	10	0,726	0,936	0,738	0,800	1,93820
3	2	500	0,75	15	0,460	0,416	0,510	0,462	6,70716
4	2	1000	0,25	5	1,608	1,247	1,390	1,415	-3,01513
5	2	1000	0,5	10	0,759	0,608	0,725	0,697	3,13119
6	2	1000	0,75	15	0,617	0,623	0,478	0,573	4,84196
7	2	1500	0,25	10	1,107	0,949	0,978	1,011	-0,09789
8	2	1500	0,5	15	0,832	0,685	0,679	0,732	2,70978
9	2	1500	0,75	5	3,201	2,822	3,049	3,024	-9,61164
10	9	500	0,25	15	0,867	0,742	0,879	0,829	1,62542
11	9	500	0,5	5	1,465	1,445	2,311	1,740	-4,81265
12	9	500	0,75	10	0,854	0,833	0,755	0,814	1,78751
13	9	1000	0,25	10	0,931	0,915	0,843	0,896	0,95061
14	9	1000	0,5	15	0,683	0,712	0,819	0,738	2,63887
15	9	1000	0,75	5	2,169	2,443	2,297	2,303	-7,24588
16	9	1500	0,25	15	0,910	0,888	0,856	0,885	1,06441
17	9	1500	0,5	5	1,525	1,532	1,501	1,519	-3,63306
18	9	1500	0,75	10	0,912	0,854	0,809	0,858	1,32688

Tablo 4.55. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Şekil 4.43. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen yüzey pürüzlülükleri

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	0,7843	1,2834	0,1637	-4,6439
	2	-0,6998	0,2169	0,3287	1,5061
Yüzey Pürüzlülüğü (Ra)	3		-1,3736	-0,3657	3,2646
	Delta	1,4840	2,6570	0,6944	7,9085
	Sıra	3	2	4	1

Tablo 4.56. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.44. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Anılan şekil ve tablolar incelendiğinde pürüzlülüğü üzerinde form takımının çapı çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.57). Benzer sonuç Şekil 4.44'te de görülebilmektedir.

Deney parametrelerinin yüzey pürüzlülüğü üzerine etkileşimlerinin kontur grafiği Şekil 4.45'de verilmiştir. Grafik incelendiğinde form takımı çapının yüzey pürüzlülüğünü (Ra) belirlediği görülebilmektedir. Bu etkinin artım miktarına önemli düzeyde ($p \le 0,05$) bağlı olduğu da görülebilmektedir (Tablo 4.57).

Kaynak		Yüzey Pürüz (R-sq: %97	l ülüğü ,31)		
	SD	KT	КО	F	Р
Model	13	7,16096	0,55084	11,14	0,016
Doğrusal	4	3,33769	0,83442	16,88	0,009
Basınç	1	0,06539	0,06539	1,32	0,314
İlerleme Hızı	1	0,1119	0,1119	2,26	0,207
Artım Miktarı	1	0,31241	0,31241	6,32	0,066
Form Takımı Çapı	1	2,93385	2,93385	59,35	0,002
Kare	3	0,47945	0,15982	3,23	0,143
İlerleme Hızı*İlerleme Hızı	1	0,01528	0,01528	0,31	0,608
Artım Miktarı*Artım Miktarı	1	0,02513	0,02513	0,51	0,515
Form Takımı Çapı*Form Takımı Çapı	1	0,43933	0,43933	8,89	0,041
2 Yönlü Etkileşim	6	1,72292	0,28715	5,81	0,055
Basınç*İlerleme Hızı	1	0,15813	0,15813	3,2	0,148
Basınç*Artım Miktarı	1	0,11347	0,11347	2,3	0,204
Basınç*Form Takımı Çapı	1	0,04081	0,04081	0,83	0,415
İlerleme Hızı*Artım Miktarı	1	0,01812	0,01812	0,37	0,578
İlerleme Hızı*Form Takımı Çapı	1	0,0004	0,0004	0,01	0,933
Artım Miktarı*Form Takımı Çapı	1	0,47712	0,47712	9,65	0,036
Hata	4	0,19774	0,04943		
Toplam	17	7,3587	4,76077		

radio 4.57. DP600 sacinin 60° eksenel simetrik şekillendirilmesi yüzey puruzlulugu varyans analizi tadio	Fablo 4.57.	DP600 s	sacının 60°	eksenel	simetrik	şekillendiril	lmesi yüz	zey pürü	izlülüğü v	varyans	analizi	tablo	su
--	-------------	---------	-------------	---------	----------	---------------	-----------	----------	------------	---------	---------	-------	----

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.45. DP600 sacının 60° eksenel simetrik şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

Yüzey pürüzlülüğü optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir

(Tablo 4.56 ve Şekil 4.44). Ayrıca, bu grafikten 0,25 mm artım miktarının ve 10 mm form takım çapının da iyi sonuçlar (ortalamanın üzerinde) verdiği görülmektedir.

4.1.6.3. Et Kalınlığı Değişimi

DP600 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda elde edilen parçalar, merkezden başlanılarak beşer milimetre aralıklarla markalanıp bu noktalardan et kalınlıkları ölçülerek parçaya ait kalınlık dağılımı elde edilmiştir. Bu, et kalınlığı dağılımı Tablo 4.58'de verilmiştir. 2 bar basınç ve 15 mm çaplı form takımının kullanıldığı 3 ve 8 numaralı deneylerde et kalınlığı diğer deneylere göre daha büyük çıkmıştır. 9 bar basıncın kullanıldığı deneylerde ise et kalınlığı 2 bar basıncın kullanıldığı deneylere göre daha az oluşmuştur. Şekil 4.46'da et kalınlığı dağılımı grafik olarak verilmiştir.

Şekil 4.46. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

	TPIF_RL_60D_ES								N	lerkezd	en Uzal	dık (mr	n)					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	t-S/N
1	2	500	0,25	5	1,03	1,03	1,03	0,99	0,84	0,63	0,6	0,71	0,9	1	1,03	1,03	1,03	-4,43697
2	2	500	0,5	10	1,03	1,03	1,03	1	0,93	0,62	0,6	0,61	0,88	0,93	1,03	1,03	1,03	-4,43697
3	2	500	0,75	15	1,03	1,03	1,03	0,99	0,88	0,63	0,61	0,67	0,81	0,95	1,03	1,03	1,03	-4,29340
4	2	1000	0,25	5	1,03	1,03	1,03	0,99	0,77	0,58	0,58	0,69	0,86	0,99	1,03	1,03	1,03	-4,73144
5	2	1000	0,5	10	1,03	1,03	1,03	1,02	0,98	0,59	0,6	0,61	0,76	0,9	1,03	1,03	1,03	-4,58296
6	2	1000	0,75	15	1,03	1,03	1,03	0,97	0,89	0,63	0,6	0,64	0,79	0,95	1,03	1,03	1,03	-4,43697
7	2	1500	0,25	10	1,03	1,03	1,03	0,98	0,89	0,59	0,59	0,6	0,86	0,95	1,03	1,03	1,03	-4,58296
8	2	1500	0,5	15	1,03	1,03	1,03	0,97	0,86	0,63	0,63	0,67	0,9	0,97	1,03	1,03	1,03	-4,01319
9	2	1500	0,75	5	1,03	1,03	1,03	1	0,75	0,6	0,57	0,75	0,85	1	1,03	1,03	1,03	-4,88250
2 bar	sıkma basın	ıcına göre orta	alama et kalır	ılıkları	1,03	1,03	1,03	0,99	0,87	0,61	0,60	0,66	0,85	0,96	1,03	1,03	1,03	
10	9	500	0,25	15	1,03	1,03	1,03	0,98	0,88	0,53	0,63	0,57	0,82	0,98	1,03	1,03	1,03	-5,51448
11	9	500	0,5	5	1,03	1,03	1,03	1,01	0,75	0,55	0,54	0,62	0,87	1,00	1,03	1,03	1,03	-5,35212
12	9	500	0,75	10	1,03	1,03	1,03	0,98	0,75	0,57	0,58	0,68	0,89	1,01	1,03	1,03	1,03	-4,88250
13	9	1000	0,25	10	1,03	1,03	1,03	0,98	0,86	0,54	0,54	0,60	0,81	0,96	1,03	1,03	1,03	-5,35212
14	9	1000	0,5	15	1,03	1,03	1,03	1,00	0,92	0,58	0,62	0,62	0,81	0,99	1,03	1,03	1,03	-4,73144
15	9	1000	0,75	5	1,03	1,03	1,03	0,98	0,78	0,55	0,54	0,68	0,91	0,97	1,03	1,03	1,03	-5,35212
16	9	1500	0,25	15	1,03	1,03	1,03	0,97	0,87	0,52	0,58	0,69	0,84	0,95	1,03	1,03	1,03	-5,67993
17	9	1500	0,5	5	1,03	1,03	1,03	1,02	0,76	0,54	0,56	0,62	0,84	0,98	1,03	1,03	1,03	-5,35212
18	9	1500	0,75	10	1,03	1,03	1,03	1,00	0,89	0,57	0,57	0,59	0,80	0,95	1,03	1,03	1,03	-4,88250
9 bar	sıkma basın	ıcına göre orta	alama et kalır	ılıkları	1,03	1,03	1,03	0,99	0,83	0,55	0,57	0,63	0,84	0,98	1,03	1,03	1,03	

Tablo 4.58. DP600 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımları

Tablo 4.59, Şekil 4.47, Tablo 4.60 ve Şekil 4.48'de DP 600 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığının iyileştirilmesi için yapılan istatistiksel analizler verilmiştir.

Anılan şekil ve tablolar incelendiğinde et kalınlığı üzerinde basıncın çok önemli düzeyde $(p \le 0.01)$, form takımı çapının ise önemli düzeyde $(p \le 0.05)$ etkili olduğu görülmektedir (Tablo 4.60). Bu sonuç S/N analizi ile de uyuşmaktadır (Şekil 4.47).

İkili etkileşimler incelendiğinde, parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.60). Ancak Şekil 4.48'de verilen kontur grafiği incelendiğinde basınç değerinin azalması ile et kalınlığının bir miktar arttığı görülebilmektedir. Ayrıca, form takımı çapının da büyümesi et kalınlığını bir miktar arttırmaktadır.

Tablo 4.59 ve Şekil 4.47'ye göre ilerleme hızının seviyeleri arasında önemli bir fark olmamakla birlikte, et kalınlığı optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir. Bununla birlikte 10 mm form takımı çapı da iyi sonuçlar vermektedir. Ayrıca, 0,75 mm/dak artım miktarı kullanımı da ortalamanın üzerinde sonuçlar vermektedir. 0,5 mm/dak yerine 0,75 mm/dak artım miktarı kullanımı şüphesiz işlem süresini kısaltacaktır.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-4,489	-4,819	-5,050	-5,018
	2	-5,233	-4,865	-4,745	-4,787
Et Kalınlığı	3		-4,899	-4,788	-4,778
	Delta	0,745	0,079	0,305	0,240
	Sıra	1	4	2	3

Tablo 4.59. DP600 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.47. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı S/N oranları

Kavnak	Et Kalınlığı							
		(R-sq: %	94,94)					
	SD	КТ	KO	F	Р			
Model	13	0,015676	0,001206	5,78	0,052			
Doğrusal	4	0,007445	0,001861	8,92	0,028			
Basınç	1	0,004457	0,004457	21,36	0,01			
İlerleme Hızı	1	0,000007	0,000007	0,03	0,866			
Artım Miktarı	1	0,000594	0,000594	2,85	0,167			
Form Takımı Çapı	1	0,001635	0,001635	7,84	0,049			
Kare	3	0,000528	0,000176	0,84	0,537			
İlerleme Hızı*İlerleme Hızı	1	0,000064	0,000064	0,31	0,608			
Artım Miktarı*Artım Miktarı	1	0,000453	0,000453	2,17	0,215			
Form Takımı Çapı*Form Takımı Çapı	1	0,000018	0,000018	0,09	0,784			
2 Yönlü Etkileşim	6	0,002454	0,000409	1,96	0,268			
Basınç*İlerleme Hızı	1	0,000061	0,000061	0,29	0,618			
Basınç*Artım Miktarı	1	0,000739	0,000739	3,54	0,133			
Basınç*Form Takımı Çapı	1	0,000004	0,000004	0,02	0,898			
İlerleme Hızı*Artım Miktarı	1	0,000148	0,000148	0,71	0,447			
İlerleme Hızı*Form Takımı Çapı	1	0,000017	0,000017	0,08	0,787			
Artım Miktarı*Form Takımı Çapı	1	0,000578	0,000578	2,77	0,171			
Hata	4	0,000835	0,000209					
Toplam	17	0,016511	0,008984					

Tablo 4.60. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.48. DP600 sacının 60° eksenel simetrik şekillendirilmesi et kalınlığı parametre etkileşimleri

4.1.6.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

S/N analizi sonucunda elde edilen optimum faktör seviyeleri Tablo 4.61'de verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	2	500	0,25	5
Yüzey pürüzlülüğü	2	500	0,5	15
Et kalınlığı	2	500	0,5	15

Tablo 4.61. DP600 sacının 60° eksenel simetrik şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Deneylerde belirlenen sonuçlarla (Tablo 4.52, Tablo 4.55 ve Tablo 4.58) optimum faktör seviyeleri kullanılarak yapılan deney sonuçları karşılaştırıldığında 1911,63 N olan şekillendirme kuvvetinin 1884,83 N, 0,462 µm olan yüzey pürüzlülüğünün 0,420 µm, 0,52 mm olan et kalınlığının 0,62 mm olduğu belirlenmiştir. Optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturulmuştur. Şekillendirme kuvveti için elde edilen regresyon denklemi Eşitlik 4.16'da, yüzey pürüzlülüğünün tahmini için elde edilen regresyon denklemi Eşitlik 4.17'de, en küçük et kalınlığını veren regresyon denklemi ise Eşitlik 4.18'de verilmiştir.

$$F_{z} = 1167,4 - 7,79 * P + 0,15 * F + 1222 * A + 84,1 * D - 0,000016 *$$

$$F^{2} - 893 * A^{2} + 0,36 * D^{2} - 0,00332 * P * F + 14,1 * P * A + 0,314 * P *$$

$$D + 0,049 * F * A - 0,01123 * F * D + 15,2 * A * D$$
(4.16)

$$R_{a} = 0,816 + 0,0827 * P + 0,00139 * F + 3,84 * A - 0,288 * D + 1,39 * A^{2} + 0,01449 * D^{2} - 0,000073 * P * F - 0,159 * P * A + 0,00477 * P * D - 0,000449 * F * A - 0,000003 * F * D - 0,3065 * A * D$$

$$(4.17)$$

$$T_{min} = 0,6312 - 0,01117 * P - 0,000051 * F + 0,005 * A - 0,00139 * D - 0,186 * A^2 - 0,000093 * D^2 - 0,000001 * P * F + 0,01284 * P * A + 0,000047 * P * D + 0,000041 * F * A + 0,000001 * F * D + 0,01067 * A * D (4.18)$$

Varyans analizlerine göre şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde (p $\leq 0,01$) etkilidir. Yüzey pürüzlülüğü üzerinde form takımının çapı çok önemli düzeyde (p $\leq 0,01$) etkilidir. Et kalınlığı üzerinde basınç çok önemli düzeyde (p $\leq 0,01$), form takımı çapının ise önemli düzeyde (p $\leq 0,05$) etkilidir.

4.1.7. DP600 Sacının 40° Kare Piramit Formu Deneyleri

4.1.7.1. Şekillendirme Kuvvetleri

DP600 sacının 40° kare piramit formunda şekillendirme deneyleri neticesinde belirlenen şekillendirme kuvvetleri Tablo 4.62'de verilmiştir. Tablonun ilk bölümünde deneylerde kullanılan parametre seviyeleri, ikinci bölümünde deneyeler esnasında belirlenen kuvvetler, son bölümünde ise S/N oranları verilmiştir. Tablo 4.62 incelendiğinde 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir. En küçük şekillendirme kuvvetinin (Fz) oluştuğu ilk üç deneye bakıldığında hepsinde form takımı çapının 5 mm olduğu görülmektedir. Ayrıca en büyük şekillendirme kuvvetinin oluştuğu ilk üç deneye bakıldığında da hepsinde form takımı

çapının 15 mm olduğu görülmektedir. Bu da şekillendirme kuvveti üzerinde form takımı çapının etkili bir parametre olduğunu göstermektedir.

	TPI	F_RL_40	D_PR					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N
1	2	500	0,25	5	763,18	800,83	2016,87	-66,0935
2	2	500	0,5	10	763,51	869,20	3199,99	-70,1030
3	2	500	0,75	15	1187,50	1087,96	4044,52	-72,1373
4	2	1000	0,25	5	783,33	941,47	2069,49	-66,3173
5	2	1000	0,5	10	878,20	854,87	3107,82	-69,8491
6	2	1000	0,75	15	1209,92	1116,61	4044,85	-72,1380
7	2	1500	0,25	10	629,00	586,95	2802,57	-68,9511
8	2	1500	0,5	15	966,90	896,87	3995,49	-72,0314
9	2	1500	0,75	5	1639,43	1647,24	2446,65	-67,7714
10	9	500	0,25	15	663,12	683,96	2784,26	-68,8942
11	9	500	0,5	5	988,01	1179,76	2261,99	-67,0898
12	9	500	0,75	10	839,54	1066,80	3113,05	-69,8637
13	9	1000	0,25	10	491,57	527,38	2512,99	-68,0038
14	9	1000	0,5	15	945,13	1131,26	4008,57	-72,0598
15	9	1000	0,75	5	1312,59	1660,59	2450,90	-67,7865
16	9	1500	0,25	15	686,18	694,38	3450,34	-70,7572
17	9	1500	0,5	5	906,14	1178,46	2277,68	-67,1498
18	9	1500	0,75	10	921,41	1018,95	3205,22	-70,1172

Tablo 4.62. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen kuvvetler

Tablo 4.63, Şekil 4.49, Tablo 4.64 ve Şekil 4.50'de DP 600 sacının 40° kare piramit şekillendirilmesinde, şekillendirme kuvvetinin (Fz) iyileştirilmesi için yukarıda verilen deney sonuçlarına göre yapılan istatistiksel analizler verilmiştir.

Tablo 4.63. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-69,49	-69,03	-68,17	-67,03
0 1 11 11 17 77	2	-69,08	-69,36	-69,71	-69,48
Şekillendirme Kuvveti	3		-69,46	-69,97	-71,34
(12)	Delta	0,41	0,43	1,80	4,30
	Sıralama	4	3	2	1

Şekil 4.49. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti S/N oranları

Kaynak	Şe	killendirme K	luvveti		
		(R-sq: %99,4	-3)		
	SD	KT	KO	F	Р
Model	13	8279245	636865	53,21	0,001
Doğrusal	4	5554900	1388725	116,03	0
Basınç	1	54202	54202	4,53	0,1
İlerleme Hızı	1	62554	62554	5,23	0,084
Artım Miktarı	1	935166	935166	78,13	0,001
Form Takımı Çapı	1	3674356	3674356	307	0
Kare	3	210066	70022	5,85	0,06
İlerleme Hızı*İlerleme Hızı	1	8878	8878	0,74	0,438
Artım Miktarı*Artım Miktarı	1	194801	194801	16,28	0,016
Form Takımı Çapı*Form Takımı Çapı	1	5363	5363	0,45	0,54
2 Yönlü Etkileşim	6	267088	44515	3,72	0,112
Basınç*İlerleme Hızı	1	23305	23305	1,95	0,235
Basınç*Artım Miktarı	1	5411	5411	0,45	0,538
Basınç*Form Takımı Çapı	1	28201	28201	2,36	0,2
İlerleme Hızı*Artım Miktarı	1	69335	69335	5,79	0,074
İlerleme Hızı*Form Takımı Çapı	1	50859	50859	4,25	0,108
Artım Miktarı*Form Takımı Çapı	1	15016	15016	1,25	0,325
Hata	4	47875	11969		
Toplam	17	8327119	5139416		

Tablo 4.64. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Anılan şekil ve tablolar incelendiğinde şekillendirme kuvveti üzerinde form takımı çapının ve artım miktarının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.64). Bu durum S/N analizinde de görülmektedir (Şekil 4.49).

İkili etkileşimler incelendiğinde, parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.64). Ancak, Şekil 4.50'de verilen kontur grafiğinden göre artım miktarının şekillendirme kuvvetini bir miktar etkilediği görülmektedir. Form takımı çapının ise şekillendirme kuvveti üzerinde daha belirleyici olduğu görülmektedir. Form takımı çapının etkisinin artım miktarını da etkilediği görülebilmektedir. Form takımı çapının ve/veya artım miktarının büyümesi şekillendirme kuvvetini de artırmaktadır.

Şekil 4.50. DP600 sacının 40° kare piramit şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

Tablo 4.63 ve Şekil 4.49'a göre şekillendirme kuvveti optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm olduğu söylenebilir.

4.1.7.2. Yüzey Pürüzlülüğü

DP600 sacının 40° kare piramit şekillendirme deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülmüş ve sonrasında ölçümlerin ortalamaları alınmıştır. İstatistiksel analizler hesaplanan bu ortalama değerlere göre yapılmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri ve S/N oranları Tablo 4.65'de verilmiştir.

	TPI	F_RL_40I	D_PR			Ra	ι (μm)		
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	1,020	0,786	1,042	0,949	0,4516
2	2	500	0,5	10	0,701	0,642	0,744	0,696	3,1520
3	2	500	0,75	15	0,705	0,587	0,640	0,644	3,8223
4	2	1000	0,25	5	1,075	1,498	1,125	1,233	-1,8169
5	2	1000	0,5	10	0,803	0,693	0,613	0,703	3,0609
6	2	1000	0,75	15	0,603	0,573	0,638	0,605	4,3697
7	2	1500	0,25	10	0,803	0,666	0,706	0,725	2,7932
8	2	1500	0,5	15	0,561	0,422	0,391	0,458	6,7827
9	2	1500	0,75	5	3,551	3,730	3,823	3,701	-11,3672
10	9	500	0,25	15	0,799	0,974	0,703	0,825	1,6674
11	9	500	0,5	5	2,421	2,224	2,486	2,377	-7,5206
12	9	500	0,75	10	1,600	1,513	1,583	1,565	-3,8921
13	9	1000	0,25	10	0,605	0,566	0,499	0,557	5,0881
14	9	1000	0,5	15	0,485	0,311	0,449	0,415	7,6390
15	9	1000	0,75	5	3,822	3,536	4,107	3,822	-11,6451
16	9	1500	0,25	15	0,646	0,892	0,845	0,794	1,9999
17	9	1500	0,5	5	2,447	1,421	2,160	2,009	-6,0610
18	9	1500	0,75	10	1,522	1,450	1,538	1,503	-3,5411

Tablo 4.65. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

Yüzey pürüzlülüğü, 5 mm çaplı form takımının kullanıldığı deneylerde diğer deneylere göre daha yüksek çıkmıştır. Form takımının küçük olması ile birlikte artım miktarının büyük olduğu 9 ve 11 numaralı deneylerde yüzey pürüzlülüğü ortalamanın çok üzerinde oluşmuştur. Bu durum Şekil 4.51'de net olarak görülmektedir.

Şekil 4.51. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri

DP 600 sacının 40° kare piramit şekillendirilmesinde, yüzey pürüzlülüğü için deney sonuçlarına göre yapılan istatistiksel analizler Tablo 4.66, Şekil 4.52, Tablo 4.67 ve Şekil 4.53'te verilmiştir.

Tablo 4.66. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	1,2498	-0,3866	1,6972	-6,3265
	2	-1,8073	1,1160	1,1755	1,1102
Yüzey Pürüzlülüğü (Ra)	3		-1,5656	-3,7089	4,3802
	Delta	3,0571	2,6815	5,4062	10,7067
	Sıra	3	4	2	1

Şekil 4.52. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak		Yüzey Pürü (R-sq: %9	zlülüğü 9,57)		
	SD	KT	КО	F	Р
Model	13	18,438	1,41831	71,38	0
Doğrusal	4	6,7444	1,68611	84,86	0
Basınç	1	0,001	0,00096	0,05	0,837
İlerleme Hızı	1	0	0,00005	0	0,964
Artım Miktarı	1	2,0105	2,01053	101,18	0,001
Form Takımı Çapı	1	5,4899	5,48987	276,29	0
Kare	3	1,37	0,45665	22,98	0,006
İlerleme Hızı*İlerleme Hızı	1	0,0087	0,00867	0,44	0,545
Artım Miktarı*Artım Miktarı	1	0,3674	0,36736	18,49	0,013
Form Takımı Çapı*Form Takımı Çapı	1	0,9683	0,96834	48,73	0,002
2 Yönlü Etkileşim	6	2,8223	0,47038	23,67	0,004
Basınç*İlerleme Hızı	1	0,0543	0,05429	2,73	0,174
Basınç*Artım Miktarı	1	0,0005	0,0005	0,03	0,881
Basınç*Form Takımı Çapı	1	0,0212	0,02118	1,07	0,36
İlerleme Hızı*Artım Miktarı	1	0,0198	0,01981	1	0,375
İlerleme Hızı*Form Takımı Çapı	1	0	0,00004	0	0,968
Artım Miktarı*Form Takımı Çapı	1	1,6857	1,68572	84,84	0,001
Hata	4	0,0795	0,01987		
Toplam	17	18,5175	10,64719		

Tablo 4.67. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.53. DP600 sacının 40° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde yüzey pürüzlülüğü üzerinde form takımı çapının ve artım miktarının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.67). Bu durum S/N analizi ile de uyuşmaktadır (Şekil 4.52).

İkili etkileşimler incelendiğinde, form takımı çapının etkisi artım miktarına bağlı olarak çok önemli düzeyde ($p \le 0,01$) değişmiştir (Tablo 4.67). Şekil 4.53'te verilen kontur grafiğinde form takımı çapının ve artım miktarının değişimlerinin yüzey pürüzlülüğünü etkilediği görülebilmektedir. Artım miktarının büyümesi yüzey pürüzlülüğünü de büyütmektedir. Form takımı çapının büyümesi ise yüzey pürüzlülüğünü azaltmaktadır.

Tablo 4.66 ve Şekil 4.52'ye göre yüzey pürüzlülüğü optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Ayrıca 0,5 mm artım miktarı ve 10 mm form takımı çapı kullanılması da ortalamanın üzerinde sonuçlar vermektedir.

4.1.7.3. Et Kalınlığı Değişimi

DP600 sacının 40° kare piramit şekillendirme deneyleri sonucunda elde edilen parçaların et kalınlıkları ölçülerek kalınlık dağılımları çıkartılmıştır. Et kalınlığı dağılımı ve sinyal gürültü analizinden elde edilen S/N oranları Tablo 4.68'de verilmiştir. Sıkma basıncı olarak 9 bar basıncın kullanıldığı deneylerde et kalınlığı, 2 bar basıncın kullanıldığı deneylere göre daha az oluşmuştur. Şekil 4.54'de et kalınlığı dağılımı grafik olarak verilmiştir.

Şekil 4.54 incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Şekillendirilen yüzeyin alt ve üst bölgelerindeki incelme birbirlerine yakındır. Maksimum incelme 5 mm form takımı çapının kullanıldığı 1 numaralı deneyde oluşmuştur.

	TF	PIF_RL_40I	D_PR								Merke	ezden l	U zaklık	x (mm)							
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	t-S/N
1	2	500	0,25	5	1,03	1,03	1,03	0,98	0,71	0,79	0,79	0,78	0,78	0,79	0,79	0,79	0,84	1,03	1,03	1,03	-2,97483
2	2	500	0,5	10	1,03	1,03	1,03	1,03	0,86	0,83	0,82	0,8	0,8	0,78	0,79	0,79	0,83	1,05	1,03	1,03	-2,15811
3	2	500	0,75	15	1,03	1,03	1,03	0,99	0,84	0,81	0,82	0,82	0,81	0,72	0,79	0,81	0,87	0,98	1,03	1,03	-2,85335
4	2	1000	0,25	5	1,03	1,03	1,03	1	0,81	0,78	0,79	0,79	0,8	0,8	0,79	0,79	0,82	1,03	1,03	1,03	-2,15811
5	2	1000	0,5	10	1,03	1,03	1,03	0,97	0,8	0,8	0,79	0,8	0,78	0,76	0,78	0,8	0,88	1,01	1,03	1,03	-2,38373
6	2	1000	0,75	15	1,03	1,03	1,03	0,98	0,87	0,8	0,82	0,83	0,82	0,71	0,78	0,81	0,88	1,02	1,03	1,03	-2,97483
7	2	1500	0,25	10	1,03	1,03	1,03	0,99	0,8	0,8	0,8	0,79	0,8	0,78	0,78	0,79	0,88	1,01	1,03	1,03	-2,15811
8	2	1500	0,5	15	1,03	1,03	1,03	0,98	0,85	0,8	0,83	0,83	0,83	0,77	0,76	0,82	0,87	0,98	1,03	1,03	-2,38373
9	2	1500	0,75	5	1,03	1,03	1,03	0,91	0,79	0,78	0,78	0,78	0,76	0,76	0,73	0,74	0,81	1,01	1,03	1,03	-2,73354
2 bar sı	kma basın	cına göre or	talama et ka	ılınlıkları	1,03	1,03	1,03	0,98	0,81	0,80	0,80	0,80	0,80	0,76	0,78	0,79	0,85	1,01	1,03	1,03	
10	9	500	0,25	15	1,03	1,03	1,03	0,98	0,86	0,80	0,80	0,79	0,79	0,79	0,79	0,80	0,84	1,00	1,03	1,03	-2,04746
11	9	500	0,5	5	1,03	1,03	1,03	0,97	0,80	0,75	0,77	0,77	0,78	0,78	0,77	0,77	0,78	1,00	1,03	1,03	-2,49877
12	9	500	0,75	10	1,03	1,03	1,03	0,99	0,81	0,80	0,78	0,77	0,77	0,77	0,77	0,78	0,85	1,01	1,03	1,03	-2,27019
13	9	1000	0,25	10	1,03	1,03	1,03	0,99	0,82	0,79	0,80	0,79	0,78	0,78	0,78	0,79	0,84	1,01	1,03	1,03	-2,15811
14	9	1000	0,5	15	1,03	1,03	1,03	0,98	0,86	0,81	0,81	0,82	0,80	0,77	0,77	0,75	0,81	0,99	1,03	1,03	-2,49877
15	9	1000	0,75	5	1,03	1,03	1,03	0,97	0,78	0,78	0,78	0,78	0,76	0,77	0,77	0,76	0,80	1,02	1,03	1,03	-2,38373
16	9	1500	0,25	15	1,03	1,03	1,03	1,00	0,83	0,79	0,79	0,79	0,82	0,80	0,77	0,79	0,84	0,94	1,03	1,03	-2,27019
17	9	1500	0,5	5	1,03	1,03	1,03	0,95	0,81	0,77	0,77	0,77	0,77	0,77	0,77	0,76	0,81	1,00	1,03	1,03	-2,38373
18	9	1500	0,75	10	1,03	1,03	1,03	0,98	0,82	0,78	0,80	0,78	0,78	0,77	0,76	0,79	0,84	1,00	1,03	1,03	-2,38373
9 bar sı	kma basın	cına göre or	talama et ka	ılınlıkları	1,03	1,03	1,03	0,98	0,82	0,79	0,79	0,78	0,78	0,78	0,77	0,78	0,82	1,00	1,03	1,03	

Tablo 4.68. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

Şekil 4.54. DP600 sacının 40° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

DP 600 sacının 40° kare piramit şekillendirilmesinde et kalınlığı için yapılan istatistiksel analizler (S/N analizi ve varyans analizi) Tablo 4.69, Şekil 4.55, Tablo 4.70 ve Şekil 4.56'da verilmiştir.

Tablo 4.69. DP600 sacının 40° kare piramit şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-2,531	-2,467	-2,294	-2,522
	2	-2,322	-2,426	-2,384	-2,252
Et Kalınlığı	3		-2,386	-2,600	-2,505
	Delta	0,209	0,082	0,305	0,270
	Sıra	3	4	1	2

Şekil 4.55. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı S/N oranları

Kaynak		Et Kalı	nlığı	$\mathbf{Et \ Kalınlığı} $								
-		(R-sq: %)	/8,60)									
	SD	KT	КО	F	Р							
Model	13	0,008017	0,000617	1,13	0,5							
Doğrusal	4	0,002629	0,000657	1,2	0,431							
Basınç	1	0,000144	0,000144	0,26	0,635							
İlerleme Hızı	1	0,000004	0,000004	0,01	0,936							
Artım Miktarı	1	0,002276	0,002276	4,17	0,111							
Form Takımı Çapı	1	0,000161	0,000161	0,29	0,616							
Kare	3	0,001114	0,000371	0,68	0,609							
İlerleme Hızı*İlerleme hızı	1	0,000059	0,000059	0,11	0,759							
Artım Miktarı*Artım Miktarı	1	0,000117	0,000117	0,21	0,668							
Form Takımı Çapı*Form Takımı Çapı	1	0,000896	0,000896	1,64	0,269							
2 Yönlü Etkileşim	6	0,002195	0,000366	0,67	0,685							
Basınç*İlerleme Hızı	1	0,000071	0,000071	0,13	0,737							
Basınç*Artım Miktarı	1	0,000594	0,000594	1,09	0,356							
Basınç*Form Takımı Çapı	1	0,000081	0,000081	0,15	0,72							
İlerleme Hızı*Artım Miktarı	1	0,000111	0,000111	0,2	0,676							
İlerleme Hızı*Form Takımı Çapı	1	0,000702	0,000702	1,29	0,32							
Artım Miktarı*Form Takımı Çapı	1	0,000821	0,000821	1,51	0,287							
Hata	4	0,002183	0,000546									
Toplam	17	0,0102	0,006583									

Tablo 4.70. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.56. DP600 sacının 40° kare piramit şekillendirilmesi et kalınlığı parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde yüzey pürüzlülüğü üzerinde hiçbir bağımsız değişkenin önemli düzeyde ($p \le 0,05$) etkili olmadığı anlaşılmaktadır (Tablo 4.70). Fakat artım miktarının etkisi ön plana çıkmıştır ($p \le 0,15$). Bu durum S/N analizinde de görülebilmektedir (Şekil 4.55).

İkili etkileşimler incelendiğinde, parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.70). Şekil 4.56'da verilen kontur grafiğinden artım miktarının et kalınlığı üzerinde diğer parametrelere göre daha belirleyici olduğu görülmektedir. Artım miktarı değerinin büyümesi et kalınlığını azaltmaktadır. Artım miktarının etkisi özellikle form takımı çapından etkilenmiştir.

Tablo 4.69 ve Şekil 4.55'e göre ilerleme hızının seviyeleri arasında önemli bir fark olmamakla birlikte, et kalınlığı optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 10 mm'dir.

4.1.7.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

S/N analizi sonucunda elde edilen optimum faktör seviyeleri Tablo 4.71'de verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)
Şekillendirme kuvveti	9	500	0,25	5
Yüzey pürüzlülüğü	2	1000	0,25	15
Et kalınlığı	9	1500	0,25	10

Tablo 4.71. DP600 sacının 40° kare piramit şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Deneylerde belirlenen sonuçlarla (Tablo 4.62, Tablo 4.65, Tablo 4.68) optimum faktör seviyeleri (Tablo 4.71) kullanılarak yapılan deney sonuçları karşılaştırıldığında 2016,87 N olan şekillendirme kuvvetinin 1979,28 N, 0,415 µm olan yüzey pürüzlülüğünün 0,402 µm, 0,71 mm olan et kalınlığının 0,78 mm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturulmuştur. Bu denklemler sıra ile Eşitlik 4.19, Eşitlik 4.20 ve Eşitlik 4.21'de verilmiştir.

$$F_{z} = 609 - 104,9 * P + 0,461 * F + 5461 * A + 25,6 * D - 0,000196 * F^{2} - 386 * A^{2} + 1,6 * D^{2} + 0,0279 * P * F + 34,7 * P * A + 3,97 * P * D - 0,879 * F * A + 0,0377 * F * D + 54,4 * A * D$$

$$(4.19)$$

$$R_{a} = 1,204 + 0,0796 * P + 0,000842 * F + 3,12 * A - 0,3008 * D + 5,3 * A^{2} + 0,02152 * D^{2} - 0,000043 * P * F - 0,0106 * P * A - 0,00344 * P * D - 0,00047 * F * A + 0,000001 * F * D - 0,5762 * A * D$$

$$(4.20)$$

$$T_{min} = 0,5773 - 0,00107 * P + 0,000101 * F + 0,122 * A + 0,026 *$$

$$D - 0,095 * A^{2} - 0,000655 * D^{2} - 0,000002 * P * F + 0,0115 * P *$$

$$A - 0,000212 * P * D - 0,000035 * F * A - 0,000004 * F * D - 0,0127 * A * D$$
(4.21)

Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde ($p \le 0,01$) etkilidir. Yüzey pürüzlülüğü için yapılan varyans analizine göre yüzey pürüzlülüğü üzerinde form takımı çapının ve artım miktarının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir. Et kalınlığı için yapılan varyans analizine göre et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde ($p \le 0.05$) etkili değildir. Bununla birlikte artım miktarı diğer parametrelere göre daha etkilidir ($p \le 0.15$).

4.1.8. DP600 Sacının 60° Kare Piramit Formu Deneyleri

4.1.8.1. Şekillendirme Kuvvetleri

DP600 sacının 60° kare piramit formunda şekillendirme deneyleri sonucunda belirlenen şekillendirme kuvvetleri S/N oranları Tablo 4.72'de verilmiştir. Tablo incelendiğinde 2 bar sıkma basıncı, 500 mm/dak ilerleme hızı, 0,25 mm artım miktarı ve çapı 5 mm olan form takımının kullanıldığı 1 numaralı deneyde en küçük şekillendirme kuvvetinin (Fz) oluştuğu görülmektedir.

	ТР	IF_RL_60I)_PR					
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fx (N)	Maksimum Fy (N)	Maksimum Fz (N)	Fz-S/N
1	2	500	0,25	5	589,04	605,18	1910,32	-65,6221
2	2	500	0,5	10	1151,11	1171,30	2700,59	-68,6292
3	2	500	0,75	15	1666,40	1678,17	3155,87	-69,9824
4	2	1000	0,25	5	596,19	604,86	1951,17	-65,8059
5	2	1000	0,5	10	1442,87	1754,67	3122,21	-69,8892
6	2	1000	0,75	15	1597,52	1559,35	3150,97	-69,9689
7	2	1500	0,25	10	1040,97	1097,73	2476,39	-67,8764
8	2	1500	0,5	15	1481,21	1482,52	3101,94	-69,8327
9	2	1500	0,75	5	987,69	1038,15	2217,54	-66,9174
10	9	500	0,25	15	1444,82	1367,60	3055,86	-69,7027
11	9	500	0,5	5	860,00	845,43	2128,97	-66,5634
12	9	500	0,75	10	1228,44	1263,75	2669,22	-68,5277
13	9	1000	0,25	10	1080,61	1103,26	2290,75	-67,1996
14	9	1000	0,5	15	1414,28	1480,56	3110,44	-69,8564
15	9	1000	0,75	5	970,47	911,52	2198,91	-66,8442
16	9	1500	0,25	15	1385,36	1367,60	2947,02	-69,3877
17	9	1500	0,5	5	789,50	702,19	2143,02	-66,6205
18	9	1500	0,75	10	1203,75	1212,64	2693,40	-68,6060

Tablo 4.72. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen kuvvetler

DP 600 sacının 60° kare piramit şekillendirilmesinde, şekillendirme kuvveti (Fz) için yapılan istatistiksel analizler Tablo 4.73, Şekil 4.57, Tablo 4.74 ve Şekil 4.58'de verilmiştir.

Anılan şekil ve tablolar incelendiğinde şekillendirme kuvveti üzerinde form takımı çapının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.74). Bu durum S/N analizi ile de uyumludur (Şekil 4.57).

İkili etkileşimler incelendiğinde, parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.74). Bununla birlikte Şekil 4.58'de verilen kontur grafiğinde şekillendirme kuvvetine etki eden ana parametrenin form takımı çapı olduğu görülebilmektedir. Form takımı çapının azalması şekillendirme kuvvetini de azaltmaktadır. Grafiğe göre form takımı çapının bu etkisi artım miktarından etkilenmektedir.

Tablo 4.73 ve Şekil 4.57'ye göre her ne kadar basınç ve ilerleme hızının parametre seviyeleri arasında önemli bir fark olmasa da şekillendirme kuvvetinin optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 5 mm olduğu söylenebilir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-68,28	-68,17	-67,60	-66,40
	2	-68,15	-68,26	-68,57	-68,45
Şekillendirme Kuvveti (Fz)	3		-68,21	-68,47	-69,79
(22)	Delta	0,14	0,09	0,97	3,39
	Sıralama	3	4	2	1

Tablo 4.73. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvvetine göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.57. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti S/N oranları

Voymaly		Şekillendirme K	uvveti		
Kaynak		(R-sq: %96,0	1)		
	SD	КТ	КО	F	Р
Model	13	3353011	257924	7,41	0,033
Doğrusal	4	2198660	549665	15,8	0,01
Basınç	1	49179	49179	1,41	0,3
İlerleme Hızı	1	9006	9006	0,26	0,638
Artım Miktarı	1	97502	97502	2,8	0,169
Form Takımı Çapı	1	1876452	1876452	53,92	0,002
Kare	3	130418	43473	1,25	0,403
İlerleme Hızı*İlerleme Hızı	1	15370	15370	0,44	0,543
Artım Miktarı*Artım Miktarı	1	99304	99304	2,85	0,166
Form Takımı Çapı*Form Takımı Çapı	1	10126	10126	0,29	0,618
2 Yönlü Etkileşim	6	62776	10463	0,3	0,908
Basınç*İlerleme Hızı	1	3383	3383	0,1	0,771
Basınç*Artım Miktarı	1	6103	6103	0,18	0,697
Basınç*Form Takımı Çapı	1	647	647	0,02	0,898
İlerleme Hızı*Artım Miktarı	1	274	274	0,01	0,934
İlerleme Hızı*Form Takımı Çapı	1	7332	7332	0,21	0,67
Artım Miktarı*Form Takımı Çapı	1	37723	37723	1,08	0,357
Hata	4	139194	34799		
Toplam	17	3492205	2247200		

Tablo 4.74. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.58. DP600 sacının 60° kare piramit şekillendirilmesinde şekillendirme kuvveti (Fz) parametre etkileşimleri

4.1.8.2. Yüzey Pürüzlülüğü

DP600 sacının 60° kare piramit şekillendirme deneylerinden elde edilen her bir parçanın yüzey pürüzlülüğü (Ra) üçer defa ölçülmüş ve sonrasında ölçümlerin ortalamaları alınmıştır. Deneyler neticesinde belirlenen yüzey pürüzlülükleri ve S/N oranları Tablo 4.75'de verilmiştir.

	TPI	F_RL_40	D_PR						
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	1. Ölçüm	2. Ölçüm	3. Ölçüm	Ortalama	Ra-S/N
1	2	500	0,25	5	0,807	0,797	0,826	0,810	1,83030
2	2	500	0,5	10	0,719	1,147	0,759	0,875	1,15984
3	2	500	0,75	15	0,534	0,474	0,469	0,492	6,15482
4	2	1000	0,25	5	0,964	0,781	0,777	0,841	1,50752
5	2	1000	0,5	10	0,739	0,913	0,682	0,778	2,18041
6	2	1000	0,75	15	0,510	0,479	0,465	0,485	6,29114
7	2	1500	0,25	10	1,202	1,012	1,298	1,171	-1,36867
8	2	1500	0,5	15	0,462	0,555	0,456	0,491	6,17837
9	2	1500	0,75	5	2,519	2,499	2,393	2,470	-7,85511
10	9	500	0,25	15	0,708	0,855	0,663	0,742	2,59192
11	9	500	0,5	5	1,653	1,515	1,924	1,697	-4,59534
12	9	500	0,75	10	0,887	0,725	0,880	0,831	1,61146
13	9	1000	0,25	10	0,900	0,883	0,916	0,900	0,91837
14	9	1000	0,5	15	0,760	0,639	0,784	0,728	2,76135
15	9	1000	0,75	5	2,142	2,516	2,311	2,323	-7,32098
16	9	1500	0,25	15	0,814	0,748	0,688	0,750	2,49877
17	9	1500	0,5	5	1,798	1,520	1,721	1,680	-4,50446
18	9	1500	0,75	10	0,614	0,674	0,612	0,633	3,96735

Tablo 4.75. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri (Ra)

En iyi yüzey pürüzlülüğü ise 2 bar basınç, 1000 mm/dak ilerleme hızı, 0,75 mm artım miktarı ve 15 mm form takımı çapının kullanıldığı 6 numaralı deneyde oluştuğu görülmüştür. Yüzey pürüzlülüğü, 5 mm çaplı form takımının kullanıldığı deneylerde diğer deneylere göre daha yüksek çıkmıştır. Form takımı çapının küçük olması ile birlikte artım miktarının büyük olduğu 9 ve 15 numaralı deneylerde yüzey pürüzlülüğü ortalamanın çok üzerinde oluşmuştur. Bu durum Şekil 4.59'da net olarak görülmektedir.

Şekil 4.59. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen yüzey pürüzlülükleri

Tablo 4.76, Şekil 4.60, Tablo 4.77 ve Şekil 4.61'de DP 600 sacının 60° kare piramit şekillendirilmesinde, yüzey pürüzlülüğü için deney sonuçlarına göre yapılan istatistiksel analizler verilmiştir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	1,7865	1,4588	1,3297	-3,4897
Yüzey Pürüzlülüğü (Ra)	2	-0,2302	1,0563	0,5300	1,4115
	3		-0,1806	0,4748	4,4127
	Delta	2,0167	1,6395	0,8549	7,9024
	Sıra	2	3	4	1

Tablo 4.76. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğüne göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.60. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü S/N oranları

Kaynak		Yüzey Pürüzl (R-sq: %94,	ülüğü ,72)		
	SD	KT	КО	F	Р
Model	13	7,16096	0,55084	11,14	0,016
Doğrusal	4	3,33769	0,83442	16,88	0,009
Basınç	1	0,06539	0,06539	1,32	0,314
İlerleme Hızı	1	0,1119	0,1119	2,26	0,207
Artım Miktarı	1	0,31241	0,31241	6,32	0,066
Form Takımı Çapı	1	2,93385	2,93385	59,35	0,002
Kare	3	0,47945	0,15982	3,23	0,143
İlerleme Hızı*İlerleme Hızı	1	0,01528	0,01528	0,31	0,608
Artım Miktarı*Artım Miktarı	1	0,02513	0,02513	0,51	0,515
Form Takımı Çapı*Form Takımı Çapı	1	0,43933	0,43933	8,89	0,041
2 Yönlü Etkileşim	6	1,72292	0,28715	5,81	0,055
Basınç*İlerleme Hızı	1	0,15813	0,15813	3,2	0,148
Basınç*Artım Miktarı	1	0,11347	0,11347	2,3	0,204
Basınç*Form Takımı Çapı	1	0,04081	0,04081	0,83	0,415
İlerleme Hızı*Artım Miktarı	1	0,01812	0,01812	0,37	0,578
İlerleme Hızı*Form Takımı Çapı	1	0,0004	0,0004	0,01	0,933
Artım Miktarı*Form Takımı Çapı	1	0,47712	0,47712	9,65	0,036
Hata	4	0,19774	0,04943		
Toplam	17	7,3587	4,76077		

Tablo 4.77. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.61. DP600 sacının 60° kare piramit şekillendirilmesi yüzey pürüzlülüğü (Ra) parametre etkileşimleri

Anılan şekil ve tablolar incelendiğinde yüzey pürüzlülüğü üzerinde form takımı çapının çok önemli düzeyde ($p \le 0,01$) etkili olduğu görülmektedir (Tablo 4.77). Bu durum S/N analizi ile de uyuşmaktadır (Tablo 4.76 ve Şekil 4.60).

İkili etkileşimler incelendiğinde form takımı çapının etkisi artım miktarına bağlı olarak önemli düzeyde ($p \le 0,05$) değişmiştir. Bu durum Şekil 4.61'de de görülebilmektedir. Bu grafikten form takımı çapının yüzey pürüzlülüğünü etkileyen ana parametre olduğu görülmektedir. Form takımı çapının büyümesi yüzey pürüzlülüğünü azaltmaktadır. Grafikten, form takımı çapının bu etkisinin artım miktarından etkilendiği görülebilmektedir.

Tablo 4.76 ve Şekil 4.60'a göre, artım miktarının seviyeleri arasında önemli bir fark olmamakla birlikte yüzey pürüzlülüğü optimum şekillendirme parametre seviyelerinin basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 15 mm olduğu söylenebilir.

4.1.8.3. Et Kalınlığı Değişimi

DP600 sacının 60° kare piramit formunda şekillendirme deneyleri sonucunda elde edilen parçalar, merkezden başlanılarak beşer milimetre aralıklarla markalanmıştır. Markalanan bu noktalardan et kalınlıkları ölçülerek parçaya ait kalınlık dağılımı elde edilmiştir. Et kalınlığı dağılımı Tablo 4.78'de verilmiştir. Sıkma basıncı olarak 9 bar basıncın kullanıldığı deneylerde et kalınlığı, 2 bar basıncın kullanıldığı deneylere göre daha az oluşmuştur. 2 bar basıncın kullanıldığı 1, 5 ve 7 numaralı deneylerde ise et kalınlığı daha büyük çıkmıştır. Şekil 4.62'de et kalınlığı dağılımı grafik olarak verilmiştir. Şekil incelendiğinde form takımının saca temas ettiği bölgede et kalınlığında incelme meydana geldiği görülebilmektedir. Şekillendirilen yüzeyin alt ve üst bölgelerindeki incelme birbirlerine yakındır.

Şekil 4.62. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

TPIF_RL_60D_PR				Merkezden Uzaklık (mm)														
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	5	10	15	20	25	30	35	40	45	50	55	60	65	t-S/N
1	2	500	0,25	5	1,03	1,03	1,03	0,79	0,58	0,59	0,58	0,6	0,81	1,03	1,03	1,03	1,03	-4,73144
2	2	500	0,5	10	1,03	1,03	1,03	0,97	0,63	0,53	0,59	0,63	0,74	1,03	1,03	1,03	1,03	-5,51448
3	2	500	0,75	15	1,03	1,03	1,03	0,98	0,72	0,57	0,6	0,6	0,78	1,03	1,03	1,03	1,03	-4,88250
4	2	1000	0,25	5	1,03	1,03	1,03	0,93	0,55	0,57	0,58	0,58	0,64	1,03	1,03	1,03	1,03	-5,19275
5	2	1000	0,5	10	1,03	1,03	1,03	0,97	0,66	0,57	0,6	0,59	0,69	1,03	1,03	1,03	1,03	-4,88250
6	2	1000	0,75	15	1,03	1,03	1,03	0,93	0,63	0,54	0,68	0,63	0,68	1,03	1,03	1,03	1,03	-5,35212
7	2	1500	0,25	10	1,03	1,03	1,03	0,96	0,59	0,58	0,58	0,58	0,69	1,03	1,03	1,03	1,03	-4,73144
8	2	1500	0,5	15	1,03	1,03	1,03	0,98	0,69	0,53	0,63	0,65	0,69	1,03	1,03	1,03	1,03	-5,51448
9	2	1500	0,75	5	1,03	1,03	1,03	0,85	0,57	0,57	0,57	0,58	0,79	1,03	1,03	1,03	1,03	-4,88250
2 bar sı	kma basınc	una göre orta	lama et kalır	ılıkları	1,03	1,03	1,03	0,93	0,62	0,56	0,60	0,60	0,72	1,03	1,03	1,03	1,03	
10	9	500	0,25	15	1,03	1,03	1,03	0,94	0,58	0,52	0,63	0,64	0,62	1,03	1,03	1,03	1,03	-5,67993
11	9	500	0,5	5	1,03	1,03	1,03	0,80	0,54	0,55	0,53	0,54	0,78	1,03	1,03	1,03	1,03	-5,51448
12	9	500	0,75	10	1,03	1,03	1,03	0,95	0,63	0,54	0,55	0,59	0,77	1,03	1,03	1,03	1,03	-5,35212
13	9	1000	0,25	10	1,03	1,03	1,03	0,93	0,60	0,53	0,54	0,53	0,59	1,03	1,03	1,03	1,03	-5,51448
14	9	1000	0,5	15	1,03	1,03	1,03	0,92	0,62	0,50	0,58	0,52	0,74	1,03	1,03	1,03	1,03	-6,02060
15	9	1000	0,75	5	1,03	1,03	1,03	0,85	0,58	0,54	0,54	0,56	0,78	1,03	1,03	1,03	1,03	-5,35212
16	9	1500	0,25	15	1,03	1,03	1,03	0,99	0,73	0,48	0,68	0,60	0,74	1,03	1,03	1,03	1,03	-6,37518
17	9	1500	0,5	5	1,03	1,03	1,03	0,77	0,57	0,55	0,54	0,57	0,79	1,03	1,03	1,03	1,03	-5,35212
18	9	1500	0,75	10	1,03	1,03	1,03	0,95	0,61	0,53	0,55	0,58	0,70	1,03	1,03	1,03	1,03	-5,51448
9 bar sıkma basıncına göre ortalama et kalınlıkları				1,03	1,03	1,03	0,90	0,61	0,53	0,57	0,57	0,72	1,03	1,03	1,03	1,03		

Tablo 4.78. DP600 sacının 60° kare piramit şekillendirilmesinde belirlenen et kalınlığı dağılımları

DP 600 sacının 60° kare piramit şekillendirilmesinde et kalınlığı için yapılan istatistiksel analizler Tablo 4.79, Şekil 4.63, Tablo 4.80 ve Şekil 4.64'te verilmiştir.

Bağımlı Değişken	Seviye	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı
	1	-5,076	-5,279	-5,371	-5,171
	2	-5,631	-5,386	-5,466	-5,252
Et Kalınlığı	3		-5,395	-5,223	-5,637
	Delta	0,555	0,116	0,244	0,467
	Sıra	1	4	3	2

Tablo 4.79. DP600 sacının 60° kare piramit şekillendirilmesinde et kalınlığına göre faktör seviyelerinin S/N oranı tablosu

Şekil 4.63. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı S/N oranları

Bahsedilen şekil ve tablolar incelendiğinde et kalınlığı üzerinde hiçbir bağımsız değişkenin önemli düzeyde ($p \le 0.05$) etkili olmadığı anlaşılmaktadır (Tablo 4.80). Bununla birlikte et kalınlığı için en etkili bağımsız değişken basınçtır ($p \le 0,1$). Bu durum Şekil 4.63'te de görülebilmektedir.

İkili etkileşimler incelendiğinde, parametreler arasında istatiksel olarak önemli bir etki bulunmamıştır (Tablo 4.80). Deney parametrelerinin et kalınlığı üzerine etkileşimlerinin kontur grafiği Şekil 4.64'te verilmiştir. Etkileşim grafikleri incelendiğinde basıncın et kalınlığını belirleyen ana parametre olduğu görülmektedir. Basınç değerinin büyümesi et kalınlığını bir miktar azaltmaktadır.

Tablo 4.79 ve Şekil 4.63'e göre et kalınlığı için optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,75 mm, form takımı çapı için 5 mm'dir.

Kaynak	Et Kalınlığı (R-sq: %84,30)								
Kaynak									
	SD	KT	KO	F	Р				
Model	13	0,010196	0,000784	1,65	0,334				
Doğrusal	4	0,004118	0,00103	2,17	0,236				
Basınç	1	0,002682	0,002682	5,65	0,076				
İlerleme Hızı	1	0,000041	0,000041	0,09	0,783				
Artım Miktarı	1	0,000029	0,000029	0,06	0,818				
Form Takımı Çapı	1	0,000954	0,000954	2,01	0,229				
Kare	3	0,000701	0,000234	0,49	0,706				
İlerleme Hızı*İlerleme Hızı	1	0,000079	0,000079	0,17	0,704				
Artım Miktarı*Artım Miktarı	1	0,000435	0,000435	0,92	0,392				
Form Takımı Çapı*Form Takımı Çapı	1	0,000198	0,000198	0,42	0,554				
2 Yönlü Etkileşim	6	0,001257	0,00021	0,44	0,823				
Basınç*İlerleme Hızı	1	0,000208	0,000208	0,44	0,544				
Basınç*Artım Miktarı	1	0,000095	0,000095	0,2	0,678				
Basınç*Form Takımı Çapı	1	0,000267	0,000267	0,56	0,495				
İlerleme Hızı*Artım Miktarı	1	0,000026	0,000026	0,05	0,827				
İlerleme Hızı*Form Takımı Çapı	1	0,000721	0,000721	1,52	0,285				
Artım Miktarı*Form Takımı Çapı	1	0,000085	0,000085	0,18	0,693				
Hata	4	0,001898	0,000475						
Toplam	17	0,012094	0,006295						

Tablo 4.80. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı varyans analizi tablosu

(SD= Serbestlik Derecesi, KT= Düzeltilmiş Kareler Toplamı, KO= Düzeltilmiş Kareler Ortalaması)

Şekil 4.64. DP600 sacının 60° kare piramit şekillendirilmesi et kalınlığı parametre etkileşimleri

4.1.8.4. Doğrulama Deneyleri ve Sonuçların Değerlendirilmesi

S/N analizi sonucunda elde edilen optimum faktör seviyeleri Tablo 4.81'de verilmiştir. Bu tabloda verilen optimum seviyeler kullanılarak her bir bağımlı değişken için doğrulama deneyleri yapılmıştır.

Tablo 4.81. DP600 sacının 60° kare piramit şekillendirilmesinde deney faktörlerinin optimum seviyeleri

Bağımlı Değişken	Basınç (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)		
Şekillendirme kuvveti	9	500	0,25	5		
Yüzey pürüzlülüğü	2	500	0,25	15		
Et kalınlığı	2	500	0,75	5		

Deneylerde belirlenen sonuçlarla (Tablo 4.72, Tablo 4.75 ve Tablo 4.78) optimum faktör seviyeleri kullanılarak yapılan deney sonuçları karşılaştırıldığında 1910,32 N olan şekillendirme kuvvetinin 1896,59 N, 0,485 µm olan yüzey pürüzlülüğünün 0,472 µm, 0,48 mm olan et kalınlığının 0,56 mm olduğu belirlenmiştir. Böylece optimum parametre seviyelerinin daha iyi sonuçlar verdiği görülmüştür.

Şekillendirme kuvveti (Fz), yüzey pürüzlülüğü (Ra) ve et kalınlığının tahmini için ikinci dereceden regresyon denklemleri oluşturulmuştur. Şekillendirme kuvveti için elde edilen regresyon denklemi Eşitlik 4.22'de, yüzey pürüzlülüğünün tahmini için elde edilen regresyon denklemi Eşitlik 4.23'de, en küçük et kalınlığını veren regresyon denklemi ise Eşitlik 4.24'de verilmiştir.

$$F_{z} = 186 - 54,1 * P + 0,511 * F + 383 * A + 201,2 * D - 0,000257 *$$

$$F^{2} - 2756 * A^{2} - 2,20 + 0,0106 * P * F + 36,9 * P * A + 0,6 * P * D + 0,055 *$$

$$F * A - 0,0143 * F * D - 86,2 * A * D$$
(4.22)

$$R_{a} = -0.75 + 0.105 * P + 0.00165 * F + 5.68 * A - 0.076 * D + 0.07 *$$

$$A^{2} + 0.00988 * D^{2} - 0.000036 * P * F - 0.102 * P * A - 0.00331 * P *$$

$$D - 0.000970 * F * A - 0.000033 * F * D - 0.374 * A * D$$
(4.23)

$$T_{min} = 0,5852 - 0,00024 * P + 0,00001 * F - 0,274 * A + 0,0084 *$$

$$D + 0,182 * A^{2} - 0,000307 * D^{2} - 0,000003 * P * F + 0,0046 * P *$$

$$A - 0,000386 * P * D + 0,000017 * F * A - 0,000004 * F * D + 0,0041 * A * D$$
(4.24)

DP600 sacının 60° kare piramit şekillendirilmesinde, şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$) etkilidir. Yüzey pürüzlülüğü için yapılan varyans analizine göre, yüzey pürüzlülüğü üzerinde form takımı çapı çok önemli düzeyde ($p \le 0,01$) etkilidir. Et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde ($p \le$ 0,05) etkili değildir. Bununla birlikte et kalınlığı için en etkili bağımsız değişken basınçtır ($p \le 0,1$).

4.2. Parametre Etkileşimlerinin Genel Değerlendirilmesi Ve Optimizasyon

Bütün deney sonuçları göz önünde bulundurulduğunda şekillendirme kuvveti üzerinde ilerleme hızının önemli bir etkisi olmadığı görülebilmektedir. Sıkma basıncı ise şekillendirme kuvvetini ya azaltmakta ya da kuvvet üzerinde etkisizdir. Form takımı çapı arttığında ise şekillendirme kuvveti de artmaktadır. Artım miktarı değeri büyüdükçe şekillendirme kuvveti de büyümektedir.

Sıkma basıncının yüzey pürüzlülüğü üzerinde etkisi olmadığı görülebilmektedir. İlerleme miktarı büyüdükçe yüzey pürüzlülüğü ya az miktarda artabilmektedir veya etkilenmemektedir. Artım miktarı değeri büyüdükçe yüzey pürüzlülüğü de artmaktadır. Form takımı çapının büyümesi ise yüzey pürüzlülüğünü azaltmaktadır.

Genel olarak sıkma basıncının artmasıyla et kalınlığının azaldığı görülebilmektedir. İlerleme miktarı büyüdükçe et kalınlığı ya az miktarda artabilmektedir veya etkilenmemektedir. Artım miktarı değeri büyüdükçe et kalınlığı incelmektedir. Form takımı çapı kritik bir değere kadar büyüdükçe et kalınlığı artmakta, kritik değerden sonra ise et kalınlığı azalmaktadır. S/N analizi ve varyans analizi ile deney parametrelerinin her bir bağımlı değişken üzerindeki etkileri belirlenmiştir. Bunun yanı sıra, deney parametrelerinin her üç bağımlı değişken üzerinde birlikte etkisi incelenerek gri ilişkisel analiz yapılmıştır. Böylece her üç bağımlı değişken (şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığı) için birlikte en iyileyen faktör seviyeleri belirlenmiştir. Şekillendirme esnasında oluşan kuvvetlerin üretilen parçaların kullanılabilirliğine etkisi yoktur. Et kalınlığı ve yüzey pürüzlülüğü üretilen parçaların kullanılabilirliğini belirlediği için sadece bu iki bağımsız değişkeni en iyileyen faktör seviyeleri de belirlenmiştir.

Şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden deney parametre seviyeleri deney serilerine göre Tablo 4.82, Tablo 4.83, Tablo 4.84, Tablo 4.85, Tablo 4.86, Tablo 4.87, Tablo 4.88, Tablo 4.89'da verilmiştir. Tablo 4.90'da ise bulunan optimum değerler özet tablo olarak verilmiştir. Şekillendirme kuvveti hariç tutularak, sadece yüzey pürüzlülüğü ve et kalınlığı dikkate alınarak yapılan gri ilişki analizi sonuç tablosu Tablo 4.91'de verilmiştir.
]	Deney Par	ametrele	ri	Dene	ey Sonuç	ları	Nori	nalizasy	yon	Gri İli	şki Kats	sayısı		
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Fz (N)	Ra	Minimum Et Kalınlığı (mm)	Maksimum Fz (N)	Ra	Minimum Et Kalınlığı (mm)	Maksimum Fz (N)	Ra	Minimum Et Kalınlığı (mm)	Gri İlişki Derecesi	Sıra
1	2	500	0,25	5	1295,55	2,445	0,79	1,000	0,805	0,571	1,000	0,719	0,538	0,753	2
2	2	500	0,5	10	2005,75	4,924	0,8	0,025	0,544	0,714	0,339	0,523	0,636	0,499	14
3	2	500	0,75	15	1953,13	0,702	0,81	0,097	0,988	0,857	0,356	0,977	0,778	0,704	4
4	2	1000	0,25	5	1405,69	5,137	0,75	0,849	0,522	0,000	0,768	0,511	0,333	0,537	12
5	2	1000	0,5	10	2021,44	6,472	0,8	0,004	0,381	0,714	0,334	0,447	0,636	0,472	15
6	2	1000	0,75	15	2015,89	0,699	0,79	0,011	0,988	0,571	0,336	0,977	0,538	0,617	8
7	2	1500	0,25	10	1532,18	5,836	0,79	0,675	0,448	0,571	0,606	0,475	0,538	0,540	11
8	2	1500	0,5	15	1917,51	0,643	0,79	0,146	0,994	0,571	0,369	0,989	0,538	0,632	7
9	2	1500	0,75	5	1645,91	10,097	0,77	0,519	0,000	0,286	0,510	0,333	0,412	0,418	17
10	9	500	0,25	15	1734,81	0,617	0,82	0,397	0,997	1,000	0,453	0,994	1,000	0,816	1
11	9	500	0,5	5	1534,47	3,032	0,78	0,672	0,743	0,429	0,604	0,660	0,467	0,577	10
12	9	500	0,75	10	2024,06	4,988	0,76	0,000	0,537	0,143	0,333	0,519	0,368	0,407	18
13	9	1000	0,25	10	1512,57	1,114	0,78	0,702	0,945	0,429	0,627	0,900	0,467	0,665	5
14	9	1000	0,5	15	1931,56	0,588	0,79	0,127	1,000	0,571	0,364	1,000	0,538	0,634	6
15	9	1000	0,75	5	1529,56	5,233	0,77	0,679	0,512	0,286	0,609	0,506	0,412	0,509	13
16	9	1500	0,25	15	1723,37	0,803	0,81	0,413	0,977	0,857	0,460	0,957	0,778	0,731	3
17	9	1500	0,5	5	1443,93	3,582	0,78	0,796	0,685	0,429	0,711	0,614	0,467	0,597	9
18	9	1500	0,75	10	2043,01	4,658	0,77	-0,026	0,572	0,286	0,328	0,539	0,412	0,426	16

Tablo 4.82. DKP 37 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

]	Deney Par	ametrelei	ri	Deney	Sonuçla	arı	Norma	lizasyo	n	Gri İlişk	i Katsa	yısı	Cri	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	İlişki Derecesi	Sıra
1	2	500	0,25	5	1730,56	3,278	0,54	0,565	0,512	0,250	0,535	0,506	0,400	0,480	16
2	2	500	0,5	10	1663,89	0,889	0,6	0,685	0,912	1,000	0,614	0,850	1,000	0,821	1
3	2	500	0,75	15	1988,11	1,28	0,56	0,099	0,847	0,500	0,357	0,765	0,500	0,541	14
4	2	1000	0,25	5	1596,56	3,566	0,55	0,807	0,464	0,375	0,722	0,483	0,444	0,550	12
5	2	1000	0,5	10	1776,32	0,922	0,58	0,482	0,906	0,750	0,491	0,842	0,667	0,667	5
6	2	1000	0,75	15	2042,69	1,225	0,57	0,000	0,856	0,625	0,333	0,776	0,571	0,560	10
7	2	1500	0,25	10	1584,14	0,363	0,55	0,830	1,000	0,375	0,746	1,000	0,444	0,730	2
8	2	1500	0,5	15	1942,68	1,304	0,56	0,181	0,843	0,500	0,379	0,760	0,500	0,547	13
9	2	1500	0,75	5	1641,01	6,338	0,55	0,727	0,000	0,375	0,647	0,333	0,444	0,475	17
10	9	500	0,25	15	1750,5	1,118	0,55	0,529	0,874	0,375	0,515	0,798	0,444	0,586	8
11	9	500	0,5	5	1490,02	5,499	0,52	1,000	0,140	0,000	1,000	0,368	0,333	0,567	9
12	9	500	0,75	10	1707,03	0,751	0,55	0,607	0,935	0,375	0,560	0,885	0,444	0,630	6
13	9	1000	0,25	10	1645,59	0,755	0,57	0,719	0,934	0,625	0,640	0,884	0,571	0,698	3
14	9	1000	0,5	15	1935,49	1,161	0,56	0,194	0,866	0,500	0,383	0,789	0,500	0,557	11
15	9	1000	0,75	5	1534,79	4,651	0,52	0,919	0,282	0,000	0,861	0,411	0,333	0,535	15
16	9	1500	0,25	15	1757,36	0,929	0,58	0,516	0,905	0,750	0,508	0,841	0,667	0,672	4
17	9	1500	0,5	5	1686,11	4,45	0,54	0,645	0,316	0,250	0,585	0,422	0,400	0,469	18
18	9	1500	0,75	10	1770,11	0,832	0,56	0,493	0,922	0,500	0,497	0,864	0,500	0,620	7

Tablo 4.83. DKP 37 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

	J	Deney Pai	ametrelei	ri	Deney	Sonuçla	rı	Norma	lizasyo	n	Gri İlişk	i Katsa	y181	Gri	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	İlişki Derecesi	Sıra
1	2	500	0,25	5	1372,69	0,808	0,79	0,997	0,970	0,667	0,994	0,943	0,600	0,846	2
2	2	500	0,5	10	1979,61	1,049	0,78	0,540	0,951	0,333	0,521	0,910	0,429	0,620	11
3	2	500	0,75	15	2638,5	0,803	0,78	0,043	0,970	0,333	0,343	0,944	0,429	0,572	15
4	2	1000	0,25	5	1368,76	0,797	0,78	1,000	0,971	0,333	1,000	0,944	0,429	0,791	5
5	2	1000	0,5	10	2002,81	0,812	0,77	0,522	0,969	0,000	0,511	0,942	0,333	0,596	13
6	2	1000	0,75	15	2696,02	0,799	0,78	0,000	0,970	0,333	0,333	0,944	0,429	0,569	16
7	2	1500	0,25	10	1731,87	0,622	0,8	0,726	0,984	1,000	0,646	0,970	1,000	0,872	1
8	2	1500	0,5	15	2593,39	0,794	0,8	0,077	0,971	1,000	0,351	0,945	1,000	0,765	7
9	2	1500	0,75	5	1424,32	5,796	0,77	0,958	0,578	0,000	0,923	0,542	0,333	0,599	12
10	9	500	0,25	15	2175,38	0,423	0,79	0,392	1,000	0,667	0,451	1,000	0,600	0,684	10
11	9	500	0,5	5	1416,81	1,287	0,79	0,964	0,932	0,667	0,932	0,880	0,600	0,804	4
12	9	500	0,75	10	1992,68	1,668	0,77	0,530	0,902	0,000	0,515	0,836	0,333	0,562	17
13	9	1000	0,25	10	1675	0,739	0,79	0,769	0,975	0,667	0,684	0,953	0,600	0,746	9
14	9	1000	0,5	15	2471,16	0,549	0,8	0,169	0,990	1,000	0,376	0,981	1,000	0,785	6
15	9	1000	0,75	5	1799,2	13,143	0,78	0,676	0,000	0,333	0,607	0,333	0,429	0,456	18
16	9	1500	0,25	15	2159,69	0,703	0,8	0,404	0,978	1,000	0,456	0,958	1,000	0,805	3
17	9	1500	0,5	5	1357,98	1,7	0,78	1,008	0,900	0,333	1,017	0,833	0,429	0,759	8
18	9	1500	0,75	10	1999,87	1,589	0,78	0,525	0,908	0,333	0,513	0,845	0,429	0,595	14

Tablo 4.84. DKP 37 sacının 40° kare piramit şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

]	Deney Par	ametrelen	i	Deney	Sonuçla	ari	Norma	lizasyo	n	Gri İlişk	i Katsa	yısı	Cri	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	İlişki Derecesi	Sıra
1	2	500	0,25	5	1316,8	1,237	0,52	1,000	0,764	0,533	1,000	0,680	0,517	0,732	3
2	2	500	0,5	10	1816,19	1,191	0,57	0,308	0,782	0,867	0,420	0,696	0,789	0,635	7
3	2	500	0,75	15	1985,16	1,025	0,52	0,074	0,845	0,533	0,351	0,764	0,517	0,544	12
4	2	1000	0,25	5	1345,89	3,091	0,52	0,960	0,056	0,533	0,925	0,346	0,517	0,596	8
5	2	1000	0,5	10	1707,03	0,969	0,57	0,459	0,867	0,867	0,481	0,789	0,789	0,686	5
6	2	1000	0,75	15	2038,76	1,132	0,52	0,000	0,804	0,533	0,333	0,719	0,517	0,523	14
7	2	1500	0,25	10	1650,16	0,941	0,59	0,538	0,877	1,000	0,520	0,803	1,000	0,774	2
8	2	1500	0,5	15	1946,27	1,067	0,58	0,128	0,829	0,933	0,364	0,745	0,882	0,664	6
9	2	1500	0,75	5	1532,18	3,237	0,49	0,702	0,000	0,333	0,626	0,333	0,429	0,463	18
10	9	500	0,25	15	1859,99	1,168	0,44	0,248	0,791	0,000	0,399	0,705	0,333	0,479	17
11	9	500	0,5	5	1435,11	2,224	0,48	0,836	0,387	0,267	0,753	0,449	0,405	0,536	13
12	9	500	0,75	10	1809,33	1,237	0,53	0,318	0,764	0,600	0,423	0,680	0,556	0,553	11
13	9	1000	0,25	10	1570,74	0,62	0,53	0,648	1,000	0,600	0,587	1,000	0,556	0,714	4
14	9	1000	0,5	15	1954,77	1,26	0,52	0,116	0,755	0,533	0,361	0,672	0,517	0,517	15
15	9	1000	0,75	5	1484,46	2,947	0,5	0,768	0,111	0,400	0,683	0,360	0,455	0,499	16
16	9	1500	0,25	15	1838,42	1,105	0,53	0,277	0,815	0,600	0,409	0,730	0,556	0,565	9
17	9	1500	0,5	5	1490,34	2,342	0,53	0,760	0,342	0,600	0,675	0,432	0,556	0,554	10
18	9	1500	0,75	10	1753,44	0,819	0,6	0,395	0,924	1,067	0,453	0,868	1,154	0,825	1

Tablo 4.85. DKP 37 sacının 60° kare piramit şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

		Deney Par	ametreler	i	Deney	Sonuçla	arı	Norma	alizasyo	n	Gri İlişk	i Katsa	y151	Cri	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	İlişki Derecesi	Sıra
1	2	500	0,25	5	1889,08	0,743	0,8	1,000	0,925	0,600	1,000	0,869	0,556	0,808	3
2	2	500	0,5	10	3132,34	0,792	0,79	0,205	0,908	0,400	0,386	0,845	0,455	0,562	12
3	2	500	0,75	15	3185,61	0,632	0,81	0,170	0,961	0,800	0,376	0,928	0,714	0,673	6
4	2	1000	0,25	5	1944,96	0,606	0,8	0,964	0,970	0,600	0,933	0,944	0,556	0,811	2
5	2	1000	0,5	10	3451,98	0,572	0,77	0,000	0,981	0,000	0,333	0,964	0,333	0,544	14
6	2	1000	0,75	15	3264,05	0,639	0,81	0,120	0,959	0,800	0,362	0,924	0,714	0,667	7
7	2	1500	0,25	10	2512,01	0,516	0,82	0,601	1,000	1,000	0,556	1,000	1,000	0,852	1
8	2	1500	0,5	15	3098,67	0,535	0,82	0,226	0,994	1,000	0,392	0,988	1,000	0,793	4
9	2	1500	0,75	5	2446,32	3,125	0,77	0,643	0,134	0,000	0,584	0,366	0,333	0,428	17
10	9	500	0,25	15	2634,9	0,642	0,79	0,523	0,958	0,400	0,512	0,923	0,455	0,630	10
11	9	500	0,5	5	2103,15	1,349	0,79	0,863	0,723	0,400	0,785	0,644	0,455	0,628	11
12	9	500	0,75	10	2849,63	1,372	0,78	0,385	0,716	0,200	0,449	0,638	0,385	0,490	15
13	9	1000	0,25	10	2295,98	0,714	0,78	0,740	0,934	0,200	0,658	0,884	0,385	0,642	9
14	9	1000	0,5	15	2984,94	0,607	0,81	0,299	0,970	0,800	0,416	0,943	0,714	0,691	5
15	9	1000	0,75	5	2216,56	3,527	0,77	0,790	0,000	0,000	0,705	0,333	0,333	0,457	16
16	9	1500	0,25	15	2628,37	0,747	0,8	0,527	0,923	0,600	0,514	0,867	0,556	0,645	8
17	9	1500	0,5	5	2107,73	2,636	0,79	0,860	0,296	0,400	0,781	0,415	0,455	0,550	13
18	9	1500	0,75	10	3180,38	1,538	0,67	0,174	0,661	-2,000	0,377	0,596	0,143	0,372	18

Tablo 4.86. DP 600 sacının 40° eksenel simetrik şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

]	Deney Par	ametreler	i	Deney	Sonuçla	rı	Norma	alizasyo	n	Gri İlişk	i Katsa	yısı	_	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Gri İlişki Derecesi	Sıra
1	2	500	0,25	5	1911,63	0,949	0,6	1,000	0,810	0,727	1,000	0,725	0,647	0,791	1
2	2	500	0,5	10	2541,1	0,8	0,6	0,482	0,868	0,727	0,491	0,791	0,647	0,643	5
3	2	500	0,75	15	3100,96	0,462	0,61	0,020	1,000	0,818	0,338	1,000	0,733	0,690	4
4	2	1000	0,25	5	1926,66	1,415	0,58	0,988	0,628	0,545	0,976	0,573	0,524	0,691	3
5	2	1000	0,5	10	2546,98	0,697	0,59	0,477	0,908	0,636	0,489	0,845	0,579	0,638	6
6	2	1000	0,75	15	3125,8	0,573	0,6	0,000	0,957	0,727	0,333	0,920	0,647	0,634	7
7	2	1500	0,25	10	2378,34	1,011	0,59	0,616	0,786	0,636	0,565	0,700	0,579	0,615	8
8	2	1500	0,5	15	2961,08	0,732	0,63	0,136	0,895	1,000	0,366	0,826	1,000	0,731	2
9	2	1500	0,75	5	2225,38	3,024	0,57	0,742	0,000	0,455	0,659	0,333	0,478	0,490	18
10	9	500	0,25	15	2798,32	0,829	0,53	0,270	0,857	0,091	0,406	0,777	0,355	0,513	15
11	9	500	0,5	5	2077	1,74	0,54	0,864	0,501	0,182	0,786	0,501	0,379	0,555	13
12	9	500	0,75	10	2636,54	0,814	0,57	0,403	0,863	0,455	0,456	0,784	0,478	0,573	10
13	9	1000	0,25	10	2315,26	0,896	0,54	0,668	0,831	0,182	0,601	0,747	0,379	0,576	9
14	9	1000	0,5	15	3017,29	0,738	0,58	0,089	0,892	0,545	0,354	0,823	0,524	0,567	11
15	9	1000	0,75	5	2191,07	2,303	0,54	0,770	0,281	0,182	0,685	0,410	0,379	0,491	17
16	9	1500	0,25	15	2729,36	0,885	0,52	0,327	0,835	0,000	0,426	0,752	0,333	0,504	16
17	9	1500	0,5	5	2128,64	1,519	0,54	0,821	0,587	0,182	0,737	0,548	0,379	0,555	14
18	9	1500	0,75	10	2652,22	0,858	0,57	0,390	0,845	0,455	0,450	0,764	0,478	0,564	12

Tablo 4.87. DP 600 sacının 60° eksenel simetrik şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

]	Deney Par	ametreler	i	Deney	Sonuçla	ırı	Norma	alizasyo	n	Gri İlişk	i Katsa	yısı	_	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Gri İlişki Derecesi	Sıra
1	2	500	0,25	5	2016,87	0,949	0,71	1,000	0,843	0,000	1,000	0,761	0,333	0,698	6
2	2	500	0,5	10	3199,99	0,696	0,78	0,417	0,918	0,875	0,462	0,858	0,800	0,707	5
3	2	500	0,75	15	4044,52	0,644	0,72	0,000	0,933	0,125	0,333	0,882	0,364	0,526	16
4	2	1000	0,25	5	2069,49	1,233	0,78	0,974	0,760	0,875	0,951	0,676	0,800	0,809	1
5	2	1000	0,5	10	3107,82	0,703	0,76	0,462	0,915	0,625	0,482	0,855	0,571	0,636	7
6	2	1000	0,75	15	4044,85	0,605	0,71	0,000	0,944	0,000	0,333	0,900	0,333	0,522	17
7	2	1500	0,25	10	2802,57	0,725	0,78	0,613	0,909	0,875	0,563	0,846	0,800	0,736	4
8	2	1500	0,5	15	3995,49	0,458	0,76	0,024	0,987	0,625	0,339	0,975	0,571	0,629	9
9	2	1500	0,75	5	2446,65	3,701	0,73	0,788	0,036	0,250	0,702	0,341	0,400	0,481	18
10	9	500	0,25	15	2784,26	0,825	0,79	0,622	0,880	1,000	0,569	0,806	1,000	0,792	3
11	9	500	0,5	5	2261,99	2,377	0,75	0,879	0,424	0,500	0,805	0,465	0,500	0,590	12
12	9	500	0,75	10	3113,05	1,565	0,77	0,459	0,662	0,750	0,481	0,597	0,667	0,581	13
13	9	1000	0,25	10	2512,99	0,557	0,78	0,755	0,958	0,875	0,671	0,923	0,800	0,798	2
14	9	1000	0,5	15	4008,57	0,415	0,75	0,018	1,000	0,500	0,337	1,000	0,500	0,612	11
15	9	1000	0,75	5	2450,9	3,822	0,76	0,786	0,000	0,625	0,700	0,333	0,571	0,535	15
16	9	1500	0,25	15	3450,34	0,794	0,77	0,293	0,889	0,750	0,414	0,818	0,667	0,633	8
17	9	1500	0,5	5	2277,68	2,009	0,76	0,871	0,532	0,625	0,795	0,517	0,571	0,628	10
18	9	1500	0,75	10	3205,22	1,503	0,76	0,414	0,681	0,625	0,460	0,610	0,571	0,547	14

Tablo 4.88. DP 600 sacının 40° kare piramit şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

]	Deney Par	ametreler	i	Deney	Sonuçla	ırı	Norma	alizasyo	n	Gri İlişk	i Katsa	yısı	Cri	
Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	İlişki Derecesi	Sıra
1	2	500	0,25	5	1910,32	0,81	0,58	1,000	0,836	1,000	1,000	0,753	1,000	0,918	1
2	2	500	0,5	10	2700,59	0,875	0,53	0,366	0,804	0,500	0,441	0,718	0,500	0,553	14
3	2	500	0,75	15	3155,87	0,492	0,57	0,000	0,996	0,900	0,333	0,993	0,833	0,720	3
4	2	1000	0,25	5	1951,17	0,841	0,55	0,967	0,821	0,700	0,938	0,736	0,625	0,766	2
5	2	1000	0,5	10	3122,21	0,778	0,57	0,027	0,852	0,900	0,339	0,772	0,833	0,648	5
6	2	1000	0,75	15	3150,97	0,485	0,54	0,004	1,000	0,600	0,334	1,000	0,556	0,630	6
7	2	1500	0,25	10	2476,39	1,171	0,58	0,546	0,654	1,000	0,524	0,591	1,000	0,705	4
8	2	1500	0,5	15	3101,94	0,491	0,53	0,043	0,997	0,500	0,343	0,994	0,500	0,612	7
9	2	1500	0,75	5	2217,54	2,47	0,57	0,753	0,000	0,900	0,670	0,333	0,833	0,612	8
10	9	500	0,25	15	3055,86	0,742	0,52	0,080	0,871	0,400	0,352	0,794	0,455	0,534	15
11	9	500	0,5	5	2128,97	1,697	0,53	0,824	0,389	0,500	0,740	0,450	0,500	0,563	13
12	9	500	0,75	10	2669,22	0,831	0,54	0,391	0,826	0,600	0,451	0,742	0,556	0,583	11
13	9	1000	0,25	10	2290,75	0,9	0,53	0,695	0,791	0,500	0,621	0,705	0,500	0,609	9
14	9	1000	0,5	15	3110,44	0,728	0,5	0,036	0,878	0,200	0,342	0,803	0,385	0,510	17
15	9	1000	0,75	5	2198,91	2,323	0,54	0,768	0,074	0,600	0,683	0,351	0,556	0,530	16
16	9	1500	0,25	15	2947,02	0,75	0,48	0,168	0,866	0,000	0,375	0,789	0,333	0,499	18
17	9	1500	0,5	5	2143,02	1,68	0,54	0,813	0,398	0,600	0,728	0,454	0,556	0,579	12
18	9	1500	0,75	10	2693,4	0,633	0,53	0,371	0,925	0,500	0,443	0,870	0,500	0,604	10

Tablo 4.89. DP 600 sacının 60° kare piramit şekillendirme deneyleri sonucunda yapılan Gri İlişkisel Analiz

			Deney Par	ametreleri		Deney S	onuçlar	1	Gri İlişk	i Katsa	yısı	_	
Deney Kodu	Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Maksimum Şekillendirme Kuvveti (Fz)	Ra	Et Kalınlığı	Gri İlişki Derecesi	Sıra
40D_ES_DKP37	10	9	500	0,25	15	1734,81	0,617	0,820	0,453	0,994	1,000	0,816	1
60D_ES_DKP37	2	2	500	0,5	10	1663,89	0,889	0,600	0,614	0,850	1,000	0,821	1
40D_PR_DKP37	7	2	1500	0,25	10	1731,87	0,622	0,800	0,646	0,970	1,000	0,872	1
60D_PR_DKP37	18	9	1500	0,75	10	1753,44	0,819	0,600	0,453	0,868	1,154	0,825	1
40D_ES_DP600	7	2	1500	0,25	10	2512,01	0,516	0,820	0,556	1,000	1,000	0,852	1
60D_ES_DP600	1	2	500	0,25	5	1911,63	0,949	0,600	1,000	0,725	0,647	0,791	1
40D_PR_DP600	4	2	1000	0,25	5	2069,49	1,233	0,780	0,951	0,676	0,800	0,809	1
60D_PR_DP600	1	2	500	0,25	5	1910,32	0,810	0,580	1,000	0,753	1,000	0,918	1

Tablo 4.90. Şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden deney parametre seviyeleri

Tablo 4.91. Sadece yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden deney parametre seviyeleri

			Deney	Parametrele	eri	Deney	Sonuçları	Gri İlişl	ki Katsayısı	Cri İlişli	
Deney Kodu	Deney No	Basınç	İlerleme Hızı	Artım Miktarı	Form Takımı Çapı	Ra	Et Kalınlığı	Ra	Et Kalınlığı	Derecesi	Sıra
40D_ES_DKP37	10	9	500	0,25	15	0,617	0,820	0,994	1,000	0,997	1
60D_ES_DKP37	2	2	500	0,5	10	0,889	0,600	0,850	1,000	0,925	1
40D_PR_DKP37	14	9	1000	0,5	15	0,549	0,800	0,981	1,000	0,990	1
60D_PR_DKP37	18	9	1500	0,75	10	0,819	0,600	0,868	1,154	1,011	1
40D_ES_DP600	7	2	1500	0,25	10	0,516	0,820	1,000	1,000	1,000	1
60D_ES_DP600	8	2	1500	0,5	15	0,732	0,630	0,826	1,000	0,913	1
40D_PR_DP600	10	9	500	0,25	15	0,825	0,790	0,806	1,000	0,903	1
60D_PR_DP600	3	2	500	0,75	15	0,492	0,570	0,993	0,833	0,913	1

Tablo 4.90'da her üç bağımlı değişkene göre (şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığı) birlikte optimize eden gri ilişki analizi genel sonuçları verilmiştir. DKP 37 sacında eksenel simetrik formdaki parçalar şekillendirilirken ilerleme hızı olarak 500 mm/dak, kare piramit parçalar şekillendirilirken ise 1500 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise artım miktarı olarak 0,25 mm, 60° ise 0,5 mm tercih edilmelidir. Ayrıca, DKP 37 sacında 10 mm çaplı form takımı kullanılmalıdır. DP600 sacında 2 bar sıkma basıncı kullanılmalıdır. Şekillendirme açısı 40° ise 500 mm/dak tercih edilmelidir. Form takımı çapı olarak 5 mm tercih edilmelidir. Özetle, her üç bağımlı değişkeni birlikte optimize etmek için 2 bar sıkma basıncının tercih edilmesinin uygun olduğu görülmektedir. Eksenel simetrik geometride 500 mm/dak ilerleme hızının tercih edilmesinin daha optimum sonuç verdiği anlaşılmaktadır.

Yukarıda bahsedilen analizler şekillendirme kuvveti de dikkate alınarak yapılmıştır. Fakat, şekillendirme kuvvetinin üretim kalitesi ile ilgisi yoktur. Üretim kalitesini et kalınlığı ve yüzey pürüzlülüğü belirlemektedir. Çalışma kapsamında şekillendirme kuvveti dikkate alınmadan sadece üretim kalitesi (yüzey pürüzlülüğü ve et kalınlığı) için gri ilişki analizler de yapılmıştır. Bu analizler sonucunda elde edilen optimum seviyelerin özeti Tablo 4.91'de verilmiştir. Bu analize göre DKP 37 sacında 9 bar sıkma basıncı daha iyi sonuçlar vermektedir. Eksenel simetrik koni formundaki parçalar şekillendirilirken ilerleme hızı olarak 500 mm/dak, kare piramit formundaki parçalar şekillendirilirken ise 1000 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise form takımı çapı olarak 15 mm alınmalı. Şekillendirme açısı 60° ise 10 mm'lik form takımı kullanılmalıdır. DP600 sacının şekillendirilmesinde 2 bar sıkma basıncı daha iyi sonuçlar vermektedir. Eksenel simetrik koni parça şekillendirilecekse ilerleme hızı olarak 1500 mm/dak, kare piramit parça şekillendirilecekse 500 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise 0,25 mm artım miktarı, 60° ise 0,5 mm artım miktarı kullanılmalıdır. DP600 sacında çapı 15 mm olan form takımı kullanılmalıdır. Özet olarak şekillendirme kuvvetinin önemli olmadığı durumda, 40° geometride 0,25 mm artım miktarı ve 15 mm form takımı çapı optimum sonucu vermektedir. DP 600 sacında eksenel simetrik geometride büyük ilerleme hızlarının tercihi daha iyi sonuç verirken piramit geometride daha küçük ilerleme hızı kullanımı daha iyi sonuç vermektedir.

4.3. Sonlu Elemanlar Analizi Sonuçları İle Deneysel Sonuçların Karşılaştırılması

Geliştirilen sonlu elemanlar modelinin doğruluğunu belirlemek için deneysel sonuçlarla sonlu elemanlar analizi sonuçları kıyaslanmıştır. Hem et kalınlığı değişimleri hem de şekillendirme kuvvetleri (Fz) kıyaslanarak sonuçlar incelenmiştir.

Sonlu elemanlar analizi sonucunda et kalınlığı dağılımını belirlemek için önce sacın tam kesit alınmış, daha sonra da bir "yol (path)" tanımlanmıştır. "Yol" parça merkezinden dışarıya doğru olacak şekilde oluşturulmuştur. Bu tanımlama Şekil 4.65'te gösterilmiştir. Daha sonra bu yol üzerinde bulunan elemanların et kalınlıkları çıkartılmıştır.

Şekil 4.65. Et kalınlığı dağılımının ölçümü için yol tanımlanması

Daha sonra deneysel çalışmalardan elde edilen et kalınlıkları ile sonlu elemanlar analizinden elde edilen et kalınlıklarının karşılaştırma grafikleri oluşturulmuştur. Elde edilen kalınlık dağılımları Şekil 4.66'da verilmiştir. Bu şekil dört ana bölüme ayrılmıştır. Şekil 4.66-A'da DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde 5 numaralı deney parametrelerine göre yapılan analizin (TPIF_RL_40D_ES_DKP_5 kodlu analizin) deney sonuçlarıyla karşılaştırması verilmiştir. Şekil 4.66-B'de DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde 7 numaralı deney parametrelerine göre yapılan analizin (TPIF_RL_40D_ES_DKP_7 kodlu analizin) deney sonuçlarıyla karşılaştırması verilmiştir. Şekil 4.66-C'de ise DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde 8 numaralı deney parametrelerine göre yapılan analizin (TPIF_RL_40D_ES_DKP_87 kodlu analizin) deney sonuçlarıyla karşılaştırması verilmiştir. Şekil 4.66-D'de ise DKP 37 sacının 40° eksenel simetrik şekillendirilmesinde 16 numaralı deney parametrelerine göre yapılan analizin (TPIF_RL_40D_ES_DKP_16 kodlu analizin) deney sonuçlarıyla karşılaştırması verilmiştir. Dört grafiğin tümünde de deney sonuçları ile sonlu elemanlar analizi sonuçları yakın çıkmıştır. Bu da geliştirilen modelin doğru olduğunu göstermektedir. Şekil 4.67'de DKP37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen et kalınlığı dağılımlarına örnekler verilmiştir. Grafiklerden, deneysel sonuçlar ile sonlu elemanlar ile sonlu elemanlar uyumlu olduğu görülmektedir.

Şekil 4.66 ve Şekil 4.67'ye göre sonlu elemanlar analizi sonuçları deneysel sonuçlara göre az oluşmuştur. Bu durum model oluşturulurken yapılan tanımlamalardan kaynaklanmaktadır. Sonlu elemanlar analizi sonuçlarının deneysel sonuçlara yakın çıkmış olması sonlu elemanlar modelinin kabul edilebilir olduğunu göstermektedir. Şekil 4.68, Şekil 4.69, Şekil 4.70 ve Şekil 4.71'de DKP37 sacının 60° eksenel simetrik şekillendirilmesinde belirlenen gerilmelerden örnekler verilmiştir.

Şekil 4.66. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlenen et kalınlığı dağılımları. A: 5 numaralı deneyin karşılaştırması. B: 7 numaralı deneyin karşılaştırması. C: 8 numaralı deneyin karşılaştırması. D: 16 numaralı deneyin karşılaştırması.

Şekil 4.67. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlenen et kalınlığı dağılımları. A: 7 numaralı deneyin karşılaştırması. B: 14 numaralı deneyin karşılaştırması. C: 16 numaralı deneyin karşılaştırması. D: 18 numaralı deneyin karşılaştırması.

Şekil 4.68. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlenen gerilmeler. A: 5 numaralı deney parametrelerine göre yapılan analiz. B: 6 numaralı deney parametrelerine göre yapılan analiz.

Şekil 4.69. DKP37 sacının 40° eksenel simetrik şekillendirme analizinde belirlenen gerilmeler. A: 15 numaralı deney parametrelerine göre yapılan analiz. B: 16 numaralı deney parametrelerine göre yapılan analiz.

Şekil 4.70. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlenen gerilmeler. A: 4 numaralı deney parametrelerine göre yapılan analiz. B: 7 numaralı deney parametrelerine göre yapılan analiz.

Şekil 4.71. DKP37 sacının 60° eksenel simetrik şekillendirme analizinde belirlenen gerilmeler. A: 11 numaralı deney parametrelerine göre yapılan analiz. B: 12 numaralı deney parametrelerine göre yapılan analiz.

4.4. Geri Esneme Analizi

Geri esneme ölçümleri GOM ATOS CORE optik 3D tarayıcı kullanılarak yapılmıştır. 3D tarayıcıda oluşturulan parça geometrileri GOM INSPECT programı kullanılarak gerçek geometri ile kıyaslanmıştır. Kıyaslama sonucunda sacların geri esneme miktarları çıkartılmıştır. Şekil 4.72'de DKP37 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Maksimum geri esnemenin parçanın flanş bölgesinde oluştuğu görülebilmektedir. Flanş bölgesi şekillendirme yüzeyinin dışında kaldığından bu çalışmada flanşta oluşan geometrik sapmalar dikkate alınmamıştır. Parçanın üst tarafında 0,02 mm geri esneme olurken parça tabanındaki radyüs bölgesinde yaklaşık 0,75 mm geri esneme oluştuğu görülebilmektedir.

Şekil 4.72. DKP37 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü

Şekil 4.73'de DKP37 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir.

Parçanın üst tarafında 0,33 mm geri esneme oluşurken parça tabanındaki radyüs bölgesinde yaklaşık 2 mm geri esneme oluştuğu görülebilmektedir.

Şekil 4.73. DKP37 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.74'de DKP37 sacının 40° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçada 0,04 mm ile 2,5 mm arasında geri esneme oluştuğu görülebilmektedir.

Şekil 4.75'de DKP37 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçanın şekillendirme bölgesinde 0,1 mm ila 0,3 mm arasında geri esneme oluşmuştur.

Şekil 4.74. DKP37 sacının 40° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.75. DKP37 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.76'da DKP37 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçanın üst tarafında 0,22 mm geri esneme oluşurken parça tabanında yaklaşık 2 mm geri esneme oluştuğu görülebilmektedir.

Şekil 4.77'de DKP37 sacının 40° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçada 0,1 mm ile 1,9 mm arasında geri esneme oluştuğu görülebilmektedir.

Şekil 4.78'de DKP37 sacının 60° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre form takımının temas ettiği bölgede en fazla 0,75 mm geri esneme oluşmuştur.

Şekil 4.76. DKP37 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.77. DKP37 sacının 40° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir.

Şekil 4.78. DKP37 sacının 60° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.79'da DKP37 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parça üzerinde 0,5 mm ile 3 mm civarında geri esneme oluşmuştur.

Şekil 4.80'de DKP37 sacının 60° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekillendirilen bölge göz önüne alındığında flanşın başladığı radyüs bölgesinde maksimum geri esneme oluşmuştur. Parçanın üst tarafında yaklaşık 0,5 mm geri esneme oluşurken parça tabanında ise yaklaşık 3 mm geri esneme oluşmuştur.

Şekil 4.81'de DKP37 sacının 60° kare piramit geometride şekillendirme işlemlerindeki 13 numaralı deneyden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın yan duvarlarının orta bölgesinde dışa doğru daha fazla esneme oluşmuştur. Bu bölgedeki geri esneme miktarı 3,75 mm civarındadır.

Şekil 4.79. DKP37 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.80. DKP37 sacının 60° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.81. DKP37 sacının 60° kare piramit geometride şekillendirme işlemlerindeki 13 numaralı deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.82'de DKP37 sacının 60° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Anılan şekle göre parçanın yan duvarlarının orta bölgesinde dışa doğru daha fazla esneme oluşmuştur. Bu bölgedeki geri esneme miktarı 4 mm civarındadır.

Şekil 4.83'de DP600 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre form takımının temas ettiği duvar bölgesinde oluşan en büyük geri esneme yaklaşık 1,3 mm civarındadır.

Şekil 4.84'de DP600 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Anılan şekle göre form takımının temas ettiği bölgede 0,1 mm ila 0,9 mm arasında geri esneme olmuştur.

Şekil 4.82. DKP37 sacının 60° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.83. DP600 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.84. DP600 sacının 40° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.85'de DP600 sacının 40° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre form takımının temas ettiği duvar bölgesinde tabana doğru gittikçe artacak şekilde geri esneme olmuştur. Şekillendirme bölgesinde 0,2 mm ila 3,5 mm civarında geri esneme oluşmuştur.

Şekil 4.86'da DP600 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Anılan şekle göre parçanın üst tarafındaki radyüs bölgesinde 0,1 mm civarında geri esneme oluşurken, parça tabanındaki radyüs bölgesinde geri esneme miktarı 1,5 mm civarındadır.

Şekil 4.87'de DP600 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın üst tarafındaki radyüs bölgesinde yaklaşık 0,1 mm geri esneme oluşmuştur. Parça tabanındaki radyüs bölgesinde oluşan geri esneme miktarı ise 3,5 mm civarındadır.

Şekil 4.85. DP600 sacının 40° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.86. DP600 sacının 40° eksenel simetrik geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.87. DP600 sacının 60° eksenel simetrik geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.88'de DP600 sacının 60° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçanın üst tarafında yaklaşık 0,1 mm geri esneme oluşmuştur. Parçanın tabanında ise yaklaşık 3,5 mm geri esneme oluşmuştur.

Şekil 4.89'da DP600 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre form takımının temas ettiği bölgede 0,1 mm ila 0,4 mm arasında geri esneme oluşmuştur.

Şekil 4.90'da DP600 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın üst tarafında 0,25 mm geri esneme oluşmuştur. Parça tabanında oluşan esneme miktarı ise yaklaşık 3,3 mm'dir.

Şekil 4.88. DP600 sacının 60° eksenel simetrik geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.89. DP600 sacının 40° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.90. DP600 sacının 40° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.91'de DP600 sacının 40° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Parçada 0,2 mm ila 1,2 mm arasında geri esneme oluşmuştur.

Şekil 4.92'de DP600 sacının 60° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın yan duvarlarının orta bölgesinde dışa doğru daha fazla esneme oluşmuştur. Bu bölgedeki geri esneme miktarı 3 mm civarındadır.

Şekil 4.93'de DP600 sacının 60° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın yan duvarlarının orta bölgesinde dışa doğru daha fazla esneme oluşmuştur. Bu bölgedeki geri esneme miktarı 3,5 mm civarındadır.

Şekil 4.91. DP600 sacının 40° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.92. DP600 sacının 60° kare piramit geometride şekillendirme kuvveti (Fz) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.93. DP600 sacının 60° kare piramit geometride yüzey pürüzlülüğü (Ra) optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

Şekil 4.94'de DP600 sacının 60° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü verilmiştir. Şekle göre parçanın yan duvarlarının orta bölgesinde dışa doğru daha fazla geri esneme oluşmuştur. Bu bölgedeki geri esneme miktarı 3,5 mm civarındadır.

Şekil 4.94. DP600 sacının 60° kare piramit geometride et kalınlığı optimizasyonu deneyinden elde edilen numunenin geri esneme ölçümü.

3D kamera ile ölçülen parçaların şekillendirme bölgelerindeki en büyük geri esneme miktarları Tablo 4.92'de verilmiştir. Bu tablo oluşturulurken parçaların sadece şekillendirme bölgelerindeki geri esneme miktarları dikkate alınmıştır. Parçaların imalat sonrasında sadece şekillendirilen bölgeleri kullanılacağı için flanş bölgelerindeki geri esneme miktarları dikkate alınmamıştır.

Malzeme	Acı	Sekil	Deney (Optimizasyon)	Basınç	İlerleme Hızı	Artım Miktəri	Form Takımı	Geri	Esneme (mm)	Miktarı
Cinsi	лţı	ŞUKII	Tipi	(bar)	(mm/dak)	(mm)	Çapı (mm)	Min,	Maks,	% Maks
DKP37	40°	Eksenel simetrik	Fz	9	1500	0,25	5	0,02	0,75	%0,75
DKP37	40°	Eksenel simetrik	Ra	9	500	0,25	15	0,33	2	%2,00
DKP37	40°	Eksenel simetrik	Et Kalınlığı	2	500	0,5	15	0,04	2,5	%2,50
DKP37	40°	Kare piramit	Fz	9	1500	0,25	5	0,1	0,31	%0,23
DKP37	40°	Kare piramit	Ra	2	500	0,25	15	0,22	2,3	%1,69
DKP37	40°	Kare piramit	Et Kalınlığı	9	1500	0,25	15	0,1	1,9	%1,40
DKP37	60°	Eksenel simetrik	Fz	9	500	0,25	5	0,2	0,75	%0,71
DKP37	60°	Eksenel simetrik	Ra	2	1500	0,25	10	0,5	3	%2,86
DKP37	60°	Eksenel simetrik	Et Kalınlığı	2	1000	0,5	10	0,5	3	%2,86
DKP37	60°	Kare piramit	13 Nolu deney	9	1000	0,25	10	0,02	3,75	%4,01
DKP37	60°	Kare piramit	Et Kalınlığı	2	1500	0,5	10	0,1	4	%4,28
DP600	40°	Eksenel simetrik	Fz	9	500	0,25	5	0,1	1,3	%1,30
DP600	40°	Eksenel simetrik	Ra	2	1000	0,25	15	0,1	0,9	%0,90
DP600	40°	Eksenel simetrik	Et Kalınlığı	2	500	0,25	15	0,2	3,5	%3,50
DP600	60°	Eksenel simetrik	Fz	2	500	0,25	5	0,1	1,5	%1,43
DP600	60°	Eksenel simetrik	Ra	2	500	0,5	15	0,1	3,5	%3,33
DP600	60°	Eksenel simetrik	Et Kalınlığı	2	500	0,5	15	0,1	3,5	%3,33
DP600	40°	Kare piramit	Fz	9	500	0,25	5	0,1	0,4	%0,29
DP600	40°	Kare piramit	Ra	2	1000	0,25	15	0,25	3,3	%2,43
DP600	40°	Kare piramit	Et Kalınlığı	9	1500	0,25	10	0,2	1,2	%0,88
DP600	60°	Kare piramit	Fz	9	500	0,25	5	0,1	3	%3,21
DP600	60°	Kare piramit	Ra	2	500	0,25	15	0,1	3,5	%3,74
DP600	60°	Kare piramit	Et Kalınlığı	2	500	0,75	5	0,1	3,5	%3,74

Tablo 4.92. Geri esneme miktarları

Daha önce verilen grafikler incelendiğinde parçanın üst tarafından aşağıya doğru inildikçe (şekillendirme çapı arttıkça) geri esneme miktarı da artabilmektedir. Genellikle en büyük geri esneme parça tabanında bulunan flanşın hemen üstündeki radyüslü bölgede oluşmaktadır. 40° eksenel simetrik parçalarda flanş bölgesinin ölçüsü 100 mm, 60° eksenel simetrik parçalarda 105 mm, 40° kare piramit parçalarda 136 mm, 60° kare piramit parçalarda ise 93,5 mm'dir. Buna göre hesaplanan geri esneme yüzde oranları tablonun sağ sütununda verilmiştir. Buna göre maksimum geri esneme DKP37 60° kare piramit parçada oluşmuştur. Bu parçada oluşan maksimum geri esneme %4,28'dir.

Tablo 4.92 incelendiğinde şekillendirme kuvvetinin (Fz) optimizasyonu deneylerinde düşük geri esneme miktarları oluştuğu görülebilmektedir. Bu deneylerin parametreleri incelendiğinde form takımı çaplarının 5 mm, sıkma basınçlarının ise 9 bar olduğu görülebilmektedir. Ayrıca, piramit formunda şekillendirilmiş parçaların eksenel simetrik formunda şekillendirilmiş parçalara göre daha fazla geri esnediği görülebilmektedir.

4.5. Deney Süreleri

Çalışma kapsamında yapılan deneylerin süreleri Tablo 4.93'de verilmiştir. Deney süresine etki eden ana parametreler ilerleme hızı veya artım miktarıdır. İlerleme hızının ve artım miktarının büyümesi deney süresini önemli oranda azaltmaktadır. Bu iki parametrenin birlikte artması ise deney süresini en aza indirmektedir. Sıkma basıncının ise takım yolu ile ilgisi olmadığı için deney süresine de herhangi bir etkisi yoktur. Takım çapının ise deney süresine anlamlı bir etkisinin olmadığı görülmektedir. Örneğin, 500 mm/dak ilerleme hızı ve 0,25 mm artım miktarının kullanıldığı 1 ve 10 numaralı deneyler incelendiğinde deney sürelerinin birbirlerine yakın olduğu görülmektedir. Dolayısıyla işleme süresinin en az olması istendiğinde büyük ilerleme hızı ve büyük artım miktarı tercih edilmelidir.

Tablo incelendiğinde kare piramit geometrilerde eksenel simetrik geometriye göre daha uzun işleme süresi oluştuğu görülebilmektedir. Bunun nedeni kare piramit parçalarda daha geniş bir yüzey alanının şekillendiriliyor olmasıdır.
					40D_ES	40D_PR	60D_ES	60D_PR
Deney No	Sıkma Basıncı (bar)	İlerleme Hızı (mm/dak)	Artım Miktarı (mm)	Form Takımı Çapı (mm)	Deney	Deney	Deney	Deney
					Süresi	Süresi	Süresi	Süresi
					(dakika)	(dakika)	(dakika)	(dakika)
1	2	500	0,25	5	72,2	106,8	57,7	79,7
2	2	500	0,5	10	37,4	54,8	30,4	41,9
3	2	500	0,75	15	26,1	38,2	21,5	29,1
4	2	1000	0,25	5	36,2	53,5	29,0	40,0
5	2	1000	0,5	10	18,8	27,5	15,3	21,1
6	2	1000	0,75	15	13,2	19,2	10,9	14,7
7	2	1500	0,25	10	24,7	36,3	20,1	27,5
8	2	1500	0,5	15	12,9	18,7	10,7	14,5
9	2	1500	0,75	5	8,5	12,6	6,8	9,3
10	9	500	0,25	15	75,2	109,7	62,1	84,5
11	9	500	0,5	5	36,6	54,1	29,3	40,7
12	9	500	0,75	10	25,6	37,7	20,8	28,3
13	9	1000	0,25	10	37,0	54,3	30,1	41,2
14	9	1000	0,5	15	19,2	27,9	15,9	21,7
15	9	1000	0,75	5	12,6	18,7	10,1	13,9
16	9	1500	0,25	15	25,2	36,7	20,9	28,3
17	9	1500	0,5	5	12,4	18,2	9,9	13,7
18	9	1500	0,75	10	8,7	12,7	7,1	9,6

Tablo 4.93. Deney süreleri

4.6. Maliyet Hesaplamaları

Bu çalışma kapsamında geliştirilen Kayar Artımlı Şekillendirme Yöntemi için maliyet analizleri yapılmıştır. Çalışma kapsamında DP600 sacından üretilmiş 10 adet 40° kare piramit prototip parça için maliyetler hesaplanmıştır. "İron Kalıp" adlı firma ile görüşülerek fiyat teklifi alınmıştır (İron Kalıp, 2018). Alınan teklife göre maliyet tablosu oluşturulmuştur. Tablo 4.94'de 10 adet parçanın prototip üretim maliyeti verilmiştir.

Yöntem		Sac metal kalıp tasarımı	Sac metal kalıp üretimi	Kalıbın alıştırılması	10 adet prototip ürünün üretilmesi	Toplam
Derin çekme yöntemi ile	Süre (gün):	1	15	2	0,1	18,1
prototip üretimi	Maliyeti (TL):	₿1.500,00	£32.500,00	₫2.000,00	£15,00	£35.015,00
Kayar artımlı sekillendirme	Süre (gün):	1	2	0	2	5
yöntemi ile prototip üretimi	Maliyeti (TL):	±1.500,00	₺ 2.000,00	₺0,00	±1.500,00	₺5.000,00

Tablo 4.94. Sac metal kalıbı ile prototip üretim maliyeti

Derin çekme yöntemi kullanılarak 10 adet prototip parça üretimi 18,1 gün sürerken, maliyet 35000TL'yi bulmaktadır. Geliştirilen bu yöntemle 10 adet prototip parça üretimi 5 gün sürüp, maliyeti 5000TL'dir. Bu da prototip üretiminde, geliştirilen yöntemin hem zaman hem de maliyet avantajı sağladığını göstermektedir.

4.7. Otomotiv Endüstrisine Yönelik Çalışmalar

Tez çalışması kapsamında otomotiv endüstrisinde kullanılan 3 farklı geometri için sac şekillendirme işlemleri gerçekleştirilmiştir. Bu kapsamda otobüs teker üstü sacı, yakıt dolum haznesi iç sacı ve travers sacının imalatı yapılmıştır.

Şekil 4.95'de otobüs teker üstü sacının artımlı şekillendirme üretim çalışmaları gösterilmiştir. Şekil 4.95-A'da sacın sıvanacağı ahşap (sunta) modelin hazırlanması verilmiştir. Şekil 4.95-B'de şekillendirilmiş sac verilmiştir. Şekil 4.95-C'de ise şekillendirme sonrasında kesilerek kullanıma hazırlanmış sac verilmiştir. Parça gerçek boyutlarıyla deneylerin yapıldığı iş bağlama aparatına sığmadığı için 1/10 oranında küçültülerek prototip üretimi gerçekleştirilmiştir. Üretilen parçanın eni 210 mm, boyu 339 mm, yüksekliği ise 9 mm'dir. Çalışmada 1 mm kalınlığındaki DKP 37 sacı kullanılmıştır.

Şekil 4.95. Otobüs teker üstü sacı artımlı şekillendirme üretim çalışmaları. A: Sacın sıvanacağı ahşap (sunta) modelin hazırlanması. B: Şekillendirilmiş sac. C: şekillendirme sonrasında kesilerek kullanıma hazırlanmış sac.

Şekil 4.96'da bir otomobilin yakıt dolum haznesi iç sacının artımlı şekillendirme yöntemi ile üretim çalışmaları verilmiştir. Şekil 4.96-A'da şekillendirme anından bir görüntü verilmiştir. Şekil 4.96-B ve Şekil 4.96-C'de ise şekillendirilmiş saclar verilmiştir. Parça gerçek boyutlarıyla aynı ölçülerde (1/1 oranında) şekillendirilerek prototip üretimi gerçekleştirilmiştir. Çalışmada 1 mm kalınlığındaki DKP 37 sacı kullanılmıştır. Öncelikle sacın sıvanacağı ahşap model işlenmiştir. Daha sonra sac şekillendirilmiştir. Şekillendirilmiştir.

parmak freze ile kesilerek bitmiş ürün elde edilmiştir. Üretilen parçanın eni 191 mm, boyu 315 mm, yüksekliği ise 95 mm'dir.

Şekil 4.96. Bir otomobilin yakıt kapağı iç sacının artımlı şekillendirme yöntemi ile üretim çalışmaları. A: Şekillendirme anı. B: Şekillendirilmiş bir örnek. C: Şekillendirilmiş saclar.

Bir otomobil traversinin artımlı şekillendirme yöntemi ile üretim çalışmaları Şekil 4.97'de verilmiştir. Şekil 4.97-A'da ahşap (sunta) modelin işlenmesi gösterilmiştir. Şekil

4.97-B'de işlemesi tamamlanmış ahşap modelin görüntüsü verilmiştir. Şekil 4.97-C'de bu model kullanılarak şekillendirilmiş sac verilmiştir. Parça, gerçek boyutlara göre 1/1 ölçeğinde üretilmiştir. Üretilen parçanın eni 157 mm, boyu 327 mm, yüksekliği ise 8,5 mm'dir. Malzeme olarak 0,8 mm kalınlığındaki DC04 sacı kullanılmıştır.

Şekil 4.97. Bir otomobil traversinin artımlı şekillendirme yöntemi ile üretim çalışmaları. A: Ahşap (sunta) modelin işlenmesi. B: Hazırlanmış model. C: Şekillendirilmiş sac

BÖLÜM 5. SONUÇ

Önceki çalışmalarda kullanılan, (geleneksel) artımlı şekillendirme yönteminde sac kenarlarından iş bağlama aparatına sabitlenmektedir. Sabitleme işlemi için cıvata veya klempler kullanılmaktadır. Şekillendirme esnasında sacın akışı engellendiği için sacın et kalınlığında büyük değişimler meydana gelmektedir. Bu değişimleri en aza indirebilmek için, bu tezin özgün yönü olarak, sacın akışına izin verecek şekilde bir aparat kullanılarak artımlı şekillendirme yönteminin bir alt dalı olan yeni bir yöntem geliştirilmiştir. Bu yeni yönteme "Kayar Artımlı Şekillendirme Yöntemi" adı verilmiştir.

Bu çalışmada, 1 mm kalınlığında DKP37 sacı ile DP600 sacının kayar artımlı şekillendirme yöntemiyle şekillendirilebilirliği araştırılmıştır.

Tüm deneyler Tablo 3.5'de verilen deney planına göre yapılmıştır. Her bir malzeme için 4 farklı geometri çalışıldığından dolayı, her bir sac cinsi için, 72 deney yapılmıştır (4x18=72). Çalışmada iki farklı sacın şekillendirilebilirliği araştırıldığı için toplam 144 deney yapılmıştır. Deneyler esnasında oluşan şekillendirme kuvvetleri kaydedilmiş olup S/N analizi yapılarak maksimum şekillendirme kuvvetini azaltan optimum parametre seviyeleri belirlenmiştir. Deneyler sonucunda her bir numunenin yüzey pürüzlülüğü ve et kalınlığı dağılımı ölçülmüştür. Daha sonra her bir deney seti için yüzey pürüzlülüğünü en düşük seviyede veren optimum parametre seviyeleri ve et kalınlığını en yüksek seviyede veren optimum parametre seviyeleri belirlenmiştir. Varyans analizi yapılarak deney parametrelerinin sonuçlara etkileri ve birlikte etkileşimleri incelenmiştir. Ayrıca gri ilişkisel analiz yapılarak şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden parametre seviyeleri belirlenmiştir. Son olarak da şekillendirme kuvvetleri dikkate alınmayarak, sadece yüzey pürüzlülüğü ve et kalınlığını birlikte optimize eden parametre seviyeleri belirlenmiştir.

İş bağlama aparatında bulunan sacın sıvanacağı modelin üretimi için çelik malzeme kullanılabileceği gibi daha ucuz olan ahşap vb. malzemelerin de kullanılabileceği belirlenmiştir.

DKP 37 sacının 40° eksenel simetrik şekillendirme deneyleri için yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Basınç ve ilerleme hızının parametre seviyeleri arasında önemli bir fark olmamasıyla birlikte, şekillendirme kuvvetinin optimum parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 5 mm'dir. Varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde etkilidir. İkili etkileşimler incelendiğinde, form takımı çapının artmasıyla et kalınlığının da arttığı görülebilmektedir. Bu etki artım miktarından biraz etkilenmektedir. Buna karşın diğer parametre etkileşimleri şekillendirme kuvveti üzerinde önemli bir etki göstermemiştir.

Anılan deneylerde belirlenen yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Yüzey pürüzlülüğü optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Bununla birlikte ilerlemenin ve form takımı çapının ilk iki seviyesi birbirlerine yakın sonuçlar vermektedir. Yüzey pürüzlülüğü için yapılan varyans analizine göre basınç ve form takımı çapı çok önemli düzeyde etkiliyken artım miktarı ise önemli düzeyde etkilidir. İkili etkileşimler incelendiğinde, form takımı çapının etkisinin basınç ve artım miktarına önemli düzeyde bağlı olduğu görülebilmektedir.

Anılan deneylerde belirlenen et kalınlığı için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Et kalınlığının optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir. Bununla birlikte basıncın ve artım miktarının ilk iki seviyesi arasında önemli bir fark yoktur. Et kalınlığı için yapılan varyans analizine göre form takımı çapının önemli düzeyde etkili olduğu görülmektedir. Deney parametrelerinin et kalınlığı üzerine etkileşimleri incelendiğinde form takımı çapının artmasıyla et kalınlığının arttığı; bu etkinin basınç ve artım miktarından bir miktar etkilendiği görülmektedir. Artım miktarı ve basıncın büyümesi takım çapının olumlu etkisinin tersine etkilenerek et kalınlığını biraz azaltmıştır.

DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde şekillendirme kuvveti için yapılan S/N analizine göre en önemli parametre form takımı çapıdır. Şekillendirme kuvvetinin optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Buna karşın form takımı çapı dışındaki diğer bağımsız değişkenlerin parametre seviyelerinin S/N oranları arasında büyük bir fark yoktur. Şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde etkilidir. Parametre etkileşimleri incelendiğinde form takımı çapının artması ile şekillendirme kuvvetinin de arttığı görülebilmektedir. Form takımı çapının bu etkisi özellikle artım miktarından etkilenmiştir.

DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde yüzey pürüzlülüğü için yapılan S/N analizine göre, yüzey pürüzlülüğünü etkileyen en önemli faktör form takımı çapıdır. Yüzey pürüzlülüğü için optimum parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 10 mm'dir. Bununla birlikte 15 mm form takımı çapının da iyi sonuçlar verdiği söylenebilir. Yapılan varyans analizine göre yüzey pürüzlülüğü üzerinde form takımı çapı çok önemli düzeyde etkilidir. Artım miktarı ise önemli düzeyde etkilidir. Bu durum S/N analizi ile de uyuşmaktadır. İkili etkileşimler incelendiğinde artım miktarı ve basınç değerleri büyüdükçe yüzey pürüzlülüğünün de büyüdüğü görülebilmektedir. Ayrıca, form takımı çapının artması yüzey pürüzlülüğünü azaltmaktadır.

DKP 37 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığı için yapılan S/N analizine göre et kalınlığı için en etkili parametre form takımı çapıdır. Et kalınlığı için optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için ise 10 mm'dir. Fakat ilerleme hızının parametre seviyeleri arasında önemli bir fark görülmemiştir. Dolayısı ile 1000 mm/dak ilerleme hızı yerine 1500 mm/dak ilerleme hızı kullanımının et kalınlığı üzerinde anlamlı bir değişiklik getirmeyeceği anlaşılmaktadır. Ancak bu durum işlem

süresini büyük oranda azaltacaktır. Ayrıca, 15 mm form takımı çapı kullanımının da ortalamanın üzerinde sonuçlar verdiği görülebilmektedir. Yapılan varyans analizine göre et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde etkili değildir. Ancak basınç ve form takımı çapının bir miktar etkili olduğu söylenebilir. Deney parametrelerinin et kalınlığı üzerine etkileşimleri dikkate alındığında basınç değerinin büyümesinin et kalınlığını azalttığı görülebilmektedir.

DKP37 sacının 40° kare piramit formunda şekillendirme çalışmaları sonucunda yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Şekillendirme kuvveti için optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde bütün bağımsız değişkenler (basınç, ilerleme hızı, form takımı çapı ve artım miktarı) çok önemli düzeyde etkilidir. Deney parametrelerinin şekillendirme kuvveti (Fz) üzerine etkileşimleri incelendiğinde basınç ve form takımı çapının şekillendirme kuvveti üzerinde belirleyici etkiye sahip olduğu görülmektedir. Basıncın etkisi diğer parametrelerden etkilenmiştir. Özellikle form takımı çapının büyümesi şekillendirme kuvvetini önemli oranda arttırmaktadır. Form takımı çapının bu etkisi artım miktarından etkilenmiştir.

Anılan deneylerde belirlenen yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre artım miktarıdır. Yüzey pürüzlülüğü için optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Yüzey pürüzlülüğü için yapılan varyans analizine göre yüzey pürüzlülüğü üzerinde hiçbir bağımsız değişken önemli düzeyde etkili değildir. İkili etkileşimlere göre basınç değerinin büyümesi yüzey pürüzlülüğünü artırmaktadır.

Anılan deneylerde belirlenen et kalınlığı için en etkili parametre artım miktarı olmakla birlikte, optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Et kalınlığı için yapılan varyans analizine göre değişkenlerden hiçbiri et kalınlığı üzerinde önemli düzeyde etkili değildir. Bununla birlikte artım miktarının ve form takımı çapının et kalınlığı üzerindeki etkileri diğerlerine göre daha büyüktür. İkili etkileşimlere göre, artım miktarı et kalınlığı üzerinde diğer parametrelere göre daha belirleyicidir. Artım miktarının büyümesi ile et kalınlığı azalmaktadır. Form takımı çapının artması ise et kalınlığını artırmaktadır. Form takımı çapının bu etkisi basınç ve ilerleme hızından etkilenmektedir.

DKP 37 sacının 60° kare piramit şekillendirilmesi deneyleri neticesinde yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Her ne kadar basıncın ve ilerlemenin parametre seviyelerinin S/N oranları arasında kayda değer bir fark olmasa da şekillendirme kuvveti için optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde etkiliyken artım miktarı ise önemli düzeyde etkilidir. Deney parametrelerinin şekillendirme kuvveti (Fz) üzerine ikili etkileşimleri incelendiğinde, form takımı çapının şekillendirme kuvveti üzerinde belirleyici bir etkisi olduğu görülebilmektedir. Form takımı çapı büyüdükçe şekillendirme kuvveti de önemli oranda büyümektedir. Form takımı çapının bu etkisi artım miktarından etkilenirken, diğer bağımsız değişkenlerin ve etkileşimlerinin şekillendirme kuvveti üzerinde anlamlı bir etkisinin olmadığı görülmektedir.

DKP 37 sacının 60° kare piramit şekillendirilmesinde yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Basıncın parametre seviyeleri arasında önemli bir fark olmamakla birlikte, yüzey pürüzlülüğünün optimum parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 10 mm olduğu söylenebilir. Yüzey pürüzlülüğü için yapılan varyans analizine göre form takımı çapı önemli düzeyde etkilidir. Deney parametrelerinin yüzey pürüzlülüğü üzerine ikili etkileşimleri incelendiğinde form takımı çapının yüzey pürüzlülüğü üzerinde belirleyici bir parametre olduğu görülmektedir. Form takımı çapının büyümesi ile yüzey pürüzlülüğü azalmaktadır. Form takımı çapının diğer parametrelerle etkileşimleri dikkate

200

alındığında, diğer parametrelerin form takımının bu etkisini değiştirmediği görülmektedir.

DKP 37 sacının 60° kare piramit şekillendirilmesinde et kalınlığı için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Et kalınlığının optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 10 mm'dir. Et kalınlığı için yapılan varyans analizine göre ilerleme hızı çok önemli düzeyde etkiliyken, basınç ve form takımı çapı ise önemli düzeyde etkilidir. Deney parametrelerinin et kalınlığı üzerine etkileşimleri incelendiğinde basıncın ve form takımı çapının et kalınlığı üzerinde belirleyici etkisi olduğu görülebilmektedir. Basınç değerinin büyümesi ile et kalınlığı azalmaktadır. Basıncın bu etkisi özellikle ilerleme hızı ve artım miktarından etkilenmiştir. Form takımı çapının etkisi ise özellikle ilerleme hızından etkilenmiştir.

DP600 sacının 40° eksenel simetrik koni formunda şekillendirme deneyleri sonucunda yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Optimum parametre seviyeleri ise basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde, artım miktarı ise önemli düzeyde etkilidir. İkili etkileşimler dikkate alındığında, form takımı çapının şekillendirme kuvveti üzerinde daha belirleyici olduğu görülebilmektedir. Yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Optimum parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir.

Anılan deneylerde belirlenen yüzey pürüzlülüğü için yapılan varyans analizine göre yüzey pürüzlülüğü üzerinde form takımı çapı çok önemli düzeyde, artım miktarı ise önemli düzeyde etkilidir. İkili etkileşimlere göre diğer parametrelerle kıyaslandığında, form takımı çapının yüzey pürüzlülüğü üzerinde belirleyici bir parametre olduğu görülmektedir.

DP600 sacının 40° eksenel simetrik koni şekillendirilmesinde et kalınlığı için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Et kalınlığı için yapılan varyans analizine göre et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde etkili değildir. Fakat form takımı çapı bir miktar etkilidir. İkili etkileşimler incelendiğinde basıncın artması et kalınlığını bir miktar azaltmaktadır. Benzer şekilde artım miktarı değerinin büyümesi de et kalınlığını azaltıcı etki yapmaktadır.

DP600 sacının 60° eksenel simetrik deneyleri neticesinde yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Optimum şekillendirme parametre seviyeleri ise basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde etkilidir. İkili etkileşimlere göre şekillendirme kuvveti (Fz) üzerinde belirleyiciliği en yüksek olan parametre form takımı çapıdır. Form takımı çapının küçülmesi, şekillendirme kuvvetini de azaltmaktadır. Bununla birlikte diğer parametrelerin ve etkileşimlerinin şekillendirme kuvveti üzerinde anlamlı bir etkisi görülmemektedir.

DP600 sacının 60° eksenel simetrik şekillendirilmesinde yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Optimum şekillendirme parametre seviyeleri ise, basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir. Yüzey pürüzlülüğü için yapılan varyans analizine göre form takımı çapı çok önemli düzeyde etkilidir.

DP600 sacının 60° eksenel simetrik şekillendirilmesinde et kalınlığı için yapılan S/N analizine göre en etkili parametre basınçtır. Optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,5 mm, form takımı çapı için 15 mm'dir. Et kalınlığı için yapılan varyans analizine göre basınç çok önemli düzeyde, form takımı çapı ise önemli düzeyde etkilidir. Bu sonuç S/N

analizi ile de uyuşmaktadır. İkili etkileşimler incelendiğinde basınç değerinin azalması ile et kalınlığının bir miktar arttırdığı görülmektedir. Ayrıca, form takımı çapının da büyümesi et kalınlığını bir miktar arttırmaktadır.

DP600 sacının 40° kare piramit formunda şekillendirme deneyleri sonrasında şekillendirme kuvveti için yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 5 mm'dir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı ve artım miktarı çok önemli düzeyde etkilidir. İkili etkileşimlere göre artım miktarı şekillendirme kuvvetini bir miktar etkilemektedir. Form takımı çapı ise şekillendirme kuvveti üzerinde daha belirleyici olduğu görülmektedir. Form takımı çapının etkisinin artım miktarını da etkilediği görülebilmektedir. Form takımı çapının ve/veya artım miktarının büyümesi şekillendirme kuvvetini de artırmaktadır.

Anılan deneylerde belirlenen yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 1000 mm/dak, artım miktarı için 0,25 mm, form takımı çapı için 15 mm'dir. Ayrıca, 0,5 mm artım miktarı ve 10 mm form takımı çapı kullanılması da ortalamanın üzerinde sonuçlar vermektedir. Yüzey pürüzlülüğü için yapılan varyans analizine göre form takımı çapı ve artım miktarı çok önemli düzeyde etkilidir. İkili etkileşimler incelendiğinde, form takımı çapının ve artım miktarının büyümesi yüzey pürüzlülüğünü etkilediği anlaşılmaktadır. Artım miktarının büyümesi yüzey pürüzlülüğünü de büyütmektedir. Form takımı çapının bu etkisinin artım miktarından etkilendiği görülmektedir.

Anılan deneylerde belirlenen et kalınlığı için yapılan S/N analizine göre en etkili parametre artım miktarıdır. Optimum şekillendirme parametre seviyeleri basınç için 9 bar, ilerleme hızı için 1500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 10 mm'dir. Et kalınlığı için yapılan varyans analizine göre et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde etkili değildir. Bununla birlikte artım miktarı diğer parametrelere göre daha etkilidir.

DP600 sacının 60° kare piramit formunda şekillendirme deneyleri sonucunda yapılan S/N analizine göre şekillendirme kuvvetine etki eden en önemli parametre form takımı çapıdır. Her ne kadar basınç ve ilerleme hızının parametre seviyelerinin S/N oranları arasında önemli bir fark olmasa da, şekillendirme kuvvetinin optimum şekillendirme parametre seviyelerinin basınç için 9 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 5 mm olduğu söylenebilir. Şekillendirme kuvveti için yapılan varyans analizine göre şekillendirme kuvveti üzerinde form takımı çapı çok önemli düzeyde etkilidir. İkili etkileşimler incelendiğinde şekillendirme kuvvetine etki eden ana parametrenin form takımı çapı olduğu görülebilmektedir. Form takımı çapının azalması şekillendirme kuvvetini de azaltmaktadır. Form takımı çapının bu etkisi artım miktarından etkilenmektedir.

DP600 sacının 60° kare piramit formunda şekillendirilmesinde yüzey pürüzlülüğü için yapılan S/N analizine göre en etkili parametre form takımı çapıdır. Her ne kadar artım miktarının seviyeleri arasında önemli bir fark olmasa da yüzey pürüzlülüğünün optimum parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,25 mm ve form takımı çapı için 15 mm'dir. Yüzey pürüzlülüğü için yapılan varyans analizine göre form takımı çapı çok önemli düzeyde etkilidir. Bu durum S/N analizi ile de uyuşmaktadır. İkili etkileşimler incelendiğinde, form takımı çapının yüzey pürüzlülüğünü etkileyen ana parametre olduğu görülmektedir. Form takımı çapının büyümesi yüzey pürüzlülüğünü azaltmaktadır. Form takımı çapının bu etkisi artım miktarından etkilenmektedir.

DP600 sacının 60° kare piramit formunda şekillendirilmesinde et kalınlığı için yapılan S/N analizine göre en etkili parametre basınçtır. Optimum şekillendirme parametre seviyeleri basınç için 2 bar, ilerleme hızı için 500 mm/dak, artım miktarı için 0,75 mm, form takımı çapı için 5 mm'dir. Et kalınlığı için yapılan varyans analizine göre et kalınlığı üzerinde hiçbir bağımsız değişken önemli düzeyde etkili değildir. Bununla birlikte et kalınlığı için en etkili bağımsız değişken basınçtır.

Parametre etkileri genel olarak incelendiğinde şekillendirme kuvveti üzerinde ilerleme hızının etkisinin olmadığı görülmüştür. Sıkma basıncı ise şekillendirme kuvvetini ya azaltmakta ya da herhangi bir etkisi olmamaktadır. Form takımı çapı büyüdüğünde şekillendirme kuvveti de büyümektedir. Artım miktarı değeri büyüdükçe şekillendirme kuvveti de büyümektedir. Sıkma basıncının yüzey pürüzlülüğü üzerinde etkisi olmadığı görülmüştür. İlerleme hızı büyüdükçe yüzey pürüzlülüğü ya az miktarda artabilmektedir veya etkilenmemektedir. Artım miktarı değeri büyüdükçe yüzey pürüzlülüğü de artmaktadır. Form takımı çapının büyümesi ise yüzey pürüzlülüğünü azaltmaktadır. Sıkma basıncının artmasıyla et kalınlığının azalmaktadır. İlerleme hızı büyüdükçe et kalınlığı ya az miktarda artabilmektedir ya da etkilenmemektedir. Artım miktarı değeri büyüdükçe et kalınlığı incelmektedir.

Çalışmada incelenen üç bağımlı değişkeni (şekillendirme kuvveti, yüzey pürüzlülüğü ve et kalınlığı) birlikte optimize eden gri ilişki analizler yapılmıştır. yapılan analize göre DKP 37 sacında eksenel simetrik formdaki parçalar şekillendirilirken ilerleme hızı olarak 500 mm/dak, kare piramit parçalar şekillendirilirken ise 1500 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise artım miktarı olarak 0,25 mm, 60° ise 0,5 mm tercih edilmelidir. Ayrıca, DKP 37 sacında 10 mm çaplı form takımı kullanılmalıdır. DP600 sacında 2 bar sıkma basıncı kullanılmalıdır. Şekillendirme açısı 40° ise ilerleme hızı olarak 1000 mm/dak, 60° ise 500 mm/dak tercih edilmelidir. Form takımı çapı olarak 5 mm tercih edilmelidir. Özetle, her üç bağımlı değişkeni birlikte optimize etmek için 2 bar sıkma basıncının tercih edilmesinin uygun olduğu görülmektedir. Eksenel simetrik geometride 500 mm/dak ilerleme hızının tercih edilmesi daha optimum sonuç vermektedir.

Yukarıda bahsedilen analizler şekillendirme kuvveti de dikkate alınarak yapılmıştır. Fakat, şekillendirme kuvvetinin üretim kalitesi ile ilgisi yoktur. Üretim kalitesini daha çok et kalınlığı ve yüzey pürüzlülüğü belirlemektedir. Çalışma kapsamında, şekillendirme kuvvetini dikkate almadan sadece üretim kalitesi (yüzey pürüzlülüğü ve et kalınlığı) için gri ilişki analizler de yapılmıştır. Bu analizlere göre DKP 37 sacında 9 bar sıkma basıncı daha iyi sonuçlar vermektedir. Eksenel simetrik koni formundaki parçalar şekillendirilirken ilerleme hızı olarak 500 mm/dak, kare piramit formundaki parçalar şekillendirilirken ise 1000 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise form takımı çapı olarak 15 mm alınmalı. Şekillendirme açısı 60° ise 10 mm'lik form takımı kullanılmalıdır. DP600 sacının şekillendirilmesinde 2 bar sıkma basıncı daha iyi sonuçlar vermektedir. Eksenel simetrik koni parça şekillendirilecekse ilerleme hızı olarak 1500 mm/dak, kare piramit parça şekillendirilecekse 500 mm/dak tercih edilmelidir. Şekillendirme açısı 40° ise 0,25 mm artım miktarı, 60° ise 0,5 mm artım miktarı kullanılmalıdır. DP600 sacında çapı 15 mm olan form takımı kullanılmalıdır. Özet olarak şekillendirme kuvvetinin önemli olmadığı durumda, 40° geometride 0,25 mm artım miktarı ve 15 mm form takımı çapı optimum sonucu vermektedir. DP 600 sacında eksenel simetrik geometride büyük ilerleme hızlarının tercihi daha iyi sonuç verirken piramit geometride daha küçük ilerleme hızı kullanımı daha iyi sonuç vermektedir.

Prototip imalatında üretim süresi büyük bir öneme sahiptir. O nedenle bu çalışmada deney süreleri de incelenmiştir. Deney süresine etki eden ana parametreler ilerleme hızı ve artım miktarıdır. İlerleme hızının veya artım miktarının büyümesi deney süresini önemli oranda azaltmaktadır. Bu iki parametrenin birlikte artması ise deney süresini en aza indirmektedir. Sıkma basıncının ise takım yolu ile ilgisi olmadığı için deney süresine herhangi bir etkisi yoktur. Takım çapının deney süresine anlamlı bir etkisi yoktur. Dolayısıyla şekillendirme süresinin en az olması istendiğinde büyük ilerleme hızı ve artım miktarı ile küçük form takımı çapı tercih edilmelidir.

Geliştirilen yöntem ile şekillendirilen parçaların geri esneme miktarları 3D tarayıcı kullanılarak ölçülmüştür. Şekillendirilen parçanın üst tarafından aşağıya doğru inildikçe (şekillendirme çapı arttıkça) geri esneme miktarı da artabilmektedir. Şekillendirme bölgesindeki en büyük geri esneme genellikle parça tabanındaki flanşın hemen üstünde bulunan radyüslü bölgede oluşmaktadır. Şekillendirilen parçalarda en büyük geri esnemenin 4 mm olabildiği görülmektedir. Şekillendirme kuvvetinin (Fz) optimizasyonu deneylerinde düşük geri esneme miktarları oluştuğu görülebilmektedir. Bu deneylerin parametreleri incelendiğinde form takımı çaplarının 5 mm, sıkma basınçlarının ise 9 bar olduğu görülebilmektedir. Ayrıca, piramit formunda

şekillendirilmiş parçaların eksenel simetrik formunda şekillendirilmiş parçalara göre daha fazla geri esnediği görülebilmektedir.

Bu çalışma kapsamında geliştirilen kayar artımlı şekillendirme yöntemi için derin çekme yöntemi ile karşılaştırılarak maliyet analizi de yapılmıştır. DP600 sacından üretilmiş 10 adet 40° kare piramit prototip parça için maliyetler hesaplanmıştır. Derin çekme yöntemi kullanılarak 10 adet prototip parça üretimi 18,1 gün sürerken, maliyet 35000TL'yi bulmaktadır. Geliştirilen bu yöntemle 10 adet prototip parça üretimi 5 gün sürüp, maliyet 5000TL'dir. Bu da prototip üretiminde, geliştirilen yöntemin hem zaman hem de maliyet avantajı sağladığını göstermektedir. Bu açıdan bakıldığında yöntemin endüstride kullanım potansiyeli yüksektir.

Bu çalışmanın devamı olarak kayar artımlı şekillendirme yönteminde farklı yağlayıcılar kullanılarak etkinlikleri, farklı parametre seviyelerinin etkinlikleri, paslanmaz çelik, alüminyum gibi diğer sacların bu yöntemle şekillendirilebilirliği araştırılabilir. İmalat sektöründe kullanılan büyük ebatlı parçaların 1/1 ölçeğinde üretimi için köprülü CNC tezgâhlar veya robot kollarla testler yapılabilir. Ayrıca, şekillendirilmesi zor olan magnezyum alaşımı gibi malzemelerde ısıtıcı kullanarak bu yöntemin etkinliği araştırılabilir.

KAYNAKLAR

Al-Ghamdi, K. A., & Hussain, G. (2015). Threshold tool-radius condition maximizing the formability in SPIF considering a variety of materials: Experimental and FE investigations. *International Journal of Machine Tools and Manufacture*, 88, 82–94. https://doi.org/10.1016/j.ijmachtools.2014.09.005

Al-Ghamdi, Khalid A, & Hussain, G. (2017). On the CO2 characterization in incremental forming of roll bonded laminates. *Journal of Cleaner Production*, *156*, 214–225. https://doi.org/10.1016/j.jclepro.2017.04.047

Ambrogio, G., De Napoli, L., Filice, L., Gagliardi, F., & Muzzupappa, M. (2005). Application of Incremental Forming process for high customised medical product manufacturing. *Journal of Materials Processing Technology*, *162–163*(SPEC. ISS.), 156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

Ambrogio, G., Filice, L., Gagliardi, F., & Micari, F. (2005). Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. Içinde *VIII International Conference on Computational Plasticity* (COMPLAS VIII). Barcelona.

Ambrogio, Giuseppina, Sgambitterra, E., De Napoli, L., Gagliardi, F., Fragomeni, G., Piccininni, A., Villa, T. M. (2017). Performances analysis of Titanium prostheses manufactured by Superplastic Forming and Incremental Forming. *Procedia Engineering*, *183*, 168–173. https://doi.org/10.1016/j.proeng.2017.04.057

Araghi, T. B., Göttmann, A., Bergweiler, G., Saeed-Akbari, A., Bültmann, J., Zettler, J., ... Hirt, G. (2011). Investigation on Incremental Sheet Forming Combined with Laser Heating and Stretch Forming for the Production of Lightweight Structures. *Key Engineering Materials*, 473(December), 919–928. https://doi.org/10.4028/www.scientific.net/KEM.473.919

Araújo, R, Teixeira, P., Silva, M. B., Reis, A., & Martins, P. A. F. (2013). Single Point Incremental Forming of a Medical Implant. *Key Engineering Materials*, 557, 1388–1393. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1388

Araújo, Rogério, Teixeira, P., Montanari, L., Reis, A., Silva, M. B., & Martins, P. A. (2014). Single point incremental forming of a facial implant. *Prosthetics and orthotics international*, *38*(5), 369–378. https://doi.org/10.1177/0309364613502071

Arfa, H., Bahloul, R., & Belhadjsalah, H. (2013). Finite element modelling and

experimental investigation of single point incremental forming process of aluminum sheets: Influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts. *International Journal of Material Forming*, *6*(4), 483–510. https://doi.org/10.1007/s12289-012-1101-z

Asghari, S. A. A., Sarband, A. S., & Habibnia, M. (2017). Optimization of multiple quality characteristics in two-point incremental forming of aluminum 1050 by grey relational analysis. *Proc IMechE Part C: J ournal ofMechanical Engineering Science*, (May), 203–210. https://doi.org/10.1177/0954406217693658

Asghari, S. A. A., Shamsi Sarband, A., & Habibnia, M. (2017). Optimization of multiple quality characteristics in two-point incremental forming of aluminum 1050 by grey relational analysis. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, (May). https://doi.org/10.1177/0954406217693658

ASTM. (2013). Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines. *DOI:10.1520/E0074-13A*. https://doi.org/10.1520/E0074-13A.2

Attanasio, A., Ceretti, E., Giardini, C., & Mazzoni, L. (2008). Asymmetric two points incremental forming: Improving surface quality and geometric accuracy by tool path optimization. *Journal of Materials Processing Technology*, *197*, 59–67. https://doi.org/10.1016/j.jmatprotec.2007.05.053

Awankar, G. B., Rathi, M. G., & Brahmagiri, A. S. (2015). Study of Accuracy in Incremental Sheet Forming Of Aluminium. *International Journal for Research in Applied Science & Engineering Technology*, *3*, 439–443.

Aytaç, F. (2007). Matris Açılı Derin Çekme Kalıplarında Alüminyumun Derin Çekilmesinde Açı Değişiminin Çekme Oranı Üzerine Etkisinin Deneysel Araştırılması. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Yüksek Lisans Tezi.

Azevedo, N. G., Farias, J. S., Bastos, R. P., Teixeira, P., Davim, J. P., & De Sousa, R. J. A. (2015). Lubrication aspects during Single Point Incremental Forming for steel and aluminum materials. *International Journal of Precision Engineering and Manufacturing*, *16*(3), 589–595. https://doi.org/10.1007/s12541-015-0079-0

Bagherifard, S., & Guagliano, M. (2011). Influence of mesh parameters on FE simulation of severe shot peening (SSP) aimed at generating nanocrystallized surface layer. *Procedia Engineering*, *10*, 2923–2930. https://doi.org/10.1016/j.proeng.2011.04.485

Bagudanch, I., Lozano-Sánchez, L. M., Puigpinós, L., Sabater, M., Elizalde, L. E., Elías-Zúñiga, A., & Garcia-Romeu, M. L. (2015). Manufacturing of Polymeric Biocompatible Cranial Geometry by Single Point Incremental Forming. *Procedia Engineering*, *132*, 267–273. https://doi.org/10.1016/j.proeng.2015.12.494 Bahloul, R., Arfa, H., & Belhadjsalah, H. (2014). A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. *The International Journal of Advanced Manufacturing Technology*, 74, 163–185. https://doi.org/10.1007/s00170-014-5975-4

Bal, M. (2007). Açılı Derin Çekme Kalıplarında Matris Ve Zımba Radyüsünün Çekme Oranına Etkisinin Araştırılması. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Ana Bilim Dalı, Yüksek Lisans Tezi.

Baranoğlu, B., Music, O., Tamer, M. E., Sakin, A., & Durgun, İ. (2012). Prototip Parça İmalatında Artımlı Sac Şekillendirme Yönteminin Kullanımına Yönelik Sonlu Elemanlar Yöntemi Tabanlı Sistemin Doğrulanması. Içinde *6. Otomotiv Teknolojileri Kongresi* (*OTEKON 2012*). Bursa.

Baruah, A., Pandivelan, C., & Jeevanantham, A. K. (2017). Optimization of AA5052 in incremental sheet forming using grey relational analysis. *Measurement*, *106*, 95–100. https://doi.org/10.1016/j.measurement.2017.04.029

Baykon. TX13 Weight Transmitter Technical Manual (2016).

Bayram, H., & Köksal, N., S. (2015). AA 2024 Alaşımının Artışlı Şekillendirilebilirliğinin İncelenmesi. *C.B.Ü. Fen Bilimleri Dergisi*, *11*, 49–58.

Behera, A. K., Lu, B., & Ou, H. (2016). Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types. *International Journal of Advanced Manufacturing Technology*, *83*(5–8), 1099–1111. https://doi.org/10.1007/s00170-015-7649-2 Belchior, J., Guillo, M., Courteille, E., Maurine, P., Leotoing, L., & Guines, D. (2013). Off-line compensation of the tool path deviations on robotic machining: Application to incremental sheet forming. *Robotics and Computer-Integrated Manufacturing*, *29*, 58–69. https://doi.org/10.1016/j.rcim.2012.10.008

Bilici, M. K., Bakır, B., Bozkurt, Y., & Çalış, İ. (2016). Sürtünme karıştırma nokta kaynak tekniği ile birleştirilen farklı alüminyum levhaların taguchi analizi. *Pamukkale Üniversitesi Mü hendislik Bilimleri Dergisi*, 22(1), 17–23. https://doi.org/10.5505/pajes.2015.06641

Blaga, A., & Oleksik, V. (2013). Numerical Study about the Influence of Wall Angle about Main Strains, Thickness Reduction and Forces on Single Point Incremental Forming Process. *Advances in Materials Science and Engineering*, 1–11. https://doi.org/10.1515/aucts-2016-0001

Boyacı, A. İ., Baynal, K., & Özdin, Y. (2017). Sabun Üretim Prosesinin Cevap Yüzeyi Yöntemi ve İstenebilirlik Fonksiyonu Yaklaşımı ile Optimizasyonu. Içinde 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES2017). Bakü - Azerbaycan. Brosius, A. (2014). *Incremental Forming. Encyclopedia of Production Engineering*. CIRP. https://doi.org/10.1007/978-3-642-20617-7

Câmara, J. L. P. de B. (2009). *Single Point Incremental Forming. Universidade Tecnica de Lisboa*. Universidade Tecnica de Lisboa, Instituto Superior Tecnico,Yüksek Lisans Tez.

Cao, T., Lu, B., Ou, H., Long, H., & Chen, J. (2016). Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool. *International Journal of Machine Tools and Manufacture*, *110*, 1–17. https://doi.org/10.1016/j.ijmachtools.2016.08.003

Castelan, J., Schaeffer, L., Daleffe, A., Fritzen, D., Salvaro, V., & Da Silva, F. P. (2014). Manufacture of custom-made cranial implants from DICOM ® images using 3D printing , CAD / CAM technology and incremental sheet forming. *Revista Brasileira de Engenharia Biomedica*, 30(3), 265–273. https://doi.org/10.1590/rbeb.2014.024 Çavuşoğlu, O., & Gürün, H. (2014). Deformasyon Hızının Dp600 Ve Dp780 Sac Malzemelerin Mekanik Özelliklerine Ve Derin Çekme İşlemine Etkilerinin İncelenmesi. *Gazi Üniv. Müh. Mim. Fak. Der.*, 29(4), 777–784. https://doi.org/10.17341/gummfd.76140

Centeno, G., Bagudanch, I., Martínez-Donaire, A. J., García-Romeu, M. L., & Vallellano, C. (2014). Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. *Materials and Design*, 63, 20–29. https://doi.org/10.1016/j.matdes.2014.05.066

Choudhary, M. K., Chaudhary, S., & Sharma, R. (2015). Unsteady MHD Flow and Heat Transfer over a Stretching Permeable Surface with Suction or Injection. *Procedia Engineering*, *127*, 703–710. https://doi.org/10.1016/j.proeng.2015.11.371

Çiftçi, E., & Aktaş, S. (2015). Hasta Memnuniyetine Yanıt Yüzeyi Yaklaşımı. Avrupa Bilim ve Teknoloji Dergisi, 2(4), 128–135.

Cooper, D. R., & Gutowski, T. G. (2018). Prospective Environmental Analyses of Emerging Technology A Critique, a Proposed Methodology, and a Case Study on Incremental Sheet Forming. *Journal of Industrial Ecology*, 0, 1–14. https://doi.org/10.1111/jiec.12748

Daleffe, A., Schaeffer, L., Fritzen, D., & Castelan, J. (2013). Analysis of the Incremental Forming of Titanium F67 Grade 2 Sheet. *Key Engineering Materials*, *554–557*, 195–203. https://doi.org/10.4028/www.scientific.net/KEM.554-557.195

Davarpanah, M. A., Mirkouei, A., Yu, X., Malhotra, R., & Pilla, S. (2015). Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers. *Journal of Materials Processing Technology*, 222, 287–300. https://doi.org/10.1016/j.jmatprotec.2015.03.014

Davarpanah, M. A., Zhang, Z., Bansal, S., Cao, J., & Malhotra, R. (2016). Preliminary

investigations on Double Sided Incremental Forming of thermoplastics. *Manufacturing Letters*, *8*, 21–26. https://doi.org/10.1016/j.mfglet.2016.05.003

Desai, B. V., Desai, K. P., & Raval, H. K. (2014). Die-less Rapid Prototyping Process: Parametric Investigations. *Procedia Materials Science*, *6*, 666–673. https://doi.org/10.1016/j.mspro.2014.07.082

Duc-toan, N., Seung-Han, Y., Dong-Won, J., Tae-Hoon, C., & Young-Suk, K. (2011). Incremental Sheet Metal Forming : Numerical Simulation and Rapid Prototyping Process to make an Automobile White-Body. *Steel Research International*, *82*(7), 795–805. https://doi.org/10.1002/srin.201000284

Duflou, J. R., Vanhove, H., Verbert, J., Gu, J., Vasilakos, I., & Eyckens, P. (2010). Twist revisited: Twist phenomena in single point incremental forming. *CIRP Annals - Manufacturing Technology*, 59(1), 307–310. https://doi.org/10.1016/j.cirp.2010.03.018

Durgun, İ., & Sakin, A. (2016). Automobile sheet metal part production with incremental sheet forming. *Pamukkale Univ Muh Bilim Derg*, 22(1), 8–16. https://doi.org/10.5505/pajes.2015.37980

Echrif, S. B. M., & Hrairi, M. (2011). Research and Progress in Incremental Sheet Forming Processes. *Materials and Manufacturing Processes*, 26, 1404–1414. https://doi.org/10.1080/10426914.2010.544817

Echrif, Salah B. M., & Hrairi, M. (2014). Significant Parameters for the Surface Roughness in Incremental Forming Process. *Materials and Manufacturing Processes*, 29(6), 697–703. https://doi.org/10.1080/10426914.2014.901519

Eksteen, P. D. W. (2013). *Development of incrementally formed patient-specific titanium knee prosthesis*. Stellenbosch University, Department of Industrial Engineering, Yüksek Lisans Tezi.

Elcioglu, E. B., Yazicioglu, A. G., Alpaslan, T., & Anagun, A. S. (2018). Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity. *Applied Thermal Engineering*, *128*, 973–981. https://doi.org/10.1016/j.applthermaleng.2017.09.013

Esener, E., & Fırat, M. (2014). Metal Şekillendirme Prosesi Üzerinden Geri Esneme Telafi Yöntemlerinin İncelenmesi. Içinde *The 16th International Conference on Machine Design and Production*. İzmir.

Esmaeilpour, R., Kim, H., Park, T., Pourboghrat, F., Xu, Z., Mohammed, B., & Abu-farha, F. (2018). Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. *International Journal of Mechanical Sciences*, 145(May), 24–41. https://doi.org/10.1016/j.ijmecsci.2018.05.015

Fan, G., Gao, L., Hussain, G., & Wu, Z. (2008). Electric hot incremental forming: A novel technique. *International Journal of Machine Tools and Manufacture*, *48*(15), 1688–1692.

https://doi.org/10.1016/j.ijmachtools.2008.07.010

Gatea, S., Lu, B., Ou, H., & McCartney, G. (2015). Numerical simulation and experimental investigation of ductile fracture in SPIF using modified GTN model. *MATEC Web of Conferences*, 21(October), 4013–4019. https://doi.org/10.1051/matecconf/20152104013

Gatea, S., Ou, H., Lu, B., & Mccartney, G. (2017). Modelling of ductile fracture in single point incremental forming using a modified GTN model. *Engineering Fracture Mechanics*, *186*, 59–79. https://doi.org/10.1016/j.engfracmech.2017.09.021

Gulati, V., Aryal, A., Katyal, P., & Goswami, A. (2016). Process Parameters Optimization in Single Point Incremental Forming. *Journal of The Institution of Engineers (India): Series C*, 97(2), 185–193. https://doi.org/10.1007/s40032-015-0203-z

Han, F., Mo, J. H., Qi, H. W., Long, R. F., Cui, X. H., & Li, Z. W. (2013). Springback prediction for incremental sheet forming based on FEM-PSONN technology. *Transactions of Nonferrous Metals Society of China (English Edition)*, 23, 1061–1071. https://doi.org/10.1016/S1003-6326(13)62567-4

Hapsari, G., Ben, R., Richard, F., Thibaud, S., & Malécot, P. (2017). A Procedure for Ductile Damage Parameters Identification by Micro Incremental Sheet Forming. *Procedia Engineering*, *183*, 125–130. https://doi.org/10.1016/j.proeng.2017.04.062

Hashemi, A., Hoseinpour Gollo, M., & Seyedkashi, S. M. H. (2015). Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure. *Transactions of Nonferrous Metals Society of China (English Edition)*, 25, 3064–3071. https://doi.org/10.1016/S1003-6326(15)63934-6

Hirt, G., Ames, J., Bambach, M., & Kopp, R. (2004). Forming strategies and Process Modelling for CNC Incremental Sheet Forming. *CIRP Annals - Manufacturing Technology*, 53(1), 203–206. https://doi.org/10.1016/S0007-8506(07)60679-9

Hussain, G., & Gao, L. (2007). A novel method to test the thinning limits of sheet metals in negative incremental forming. *International Journal of Machine Tools and Manufacture*, 47, 419–435. https://doi.org/10.1016/j.ijmachtools.2006.06.015

Hussain, G., Gao, L., & Hayat, N. (2011). Forming Parameters and Forming Defects in Incremental Forming of an Aluminum Sheet: Correlation, Empirical Modeling, and Optimization: Part A. *Materials and Manufacturing Processes*, *26*, 1546–1553. https://doi.org/10.1080/10426914.2011.552017

Hussain, G., Gao, L., Hayat, N., Cui, Z., Pang, Y. C., & Dar, N. U. (2008). Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. *Journal of Materials Processing Technology*, 203, 193–201. https://doi.org/10.1016/j.jmatprotec.2007.10.043

Ingarao, G., Vanhove, H., Kellens, K., & Duflou, J. R. (2014). A comprehensive analysis

of electric energy consumption of single point incremental forming processes. *Journal of Cleaner Production*, 67, 173–186. https://doi.org/10.1016/j.jclepro.2013.12.022

İron Kalıp. (2018). Kalıp fiyat teklifi. İstanbul.

Irthiea, I., Green, G., Hashim, S., & Kriama, A. (2014). Experimental and numerical investigation on micro deep drawing process of stainless steel 304 foil using flexible tools. *International Journal of Machine Tools and Manufacture*, 76, 21–33. https://doi.org/10.1016/j.ijmachtools.2013.09.006

Iseki, H. (2001). An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. *Journal of Materials Processing Technology*, 111, 150–154. https://doi.org/10.1016/S0924-0136(01)00500-3

Isidore, B. B. L. (2014). *Controlling Pillow Defect in Single Point Incremental Forming Through Varying Tool Geometry*. Eastern Mediterranean University, Institute of Graduate Studies and Research, Mechanical Engineering, Yüksek Lisans Tezi.

Karataş, E. (2009). Sonlu Elemanlar Yöntemi İle Sac Metalin Büküm Şekillerine Göre Deformasyonunun İncelenmesi. Gebze Yüksek Teknoloji Enstitüsü, Mühendislik Ve Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.

Khazaali, H., & Fereshteh-Saniee, F. (2016). A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique. *The International Journal of Advanced Manufacturing Technology*, 87, 2911–2923. https://doi.org/10.1007/s00170-016-8665-6

Kiliç, S., & Öztürk, F. (2016). Ticari TWIP900 ve DP600 yüksek mukavemetli çeliklerin otomotiv endüstrisindeki performanslarinin karşilaştirilmasi. *Gazi Üniv. Müh. Mim. Fak. Der.*, *31*(3), 567–578. https://doi.org/10.17341/gummfd.81389

Kilickap, E., Yardimeden, A., & Çelik, Y. H. (2017). Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S. *Applied Sciences*, *1–12*(10), 1064. https://doi.org/10.3390/app7101064

Kim, Y. H., & Park, J. J. (2002). Effect of process parameters on formability in incremental forming of sheet metal. *Journal of Materials Processing Technology*, 130–131(3), 42–46. https://doi.org/10.1016/S0924-0136(02)00788-4

Kıvak, T., Samtas, G., & Çiçek, A. (2012). Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. *Measurement*, *45*, 1547–1557. https://doi.org/10.1016/j.measurement.2012.02.022

Kıvak, T., Samtaş, G., & Çiçek, A. (2012). Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. *Measurement*, *45*, 1547–1557. https://doi.org/10.1016/j.measurement.2012.02.022

Kotcioglu, I., Khalaji, M. N., & Cansiz, A. (2018). Heat transfer analysis of a rectangular channel having tubular router in different winglet configurations with Taguchi method. *Applied Thermal Engineering*, *132*, 637–650. https://doi.org/10.1016/j.applthermaleng.2017.12.120

Koyunbakan, M., & Ünüvar, A. (2012). Frezelemede Sertliğin Kesme Kuvvetlerine Etkisinin İncelenmesi Ve Cevap Yüzey Metodu Kullanılarak Modellenmesi. Içinde 3. Ulusal Tasarım İmalat ve Analiz Kongresi 29- 30 Kasım 2012 (ss. 456–465). Balıkesir.

Kumar, B. S., Devendar, G., & Reddy, A. C. (2017). Formability Analysis Of Parabolic Cups Drawn From Ni 201 Using Single Point Incremental Forming Process. *International Journal Of Engineering Sciences & Research Technology*, *6*(5), 619–628.

Kurtuluş, Ö. (2007). Sac Levhaların Etek Kesme İşleminde Karşılaşılan Sorunlar Ve Çözüm Olarak Yeni Makine Projesi. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.

Lehtinen, P., Väisänen, T., & Salmi, M. (2015). The Effect of Local Heating by Laser Irradiation for Aluminum, Deep Drawing Steel and Copper Sheets in Incremental Sheet Forming. *Physics Procedia*, *78*, 312–319. https://doi.org/10.1016/j.phpro.2015.11.045

Li, X., Han, K., Yu, H., Zhang, Y., & Li, D. (2016). Effect of some process parameters on geometric errors in twopoint incremental forming for Al-Cu-Mg Aluminum Alloy. *Journal of Physics: Conference Series*, 734, 1–5. https://doi.org/10.1088/1742-6596/734/3/032078

Li, Y., Liu, Z., Lu, H., Daniel, W. J. T., Liu, S., & Meehan, P. A. (2014). Efficient force prediction for incremental sheet forming and experimental validation. *International Journal of Advanced Manufacturing Technology*, 73(1–4), 571–587. https://doi.org/10.1007/s00170-014-5665-2

Lingam, R., Bansal, A., & Reddy, N. V. (2016). Analytical prediction of formed geometry in multi-stage single point incremental forming. *International Journal of Material Forming*, 9(3), 395–404. https://doi.org/10.1007/s12289-015-1226-y

Liu, Z., Li, Y., Daniel, W. J. T. B., & Meehan, P. (2014). Taguchi Optimization of Process Parameters for Forming Time in Incremental Sheet Forming Process. *Materials Science Forum*, 773–774, 137–143. https://doi.org/10.4028/www.scientific.net/MSF.773-774.137

Lu, B., Fang, Y., Xu, D. K., Chen, J., Ai, S., Long, H., ... Cao, J. (2015). Investigation of material deformation mechanism in double side incremental sheet forming. *International Journal of Machine Tools and Manufacture*, 93, 37–48. https://doi.org/10.1016/j.ijmachtools.2015.03.007

Lu, B., Ou, H., Shi, S. Q., Long, H., & Chen, J. (2014). Titanium based cranial reconstruction using incremental sheet forming. *International Journal of Material Forming*, 9(3), 361–370. https://doi.org/10.1007/s12289-014-1205-8

Lu, H., Kearney, M., Liu, S., Daniel, W. J. T., & Meehan, P. A. (2016). Two-directional toolpath correction in single-point incremental forming using model predictive control. *The International Journal of Advanced Manufacturing Technology*, 1–16. https://doi.org/10.1007/s00170-016-9672-3

Malyer, E., & Müftüoğlu, H. S. (2015). The Influence of Friction Conditions on Formability of DC01 Steels by ISF. *IOSR Journal of Mechanical and Civil Engineering*, *12*(3), 134–138. https://doi.org/10.9790/1684-1231134138

Markanday, H., & Nagarajan, D. (2018). Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process. Içinde *IOP Conf. Series: Materials Science and Engineering* (ss. 1–7).

Minitab Inc. (2017). Getting Started with Minitab (Release 18). Minitab Inc.

Moayedfar, M., Hanaei, H., Rani, A. M., Bin Musa, M. A., & Momeni, M. S. (2018). Early Shear Failure Prediction in Incremental Sheet Forming Process Using FEM and ANN. Içinde *IOP Conference Series: Materials Science and Engineering* (ss. 1–7). https://doi.org/10.1088/1757-899X/328/1/012031

Mohammadi, A., Vanhove, H., Van Bael, A., & Duflou, J. R. (2016). Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. *International Journal of Material Forming*, 9(3), 339–351. https://doi.org/10.1007/s12289-014-1203-x

Montanari, L., Cristino, V. A., Silva, M. B., & Martins, P. A. F. (2013). A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming. *International Journal of Advanced Manufacturing Technology*, *69*(5–8), 1175–1183. https://doi.org/10.1007/s00170-013-5117-4

Motorcu, A. R., Ekici, E., & Kuş, A. (2015). Investigation of the WEDM of Al / B 4 C / Gr reinforced hybrid composites using the Taguchi method and response surface methodology. *Science and Engineering of Composite Materials*, 1–11. https://doi.org/10.1515/secm-2014-0063

Mugendiran, V., & Gnanavelbabu, A. (2014). Comparison of FLD and thickness distribution on AA5052 aluminium alloy formed parts by incremental forming process. *Procedia Engineering*, *97*, 1983–1990. https://doi.org/10.1016/j.proeng.2014.12.353

Mulay, A., Ben, B. S., Ismail, S., & Kocanda, A. (2017). Experimental Investigation and Modeling of Single Point Incremental Forming for AA5052-H32 Aluminum Alloy. *Arab J Sci Eng*, (July), 1–12. https://doi.org/10.1007/s13369-017-2746-1

Mumcu, H. (2009). Experimental Investigation Of Maximum Forming Angle And Wall Thickness Variation On Al-1050 Sheet Metal In Negative Incremental Forming. *Technological Applied Sciences*, 4, 182–191. Mutlu, S. (2012). *Progresif Kalıplarla Derin Çekme Otomasyonu*. Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.

Nair, M. (2011). An Experimental And Numerical Investigation Of The Steady State Forces In Single Point Incremental Sheet Forming. Yüksek Lisans Tezi. Texas A&M University, Mechanical Engineering, Yüksek Lisans Tezi.

Najafabady, S. A., & Ghaei, A. (2016). An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. *The International Journal of Advanced Manufacturing Technology*, 87, 3579–3588. https://doi.org/10.1007/s00170-016-8712-3

Ndip-Agbor, E., Smith, J., Ren, H., Jiang, Z., Xu, J., Moser, N., ... Cao, J. (2016). Optimization of relative tool position in accumulative double sided incremental forming using finite element analysis and model bias correction. *International Journal of Material Forming*, *9*, 371–382. https://doi.org/10.1007/s12289-014-1209-4

NI USB-6003 Catalog. (2014). National Instruments.

Nimbalkar, D. H., & Nandedkar, V. M. (2013). Review of Incremental Forming of Sheet Metal Components. *International Journal of Engineering Research and Applications*, *3*(5), 39–51.

Otsu, M., Ogawa, T., & Muranaka, T. (2017). Improvement of Forming Limit and Accuracy in Friction Stir Incremental Forming with Multistage Forming. *Procedia Engineering*, 207, 807–812. https://doi.org/10.1016/j.proeng.2017.10.833

Özbay, V. (2012). Küresel Kesitli Kapların Derin Çekilmesinde Kalıp Geometrisinin Çekme Oranına Etkisinin Araştırılması. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Yüksek Lisans Tezi.

Panda, A., Sahoo, A. K., & Rout, A. K. (2016). Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study. *Decision Science Letters*, *5*, 581–592. https://doi.org/10.5267/j.dsl.2016.3.001

Pant, A., & Rai, J. P. N. (2018). Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology. *Ecotoxicology and Environmental Safety*, *150*, 305–311. https://doi.org/10.1016/j.ecoenv.2017.12.052

Paramo, G. J., & Benitez, A. J. (2014). Experimental Cases in Aluminium Foils by Dieless Process and His Comparison with Others Conventional Sheet Metal Forming Process. *International Journal of Materials, Mechanics and Manufacturing*, *2*(3), 210–213. https://doi.org/10.7763/IJMMM.2014.V2.129

Park, J. J., & Kim, Y. H. (2003). Fundamental studies on the incremental sheet metal forming technique. *Journal of Materials Processing Technology*, 140, 447–453.

https://doi.org/10.1016/S0924-0136(03)00768-4

Pathak, J. (2017). A brief review of Incremental sheet metal forming. *International Journal of Latest Engineering and Management Research*, 02(03), 35–43.

Pohlak, M., Küttner, R., Majak, J., Karjust, K., & Sutt, A. (2004). Experimental Study Of Incremental Forming Of Sheet Metal Products. Içinde *4th International DAAAM Conference "INdustrial Engineering – Innovation As Competitive Edge For SME"* (C. 2, ss. 139–142). Tallinn, Estonia.

Reddy, A. C. (2017). Numerical and Experimental Investigation of Single Point Incremental Forming Process for Phosphorus Bronze Hemispherical Cups. *International Journal of Scientific & Engineering Research*, 8(1), 957–963.

Saad Arshad. (2012). Single Point Incremental Forming A study of Forming Parameters, Forming Limits And Part Accuracy Of Aluminium 2024, 6061 And 7475 Alloys. KTH Royal Institute Of Technology, Department of Industrial Engineering And Production, Yüksek Lisans Tezi.

Said, L. Ben, Mars, J., Wali, M., & Dammak, F. (2017). Numerical prediction of the ductile damage in single point incremental forming process. *International Journal of Mechanical Sciences*, *131–132*, 546–558. https://doi.org/10.1016/j.ijmecsci.2017.08.026

Sakin, A., & Durgun, İ. (2013). Sayısal Kontrollü Artımlı Şekillendirme Tekniği ile Plastik Parça Üretimi 1. *Mühendis ve Makina*, 55(650), 23–28.

Seçgin, Ö., Ata, E., & Özsert, İ. (2018). İmalat Endüstrisinde Kullanılan Artımlı Şekillendirme Yönteminin Sonlu Elemanlar Analizinde Takımyolu Tanımlama İçin Yeni Bir Yaklaşım. Içinde *International Conference on Automotive Technologies (OTEKON* 2018), 7-8 Mayıs 2018 (ss. 1219–1225). Bursa.

Seçgin, Ö., & Özsert, İ. (2018). Experimental investigation of new blank holder approach for incremental forming method. *The International Journal of Advanced Manufacturing Technology*. https://doi.org/10.1007/s00170-018-2880-2

Şen, N. (2018). DP600 Malzemenin Şekillendirilmesinde Değişken Baskı Plakası Kuvveti Etkisinin Sonlu Elemanlar Yöntemiyle Araştırılması. *Düzce Üniversitesi Bilim ve Teknoloji Dergisi*, 6, 1295–1304.

Senger, Ö., & Albayrak, Ö. K. (2016). Gri İlişki Analizi Yöntemi ile Personel Değerlendirme Üzerine Bir Çalışma. *International Journal of Economic & Administrative Studies*, (17), 235–258. Tarihinde adresinden erişildi http://dergipark.gov.tr/download/article-file/202098

Shanmuganatan, S. P., & Senthil Kumar, V. S. (2013). Metallurgical analysis and finite element modelling for thinning characteristics of profile forming on circular cup. *Materials and Design*, *44*, 208–215. https://doi.org/10.1016/j.matdes.2012.07.042

Tamer, M. E., Musici, O., Ozdemir, I., Baranoğlu, B., Sakin, A., & Durgun, I. (2013). Simulation for Incremental Sheet Forming Process: a Comparison of Implicit and Explicit Finite Element Analysis with Experimental Data. Içinde *International Conference and Exhibition on Design and. Production of MACHINES and DIES/MOLDS* (ss. 29–36). Antalya, TURKEY.

Toprak, İ., B., Çağlar, M., F., Çolak, O., Kıran, K., & Bayhan, M. (2012). Ti-6al-4v Süper Alaşımının Yüksek Basınçlı Soğutma Kullanılarak Frezelenmesinde Yüzey Pürüzlülüğünün Taguchi Yöntemi İle Optimizasyonu. *SDU International Technologic Science*, *4*, 30–39.

Ugrasen, G., Bharath, G., Kishor Kumar, G., Sagar, R., Shivu, P. R., & Keshavamurthy, R. (2018). Optimization of Process Parameters for Al6061-Al7075 alloys in Friction Stir Welding using Taguchi's Technique. *Materials Today: Proceedings*, *5*(1), 3027–3035. https://doi.org/10.1016/j.matpr.2018.01.103

Ünal, E. (2011). Kare Kesitli Kapların Derin Çekilmesinde Kalıp Geometrisi Ve Radyüsünün Çekme Oranına Etkisinin Araştırılması. Fırat Üniversitesi, Fen Bİlimleri Enstitüsü, Makine Eğitimi Anabilim Dalı, Doktora Tezi.

Uttarwar, P. B., Raini, S. K., & Malwad, D. S. (2015). Optimization of process parameter on Surface Roughness (Ra) and Wall Thickness on SPIF using Taguchi method. *International Research Journal of Engineering and Technology*, 2(9), 781–784.

Uzun, A., Eski, Ö., & Çelik, E. (2017). Taguchi Tekniği Kullanılarak SAE 1021 / Dillidur 400 / Dillimax 500 Ç eliklerinin S ürtünme K aynağı için İşlem Parametrelerinin Optimizasyonu. *GUJ Sci Part C: Tasarım ve Taknoloji*, 5(2), 53–62.

Uzun, R. (2016). Ön Deformasyon Uygulanmış Dp600 Kalite Çeliklerin Punta Kaynak Özelliklerinin İncelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı, Malzeme Mühendisliği Programı, Yüksek Lisans Tezi.

Vanhove, H., Carette, Y., Vancleef, S., & Duflou, J. R. (2017). Production of thin shell clavicle implants through Single Point Incremental Forming. *Procedia Engineering*, *183*, 174–179. https://doi.org/10.1016/j.proeng.2017.04.058

Verbert, J., Belkassem, B., Henrard, C., Habraken, A. M., Sol, H., Lauwers, B., & Duflou, J. R. (2008). Multi-Step toolpath approach to overcome forming limitations in single point incremental forming. *International Journal of Material Forming*. https://doi.org/DOI 10.1007/s12289-008-0 - 157 2

Vigneshwaran, G., Kumar, V. S. S., & Shanmuganatan, S. P. (2015). Optimization of Process Parameters in Single Point Incremental Forming of Aa 6063-O Alloy. *International Journal of Current Engineering and Research*, 2(2), 8–14.

Wu, S. H., Reis, A., Pires, F. M. A., Santos, A. D., & Da Rocha, A. B. (2012). Study of Tool Trajectory in Incremental Forming. *Advanced Materials Research*, 472–475, 1586–

1591. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1586

Xue, X., Liao, J., Vincze, G., Sousa, J., Barlat, F., & Gracio, J. (2016). Modelling and sensitivity analysis of twist springback in deep drawing of dual-phase steel. *Materials and Design*, *90*, 204–217. https://doi.org/10.1016/j.matdes.2015.10.127

Yaman, Z. (2010). Zayıf Eksende Eğilen Çelik U Kesitli Profillerin Plastik Tasarım Koşullarının İrdelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği, Doktora Tezi.

Yıldırım, A. (2017). Sac Şekillendirme Etkisi Dikkate Alınarak Yüksek Performanslı Taşıt Pasif Güvenlik Sistemlerinin Geliştirilmesi. Bursa Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.

Yılmaz, E., & Güngör, F. (2010). Gri İlişkisel Analiz Yöntemine Göre Farklı Sertliklerde Optimum Takım Tutucusunun Belirlenmesi. 2. Ulusal Tasarım İmalat ve Analiz Kongresi.

Zein, H., El Sherbiny, M., Abd-Rabou, M., & El shazly, M. (2014). Thinning and spring back prediction of sheet metal in the deep drawing process. *Materials and Design*, *53*, 797–808. https://doi.org/10.1016/j.matdes.2013.07.078

Zhang, H., & Dong, X. (2015). Physically based crystal plasticity FEM including geometrically necessary dislocations: Numerical implementation and applications in micro-forming. *Computational Materials Science*, *110*, 308–320. https://doi.org/10.1016/j.commatsci.2015.08.046

Zhang, J., Zhan, M., Yang, H., Jiang, Z., & Han, D. (2012). 3D-FE modeling for power spinning of large ellipsoidal heads with variable thicknesses. *Computational Materials Science*, *53*(1), 303–313. https://doi.org/10.1016/j.commatsci.2011.08.010

Zhang, Q., Xiao, F., Guo, H., Li, C., Gao, L., Guo, X., ... Bondarev, A. B. (2010). Warm negative incremental forming of magnesium alloy AZ31 Sheet: New lubricating method. *Journal of Materials Processing Technology*, *210*(2), 323–329. https://doi.org/10.1016/j.jmatprotec.2009.09.018

Zhang, Z., Zhang, H., Shi, Y., Moser, N., Ren, H., Ehmann, K. F., & Cao, J. (2016). Springback Reduction by Annealing for Incremental Sheet Forming. *Procedia Manufacturing*, *5*, 696–706. https://doi.org/10.1016/j.promfg.2016.08.057

ÖZGEÇMİŞ

Ömer SEÇGİN, 1980 yılında Bursa'da doğdu. 1998 yılında Fırat Üniversitesi talaşlı üretim öğretmenliği bölümünde lisans eğitimine başladı. 2002 yılında bölüm birincisi olarak mezun oldu. 2005 yılında ise aynı üniversitede yüksek lisans eğitimini tamamladı. Uzunca bir süre sanayide çalıştıktan sonra 2011 yılında, halen çalışmakta olduğu Piri Reis Üniversitesine geçti. Anılan kurumda öğretim görevlisi olarak çalışmakta olup; atölye, imal usulleri, statik, makine elemanları vb. dersleri vermektedir. Özel sektörde AR-GE yöneticiliği yaptığı dönemde TEYDEB projesinde yer alıp yüksek teknolojiye sahip bir takım tutucunun yerlileştirilmesi çalışmalarında aktif olarak görev almıştır. Çeşitli TÜBİTAK projelerinde mentor olarak görev yapmaktadır. Akademik makalelerinin yanı sıra bir adet kitabı da yayımlanmıştır. Evli ve iki çocuk babası olan Ömer SEÇGİN iyi derecede İngilizce bilmektedir.