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ABSTRACT 

DEEP NEURAL NETWORKS ALGORITHMS FOR ACOUSTIC DRONE 

DETECTION 

 

Hussam KANAAN 

Department of Electrical and Electronics Engineering 

Anadolu University, Institute of Graduate Programs, November 2019 

Supervisor: Assoc. Prof. Dr. Tansu FİLİK 

 

In 2010, the first commercial drone was presented at Consumer Electronics 

Show (CES), and since this date drones are becoming increasingly popular in various 

industrial, commercial, and public-safety areas. However, drones can be used in several 

illegal activities, and they pose serious challenges especially in highly security-sensitive 

areas such as airports and nuclear plants. As a consequence, effective counter measures 

are highly required in order to detect and report a drone flying over such restricted 

areas.  

Recent advances and fast developments in the design and implementation of 

deep learning models lead us to apply them in several recognition tasks such as speech, 

music, environmental sounds, and image recognition. Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) are two widely used deep learning 

models, where RNNs show remarkable performance in several sequence data related 

tasks such as natural language processing applications. On the other hand, convolutional 

models considerably success in image classification and object recognition for computer 

vision tasks.  

The main goal of the thesis is to develop a powerful and efficient deep learning 

model for acoustic drone detection. In this context, we investigate the results of the 

drone’s sound recognition scheme based on RNNs and CNNs that are trained using our 

collected dataset; we also investigate the influence of acoustic features extraction 

techniques such as MFCCs and Mel-Scale Filter Banks on model’s classification 

performance with different sampling rates. It is verified with various experiments that 
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the CNN model with Mel-scale filter banks as a feature extraction technique with 32 

KHz unified sampling rate gives the best classification performance. 

Keywords: Deep Learning, Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Acoustic Features, Mel Frequency Cepstral Coefficients MFCCs, 

Mel-Scale Filter Banks. 
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ÖZET 

AKUSTİK DRONE TESPİTİ İÇİN DERİN SİNİR AĞLARI ALGORİTMALARI 

 

Hussam KANAAN 

Elektrik Elektronik Mühendisliği Bölümü  

Anadolu Üniversitesi, Lisansüstü Eğitim Enstitüsü, Kasım 2019 

Danışman: Doç. Prof. Dr. Tansu FİLİK 

2010 yılında düzenlenen Tüketici Elektroniği Fuarında ilk ticari drone’nun 

tanıtılmasından bu yana endüstriyel, ticari ve kamu güvenliği gibi alanlarda bu araçların 

popülerliği artmaktadır. Bunun yanında Drone’ların kötü amaçlarla kullanıldığı, özelikle 

havaalanı, nükleer tesisi gibi yüksek güvenlik gerektiren yerlerde büyük zararlara yol 

açabildiği bilinmektedir. Sonuç olarak bu tür kritik alanlardaki izinsiz uçan drone 

ihlallerini tespit etmek ve gerekli uyarıları oluşturmak önemli bir gereksinimdir.  

Derin öğrenme modellerinin tasarım ve uygulamasındaki son teknolojik 

gelişmeler, bu modelleri konuşma, müzik, çevresel sesler ve görüntü tanıma gibi çeşitli 

klasik problemlerin çözümünde tekrar gündeme getirmiştir. Evrişimsel Sinir Ağları 

(CNN'ler) ve Tekrarlayan Sinir Ağları (RNN'ler) yaygın olarak kullanılan modelleridir.  

RNN’lerin doğal dil işleme uygulamaları gibi çeşitli sıra verileriyle ilgili görevlerde 

dikkate değer bir performans gösterdiği bilinmektedir. Öte yandan, evrişimsel modeller, 

bilgisayarlı görme görevleri için görüntü sınıflandırma ve nesne tanımada büyük başarı 

elde etmektedir. 

Bu tezin ana amacı akustik drone tespitinde güçlü ve verimli bir derin öğrenme 

modeli önermektir. Bu bağlamda drone seslerinin tanınması için toplanan veri setleri 

üzerinde hem RNN hem de CNN modelleri oluşturulmuştur. Bunun yanında akustik 

özelliklerin çıkarılmasında MFCC ve Mel-ölçekli filtre bankaları kullanılmıştır. Yapılan 

çeşitli denemelerle, Mel-ölçekli filtre bankası kullanan CNN modeli ile 32 KHz 

örnekleme oranında en iyi sınıflandırma performansı elde edilmiş ve gösterilmiştir.  

Anahtar Kelimeler: Derin öğrenme, Evrişimsel Sinir Ağları (CNN'ler), Tekrarlayan 

Sinir Ağları (RNN'ler), Akustik özellikleri, MFCC, Mel-ölçekli filtre bankaları. 
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1. INTRODUCTION 

1.1. Background 

At Consumer Electronics Show (CES) 2010, the first commercial drone was 

presented, and during the past nine years several businesses and even individuals use 

drones for various purposes motivated by the evolution of drones’ technologies [1]. The 

unmanned air vehicles (drones), supplied with several types of sensors, are becoming 

increasingly widespread for several industrial, commercial, and public safety 

applications. Today we can say that we are living in drones’ era where drones are 

adopted by different sectors for various tasks such as, search and rescue, filming, 

shipment of goods, and transportation soon. However, drones with uncontrolled 

deployment can be used for malicious purposes and they pose a critical challenge in 

terms of privacy and security for highly security-sensitive areas such as nuclear plants, 

airports, presidential houses, and other sensitive areas [2]. 

Recently, the world has witnessed several incidents caused by drones. For 

example, in 2016 an electricity blackout, which took 6 hours to fix, was caused by a 

drone collided with power lines in Sichuan in China. Another incident near to Cape 

Town in South Africa was reported when a drone crashed a nuclear facility. In 2016 

also, unauthorized drone activity closed Dubai international airport three times so many 

flights were diverted [3]. The Venezuelan president has been assassinated by two drones 

while he was speaking at the 81st anniversary of the national army [4]. These frequently 

reported incidents raised attention to malicious drones’ activities opening a research and 

development area for both academia and industry to develop methods for drones 

detecting and disabling. By 2024 the market of drones’ detection systems is expected to 

reach $ 1.85 [1].  

1.2. Problem Statement 

A decade ago, drones were restricted technology specified only for official 

authorities. However in recent years since introducing the first commercial drone by 

Parrot at CES 2010, several public and private sectors started utilizing drones due to 

their diverse uses and affordable prices [5].  

By considering privacy and security, drones constitute game-changing 

technologies. “Terrorism by Joystick” is an example of topics that have been reported 
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by the media describing the malicious effects of drones today [3]. The use of drones is 

no longer restricted by industrial and private sectors, malicious entities started using 

drones for their purposes so that the number of drone-related incidents has been 

increased and these incidents are reported daily. The frequently reported incidents have 

opened a new area of research and development for both industry and academia in order 

to develop anti-drone systems that are able to detect and disable unauthorized malicious 

drone [1].  

Drones’ detection is a critical challenge due to their small size and versatility, so 

their detection is more difficult than normal Unmanned Aerial Vehicle (UAV) 

detection. The detection methods can be classified into three major groups: (1) 

electromagnetic wave-based detection, (2) sound waves detection for the drones which 

do not emit any radio waves, and (3) drones detection using cameras [2]. 

Deep Neural Networks are discriminative classifiers that can model the highly 

non-linear relationships between the inputs and outputs, and which can be easily 

adopted to output multiple classes at a time (multi-label classification) [6]. With the 

remarkable achievements of deep learning methods in image classification tasks and 

natural language processing NLP, DNNs started attracting the attention of anti-drone 

researchers. Recent advanced DNNs models such as deep convolutional neural 

networks CNN and recurrent neural networks RNN can be used to detect the malicious 

drone attacks [7].  

1.3.General Overview of the Thesis 

In this thesis, a deep Convolutional Neural Network (CNN) is proposed for 

detecting the presence of a drone based on recorded environmental sound waves. In 

order to prove the efficiency of the proposed CNN model, we are going to test and 

compare it with another deep learning model that is especially designed for sequence 

data manipulating. The second model is a deep Recurrent Neural Network (RNN). The 

two models will be trained, tested and evaluated on the same dataset which is a 

combination of three different audio sets. The first set is recorded and collected in the 

lab using TASCAM 1800 US audio interface [8], the second set is UrbanSound8K 

which is an open source audio data for scientific research that consists of 8000 audio 

clips categorized in ten different classes [9], and the third dataset is DREGON [10] 

which includes a set of drone’s records in different scenarios and different noise levels. 
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The combined dataset will be divided into two parts train and test sets. The test set is 

about 10% of the combined dataset. The performance of the two models will be 

evaluated on the test set using some evaluation metrics such as accuracy, precision, f1 

score which is a harmonic mean of precision and recall, and confusion matrices. Python 

and some deep learning frameworks, such as Tensorflow and Keras, will be used for 

building and developing the models. 

1.4. Thesis Outline 

The outline of the thesis is given as follow: 

In chapter 2, the background information for machine learning and deep 

learning are given, including convolutional neural networks CNNs and recurrent neural 

networks RNNs. 

In chapter 3, drones background, malicious drone uses, and malicious drone 

detection in restricted flight areas are presented. 

In chapter 4, the proposed methodology is presented, and the implementation 

results are introduced. 

In chapter 5, the conclusion of the thesis is given. 
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2. DRONES BACKGROUND, MALICIOUS DRONE USES, AND DRONE 

DETECTION IN RESTRICTED FLIGHT AREAS 

2.1. Introduction 

In this chapter, the relevant background required for the rest of the thesis is 

provided. This background has an importance to understand drone functionalities, 

malicious drone activities, and drones’ detection in restricted flight areas. 

2.2. Drones Background 

Drones are remotely controlled multirotor small aircrafts. They are grouped 

according to the number of rotors they have into tricoptor, quadcoptor, and hexacopter. 

Drones technologies and capabilities are highly important in order to understand 

challenges and issues related to them, and to develop anti-drone systems for 

counteracting these small flying threats.  

Several organizations (NASA, NATO, and State Regularity Authority) have 

classified drones into various groups or classes. These classifications differ according to 

the classification criterions that have been used by each organization, but the most 

common classification is based on the drone’s weight. According to this classification 

drones are grouped into four groups: Nano (less than 0.2 Kg), Micro (0.2-2 Kg), Mini 

(2-20 Kg), small (less than 150Kg), and Tactical (more than 150 Kg) [1]. 

Most drones are provided with video cameras which provide the operator with a 

video stream transmitted over a radio channel called First Person View channel (FPV-

channel) Figure 2.1. 

 

Figure 2.1. FPV-channel uplink and downlink 

A typical FPV-channel include: (1) an uplink channel for drone’s controlling 

and commanding, (2) a downlink channel for video streaming from drone’s camera to 
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the operator. Digitalization, compression, encryption, and modulation are common 

stages in both uplink and downlink channels. 

The majority of commercial drones’ manufacturers (such as Parrot, Yuneec, and 

DJI) provide their sold drones with the following sensors [1]: 

• GPS sensor- the drone uses this sensor for automatic navigation and 

localization. 

• 4K/Full HD Camera- which is used to capture images and videos. 

• Motion Sensors- such as gyroscopes, accelerometers, and magnetometers 

used for drone stabilization. 

• Barometer- for computing the drone’s flying altitude. 

• Collision Avoidance System- vision systems based on ultrasonic sensors 

and monocular cameras are provided to recent drones to sense dangers in 

their vicinity. 

2.3. Malicious Drone Uses 

The FPV-channel capabilities allow modern drones’ operators to fly drones far 

away from their locations. The capabilities that have convinced several sectors and 

entities to adopt drones for various legitimate purposes, have also encouraged malicious 

entities to misuse drones for malicious and illegitimate purposes such as, smuggling, 

physical attacks, spying and tracking, and so on.  

2.3.1. Smuggling 

The size, speed, flight range, and carrying capabilities of the current generation 

of drones have encouraged criminals to use drones for smuggling goods and drugs 

between countries and borders, and smuggling weapons and other contraband into 

prisons [11]. Smugglers were encouraged to use drones for their crimes because: (1) the 

difficulty in identifying the identity of the drone’s operator even if the drone has been 

detected, (2) drones neglect the necessity to a human smuggler.  

2.3.2. Physical attacks 

The title “Terrorism by Joystick” can be given to the era we are living in 

according to several sources [3], [1], so shooting and exploding drones are no longer 

related to science fiction. Terrorists are led to adopt drones for various purposes by the 

same reasons that led criminals to utilize drones for smuggling.  Recently, the 
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Venezuelan president has been assassinated by two drones while he was speaking at the 

81st anniversary of the national army [4]. 

2.3.3. Spying and tracking 

A malicious drone operator can use FPV channel capabilities for spying on 

people and tracking them without being detected due to the following reasons: 

• The FPV channel supports HD resolution that enables the operator (spy) 

to capture high resolution pictures even if the target position is far from 

the drone. 

• Using encryption, the FPV channel can be encrypted and secured. 

• The FPV channel allows a malicious drone’s operators to spy even if 

they are not close to their targets. 

In addition to the previous reasons, drones can be bought by everyone and 

operated in populated areas. Drones can be also used by robbers to target empty houses 

[12].  

2.3.4. Launching a cyber-attack 

Today, drones can be used to launch a cyber-attack which was infeasible in the 

past for many reasons such as the distance and the line of sight [1]. A cyber-attack can 

be done by establishing a cryptic channel in order to infiltrate [13] and exfiltrate [14] 

data transmitted/received by an organization using a transmitter and a receiver carried 

by the drone. 

2.4. Drones Detection in Restricted Flight Areas 

Various methods have been presented for drones’ detection in the last few years. 

Drones are high-speed flying objects, so their detection is much harder than manned 

aircrafts. In order to deal with drones’ detection issue, we need to present dedicated 

methods, some of these methods are listed below: 

2.4.1. RF scanner and spectrum analyzer 

Drones have radio signatures that can be recognized using RF scanners and 

spectrum analyzers. RF scanners and spectrum analyzers can: (1) detect unauthorized 

malicious FPV-channel, (2) localize the source of this channel in space. In order to 

detect an approaching spying Wi-Fi drone, a study processed the Received Signal 

Strength Indication (RSSI) of Wi-Fi signals received by a simple Wi-Fi receiver, but 
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this method is only applicable if we have a line of sight between the drone and the 

receiver [15]. Although RF scanners can detect and localize a drone by matching its 

FPV-channel bands with stored known bands, an attacker can avoid those using 

dedicated bands that are not popular for FPV-channels. 

2.4.2. Acoustic 

Various studies have presented the use of a microphone array to detect drones by 

analyzing the noise emitted by rotors. The acoustic-based detection techniques compare 

the acoustic signature of a flying drone with other stored signatures, so acoustic-based 

methods don not need a line of sight condition which is required in RF-scanners based 

methods. One study [16] deployed machine learning techniques to recognize a drone’s 

FFT signal captured by a microphone, while another study [17] utilized correlation for 

recognition. The major issue for acoustic detection is collecting the acoustic data need 

for comparison and recognition, because several factors and conditions like obstacles, 

wind, temperature, time of the day, and other environmental sounds can affect the sound 

waves and change their directions [18]. The collection of audio signals in a forest on a 

cold and windy night will be significantly different than the collection of audio signals 

in a plain with a little wind and on a hot day [18]. Although acoustic-based detection 

techniques can be deployed to detect the presence of a drone than localize it using 

multiple distributed microphones, acoustic-based drones’ detection techniques suffer 

from false negative detection due to the increased models of drones. In addition, 

acoustic-based detection methods are restricted by the distance between drones and 

microphones [19]. 

2.4.3. Optical 

Using cameras that have the ability to detect visible frequencies, many studies 

presented methods to detect a drone and its path from video streams by detecting visual 

masks [20], shape description [21], and motion cues. Other methods suggested using 

deep neural networks [22], [23]. Although the abovementioned methods can be 

deployed to detect and localize drones using databases, they suffer from false negative 

detection because of the increasing number of drones’ models and ambient darkness. 

They also suffer from false positive detection because of the similarities between the 

movements of birds and drones. Several studies suggested using a thermal camera 

which can capture invisible wavelength to address the comprised drone detection rate in 
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dark conditions. A recent study suggested using short-wave infrared (SWIR) for drone 

detection in dark conditions [24]. 

2.4.4. Hybrid 

A method or a sensor that can meet all requirements of a perfect drone detection 

system is not existed. All the above-mentioned methods have their advantages and 

disadvantages, so to overcome the limitations of using one sensor we need to suggest 

several sensor fusion methods. Several methods [25], [26] suggested using a camera 

with a microphone array, or an acoustic camera as a combination of acoustic and optical 

methods. Another study proposed a combination of optical and RF methods such as 

LiDAR and radar [27]. Other studies suggested combining the three methods (optical, 

RF, and acoustic) to detect and locate drones in space [28] [29]. In general, using more 

than one sensor is the technique used by several companies for drones’ detection and 

localization. However, the greatest disadvantage associated with this technique is the 

high cost. 
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3. BACKGROUND AND DEFINITIONS 

3.1. Introduction 

In this chapter, a set of important definitions is presented. These definitions have 

tremendous importance to understand Machine Learning (ML), Artificial Intelligence 

(AI), and Deep Learning (DL), and to distinguish between these different concepts and 

terms. 

3.2. Machine Learning 

Programming computers so that they can learn from data is the science of 

machine learning. ML is not a futuristic science as many people think, it has been for 

decades. Optical Character Recognition (OCR) and filter spam are two examples of ML 

applications that back to the 1990s [6]. A more general definitions can be presented as 

follow: 

“Machine learning is the field of study that gives computers the ability to learn 

without being specifically programmed”. –Arthur Samuel, 1959 [6]. 

And a more engineering-oriented one: 

“A computer program is said to learn from experience E with respect to some 

task T and some performance measure P, if its performance on T, as measured by P, 

improves with experience E”. –Tom Mitchell, 1997 [6]. 

Artificial intelligence, machine learning, and deep learning are frequently 

mentioned terms when discussing advanced technology. AI can be understood as any 

technique that enables computers mimic human intelligence, a perfect example of AI is 

self-driving cars and natural language processing (NLP) applications such as machine 

translation. Machine learning (ML) can be understood as a subset of AI that includes 

algorithms and statistical models used to perform a specific task without explicit 

instructions. Deep learning can be understood as a subset of machine learning that uses 

multilayered neural networks to learn from vast amount of data. Figure 3.1 illustrates the 

main subsets of AI. Machine learning systems can be classified according to the type 

and amount of supervision during training into four major categories: supervised 

learning, unsupervised learning, semisupervised learning, and reinforcement learning. 
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Figure 3.1. AI is the main set that includes ML and DL 

3.2.1. Supervised learning 

In supervised learning, the training data is labeled, in other words the training 

data we fit to the model includes the desired solutions, called labels. Figure 3.2 illustrates 

an example of supervised learning system (spam filter). 

 

Figure 3.2. Spam filter an example of supervised learning 

Classification and regression are two typical tasks of supervised learning. In 

classification tasks the output is a label (class), we have binary classification (the output 

is only two labels such as “drone” and “no drone” in our project) and multi-label 

classification (the output is more than two labels such as environmental sounds 

classification). Regression task is to predict a target numeric value corresponding to the 
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input features Figure 3.3. Predicting the price of a house given a set of features (location, 

number of rooms, etc.) called predictors is an example of regression tasks. 

 

Figure 3.3. Regression 

Some regression algorithms can be used for classification and vice versa. 

Logistic regression is an example of regression algorithm that can be used for 

classification. In the list below a set of the most important supervised learning 

algorithms: 

• Linear Regression 

• Logistic Regression 

• Support Vector Machines (SVMs) 

• K-Nearest Neighbors 

• Neural Networks 

• Decision Trees and Random Forests 

3.2.2. Unsupervised learning 

In unsupervised learning we have unlabeled training data, so the algorithm tries 

to answer on unlabeled or unknown data. Unsupervised learning is commonly used by 

data scientists for discovering patterns in new datasets. In the list below a set of the 

most important unsupervised learning algorithms: 

I. Visualization and Dimensionality Reduction 

• Principal Component Analysis (PCA) 

• Locally-Linear Embedding (LLE) 

• T-distributed Stochastic Neighbor Embedding (t-SNE) 

• Kernel PCA 
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II. Clustering 

• Hierarchical Cluster Analysis (HCA) 

• Expectation Maximization 

• K-Means 

III. Association Rule Learning 

• A priori 

• Eclat 

Visualization algorithms, dimensionality reduction, and anomaly detection are 

good examples of unsupervised learning. In visualization algorithms, we feed a lot of 

complex and unlabeled data, and the output is 2D or 3D representation of this data that 

can be easily plotted. In anomaly detection, the system is trained using normal training 

examples (normal instances), after that it can classify a new instance and tell whether it 

looks a normal one or whether it is likely an anomaly as illustrated in Figure 3.4. 

 

Figure 3.4. Anomaly detection 

3.2.3. Semisupervised learning 

In this type of learning, algorithms can deal with partially labeled data. . In fact 

we have a lot of unlabeled data and a little bit of labeled data. In order to build a 

semisupervised learning algorithm we need to combine both supervised and 

unsupervised learning algorithms. Deep Belief Networks (DBNs) are considered a good 

example of semisupervised learning algorithms. These networks are built using stacked 

unsupervised components called Restricted Boltzman Machines (RBMs) where the 

whole system is tuned using supervised learning, while the RBMs are trained using 
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unsupervised learning [6]. Figure 3.5 illustrates the mechanism of semisupervised 

learning. 

 

Figure 3.5. Semisupervised learning 

3.2.4. Reinforcement learning 

Reinforcement learning is a behavioral learning model. The algorithm receives 

feedback from the data so the user is guided to the best outcome. In reinforcement 

learning the system (model) learns through trial and error, so it is not trained with the 

training data set like other types of supervised learning. The learning system, called an 

agent in this context, can observe the environment, select and perform actions, and get 

rewards in return (or penalties in the form of negative rewards). Then, the model must 

learn the best strategy, called a policy, to get the most reward overtime. A policy 

represents the actions that are taken by the agent when it faces specific situations [6]. 

Figure 3.6 shows the reinforcement learning. 

 

Figure 3.6. Reinforcement learning 
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3.3. Artificial Neural Networks 

Among popular machine learning techniques, artificial neural networks come 

first. Artificial neural networks (ANNs) simulate the mechanism of learning in the 

human nervous system that contains cells, which are commonly known as neurons. 

These neurons are connected with each other using axons terminals and dendrites, and 

the connecting regions between dendrites and axons are referred to as synapses [6], 

these parts are illustrated in Figure 3.7. The major components of neurons with their tasks 

are listed below: 

• Dendrites- receive input signal from other connected neurons in the form 

of electrical pulse. 

• Cell body- decides what action to take base on generated interferences 

from inputs. 

• Axon terminals- transmit output signals as electrical impulses. 

• Synapses- connect adjacent neurons. 

 

 

Figure 3.7. Structure of human neurons 

Artificial neural networks (ANNs) simulate this biological mechanism, where 

they contain computational unites called neurons. Artificial neural networks (ANNs) are 

mathematical and computational abstractions of biological processes that take place in 

the brain, and the name artificial comes from their artificial representation of the 

working mechanism of human being’s nervous system Figure 3.8. Neural network is an 

arrangement of a set of computational units (neurons) in layers where every neuron is a 

given layer that is connected to every neuron in the next layer. 
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Figure 3.8. Similarities between ANNs and human nervous system 

A neuron in a given layer takes the data, that is passed into it, and multiplies it 

by matrix of numbers called weights and then adds a number called bias to produce a 

single number as an output. The weights and biases of each neuron are adjusted 

incrementally to decrease the loss which is the average amount the network is wrong by 

across the training data. Current neural networks contain multiple neurons organized in 

multiple layers. Figure 3.9  is an example of simple neural network; this network contains 

input layer, output layer, and two hidden layers. Hidden layer means that it is neither 

input nor output. These types of layers with all neurons connected to each other are 

called a fully connected or dense layer. 

 

Figure 3.9. An example of simple neural network with two hidden layers 
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Neural networks are the core of Deep Learning (DL). They are scalable, 

versatile, and powerful, making them a perfect choice to manipulate highly complex 

machine learning tasks, such as powering natural language processing services (e.g. 

Amazon’s Alexa and Apple’s Siri), classifying millions of images (e.g. Google images), 

and recommending the best web pages, online products, songs, and videos to millions of 

internet users (e.g. YouTube, Facebook, and Amazon). 

Artificial neural networks (ANNs) were first introduced by the mathematician 

Walter Pitts, and the neurophysiologist Warren McCulloch in 1943 in their paper, “A 

logical Calculus of Ideas Immanent in Nervous Activity” [6]. There are many reasons 

behind the growing interest in neural networks and deep learning nowadays. These 

reasons are listed below: 

• The availability of huge quantity of data to train neural networks, and 

with huge data neural networks outperform machine learning techniques 

specifically in complex and large problems. 

• The tremendous advances in computation power since 1995 that make 

provide the possibility to train large neural networks in a reasonable 

time. Thanks to Moor’s law and to the growing industry, that has 

produced powerful GPU cards such as Nvidia. 

• The improvement in training and optimizing algorithms such as 

stochastic gradient descent SGD and adaptive momentum estimation 

Adam. 

• The powerful software frameworks provided by the giant technical 

manufacturers such as Tensorflow by Google, Keras, Sklearn, OpenAI, 

etc. 

3.4. Deep Learning 

Deep learning has emerged as a new area of machine learning research since 

2006, many loosely related definitions or high-level descriptions of deep learning are 

existed, we provide the most general two definitions. 

Deep Learning can be defined as a class of machine learning techniques that 

exploit many layers of non-linear information processing for supervised and 
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unsupervised feature extraction and transformation, and for pattern analysis and 

classification [7]. 

Deep Learning can be also defined as a set of algorithms in machine learning 

that attempt to learn in multiple levels, corresponding to different levels of abstraction. 

It typically uses artificial neural networks (ANNs) [7]. 

The work in deep learning can be broadly classified into three major classes, 

deep neural networks for unsupervised or generative learning, deep neural networks for 

supervised learning, and hybrid deep neural networks. These three categories are 

explained below. 

Deep neural networks for unsupervised or generative learning: these 

techniques are used when there is no information about ground truth labels, and they are 

intended to detect high-order correlation of the observed data for analyzing patterns or 

synthesis purposes. 

Deep neural networks for supervised learning: they are also called 

discriminative deep networks where target label data is always available in direct or 

indirect form, this type of neural networks are intended for pattern classification 

purposes by characterizing the posterior distributions of classes conditioned on the 

visible data. 

Hybrid deep neural networks: the deep architecture of this type of neural 

networks either comprises or makes use of both discriminative and generative model 

components for this reason they are called hybrid. In the literature of hybrid architecture 

where the discrimination is the final goal, the generative component is mostly used to 

help with discrimination [7]. 

3.5. Deep Learning Applications 

Tremendous traditional and extended signal processing areas have exploited 

deep learning techniques. The applications of deep learning are categorized into many 

classes: speech and audio, images and multidimensionality, language modeling, 

information retrieval. 
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4. PROPOSED METHODOLOGY 

4.1. Introduction 

Investigating how well drones’ sounds can be classified using deep 

convolutional neural networks CNNs that are specially designed for image classification 

(object recognition) is the main purpose of this thesis. In order to prove the superior 

efficiency of CNN (the proposed method), two learning algorithms for classification are 

going to be experimented and compared recurrent neural networks RNNs, and 

convolutional neural networks CNNs. While the first algorithm the first algorithm is 

appropriate for sequential data and it has proved its efficiency in NLP applications, the 

second algorithm is widely used in computer vision applications such as image 

classification and object recognition inside images. Recently, using convolutional neural 

networks for audio-related tasks is becoming increasingly widespread. 

In this chapter, we evaluate the proposed CNN acoustic-based drones’ sounds 

classification model by gathering real data. The acquired audio data is preprocessed and 

classified by implementing feature extraction then feature classification using Python 

and deep learning frameworks.  

4.2. Related Works 

The acoustic scene classification (ASC) refers to the capability of a human or an 

artificial system to recognize an audio context from a recording or from a live stream. In 

recent years, the problem of ASC has received increasing interest from research 

community. The ASC has many applications like mobile robot navigation [30], context-

aware computation [31] and intelligent wearable interfaces [32]. The applications of 

CNNs exceeded computer vision area to audio-related tasks, and they are becoming 

more and more widespread, for example speech recognition [33], and environmental 

sounds classification [34], [35]. 

Drones acoustic signature recognition or drones’ sound classification falls under 

ASC. Most commercial drones have a typical acoustic signature that can be used to 

detect the presence of a malicious drone in flight-restricted areas. Many studies 

presented methods to detect drones based on their acoustic signature. 

Recent study presented a real-time drone detection and monitoring system which 

uses two machine learning algorithms: Plotted Image Machine Learning (PLL), and K- 
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Nearest Neighbor (KNN) in order to classify the FFT of  real-time sampled data by 

comparing it with a reference FFT template associated with a target of interest [16]. J. 

Mezei and A. Molnar presented sound detection scheme based on correlation for limited 

database, but in real-time environment the accuracy was quite low [17]. Linear 

Predictive Coding (LPC) can be used in sound-based drones’ detection systems, since it 

is used in speech recognition applications. LPC detects spikes in audio signal’s 

frequency spectrum. The principle of LPS is to estimate the signal at a point of time 

from past samples, LPC coefficients refer to the estimated coefficients. These 

coefficients can be trained then stored in a database. An LPC-based detection system 

can be falsified with similar sounds like drones. In order to solve this problem, L. 

Hauzenberger and E. Holmberg Ohlsson decreased the number of false alarms by 

considering the slope of frequency spectrum, and they proved that it is beneficial in 

terms of false alarm detection [36].  

Although many studies suggested methods for drones’ sound recognition and 

classification, previous studies were trained and tested on datasets (audio signals) 

collected and recorded in an ideal environment (in terms of noise) rather than real-life 

environment. On top of that, there isn’t a good dataset that contains a good number of 

training examples (drones’ audio signals) recorded in real environment. Our goal is to 

use deep learning algorithms in order to build a classifier (model) which is able to 

recognize a drone’s acoustic signature in real environment, and this classifier can be 

later utilized in a sound-based real-time drones’ detection system. Motivated by our 

goal, our contributions are summarized as follow: 

• Collecting a dataset from real environment in order to train and test the 

effectiveness of the proposed model in terms of accuracy, precision, 

recall, f1 score, Receiver Operating Characteristics (ROC) curve, Area 

under the ROC Curve (AUC), and Precision-Recall (PR) curve. 

• Showing that the integration of ML framework and the advanced 

acoustic processing techniques can effectively and timely detect drones 

based on their acoustic signatures. 

• Comparing the performance of two deep learning algorithms (classifiers) 

applied to our classification task: Recurrent Neural Networks (RNN), 

and Convolutional Neural Network (CNN), in order to prove that the 
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proposed CNN model yields state-of-the-art performance for drone 

sound classification. 

• Performing hyper-parameters tuning by changing the values of the model 

parameter and see their influences on the classification performance. The 

parameters which are tuned: acoustic features (Mel Frequency Cepstral 

Coefficients (MFCC), or Log-Filter Banks), sampling rate (16 KHz, 32 

KHz, or 44.1 KHz), frame length (100 ms, 200 ms, or 300 ms). The 

classification performance is evaluated using the abovementioned 

metrics accuracy, precision, etc. 

• Introducing a deep learning classification algorithm that is applicable for 

all sound classification tasks such as accent classification, music genre 

classification, urban sound classification, and etc. 

The rest of this chapter is organized as follow: section (2) describes in details the 

proposed drone’s acoustic signature classification methodology. Section (3) discusses 

implementation tools needed to achieve our classification task. Finally, experimental 

results are discussed in Section (4). 

4.3. Proposed Methodology 

In this section we provide our methods and architectures chosen for achieving 

our target task. Drones have salient acoustic signature that can be used to differentiate 

them from other sounds in the environment. Sound features play a key role in achieving 

high accuracy and efficiency in sound classification and recognition. Hence, in order to 

get accurate classification results, it is really important to select meaningful features 

from sound samples. Raw audio signals contain noise and silent regions. Hence, it is not 

appropriate to pass these signals directly to a sound classifier, and it will lead to 

inaccurate results. By extracting acoustic features, we transform the raw audio signal 

into feature vectors that represent the signal in non-redundant and compact way, and 

have the prominent frequency components. 

The adopted sound-based drone detection scheme is illustrated in Figure 4.1. We 

used an array of microphones (exactly 5) to gather audio records of drones in different 

scenarios. Acoustic features are extracted from these sounds using audio analysis 

techniques such as MFCC and Mel-Scaled Filter Banks. After getting feature vectors 

and feature images, these vectors are passed to a trained deep learning model (classifier) 
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in order to classify recorded audio signal if it belongs to drone or not. The workflow of 

the proposed scheme is shown in Figure 4.2. 

 

Figure 4.1. Drone detection system model 

       

 

Figure 4.2. Work flow of drone detection system 

4.3.1. Data acquisition 

Data acquisition is the first stage in the development of our proposed system, 

and it is a critical stage because it affects the performance of the whole proposed 

system. Data acquisition is an important stage because machine learning algorithms use 
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this data to learn parameters of the acoustic models, then assess the performance of the 

trained models. The data should include the raw audio material (set of audio clips) and 

the associated reference metadata (e.g. class labels); in general, the reference metadata 

comes in CSV file format. The type of acoustic data, the type or required metadata, and 

conditions in which recordings are collected are all dictated by the defined target 

application. 

Essentially, the aim of data acquisition stage is to collect as realistic as possible 

acoustic signals in conditions which are similar to the intended target application. 

Metadata is usually manually annotated during the data collection, and it includes 

ground truth information. All sound classes required for the target application should be 

represented in a sufficient amount in the dataset to enable the acoustic models to 

generalize well [37]. For the supervised classification methods the availability of 

datasets is limited. Motivated by this, we collected our dataset for our target task. This 

dataset is a combination of three different datasets. The first one is collected at our 

university using TASCAM US 1800 sound card with an array of five microphones 

Figure 4.3. We set the sampling frequency to 44.1 KHz and 24 bit is the sample depth. 

The second dataset is DREGON which stands for DRone EGo noise and localizatiON. 

It is a publicly available dataset of annotated sounds recorded with 8-channel 

microphone array embedded into a quadcoptor [10]. The third one is UrbanSound8k [9]. 

The size of all these datasets is 11.77 GB, and they include 10420 audio files divided 

into two main sets: training set (9380 audio files 9.79 GB), and test set (1040 audio files 

1.98 GB). It is highly recommended to divide the data into train and test sets. The test 

set includes audio files that are not seen during model training, so it is used for model’s 

performance assessment. The audio files in both train and test sets have different length. 

The underlying reason behind this is to make the system able to manipulate and process 

audio files having different length, instead of being designed for a specific length. Figure 

4.3 and Figure 4.4 show the distribution (mean) of audio files’ length in both train and test 

sets respectively. 
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Figure 4.3. Audio files’ length distribution in train data 

                     

Figure 4.4. Audio files’ length distribution in test data 

4.3.2. Audio processing 

In this stage of the overall system, audio files are processed and prepared for 

machine learning algorithms. This stage includes two phases: preprocessing in which 

the audio signals are down sampled and processed to emphasize the target sounds, then 

extract acoustic features from the audio signals in order to represent them in a compact 

form. 
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4.3.2.1. Preprocessing 

Since we collected the audio data from different sources, the recording settings 

differ with variations in used sampling rate. Addressing these variations can be done by 

converting the audio signals into uniform format by resampling them into fixed 

sampling rate. We use three unified sampling rates (16 KHz, 32 KHz, and 44.1 KHz) to 

analysis the influence of sampling rate on the models performance. We apply 

preprocessing to the audio signals before acoustic feature extraction. This step is 

necessary for enhancing specific characteristics of the incoming signal in order to 

maximize the performance of audio analysis in upcoming stages. This can be achieved 

by enhancing the target sounds in the signal. Figure 4.5 and Figure 4.6 show the drone’s 

audio signal before and after emphasizing [38]. 

 

Figure 4.5. Drone’s audio signal before emphasizing 

 

Figure 4.6. Drone’s audio signal after emphasizing 

4.3.2.2. Acoustic feature extraction 

Acoustic feature extraction is the critical stage in any sound classification 

system, because it represents the audio signal in a compact and non-redundant form. In 

sound recognition systems, the extracted acoustic features should have low variability 
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allowing distinction among features belong to examples from different classes [39]. The 

feature representations satisfying the previous property make the learning process 

easier. In terms of memory efficiency and computation power, using a compact feature 

representation is better than the direst use of the audio signals in the sound detection 

systems.  

The main purpose of acoustic features extraction stage is to transform the raw 

audio signal into a numerical representation which reflects its physical characteristics, 

and which is suitable for machine learning algorithms. We have several types of 

acoustic features extraction techniques sharing the same processing pipeline. As shown 

in Figure 4.7 the processing pipeline includes frame blocking, windowing, spectrum 

calculation, and subsequent analysis [38]. 

    

Figure 4.7. The processing pipeline of feature extraction techniques  

For audio analysis, it usually suggested to use of frequency domain features or 

time-frequency representations because they include a significant amount of 

information in relative distribution of energy in frequency [38]. Discrete Fourier 

Transform (DFT) is the most common transformation used for audio signals, in which 
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the signal is represented by a superposition of sinusoidal base functions, each base 

characterized by a magnitude and phase [40]. Discrete Wavelet Transform (DWT) and 

Constant-Q Transform (CQT) are examples of other transformations for audio signals. 

The audio signals are generally classified as non-stationary signals because their 

statistics such as, mean and magnitudes of frequency components, change quickly over 

time. Due to this fact, acoustic feature extraction uses the short-time processing 

approach which means the analysis is performed periodically in short-time segments 

called analysis frames in order to capture the signal in quasi-stationary state [38]. 

Acoustic features are classified into time domain features (i.e., energy, zero crossing 

rate, entropy of energy) and frequency domain features (i.e., spectral centroid and 

spread, spectral entropy, spectral flux, spectral roll-off, MFCCs, Mel-scaled filter 

banks). 

4.3.2.3. MFCCs and Mel-scale filter banks computation 

MFCCs and Mel-scaled filter banks are two widely used acoustic features 

extraction techniques for representing the audio signals in terms of their spectral 

content. Their design is inspired by the human auditory system which focuses on low 

frequency components’ magnitudes more that the high frequency components. These 

magnitudes are non-linearly received (perception) [38]. Using MFCCs and Mel-scaled 

filter banks, acoustic signals can be represented in the form of visual images. In 

frequency domain, MFCCs are the most popular used ‘acoustic’ feature extraction 

technique due to its high accuracy compared to time-domain features; but more 

recently, Mel-scaled filter banks are becoming increasingly popular. Computing 

MFCCs and filter banks include somewhat the same steps, where filter banks are 

computed in both cases with a few more extra steps in MFCCs computation procedure. 

Substantially, the processing pipeline in both Mel-scaled filter banks and MFCCs 

include the following steps: 

Pre-Emphasis: A pre-emphasis filter is applied to the audio signal to amplify 

the high frequencies components. A pre-emphasis filter has several benefits: (1) high 

frequency components usually have smaller magnitudes compared to lower frequency 

components, so the role of pre-emphasis filter is to balance the frequency spectrum, (2) 

avoid numerical complexities during the Fourier transform computation, and (3) a pre-

emphasis filter may improve the signal-to-noise ratio (SNR). 
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 𝑦(𝑡) = 𝑥(𝑡) −  𝛼𝑥(𝑡 − 1) (1) 

A first order pre-emphasis filter is described in equation (1), where α is the filter 

coefficient and it takes values 0.95 or 0.97. An audio signal before and after pre-

emphasis is illustrated previously in Figure 4.5 and Figure 4.6 respectively. Since mean 

normalization, that will be discussed in later part, can achieve most of the motivations 

for the pre-emphasis filter, so in modern systems pre-emphasis filter have a modest 

effect [41].  

Framing: After pre-emphasis step, fixed length analysis frames are generated 

by slicing the audio signal. These audio frames are shifted by a fixed time step. Audio 

signal frequencies change over time, so calculating the Fourier transform across the 

entire signal does not make sense because the frequency contours of the signal will be 

lost over time. To address this issue, the short-time processing is utilized where it can be 

assumed that frequencies in a signal are stationary over a very short period of time. 

Therefore, by calculating a Fourier transform over the concatenated adjacent short-time 

frames we obtain a good approximation of the frequency contours. The sizes of analysis 

frames in sound recognition applications typically range from 20 ms to 40 ms with 50% 

(+/- 10 %) overlap between consecutive frames [41]. 

Window: Once the signal sliced into frames, a window function such as 

Hamming window is applied to each frame. Hamming window has the following form: 

 𝑤[𝑛] = 0.54 − 0.46 ∗ cos(
2𝜋𝑛

𝑁 − 1
) (2) 

Where N is the length of the window, 0 ≤ 𝑛 ≤ 𝑁 − 1. Applying Hamming 

window to the analysis frames has many benefits: (1) reduce spectral leakage, and (2) 

counteract the assumption made by the FFT that the data is infinite. Figure 4.8 represents 

the graph of Hamming window. 
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Figure 4.8. Hamming window 

Fourier transform and power spectrum: N-point FFT can be now applied to 

each frame in order to calculate the frequency spectrum; in this case it is called Short-

Time Fourier Transform (STFT). The power spectrum (periodogram) is computed using 

the following formula: 

 𝑃 =
|𝐹𝐹𝑇(𝑥𝑖)|2

𝑁
 (3) 

Where, 𝒙𝒊 is the 𝑖𝑡ℎ frame of the signal x. 

Filter banks: The last step for filter banks calculating is applying triangular 

filters on a Mel-scale to the power spectrum in order to extract frequency bands. The 

purpose of applying Mel-scale is to mimic the non-linear human hear perception of 

sound. Less discriminative at higher frequencies and more discriminative at lower 

frequencies. The following two equations (4) and (5) convert between Hertz and Mel. 

 𝑚 = 2595 log10 (1 +
𝑓

700
) (4) 

 𝑓 = 700(10
𝑚

2595⁄ − 1) (5) 

As shown in Figure 4.9 each filter in the filter banks is triangular with unit 

response at the center frequency and decreased linearly toward 0 till it reaches the center 

frequencies of the two adjacent filters where the response is 0.  
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Figure 4.9. Mel-scale filters 

The following equation (6) models filter banks. 

 0 𝑘 < 𝑓(𝑚 − 1)  

 
𝑘 − 𝑓(𝑚 − 1)

𝑓(𝑚) − 𝑓(𝑚 − 1)
 𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)  

𝐻𝑚(𝑘) = 1 𝑘 = 𝑓(𝑚) (6) 

 
𝑓(𝑚 + 1) − 𝑘

𝑓(𝑚 + 1) − 𝑓(𝑚)
 𝑓(𝑚) < 𝑘 ≤ 𝑓(𝑚 + 1)  

 0 𝑘 > 𝑓(𝑚 + 1)  

Mel-scaled spectrogram can be obtained by applying the above filter bank to the 

power spectrum. The resulting Mel-scale filter banks (spectrogram of the drone’s audio 

signal) before normalization are shown in Figure 4.10.  

 

Figure 4.10. Mel-scale filter banks of drone’s audio signal (spectrogram) 

MFCCs: The filter bank coefficients calculated in the previous step are highly 

correlated, which can lead to some problems in some traditional machine learning 

algorithms. Therefore, by applying Discrete Cosine Transform (DCT) to the correlated 
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filter bank coefficients we get a compressed (de-correlated) representation of these 

coefficients. In most sound recognition systems, the number of retained Cepstral 

coefficients is between 2 and13 and all other coefficients are discarded. The discarded 

coefficients represent fast changes in the filter bank coefficients, and these fine details 

don’t contribute to sound recognition performance [41]. The resulting MFCCs before 

normalization are shown in Figure 4.11.  

 

Figure 4.11. MFCCs of drone’s audio signal 

Mean normalization: in order to improve the SNR and balance the spectrum of 

the audio signal, mean normalization can be applied by subtracting the mean of each 

coefficient from all frames. The normalized Mel-scale filter banks and MFCCs are 

shown in Figure 4.12 and Figure 4.13. 

 

                                  Figure 4.12. Normalized Mel-scale filter banks 
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Figure 4.13. MFCCs of drone’s audio signal after normalization 

4.3.2.4. MFCCs and Mel-scale filter banks comparison 

To this point, the required steps for calculating the Mel-scale filter banks and 

MFCCs were discussed in terms of implementation and motivation. It is interesting to 

note that in order to calculate Mel-scale filter banks we need to implement several steps, 

these steps are inspired by the human perception of acoustic signals and the nature of 

these signals. However, the limitation of some machine learning algorithms toward 

highly correlated data is the underlying reason of implementing some extra steps in 

order to calculate MFCCs. The DCT was required to de-correlate the filter bank 

coefficients, this procedure also referred to as whitening. With advent of machine 

learning algorithms which are less susceptible to highly correlated inputs [42], one 

might ask question if there is still a need to use MFCCs as a feature extraction technique 

in deep learning based sound recognition systems; and that what will be investigated by 

using both techniques (MFCCs and Mel-scale filter banks) with our acoustic models 

and see which technique yields the best results.  

4.3.3. Deep learning models 

4.3.3.1. Convolutional neural network model 

Using several architectures such as ResNet [43] and VGG nets [44] deep 

convolutional neural networks (CNNs) have shown outstanding performance in pattern 

recognition applications [45]. A typical CNN architecture involves three important 

parts: convolutional layers, pooling layers, and fully-connected layers. 

A convolutional layer consists of a set of filters (also called kernels), each filter 

has a receptive field. Convolutional layers are able to deal with two dimensional data 

with translation due to the shared filters and local connectivity. This local connectivity 
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is highly effective in capturing highly correlated values and useful patterns with time-

frequency representation of audio signal data [45]. In the Mel-scale filter banks 

(spectrogram) of drone’s sound shown in Figure 4.10, it can be observed that the drone 

sound has noticeable invariance characteristics in the vicinity of 4.1 KHz. The 

convolution operation for input s is described according to the following equation (7): 

 𝑎𝑖𝑗 = 𝑓 ( ∑ ∑ 𝑤𝑚𝑛𝑠(𝑖+𝑚)(𝑗+𝑛) + 𝑏

𝑁−1

𝑛=0

𝑀−1

𝑚=0

) (7) 

Where, 𝑎𝑖𝑗 represents output after convolution (the feature representation). 𝑓 

denotes the activation function (ReLU, Sigmoid, or Tanh).  M and N denote the height 

and width of the kernel (filter), w is the convolution kernel weights, and b represents the 

bias offset. Further, (i, j) and (m, n) denote the position indices [45].  

After several convolutional layers, a pooling layer is generally applied. The 

pooling layer aims to reduce the number of parameters in a convolutional neural 

network, it actually provides a form of non-linear down-sampling. The output of the 

pooling layer is given as follow: 

 𝑝 = 𝜎(�́�) (8) 

Where,  𝑝 is the output and �́� denotes the input of the pooling layer. The down-

sampling operation over the receptive field is denoted by the function 𝜎(. ), i.e. 

maximum or average function as illustrated in Figure 4.14 Figure 4.15. The input �́� has 

dimensions 𝐿 × 𝐿, and the size of the output 𝑝 is 
𝐿

𝐾
×

𝐿

𝐾
  where the receptive field size is 

𝑘 × 𝑘  [45].  

                      

Figure 4.14. Max pooling function 
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Figure 4.15. Average pooling function 

After convolution and pooling operations, the multiple feature maps are 

aggregated and used as the input to the fully-connected layer. The operation in the fully-

connected layer is described by the following equation (9): 

 𝑎𝑙 = 𝑓(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙) (9) 

Where, 𝑎𝑙 and 𝑎𝑙−1 are the output and input of layer 𝑙 respectively. Function 𝑓 

denotes the activation function and 𝑙 is the index of the 𝑙𝑡ℎ fully-connected layer. 

              

Figure 4.16. CNN model’s architecture 
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Figure 4.16 shows our proposed CNN architecture which consists of thirteen 

layers. These layers are organized as four successive convolutional layers, one pooling 

layer, one dropout layer, one flatten layer, and six successive fully-connected (dense) 

layers. The first layer in the model is a convolution layer which performs a convolution 

over the input image (taken from Mel-scale filter banks or from MFCCs of drone’s 

audio signals, the dimensions of the image depend on the feature extraction technique 

and frame size) with 16 kernels (filters) characterized by 3×3 Receptive Fields (RFs) 

with unitary depth and stride in both dimensions. The output of the first convolutional 

layer is passed to the second convolutional layer which has the same properties of the 

first layer except the number of kernels which is 32. The third and fourth convolutional 

layers are the same as the first and second with the exception that more kernels (64 and 

128 respectively) are used in order to grant higher level representation. The obtained 

feature maps from the first four convolutional layers are then subsampled with a max-

pooling layer that operates over 2×2 non overlapping squares. The output of the max 

pooling layer is then passed to a dropout layer, the main task of this layer is to prevent 

overfitting so it works as a regularization technique. After that, the feature maps are 

flattened from 2D into 1D in order to pass them to the fully-connected layers. We have 

6 successive fully-connected layers; these layers have the same properties except the 

number of neurons in each layer (starting 128, 64, 32, 16, 8, and 2). Since the 

classification involves two different classes (‘Drone’, ‘No Drone’), the last layer in the 

model is a softmax layer composed of two fully-connected neurons. The activation 

function used for kernels in all convolutional layers and fully-connected layers is the 

rectifier function. Therefore kernels are usually called rectifier linear units (ReLUs) 

[46].  

In order to obtain the classification for an audio segment we split it into 

sequences (frames), then we average all prediction scores obtained for these sequences. 

The output of the CNN 𝑦(𝑖) is now a vector which contains all class-wise prediction 

scores for the 𝑖𝑡ℎ sequence. The predicted class 𝑐∗ for the whole audio segment is 

computed according to the following equation (10): 

 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐

[
1

𝑀
∑ 𝑦𝑐

(𝑖)

𝑀

𝑖=1

] (10) 
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Where, M is the total sequences number into which the audio segment is split 

and 𝑦𝑐
(𝑖)

 is the 𝑐𝑡ℎ entry of 𝑦(𝑖) [46]. The proposed CNN architecture (model) is 

implemented using Keras library for Python and it is trained using the CPU unit. The 

total number of epochs is 10 and the batch size is 64.  In order to train the model we use 

the categorical cross-entropy as a loss function, and we use the adaptive momentum 

(Adam) as an optimization algorithm to minimize the loss function [47].  

4.3.3.2 Recurrent neural network model 

Recurrent Neural Networks (RNNs) are among the most popular deep neural 

networks that are designed to make use of past information to feed forward the network. 

RNNs work perfectly and flexibly with time-series signals (sequence data) such as 

audio and video, they repeat the same task with memory so the context of the 

information is accumulated up to a given moment. The role of memory elements is to 

prevent the vanishing gradient problem which reduces the influence of past data [48].  

In natural language processing and other sequence tasks RNNs are very effective 

because they have memory. At a given time instance t, RNNs read an input 𝑥〈𝑡〉 (such as 

a word or audio segment), and remember previous information (context) that get passed 

from one time-step to the next. This allows a unidirectional RNN to process later inputs 

by taking information from the past, while a bidirectional RNN can process later inputs 

by taking information from the past and the future. 

 

Figure 4.17. RNN basic model 

Figure 4.17 shows a basic RNN which consists of a set of RNN cells. A recurrent 

neural network can be seen as a set of repeated cells. Figure 4.18 shows the basic RNN 

cell. 
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Figure 4.18. Basic cell in recurrent neural network 

Where, 𝑥〈𝑡〉 is the current input,  𝑎〈𝑡−1〉 is the previous hidden state which 

contains information from the past, and 𝑎〈𝑡〉 is the output that will be passed to the next 

RNN cell and it is also used to predict 𝑦〈𝑡〉. The above mentioned recurrent neural 

network is called conventional RNN. Another RNN architecture is the Long Short-Term 

Memory (LSTM) that was specially designed to accurately model temporal sequences 

and their long-range dependencies [49]. LSTM is more effective than conventional 

RNN especially for acoustic modeling tasks, because LSTM overcomes some modeling 

weaknesses of RNNs [49]. 

 

Figure 4.19. LSTM cell architecture 
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Figure 4.19 shows the architecture of LSTM cell where 𝑥〈𝑡〉 is the input sequence, 

𝑎〈𝑡−1〉 is the previous hidden state, and 𝑐〈𝑡−1〉 is the memory variable of the previous 

cell. 𝑎〈𝑡〉 is the output of the cell that will be passed to the next cell and it is also used in 

𝑦〈𝑡〉 computation. 𝑐〈𝑡〉 is the memory variable that will be passed to the next cell. As can 

be seen, LSTM contains a set of gates in order to control the flow of information. These 

gates are: forget gate, update gate, and output gate. In order to understand the working 

mechanism of LSTM, let’s suppose that we want to use LSTM for keeping track of 

grammatical structures, like whether the subject is plural or singular, while reading 

words inside a piece of text. The task of each gate is listed below: 

Forget gate: let’s assume that the subject changes from a plural to a singular 

word, so we need a way to get rid of the previous memory value which is plural word. 

The forget gate in LSTM allows us to do this. The operation of forget gate is described 

by the following equation (11): 

 Г𝑓
〈𝑡〉

= 𝜎(𝑊𝑓[𝑎〈𝑡−1〉, 𝑥〈𝑡〉] + 𝑏𝑓) (11) 

Where, 𝑊𝑓 are the weights that control the behavior of the forget gate, 𝜎 is 

sigmoid function. In the equation (11) 𝑎〈𝑡−1〉 and 𝑥〈𝑡〉 are concatenated then multiplied 

by 𝑊𝑓 then add a bias 𝑏𝑓, the resulting vector Г𝑓
〈𝑡〉

 is a vector with values between 0 and 

1. The previous cell memory state vector 𝑐〈𝑡−1〉 will be multiplied element-wise by the 

output vector of the forget gate Г𝑓
〈𝑡〉

. So if a specific value in Г𝑓
〈𝑡〉

 is 0 (or close to 0), the 

LSTM will remove (forget) that piece of information (e.g. the plural subject) in the 

corresponding component of 𝑐〈𝑡−1〉. However, if the value in Г𝑓
〈𝑡〉

 is one, so the previous 

information corresponding to this value will be kept. 

Update gate: once the plural subject has been forgotten, we need a way to 

update it to the new value that is now singular. The update gate in LSTM achieves this 

task. The operation of the update gate is described by the following equation: 

 Г𝑢
〈𝑡〉

= 𝜎(𝑊𝑢[𝑎〈𝑡−1〉, 𝑥〈𝑡〉] + 𝑏𝑢) (12) 

Where, 𝑊𝑢 are weights control the behavior of update gate, the output of the 

update gate is a vector Г𝒖
〈𝒕〉

 with values between 0 and 1. This vector will be multiplied 

element-wise by �̃�〈𝑡〉 in order to compute 𝑐〈𝑡〉. In order to update the new subject (e.g. 
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the singular subject), a new vector of numbers has been created which can be added to 

the previous cell memory variable 𝑐〈𝑡−1〉. This vector is �̃�〈𝑡〉 and can be computed 

according to the following equation: 

 �̃�〈𝑡〉 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎〈𝑡−1〉, 𝑥〈𝑡〉] + 𝑏𝑐) (13) 

Finally, the new memory variable 𝑐〈𝑡〉 of current LSTM cell is calculated 

according to following equation: 

 𝑐〈𝑡〉 = Г𝑓
〈𝑡〉

∗ 𝑐〈𝑡−1〉 + Г𝑢
〈𝑡〉

∗ �̃�〈𝑡〉 (14) 

Output gate: now it is time to calculate the output of the current LSTM cell 

according to the following equations: 

 Г𝑜
〈𝑡〉

= 𝜎(𝑊𝑜[𝑎〈𝑡−1〉, 𝑥〈𝑡〉] + 𝑏𝑜) (15) 

 𝑎〈𝑡〉 = Г𝑜
〈𝑡〉

∗ 𝑡𝑎𝑛ℎ(𝑐〈𝑡〉) (16) 

 

Figure 4.20. Proposed RNN architecture 

Figure 4.20 shows the proposed LSTM-RNN acoustic model, it involves 10 

successive layers. It starts with two successive LSTM layers; these two layers have the 

same properties in terms of dimensionality of the output space (128) and returning the 

last output in the output sequence. After two LSTM layers, a dropout layer is needed for 
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regularization in order to prevent overfitting. The output of dropout layer is then passed 

to 4 successive (TimeDistributed) layers. This type of layers is a wrapper applies a layer 

(Dense in our model) to every temporal slice of an input, after that the feature maps are 

flattened from 2D to 1D in order to pass them to the final fully-connected layer which 

has 2 neurons. The activation function used in Dense layers is the rectifier ReLU 

function. The proposed LSTM-RNN model is also implemented using Keras library for 

python and it is trained using the CPU unit. We used the same settings of the CNN 

model in training the LSTM-RNN model in terms of the number of epochs 10, batch 

size 64, and optimization algorithm (Adam). In order to obtain the classification of an 

audio segment, we follow the same steps previously mentioned in the CNN model. 

4.4. Implementation Tools 

The implementation tools that we used during implementation and testing are 

divided into two main groups. The software tools include the required programming 

frameworks, libraries, and development environment. On the other hand, hardware tools 

that include the devices and components we used in data acquisition, such as the sound 

card, several drones, and microphones. 

4.4.1. Software tools 

4.4.1.1 Python 

Python is an interpreted, object-oriented, high-level programming language with 

dynamic semantics. Python comes with a plenty of packages for data analysis and 

manipulation. It is very attractive for use as a glue language to connect existing 

components, as well as for rapid application development because it is combined with 

dynamic typing and dynamic binding, and because its built-in data structures [50]. In 

the field of artificial intelligence, machine learning, and deep learning it is highly 

important to choose the appropriate programming language. We have many choices 

such as MRTLAB, C++, Java, and Python; but we choose Python because it is an 

intuitive coding language and it comes with a full-features library line called 

frameworks. These frameworks reduce the time required to get perfect results. The 

Python version that we used is Python 3.7 and we installed it with Anaconda.  

4.4.1.2 Anaconda 

Anaconda is a data processing and scientific computing platform based on 

Python. In other words, Anaconda is a Python distribution integrated with installation 
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and package management tools; it runs on Linux, Windows, and Mac OS. Anaconda 

offers everything we need for machine learning, deep learning, and data science [51]. It 

includes the following components: 

• The core Python language. 

• More than 100 Python packages.  

• Spyder and Jupyter notebook editors. 

• Conda which is the Anaconda package manager used for installing and 

updating Anaconda packages. 

Numpy, Scipy, and Pandas are examples of Anaconda’s Python packages. 

Numpy is a library (package) for numerical computation. Scipy is a package for 

scientific computation, and Pandas is a package for data analysis. Figure 4.21 shows 

Anaconda navigator environment.  

 

Figure 4.21. Anaconda navigator environment 

4.4.1.3. Tensorflow 

Tensorflow is an end-to-end open source for machine learning. Due to its libraries and 

community resources, in addition to its comprehensive and flexible ecosystem tools, 

Tensorflow let researchers push the state-of-the-art in ML and develop ML-powered 

applications. Tensorflow is created by Google Brain team, and utilizes Python to 

provide an appropriate API for building applications [52]. Tensorflow provides 

developers with a set of tools to create dataflow graphs (structures) describing the flow 

of data through a series of processing unites (nodes), where each node is a mathematical 
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operation, and connections between nodes are multidimensional data arrays or called 

tensors [52]. We use Tensorflow 1.13 since it is compatible with Python 3.7. There is a 

special version of Tensorflow called Tensorflow GPU that has been designed for 

computers provided with GPU unites to accelerate performance. 

4.4.1.4. Keras 

Keras is an open-source library for building and developing neural networks, it 

is written in Python and able to run over Tensorflow. It is especially designed to make 

researchers and developers able to go from idea to result within the least possible delay 

enabling fast experimentation [53]. Keras is an appropriate library for deep learning 

applications for the following reasons: 

• User friendliness, modularity, and extensibility of Keras provide 

developers (users) with easy and fast prototyping. 

• Keras supports both CNN and RNN, in addition to any combination of 

the two. 

• Keras runs seamlessly on both CPUs and GPUs. 

The version of Keras that we use is 2.2.4 which is compatible with Python 3.7 

and Tensorflow 1.13. 

4.4.1.5. Scikit-learn 

Scikit-learn or Sklearn is a high level machine learning library written in Python 

which provides many supervised and unsupervised learning algorithms. It is simple and 

effective tools for data analysis and data mining, and it has been built upon Numpy, 

Scipy, and Matplotlib [54]. Scikit-learn provides the following functionalities: 

• Regression such as linear and logistic regression. 

• Classification such as support vector machine and k-nearest neighbor. 

• Model selection. 

• Preprocessing such as min-max normalization. 

4.4.1.6. Cubase LE  

Cubase LE is a compact version of Cubase Pro which uses the same core 

technologies, and which provides the essential tools for recording, editing, and mixing. 

In the computer-based production world, Cubase is the perfect entry with easy-to-use 
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software tools [55]. The version that we use in recording our data is Cubase LE 5 that 

actually comes with the TASCAM US-1800 device. 

4.4.2. Hardware tools 

4.4.2.1. TASCAM US-1800 

It is an audio interface from TASCAM with many inputs more than any device 

existed in the market in its class. This interface offers up to 16 inputs (14 Analog and 2 

Digital) with 96 KHz/24-bit audio resolution, and 4 outputs that are transmitted to 

Windows or Mac over high-speed USB 2.0 connection. The US-1800 interface 

provides: 8 XLR microphone inputs with phantom power and 60 dB of clean gain, 6 

balanced line inputs, stereo S/PDIF, and digital and MIDI in and out [8]. TASCAM US-

1800 is the perfect choice if we want the most inputs with the minimum amount of cash 

into our computer. The US-1800 inputs and outputs are shown in Figure 4.22. 

 

Figure 4.22. TASCAM US-1800 audio interface 

4.4.2.2. AT2031 microphone 

For professional recording studios, stringed instruments in critical studios, and 

live applications the AT2031 microphone is the perfect and ideal microphone. Due to its 

permanently polarized element which offers extended frequency response with a slight 

rise in the high frequency range, it provides a more detailed sound. This microphone 

offers a wide dynamic range due to its high SPL handling capability and low self-noise 

making it perfectly suited for the most demanding applications [56]. The AT2031 

microphone has the following features: 

• Wide dynamic range and high SPL handling. 

• Excellent, smooth, and extended frequency response with a slight rise in 

the high frequency region. 

• Improved isolation of desired sound source due to its centroid polar 

pattern. 
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• Low self-noise making it a perfect choice for digital recordings. 

• Switchable 150 Hz 6 dB/oct high-pass filter. 

• Rugged construction and outstanding performance. 

The hardware tools that we use are illustrated in Figure 4.23, and the array 

installation for collecting drones’ records is illustrated in Figure 4.24. 

 

Figure 4.23. The hardware tools US-1800 and AT2031   
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Figure 4.24. Installing an array of 5 AT2031 microphones with US1800 sound card  

 

4.5. Implementation Results 

4.5.1. Classification assessment 

In order to evaluate classification models, we have several measures. The 

majority of these measures are scalar metrics with some graphical methods. In 

classification models, we use the training data to build a classifier (classification model) 

which can estimate (predict) the class label for a new sample. In order to evaluate 

different learning algorithms, the output of these algorithms must be assessed and 

analyzed carefully and the interpretation of this analysis must be correct. Any 

classification process includes three main phases called training phase, validation phase, 

and test phase. During the training phase the parameters of the model are adjusted in 

order to find the best values yielding to the minimum error. The goal of learning 

algorithm is to learn from the training data for predicting classes of unseen data, and 

this is called the training phase. Classification problems are categorized into binary 
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classification where there are only two class labels, and multi-label classification where 

the number of class labels is greater than two. 

In the case of imbalanced datasets where the number of samples of one class is 

greater or smaller than the number of samples of the other class(es), several assessment 

methods are affected by this imbalance.  

 

Figure 4.25. Confusion matrix of our system 

Let’s consider the confusion matrix in Figure 4.25 above. The ratio between 

positive and negative samples (P/N) called class distribution which represents the 

relationship between the right and left columns. So any classification assessment metric 

that uses values from both columns of the confusion matrix is sensitive to imbalanced 

datasets [57]. Some evaluation metrics, such as precision and accuracy, use values from 

both columns, so any change in the data distribution will change these metrics. 

4.5.1.1. Accuracy and error rate 

Accuracy is the ratio of the correctly classified samples to the total number of 

samples, and it is the most commonly used metric for classification assessment. The 

accuracy is given according o the following equation: 

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (17) 

Where, N and P denote the number of negative and positive samples 

respectively. The Error Rate (ERR) is defined as the complement of the accuracy 

metric, and it represents the number of misclassified samples from both negative and 

positive classes. ERR is computed according to the following equation: 



 

46 

 

  

 𝐸𝑅𝑅 = 1 − 𝐴𝑐𝑐 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18) 

The problem of ERR and Accuracy is that they are sensitive to imbalanced 

datasets.  

4.5.1.2. Sensitivity and specificity 

Sensitivity represents the correctly classified positive samples to the total 

number of positive samples, it is also called True Positive Rate (TPR), recall, or hit rate. 

The sensitivity is given according to the following equation: 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
 (19) 

 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

𝑇𝑁

𝑁
 (20) 

On the other hand, specificity defined by the ratio of the correctly classified 

negative samples to the total number of negative samples, specificity can be calculated 

according to equation (20), and it is also called True Negative Rate (TNR) or inverse 

recall. In other words, sensitivity represents the portion of the positive samples that 

were correctly classified, and specificity represents the portion of the negative samples 

that were correctly classified. Sensitivity depends on TP and FN that are taken from the 

same column in the confusion matrix, and specificity depends on TN and FP that are 

taken from the same column in the confusion matrix. The sensitivity (TPR or recall) and 

specificity (TNR or inverse recall) are suitable for classification assessment when we 

have imbalanced dataset. 

4.5.1.3. False positive rate and false negative rate 

False Positive Rate (FPR) represents the ratio of the incorrectly classified 

negative samples to the total number of negative samples. It is also called fallout or 

false alarm rate. FPR complements the specificity and represents the portion of negative 

samples that were incorrectly classified. FPR is calculated according to the following 

equation: 

 𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
=

𝐹𝑃

𝑁
 (21) 
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False Negative Rate (FNR) represents the ratio of incorrectly classified positive 

samples to the total number of positive samples, it is also called miss rate and it 

represents the portion of positive samples that were incorrectly classified. 

FNR is calculated according to the following equation (22). Both FPR and FNR 

are suitable for using when we have imbalanced datasets. 

 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
=

𝐹𝑁

𝑃
 (22) 

4.5.1.4. Predictive values 

Positive Prediction Value (PPV) represents the ratio of the correctly classified 

positive samples TP to the total number of positive predicted samples. It is also called 

precision and given according to the equation (23): 

 𝑃𝑃𝑉 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (23) 

Negative Prediction Value (NPV) represents the ratio of the correctly classified 

negative samples to the total number of negative predicted samples. It is also called 

inverse precision and given according to equation (24): 

 𝑁𝑃𝑉 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (24) 

4.5.1.5. Receiver operating characteristics 

 Receiver Operating Curve (ROC) is a two dimensional curve in which the FPR 

is the X-axis and the TPR is the Y-axis. The ROC curve has been used for evaluating 

many systems such as medical decision-making systems, diagnostic systems, and 

machine learning systems [58]. The ROC curve makes balance between costs and 

benefits, costs represented by false positives and benefits represented by true positives. 

Our classification models and many other classifiers produce only class decisions for 

each sample of the test data, and hence produce only one confusion matrix which 

corresponds to one point in the ROC space. However, there are many techniques, such 

as class portions and using combinations of scoring and voting, are used to generate full 

ROC curve [58]. An example of ROC curve is illustrated in Figure 4.26, in this curve 

there are four important points A (lower left), B (upper left), C (upper right), and D 

(lower right). The point A (0,0) represents a classifier which classifies all negative 
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samples correctly while there is no positive classification. The point D (1,0) represents a 

classifier which misclassifies all negative and positive samples. The point B (0,1) 

represents a classifier which classifies all negative and positive samples correctly, and 

this point represents the ideal operating point or the perfect classifier. The point C (1,1) 

represents a classifier which classifies all positive samples correctly while misclassifies 

all negative samples.  

                 

Figure 4.26. Receiver operating curve (ROC) 

4.5.1.6. Area under the ROC curve 

Area Under Curve (AUC) is a scalar value (metric) which determines the area 

under the ROC curve in order to compare different classifiers. The AUC metric takes 

any value between 0 and 1, and there is not any realistic classifier with an AUC less 

than 0.5. Two classifiers may have different ROC curves but they have the same AUC 

score [57]. 

4.5.1.7. Precision-recall curve 

Precision-Recall (PR) curve is a two dimensional curve in which the X-axis 

represents the recall (TPR) and the Y-axis represents the precision (PPV), so it shows 

the relationship between recall and precision that are widely used for classification 

performance evaluation. The PR curve has the same concept of ROC curve, but in PR 

curve there is no need for the TN value.  
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4.5.2. Experimental results 

In this section, we conducted a set of experiments in order to evaluate the 

performance of the two proposed acoustic models with different parameters settings. In 

these experiments we use our built dataset which is divided into two main sets, a 

training set that contains 9380 audio clips and a test set containing 1040 audio clips. We 

group the audio clips into two different sets because it is really important not to train 

and evaluate the model’s performance on audio clips coming from the same location, 

since this would falsify the generalization score. The lengths of audio clips in both train 

and test sets are different. Figure 4.27 and Figure 4.28 show the audio clips lengths 

distribution in train and test sets respectively.  

                    

Figure 4.27. Distribution of audio clips lengths in train set 

                                  

Figure 4.28. Distribution of audio clips lengths in test set 
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The acquired data is classified by implementing MFCCs and Mel-scale filter 

banks, and deep neural networks. As a baseline approach we initialized the feature 

extraction parameters and the network hyper-parameters to the following common 

values: 

• Acoustic features: MFCCs and Mel-scale filter banks 

• Sampling rate: 16, 32, and 44.1 KHz 

• Frame length: 100 ms 

• Training period: 10 epochs 

• Batch size: 64 samples 

• Optimization algorithm: Adaptive Moment Estimation (Adam). 

For batch size it is really important to keep this number small for better 

generalization. The proposed acoustic model (RNN and CNN) are evaluated in terms of 

classification accuracy, precision, recall, f1-score, average score, area under ROC curve 

AUC, confusion matrix, ROC curve, and PR curve. The performance results of each 

model are presented in the following two sections. 

4.5.2.1. RNN model’s experimental results 

We trained and this model 6 times, in each time we used different parameters 

settings. The results are listed below. 

 RNN with MFCCs, 16 KHz sampling rate, and 100 ms frame length: the 

total time that is needed to train this model during 10 epochs is 42.6 minutes. The 

average time needed in each epoch is 256 seconds. The time needed in each epoch of 

the ten is [264 sec, 255, 255, 255, 254, 255, 255, 254, 255, and 254] from epoch 1 to 10 

respectively. The total number of parameters is 215434. The loss and accuracy in both 

train and validation sets are shown in Figure 4.29. The criterion that is chosen to save the 

best model’s parameters during training is the validation accuracy.  The best recorded 

validation accuracy in epoch (7) Table 4.1. The validation set consists 10 % of the train 

set. 
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Table 4.1. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.1083 0.9612 

Validation set 0.1040 0.9650 

 

Let’s see the performance of this model on test set (unseen data). The accuracy 

on test set is (0.9201), the average precision is (0.8570), and the AUC is (0.9365). The 

precision, recall, and f1-score for positive and negative classes are listed in Table 4.2. 

Table 4.2.  Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.94 0.97 0.95 851 

Drone 0.82 0.71 0.76 189 

 

The confusion matrix of this model is illustrated in Figure 4.30, the ROC of this 

model is illustrated in Figure 4.31, and the PR curve is illustrated in Figure 4.32. 

 

Figure 4.29. Accuracy and loss during training 
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Figure 4.30. Model’s confusion matrix 

      

Figure 4.31. Model’s ROC curve with AUC= 93.65% 

 

Figure 4.32. Model’s PR curve with average precision 85.71% 
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RNN with filter banks, 16 KHz, and 100 ms frame length: the total time that 

is needed to train this model during 10 epochs is 43.2 minutes. The average time needed 

in each epoch is 260 seconds. The time needed in each epoch of the ten is [277 sec, 257, 

257, 258, 257, 257, 257, 257, 257, and 262] from epoch 1 to 10 respectively. The total 

number of parameters is 222090. The loss and accuracy in both train and validation sets 

are shown in Figure 4.33. The criterion that is chosen to save the best model’s parameters 

during training is the validation accuracy.  The best recorded validation accuracy in 

epoch (9) Table 4.3. The validation set consists 10 % of the train set. Let’s see the 

performance of this model on test set (unseen data). The accuracy on test set is (0.9557), 

the average precision is (0.9471), and the AUC is (0.9854). The precision, recall, and 

f1-score for positive and negative classes are listed in Table 4.4. 

Table 4.3. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.1826 0.9295 

Validation set 0.1560 0.9464 

 

 

Figure 4.33. Accuracy and loss during training 
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Table 4.4. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.96 0.98 0.97 851 

Drone 0.91 0.84 0.87 189 

 

The confusion matrix of this model is illustrated in Figure 4.34, the ROC of this 

model is illustrated in Figure 4.35, and the PR curve is illustrated in Figure 4.36. 

     

Figure 4.34. Model’s confusion matrix 

 

Figure 4.35. Model’s ROC curve with AUC= 98.55% 
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Figure 4.36. Model’s PR curve with average precision 94.72% 

RNN with MFCCs, 32 KHz sampling rate, and 100 ms frame length: the 

total time that is needed to train this model during 10 epochs is 42.65 minutes. The 

average time needed in each epoch is 260 seconds. The time needed in each epoch of 

the ten is [263 sec, 254, 255, 256, 254, 255, 255, 255, 255, and 257] from epoch 1 to 10 

respectively. The total number of parameters is 215434. The loss and accuracy in both 

train and validation sets are shown in Figure 4.37. The criterion that is chosen to save the 

best model’s parameters during training is the validation accuracy.  The best recorded 

validation accuracy in epoch (7) Table 4.5. The validation set consists 10 % of the train 

set. Let’s see the performance of this model on test set (unseen data). The accuracy on 

test set is (0.9730), the average precision is (0.9896), and the AUC is (0.9976). The 

precision, recall, and f1-score for positive and negative classes are listed in Table 4.6.  

 

Figure 4.37. Accuracy and loss during training 
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Table 4.5. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.1031 0.9645 

Validation set 0.1030 0.9639 

 

The confusion matrix of this model is illustrated in Figure 4.38, the ROC of this 

model is illustrated in Figure 4.39, and the PR curve is illustrated in Figure 4.40. 

Table 4.6. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.98 0.98 851 

Drone 0.90 0.96 0.93 189 

 

       

Figure 4.38. Model’s confusion matrix 
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Figure 4.39. Model’s ROC curve with AUC= 99.76% 

 

Figure 4.40. Model’s PR curve with average precision 98.96% 

RNN with filter banks, 32 KHz sampling rate, and 100 ms frame length: the 

total time that is needed to train this model during 10 epochs is 49.5 minutes. The 

average time needed in each epoch is 297 seconds. The time needed in each epoch of 

the ten is [344 sec, 291, 292, 292, 290, 290, 292, 292, 294, and 293] from epoch 1 to 10 

respectively. The total number of parameters is 222090. The loss and accuracy in both 

train and validation sets are shown in Figure 4.41. The criterion that is chosen to save the 

best model’s parameters during training is the validation accuracy.  The best recorded 

validation accuracy in epoch (10) Table 4.7. The validation set consists 10 % of the train 

set. Let’s see the performance of this model on test set (unseen data). The accuracy on 

test set is (0.9875), the average precision is (0.9948), and the AUC is (0.9988). The 

precision, recall, and f1-score for positive and negative classes are listed in Table 4.8. 
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Table 4.7. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.1250 0.9552 

Validation set 0.1329 0.9525 

 

The confusion matrix of this model is illustrated in Figure 4.42, the ROC of this 

model is illustrated in Figure 4.43, and the PR curve is illustrated in Figure 4.44. 

Table 4.8. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 1 0.99 0.99 851 

Drone 0.94 0.99 0.97 189 

 

 

Figure 4.41. Accuracy and loss during training 
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Figure 4.42. Model’s confusion matrix 

 

Figure 4.43. Model’s ROC curve with AUC= 99.89% 

 

Figure 4.44. Model’s PR curve with average precision 99.49% 
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RNN with MFCCs, 44.1 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 47.28 minutes. The average 

time needed in each epoch is 284 seconds. The time needed in each epoch of the ten is 

[310 sec, 280, 281, 281, 281, 280, 281, 281, 281, and 281] from epoch 1 to 10 

respectively. The total number of parameters is 215434. The loss and accuracy in both 

train and validation sets are shown in Figure 4.45. The criterion that is chosen to save the 

best model’s parameters during training is the validation accuracy. The best recorded 

validation accuracy in epoch (6) Table 4.9. The validation set consists 10 % of the train 

set. Let’s see the performance of this model on test set (unseen data). The accuracy on 

test set is (0.9721), the average precision is (0.9865), and the AUC is (0.9956). The 

precision, recall, and f1-score for positive and negative classes are listed in Table 4.10.  

 

Figure 4.45. Accuracy and loss during model training 

Table 4.9. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.0778 0.9740 

Validation set 0.0659 0.9764 
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Table 4.10. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.98 0.98 851 

Drone 0.90 0.95 0.93 189 

 

The confusion matrix of this model is illustrated in Figure 4.46, the ROC of this 

model is illustrated in Figure 4.47, and the PR curve is illustrated in Figure 4.48. 

 

Figure 4.46. Model’s confusion matrix 

 

Figure 4.47. Model’s ROC curve with AUC= 99.56% 
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Figure 4.48. Model’s PR curve with average precision 98.65% 

RNN with filter banks, 44.1 KHz sampling rate, 100 ms frame length: the 

total time that is needed to train this model during 10 epochs is 48.95 minutes. The 

average time needed in each epoch is 294 seconds. The time needed in each epoch of 

the ten is [337 sec, 288, 290, 290, 290, 289, 289, 288, 288, and 288] from epoch 1 to 10 

respectively. The total number of parameters is 222090. The loss and accuracy in both 

train and validation sets are shown in Figure 4.49. The criterion that is chosen to save the 

best model’s parameters during training is the validation accuracy. The best recorded 

validation accuracy in epoch (7) Table 4.11. The validation set consists 10 % of the train 

set. Let’s see the performance of this model on test set (unseen data). The accuracy on 

test set is (0.9644), the average precision is (0.9834), and the AUC is (0.9962). The 

precision, recall, and f1-score for positive and negative classes are listed in Table 4.12. 

 

Figure 4.49. Accuracy and loss during model training 
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Table 4.11. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.1349 0.9519 

Validation set 0.1493 0.9461 

 

The confusion matrix of this model is illustrated in Figure 4.50, the ROC of this 

model is illustrated in Figure 4.51, and the PR curve is illustrated in Figure 4.52. 

Table 4.12. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.96 0.98 851 

Drone 0.86 0.97 0.91 189 

 

 

Figure 4.50. Model’s confusion matrix 
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Figure 4.51. Model’s ROC curve with AUC= 99.62% 

 

Figure 4.52. Model’s PR curve with average precision 98.35% 

4.5.2.2. CNN model’s experimental results 

We trained and this model 6 times, in each time we used different parameters 

settings. The results are listed below. 

CNN with MFCCs, 16 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 174.5 minutes. The average 

time needed in each epoch is 1047 seconds. The time needed in each epoch of the ten is 

[1053 sec, 1043, 1049, 1048, 1049, 1043, 1042, 1042, 1052, and 1054] from epoch 1 to 

10 respectively. The total number of parameters is 501514. The loss and accuracy in 

both train and validation sets are shown in Figure 4.53. The criterion that is chosen to 

save the best model’s parameters during training is the validation accuracy. The best 

recorded validation accuracy in epoch (10) Table 4.13. The validation set consists 10 % 
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of the train set. Let’s see the performance of this model on test set (unseen data). The 

accuracy on test set is (0.9409), the average precision is (0.9193), and the AUC is 

(0.9567). The precision, recall, and f1-score for positive and negative classes are listed 

in Table 4.14. 

Table 4.13. Best recorded loss and accuracy during training 

 Loss Accuracy 

Train set 0.0623 0.9777 

Validation set 0.0732 0.9735 

 

 

Figure 4.53. Accuracy and loss during model’s training 

Table 4.14. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.94 1 0.97 851 

Drone 1 0.72 0.84 189 

 

The confusion matrix of this model is illustrated in Figure 4.54, the ROC of this 

model is illustrated in Figure 4.55, and the PR curve is illustrated in Figure 4.56. 
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Figure 4.54. Model’s confusion matrix 

 

Figure 4.55. Model’s ROC curve with AUC= 95.68% 

 

Figure 4.56. Model’s PR curve with average precision 91.94% 
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CNN with filter banks, 16 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 363.61 minutes. The average 

time needed in each epoch is 2182 seconds. The time needed in each epoch of the ten is 

[2210 sec, 2199, 2179, 2175, 2174, 2176, 2179, 2175, 2176, and 2180] from epoch 1 to 

10 respectively. The total number of parameters is 960266. The loss and accuracy in 

both train and validation sets are shown in Figure 4.57. The criterion that is chosen to 

save the best model’s parameters during training is the validation accuracy. The best 

recorded validation accuracy in epoch (7) Table 4.15. The validation set consists 10 % of 

the train set. Let’s see the performance of this model on test set (unseen data). The 

accuracy on test set is (0.9528), the average precision is (0.9144), and the AUC is 

(0.9351). The precision, recall, and f1-score for positive and negative classes are listed 

in Table 4.16. 

 

Figure 4.57. Accuracy and loss during model’s training 

Table 4.15. Best recorded loss and accuracy during model’s training 

 Loss Accuracy 

Train set 0.0625 0.9779 

Validation set 0.0539 0.9820 

 

 

 

 



 

68 

 

Table 4.16. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.95 1 0.97 851 

Drone 1 0.74 0.85 189 

 

The confusion matrix of this model is illustrated in Figure 4.58, the ROC of this 

model is illustrated in Figure 4.59, and the PR curve is illustrated in Figure 4.60. 

                    

Figure 4.58. Model’s confusion matrix 

 

Figure 4.59. Model’s ROC curve with AUC= 93.52% 
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Figure 4.60. Model’s PR curve with average precision 91.44% 

CNN with MFCCs, 32 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 177.08 minutes. The average 

time needed in each epoch is 1062 seconds. The time needed in each epoch of the ten is 

[1061 sec, 1064, 1067, 1059, 1059, 1064, 1059, 1062, 1065, and 1065] from epoch 1 to 

10 respectively. The total number of parameters is 501514. The loss and accuracy in 

both train and validation sets are shown in Figure 4.61. The criterion that is chosen to 

save the best model’s parameters during training is the validation accuracy. The best 

recorded validation accuracy in epoch (9) Table 4.17. The validation set consists 10 % of 

the train set. Let’s see the performance of this model on test set (unseen data). The 

accuracy on test set is (0.9846), the average precision is (0.9903), and the AUC is 

(0.9969). The precision, recall, and f1-score for positive and negative classes are listed 

in Table 4.18. 

 

Figure 4.61. Accuracy and loss during model’s training 
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Table 4.17. Best recorded loss and accuracy during model’s training 

 Loss Accuracy 

Train set 0.0469 0.9844 

Validation set 0.0476 0.9821 

 

The confusion matrix of this model is illustrated in Figure 4.62, the ROC of this 

model is illustrated in Figure 4.63, and the PR curve is illustrated in Figure 4.64. 

Table 4.18. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.99 0.99 851 

Drone 0.97 0.94 0.96 189 

 

 

Figure 4.62. Model’s confusion matrix 
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Figure 4.63. Model’s ROC curve with AUC= 99.69% 

 

Figure 4.64. Model’s PR curve with average precision 99.03% 

CNN with filter banks, 32 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 366.85 minutes. The average 

time needed in each epoch is 2201 seconds. The time needed in each epoch of the ten is 

[2223 sec, 2199, 2197, 2197, 2196, 2196, 2211, 2198, 2197, and 2197] from epoch 1 to 

10 respectively. The total number of parameters is 960266. The loss and accuracy in 

both train and validation sets are shown in Figure 4.65. The criterion that is chosen to 

save the best model’s parameters during training is the validation accuracy. The best 

recorded validation accuracy in epoch (10) Table 4.19. The validation set consists 10 % 

of the train set. Let’s see the performance of this model on test set (unseen data). The 

accuracy on test set is (0.9884), the average precision is (0.9853), and the AUC is 
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(0.9902). The precision, recall, and f1-score for positive and negative classes are listed 

in Table 4.20. 

Table 4.19. Best recorded accuracy and loss during model’s training 

 Loss Accuracy 

Train set 0.0355 0.9884 

Validation set 0.0363 0.9865 

 

The confusion matrix of this model is illustrated in Figure 4.66, the ROC of this 

model is illustrated in Figure 4.67, and the PR curve is illustrated in Figure 4.68. 

 

Figure 4.65. Accuracy and loss during model’s training 

Table 4.20. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.99 0.99 851 

Drone 0.97 0.97 0.97 189 
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Figure 4.66. Model’s ROC curve with AUC= 99.3% 

 

Figure 4.67. Model’s PR curve with average precision 98.54% 

 

Figure 4.68. Model’s confusion matrix 
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CNN with MFCCs, 44.1 KHz sampling rate, 100 ms frame length: the total 

time that is needed to train this model during 10 epochs is 177.46 minutes. The average 

time needed in each epoch is 1065 seconds. The time needed in each epoch of the ten is 

[1072 sec, 1060, 1064, 1068, 1063, 1083, 1061, 1061, 1058, and 1058] from epoch 1 to 

10 respectively. The total number of parameters is 501514. The loss and accuracy in 

both train and validation sets are shown in Figure 4.69. The criterion that is chosen to 

save the best model’s parameters during training is the validation accuracy. The best 

recorded validation accuracy in epoch (8) Table 4.21. The validation set consists 10 % of 

the train set. Let’s see the performance of this model on test set (unseen data). The 

accuracy on test set is (0.9855), the average precision is (0.9832), and the AUC is 

(0.9921). The precision, recall, and f1-score for positive and negative classes are listed 

in Table 4.22. 

 

Figure 4.69. Accuracy and loss during model’s training 

Table 4.21. Best recorded loss and accuracy during model’s training 

 Loss Accuracy 

Train set 0.0435 0.9858 

Validation set 0.0405 0.9857 
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Table 4.22. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.99 0.99 851 

Drone 0.96 0.96 0.96 189 

 

The confusion matrix of this model is illustrated in Figure 4.70, the ROC of this 

model is illustrated in Figure 4.71, and the PR curve is illustrated in Figure 4.72. 

                     

Figure 4.70. Model’s confusion matrix 

 

Figure 4.71. Model’s ROC curve with AUC= 99.22% 
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Figure 4.72. Model’s PR curve with average precision 98.32% 

CNN with filter banks, 44.1 KHz sampling rate, 100 ms frame length: the 

total time that is needed to train this model during 10 epochs is 366.6 minutes. The 

average time needed in each epoch is 2200 seconds. The time needed in each epoch of 

the ten is [2214 sec, 2198, 2198, 2207, 2201, 2207, 2206, 2187, 2189, and 2189] from 

epoch 1 to 10 respectively. The total number of parameters is 960266. The loss and 

accuracy in both train and validation sets are shown in Figure 4.73. The criterion that is 

chosen to save the best model’s parameters during training is the validation accuracy. 

The best recorded validation accuracy in epoch (10) Table 4.23. The validation set 

consists 10 % of the train set. Let’s see the performance of this model on test set 

(unseen data). The accuracy on test set is (0.9836), the average precision is (0.9855), 

and the AUC is (0.9935). The precision, recall, and f1-score for positive and negative 

classes are listed in Table 4.24. 

 

Figure 4.73. Accuracy and loss during model’s training 
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Table 4.23. Best recorded loss and accuracy during model’s training 

 Loss Accuracy 

Train set 0.0330 0.9895 

Validation set 0.0338 0.9891 

 

The confusion matrix of this model is illustrated in Figure 4.74, the ROC of this 

model is illustrated in Figure 4.75, and the PR curve is illustrated in Figure 4.76. 

Table 4.24. Model’s classification report 

Class Precision Recall F1-score Support 

No drone 0.99 0.99 0.99 851 

Drone 0.97 0.94 0.95 189 

 

          

Figure 4.74. Model’s confusion matrix 
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Figure 4.75. Model’s ROC curve with AUC= 99.35% 

 

Figure 4.76. Model’s PR curve with average precision 99.55% 
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5. CONCLUSION 

In this thesis, the efficiency of deep learning algorithms in addressing the 

problem of acoustic drone detection was investigated. In this context, an empirical 

analysis of drones and environmental sounds, recorded by a set of audio sensors 

(microphones) using a multichannel sound card (TASCAM US1800), is performed. 

MFCCs and Mel-scaled filter banks are used for acoustic features and these features are 

adopted by the detection system to classify drones’ sounds. In this thesis, the advanced 

deep learning algorithms, which are especially designed for object recognition, can be 

adapted to classify acoustic drones’ sounds using visual frames taken from the running 

MFCCs and spectrograms of sounds.  

In our experiments, we evaluated different sampling rates, acoustic features, and 

two deep neural networks algorithms (CNN and RNN) using our recorded and collected 

dataset. We assessed the classification performance for two different acoustic features 

extraction techniques MFCCs and Mel-scale filter banks, and the best classification 

assessment metrics were obtained using Mel-scale filter banks. Deep convolutional 

neural network models (CNN) showed better performance than the recurrent neural 

network (RNN) models, although RNN models are especially designed for speech 

recognition applications. 

Expanding the training data with different types of drones, represents one of the 

main critical future works. In our setup, we did not take the records of drones from long 

distances that exceed 50 m. So using multiple microphones with beam forming and a 

signal processing technique for filtering in order to achieve directional signal 

transmission can be a future research works which can improve the detection range and 

performance of the proposed model. 
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