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ABSRACT 

 

PARAMETER OPTIMIZATION OF ELECTRIC VEHICLES ACCORDING TO 

DRIVING BEHAVIOR 

 

Tuba Nur SERTTAŞ 

 

Department of Electrical and Electronics Engineering 

Eskişehir Technical University, Institute of Graduate Programs, November, 2019 

Supervisor: Prof.Dr. Ömer Nezih GEREK 

(Co-Supervisor: Prof. Dr. Fatih Onur HOCAOĞLU) 

The thesis aims to reduce the environmental and economic losses caused by the use 

of vehicles. To this end, the drivers are primarily divided into three classes: calm, normal 

and aggressive. Data were recorded from the test drives conducted with male and female 

drivers of different ages with vehicle tracking device and smartphone application. With 

this data, attribute extraction is made and classification accuracy of the drives with 

different attributes is examined. Support Vector Machine, K-Nearest Neighbor and a 

hybrid method using the Support Vector Machine and Markov Chain methods were used 

as classification algorithms, and the drives were divided into the correct classes with an 

accuracy of 98.9%, 93.3% and 92.2% respectively. The purpose of all these operations is 

to ensure the correct classification of the drivers from the available data and to optimize 

the electric vehicle for these drivers. Electric motor has been selected as the component 

to be optimized so that both battery and vehicle size can be changed. Motor power was 

determined for all drive classes as a result of optimization using Multiobjective Genetic 

Algorithm method. Lower engine power means lower battery, smaller car, less production 

costs, less carbon emissions. Greenhouse gas, which is harmful to nature, is released not 

only by the burned gasoline, but also during the production phase of the vehicle and the 

electricity used to charge the battery. With the regulation proposed by the study, economic 

and environmental important steps are taken by changing the preference of the car. 

Keywords: Driver classification, Parameter optimization, Electric vehicle, Support  

         vector machine, Markov chain. 
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ÖZET 

 

SÜRÜCÜ DAVRANIŞINA GÖRE ELEKTRİKLİ ARAÇLARIN PARAMETRE 

OPTİMİZASYONU 

 

Tuba Nur SERTTAŞ 

 Elektrik-Elektronik Mühendisliği Anabilim Dalı  

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Kasım, 2019  

 Danışman: Prof. Dr. Ömer Nezih GEREK 

(İkinci Danışman: Prof. Dr. Fatih Onur HOCAOĞLU) 

 

Tez çalışmasında araç kullanımının sebep olduğu çevresel ve ekonomik kayıpların 

azaltılması hedeflenmektedir. Bu amaç doğrultusunda öncelikle sürücüler sakin, normal 

ve agresif olmak üzere üç sınıfa ayrılmıştır. Farklı yaş dağılımına sahip kadın ve erkek 

sürücüler ile yapılan test sürüşlerinden araç takip cihazı ve akıllı telefon uygulaması ile 

veriler kaydedilmiştir. Bu veriler ile öznitelik çıkarımı yapılmış ve farklı özniteliklerle 

sürücülerin sınıflandırma doğrulukları irdelenmiştir. Destek Vektör Makinesi, En yakın 

komşuluk ve Destek Vektör Makinesi ile Markov zinciri yöntemlerinden faydalanılan 

hibrit bir yöntem sınıflnadırma algoritmaları olarak kullanılmış ve sırasıyla % 98.9, 

%93.3 ve %92.2 doğrulukla sürücüler doğru sınflara ayrılmıştır. Tüm bu işlemlerin amacı 

eldeki verilerden sürücülerin doğru bir şekilde sınıflandırılmasının sağlanarak bu 

sürücüler için elektrikli araç optimizasyonu yapabilmektir. Optimizasyon yapılacak 

bileşen olarak elektrik motoru seçilmiştir bu sayede hem batarya hem de araç boyutu 

üzerinde değişiklik sağlanabilmektedir. Multiobjective Genetic Algorithm yöntemi 

kullanılarak gerçekleştirilen optimizasyon sonucunda tüm sürücü sınıfları için motor 

gücü belirlenmiştir. Daha düşük motor gücü demek daha düşük batarya, daha küçük 

araba, daha az üretim maliyeti, daha az karbon salınımı anlamına gelmektedir. Sadece 

yakılan benzin ile değil aracın ve bataryayı şarj etmek için kullanılan elektriğin üretim 

aşamasında da doğaya zararlı sera gazı salınmaktadır. Çalışmanın önerdiği düzenleme ile 

araba tercihinin değiştirilmesi ile ekonomik ve çevresel önemli adımlar atılmış 

olmaktadır. 

Anahtar Kelimeler: Sürücü sınıflandırma, Elektrikli araç, Parametre optimizasyonu,  

   Destek vektör makinesi, Markov zinciri 
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1. INTRODUCTION 

It is known that the means of transportation of the future will mostly be electric 

vehicles. Developments in electric vehicles effect our lives not only technologically, but 

also as environmental changes. Electric vehicles have a low carbon impact as they do not 

directly cause exhaust emissions, such as vehicles with internal combustion engines. 

Considering gas emissions on earth, the emission rate caused by transportation is too large 

to be ignored. This rate will fall to include electric vehicles in daily life. In order to 

achieve such success, some deficiencies in electric vehicles need to be eliminated. The 

length of the charging cycle, the inadequacy of the charging stations, the high energy 

requirements and the short distance are some of the problems to be solved. However, 

electric vehicle drivers can implement a driving strategy that will positively affect the 

energy management system. Even without changing the driving style, the electric vehicle 

capacity dimensioning, which will provide the same experience, can be optimized. At this 

point, optimum use is possible which allows the driver to request. It is very important to 

define the behavior of the drivers when considering the basic reasons such as the 

reduction of energy and carbon emission. This definition also emerges as the basic 

information needed for such topics as vehicle modeling, reduction of traffic accident, risk 

analysis, insurance operations. For this reason, researchers have been trying to define 

drivers and drives in different ways for different purposes. Defining driver behavior is 

actually the generation of a safety factor for the driver by examining the data obtained 

from driving performed by the driver. Smartphone applications are widely used to collect 

the driving data of the betting. In addition to this, it is also possible to work on the data 

obtained from the vehicle tracking devices and the in-vehicle sensors which come up with 

the developing technology. The data handled can be real data or generated on a test 

platform. In the literature, these data are examined for different purposes, such as driver 

classification, driver identification, vehicle modeling, and road modeling.  In addition, 

the data discussed also show differences in studies. 

Different classification methods were tried by using the attributes extracted from the 

obtained data. The accuracy percentage of the classification process using the Support 

Vector Machine, the k-Nearest Neighbor, and the Support Vector Machine-Markov chain 

method is 98.9,93.3 and 92.2, respectively. The main purpose of the classification of 

drivers is to provide suitable vehicles to the designated drivers. Each driver will choose 

the most suitable vehicle for his class and achieve economic and environmental gains. 
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The main aim of the thesis is to reach exactly this point. The proposed methods are applied 

to all drivers to achieve improvements worldwide. 
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2. RELATED WORK 

 

2.1. Driver Classification and Identification 

In previous studies, the drivers are usually classified according to the various 

maneuvers they perform. These maneuvers vary in the studies in the literature, depending 

on the researcher's handling of the subject. While this maneuver may be a lane change in 

a study, other studies may be at crossroads or pedestrian crossings. Using real data from 

smartphones, Junior et al. attempted to identify aggressive driving events from this 

combination of machine learning algorithms. Various maneuvers have been tested and 

the best techniques and useful data have been tried to be tested (Júnior Ferreira et al., 

2017).  

 In the study presented by Ehmann and Irmscher (2004), driver errors are modeled 

by taking into account the drive control parameters and the effect of the driving cycle, 

thus removing driver types and driving maneuvers. In that study, the drivers were 

classified into four different classes. Augustynowicz (2009) calculated the aggressiveness 

of the drivers based on two criteria. Those who change the position of the accelerator 

pedal most intensively during the test stretches, while their speed varies to the greatest 

degree. The statistical considerations that are specifically addressed are the standard 

deviation of the accelerator pedal and speed. 

Sathyanarayana et al. (2012) analyzed driver behaviors using the Hidden Markov 

Method (HMM). Driving with the test vehicle with various sensors installed was carried 

out and various data were recorded during driving. The driving were completed under 

different scenarios.  The first driving scenario is neutral driving while the second scenario 

is distracted driving in residential and commercial areas. In the proposed study, 95% 

accuracy of classification was obtained. 

Differences such as age and gender also effect the behavior of drivers in different 

ways. The Fuzzy-Ruled Based system proposed by Hattori et al. (2011) for driver 

classification was also used in subsequent studies. Fernandez and Ito (2016) , who deal 

with this system, thought that they would make the classification better by increasing the 

rules and parameters. In that study, the drivers are divided into 5 levels (Very Passive, 

Passive, Normal, Aggressive or Dangerous) considering the frequency of use of 

acceleration and brake pedals, speed values and driver's ages. However, it turns out that 

the increasing rules and parameters in the result of the study cannot be helpful in 
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increasing the accuracy. Fung et al. (2017) thought that only the acceleration and 

deceleration movements were sufficient to classify the drivers and handled elderly people 

as a working group. As a result of this idea based on the impression that maneuverability 

decreases with the advancing age, 14 different drives with MultiClass Linear 

Discriminant Analysis (LDA) classifier have been correctly identified with 90% success. 

In many studies this has been shown in different forms. The Naive Bayes algorithm, used 

by Ming et al., achieved 79.4% accuracy with very limited number data.  Van Ly et al. 

(2013) also addressed the braking and turning motion, thinking that only the acceleration 

and braking movements would not be sufficient to describe the drivers . Support Vector 

Machine (SVM) and k-mean clustering methods have been investigated by using the 

feature vectors obtained with these data. A maximum of 65% success was achieved in the 

study. Besides these two actions, secondary effects and environmental impacts on the 

driver are also considered to be important factors (Choi et al., 2008). 

Zhang et al. (2016) developed a window based support vector machine method and 

classified the drivers by using the data received by the car and smart phone sensors. The 

method recommended by using only the data from the telephone classifies with 75.83% 

accuracy, but this success is 85.83% in the tests using collected data only with car sensors. 

In the experiments performed with the combination of two sets, the result is 86.67%. 

Imkamon et al. (2008) used accelerometers, cameras and OBD-II readers to record 

vehicle speed, engine speed, right-left turn and straight running. In that study, fuzzy logic, 

is used as the classifier, the results of the questionnaire from three passengers in the test 

were used to train the system. The passengers categorized the drivers with 3 different 

levels. While level 1 refers to safe driving, as the level increases, safety decreases and 

dangerous driving occurs. The average error value was obtained as 0.255. 

Castignani et al. (2013) classified drivers into 3 categories: Normal (NOR), 

Moderate (MOD) or Aggressive (AGG). By using sensors located in the smart phone 

(accelerometer, magnetometer, gravity sensor and GPS receiver). Smartphone application 

which can apply Fuzzy Inference scanning is suggested. OBD information has also been 

added to the mechanism used for classification since the data obtained on smartphones 

contains noise. In another study that suggested an android application, Meseguer et al. 

(2013) classified the drivers as Aggressive, Normal, and Quiet. Through this application, 

speed, acceleration and engine RPM data from collected driver data are used as training 

data in neural network. As a result of the method proposed in the study, the drivers are 
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separated by 77% accuracy.  When the number of classes is reduced, more accurate results 

can be obtained. But this can be considered as the direction in which the study is lacking. 

Chen et al. (2015) has identified two classes in the study using the AdaBoost algorithm 

and reached a high value as a result of classification. 

Zheng et al. (2017) examined driver behavior in an environment where pedestrian 

intensity is high and consequently vehicle-pedestrian relationship is intense. As a result 

of the study, it is seen that the desired speed and behavior against the spring are important 

criteria that can be used in driver classification. Aoude et al. (2012) attempted to describe 

the behavior of drivers at the intersection of roads. Using SVM and Hidden Markov 

Model (HMM) methods, the drivers are divided into two classes as compliant or violating. 

The success rate of the study is 85.4% for SVM and 80% for HMM. In his study, Kuge 

et al. (2000) used the HMM method for driver classification based on lane variation. This 

study selected lane changing behaviors as driver recognition maneuver. Steering angle, 

steering angle speed and steering force are used to define the maneuver. In another study, 

which takes into account the lane change as well as the follow-up distance of the vehicle 

in front, person behavior was defined using the fuzzy clustering algorithm. Since the 

driving maneuver was based on longitudinal and lateral acceleration, applied brake 

pressure, engine speed and some GPS data, these data were recorded as real data (Ma, 

2007). 

Unlike all these studies, classifications based on the amount of power demanded by 

the driver are also included in the literature and provide important contributions to energy 

optimization (Kedar-Dongarkar and Das, 2012). 

The data used to classify the drives are fairly large. For this reason, deep learning 

methods that have attracted attention in recent years have been used in driver recognition 

and classification studies (Ezzini et al., 2018; Zhang et al., 2018). Ezzini et al. (2018) 

have worked on the necessity of determining the duration of driver recognition, which 

they see as a deficiency in previous studies. They suggest that the driver can be identified 

in 3 minutes using data from two different driving scenarios with 6 drivers participating 

in the test drive. Instead of using all the data available, simpler models can also be 

proposed using some of them. Gao et al. (2018) defined periods as stop, wait and go by 

dividing the rides. In order to define these periods, firstly vehicle speed, longitudinal 

acceleration, brake pedal position and engine revolutions per minute data were used. In 

this study, 91.2% accuracy is defined while the simpler model which uses only speed data 
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has 100% accuracy. Taking into account other factors in traffic (neighboring drivers, 

pedestrians and cyclists), the study takes into consideration that the first step is to classify 

the drivers to provide a safer navigation device to the drivers (Cheung et al., 2018). 

By classifying the drivers in different ways, solutions to different problems can be 

produced. Therefore, different class labels are used for different purposes. In the study 

proposed by Bernardi et al. (2018), when different scenarios and different labels were 

examined, the highest classification accuracy (0.97) was obtained by gender. One of the 

problems is fuel consumption. One of the most important problems that should be taken 

into consideration when the problems of the world's energy resources decrease and 

ecological balance are considered is fuel consumption. Ping et al. (2019) classify drivers 

into three groups by using unsupervised machine learning method of spectral clustering. 

Six driving behavior-based fuel consumption features are have been obtained from real 

driving data. Different from previous work, only drivers are changed due to the inability 

to determine which factor caused the change.  

 

 2.2. Optimization of Electric Vehicles  

In the thesis presented by Vaz (2015) regarding the energy method, which is 

considered as one of the most important issues related to electric vehicles, the driver 

adopts the driving strategy in accordance with the stored battery energy. First, the driver 

is informed about the current driving situation, while the driver is guided to choose 

between the optimal trip speed and the optimal acceleration strategy. Fleet-style electric 

bus was used as a test tool. By choosing the right driving strategy, energy consumption is 

reduced from about 1 kWh/mile to 0.6-0.7 kWh/mile. The 13.9% increase in trip time due 

to driving strategy is accompanied by a decrease of 5.6% in the amount of energy 

consumed when driving in the designated test area. The advantages of the proposed 

strategy include a significant increase in driving time versus a significant reduction in 

energy consumption, allowing flexibility in the choice of driving parameters and 

implementation without significant changes in existing EV designs. 

The demanded power in electric vehicles is the most important parameter to 

consider when working with energy management. Energy management is very sensitive 

to this power value. With the development of computational and sensing 

techniques/applications, it is possible to estimate the internal load for the optimization of 

energy management. In order to increase the applicability and development of the studies 
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on electrical tools, it is necessary to work with real data rather than virtual data. Therefore, 

real data such as driving behavior and frequency of use should be included in the studies, 

including energy management and range increase studies. Opila et al. (2013) designed the 

shortest path controllers based on stochastic dynamic programming, taking into account 

the constraints on fuel economy and powertrain activity, and this design was also 

simulated on the vehicle model developed by them. The Volvo S-80 prototype, used as a 

test track, has focused on three key issues to achieve functional control. The first is to get 

a real-time application that runs within the calculations and memory information. The 

second issue is the ability to react quickly to pedal change, while the shifting and engine 

starting commands are the third. The controller was performed in the on-loop hardware 

system before it was tested in the vehicle. The acceleration value equal to a driving cycle 

is modeled as a fixed finite state markov chain in the energy management problem. The 

controller minimizes the cost function that reflects fuel consumption and the use of power 

systems. The driving cycles used in the test phase are the general cycles previously 

defined. However, this model can be created with real driving data. In the present study, 

a method was proposed and tested to improve the response speed of the drivers to shifts. 

The application works in relation to actuator delays and impossible operating points. 

In some studies related to energy management of electric vehicles, it has been 

revealed that driving conditions should be taken into consideration besides system and 

mechanical parts. Driving style, driver's driving characteristics and traffic situation 

directly affect the charging time of the electric car. How the maneuvers during driving 

affect the energy requirements has been demonstrated by experiments. Therefore, even 

giving the driver only the optimum speed to use the vehicle reduces the amount of fuel 

consumed during travel. To save fuel, a driving style called Eco driving is defined. The 

necessary warnings are given to the driver considering the traffic and road conditions and 

the speed information to be used is given. In this way, the driver tries to avoid sudden 

maneuvering and acceleration movements. 

Economic driving strategies provide drivers with a specific driving framework, 

saving approximately 15% and 25% of fuel for that trip, but it is difficult to comply with 

the rules as the driving behavior is personal (Hiraoka et al., 2009; Taniguchi, 2008). In 

this study, tests were performed to reveal the positive contribution to fuel consumption 

by changing the average speed. Cerbe et al. (2009) used two different roads for driving 

with three different average speeds. When traveling time and fuel consumption are 
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evaluated for different average speeds, it is observed that the increase in travel times by 

7.8%, 6.25% and 7.5%, while the decrease in fuel consumption by 27.6%, 10.8% and 

10.9% is observed. . They found that these values did not change for different roads, that 

the change occurred due to factors such as travel distance, maximum allowed speed and 

digital map of the road. There are also devices that provide instant speed information 

according to arrival time without considering fuel consumption (Giszczak, 2006). In the 

study of driving style classification, it has been shown that a journey at low speeds is not 

complete with a higher average speed but causes more carbon emissions (Rhys-Tyler and 

Bell, 2009). 

In order to optimize energy consumption, environmental factors need to be 

considered. Jiménez et al. (2014) has taken into account the road and traffic information. 

The aim of the study is to create a speed profile that will reach the target within the 

specified time with minimum fuel consumption. Dynamic Programming (DP) method 

was used as optimization method. When selecting the appropriate value for the DP speed 

shift, the path takes into account such information as vertical profile, speed limit and 

timing. The amount of fuel consumed and travel time is related to speed shift. 

Styler and Nourbakhsh (2015) used the Global Positioning System (GPS) 

coordinates, speed and power load data in their optimization approach for energy 

management. This data is taken from the vehicle computer and external sensors. While 

speed, acceleration and power demand information is obtained from the sensors of the 

vehicle, information such as GPS and time are taken from outside. Data is assembled for 

both electric and gasoline vehicles. Temperature, charge status, instant load information 

are also needed. Defining the system structure and characteristics is a requirement for the 

control algorithm. By supplying the state property vector, the demanded power is 

estimated using dynamic programming. The effect of this prediction route, topology 

information, driver behavior and traffic information on power makes it difficult to 

analytically calculate this prediction. The algorithm evaluates the previous load 

information as a prediction. The state vector is compared with the previous state vectors 

and presented as a state estimated load following similar states. In case of more than one 

projection, it is desirable to establish a control strategy that targets the least cost. The tests 

were conducted with electric vehicles with data from real drivers. These data are daily 

vehicle usage data of real drivers from eight different vehicles for 10 months. The 

proposed algorithm has succeeded in reducing energy consumption by 10%. 
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Vrodey et al. (2013) used two-year vehicle data of five Peugeot iOn vehicles as the 

data set. The vehicles were used as personal vehicles, service vehicles and rental vehicles. 

Based on these two-year data, averaged energy balance Sankey diagram of the cars was 

created. Different energy models have been observed depending on different driving 

patterns, travel types/profiles and frequency of driving. While some vehicles were used 

for the same purpose during the test period, changes were made for some vehicles. 

Therefore, different consumption profiles were observed for all vehicles. 

The basic mechanical, electrical and power electronics components must be used in 

optimum dimensions so that the hybrid electric vehicle (HEV), which combines the 

elements of the electric drives and the internal combustion engines, has an appropriate 

transportation design. Weinstock et al. (1993), the vehicle battery, auxiliary power unit, 

traction motor, variable frequency traction drive is defined as the basic components of the 

hybrid electric car. If it is aimed to reduce gas emission, the battery capacity should be 

regulated first. Because the main determinant of the emission range is the battery. The 

battery size cannot be continuously increased because it directly increases the mass and 

volume of hybrid the electric vehicle. Battery capacity can be maximized by observing 

the limits. The auxiliary power unit (APU), consisting of an internal combustion engine 

(ICE), an induction generator, and Pulse Width Modulation (PWM) inverter control, will 

automatically enter the system when the battery pack drops to 30% of the rated capacity. 

When selecting the electric vehicle engine, the engine traction system must be considered. 

The most important performance criterion expected from this engine is high torque and 

low mass. Consequently, high efficiency can be achieved. 

Fellini et al. (1999) provides alternative engines with features such as modularity, 

allowing the introduction of new components into the system, and the flexibility to use 

different and existing codes. For this, a simple application with MATLAB and CORBA 

is included in the hybrid diesel electric power system. 

Hybrid electric vehicles, including hydrogen powered fuel cells, are becoming more 

widespread in addition to gasoline fuel plug-in hybrid electric vehicles due to their clean 

and efficient power generation. Jain et al. (2009) studied the sizing of energy storage 

components for the fuel cell plug-in hybrid electric vehicle (FC-PHEV). Ni-MH battery 

was used as the second energy storage component in the vehicle. Such a PHEV structure 

is used for charging grid batteries and for electrolysis of water. Thus, this structure 

provides an additional degree of freedom to produce hydrogen and oxygen, which 
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increases the drivetrain efficiency while at the same time increasing the driving range of 

the vehicle. Due to this freedom, they have more efficient and high performance power 

transmission requirements than ordinary PHEV or FC-HEVs. In this study, while multi-

purpose genetic algorithm is utilized for size optimization of power transmission systems, 

Liu et al. (2007) developed an adaptive hybrid genetic algorithm to solve this problem. 

The findings of the study showed the validity of the method developed for optimum sizing 

and the effectiveness of the hybrid genetic algorithm. Based on these results, 

improvement suggestions were made for the vehicle used. The proposed algorithm uses 

adaptive crossover and mutation possibilities to ensure the diversity of the population 

taking into account the generation effect and individual differences. A better global 

convergence is aimed by reverse crossing and mutation processes. A hybrid algorithm 

with better convergence rate was obtained by combining the Local Search method 

(Sequential second order programming (SQP)). 

Hegazy and Mierlo (2010) propose a design that minimizes the cost, mass and 

volume of these components, taking into account the need to meet certain design and 

control requirements in the dyeing of fuel cell (FC) and supercapacitor (SC) in fuel cell 

hybrid electric vehicles. Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) has been tried to design the power transmission system by using two different 

optimization methods. The simulation results of MATLAB/SIMULINK have shown that 

the dimensioning of power transmission components has been improved by the PSO 

method, which has resulted in high operating performance in fuel cell hybrid electric 

vehicles. FCHEV was analyzed in two different driving cycles: Federal Test Procedure 

(FTP75) Urban and New European Driving Cycle (NEDC). For the specified driving 

cycle, the optimum number of units is determined for all components, respectively, while 

minimizing the size and cost of the fuel cell and the supercapacitor. According to the 

study, compared to a hybrid electric vehicle with a supercapacitorless fuel cell, the vehicle 

considered increased by 9.22% in NEDC and 13.29% in FTP75. In addition, the total cost 

reduction of fuel cell and supercapacitor components is around 13.40% in NEDC and 

12.21% in FTP75. As a result of the experiments, it is concluded that PSO method is more 

useful than GA method for the optimization of such a tool. 

Tara et al. (2010) studied the issue of optimum sizing in order to obtain plug-in 

hybrid electric vehicles by adding additional energy storage components to the hybrid 

electric vehicle. They proposed a simulation-based framework for sizing. Simulations 



11 

 

were performed using a midsize sedan (Toyota Prius) with average parking times used 

for personal transport. Data were obtained from driving in the city of Winnipeg (Canada). 

There are restrictions on battery sizes for low pricing. In view of these limitations, there 

are three different battery technologies commonly used in simulations for battery sizing. 

Vehicle dynamics, vehicle controller, regenerative braking, battery, model parameters 

were taken into consideration during the simulations. The Nickel Metal Hybrid (NiMH) 

battery technology offers more possibilities for expansion for medium-weight and cost-

effective relatively small-volume vehicles. It has also been shown that the Lithium-ion 

(Li-ion) chemistry needs to be developed in order to achieve lower costs. With the study, 

it is possible to charge the electric vehicles both at night and at least three hours of 

parking. 

Schaltz et al. (2009), battery and ultrapapacitor were compared in their studies on 

the rating depending on the system volume, system mass and battery life. When 

dimensioning energy storage devices, not only power and energy requirements, but also 

battery life must be taken into account. In the energy management strategies presented in 

the study, the load cell is appropriately divided among the fuel cell, battery and 

ultracapacitors. There is also a charging strategy that installs energy storage devices 

taking into account the FCHEV requirements. Analyzes were performed for FCHEV with 

the data obtained from the test driving cycle lasting more than three weeks. In addition to 

the two energy management strategies and charging strategy for energy storage devices 

presented for FCHEV, recommendations were also made on propulsion and power system 

configuration and sizing. In the first of these two energy management strategies, the 

ultracapacitor, one of the energy storage devices, operates as a high-pass filter for load 

power. In another strategy, the ultracapacitor is used as an energy source to increase 

battery life. 

In order to investigate the effect of driving style on CO2 emissions, an analytical 

method based on eco-driving rules was developed by means of the data obtained from the 

vehicle developed by the Transport and Logistics Center (CTL) at Sapienza University 

of Rome. The United States Environmental Protection Agency (EPA) reported in 2012 

that the traffic is responsible for 30% of CO2 emissions. The study states that the amount 

of gas released will be reduced by changing the use of personal vehicles (Barkenbus, 

2010). There are a few steps the driver can take to achieve this goal. Preferring less fuel 

consuming vehicles, using low carbon emission vehicles, using their own vehicles more 
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efficiently and using public transportation instead of individual vehicles are some of the 

simple measures that can be taken. When the data obtained from the driving tests were 

examined, it was seen that even the lower average speed, economical driving style results 

in less fuel and less gas emissions. Moreover, this decline is even lower when it comes to 

higher average speeds. For a gasoline vehicle with an average speed of 10 km/h, this 

reduction is approximately 30% and 22% for a 40 km/h diesel fuel vehicle. However, in 

the case of an average speed of 80-90 km/h, the effect of driver behavior on fuel 

consumption can be ignored, and the aforementioned decreases can be ignored. This is 

because improvements in fuel consumption and CO2 emissions are more common at low 

average speeds and disappear with rising average velocities. Therefore, eco-driving 

behavior can be defined as a function that varies depending on the average speed value 

and makes a more intensive difference in speeds at which driving behavior is more 

effective. In a situation where drivers, such as personal transport, have direct influence 

on transport, eco-driving changes the CO2 emissions by 32% to 41% (Bin and 

Dowlatabadi, 2005; Vandenbergh, 2005; Vandenbergh and Steinemann 2007). 

Messagie et al. (2014) compared the environmental performance of various vehicle 

technologies and considered the gas emissions and end-of-life processes of vehicle parts 

during the production phase. In the work, electric vehicles (BEV), fuel cell electric 

(FCEV) and fuel vehicles (petroleum, diesel, compressed natural gas (CNG), liquefied 

petroleum gas (LPG), bio-diesel and bio- ethanol) were used. The aim of the study is to 

determine the environmental impacts of the vehicles and to develop a model that will 

enable the all life cycle (LCA) of the vehicles to be defined more accurately. In this study, 

results such as climate change, respiratory effects, acidification and mineral extraction 

damage are presented for various vehicle technologies. 

Karabasoglu and Michalek (2013) compared vehicle life and greenhouse gas 

emissions in driving scenarios such as New York City (NYC), highway test conditions 

(HWFET), and various driving conditions (such as frequent stop-start and aggressive 

use). In this study, three different vehicles were examined: hybrid, extended-range plug-

in hybrid and battery electric vehicles. It has been shown in the study that in different 

types of vehicles for different driving types, there are positive reductions in fuel 

consumption and gas emissions. For the NYC driving cycle, hybrid and plug-in vehicles 

have reduced gas emissions by 60% compared to conventional (CVs) vehicles, while cost 

has decreased by 20%. In the driving cycle of the highway test conditions, in contrast to 
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the previous one, there is a significant reduction in both meltdown and gas emissions in 

electric vehicles. In addition to the differences arising from the vehicles used, there are 

differences in the way the vehicle is driven in the same vehicle and in the same driving 

cycle. In frequent NYC conditions, gas emissions of traditional vehicles tripled and cost 

increased by 30%, while aggressive driving decreased by 45% for all-electric range of 

plug-in vehicles compared to lighter test cycles. Studies carried out in test environments 

in which drivers' behavior and driving cycles are not taken into account are incomplete. 

As a result of this study, it has been shown that with the increase of hybrit and plug-in 

vehicles, the determination and use of the vehicle suitable for the driver gains more 

importance. For a driver traveling in NYC conditions, choosing a hybrid vehicle instead 

of traditional vehicles means 20% cost savings and 60% less GhGs emissions. In addition, 

a vehicle used in the HWFET driving cycle offers a cheaper ride despite the high 

emissions of GhGs. 

Vehicle performance is generally determined by taking into account the 

acceleration time when reaching the specified speed from 0. In addition, the maximum 

speed and torque that the vehicle can reach is also important.
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3. DRIVER CLASSIFICATION  

 

3.1. Driving Data 

The driving route where the rides will be carried out has been tried to be selected 

in such a way as to meet all conditions encountered in real life. Therefore, instead of an 

artificial simulation environment, a specific region within Afyon Kocatepe University 

was chosen. Within this 2.2 km long track, there are traffic elements such as pedestrian 

crossing, bumps, pits, intersections, u-turn, secondary roads. Therefore, almost all 

possibilities to be encountered on a random path at any time on any given day are taken 

into account in the experiments. These experiments were carried out during the hours of 

pedestrian flow, and the pedestrian, which is one of the living elements of the traffic, 

created the effect it should have in the data base. There are also vehicles on the road in 

question, except for the test vehicle. This means the inclusion of other vehicle drivers, the 

other living element. The driving route is shown in figure 3.1. 

 

 

 

Figure 3.1. The driving route (2018 Google ©-Map Data) 

 

Drivers are academicians of different age and gender selected from university staff. 

The age range of the drivers varied between 28-40 during the experiment. The age 

distribution of male and female drivers was tried to be equal. Four female and nine male 

drivers participated in the study and all riders had an average of 3 rides. No information 
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is given to drivers before the road. All rides were carried out under the same driving 

conditions. 2015 Toyota Corolla vehicles were used for test drives. The vehicle was 

selected as an automatic gearbox since it was thought that due to the habits of the 

automatic gearshifts of the test participants, the change of gear could be changed on the 

accuracy of the data to be obtained. The test vehicle is capable of high speeds and sudden 

acceleration. It has been ensured that the test vehicle is strong and comfortable enough to 

meet the demands of all classes. Considering the psychological studies of the drivers, the 

driver's knowledge that he/she was subjected to a test drive was deemed to change the 

driving behavior and the drivers were not informed about how to evaluate the result of 

this ride. The fact that drivers were not informed of the recorded data made them fully 

reflect their own behavior. In addition to the drivers, the observer participated in all the 

rides. As a result of the rides, the observer was asked to classify the drivers. The observer 

was selected as a person who has mastered the scientific literature on driver behavior. 

The vehicle tracking device and the smartphone application placed in the test vehicle 

recorded data simultaneously. By recording data with two separate devices, both loss of 

data is prevented and the negative effect of disturbing effects such as noise is eliminated. 

This also proves that the data is recorded correctly. Data were recorded at frequencies of 

1 Hz and 100 Hz. The frequency value varies according to the data type. Many data such 

as time, latitude, longitude, altitude, speed, 3D acceleration, 3D angular velocity, 

horizontal and vertical accuracy were recorded. The data selected are listed in Table 3.1. 

 

Table  3.1. Driving data 

Signal name Symbol Units 

Longitudinal Acceleration 𝑎𝑦 m/s2 

Lateral Acceleration 𝑎𝑥 m/s2 

Vertical Acceleration 𝑎𝑧 m/s2 

Speed 𝑣 km/h 

Longitudinal Angular 

Velocity 
𝑤𝑦 rad/s2 

Lateral Angular Velocity 𝑤𝑥 rad/s2 

Vertical Angular Velocity 𝑤𝑧 rad/s2 

 

3.2. Feature Extraction 

Once the studies in the literature are examined, it is stated that the acceleration rate 

and speed are sufficient when the persons are distinguished. However in this more 
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detailed study, it has been shown that angular velocity in addition to this data is the 

decisive factor in driver classification. Using the obtained data, 4 different features were 

revealed. It has been found that these features are sufficient for defining the driver group 

of the persons. 

Feature 1: The angle of rotation and speed are used to identify rotational events and 

differentiate them in driving. Therefore, the feature vector defined for rotation events is 

generated by taking angular velocity into consideration. As seen in Eq.(3.1), the angular 

velocity value is inversely proportional to the half-circle of the axis of rotation, which is 

linear with the velocity of the vehicle. 

𝝎 =
𝒗

𝒓
                                                                   (3.1) 

In Eq. (3.1) 𝑣 and 𝑟 denote the speed of the vehicle and radius of the curve, 

respectively. The rate of increase of the angular velocity value defines how sharp and fast 

the rotational motion is made. In figure. 3.2, angular velocity values of drivers are shown.  

 

 
(a) 

 
(b) 

Figure 3.2. Angular velocity values of drivers (a-conservative, b-moderate, c-aggressive) 
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(c) 

Figure 3.2. (Continue)  Angular velocity values of drivers (a-conservative, b-moderate, c-aggressive) 

In these figures, positive and negative angular speeds indicate that the vehicle is 

turning to the right or to the left. The angular velocity of the first driver is about 0.5 rad/s2 

while the angular velocity of the third driver is about 1.5 rad/s2. In addition, the time 

during which the rotation was performed also varied due to the difference in speed values. 

Angular velocity data do not provide very meaningful results in direct discrimination of 

drivers. For this reason, the angular velocity values obtained during driving are taken as 

norms and feature 1 is defined as Eq. (3.2). 

𝑤𝑛 = ∑ |𝑤𝑧𝑖
|𝑁

𝑖=1                                                               (3.2) 

 

Feature 2: The acceleration and deceleration of the vehicle is the repetitive actions taken 

by the driver during a journey and how these two processes differ according to the person. 

For instance, a driver may prefer constant braking to adapt to faster driving; however, 

another driver may move slower and apply the brakes gradually. Therefore, the answers 

of these questions are searched:  the driver used the gas and brake pedals at what 

frequency?  At which values? Acceleration and braking operations are related to the 

longitudinal acceleration data in the dataset.  Changes in the acceleration values of the 

drivers in different classes and the frequencies of the changes are clearly observed when 

the graphs given in Figure 3.3 are examined. 
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(a) 

 

(b) 

 

(c) 

Figure 3.3. Longitudinal acceleration values of drivers (a-conservative, b-moderate, c-aggressive) 

 

The feature value is obtained by Eq. (3.3). 

𝑎𝑛 = ∑ |𝑎𝑦𝑖
|𝑁

𝑖=1                                                              (3.3) 

0 50 100 150 200 250 300
-10

-8

-6

-4

-2

0

2

Time(s)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)

0 50 100 150 200 250
-8

-6

-4

-2

0

2

4

6

Time(s)

A
c
c
e
le

ra
ti
n
(m

/s
2
)

0 20 40 60 80 100 120 140
-15

-10

-5

0

5

10

Time(s)

A
c
c
e
le

ra
ti
o
n
(m

/s
2
)



19 

 

where 𝑎𝑦 is longitudinal acceleration. 

 

Feature 3: Previous studies have shown that different dynamic properties of different 

vehicles are related to the vertical acceleration and angular velocity of the vehicle during 

transition from bumps as the vehicle travels at a certain speed. In this study, differences 

arising from driving on the same route with the same vehicle are interpreted as the 

reaction of the drivers to the road conditions. The acceleration data is taken as a result of 

the correlation of the horizontal acceleration with the angular velocity. Experiments that 

are not performed at a specific speed also require the longitudinal contribution to account. 

As a result, a feature within three-axis acceleration is occurred. With feature, given in Eq. 

(3.4), specified as the area under the 3-axis acceleration, the reaction of the driver against 

the obstacle and the hump on the road has been revealed.  

𝑎𝑡 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

𝐴 = ∫ 𝑎𝑡
𝑡

0
𝑑𝑡                                                       (3.4) 

. The driving matrix obtained from 39 driving is given in Table 3.2. 
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Table  3.2. Data matrice of driving  

          Feature No 

Driving No 

Feature 1 Feature 2 Feature 3 

1st Driving 27383.8210 8343.1882 2871.5854 

2nd Driving  27126.4369 8052.3325 2821.4269 

3th Driving  27245.2549 8700.1209 2816.3529 

4th Driving 27632.5107 9006.7038 2887.8901 

5th Driving 21922.0777 3528.3831 2913.4751 

6th Driving 21533.6939 3673.2568 2733.1964 

7th Driving 24011.1406 3910.1762 3076.6017 

8th Driving 22045.7049 3607.8123 2823.3450 

9th Driving 30031.6753 9909.2231 3339.2539 

10th Driving 29329.2045 9697.6460 2913.3727 

11th Driving 27296.8188 9974.7528 2743.9896 

12th Driving 26713.3265 10296.2812 2629.5596 

13th Driving 29557.7359 4214.2626 2836.4263 

14th Driving 26907.7533 4882.16188 3088.4964 

15th Driving 22418.4302 9073.7968 2659.2370 

16th Driving 23088.1991 8896.58695 2492.3080 

17th Driving 27107.3366 10933.0381 2816.0600 

18th Driving 26588.6761 10504.6090 2595.4167 

19th Driving 16713.9712 6463.0758 2674.8207 

20th Driving 15077.2604 5569.4462 2766.3078 

21th Driving 36321.6208 5112.4039 3036.0650 

22th Driving 28606.5300 4363.0709 2658.9879 

23th Driving 24642.5759 2963.1430 2293.2266 

24th Driving 24124.2186 2849.2136 2351.0778 

25th Driving 23791.1277 3542.0785 2403.3884 

26th Driving 24079.6289 3265.2184 2411.6683 

27th Driving 23212.5083 3094.4938 2369.7311 

28th Driving 23095.2506 2822.4979 2473.4978 

29th Driving  25118.0058 5497.2100 2812.3014 

30th Driving  27827.2088 10474.7006 2687.9523 

31th Driving  28486.2995 10555.7210 2703.8158 

32th Driving  27672.9616 5190.6188 2752.4948 

33th Driving  26584.8706 5448.8068 2680.6193 

34th Driving  22492.5655 4938.2072 2694.4651 

35th Driving  22912.3017 4720.6937 2738.7521 

36th Driving  23437.3648 4826.9385 2645.9003 

37th Driving  22909.7596 4714.3612 2660.5308 

38th Driving  15699.4372 2627.4373 2572.9282 

39th Driving  13720.8914 2663.6334 2583.0852 

 

Without any proposed feature vectors, there is no direct deduction for the class of 

drivers to which the drivers belong. Moreover, it does not make any sense that these data 
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are directly applied to the mentioned algorithm. Figure. 3.4 shows speed information of 

9 different drivers belonging to 3 different groups.  

 

Figure 3.4. Velocity (speed) frequency diagram of drivers (1-2-3: conservative, 4-5-6: moderate, 7-8-9: 

aggressive drivers) 

 

It is seen when the figure is examined that, the speed values of different drivers 

which are not in the same group can show similarity. The maximum speed values of a 

driver in a normal and aggressive class may be equal, while a driver in a quiet group and 

a driver in a normal group may have equal minimum speed values. This shows that, the 

right data must be handled correctly in order to distinguish the drivers. While equal values 

can arise, the frequency and range of these values vary for the drivers.  

An aggressive driver turns the same turn at faster speeds and/or narrower angles, 

while a conservative driver rotates at a lower and/or wider angle. Figure 3.5 shows the 

angular speed information of 9 different drivers. 

 

 

Figure 3.5. Angular velocity frequency diagram of drivers (1-2-3: conservative, 4-5-6: moderate, 7-8-9: 

aggressive drivers) 
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The angular speed change interval increases as the driver moves from the quiet 

driver to the aggressive driver. This interval can be used as a criterion in the classification 

by taking the norm angular velocity. Considering 3 different features from the 

recommended features, driver identification can be performed but the driver is not able 

to be classified. Fig 3.6 shows the drivers identification using features. All the data needed 

for classification with the use of all features are included in the algorithm. 

 

 

Figure 3.6. Driver identification with the features 

 

3.3. Classification Methods 

In this thesis, drivers were classified using different methods (Support Vector 

Machine Method, Markov Method, Hybrid Markov-Support Vector Machine Method and 

K-Nearest Neighbor Method). In this section, the methods used in the thesis are explained 

respectively and the results obtained by applying these methods to the thesis data set are 

given. 

 

3.3.1. Support vector machine  

Support Vector Machines (SVM) is a supervised classification technique based on 

statistical learning theory and its foundations were developed by Cortes and Vapnik 

(1995). SVM is a machine learning algorithm that tries to generalize and estimate new 

data by learning on training datasets without assuming any information about its 
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distribution. Input variables and outputs in training sets are mapped. By means of data 

pairs, the decision functions that separate data from different classes are obtained (http-

1). New data input variables are classified with the decision function. In general, the 

operating principle of SVM is the determination of the decision boundaries (hyperplanes) 

that optimally separate the data from the two classes (Vapnik, 2000). The most basic 

classification problem for SVM is the classification of a two-class data set that can be 

linearly separated. In order to solve this problem, SVM tries to determine the best 

separator plane which makes the distinction between the two classes the best and the 

boundary between the classes is maximum. The best separator plane maximizes the 

distances of the data for each class from the separator plane. Training data closest to 

hyperplanes form support vectors that define the boundary between the two classes (http-

1). 

Support Vector Machines are basically divided into two according to the linearity 

and non-linearity of the data set. 

 

3.3.1.1. Linear support vector machine 

The data used in the linear support vector machine method differ depending on 

whether or not it can be separated linearly. 

 

Linear support vector machine for linearly separated data 

Support Vector Machines is a two-class classification technique and it is aimed to 

classify the test data of the two classes with the objective function (𝑔(𝑥) = 𝑠𝑖𝑔𝑛(𝑓(𝑥))) 

obtained from the training data in the classification operations using SVM. These two 

classes are usually represented by (-1, +1) class labels. When the input data can be 

separated linearly, it aims to select the separator plane from the infinite number of 

separator planes that will make the decision limit the largest. The objective function, 

which will classify the test data, is determined using the best separator plane obtained 

from the training. 

𝑥 ∈ 𝑅𝑁feature vectors for the data in the training set, 𝑦𝑖 ∈ {−1, +1} label is to show 

the class; a plurality of separating planes can be plotted to distinguish between positive 

and negative labeled data. The purpose of SVM is to find the separating plane that 

maximizes the distance between the nearest points to it. This separator plane is best called 

the separator plane and the points adjacent to this plane that limit the boundary width are 
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called support vectors. This provides any 𝑥𝑖 point Eq. (3.5) on the separating plane. Where 

𝑤 represents the normal vector of the separating plane and 𝑏 represents the orientation 

value. 

(𝑤 ∙ 𝑥𝑖) + 𝑏 = 0                                                         (3.5) 

𝐸 = {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1,2, … . , 𝑁, is accepted as an N-element data to be used for SVM 

training. Inequalities of the best decision limit are written as Eq. (3.6) and Eq. (3.7). 

(𝑤 ∙ 𝑥𝑖) + 𝑏 ≥ +1, 𝑓𝑜𝑟 𝑦𝑖 = +1                                               (3.6) 

(𝑤 ∙ 𝑥𝑖) + 𝑏 ≤ −1, 𝑓𝑜𝑟 𝑦𝑖 = −1                                         (3.7) 

An infinite number of lines can be drawn to divide a two-class data set. The 

objective will be to minimize the classification error when an unknown data set is 

encountered; to select the line that maximizes the distance between samples of different 

classes. Because the decision limit, which is as far away from both class data as possible, 

is the best separator. The large limit ensures that the estimation is reliable in the training 

set and that the prediction performance on new samples is good. Appropriate 𝑤 and 𝑏 

values should be calculated to find the best separator plane. 

The Eq. (3.6) and (3.7) of the boundary hyperplanes expressed by the distance from 

the origin are calculated as 
|1−𝑏|

‖𝑤‖
 and 

|−1−𝑏|

‖𝑤‖
 respectively. The distance between these two 

hyperplanes is 
2

‖𝑤‖
. While the best separation plane is found, the distance of this plane to 

the border is tried to be maximized. For this, the expression ‖𝑤‖ should be minimized. 

In this case, the 𝑚𝑖𝑛 [
1

2
‖𝑤‖2] expression must be calculated based on the condition Eq. 

(3.8) to find the maximum limit.  

𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1 ≥ 0, 𝑦𝑖 ∈ {−1, +1}                                 (3.8) 

This problem is a nonlinear constraint optimization problem expressed by condition 

and equation. This optimization problem can be solved by using Lagrange function and 

Lagrange multipliers (𝑎𝑖, 𝑖 = 1, … . , 𝑁). 𝑎𝑖 values are Lagrange multipliers (Kavzoğlu 

and Çölkesen, 2010, http-2). The Lagrange equation in Eq. (3.9) is minimized according 

to the variables 𝑤 and 𝑏, and is maximized according to the multipliers 𝑎𝑖. 

𝐿𝑝 =
1

2
‖𝑤‖2 − ∑ 𝑎𝑖[𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1]𝑁

𝑖=1                      (3.9) 
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The problem is written as Eq. (3.10) and optimization problems can be converted 

to secondary forms. 

𝑎𝑟𝑔𝑚𝑎𝑥 min[𝐿𝑝]

𝑎       𝑤, 𝑏
                                           (3.10) 

Lagrange equation is solved by taking partial derivatives according to the correct 

variables and the results are placed in the Lagrange equation and eliminated. The result 

is a correlation that will be greatest only in Lagrange multipliers (Vapnik, 2000). 

From the partial derivatives of primary Lagrange equation according to w and b, 

Eq. (3.11), (3.12) and (3.13) are obtained (http-2). 

𝑑𝐿𝑝

𝑑𝑤
= 0 ⇒ 𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖

𝑁
𝑖=1 = 0                              (3.11) 

𝑑𝐿𝑝

𝑑𝑏
= 0 ⇒ 𝑤 = ∑ 𝑎𝑖𝑦𝑖

𝑁
𝑖=1 = 0                               (3.12) 

𝐿𝑑 = ∑ 𝑎𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝑎𝑖𝑎𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 , 𝑎𝑖 ≥ 0, ∀𝑖             (3.13) 

Eq. (3.13) is a quadratic programming (QP) problem and this complex problem is 

obtained as equality Eq. (3.14) using the Karush-Kuhn-Tucker (KKT) complement 

condition (http-2). 

𝑎𝑖(𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1), 𝑖 = 1, … . , 𝑁                     (3.14) 

Eq. (3.10) is solved and b value is obtained as Eq. (3.15). 

𝑏𝑖 = 𝑦𝑖 − 𝑤 ∙ 𝑥𝑖                                                 (3.15) 

There is one Lagrange multiplier for each sample in the training set. During the 

solution of the equation obtained with positive-valued Lagrange multipliers x-vectors 

aval of support vectors, these support vectors are located on the hyperplanes that provide 

the Eq. (3.14).  When the objective function defined by Eq. (3.16) is recalculated using 

calculated 𝑥𝑖 support vectors, 𝑎𝑖 weight multipliers and Eq. (3.11), equality becomes Eq. 

(3.17). 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝑤 ∙ 𝑥𝑖) + 𝑏)                                      (3.16) 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖(𝑥 ∙ 𝑥𝑖) + 𝑏𝑁
𝑖=1 )                               (3.17) 

Eq. (3.17) is calculated to test a new data x, and if this total is positive, x is called 

first class, otherwise x belongs to second class. 
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Nonlinear support vector machine for linearly separated data 

In many classification applications, it is not possible to separate data sets linearly. 

This problem is solved by defining an error variable because some of the training data 

remains on the other side of the best separator plane. In order to calculate the best 

separator plane, the inequalities Eq. (3.6) and (3.7) are rewritten together with the value 

of training error deviation Eq. (3.18), Eq. (3.19) and Eq. (3.20) inequalities. 

(𝑤 ∙ 𝑥𝑖) + 𝑏 ≥ 1 − 𝜁𝑖 , 𝑓𝑜𝑟 𝑦𝑖 = +1                                               (3.18) 

(𝑤 ∙ 𝑥𝑖) + 𝑏 ≤ −1 − 𝜁𝑖 , 𝑓𝑜𝑟 𝑦𝑖 = −1                                         (3.19) 

𝜁𝑖 ≥ 0, ∀𝑖                                                              (3.20) 

Using the above equations, Eq. (3.21) can be created. 

𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1 + 𝜁𝑖 ≥ 0, 𝑦𝑖 ∈ {−1, +1} 𝑎𝑛𝑑 𝜁𝑖 ≥ 0                 (3.21) 

In this case, for the 𝑥𝑖 data to be incorrectly classified, 𝜁𝑖 < 0. The fact that a correctly 

classified x data set is between 0 < 𝜁𝑖 < 1 means that this data is actually located between 

two boundary hyperplanes. 

The best generalized separation plane is determined by the vector 𝑤 minimizing the 

function 
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜁𝑖

𝑁
𝑖=1 . In this case, the expression 𝑚𝑖𝑛

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜁𝑖

𝑁
𝑖=1  must be 

calculated on the condition Eq. (3.18) to obtain the maximum limit (Vapnik, 2000). Here 

is the tradeoff parameter between the error and the boundary. The optimization problem 

is as in Eq.  (3.22). 

𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜁𝑖

𝑁
𝑖=1 subject to 𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1 + 𝜁𝑖 ≥ 0, 𝑦𝑖 ∈ {−1, +1}   (3.22) 

The upper limit 𝐶 allows Lagrange multipliers to remain between 0 < 𝜁𝑖 < 1 

(Vapnik, 2000). A nonlinear constrained optimization problem expressed by this 

condition and equation can be solved by using the Lagrange function and Lagrange 

multipliers (𝑎𝑖, 𝑖 = 1, … . , 𝑁). 𝑎𝑖 values are Lagrange multipliers (Kavzoğlu and 

Çölkesen, 2010; http-2). 

The Lagrange equation given in Eq. (3.23) is minimized according to the variables 

𝑤, 𝑏 and 𝜁𝑖, and is maximized according to the multipliers 𝑎𝑖. 

𝐿𝑝 =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜁𝑖

𝑁
𝑖=1 − ∑ 𝑎𝑖[𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1 + 𝜁𝑖] −𝑁

𝑖=1 ∑ 𝜇𝑖𝜁𝑖
𝑁
𝑖=1      (3.23) 

The 𝜇𝑖 value in this expression is the Lagrange parameter, which makes the 𝜁𝑖 value 

positive. The problem is written as Eq. (3.24). 
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𝑎𝑟𝑔𝑚𝑎𝑥 min[𝐿𝑝]

𝑎       𝑤, 𝑏
                                                  (3.24) 

This is done by taking the partial derivatives of the Lagrange equation according to 

the correct variables, and eliminating the results by placing them in the Lagrange 

equation. The result is a correlation that will be greatest only in Lagrange multipliers 

(Vapnik,2000). 

From the partial derivatives of the primary Lagrange equation according to 𝑤, 𝑏 and 𝜁𝑖, 

Eq. (3.25)- (3.28) are obtained (http-2). 

𝑑𝐿𝑝

𝑑𝑤
= 0 ⇒ 𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖

𝑁
𝑖=1 = 0                                  (3.25) 

𝑑𝐿𝑝

𝑑𝑏
= 0 ⇒ 𝑤 = ∑ 𝑎𝑖𝑦𝑖

𝑁
𝑖=1 = 0                                   (3.26) 

𝑑𝐿𝑝

𝑑𝜁𝑖
= 0 ⇒ 𝐶 − 𝑎𝑖 − 𝜇𝑖 = 0                                   (3.27) 

𝐿𝑑 = ∑ 𝑎𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝑎𝑖𝑎𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 , 𝐶 > 𝑎𝑖 ≥ 0, ∀𝑖             (3.28) 

Eq. (3.29) is obtained by using Karush-Kuhn-Tucker (KKT) complementary condition. 

𝑎𝑖[𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) − 1 + 𝜁𝑖] = 0, 𝑖 = 1, … . , 𝑁                          (3.29) 

b value in Eq. (3.25) can be expressed as Eq. (3.30). 

𝑏𝑖 = 𝑦𝑖(1 − 𝜁𝑖) − 𝑤 ∙ 𝑥𝑖                                             (3.30) 

There is one Lagrange multiplier for each sample in the training set. The b-value x 

vectors of the positive-valued Lagrange multipliers obtained during the solution of the 

equation will form the support vectors and these support vectors are located on the 

hyperplanes , Eq. (3.25). 

Decision function is defined as Eq. (3.31). 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝑤 ∙ 𝑥𝑖) + 𝑏) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖(𝑥 ∙ 𝑥𝑖) + 𝑏𝑁
𝑖=1 )              (3.31) 

Eq. (3.31) is calculated to test a new data x, and if this total is positive, x is called 

first class, otherwise x belongs to second class. 

 

3.3.1.2. Nonlinear support vector machine 

When the data cannot be separated linearly, the Nonlinear Support Vector Machines 

transfer the data to a property space of a higher size than the original input space. In this 

new dimension, it investigates the boundary of decision that best separates the data. 
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Nonlinear Support Vector Machines decision function is given in Eq. (3.32). In 

cases where data cannot be differentiated linearly, nonlinear functions are used to analyze 

the data by moving it to a higher dimensional space. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖𝜑(𝑥)𝜑(𝑥𝑖) + 𝑏𝑁
𝑖=1 )                               (3.32) 

Transformations can be made by using Kernel function expressed as 𝐾(𝑥𝑖 , 𝑥𝑗) =

𝜑(𝑥)𝜑(𝑥𝑖) instead of skalar product, 𝜑(𝑥)𝜑(𝑥𝑖), in Eq. (3.32) (Kavzoglu and Colkesen, 

2010). 

The most commonly used kernel functions are: 

1. Linear function: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗) 

2. Polinomial function: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖𝑥𝑗)
𝑑

 

3. Sigmoid function: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑘𝑥𝑖𝑥𝑗 − 𝛿) 

4. Radial basis function: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , 𝛾 > 0 

 

3.3.1.3. Multiclass support vector machine 

Support vector machine is mainly used for two class data sets. Therefore, problems 

with K> 2 classes are frequently encountered. As a solution, it is proposed to create a 

multi-class classifier using different combinations of two classes of Support Vector 

Machines. 

One versus rest method 

This is conceptually the easiest multi-class SVM method. Here, class 1 (positive) 

versus all other classes (negative), class 2 against all other classes, …, class k against all 

other classes form k binary SVM classifiers. The combined one versus rest (OVR) 

function selects the sample class that corresponds to the binary decision k functions 

determined by the subsequent positive hyperplane. By doing so, the decision planes are 

calculated by k SVM. And it questions the optimization of the multiple category 

classification. This approach is difficult to calculate, because for us k is the size of the 

quadratic programming (QP) optimization. The technique does not have theoretical 

validation, such as generalization analysis, which is relevant to the robust learning 

algorithm. 
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 One versus one method 

This method is related to the creation of binary SVM classifiers of all class pairs. 

There are three (
𝑘

2
) = (

𝑘(𝑘−1)

2
) pairs in total. In other words, for each class pair, the binary 

SVM problem is solved. The decision function assigns an example to a class, then the 

class it assigns has the highest number of votes, which is called the Max Wins strategy 

(Friedman, 1996). If there is still a link, an example is assigned to the label based on the 

classification determined by the subsequent hyperplane. One of the benefits of this 

approach is that each class pairs have to deal with a smaller optimization problem, and 

the total k (k-1) / 2 QP problems smaller than n are solved. Assuming that the QP 

optimization algorithms used for SVMs are of the polynomial type according to the 

problem size, they provide significant savings in time. In addition, some researchers have 

identified some binary sub-problems, but not all the multi-category problems, yet have 

demonstrated that one versus one (OVO) will improve the classification compared to 

OVR (Kressel, 1999). Unlike the OVR approach, it only plays a minor role in 

destabilizing equality and has no major impact on the overall decision. On the other hand, 

similar to OVR, OVO does not currently have the limits set in generalization errors. 

There are many multi-class support vector machine methods ( Directed Acyclic 

Graph Support Vector Machine (DAGSVM), Weston and Watkins method, Crammer and 

Singer method) that have been introduced into the literature with the changes made to 

these methods, which basically resemble the logic of these two methods. 

 

3.3.1.4. Driver classification by using support vector machine 

The attribute vector of the driving data is generated for each driver. A combination 

of these vectors yielded a 39x3 feature matrix. The training and test matrices needed for 

the application of the support vector machine method were taken from this matrix. 75% 

of the available data set is defined as training data set and 25% is defined as test data set. 

These percentages were selected by examining the literature studies. As a result of the 

initial classification process, the drives were classified with 100% accuracy. However, in 

order to prove the accuracy and feasibility of the proposed study, the training and test 

data were changed with the idea that this method should be tried in the classification 

process for all available test and training data. By using the leave-p-out method (p=9, 

n=39), a new set of training and test data was created each time within the attribute matrix 
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and the drives were classified. The process of obtaining training and test data is visualized 

in Figure 3.7. 

 

 

Figure 3.7. Stage of obtaining of training and test sets 

 

In the first training set used for classification, Lines 1-30 of the attribute matrix 

were used, while rows 31-39 were used in the test data set. In the second classification 

process, the training set which was created by using 2-31 rows and the test set with rows 

1 and 32-39 were presented as input to the method. In the last of these procedures, the 

training set consists of 10-39 Rows and the test data set consists of rows 1-9.First of all, 

the first 30 lines of the data matrix were created and the training data set was obtained 

with the remaining 9 lines. Afterwards, training and data sets were changed using leave-

p-out cross validation method applied in other methods. In this way, the suitability of the 

classification for all data has been proved. For example, the training and test data set for 

the first and final experiments are given in Table 3.3 and Table 3.4, respectively. 
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Table  3.3. Traning data sets of first and last classification steps   

                            First Classification Last Classification 

1st Data  27383.8210 8343.1882 2871.5854 29329.2045 9697.6460 2913.3728 

2nd Data  27126.4369 8052.3325 2821.4269 27296.8188 9974.7528 2743.9896 

3th Data 27245.2549 8700.1209 2816.3529 26713.3265 10296.2812 2629.5596 

4th Data 27632.5107 9006.7038 2887.8901 29557.7359 4214.2626 2836.4263 

5th Data 21922.0777 3528.3831 2913.4751 26907.7533 4882.1618 3088.4964 

6th Data 21533.6939 3673.2568 2733.1964 22418.4302 9073.7968 2659.2370 

7th Data 24011.1406 3910.1762 3076.6017 23088.1991 8896.5869 2492.3080 

8th Data 22045.7049 3607.8123 2823.3450 27107.3366 10933.0381 2816.0600 

9th Data 30031.6753 9909.2231 3339.2539 26588.6761 10504.6090 2595.4167 

10th Data 29329.2045 9697.6460 2913.3727 16713.9712 6463.0758 2674.8207 

11th Data 27296.8188 9974.7528 2743.9896 15077.2604 5569.4462 2766.3078 

12th Data 26713.3265 10296.281 2629.5596 36321.6208 5112.4039 3036.0650 

13th Data 29557.7359 4214.2626 2836.4263 28606.5300 4363.0709 2658.9879 

14th Data 26907.7533 4882.1618 3088.4964 24642.5759 2963.1430 2293.2266 

15th Data 22418.4302 9073.7968 2659.2370 24124.2186 2849.2136 2351.0778 

16th Data 23088.1991 8896.5869 2492.3080 23791.1277 3542.0785 2403.3884 

17th Data 27107.3366 10933.038 2816.0600 24079.6289 3265.2184 2411.6683 

18th Data 26588.6761 10504.609 2595.4167 23212.5083 3094.4938 2369.7311 

19th Data 16713.9712 6463.0758 2674.8207 23095.2506 2822.4979 2473.4978 

20th Data 15077.2604 5569.4462 2766.3078 25118.0058 5497.2100 2812.3014 

21th Data 36321.6208 5112.4039 3036.0650 27827.2088 10474.7006 2687.9523 

22th Data 28606.5300 4363.0709 2658.9879 28486.2995 10555.7210 2703.8158 

23th Data 24642.5759 2963.1430 2293.2266 27672.9616 5190.6188 2752.4948 

24th Data 24124.2186 2849.2136 2351.0778 26584.87066 5448.8068 2680.6193 

25th Data 23791.1277 3542.0785 2403.3884 22492.56556 4938.2072 2694.4651 

26th Data 24079.6289 3265.2184 2411.6683 22912.30176 4720.6937 2738.7521 

27th Data 23212.5083 3094.4938 2369.7311 23437.36484 4826.9385 2645.9003 

28th Data 23095.2506 2822.4979 2473.4978 22909.75965 4714.3612 2660.5308 

29th Data 25118.0058 5497.2100 2812.3014 15699.43727 2627.4373 2572.9282 

30th Data  27827.2088 10474.700 2687.9523 13720.89143 2663.6334 2583.0852 
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Table  3.4. Test data sets of first and last classification  steps 

                            First Classification Last Classification 

1st Data  28486.2995 10555.721 2703.8158 27383.8210 8343.1882 2871.5854 

2nd Data  27672.9616 5190.6188 2752.4948 27126.4369 8052.3325 2821.4269 

3th Data 26584.8706 5448.8068 2680.6193 27245.2549 8700.1209 2816.3529 

4th Data 22492.5655 4938.2072 2694.4651 27632.5107 9006.7038 2887.8901 

5th Data 22912.3017 4720.6937 2738.7521 21922.0777 3528.3831 2913.4751 

6th Data 23437.3648 4826.9385 2645.9003 21533.6939 3673.2568 2733.1964 

7th Data 22909.7596 4714.3612 2660.5308 24011.1406 3910.1762 3076.6017 

8th Data 15699.4372 2627.4373 2572.9282 22045.7049 3607.8123 2823.3450 

9th Data 13720.8914 2663.6334 2583.0852 30031.6753 9909.2231 3339.2539 

 

The average accuracy was 98.9% as a result of the classifications made with the 

matrices obtained in this way in order to have the drivers in all classes in the training set. 

Only one of the 90 drives in the test matrix was classified as incorrect. In other words, 

the probability of a driver in a wrong class is 0.011. In Table 3.5, the accuracy of the 

method is given for different classes. 

 

Table  3.5. Accuracy of proposed method 

Driver Class Correct Classification Percentage 

Moderate 100 

Conservative 100 

Aggressive 97.82 

 

Since it is important to have approximately the same number of drivers in all classes 

in the training data, the driver class distributions in the test phase cannot be realized 

equally. The classification results are given in Table 3.6. 
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Table  3.6. Confusion matrices 

Test No Real classes of drivers 

P
re

d
ic

te
d

 c
la

ss
es

 o
f 

d
ri

v
er

s 

 

 

1st Test 

Conservative Moderate Aggressive  

3 0 0 Conservative 

0 0 0 Moderate 

0 0 6 Aggressive 

 

2nd Test 

3 0 0 Conservative 

0 0 0 Moderate 

0 0 6 Aggressive 

 

3rd Test 

3 0 0 Conservative 

0 0 0 Moderate 

0 0 6 Aggressive 

 

4th Test 

3 0 0 Conservative 

0 0 0 Moderate 

0 0 6 Aggressive 

 

5th Test 

4 0 0 Conservative 

0 0 0 Moderate 

0 0 5 Aggressive 

 

6th Test 

4 0 0 Conservative 

0 0 0 Moderate 

0 0 5 Aggressive 

 

7th Test 

4 0 0 Conservative 

0 0 0 Moderate 

0 0 5 Aggressive 

 

8th Test 

4 0 0 Conservative 

0 1 0 Moderate 

0 0 4 Aggressive 

 

9th Test 

4 0 0 Conservative 

0 1 0 Moderate 

0 0 4 Aggressive 

 

10th Test 

5 0 1 Conservative 

0 1 0 Moderate 

0 0 2 Aggressive 

 

3.3.2. Markov chain 

The process that consists of the values that a random variable takes at consecutive 

moments over time (or consecutive points in space) is called stochastic process. The 

variable 𝑋 of a stochastic process is expressed by the values 𝑥1, 𝑥2, 𝑥3 …. measured at 



34 

 

∆𝑡 time intervals 𝑡1, 𝑡2, 𝑡3 (or 𝑠1, 𝑠2, 𝑠3,…points in space with ∆𝑠 steps). These values are 

not independent of each other in many processes. 

The process created by taking into account the effect of a random variable (which 

can take one of a finite number) in consecutive moments (or consecutive points in space) 

over time in one of a finite number of states is called Markov Chain. Let the process be 

represented by the values (𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … . ) in 𝑡0, 𝑡1, 𝑡2… moments. The 

probability that this process exists at state 𝑗 at time 𝑡𝑛+1 can be written as conditional 

probability 𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … . 𝑋𝑛 = 𝑥𝑛). If this probability is 

equal to the conditional probability 𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑛), the state transition 

probability equation can be written as Eq. (3.33). 

𝑃(𝑋𝑛+1 = 𝑗|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … . 𝑋𝑛 = 𝑥𝑛) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑥𝑛)  (3.33) 

This means that the value of the random variable of the process at any time 𝑡𝑛+1 

depends only on the value of the previous 𝑡𝑛. That is, the states in which the process was 

present in the previous moments 𝑡𝑛−1, 𝑡𝑛−2, …. do not directly affect the situation at the 

moment 𝑡𝑛+1. The process with such a feature (first order, simple) is called Markov Chain 

(Aksoy, 1998). The Markov chain is a simple form of internal dependence in processes. 

In a Markov chain (𝑛 > 𝑚), the probability of transition from state 𝑖 in 𝑡𝑚 to state 𝑗 in 𝑡𝑛 

can be shown as 𝑃𝑖𝑗(𝑚, 𝑛) and this probability is equal to Eq. (3.34). 

𝑃𝑖𝑗(𝑚, 𝑛) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑚 = 𝑖), 𝑛 > 𝑚                          (3.34) 

If the Markov chain is homogeneous, the probability of 𝑃𝑖𝑗(𝑚, 𝑛)  depends only on 

the time elapsed between 𝑡𝑚 and 𝑡𝑛. The k-step transition probability function of a 

homogeneous chain is given in Eq. (3.35). 

𝑃𝑖𝑗(𝑘) = 𝑃(𝑋𝑡+𝑘 = 𝑗|𝑋𝑡 = 𝑖), 𝑘 > 0                              (3.35) 

The 𝑃𝑖𝑗 probabilities can be considered as elements of the P transition probabilities 

matrix. The matrix P in the mxm dimension is expressed as Eq. (3.36). 

𝐏 = 𝑃𝑖𝑗 = [

𝑃11 𝑃12 … 𝑃1𝑚

𝑃21 𝑃22 … 𝑃2𝑚

⋮ ⋮ ⋮
𝑃𝑚1 𝑃𝑚2 … 𝑃𝑚𝑚

]                                          (3.36) 
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The sum of the elements on a row in the matrix is equal to 1. Because these elements 

indicate the probability that the process which is in a certain state at t will be able to 

transate to various states at t + 1. 

3.3.2.1. Driver classification by using markov chain 

The conditions needed for the grading process by Markov method were created 

from the raw form of the velocity and angular velocity data. The 20 cases given in Table 

3.7 are identified. These 20 cases are determined by considering the change intervals of 

the data obtained from the drives. Figure 3.8 shows the angular speed graph of an example 

driver and Figure 3.9 shows the angular speed distribution graph for this ride. 

 

Table  3.7. Markov states 

States Change in speed(ΔV) Angular velocity(ωx) 

State 1 ΔV<0 ωx<-2 

State 2 ΔV<0 -2≤ωx<-1.5 

State 3 ΔV<0 -1.5≤ωx<-1 

State 4 ΔV<0 -1≤ωx<-0.5 

State 5 ΔV<0 -0.5≤ωx<0 

State 6 ΔV<0 0≤ωx<0.5 

State 7 ΔV<0 0.5≤ωx<1 

State 8 ΔV<0 1≤ωx<1.5 

State 9 ΔV<0 1.5≤ωx<2 

State 10 ΔV<0 2≤ωx 

State 11 ΔV≥0 ωx<-2 

State 12 ΔV≥0 -2≤ωx<-1.5 

State 13 ΔV≥0 -1.5≤ωx<-1 

State 14 ΔV≥0 -1≤ωx<-0.5 

State 15 ΔV≥0 -0.5≤ωx<0 

State 16 ΔV≥0 0≤ωx<0.5 

State 17 ΔV≥0 0.5≤ωx<1 

State 18 ΔV≥0 1≤ωx<1.5 

State 19 ΔV≥0 1.5≤ωx<2 

State 20 ΔV≥0 2≤ωx 
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Figure 3.8 x-axis angular velocity of a driver 

 

Figure 3.9. Histogram of x-axis angular velocity 

 

Together with the determination of the states, the states were created for all rides 

and the state transition matrices were obtained. States distribution graphs of 6 different 

drives from all drive classes are given in Figure 3.10. 
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(a) 

Figure 3.10. The states of different drivers(a-conservative, b-moderate, c-aggressive) 
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(b) 

Figure 3.110. (Continue) The states of different drivers(a-conservative, b-moderate, c-aggressive) 
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(c) 

Figure 3.10. (Continue) The states of different drivers(a-conservative, b-moderate, c-aggressive) 

 

Considering the states given above as an example, a state transition probability 

matrix was obtained for all drives. In Table 3.8, Table 3.9 and Table 3.10, sample 

probability transition matrices are given for the drivers in the conservative, moderate and 

aggressive classes, respectively. 
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Table  3.8. Transition probability matrix of a conservative driver 

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

5 0 0 0 0.04 0.48 0.26 0 0 0 0 0 0 0 0 0.12 0.1 0 0 0 0 

6 0 0 0 0 0.15 0.63 0.014 0 0 0 0 0 0 0 0.07 0.12 0 0 0 0 

7 0 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0 0 0.66 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0.18 0.03 0 0 0 0 0 0 0 0 0.54 0.24 0 0 0 0 

16 0 0 0 0 0.036 0.13 0.012 0 0 0 0 0 0 0 0.2 0.60 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Table  3.9. Transition probability matrix of a moderate driver 

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 

5 0 0 0 0.017 0.48 0.267 0 0 0 0 0 0 0 0 0.178 0.03 0 0 0 0 

6 0 0 0 0 0.2 0.38 0.03 0 0 0 0 0 0 0 0.07 0.25 0 0 0 0 

7 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0.25 0.5 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0.14 0.07 0 0 0 0 0 0 0 0.01 0.62 0.15 0 0 0 0 

16 0 0 0 0 0.03 0.14 0 0 0 0 0 0 0 0 0.36 0.45 0 0 0 0 

17 0 0 0 0 0 0.50 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table  3.10. Transition probability matrix of a aggressive driver 

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0.42 0.28 0 0 0 0 0 0 0 0 0.14 0.14 0 0 0 0 0 

5 0 0 0 0.06 0.26 0.32 0 0 0 0 0 0 0 0 0.22 0.14 0 0 0 0 

6 0 0 0 0 0.27 0.34 0 0 0 0 0 0 0 0 0.10 0.24 0.01 0 0 0 

7 0 0 0 0 0 0 0.33 0.33 0 0 0 0 0 0 0 0 0.33 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

15 0 0 0 0.02 0.29 0.13 0 0 0 0 0 0 0 0 0.37 0.17 0 0 0 0 

16 0 0 0 0 0.08 0.31 0.04 0 0 0 0 0 0 0 0.22 0.33 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.33 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Cells containing meaningful information were determined by examining the 

transition probability matrices of the classes. These cells make themselves meaningful in 

the form of regular increases or decreases between classes. When the values of these cells 

are evaluated appropriately, it is thought to make a significant contribution in driver 

classification. A weighted arithmetic mean of the cells was defined and a distinctive 

attribute was defined for the classes. 

 

Weighted arithmetic mean  

The weighted arithmetic mean of a set of numbers X1, X2, ..., XN with respective 

weights of w1, w2, ..., wN is defined as Eq. (3.37). 

�̅� =
𝑤1𝑋1+𝑤2𝑋2+⋯+𝑤𝑁𝑋𝑁

𝑤1+𝑤2+⋯+𝑤𝑁
                                              (3.37) 

When the fifth feature was developed, the dominant conditions of each driving class were 

determined be examining the state transition probabilities of the drivers. Taking these 

dominate states into account, the weighted arithmetic mean of the state transition 

probability matrices is taken. Table 3.11 shows the weighted arithmetic mean values of 

all driving. 
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Table  3.11. Weighted arithmetic mean of transition probility matrices 

Drive no Weighted arithmetic mean 

1st Drive 0.0364 

2nd Drive 0.0415 

3thDrive 0.0293 

4thDrive 0.0216 

5thDrive 0.0403 

6thDrive 0.0806 

7thDrive 0.0771 

8thDrive 0.0606 

9thDrive 0.0292 

10thDrive 0.0503 

11thDrive 0.0454 

12thDrive 0.0543 

13hDrive 0.0299 

14thDrive 0.0319 

15thDrive 0.0431 

16thDrive 0.0533 

17thDrive 0.0492 

18thDrive 0.0504 

19thDrive 0.0547 

20thDrive 0.0522 

21thDrive 0.0576 

22thDrive 0.0316 

23thDrive 0.0410 

24thDrive 0.0446 

25thDrive 0.0440 

26thDrive 0.0502 

27thDrive 0.0502 

28thDrive 0.0466 

29thDrive 0.0446 

30thDrive 0.0428 

31thDrive 0.0411 

32thDrive 0.0576 

33thDrive 0.0357 

34thDrive 0.0438 

35thDrive 0.0554 

36thDrive 0.0554 

37thDrive 0.0539 

38thDrive 0.0357 

39thDrive 0.0429 

 

The values in the table were added to the SVM data matrix as Feature 4 and the 

classification was re-performed for the 39x4 data matrix. Considering attribute 4, 
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classification accuracy is reduced. Wrong classification was made for 7 drives and 

accuracy decreased to 92.2%. 

3.3.3. K nearest neighbor method 

The k-nearest neighbor method was first introduced by Fix and Hodges (1951) as a 

non-parametric method for use in pattern recognition and later developed by Cover and 

Hart (1967). K-nearest neighbor method is a classification method that determines the 

class where the observations will take place and the nearest neighbor according to the k-

value. It is one of the supervised data mining algorithms that classify based on 

observations or distance between objects. The method is used in many areas such as 

pattern recognition, artificial intelligence, data mining, statistics, cognitive psychology, 

medicine, and bioinformatics (Fix and Hodges, 1951; Cover and Hart, 1967). 

The K-nearest neighbor algorithm makes the classification by distance or proximity 

calculation. In summary, this classification algorithm is based on the idea that "objects 

that are close to each other in the sample space probably belong to the same category". 

The purpose of the algorithm is to assign individuals or objects to the predetermined 

classes or groups in the most accurate way, using the properties of those objects. The 

method also allows for the classification of a new observation. With the help of the 

learning data set, the observation to be classified is classified in the same data set with 

the most similar ones among the closest k observations. The data set to be used in the 

formation of a model is called the learning data set (Fix and Hodges, 1951; Cover and 

Hart, 1967; Harrington, 2012). 

K-nearest neighbor method has many advantages such as providing clear and 

effective results, being able to ignore missing observations in continuous variables, 

having the option to evaluate missing observations in categorical variables, and being 

able to provide categorical, continuous or a combination of both. Also, it has 

disadvantages such as the number of closest neighbors, the number of k required, 

influenced by the selected distance measurement, the lack of accuracy of the distance to 

be used (Elasan,2019). 

The K-nearest neighbor algorithm is used to classify observations according to their 

similarity to other phenomena. It was developed as a way of recognizing data models 

without exact matching to learned patterns or models. Similar observations are close 

(neighbors) and dissimilar observations are distant from each other. Therefore, the 

distance between the two observations is a criterion determining the dissimilarity. The 
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distances of a new observation from the observations in the model are calculated. This 

observation is assigned to the most repetitive/similar category (Fix and Hodges, 1951; 

Cover and Hart, 1967). 

When performing this method, the following steps are performed (Cover and Hart; 

1967; http-3): 

1. The distance of the new observation to all observations in the data set is calculated, 

2. These distance values are sorted, 

3. k observations with the smallest distance are selected, 

4. In k observation, the majority voting category is the class value. 

In addition to obtaining the class value with the majority voting category in K 

observation, weighted voting can also be used. As shown in Eq. (3.38), the inverse or 

inverse square of the distances is used as weight. With the help of the weights calculated 

for each class, the category with the highest weight is selected as the class value. 𝑥𝑖 and 

𝑥𝑞 represent observations in the learning data set and test sample, respectively. 

𝑊 =
1

𝑑(𝑥𝑞,𝑥𝑖)
2                                                      (3.38) 

At the beginning of the classification process, the data is converted to numerical 

values and the number of nearest neighbor (k) is determined. When determining the class 

of observations in the test sample, the distances of each observation to the observations 

in the learning data set are calculated and the closest k observations are selected. When 

calculating the distance, different distance measurements such as Euclid, Manhattan (City 

Block), Minkowski, Chebyshev, Dilca can be utilized (Fix and Hodges, 1951; Cover and 

Hart, 1967; http-3).  

The K-nearest neighbor algorithm optionally divides the data into two sets: training 

and test (holdout). The learning data set is used in the formation of the model. The test 

data set is used to evaluate the model independently. Incomplete observations of 

continuous variables can be ignored. Categorical variables have the option of evaluating 

missing observations. The number of categories can be reduced by combining similar 

categories or subtracting less observed categories before applying the model. In addition, 

contradictory observations can be removed from the model (Fix and Hodges, 1951; Cover 

and Hart, 1967). 

In k-nearest neighbor algorithm, forward selection method is used for variable 

selection to algorithm. Variables are selected sequentially, and the variable selected at 
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each step is the variable that ensures that the error rate or the sum of the error squares is 

minimum (Cover and Hart, 1967; Cunningham and Delany, 2007). 

When a new variable is added to the model, the algorithm stops when it is 

understood that the model cannot be further developed (Cover and Hart, 1967). 

 

3.3.3.1. Selection of the number k 

The K nearest neighbor algorithm uses the nearest neighbor samples to classify or 

predict observations in the n-dimensional property space. In the K-nearest neighbor 

algorithm, a positive integer such as k indicates how many closest neighbor numbers to 

consider in order to classify the new observation. If k = 1, the new observation attempted 

to be classified will be included in the class of the nearest neighbor. This method is also 

used for estimation. As the number K approaches the number of instances (N), the 

assignment (classification) is made to the category with more than adjacent objects. When 

all the data in the data set are considered, the assignment is made to the most repeating 

category. In short, k is the number of closest neighbors to be considered in the 

classification of a new observation (Cover and Hart, 1967). 

 

3.3.3.2. Similarity, distance and proximity measurements 

Similarity is a numerical magnitude that reflects the strength of the relationship 

between two properties or objects, which is very difficult to measure. This size is usually 

in the range of ±1 and can be normalized to a range of 0 to +1. Distance measures 

dissimilarity. The dissimilarity can also be considered as a measure of the mismatch 

between two objects. These measures can also be used as coordinate values in the 

properties space for the object. At the beginning of the classification process, the data is 

converted to numerical values and the number of nearest neighbor (k) is determined. 

When determining the class of observations in the test sample, the distance from 

the observations in the learning data set is calculated and the closest k observations are 

selected (Cover and Hart; 1967; Teknomo, 2006; Cunningham and Delany, 2007). When 

calculating the distance, different distance measurements such as Euclid, Manhattan (City 

Block), Minkowski, Chebyshev, Dilca can be utilized (Fix and Hodges, 1951; Cover and 

Hart, 1967; http-3). 

Distance measurements differ if the data includes continuous and/or categorical 

variables. If the variables are continuous and categorical, the commonly used measures 
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for the distance between observations are Euclid and Manhattan. It is recommended to 

use Euclidean distance function if the data set contains continuous variables in all 

dimensions, and to use Manhattan distance function if it includes categorical variables 

(http-4). In this context, in the study, Euclidean (City Block) measurement was used by 

taking into consideration the data type. 

Euclidean distance is the linear distance between two points, such as x and y. 

Calculated as the square root of the sum of the weighted square differences between the 

observation values over all dimensions. d, to indicate the distance between the x and y 

points; equation of Euclidean distance measure is as Eq. (3.39) (http-4). 

𝑑(𝑥, 𝑦) = √(∑ (𝑥𝑗 − 𝑦𝑗)𝑁
𝑗=1

2
)                                       (3.39) 

The distance between objects can be any measure of distance. The first problem 

that comes to mind in finding proximity is to find the closest points in a given set of 

points. The most preferred models for these measurements are Voronoi diagram and 

Delaunay triangulation. These models, which have found application in many areas, are 

generally related to the finding of proximity points of all points to a point (McAllister and 

Snoeyink, 2000). 

 

3.3.3.3. Driver classification by using KNN 

Since the correct classification of the drivers is of great importance in this thesis, 

the k-Nearest Neighbor algorithm is considered as an alternative classification method. 

In this method, the data used in other methods were used. The obtained attributes were 

presented to the classification algorithm as data matrix. 

The different data sets obtained in this way show that the attributes we propose 

provide meaningful results for different data. After determining that the diagnoses on the 

data set were sufficient, the determination of the k value, which is the important parameter 

related to the classification method, was examined. Euclidean distance measure is used 

since the data set is continuous time data. The drives are classified by selecting different 

k values. Among these values, the number of neighbors with the highest accuracy was 

determined and operations were made on this value while moving on to the next stage of 

the study. The accuracy percentage is defined by Eq. (3.40). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑟𝑖𝑣𝑒𝑟𝑠
                        (3.40) 
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The classification accuracy obtained for all k values is given in Table 3.12. 

 

Table  3.12. Accuracy of classification for different k values 

k value Accuracy(%) 

k=1 85.555 

k=3 83.333 

k=5 93.333 

k=7 91.111 

k=9 90 

k=11 74.444 

 

When the accuracy curve given in Figure 3.11 is examined, it is seen that the global 

maximum point is obtained for k = 5 value. Accuracy values before and after this value 

decrease. 

 

 

Figure 3.11. Accuracy of classification for different k values 

Confusion matrices for all k values are given in Table 3.13. 
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Table  3.13. Confusion matrices 

k Value Real classes of drivers 
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k=1 

Conservative Moderate Aggressive  

3 5 8 Conservative 

0 32 0 Moderate 

0 0 42 Aggressive 

 

k=3 

3 2 13 Conservative 

0 35 0 Moderate 

0 0 37 Aggressive 

 

k=5 

3 0 6 Conservative 

0 37 0 Moderate 

0 0 44 Aggressive 

 

k=7 

3 2 6 Conservative 

0 35 0 Moderate 

0 0 44 Aggressive 

 

k=9 

0 2 4 Conservative 

0 35 0 Moderate 

3 0 46 Aggressive 

 

k=11 

0 4 16 Conservative 

0 33 0 Moderate 

3 0 34 Aggressive 

In order to have approximately equal number of driver information from all classes 

in the training data set, the drive distributions in the test data are not equal. Since the 

minority of drivers participating in the rides is in the conservative class, the lowest 

number in the confusion matrix is in the conservative class cells. 
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4. ELECTRIC VEHICLES 

With the growth of industrialization, transportation has become a great necessity 

for humanity. It is not possible to say the name of a single person in the emergence of 

cars. Cars have been developed from the past to the present, with the ideas, imagination 

and excitement of hundreds of people over hundreds of years. In the early years of the 

development of the car, there was a sharp competition between gasoline, steam and 

electric vehicles. This innovation has led to more innovations with the emergence of a 

wide range of manufacturers and entrepreneurs. Increasing interest in automobiles and 

meeting the needs of people, supplying a wide range of public vehicles has increased the 

excitement of several entrepreneurial manufacturers (Albal, 2018). 

The history of electric vehicles can generally be divided into three parts: the early 

years (1830-1929), dominance in the market between 1895-1905, the golden age, the 

middle years (1930-1989); and current years (1990 to present). 

The first electric vehicle came into being in the 1830s with disposable batteries. 

Afterwards, there has been no study on the efficient use of batteries in electric vehicles 

for about half a century. By the end of the 19th century, electric vehicles were widely 

used with the mass production of rechargeable batteries. In these years, electric vehicles 

constitute personal vehicles and rarely even taxi vehicles. England and France became 

the first countries to test electric vehicles, and America became interested in 1895. The 

first electric vehicle can be regarded as the transformed tricycle created by M. Raffard in 

France in 1881. In 1897, New York City taxi fleet, the first commercial application of 

electric vehicles in the United States, was built by Filedelfiya Electric transport and 

wagon company.  

The general perception of the electric vehicle in 1899 was that it had many 

advantages over gasoline cars: clean, quiet, vibration-free, completely reliable, easy to 

start and control, free of dirt and odors. The disadvantages were short range and high 

initial cost. The batteries were not cheap and only had an average range of about 18 miles 

per day. However, it met the needs of most of the population in these big cities. In 1899 

and 1900, electric vehicles left behind all other types of cars in America. Between 1895 

and 1914, a wide range of cars was built with different body styles and engine 

configurations. As the 1920s approached, the end of what could be called the 

experimental age for electric cars came. It almost ended as habitable sources of steam and 

electricity.  
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Electric cars had market in Europe before the US. The first car entered production 

in 1885 is thought to be the German single-cylinder Benz petrol three-wheeler. Gottlieb 

Daimler produced a four-wheel, petrol car in Stuttgart, Germany. In 1886, Andrew L. 

Riker was the first American to produce an electric vehicle. It was a tricycle imported 

from the UK, fitted with an engine that provided 1/6 horsepower and speed at eight miles 

per hour at about thirty miles. The United States did not have a manufacturing industry 

until 1896, when the Duryea brothers in Springfield, Massachusetts, produced thirteen 

matching "motor wagons". 

In 1900, France led the world in automobile production, innovation and ownership. 

There were 5,600 cars in France, 3,939 stores and only 265 electric charging stations for 

support infrastructure, oil, gas and other necessities. New York State had about 4,000 

registered vehicles in 1903. Of these, 53 percent were supplied with steam (primarily 

Locomobile Company), 27 percent with gasoline, and 20 percent with electricity. 

Automobile production was about to explode in the United States, and the proportion of 

support stations associated with gasoline and electric vehicles remained the same in 1900 

as France. 

In Turkey, the first electric car to Messrs Immisch & Co. in the United Kingdom 

were ordered by Abdul Hamid in 1888. Engineered by the company's engineers Magnus 

Volk and Moritz Immisch, this car had two smaller wheels close to each other instead of 

a single big wheel, with a 20-amp, 48-volt, 1-horsepower engine patented by Immisch. 

Abdulhamid was very pleased with this car and rewarded these two engineers, so that the 

engineers had gained an international reputation. 

One of the solutions to overcome the lack of charging infrastructure that lasted until 

1896 was the first time the Hartfor Electric Light Company introduced the replaceable 

battery service for electric trucks. The owner purchased his vehicle without batteries from 

General Electric and purchased the electricity from Hartfor Electric through replaceable 

batteries. The vehicle owner paid a variable charge per mile and a monthly service charge 

that included truck storage and maintenance. Between 1910 and 1924, the service offered 

more than 6 million miles of transport. In early 1917, a similar service was available to 

owners of Milburn Light Electric cars in Chicago to purchase battery-free vehicles. 

When it comes to performance, electric vehicles are preferred over internal 

combustion engines and steam-powered competitors. Before internal combustion engines 

take over, electric cars have many speed and distance records. The most notable of these 
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records is the breaking of the 100 km/h record by 106 km/h with Camille Jenatzy on April 

29, 1899 with his rocket-type vehicle La Jamais Contente. 

At the beginning of the 20th century, electric vehicles were a strong competitor in 

future road transport. Although slower than internal combustion engines, it was preferred 

in the early 1900s due to some advantages. The negative aspects such as shaking, smell 

and noise found in petroleum cars did not exist in electric vehicles. Electric cars did not 

have the problem of changing gear, which is the biggest problem when driving in oil cars. 

Electric cars were preferred in a way that the rich people would not need long range in 

urban transportation. Another disadvantage of petroleum automobiles was that it needed 

a manual lever to start the engine, which required physical effort to set it up. For this 

reason, electric cars provide ease of use for ladies. Another option, steam-powered 

vehicles, needed lighting and their thermal efficiency was relatively low. 

In the 1920s, hundreds of thousands of electric vehicles were produced to be used 

as cars, minibuses, taxis, commercial vehicles and buses. Despite all these developments, 

the spread of cheap oil and the invention of the self-starter for internal combustion engines 

(1911) made the internal combustion engine a more attractive vehicle. 

The reasons for the success of internal combustion engines are easily understood 

when the specific energy of the petroleum fuel is compared with the specific energy of 

the batteries. The specific energy of the lead acid battery is 30 Whkg-1, while the specific 

energy of the oil is 9000 Whkg-1. When the gearbox and gearbox efficiency, which is 

20% efficient on the efficiency of an internal combustion engine, is calculated, 1800 

Whkg-1 of useful energy can be obtained from gasoline. In electric motors with 90% 

efficiency, only 27 Whkg-1 of energy can be obtained from the lead acid battery in the 

transmission shaft. 

In terms of range, 4.5 liters (approximately 4 kg in weight) of oil and an internal 

combustion engine can drive 50 km. On the electric motor side, a lead acid battery with 

a mass of approximately 270 kg is required to store the same amount of energy. There 

will be a need for extra energy to climb, accelerate and slow down. Some energy can be 

obtained from the regenerative braking system, where the engine acts as a generator and 

braking converts kinetic energy into electrical energy. In practice, however, less than one-

third of the spent energy can be recycled. As a result, there is a need for a 2.7 ton lead 

acid battery equivalent to a 45-liter fuel tank in order to be an efficient electric vehicle 

close to the internal combustion engine. This makes the regenerative braking system 
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suitable for heavy vehicles rather than passenger cars. 2.7 tons of lead acid batteries, 

which have the same efficacy as 45 liters of oil, cost 8000 pounds at today's prices. In 

addition, the batteries have a limited life span (approximately 5 years), thus causing 

periodic replacement costs. When all these reasons are taken into consideration, the 

reasons why internal combustion engines are preferred in the 20th century are clearly 

understood. 

Since the 19th century, solutions have been sought to overcome the limited energy 

capacity problem of batteries. The first is to supply electrical energy through supply rails. 

The best example is trolleybuses. This solution has been widely used in the 20th century 

and has been preferred frequently due to its silence and environmental pollution in cities 

and small residential areas. Trolleybuses can be operated with their own batteries when 

away from power lines. The downside of this situation is the supply lines which are quite 

expensive and also visually unpleasant. As a result, most trolleybus and tram systems 

were decommissioned. 

In the early years of the development of electric vehicles, the hybrid vehicle concept 

was developed to use an internal combustion engine operating a generator with one or 

more electric motors. Hybrid vehicles have undergone a lot of trials in the early 20th 

century, but have recently gained popularity. Hybrid vehicles are the most promising 

development that can revolutionize the impact of electric vehicles. Developments in this 

area are important for the future. 

The Clean Air Act required automotive manufacturers to produce more partial 

electric (hybrid) and fully electric cars. The main objective of the law is to improve the 

quality of air in urban areas, such as Southern California, where air pollution is a major 

problem. Clean fuel vehicles have been shown to be beneficial in reducing the amount of 

air pollution in certain regions of the United States. It brought renewed attention to air 

quality and the environmental impact of the internal combustion engine, such as 

regulations introduced by the California Air Resources Board (CARB) in 1990. Since 

2002, regulations have encouraged research in electric vehicles and revitalized the 

development of environmentally friendly vehicles through tax incentives, grants and 

collaborative projects in the government industry. 

Each period, electric vehicles were introduced with quiet, reliable, environmentally 

friendly advantages compared to their competitors. In today's conditions, both general 

carbon dioxide emissions and the emission of exhaust fumes are an important concern for 
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people living in crowded cities. From this point of view, electric vehicles have a great 

advantage over internal combustion engines. Another important issue at this point is the 

technological developments in rechargeable batteries. The refueling batteries developed 

by William Groove in 1840 and whose efficiency is increased by technological 

developments will play a major role in the spread of electric vehicles. 

Environmental problems play a major role in urban use, and electric vehicles will 

be the best alternative for cities where leaded gasoline is banned and zero-emission 

vehicles are encouraged. At this point, the method used in electricity supply is of great 

importance. When fossil fuels are burned in electricity supply, there is no significant 

difference between the environmental hazards of electric vehicles and diesel or gasoline-

powered vehicles. However, preferring alternative energy sources such as hydrogen or 

wind in the supply of electricity will support the environmentally friendly conditions of 

electric vehicles. At the same time, the prospect of improvements in range and cost, as 

well as ongoing development of battery technology, is a valid reason for the increased 

use of electric vehicles. 

 

4.1. Advantages and Disadvantages of Electric Vehicles 

Electric vehicles are quiet and environmentally friendly (Keskin,  2014).   There is 

no emission of harmful gases (http-5). While the efficiency in internal combustion engine 

vehicles is 40%, the efficiency in electric vehicles is 90%. Thanks to the high torques of 

the electric motors, these vehicles which work with high efficiency accelerate the vehicle 

in a shorter time than vehicles with internal combustion engines (Khajepour et al., 2014). 

Electric vehicles have simple structures. These vehicles do not require structures such as 

gearbox, exhaust system, cooling. Electric vehicles are capable of adapting to future 

technologies (Keskin,  2014).    

Batteries can be charged with the ability of electric motors to generate electricity in 

braking and downhill situations (Karaoğlan, 2014). The cost of electric motors is 

inexpensive, long-term usability and easy to replace (Keskin,  2014).   In spite of all these 

advantages, they have some disadvantages such that the weight of the batteries is high 

and the cost is high, some structures need to be renewed after 4-5 years, the full charging 

time lasts 7-8 hours (Keskin,  2014; Karaoğlan, 2014; Başer,  2016). However, thanks to 

the developing technology, these problems are tried to be eliminated. For electric vehicles 
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using lithium-ion batteries, the charging time is 1 to 3 hours using fast charging 

technology (Başer,  2016). 

 

4.2. Optimization of Electrical Vehicle Parameter 

Electric vehicles having a simpler mechanical structure compared to gasoline vehicles are 

driven by one or more electric motors and receive the power they need from an on-board 

source of electricity. Another advantage of gasoline vehicles is that it causes less 

environmental pollution. Moreover, it is more durable thanks to its structure. An electric 

automobile uses mainly batteries as an energy storage, but capacitors and flywheel 

storage devices are used as alternative energy storage devices. When the components of 

the electrical vehicle (Figure 4.1) are examined, arrangements will be made for these 

components. 

 

 

 

 

 

 

 

Figure 4.1. Electrical vehicle components 

 

The features required for an electric motor in a battery-powered electric vehicle are 

listed below. 

 Maneuvers such as start-stop, acceleration and deceleration during driving 

cause a temperature increase on the electric motor to create thermal stress. 

Water cooling system is needed to eliminate this pressure. 

 It must have a Continuous / highest power ratio that can meet the 

requirement in the event of instantaneous acceleration. This ratio is 

approximately 1.5-2. 

 There is a need for a wide constant power range, which is generally 

expected to be 1: 3 or 1: 4, allowing travel at high speeds. 

Wheels Transmission 

Driveshaft 

Electric 

Motor 

Power 

Converter 

Battery 

Drive control signals 
Charger 



55 

 

 High efficiency, wide range of speed and torque ranges that allow the use 

of battery energy to reach a longer range is another required feature. 

 The engine is expected to have a good geometric structure with the smallest 

size and weight. 

 It should meet the expectation of low cost, high performance and 

confidence. 

When all the required parameters are examined, it is easily understood that even by 

optimizing the electric motor, a significant improvement can be made on the electric 

vehicle. Therefore, in this thesis, it is tried to present the minimum size electric motor 

with the most suitable features to the person with the optimization of the demanded power 

only.  

In addition, the data and attributes used in the driver classification process in the 

thesis study are in parallel with the steps required in the design of electric vehicles. 

Therefore, the engine optimization performed in line with the classification has an effect 

on the whole vehicle. Other components of this recommended vehicle are also compatible 

with the driver. 

 The frequency of the use of gas-brake pedals, which are also taken into account 

in the classification of drivers, will also be used for the solution of the 

acceleration-deceleration frequency problem. Feature 1 and feature 2 is directly 

linked to pedal operation 

 Angular velocity information were used to create feature 3 during the 

classification stage. This shows that the battery-motor modeling/optimization 

according to the class of drivers is the second optimization parameter that needs 

to be realized. 

 

4.2.1. Determination of the needed power of an electric motor on the basis of 

acceleration time of the electric car 

In electric car designs, only the maximum speed is taken into account when 

calculating the power required by the electric motor, but this does not reveal the motor's 

ability to accelerate at a given speed (Evtimov and Ivanov, 2016; Juraj, 2015; Besselink, 

2010). Therefore, there is no guarantee that maximum speed can be achieved with the 

desired acceleration during traffic flow. Contrary to this approach, taking into account the 

other auxiliary systems that use energy in the electric vehicle, the power required is 
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actually significantly higher than the calculated one (Evtimov and Ivanov, 2016; Juraj, 

2015; Chen, 2015; Larminie and Lowry, 2003). Some studies in the literature related to 

the selection of the electric vehicle engine acceleration intensity can not be taken into 

account. However, the acceleration intensity plays an important role in the calculation of 

the electric vehicle draft (Ehsani et al., 2010; Besselink, 2010). 

Where a more powerful electric motor is preferred, the maximum speed is 

determined by the maximum rotational speed of the electric motor (Evtimov and Ivanov, 

2016; Ehsani et al., 2010; Besselink, 2010). The problem of determining the power of the 

electric motor applies to hybrid and converted vehicles in the same manner as electric 

vehicles (Chen, 2015; Marinescu, 2009; Marinescu, 2012). This problem is solved by 

using complex modeling and simulation tools (Juraj, 2015; Schaltz, 2011).  In this thesis, 

the power required by the electric motor is calculated by a method based on acceleration 

time. 

The required power equation is expressed in Eq. (4.1), depending on the acceleration time 

of the electric vehicle at a given speed (Sapundzhiev et al., 2017). 

𝑡𝑎 = ∫

𝐺
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1

2
𝑘𝑒𝑆𝑉𝑓

2

𝑉𝑓

𝑉𝑏
𝑑𝑉                         (4.1) 

𝑉𝑓-final speed(km/h), 

𝑉𝑏-base speed(km/h), 

𝑓𝑓– the rolling resistance coefficient;  

𝛿𝑎 – the coefficient of influence of the rotating masses of the car;  

g – the Earth acceleration.  

G– the weight of the electric car(kN);  

𝑘𝑒– the coefficient of air resistance of the electric car;  

S– the front area of the electric car(m2);  

P – the power of the electric motor(kW); 

The demanded power consists of two parts as seen in the equation. The first portion 

consists of the range where the velocity takes the value 0-Vb, while the second portion is 

defined by the velocity range Vb-Vf. Torque and power curves versus speed changes in 

these ranges is also given in Figure 4.2. 
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Figure 4.2. The electric motor torque M and power P in function of car speed V 

 

Assuming that the power for overcome the rolling Рf  and air resistances РB  are not 

dependent on the curve of the motor torque but only on the speed of motion, then Рf  and 

РB  can be presented separately and after integration are expressed by the Eq. (4.2) and 

Eq. (4.3), respectively. 

𝑃𝑓 =
2

3
𝐺𝑓𝑓𝑉𝑓                                                              (4.2) 

𝑃𝐵 =
1

5
𝑘𝑒𝑆𝑉𝑓

2                                                              (4.3) 

2/3 and 1/5 coefficients are the values obtained as a result of the integration. When 

these expressions are written instead of Eq. (4.1), the acceleration time is obtained as Eq. 

(4.4). 

𝑡𝑎 =
𝛿𝑎𝐺

2𝑔𝑃𝑎
(𝑉𝑓

2 + 𝑉𝑏
2)                                                              (4.4) 

After remaking of Eq. (4.4), the average power needed during the acceleration time 

of the electric vehicle is equal to Eq. (4.5). 

𝑃𝑎 =
𝛿𝑎𝐺

2𝑔𝑡𝑎
(𝑉𝑓

2 + 𝑉𝑏
2)                                                              (4.5) 

The demand power is obtained as the Eq. (4.6) by replacing Eq. (4.2), Eq. (4.3) and 

Eq. (4.5) in Eq. (4.1). 
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4.2. Optimization 

The optimization is to obtain the minimum and (or) maximum value (s) of the 

function that mathematically expresses one or more objectives. Optimization problems 

can be single-objective or have multiple objectives and can be divided into "single- 

objective optimization" and "multi- objective optimization" problems according to the 

number of objectives. The number of objectives is equal to the size of the objective space. 

Therefore, in a two- objective problem, the aim space is two-dimensional. In any n- 

objective problem, the numerical values corresponding to the objective values are 

displayed in the n-dimensional objective space. The variables that affect the objective 

value independent of the number of objectives, in other words the different variables used 

in the objective functions are called decision variables, and similarly the number of 

decision variables is equal to the size of the decision space. Decision variables are the 

solution of the optimization problem. Decision variables form the solution (decision 

vector). The objective value of this solution is the value of the function to be minimized 

(or maximized). For single-objective optimization problems, the solution is a single value 

because the objective space is unidimensional, and for the minimization problem it is the 

decision vector that gives the smallest objective value that can be obtained within the 

specified limits. Of all possible solution vectors, the smallest decision vector is called 

"optimal solution" or "optimum". However, since a different objective value is generated 

against each decision vector in multi-objective optimization problems, the superiority of 

the solutions over each other is determined by considering each objective value. In other 

words, a single decision vector, n objective values are generated for a n-objective 

problem. Therefore, unlike single objective optimization problems, multi-objective 

optimization problem solving is not a single decision vector but a set of vectors. Similarly, 

the optimal solution is not a single vector but a set of vectors, which means that there 

cannot be a vector that produces a smaller objective value (for the minimization problem) 

than the solutions within this set of vectors. Any solution within this cluster is chosen by 

the decision maker, considering which purpose is important. There are multiple 

conflicting objectives for an optimization problem that may or may not be encountered 

in real life. These problems can be solved with the help of single-purpose optimization 

algorithms by reducing the multi-purpose problem to one purpose or by using algorithms 

developed for solving multi-purpose optimization problems.  



59 

 

Purpose values are applied to linear or nonlinear functions to make multi-objective 

optimization problems single-objective. Semantically, this process is the process of 

finding the solution with the desired properties by weighting the objectives before starting 

the algorithm instead of selecting one of the solutions produced by the multiobjective 

optimization algorithm after the algorithm ends. The common feature of the oldest 

preferred methods for solving single-objective and multi-objective optimization problems 

is the use of derivative of objective values. Numerical derivatives are obtained for the 

problems where analytical derivation is difficult. What is common in these methods is the 

numerical or analytical process of the derivation and the effort to solve a single decision 

vector (solution candidate) in the decision space at each step. These methods can be used 

with a single decision vector for multi-objective optimization problem solving or with 

multiple decision vectors. 

Disadvantages of these methods are; 

a) cannot search the decision space effectively because they use single point, 

b) lack of effective exchange of information between points (population-based) if 

they use multiple points, 

c) distribution problems in objective space and 

d) nonconvergence to solution or slowness in convergence. 

For this reason, heuristic methods (optimization algorithms that mimic natural 

phenomena with mathematical equations and connections) are preferred due to 

population-based, stochastic (random, random) distribution of solutions, faster 

convergence and independent of the properties of the problem (Altınöz, 2015). 

Simply, the single-purpose optimization problem can be defined as given in Eq. 

(4.7). In this thesis, only minimization problem is investigated. However, any 

minimization problem may be converted into a maximization problem with f(x)= - min(-

f(x)) formula.  

min
𝑋

𝑓(𝑥)      (4.7) 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑝 

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑚 

𝑥𝑘
𝐿 ≤ 𝑥𝑘 ≤ 𝑥𝑘

𝑈 , 𝑘 = 1, … , 𝑛 

In Eq. (4.6), f(x):RnR is called as the objective function. The function of g(x) and 

h(x) are constraints, xL and xU are the minimum and maximum values of the x decision 
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vector. These vectors are the limits of the search space (x    Rn). In single-objective 

optimization problems, it is aimed to find n-dimensional decision vector which 

minimizes/maximizes the given/defined objective function. The objective function maps 

the n-dimensional decision variable to the one-dimensional objective value. For any 

objective function, f:RnR (Ω feasible region) optimal solution vector (x*) is a vector 

that produces a smaller objective value than all vectors in the definition space x: f 

(x*)  f (x). 

The multi-objective optimization problem (MOOP) is as defined in Eq. (4.8). As 

can be seen from the equation, the number of limitations and objective functions is more 

than one. Although the number of objective functions must be more than one, there is no 

such constraint for (F(x)={f1(x),f2(x),…,fl(x)}) constraint functions.  

 

min
𝑋

𝐹(𝑥)      (4.8) 

𝐺𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑝 

𝐻𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑚 

𝑥𝑘
𝐿 ≤ 𝑥𝑘 ≤ 𝑥𝑘

𝑈 , 𝑘 = 1, … , 𝑛 

In MOOP problems, the space in which the decision vector is defined, is called the 

search space or the decision space. Any point in the decision space constitutes the solution 

candidate. Mathematical expressions which map the solution candidate from definition 

space to purpose space are objective functions. Figure 4.3 shows the mapping between 

two spaces. In this way, two cases are emphasized. One of them is the definition space, 

which corresponds to the shape formed by the decision space boundaries, and it also 

shows an uncertain area. This is important in defining convex and non-convex problems. 

Although the definition range of the decision space is specific in the algorithm, the 

objective space limits can be determined by additional codes to be included in the desired 

algorithm.  

The other case; a linear connection between the solution in the objective space (“the 

point”) corresponding to the solution candidate in the decision space cannot be 

mentioned. Although in many of the test problems the connection between decision space 

and objective space can be obtained using mathematical and statistical methods, such a 

correlation may not exist and/or the connection cannot be expressed mathematically 

correctly. 
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Figure 4.3. Relationship between decision and objective space (Altınöz, 2015) 

 

Unlike single-purpose optimization problems, each objective value needs to be 

taken into consideration in determining which of the solutions is the best solution 

candidate in multiobjective optimization problems. In single-purpose optimization 

problems, the solution that gives smaller objective value is the best among the two 

solutions. Similarly, when comparing different algorithms, the algorithm that produces 

the smaller objective value is better. However, since the multiobjective optimization has 

more than one objective value, a separate definition should be made. First, Pareto called 

this definition "dominance". 

 

Definition 1: Any x(1) solution (x(1)={𝑥1
(1)

, 𝑥2
(1)

, … , 𝑥𝑘
(1)

}) defined in decision space 

suppresses x(2) solution candidate (x(2)={𝑥1
(2)

, 𝑥2
(2)

, … , 𝑥𝑘
(2)

}) in the same space. It is shown 

as (x(1)x(2)). 

1. For all the objective values, x(1) must have bigger values than x(2) 

𝑓𝑖(𝑥(1)) ≤ 𝑓𝑖(𝑥(2)), 𝑖 = 1,2, … , 𝑙 . 

2. At least for one objective value, x(1)  must be smaller than x(2)  

𝑓𝑖(𝑥(1)) < 𝑓𝑖(𝑥(2)), 𝑖 ∈ {1,2, … , 𝑙} . 

Figure 4.4 is given as an example to explain the definition of dominance. Two 

objective functions and three solution candidates are given in the figure. From these three 

vectors, it can be seen that the C vector produces the best value for each objective function 

(C≤ A), (C≤ B). Other vectors appear to give the best results for each objective value. 

f1
∗

 

f2
∗

 

f2(x1, x2, x3) 

f1(x1, x2, x3) 

Objective space x3 

x1 

x2 

Decision space 
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Although the second objective value of vector A is better than the B vector, it appears 

that the first objective function value of vector B is better than the vector A. Therefore, 

the dominance of vector A and B relative to each other cannot be mentioned. Among the 

solution candidates, a set of solutions that cannot be suppressed by any solution can be 

obtained. This set is the solution set generated by the MOOP algorithm, and the decision 

maker is asked to select the solution from this set. 

 

 

Figure 4.4. Comparison of three objective vectors defined in objective space (Altınöz, 2015) 

 

Definition 2: Of all the P solution candidates, the P' solution candidate, which is not 

imprinted by other solutions, forms the unprinted solution set. The concept of a non-

printing solution set can be expanded for the entire definition space. In this case, the set 

of non-reprinted solutions to be obtained from all possible solution candidates within the 

definition space represents the optimum set (i.e. Pareto-optimum) and as defined below. 

 

Definition 3: The set obtained from the whole Ω definition space is the Pareto set. The 

shape of this set in the aim space is called the Pareto cluster. Theoretically, the Pareto 

front consists of an infinite number of solutions. For this reason, the actual Pareto cluster 

is not achieved in applications and only "approximately" the Pareto cluster is represented 

by a finite number of solutions. Figure 4.5 shows an example Pareto cluster in two-

dimensional objective space. The Pareto cluster can have different shapes in different 

problems. The most common form is convex. The definition of convex is given below. In 

a convex multiobjective optimization problem, the Pareto front is also convex. But the 

B 

A 
f1(xA) 

f1(xB) 

f1(xC) 

f1(x1, x2, ⋯ , xn) 

f2(x1, x2, ⋯ , xn) 

f2(xB) f2(xC) f2(xA) 

C 



63 

 

opposite is not always the case. A problem with the convex Pareto front does not have to 

be convex. 

 

 

Figure 4.5. Pareto cluster (Altınöz, 2015) 

 

Definition 4: In order for 𝑓: 𝑅𝑛 → 𝑅 function to be a convex function, any two pairs of 

solutions, 𝑥(1), 𝑥(2) ∈ 𝑅𝑛 that can be selected must satisfy the following condition in Eq. 

(4.9). 

𝑓(𝜆𝑥(1) + (1 − 𝜆)𝑥(2)) ≤ 𝜆𝑓(𝑥(1)) + (1 − 𝜆)𝑓(𝑥(2))                 (4.9) 

 

Definition 5: In case all purpose functions and definition space for an multiobjective 

optimization problem is convex, the multiobjective optimization problem is called 

convex.  

Pareto provides the best possible set of multionjective optimization problem 

solutions. Similarly, the objective vectors that give the boundaries of Pareto optimum 

solutions in each dimension individually are called ideal vectors and rare vectors. The 

ideal vector (𝑓𝑖(𝑥(0)) = sup (⋃ 𝑜𝑝𝑡𝑓𝑖(𝑥)), 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚)𝑥∈𝛺  is the vector that holds the 

optimum value of each objective in the multiobjective optimization problem. Rare 

objective vector (𝑓𝑖(𝑥(0)) = inf (⋃ 𝑜𝑝𝑡𝑓𝑖(𝑥)), 𝑖𝑛𝑓𝑖𝑚𝑢𝑚)𝑥∈𝛺  gives each vector the 

minimum value of each objective dimension of an objective value. These values give both 

the boundaries of the solution space and the Pareto front end points. Ideal and rare points 

graphically as summarized in Figure 4.6. 
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Figure 4.6. Representation of ideal and rare purpose vectors on the Pareto cluster (Altınöz, 2015) 

 

4.3. Genetic Algorithm 

Genetic Algorithms (GA) is an heuristic optimization technique used to find exact 

or approximate results for a search or optimization problem. Heredity in evolutionary 

biology was inspired by techniques such as mutation, selection and crossover (Kevran, 

2009). 

GA, whose basic principles were introduced by John Holland in the 1970s, has been 

successful in many types of problems (Mitchell, 1998). GA can easily be applied to 

complex problems consisting of multidimensional functions, where the search space is 

too large, where constraints are unclear or not fully defined, and the number of variables 

is too high, and meaningful results can be achieved. Genetic algorithms can produce 

reasonable results for short periods of time as a result of the tendency to stay away from 

values that may give bad results or to try out better values instead of searching the whole 

space in search space. Other population-based algorithms have similar applications, and 

the mutation operator has a low tendency to reach local minimum values. GA has a wide 

range of applications since it can be applied in both discrete and continuous functions. It 

is a common optimization method because it has been applied in many problem areas and 

many sub-methods have been developed for better performance of the algorithm. 

GA is a population-based optimization method. Values, which are expressed by 

names such as chromosomes, genotypes, genes, which are an abstract definition of 

candidate solutions that make up the population, turn into solution candidates that 

represent better results as a result of various evolutionary-based processes. This process 

is continued until an acceptable conformity value is reached or criteria such as a 
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predetermined process time, number of generations are met. Usually candidate solutions 

are expressed as strings of 0 and 1, but this is not a general rule and may vary according 

to the type of problem. 

GA consists essentially of a population of candidate solutions and a suitability 

function. Candidate solutions (chromosomes) are strings that hold variables with discrete 

or continuous values of the solution they represent. The suitability function is a function 

that measures the quality of candidate solutions. 

 

4.3.1. Initial population 

In GA, the initial population is usually composed of random candidate solutions. 

There is no ideal value for population size. This value can range from 10-20 to 100s. 

However, it is considered that keeping the population size too high has no effect on the 

solution time of the problem or the goodness of the obtained value. In this regard, values 

of 20-50 are generally preferred for the initial population. The selection of optimization 

parameters, such as population size, is in a sense a separate optimization issue, and 

generally, different optimization parameter values are tried on different types of problems 

and good results are used. 

 

4.3.2. Fitness value 

Calculation of the fitness value in GA is done by subjecting each chromosome to 

the fitness function and obtaining the result. This process corresponds to the process of 

selecting “who is better or who is worse” in the evolutionary process. This is a mandatory 

procedure for GA, and GA cannot be applied to problem types where the suitability 

function cannot be determined. 

On the other hand, the suitability function is only 0-1, yes-no, true-false etc. it also 

means that conformity function is not used. Compatibility functions can be costly 

functions in some problem types. In this case, it is advisable not to use GA to solve the 

problem, to solve the problem in a more restricted search space, or to use approximative 

functions with certain assumptions as the suitability function to be used. 

 

4.3.3. Crossover 

After all chromosomes that make up the population have been subjected to the 

conformity function, new chromosomes are formed by crossing the chromosomes with 
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relatively better chromosomes, rather than with relatively poor chromosomes, in order to 

form new and better chromosomes. The cross-over performs the function of transferring 

the accumulation in the chromosomes of good value to the new chromosomes. Crossover 

is usually not performed on all chromosomes, but if applied, elitism is often used to 

prevent loss of optimal chromosome values. 

The crossover process is usually formed by genes from two parent chromosomes, 

and genes up to a point to be determined at the starting point of the chromosome are taken 

from the first parent chromosome and the genes after that point are taken from the second 

parent chromosome. However, multi-parent and multi-point crosses can also be used. 

Various selection strategies are used for crossover. Two of these are the Roulette 

Wheel Method and Tournament Method. 

 Roulette wheel method: The basic logic of the Roulette Wheel selection strategy; 

The probability that chromosomes with high conformity values can be selected as 

parent chromosomes is kept higher than chromosomes with relatively low 

conformity values. The suitability values of all chromosomes are summed and the 

suitability value of each chromosome is calculated as a percentage value. In the 

next step, chromosomes with two random values to be selected between 1 and 100 

are selected as parent chromosomes. With this application, the chance of selecting 

the genes to be created from child chromosomes to be created from parent 

chromosomes with high conformity values is increased. However, chromosomes 

that have small suitability values, even with small percentages, have the chance 

to be selected as parent chromosomes (http-6). 

 Tournament method: In the Tournament Method selection strategy, the best 

chromosomes are chosen as parent among the k (tournament size) number of 

chromosomes randomly selected from the population. If the tournament size is 

kept high, the chance of selecting chromosomes with low fitness values will be 

reduced (Miller and Goldberg, 1995).   

 

4.3.4. Mutation 

The mutation process increases the diversity of chromosomes within the population, 

thus creating possible new solution candidates (chromosomes), thus avoiding the local 

minimum. In the mutation process after the cross-over, the values of the chromosomes 
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are randomly changed within a mutation rate to be determined. The mutation rate is 

usually a coefficient that is kept as low as 0.5% to 5%. 

The mutation process may vary depending on the structure of the chromosome. For 

example, if only chromosomes encoded with values 0 and 1, values 1 can be made 0, 

values 0 can be made 1. Similarly, if chromosomes are coded using real numbers, addition 

or subtraction can be performed with a random value to be determined within the mutation 

rate to be determined. 

 

4.3.5. Elitism 

Preservation of the best value (s) obtained within the population in GA is a widely 

used method. This can be done by keeping the chromosome ratio to be crossed low or 

keeping the best value in a separate variable if the whole population is going to be crossed 

and mutated. 

 

4.3.6. Variable mutation rate 

The low rate of mutation means that new solution candidates should be searched in 

the search space in close proximity to existing solutions. However, in some cases, it is 

considered that increasing the mutation rate may help to improve the compliance function 

if the improvement function of the population cannot be achieved for a long time. 

As another application, following the formation of the population, keeping the 

mutation rate at very high values, making a near random search in the search space; it can 

be applied by decreasing the mutation rate with the following generations, and to search 

for better values in locations close to the obtained good values. In fact, in simulated 

annealing, a similar heuristic optimization method, while the energy (temperature) levels 

of the atoms were high at first (this corresponds to a high mutation rate in GA), the 

temperature is lowered in the following stages. However, the variable mutation rate 

method should be used to keep the population size high and elitism method should be 

used. In this way, it is evaluated that the best values determined at different locations of 

the search space will be stored and searched in a wider region. 

 

4.3.7. Prevention of homogenization of population 

The heterogeneity of the population in GA is an important issue in terms of creating 

new solution candidates and thus increasing the possibility of finding a better solution. In 



68 

 

this respect, chromosomes in the population should be prevented from being exact copies 

of each other. In cases where this application is not performed and the mutation rate is 

kept low, the accumulation of chromosomes in a restricted solution region of the search 

space or even in the same location may not be prevented. 

As a solution, two or more identical chromosomes, if any, can be identified by 

replacing these chromosomes with completely random values or the chromosomes can be 

included in the next generation. However, if the population is very homogenized and the 

mutation rate is kept low, crossover may not work. 

 

4.4.  Multi-Objective Genetic Algorithm 

Real world problems are complex, and multiple goals need to be achieved for a 

good solution. Many projects offer solutions based on a single function. This simple 

approach is not very effective in most cases (Kaya and Güngör, 2007). First, the 

objectives can often conflict with each other. Second, the objectives may often not be 

appropriate to the quality of the candidate solution and may vary. In multi-purpose GAs, 

both of these situations are minimized. The natural and evolutionary structure of the 

genetic algorithm is also suitable for multi-purpose structure. Pareto's optimal solution is 

well suited to the nature of multi-purpose GA (Goldberg, 1989). Goldberg's selection 

algorithm (2002) uses the multipurpose evolutionary algorithm proposed in (Deb, 2001; 

Coello et al., 2002). 

In multi-purpose genetic algorithms, more than one goal is looked at at the same 

time. So there is not a single optimal solution. A set of solutions can be selected by making 

a choice between the objectives. With this method, the user can select one of the possible 

solutions for the specific problem. Thus, the user will have the opportunity to select a set 

of solutions by examining the high quality solutions and making a choice between the 

objectives. This method is better than forcing the user into a single set of solutions. 

The reasons why multi-objective GAs are preferred are: 

1. Genetic algorithms are powerful algorithms because of the large search space. 

2. . Genetic algorithms are a global search method and communicate with objects more 

easily than greedy search methods. 

3. Genetic algorithms work with a set of candidate solutions to solve multi-objective 

problems. 

An example for multiobjective problem is shown in Figure 4.7.
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Figure 4.7. An example for multiobjective problem(Kaya and Güngör, 2007) 

 

In Figure (4.7), solution A has a low rule length but a high error rate, solution D has 

a low error rate but a high rule length. Since both objectives are important; Solution A is 

better than D, or vice versa. On the other hand, solution C is worse than D. In this study, 

a three-purpose problem is considered. The aim is to find a small number of “IF-IF” sets 

of fuzzy rules that contain a small number of objects with high classification performance. 

This process is to maximize the classification accuracy rate, to minimize the number of 

selected rules and to minimize the total rule length. 

 

4.5. A Novel Application: Multi-Objetive GA to optimize Electrical Vehicle Power 

using Driver Behaviour Data 

The acceleration times of the driving classes were determined from the driving data 

obtained in the previous periods. These values are defined as the time to reach the speed 

value determined for each class. In general, this value is considered to be 100km/h, and 

since the work is performed on campus for the most part, most of the drivers do not reach 

this speed, so a common speed value is determined for all drivers. This speed value is 

selected as the maximum speed that the calmest driver has reached once. The expected 

speed value for the study is 40 km/h. The times that the drivers have reached this value 

are given in Table 4.1. 
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Table  4.1. Acceleration time of drivers  

Driver class Acceleration time(s) Mean acceleration 

time(s) 

Conservative 1st Drive 13 42.3 

2nd Drive 40 

3rd Drive 49 

4th Drive 40 

5th Drive 49 

6th Drive 47 

7th Drive 45 

8th Drive 41 

9th Drive 71 

10th Drive 34 

11th Drive 34 

12th Drive 41 

13th Drive 38 

14th Drive 42 

15th Drive 51 

Moderate 1st Drive 11 16 

2nd Drive 47 

3rd Drive 46 

4th Drive 11 

5th Drive 13 

6th Drive 11 

7th Drive 7 

8th Drive 11 

9th Drive 16 

10th Drive 13 

11th Drive 14 

Aggressive 1st Drive 10 9.72 

2nd Drive 8 

3rd Drive 8 

4th Drive 7 

5th Drive 3 

6th Drive 9 

7th Drive 15 

8th Drive 13 

9th Drive 13 

10th Drive 9 

11th Drive 13 

12th Drive 9 

13th Drive 8 
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These values are used in the following power demand function (Eq.(4.10)) to create 

the first objective function to be optimized for the power demanded for each class. 

Optimization variables for this equation in the literature are determined as 𝑉𝑓 and 𝑉𝑏.  

Therefore, in the stage of defining the genetic algorithm optimization problem, 𝑉𝑓 and 

𝑉𝑏values appear as genes. 

These values determine the vehicle's engine selection. Multi-objective genetic 

algorithm was chosen as the optimization method. Therefore, a second objective function 

is determined as Eq. (4.11) with respect to the vehicle's speed factor. 

𝑃 =
𝛿𝑎𝐺

2𝑡𝑎𝑔
(𝑉𝑓

2 + 𝑉𝑏
2) +

2

3
𝐺𝑓𝑓𝑉𝑓 +

1

5
𝑘𝑒𝑆𝑉𝑓

2                                         (4.10) 

𝑆𝐹 =
𝑉𝑏

𝑉𝑓
                                                                 (4.11) 

Lower and upper limits are added as constraints for 𝑉𝑓 and 𝑉𝑏 speed values 

determined as optimization variable. The maximum speed values of the drives have been 

defined as the average speed values for the 𝑉𝑓variable and the constraints for the 𝑉𝑏 speed 

variable. 

Maximum and average speed values of all drivers are given in Table 4.2. 
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Table  4.2. Maximum and mean speed values 

Driver class Max Velocity(km/h) Mean Velocity(km/h) 

Conservative 1st Drive 54 32.4 

2nd Drive 57 32.4 

3rd Drive 54 32.4 

4th Drive 54 32.4 

5th Drive 50 28.8 

6th Drive 48 28.8 

7th Drive 54 32.4 

8th Drive 56 32.4 

9th Drive 49 25,2 

10th Drive 55 32.4 

11th Drive 61 36 

12th Drive 60 32.4 

13th Drive 54 32.4 

14th Drive 53 32.4 

15th Drive 65 32.4 

Moderate 1st Drive 65 36 

2nd Drive 55 28.8 

3rd Drive 60 32.4 

4th Drive 70 39.6 

5th Drive 56 39.6 

6th Drive 63 32.4 

7th Drive 64 36 

8th Drive 65 36 

9th Drive 61 36 

10th Drive 64 36 

11th Drive 65 36 

Aggressive 1st Drive 68 39.6 

2nd Drive 64 39.6 

3rd Drive 65 39.6 

4th Drive 86 50.4 

5th Drive 105 61.2 

6th Drive 79 39.6 

7th Drive 74 39.6 

8th Drive 75 36 

9th Drive 74 39.6 

10th Drive 70 57.6 

11th Drive 90 68.4 

12th Drive 95 39.6 

13th Drive 116 39.6 

 

𝑓1(𝒗) =
𝛿𝑎𝐺

2𝑡𝑎𝑔
(𝑉𝑓

2 + 𝑉𝑏
2) +

2

3
𝐺𝑓𝑓𝑉𝑓 +

1

5
𝑘𝑒𝑆𝑉𝑓

2 
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𝑓2(𝒗) =
𝑉𝑏

𝑉𝑓
 

min
𝒗

𝑓(𝒗) = (𝑓1(𝒗), 𝑓2 (𝒗))𝑇 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒗 ∈ 𝑽 = {𝒗 ∈ 𝑅𝑛|𝑉𝑓𝑙
≤ 𝑉𝑓 ≤ 𝑉𝑓𝑢

, 𝑉𝑏𝑙
≤ 𝑉𝑏 ≤ 𝑉𝑏𝑢

} 

The limit values 𝑉𝑓𝑙
, 𝑉𝑓𝑢

, 𝑉𝑏𝑙
 and 𝑉𝑏𝑢

 take different values for the three drive classes. 

According to the values in the table, the constraints were determined for 𝑉𝑓 and 𝑉𝑏 

variables belonging to three classes. These values are selected as the min and max values 

of the drive speed values in each class. Optimization constraints are given in Table 4.3. 

 

Table  4.3. Constraints of speed variables 

Driver Class 𝑽𝒇 𝑽𝒃 

Lower Limit  Upper Limit Lower Limit  Upper Limit 

Conservative 50 61 25.2 36 

Moderate 55 70 39.6 28.8 

Aggressive 64 116 68.4 36 

 

In the thesis, matlab program was used for optimization solution with genetic 

algorithm. The multiobjective GA function uses a controlled elitist genetic algorithm.  

 The multi-objective genetic algorithm (gamultiobj) operates on a population using 

a number of operators applied to the population. The population consists of a 

series of points in the design space. The said program randomly generates the first 

population. The next generation is calculated by considering the non-dominant 

rank and the distance measure of individuals in the current generation.  

 Population type is chosen as Double Vector because the individuals in the 

population are of double type. 

 gamultiobj uses only the Tournament ('selectiontournament') selection function. 

 The crossover process for the program used is as follows. 

 Intermediate ('crossoverintermediate'), the default crossover function when there 

are  linear constraints, creates children by taking a weighted average of the parents. 

You can  specify the weights by a single parameter, Ratio, which can be a scalar or 

a row vector  of length Number of variables. The default is a vector of all 1's. The 

function creates  the child from parent1 and parent2 using the following formula. 

 child = parent1 + rand * Ratio * ( parent2 - parent1) 
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 The mutation process for the program used is as follows 

Adaptive Feasible ('mutationadaptfeasible'), the default mutation function when 

there are constraints, randomly generates directions that are adaptive with respect 

to the last successful or unsuccessful generation. The mutation chooses a direction 

and step length that satisfies bounds and linear constraints. 

 The Pareto fraction has a default value of 0.35 

 Population size:50  

The Pareto solution set obtained as a result of optimization with genetic algorithm is given 

in Figure 4.8, Figure 4.9 and Figure 4.10 for aggressive, normal and quiet drives, 

respectively. All the solutions present the optimum solutions for the specified class.  

Each point on the generated curve is obtained by optimization with genetic algorithm. 

These values are the optimum values of the electric motor characteristics that will appeal 

to all drivers in that class. Since there is no domination between the two objective 

functions, it is left to the driver to choose between the values indicated in the graph. The 

driver will be able to travel with the comfort of his choice without changing the driving 

behavior of a vehicle with an electric motor providing one of the optimum points on this 

curve. Rather than buying a vehicle with a speed limit that will not be used for the rest of 

his life, the driver is able to obtain both economic and environmental benefits by selecting 

a vehicle that meets his own demands. Instead of suggesting a direct type of motor, it was 

tried to reach the aim of meeting the wishes of all the drivers by offering the possible 

options to the driver's choice. 
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Figure 4.8. Required power of the electric motor vs. the speed factor (Vb/Vf) for aggressive driver 

 

Figure 4.9. Required power of the electric motor vs. the speed factor (Vb/Vf) for moderate driver 
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Figure 4.10. Required power of the electric motor vs. the speed factor (Vb/Vf) for conservative driver 

The aim of this algorithm is to find the optimum electrical power of the motor. As 

a result of the optimization, 3 classes are founded as the following for the drivers. And 

Image 1-3 are the suitable examples for these classes of drivers from the automotive 

market. 

25 kw – 34 hp –Conservative Drivers 

65 kw- 88 hp – Moderate Drivers 

185 kw – 248 hp – Aggressive Drivers 
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Image 4.1. Electric vehicle 1(38 hp) 

 

 

Image 4.2. Electric vehicle 2(95 hp) 

 

 

Image 4.3. Electric vehicle 3(248 hp) 

 

For the vehicles which are an indispensable part of daily life, technologies are being 

developed to serve different purposes. The manufacturer's liability is not limited to the 
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manufacture of the vehicle. Many issues such as energy consumption, fuel cost and 

greenhouse gas emissions are the working areas of manufacturers and scientists. As these 

issues have both material and environmental consequences, the technologies developed 

on these issues are vital for humanity. His research interests are engine efficiency, 

hybridization, vehicle weight and efficiency of powertrain. At this point, scientists resort 

to optimization methods. Most previous studies have focused on optimum power 

management and powertrain component sizing to achieve minimum vehicle energy use 

or achieve minimum life cycle costs and greenhouse gas emissions (Kim and Peng, 2007; 

Mohan et al., 2013; Shiau, 2010). In this thesis, minimum motor capacity is emphasized. 

The driving habits of the drivers are also taken into consideration when making the 

minimum engine recommendation. Vehicles with these engines provide all the comfort 

the user needs, while minimizing both the car weight and the required battery size and 

greenhouse gas emissions. Because of the different energy conversion and storage 

principles, the effects of light weighting on vehicle configuration and energy use are very 

different in conventional and electric drivetrain. A lighter vehicle uses less energy and 

requires a smaller powertrain and energy storage at a fixed range and performance, which 

reduces vehicle costs. The weight of a vehicle is defined by the following equation (4.12) 

(Hofer et al., 2014). 

𝑚𝑣𝑒ℎ = 𝑚𝑝𝑡 + 𝑚𝑒𝑠 + 𝑚𝑔𝑙 + 𝑚𝑠𝑢𝑝                                  (4.12) 

 

𝑚𝑣𝑒ℎ: Vehicle mass  

𝑚𝑝𝑡: Power train mass 

𝑚𝑒𝑠: energy storage mass 

𝑚𝑔𝑙: glider mass  

𝑚𝑠𝑢𝑝:additional  material mass 

Hofer et al showed in their study the advantages to be achieved with the reduction 

of vehicle weight for electric vehicles and gasoline vehicles. With the decrease in weight, 

both production cost decreased and driving life was prolonged for both types of vehicles. 

The production values of the reference vehicle parts given for this study are given in the 

table below. 
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Table  4.4. Baseline specific mass and cost of vehicle components(Hofer et al., 2014, pp. 284-295) 

 Unit Mass Unit Cost Source 

Gasoline engine [kg] 

[kg/kW] 

61 

0.68 

[$] 

[$/kW] 

1000 

7.4 

(Brooker et al., 2013; National 

Research Council., 2011) 

Motor/controller [kg] 

[kg/kW] 

22 

0.87 

[$] 

[$/kW] 

500 

28 

(Graham, 2001; Duleep et al., 

2011) 

Gasoline tank [kg] 

[kg/kWh] 

10 

0.14 

[$] 

[$/kWh] 

300 

0.6 

(National Research Council., 

2011) 

Li-ion battery [kg] 

[kg/kWh] 

30 

8.3 

[$] 

[$/kWh] 

4000 

500 

(Gerssen-Gondelach and Faaij, 

2012; Nelson, 2011) 

 

Reducing vehicle weight has resulted in a production cost reduction of 24% for a 

200km-range BEV vehicle and a 39% production cost reduction for a 400km-range 

vehicle. EPA reported in 2006 that 5 cycles should be used instead of 2 cycles when 

performing fuel consumption tests. However, the fuel performance of the vehicle used 

for different driving scenarios and conditions is demonstrated. This shows that driving 

habits directly change fuel consumption. In addition, while the biggest difference between 

electric vehicles and conventional vehicles is the greenhouse gas emission, this difference 

is the most aggressive and frequent stop-and-go braking gas usage. The Figure  4.11 

clearly shows that the driving style affects all parts, including the service life of the 

vehicle (Karabasoglu and Michalek, 2013). 

 

 

Figure 4.11. Framework of vehicle life cycle benefit comparison for different driving patterns 

(Karabasoglu and Michalek, 2013, pp.449) 
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Karabasoglu and Mchelik in his study have found for different vehicles in different 

driving modes. In the tests, comparisons were made for conventional vehicle (CV), hybrid 

electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and battery electric 

vehicle (BEV). Vehicle specifications are shown in the table. 

 

Table  4.5. Vehicle specifications (Berry,2010; Karabasoglu and Michalek, 2013, pp. 450) 

Mass breakdown                                                              Units HEV   PHEV20 PHEV40 PHEV60   BEV100 CV 

Vehicle glider/body 

mass                                

kg    815 815 815 815 815 815 

Powertrain mass                                                                                  kg 609 754 978 1212 1450 556 

Vehicle curb mass                                                                    kg   1424 1569   1793 2027       2265 1371 

Driver mass                                             kg   80 80 80 80 80 80 

Total mass                                                                                  kg   1504 1649 1873 2107 2345 1451 

Engine        

Max. power                                            kW 73 73 73 73  110 

Engine scale                                   1 1 1 1  1.5 

Block mass                                             kg 108 108 108 108  166 

Radiator mass                                           kg   6 6 6 6  6 

Tank mass                            kg 20 20 20 20  20 

Fuel mass                                      kg 43 43 43 43  43 

Total mass of engine 

block                             

kg 177 177 177 177  234 

Motor        

Max. power                                                              kW 60    78     88   98      120  

Motor scale                                    1.0           1.3            1.5            1.6            2.0  

Motor mass                                                                   kg    35     46 51    57   70  

Controller mass                               kg   5 7 7 8 10  

Total mass of motor 

block                                                               

kg 40 52 59 65   80  

Motor 2        

Max. power                                            kW 30 30 30 30   

Motor mass                                              kg 20 20 20 20   

Controller mass                                kg 5 5 5 5   

Total mass of motor 2                               kg   25 25 25 25   

Battery        

Technology                                         NiMH Li-ion          Li-ion          Li-ion          Li-ion           

Parallel cell array                              1 5 10 14 25  

Number of cells in 

series                                        

 168 92 92 100 100  

Total # cells            168 460 920 1400 2500  

Cell capacity                              Ah 7 6 6 6 6  

Nominal output voltage              V 1.2           3.6 3.6 3.6 3.6  

Output voltage                                            V 202 331    331    360   360    

Energy capacity               kWh 1.3        9.9         19.9       30.2         54.0  

Packaging factor                                      1.3           1.3           1.3           1.3           1.3            

SOC min                            %    30 30 30 30 30  
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Table  4.6. (Continue) Vehicle specifications (Berry,2010; Karabasoglu and Michalek, 2013, 

pp. 450) 

 

SOC max                                       %   90   90   90   90   90    

SOC init                                             %   60 90/30          90/30          90/30          90/30           

SOC target                                        %   60 30 30 30 30  

Battery swing                                       %  0.6            0.6            0.6            0.6             

Mass of each cell                                          kg 0.4           0.4           0.4           0.4           0.4            

Total mass of battery 

block                                                   

kg       84 217    435     662    1182        22 

Other Components        

Electrical accessories                   kg 18 18 18 18 18 18 

Exhaust mass                        kg 30 30 30 30  30 

Planetary gear 

mass/gear mass                              

kg 40 40 40 40  75 

Mechanical accessories                                     kg 35 35 35 35  0 

Wheel mass                                         kg    140 140 140 140 140 140 

Final drive mass                                kg 20 20 20 20 20 20 

Torque coupling                   kg     10 10 

Alternator and 

controller                 

kg      7 

 

The study was carried out for six different driving cycles, which varied according 

to parameters such as driving area, speed, acceleration. The first of the driving cycles is 

the Urban Dynamometer Driving Schedule (UDDS), which describes the journey of light-

duty vehicles in city driving conditions at relatively lower speeds. The Highway Fuel 

Economy Test (HWFET), two driving cycles, refers to the driving performed under road 

driving conditions below the 60 mph speed limit, while the other driving cycle is the 

US06 cycle with high accelerations and engine loads. the LA92 cycle is the driving cycle 

in which aggressive driving is defined in urban driving conditions. The NYC cycle refers 

to low-speed urban driving that often has to be stopped and raised. The last driving cycle 

considered is the combined MPG cycle, calculated by EPA by weighting city and 

highway efficiency. Fuel consumption, cost, gas emission parameters were compared. 

The graphs in parallel with the results of this thesis are given below. In the Figure 4.11, 

6 different driving costs are calculated for different types of vehicles. When calculating 

the cost, production, fuel used and electricity are all taken into consideration. Differences 

are observed in the production stage of the vehicles, but as the engine capacity increases 

for the vehicle with the same production cost, the consumption cost increases due to the 

required battery. 
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Figure 4.12. NHTS averaged annualized cost breakdown per vehicle (base case) (Karabasoglu and 

Michalek, 2013) 

 

When the greenhouse gas emissions for all these driving modes are examined, the 

driving characteristics directly affect greenhouse gas emissions. The increase in the 

engine volume increases the emission of greenhouse gas from the electricity used. 

Already in the comparison between PHEV20-PHEV40-PHEV60 for all drives, 

oscillation is mostly produced by the PHEV60 test vehicle. Therefore, the electric vehicle 

with a low-capacity engine capable of providing the driver with sufficient comfort means 

less environmental pollution. 
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Figure 4.13. NHTS averaged annual GHG emissions per vehicle (base case) (Karabasoglu and 

Michalek, 2013) 
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5. CONCLUSION  

The invention of the car is an adventure of discoveries dating back to the invention 

of the wheel in 3000 BC. The wheel, a steam-powered prototype, sketches by Leonardo 

da Vinci, the discovery of the first steam car inspired by them, the electric car and the 

internal combustion engine, goes back centuries. The invention of automobile has 

affected many subjects such as living spaces, needs, social life, economy, equality 

between men and women, wars and nutrition. The proliferation of automobiles has led to 

the construction of automobile roads, which has caused the geographical areas to change 

with huge bridges and tunnels. As automobile usage increases, greenhouse gas released 

to nature has damaged the atmosphere, causing global warming and the melting of 

glaciers at the poles, causing environmental pollution, climate change, and endangering 

species. Demand for the car has increased the value of gasoline, which has affected 

political balances around the world. As the production of automobiles increased, there 

was a need for women to work in automobile factories in Europe, the place of women in 

working life expanded and women struggling for equal rights gained the right to work 

today. Starting with the Ford Model T in the Ford Motor Company plants, mass 

production changed the industrial balance, and companies that reached the consciousness 

of producing more in less time pushed the button of the industrial revolution. As 

automobiles and motor vehicles became widespread, it became easier to move the 

products in the agricultural areas, the materials produced in the factories to different 

places, which means that the approach of equal food and nutrition luxury was approached.  

The aim of the thesis is to classify the drivers into specific classes and to optimize 

the electric vehicle parameters for these classes and to provide a less harmful traffic to 

the environment while saving fuel, energy and costs. In this thesis, electric car was chosen 

among the car types and due to the importance of the subject, experimental studies were 

made on it. The experiments were carried out with vehicles with internal combustion 

engines commonly used now. The driving information obtained in this way ensures that 

there is no change in people's driving behavior and more realistic results. Drivers can be 

categorized in many ways: by gender (female driver-male driver), age (old driver-young 

driver), driving experience (experienced driver-inexperienced driver) etc. In this thesis, 

experiments have been conducted with male and female drivers who have driven vehicles 

of different age groups by considering these categories. Because it is thought that working 

with people in any category cannot provide complete accuracy in general conclusions. 
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The driving experience of 4 female and 9 male drivers, whose driving experience ranged 

from 3 to 20 years, was utilized in the 28-40 age range. The tests were carried out in a 

controlled manner, taking into account all the probabilities in traffic. The driving area 

includes all of the traffic elements such as pedestrian crossing, U-turn, lane change, 

curvature, pit, bump, pedestrian and vehicles on the road. In these drives, the data was 

provided by the smartphone application iDRIMS and the vehicle tracking device installed 

in the test vehicle. At this stage, two-stage recording was used to prove the data accuracy 

and eliminate noise effects. In addition to the data shared by the test tracker and the 

application, information that could reveal different features could be obtained separately. 

In accordance with the information that has not been used in this study, studies are 

continuing. An observer and the drivers participated in the rides carried out with the 

smartphone placed on the front panel of the test vehicle where the vehicle tracking device 

was mounted. This observer, taking into account traffic drivers, evaluated the drivers 

according to the criteria determined before driving and recorded how the driver showed 

the driving characteristics. She/He made the assignments according to the driver classes 

determined by the researcher and completed the test drives. The drivers were divided into 

three classes: conservative, moderate and aggressive. The number of classes has been 

selected considering the existing scientific studies in the literature. In addition, since the 

thesis study aims to make suggestions from among the vehicles in the sector, the number 

of classes that the driver can reach in the market is not considered and the number of 

classes is not selected more. Selecting less will also be inadequate for drivers to identify. 

When the drivers who participated in the study were observed, it was found that the 

number of classes was dull. The drivers were voluntarily participated in the tests without 

giving details about the purpose and content of the study before driving. The test vehicle 

is one of the most widely used vehicles in the world, the Toyota Corolla. By selecting the 

vehicle automatic gearbox, the effect of errors and pauses on the data is eliminated. Since 

some of the test drivers only use automatic gearboxes, the choice of the vehicle has been 

made in this direction since performing a test drive with a manual vehicle will affect the 

results. The tests were carried out shortly after the vehicle was purchased from the dealer, 

so there were no malfunctions or deformations in the vehicle components. As mentioned 

before, acceleration in the x, y and z directions was processed with three dimensional 

angular velocity and velocity relations. The studies in this field were examined and a 

selection was made to provide the most detailed examination among the data used. 
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Attributes are defined using this data. The acceleration of the driver in any direction while 

the attribute is defined can represent the driver's behavior at the points where the road 

structure such as bumps, pits encountered during the use of the vehicle changes, while 

also defining a change that occurs during lane change. Therefore, acceleration should be 

handled in three dimensions. However, the situation in which the driver performs this 

acceleration is not only related to this information but also to the angular acceleration 

information. Attributes were chosen in this direction. The drivers were classified with 

SVM and KNN algorithms by using 3 attributes initially determined. In order to prove 

the applicability of the classification during the classification made by using SVM 

algorithm, the obtained data were rotated with k-fold method and different training and 

test data tests were created. Among the 90 drives, only 1 drive is assigned to the wrong 

class by the algorithm. The driver in the calm class was assigned to the aggressive class, 

reducing the classification accuracy to 98.9%. In the KNN algorithm, which is applied as 

a second method, the neighborhood value where the highest accuracy is obtained was 

determined by changing the neighborhood values. Since the optimum k value changes for 

each problem and data, in the thesis study, k = 1, 3, 5, 7, 9, 11, the classification for 6 

different k values was obtained as 85.55, 83.33, 93.33, 91.11, 90, 90, 74.44 respectively. 

These results showed that the percentage of classification accuracy does not show an 

increase or decrease parallel to the k value. In this study, the optimum k value was 

determined as 5 for the problem discussed. Just as the neighborhood value varies, the 4th 

feature is defined considering the contribution of increasing number of features to the 

subject of classification. 4. Markov chain was used to define the feature. At this stage, 20 

different states were determined by considering both the velocity and angular acceleration 

distributions of the drivers and the transition probability matrices of all the drivers were 

formed. All cells in this matrix were examined one by one to determine which cells were 

dominant in which classes and which cells were significant. By creating a weight matrix 

that will reveal the effect of these identified cells, all probability transition matrices are 

multiplied by this matrix and a weighted average value is obtained for all drives. These 

mean values are added to SVM feature vector as the fourth element. In this way, 

classification procedures were renewed with the same steps. The increasing number of 

attributes caused the classification accuracy to decrease. The result of the 4-attribute SVM 

classification was obtained as 92.2% accuracy. In this way, the first stage of the thesis, 

the driver classification process, has been concluded with acceptable high accuracy. 
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When the previous scientific researches are examined, very high accuracy has been 

obtained by producing the features not included in any other study in this thesis. This 

accuracy has not previously been achieved in such a classification. Another advantage of 

the study was that the data obtained was directly used as raw data without any filtering 

and signal processing methods. With this stage, the thesis contributes scientifically to the 

literature. 

For the second stage of the thesis, the tool parameters were analyzed and the 

component to be applied was determined. When literature studies are examined, instead 

of very complex equations and algorithms, a simple application point has been 

determined in which the effect of the change over the whole vehicle can be felt directly: 

electric motor. It is aimed to determine the power demanded by the driver from the vehicle 

and to select the appropriate engine for this power. First of all, in the first stage of the 

thesis, an arrangement was made for the drivers in each class to meet the demands of all 

drivers belonging to that class one by one. The time period defined as acceleration time 

for all members in the classes was determined and the engine capacity to reach maximum 

speed was determined by genetic algorithm so as to provide this time and not require the 

driver to make concessions from the driving comfort. At this point, it is necessary to pay 

attention to the use of the specific power of the motor to be presented to the driver is a 

solution for many of the problems mentioned before. For example, the use of 20 kW, 

40kW and 60kW engines in the same vehicle results in a direct increase in the amount of 

carbon released into nature. Even though the production cost of the vehicle with these 

three engines does not change much, the vehicle with high engine power causes more 

carbon emission due to battery usage. Likewise, the amount of carbon emitted during the 

generation of the electricity used increases depending on the engine power. Although the 

emissions from the amount of gasoline used vary inversely with these values, when the 

total greenhouse gas emissions are considered, low engine power means low carbon 

emissions. Another advantage of the use of small engines is that the amount of battery 

that accompanies this engine is reduced, which is known to be the heaviest component in 

a vehicle. Already most of the optimization studies on electric cars are related to batteries. 

Therefore, a lighter vehicle and driver can achieve the same driving comfort due to the 

battery being reduced. When the annual cost is calculated for the three vehicles 

considered, there are large differences in points other than equal production costs. The 

price difference for these three vehicles due to the battery is expressed in thousands of 
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dollars. The annual cost of a vehicle with a 20kW engine varies between $ 3600 and $ 

4000 depending on the driving style, while the annual cost of a vehicle with a 40 kw 

engine varies between $ 4400 and $ 4600. These values are even higher when it comes to 

a 60 kW engine, ranging from $ 5100 to $ 5400. These changes are caused by driving 

patterns. Therefore, the difference in the price of users who use the same engine in 

different ways is seen. A larger engine means a larger battery, and the carbon-gas release 

during the production of these components is a significant difference when considering 

the more powerful engines. 

In this thesis, the motor power values required for the three drive groups with 

genetic algorithm were found to be 25 kW for calm drivers, 65 kW for normal drivers and 

185 kW for aggressive drivers. Without compromising the comfort and driving habits of 

the driver with the engine closest to these values among the cars available on the market, 

it can provide the most economical and environmentally friendly way to drive traffic. In 

this way, a significant improvement has been achieved both for the user and the 

environment. 
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