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Eskişehir
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ABSTRACT

ON THE LMI OPTIMIZATION OF ACTIVE AND SEMI ACTIVE VEHICLE

SUSPENSIONS

Yousef HAJ HMIDI

Department of Electrical and Electronics Engineering

Program in Control and Command Systems

Eskişehir Technical University, Institute of Graduate Programs, November 2019

Supervisor: Asst. Prof. Dr. Semiha TÜRKAY

In this study, a seven degrees of freedom full car model with linear parameters

is derived, and three type of suspension systems, namely, passively, actively and semi

actively suspended systems are reviewed to study car’s vibration under random road

excitation. The performance of suspension systems are determined by measuring the

body accelerations, suspension travels and tire deflections to assess ride comfort and

drive safety of the vehicle.

The active suspension system is controlled by single and multi objectives con-

trollers and for each controller the vehicle behavior is observed. An LQG control

is presented and a trade off in cost function between the output indices is made.

A different scenarios for mixed H2/H∞ syntheses with regional pole placement con-

straints are generated and a dynamic output feedback solutions are solved using

LMIs.

For the semi active suspension system, a classical approaches Skyhook, Ground-

hook and Hybrid are used to control the system since these approaches feature sim-

plicity and lower cost compared to their active counterparts. A mixed H2/H∞ static

output feedback controller realized by MR damper which utilizes the measurements

of the velocity at each corner of sprung mass and the suspension travel speeds as

feedback signals is designed for two types of Skyhook control law and solved via

LMI to obtain the damping characteristics of MR dampers.

For the proposed controllers, the effectiveness is validated by simulation results

and the achieved RMS responses are compared.

Keywords: Full car model, Active suspension, Semi active suspension, Road model,

Multi-objective control, LMI optimization, H∞ performance, H2 per-

formance, Static output feedback, Dynamic output feedback, State

feedback, LQG control, Skyhook control, Groundhook control, Hy-

brid control.
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ÖZET

AKTİF VE YARI-AKTİF ARAÇ SÜSPANSİYONLARI İÇİN LMI

OPTİMİZASYONU

Yousef HAJ HMIDI

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Kontrol ve Kumanda Sistemleri Bilim Dalı

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü , Kasım 2019

Danışman: Dr. Öğr. Üyesi Semiha TÜRKAY

Bu çalışmada, doğrusal parametreli, yedi serbestlik derecesine sahip tam-araç

modeli türetilmiştir ve rassal yol girdileri ile uyarılmış bir aracın sırasıyla pasif, aktif

ve yarı aktif süspansiyon tasarımı için yanıtı incelenmiştir. Süspansiyon sistemi-

nin performansı, aracın yolcu konforu ve sürüş güvenliğini gösteren gövde ivmeleri,

süspansiyon deformansyonları ve lastik yer değiştirmeleri ölçülerek gösterilmiştir.

Aktif süspansiyon sistemi tek veya çok amaçlı kontrolcüler ile kontrol edilmiştir

ve her bir kontrölcü tasarımı için araç çıktı yanıtları incenmiştir. İlk olarak, maliyet

fonksiyonunda yer alan çıktı endeksleri arasında uzlaşımı sağlayan Doğrusal Kare

Gausyan (LQG) kontrolcüsü tasarlanmıştır. Daha sonra, bölgesel kutup yerleştirme

kısıtlarını göz önüne alan karışık H2/H∞ kontrolcüsü farklı sürüş senoryoları için

sentezlenmiştir ve dinamik geri besleme çıktı çözümleri doğrusal matris eşitsizlikleri

(LMI) kullanılarak elde edilmiştir.

Son olarak, aktif sistemlere göre daha basit bir tasarıma sahip ve düşük maliyeti

amaçlayan yarı-aktif süspansiyon sistemleri Skyhook, Groundhook and Hibrid klasik

yaklaşımları kullanılarak tasarlanmıştır. Karışık H2/H∞ statik çıktı geri besleme

kontrolcüsü, araç gövdesinin dört köşesinden elde edilen hız ve süspansiyon defor-

masyonu ölçümleri kullanılarak MR damper ile gerçeklenmiştir. Burada, Skyhook

kontrol kuralı ve aktif LMI optimizasyonu MR damper’in karakteristk özelliklerini

belirlemek için kullanılmıştır.

Sunulan aktif ve yarı aktif kontrolcüler için tasarım başarısı benzetim çalışmaları

ve ölçeklendirilmiş RMS yanıtları ile gösterilmiştir.

Anahtar Sözcükler: Tam araç modeli, Aktif süspansiyon, Yarı-aktif süspansiyon,

Yol modeli, Çok-amaçlı kontrol, LMI optimizasyonu, H∞ per-

formansı, H2 performansı, Statik çıktı geri beslemesi, Dinamik

çıktı geri beslemesi, Durum geri beslemesi, LQG kontrol, Sky-

hook kontrol, Groundhook kontrol, Hibrid kontrol.
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1. INTRODUCTION

The aim of this chapter is to provide the reader with an introduction to the sub-

jects conducted throughout the scope of this work. A general comparison of passive

against active and semi active suspensions are presented in the motivation. A liter-

ature reviews are introduced in the background. The chapter ends with a contents

of the thesis.

1.1. Motivation

A suspension system plays a central role in achieving ride comfort and drive safety

for a vehicle. A good compromise between these objectives has been the driving

force for advancements in automotive applications. Ride comfort associated to the

amount of energy transmitted through the suspension into the vehicle body, where,

lower the body acceleration, better is the ride comfort. Conversely, drive safety asso-

ciated to the vertical motion of the tires and to the suspension travels, where, a firm

and uninterrupted contact of wheels to road surface is desired for good road holding,

and keeping the suspension travels below the maximum allowable stroke is required

for preventing excessive suspension bottoming. Therefore, a lightly damped sus-

pension provides good ride comfort but poor road holding, while a heavily damped

suspension provides good road holding but poor ride comfort. So, the suspension

system design requirements are:

� The ride comfort is related to accelerations of vehicle body which quantified by

their RMS values that should be minimized especially in the frequency range

(4-8)Hz where the human being is most sensitive for mechanical vibration (for

Standardization, 1997).

� The road holding is related to dynamic tires loads which should be minimized

and it happens by minimizing the RMS tire deflections to assure the vehicle

safety.
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� The suspension travels should not exceed the maximum allowable suspension

which is constrained by the mechanical structure, usually the maximum sus-

pension travel is ±0.8m.

The urgency to achieve a better compromise between the aforementioned con-

flicting requirements a several new advancements in automotive suspensions have

been considered. A passive suspension is made up of a springs and a dampers, the

energy is stored in the springs and dissipated through the dampers, where, these

components have fixed characteristics. As a result, in this type of suspension the

objectives can not be met simultaneously. However, this issue can be resolved by

replacing the passive suspension with an active or a semi active suspension. An

active suspension is composed of springs, dampers and force actuators, the energy

can be dissipated or added to the suspension in controlled way. The force actuator is

governed by controller, where several different controller design methods will be dis-

cussed later. The final type of suspension is a semi active suspension which consists

of springs, ordinary dampers and semi active dampers. The semi active damper has

the ability to change its damping characteristics by using a little amount of exter-

nal power. Hence, it provides controlled real-time dissipation of energy. Semi active

suspension is cheaper and less complex compered to the active one and more reliable

when compared to the passive one. Thus, the semi active suspension is becoming

more and more popular for commercial vehicles.

1.2. Background

Every so often in engineering a compromise involves the control deign process. The

automotive suspensions design belongs to this category. Thus, for the sake of devel-

opment of active and semi active suspensions to achieve a satisfied trade-off between

ride comfort and drive safety, a number of analytical and experimental studies on

vehicle suspensions have for many years been carried out and so are taking a con-

siderable place in literature.
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A number of different control techniques have been investigated for active sus-

pension systems. In (Esmailzadeh and Fahimi, 1997) an optimal controller has been

designed to minimize a quadratic cost function and then this optimal system has

been controlled via Model Reference Adaptive Control. Due to practical limitation,

all the states needed for the state feedback controller are not measurable, and thus an

observer must be used in order to estimate the states. For this purpose, LQG control

for half car model has been considered in (Taghirad and Esmailzadeh, 1998) and for

full car model in (Chai and Sun, 2010). The robust control techniques such H∞ has

been studied to minimize the effect of road disturbances on vehicle and passengers,

the tubulus linear electric motor as an actuator has been used and controlled by

H∞ control in (Kruczek and Stribrsky, 2004). To obtain a more appropriate model,

the dynamics of driver’s seat has been integrated to the car model and the resulted

system has been synthesized by H∞ state feedback control and H∞ dynamic out-

put feedback control in (Rizvi et al., 2018) . The suspension system includes an

uncertain parameters, such as the sprung mass, whose value is dependent on the

vehicle’s load. In the presence of this problem, a load-dependent controller has been

synthesized by using LMI techniques in (Gao et al., 2006). LMI based techniques

handling multi-objective performances such as H∞ performance with time domain

constraints has been employed in (Chen and Guo, 2005). In (Türkay and Akçay,

2014) a mixed H2/H∞ synthesis problem considering a regional pole constraint has

been formulated and reduced-order controller has been proposed which has achieved

a better results compared to full-order one.

However, complexity and cost of active suspensions have restricted their uses

(Esmailzadeh and Fahimi, 1997). Thus, the interest has been shifted toward semi

active suspension designs. By virtue of industrial limitations on the semi active sus-

pension’s elements (dissipativity properties), the control design is harder compared

to active counterpart. Many studies have been carried out on the classical comfort

oriented control for semi active suspension, namely Skyhook control, in litterateurs.
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A 2-states and continuous standard Skyhook control featuring MR damper has been

presented in (Blanchard, 2003), (Liu et al., 2005), (Ihsan et al., 2008), (Abramov

et al., 2009) and (Savaresi et al., 2010) since it represents a simple way to accom-

plish a good ride comfort. An improved version of Skyhook controls featuring MR

damper has been used in (Sammier et al., 2003) for the quarter car Skyhook ideal

configuration. For good performance and robustness properties the optimal tech-

niques has been proposed. See, for example, (Poussot-Vassal et al., 2006). In (Du

et al., 2005) an H∞ static output feedback controller realized by MR damper has

been adopted for quarter car model. A Model Predictive Control (MPC) has been

exploited for semi active suspension in (Canale et al., 2006). The robust control

design using Linear Parameter Varying (LPV) tool for semi active suspension has

proposed and designed in (Poussot-Vassal et al., 2008) to minimize H∞ performance

while guaranteeing the semi active damper limitations (i.e. dissipative constraint

and force limitations). Furthermore, the classical road holding oriented control for

semi active suspension, namely Groundhook control, both cases 2-states and con-

tinuous strategies have been conducted in (Goncalves, 2001), (Ihsan et al., 2008)

and (Savaresi et al., 2010) since they represent a simple way to reduce the road-tire

forces. To take advantage of the benefits of both Skyhook and Groundhook an hy-

brid control has been proposed as an alternative policy for semi active suspension

(Goncalves, 2001).

In most of the cited works above, the robust control law development for semi

active suspensions have been carried out using a quarter-car model which in this

model the roll and pith motions of the vehicle can not be observed. Moreover, there

have been no systematic methodology to obtain the damping characteristics for the

semi active damper.

The main contribution of this study are then:

� Providing a benchmark to find these damping characteristics using static out-

put feedback control solved via LMI optimization methods for full car model.
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� Comparing behaviors of both LMI based multi-objective controlled active and

semi active suspensions.

1.3. Scope of The Study

The contents of this thesis are as follows:

In Chapter 2, a comprehensive derivations of motion equations for the full car

dynamics is obtained and re-represented as state space equations. Also, a road profile

is produced and expressed as stationary Gaussian random processes to represent a

typical road.

In Chapter 3, a different modern control techniques are introduced, employed

and compared in term of RMS responses for the active suspension. A measurements

needed for building an active controller are defined. An RMS performance indices

are determined in order to evaluate the behavior of the road irregularities imposed

vehicle under different control laws.

In Chapter 4, A classical semi active controls are conducted, and different

measurements were defined to suit the proposed control methodologies. Since the

actuating damping forces work in real time, a discretizing approach was introduced

to convert a continuous time system into discrete time one.

The main contribution of this study is presented in Chapter 5 where a novel

method based on LMI static output feedback control is proposed to optimally find

the maximal damping coefficients of the semi active dampers. Both conventional

and alternative Skyhook controls are studied.

The Chapter 6 concludes and sums up the results of the study and provides a

recommendations for future work.
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2. REVIEW OF FULL CAR AND ROAD MODELING

The contents of this chapter are as follows. In Section 2.1, a full car model is

reviewed and a detailed derivation of motion equations are obtained to get a good

approximation of real vehicle dynamics. In Section 2.2, the road model is estimated

to provide a good analysis of the ride performance limitations of suspension systems

(Türkay and Akçay, 2005).

2.1. Full Car Model

The full car model with seven degrees of freedom intended for this study is shown

in Fig.2.1. In the figure, the rear anti-roll bar is not shown. The vehicle body is

Z1
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Rolling
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Y
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ms
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lr
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K4 Zu4
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W3KT

mu3

Z2

KF

Figure 2.1. Full car model.

represented by the sprung mass ms connected to the four unsprung masses mu1 ,

mu2 , mu3 , and mu4 , denoting the wheel masses at the front-left, the front-right, the

rear-left, and the rear-right corners of the vehicle, respectively. The sprung mass is

assumed to be rigid and has freedoms of motion in the heave, pitch, and roll direc-
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tions, while the unsprung masses are free to bounce vertically with respect to the

sprung mass. The suspension system between the sprung mass and the unsprung

masses consists of linear passive suspension elements of springs and dampers in par-

allel with semi active dampers as shown in Fig.2.1 depicting semi active suspension

system (or, force actuators in the active suspension system case). The tires are

modeled as simple linear springs. Since the damping in the tires are typically very

small, are neglected in this study. The pitch and the roll angles are assumed to be

small. The vehicle parameter values are given in Table 2.1.

Table 2.1. The vehicle parameters for the full-car model (Türkay and Akçay, 2014)

Sprung mass ms 1460 kg
Roll moment of inertia Ix 460 kgm2

Pitch moment of inertia Iy 2460 kgm2

Left- and right-front unsprung masses mu1 , mu2 40 kg
Left- and right-rear unsprung masses mu3 , mu4 35.5 kg
Left- and right-front passive damping coefficients c1, c2 1290 Ns/m
Left- and right-rear passive damping coefficients c3, c4 1620 Ns/m
Left- and right-front suspension stiffnesses k1, k2 19,960 N/m
Left- and right-rear suspension stiffnesses k3, k4 17,500 N/m
Front auxiliary roll stiffness KF 19,200 Nrad/m
Rear auxiliary roll stiffness KR 0 Nrad/m
Tyre stiffnesses kT 17,500 N/m
Longitudinal distance from the front axle c.g.
to the sprung mass c.g lf 1.011 m
Longitudinal distance from the rear axle c.g.
to the sprung mass c.g lr 1.803 m
Front track width tf 1.522 m
Rear track width tr 1.510 m

Assuming the tires are in contact with road at all time that behave as point-

contact followers, the equations of motion of this system are derived as follows:

Bouncing of the sprung mass:

msz̈G = −k1(z1 − zu1) − k2(z2 − zu2) − k3(z3 − zu3) − k4(z4 − zu4)

− c1(ż1 − żu1) − c2(ż2 − żu2) − c3(ż3 − żu3) − c4(ż4 − żu4)

− u1 − u2 − u3 − u4 (2.1)
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Pitching of the sprung mass:

Iyθ̈ = k1lf(z1 − zu1) + k2lf(z2 − zu2) − k3lr(z3 − zu3) − k4lr(z4 − zu4)

+ c1lf(ż1 − żu1) + c2lf(ż2 − żu2) − c3lr(ż3 − żu3) − c4lr(ż4 − żu4)

+ lfu1 + lfu2 − lru3 − lru4 (2.2)

Rolling of the sprung mass:

Ixφ̈ = k1
tf
2
(z1 − zu1) − k2

tf
2
(z2 − zu2) + k3

tr
2
(z3 − zu3) − k4

tr
2
(z4 − zu4)

+ c1
tf
2
(ż1 − żu1) − c2

tf
2
(ż2 − żu2) + c3

tr
2
(ż3 − żu3) − c4

tr
2
(ż4 − żu4)

+
tf
2
u1 −

tf
2
u2 +

tr
2
u3 −

tr
2
u4 (2.3)

Vertical direction for each wheel:

mui z̈ui = k1(zi − zui) + ci(żi − żui) − kT (zui −wi) + ui , i=1,. . . ,4 (2.4)

where:

� z1 = zG − lfθ −
tf
2 φ, z2 = zG − lfθ +

tf
2 φ, z3 = zG + lrθ −

tr
2 φ and z4 = zG + lrθ +

tr
2 φ

are the vertical displacements at the corners of the car body,

� zui , i = 1, ...,4 are the wheel displacements,

� wi, i = 1, ...,4 are the road disturbances,

� zG, θ and φ are the vertical displacement at the center of gravity, the pitch

and the roll angles of the sprung mass, receptively, and

� ui, i = 1, ...,4 are the forces applied by MR dampers (or by actuators in the

actively suspended system) which will be determined later in this study.

For controller designing purpose the equation of motion should be expressed in state
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space form as follow:

˙̂x = A1x̂ +B1w +B2u (2.5)

where:

x̂ = [x̄T ˙̄xT ]T , x̄ = [zG θ φzu1 zu2 zu3 zu4] the state vector,

A1 =

⎛
⎜
⎜
⎝

07×7 I7

M−1K M−1C

⎞
⎟
⎟
⎠

,B1 = (04×7 P TM−T)
T

and B2 = (04×7 W TM−T)
T

where:

C =

⎛
⎜
⎜
⎝

−ΨTCsΨ ΨTCs

CsΨ −Cs

⎞
⎟
⎟
⎠

,K =

⎛
⎜
⎜
⎝

−ΨTKsΨ ΨTKs

KsΨ −Ks −Kt

⎞
⎟
⎟
⎠

M = diag(ms, Iy, Ix, mu1 , ..., mu4),W = (−Ψ I4)
T

and P = (04×3 Kt)
T

where:

Ψ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −lf −tf/2

1 −lf tf/2

1 lr −tr/2

1 lr tr/2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,Cs = diag(c1, ..., c4),Kt = kT I4 and Ks = diag(d1, d2)

where:

d1 =

⎛
⎜
⎜
⎝

k1 +KF /t2f −KF /t2f

−KF /t2f k2 +KF /t2f

⎞
⎟
⎟
⎠

and d2 =

⎛
⎜
⎜
⎝

k3 +KR/t2r −KR/t2r

−KR/t2r k4 +KR/t2r

⎞
⎟
⎟
⎠

Remark 2.1 For simplicity the front and rear auxiliary stiffness are excluded from

the Eqs.2.1-2.4 while included in the state space Eq. 2.5.
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2.2. Road Model

A four-wheeled vehicle traveling along a typical road vibrates due to imposed dis-

placement excitation at each wheel, and thus induces dynamic forces on the road.

The road displacements wi, i = 1, . . . , 4 commonly are specified as a random process

of a ground displacement power spectral density (Türkay and Akçay, 2010). The

road random excitation processes may have time correlation between the front and

the rear wheels and cross-correlation between the right and left wheels. However,

in this study it will be assumed that the four road random excitation processes are

independent of each other. This assumption guarantees the excitation of the three

body motions. The ground displacement power spectral density is given by:

Swi
(f) = ∣G̃(j2πf)∣2 (2.6)

where f is the spatial frequency measured in cycle/meter and the transfer function

G̃ is minimum phase linear shape filter satisfies wi = G̃ηi where ηi are independent

zero-mean spatial unit-intensity white noise processes. The filter G̃ is translated

to temporal domain as G̃(s) = G̃(v−1s). Hence, Sηi(2πf) = v−1 and Swi
(2πf) =

∣G̃wi
(j2πf)∣2Sηi(2πf).

A first order shape filter G̃ = bw(s + aw)−1 is used to estimate the road PSD

in Eq.2.6. By adjusting the filter parameter values as aw = 0.0572 and bw = 0.0195

a good estimation result has been obtained (Türkay and Akçay, 2010). In time

domain the shape filter results in the road model as follow:

ẇi = −vawwi +
√
vbwζi (2.7)
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and the state space representation of Eq.2.7 can be represented as:

ẋq = Aqxq +Bqζ (2.8)

w = Cqxq +Dqζ (2.9)

where: Aq = −vawI4, Bq = I4, Cq =
√
vbwI4, Dq = 04×4, ζ is a zero mean vector valued

white noise process and v is a forward speed of the vehicle which is 20 m/sec in this

study.

Now, by combining the Eq.s 2.5 and 2.8-2.9 the unified model of the vehicle

model with the road model can be obtain, this model has the following augmented

state space representation:

ẋ = Ax +Bζζ +Buu (2.10)

where:

x =

⎛
⎜
⎜
⎝

x̂

xq

⎞
⎟
⎟
⎠

, A =

⎛
⎜
⎜
⎝

A1 B1Cq

04×14 Aq

⎞
⎟
⎟
⎠

, Bζ =

⎛
⎜
⎜
⎝

B1Dq

Bq

⎞
⎟
⎟
⎠

and Bu =

⎛
⎜
⎜
⎝

B2

04×4

⎞
⎟
⎟
⎠

and this augmented system will be considered in the controllers design procedure

throughout this study.
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3. ACTIVE SUSPENSION CONTROL DESIGN

This chapter is not about introducing a new suspension control methods. The sole

purpose of this chapter is to provide a detailed study of synthesizing the suspension

systems with modern control methods to build fully active suspension system.

Every control law designing technique requires regulated output. The variables

of the regulated output vector r used for the suspension system are:

� The suspension travels (zi − zui , i = 1, ...,4) stacking in the vector r1.

� The tire deflections (zui −wi, i = 1, ...,4) stacking in the vector r2.

� The heave, the pitch, and the roll accelerations (z̈d, θ̈, and φ̈, respectively)

of driver located at longitudinal and lateral distances xd and yd, respectively,

from center of gravity of the sprung mass stacking in the vector r3.

r = C1x̂ +D11w +D12u (3.1)

where:

r =
⎛

⎝

z1 − zu1 ...z4 − zu4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

zu1 −w1...zu4 −w4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2

z̈d θ̈ φ̈
²

r3

⎞

⎠

T

,

C1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ I4 04×7

04×3 I4 04×7

Ψd[03×7 I3 03×4]A

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D11 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

04×4

−I4

Ψd[03×7 I3 03×4]B1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D12 =

⎛
⎜
⎜
⎝

08×4

Ψd[03×7 I3 03×4]B2

⎞
⎟
⎟
⎠

and Ψd =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −xd yd

0 1 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

After augmenting the road model states, the regulated output becomes:

r = Crx +Drζζ +Druu (3.2)
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where:

Cr = (C1 D11Cq) , Drζ =D11Dq, Dru =D12

and the states are as defined in Chapter 2.

Minimizing z̈d, θ̈, and φ̈ while keeping the suspension travels below the max-

imum allowable suspension stroke improves the ride comfort. Also, in order to

guarantee a firm continual contact of the wheels to road, dynamic tire loads should

not be grater than the static ones. Then, the design goal is to reduce the three

sprung mass accelerations while keeping the constraints satisfied, such this prob-

lem is defined as multi objective control problem that can not be overcome using

the passive suspension (Karnopp, 1986), but to some extent, it can be resolved by

employing an active or semi active suspension.

With reference to the Fig. 3.1, for the design of a feedback law for the system

G(s), where G(s) is the open-loop system (i.e. the passive suspension system),

consider the measurements of the suspension travels and the vertical acceleration at

each corner of the sprung mass, which can be written as:

y = Cyx +Dyζζ +Dyuu (3.3)

where:

y = (z1 − zu1 ...z4 − zu4 z̈1...z̈4) ,

Cy =

⎛
⎜
⎜
⎝

Ψ −I4 04×11

[04×7 Ψ 04×8]A

⎞
⎟
⎟
⎠

, Dyζ =

⎛
⎜
⎜
⎝

04×4

[04×7 Ψ 04×8]Bζ

⎞
⎟
⎟
⎠

and

Dyu =

⎛
⎜
⎜
⎝

04×4

[04×7 Ψ 04×8]Bu

⎞
⎟
⎟
⎠

The dynamic output feedback structure is:
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Figure 3.1. General control configuration.

ẋc = Acxc +Bcy (3.4)

u = Ccxc +Dcy (3.5)

where the state space parameters Ac, Bc, Cc and Dc of the controller F (s) are to be

determined in this chapter to build the controlled system T (s).

3.1. LQG Control

The Linear Quadratic Gaussian problem (LQG) is an optimal control problem where

the objective is to design a controller that minimizes the quadratic cost function

subject to linear system dynamics (Skogestad and Postlethwaite, 2007; Murray,

2009), provided that the system is stabilizable, detectable, and the process and

measurement noises are zero-mean Gaussian processes. The solution for this problem

known as Separation Principle, where, firstly finding the state feedback law gain

that minimizes the cost function without taking into-account the noises (for the

deterministic system), i.e. solving the LQR Problem and then, finding the Kalman

filter gain that minimizes the estimation error and injecting the estimated states

into the feedback law instead of the actual states, it is important to mention that

the two solutions are independent of each other. The benefit of using Kalman filter

is to estimate the states while are not available to measure in real world assuming

process disturbance and measurement noise. The solution of the problem begins

with finding the optimal control which minimizes the cost function (Esmailzadeh
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and Fahimi, 1997):

JLQR = ∫

∞

0
(r(t)TMrr(t) + u(t)

TMuu(t))dt (3.6)

where Mr = MT
r ≥ 0 and Mu = MT

u > 0 are constant weighting matrices (design

parameters) of the appropriate dimension, and choosing the matrices Mr and Mu

plays a crucial role in system performances. Substituting Eq.3.2 into Eq.3.6 yields:

JLQR = ∫

∞

0
(x(t)TQx(t) + u(t)TRu(t) + 2x(t)TNu(t))dt (3.7)

with:

Q = CT
r MrCr, R =DT

ruMrDru +Mu and N = CT
r MrDru.

The weighting matrices are chosen as follows:

Mr = diag(α1, ..., α11) ∗ diag(∣∣Gr(1)ζ ∣∣
−2
2 , ..., ∣∣Gr(11)ζ ∣∣

−2
2 )

Mu = ρI4

where Gr(i)ζ denotes the open loop transfer function from ζ to output r(i) and added

to normalize the outputs, while αi are trade off parameters between the output

indices, for i = 1, ...,11, and ρ is small constant allows to trade off the outputs versus

the control forces, here ρ = 10−8.

Then, the optimal solution is u(t) = −Krx(t), where:

Kr = R
−1(BT

uX +NT ) (3.8)

and X =XT ≥ 0 is the unique solution of the algebraic Riccati equation (Skogestad

and Postlethwaite, 2007):

ATX +XA − (XBu +N)R−1(XBu +N)T +Q = 0 (3.9)
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The next step now is to find Kalman filter gain that minimizes E{(x− x̃)T (x− x̃)},

where the Kalman filter has dynamics as follows:

˙̃x = Ax̃ +Buu +Kf(y − ỹ) (3.10)

Then, the optimal choice of Kalman filter gain is:

Kf = Y C
T
y V

−1 (3.11)

where Y = Y T ≥ 0 is the unique solution of the algebraic Riccati equation (Skogestad

and Postlethwaite, 2007):

Y AT +AY − Y CT
y V

−1CyY +W = 0 (3.12)

where W = I4 and V = 10−4I8 are covariance matrices of process noise ζ and mea-

surement noise n, respectively. By substituting the estimated states into control law

the final control law can be obtained

u(t) = −Krx̃(t) (3.13)

where x̃ is the optimal estimation of x. Finally, the closed loop dynamics are de-

scribed by

⎛
⎜
⎜
⎝

ẋ

ẋ − ˙̃x

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

A −BuKr BuKr

0 A −KfCy

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

x

x − x̃

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

Bζ 0

Bζ −KfDyζ −Kf

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ζ

n

⎞
⎟
⎟
⎠

r = (Cr −DruKr DruKr)

⎛
⎜
⎜
⎝

x

x − x̃

⎞
⎟
⎟
⎠

+ (Drζ 0)

⎛
⎜
⎜
⎝

ζ

n

⎞
⎟
⎟
⎠

The stochastic responses of the passive and LQG controlled suspensions are dis-

played in Table 3.1.
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Table 3.1. The stochastic responses of the passive and the LQG controlled suspensions.

RMS ∥Tr1ζ∥2 ∥Tr2ζ∥∞ ∥Tr3ζ∥2 ∥Tz̈dζ∥2 ∥Tθ̈ζ∥2 ∥Tφ̈ζ∥2

Passive 0.0752 0.009 4.7347 2.1738 1.3562 3.9816
LQG 0.0701 0.0089 3.1781 1.3656 0.8954 2.7265

Remark 3.1 The RMS of a system output can be interpreted as H∞ norm of the

system, and as H2 norm if the system is driven by zero-mean white noise processes.

3.2. Multi-Objective and Mixed Control

The main drawbacks of LQG control are: the representing of process and measure-

ment noises as Gaussian white noises which often they are not realistic, and the

robustness is not being guaranteed (Zames, 1981), that has motivated researchers

to shift towards H∞ control. The main role of H∞ control is to see whether the

system performs according to desired criteria even in the worst case disturbances,

such that H∞ guarantees bounds on regulated outputs. Given a prescribed attenu-

ation level γ1, a H∞ suboptimal control problem is to design a controller F (s) that

internally stabilizes the closed-loop system and ensures:

∥Trζ(s)∥∞ =max
ζ

σ̄(Trζ(jω)) ≤ γ1 (3.14)

where Trζ(s) = Ccl(sI −Acl)−1Bcl +Dcl is the closed-loop transfer matrix from ζ to

r and σ̄(Trζ(jω)) is the maximal singular value of Trζ(jω).

In realistic control design problems one is not just confronted with a single-

objective control problems but with multi-objectives ones should be satisfied simul-

taneously (Scherer and Weiland, 2000) such problems like the suspension system

ones. Since the pure H∞ synthesis can not capture all the design specifications,

this leads to search for more powerful synthesis methods to render various objec-

tives satisfied simultaneously. For instance, regulation against random disturbances

or noise attenuation are more commonly expressed in H2 synthesis terms (Gahinet

et al., 1994). Moreover, standard H∞ synthesis ensures only the closed-loop stabil-
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ity without considering a direct placement of the closed-loop poles in more special

regions of the left-half plane to perform a satisfactory time response. In addition,

the avoidance of fast controller dynamics can be done by prohibiting large closed-

loop poles (Chilali and Gahinet, 1996). One way of simultaneously tuning the H∞,

H2 performances, and transient behavior is therefore to combine H∞, H2, and pole

placement objectives. Thus, multi-objectives synthesis is desirable to apply in prac-

tice and LMI theory provides a powerful tools to deal with such these problems.

The LMI optimization problems have been modeled and solved using the MATLAB

toolbox YALMIP (Löfberg, 2004).

These discussions lead to the definition of the mixed H2/H∞ control problem with

regional pole placement which expressed in the following theorems.

Theorem 3.1 (H∞ dynamic output feedback): (Caverly and Forbes, 2019)

There exists a controller in the form 3.4-3.5 such that the inequality ∣∣Trζ(s)∣∣∞ ≤ γ1

holds if and only if the LMIs

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N11 A +ATn +BuDnCy Bw +BuDnDyζ (CrY1 +DruCn)T

∗ ATX1 +X1A +BnCy + (BnCy)T X1Bζ +BnDyζ (Cr +DruDnCy)T

∗ ∗ −γ1I (Drζ +DruDnDyζ)
T

∗ ∗ ∗ −γ1I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

⎛
⎜
⎜
⎝

Y1 I

∗ X1

⎞
⎟
⎟
⎠

> 0

hold, where N11 = AY1+Y1AT +BuCn+(BuCn)T and the matrices An , Bn , Cn , Dn

and the symmetric matrices X1 , Y1 are the variables of appropriate dimensions.

Theorem 3.2 (H2 dynamic output feedback): (Scherer and Weiland, 2000)

There exists a controller in the form 3.4-3.5 such that the inequality ∣∣Trζ(s)∣∣2 ≤ γ2
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holds if and only if the LMIs

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N11 A +ATn +BuDnCy Bw +BuDnDyζ

∗ ATX1 +X1A +BnCy + (BnCy)T X1Bζ +BnDyζ

∗ ∗ −γ2I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y1 I (CrY1 +DruCn)T

∗ X1 (Cr +DruDnCy)T

∗ ∗ Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0

and

Drζ +DruDnDyζ = 0,

Trace(Z) < γ22

hold, where N11 = AY1+Y1AT +BuCn+(BuCn)T and the matrices An , Bn , Cn , Dn

and the symmetric matrices X1 , Y1 , Z are the variables of appropriate dimensions.

By defining LMI constraints on the Lyapunov matrix a pole assignment in convex

regions of the left-half plane can be determined (Scherer et al., 1997). In this study

the open rectangle convex region is selected and it has been taken from (Türkay and

Akçay, 2014) work.

Theorem 3.3 (Regional pole constraints): The closed loop system has poles

in the LMI region {z = a + jb, −c < a < 0, ∣b∣ < c} if and only if the LMIs

⎛
⎜
⎜
⎝

M11 +MT
11 0

∗ −2cXv −M11 −MT
11

⎞
⎟
⎟
⎠

< 0,

⎛
⎜
⎜
⎝

−2cXv MT
11 −M11

∗ −2cXv

⎞
⎟
⎟
⎠

< 0
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hold, where

M11 =

⎛
⎜
⎜
⎝

AY1 +BuCn A +BuDnCy

An X1A +BnCy

⎞
⎟
⎟
⎠

,

Xv =

⎛
⎜
⎜
⎝

Y1 I

∗ X1

⎞
⎟
⎟
⎠

where the matrices An , Bn , Cn , Dn and the symmetric matrices X1 , Y1 are the

variables of appropriate dimensions.

Remark 3.2 The symbol ∗ generically denotes the transposition of symmetric block

of partitioned symmetric matrix.

Then, the state space parameters of the controller F (s) in the form 3.4-3.5 are

recovered by:

Ac =Ak −Bc(I −DyuDc)
−1DyuCc Bc =Bk(I −DyuDc)

Cc =(I −DcDyu)Ck Dc =(I +DkDyu)
−1Dk

where:

Ak =X
−1
2 (An −BnCyY1 −X1BuCn −X1(A −BuDnCy)Y1)Y

−T
2

Bk =X
−1
2 (Bn −X1BuDn)

Ck =(Cn −DnCyY1)Y
−T
2

Dk =Dn

and the matrices X2 and Y2 satisfy X2Y2 = I −X1Y1.
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The state space realization of the closed loop transfer matrix Trζ(s) is:

Acl =

⎛
⎜
⎜
⎝

A +BuDc(I −DyuDc)
−1Cy Bu(I +Dc(I −DyuDc)

−1Dyu)Cc

Bc(I −DyuDc)
−1Cy Ac +Bc(I −DyuDc)

−1DyuCc

⎞
⎟
⎟
⎠

Bcl =

⎛
⎜
⎜
⎝

Bζ +BuDc(I −DyuDc)
−1Dyζ

Bc(I −DyuDc)
−1Dyw

⎞
⎟
⎟
⎠

Ccl =(Cr +DruDc(I −DyuDc)
−1Cy Dru(I +Dc(I −DyuDc)

−1Dyu)Cc)

Dcl =Drζ +DruDc(I −DyuDc)
−1Dyζ

When the aforementioned theorems solved in one synthesizing problem, the

Lyapunov matrix and the LMI variables should be the same, such that various

design objectives meet simultaneously. For example, minimizing the H2 norm of

the transfer matrix from the exogenous input to one group of the partitioned per-

formance output (applying the Theorem 3.2) while ensuring the H∞ norm of the

transfer matrix from the exogenous input to another group of the partitioned per-

formance output does not exceed a prescribed value (applying the Theorem 3.1),

and forcing the closed loop poles into specified LMI region such as the one defined

in Theorem 3.3. A different scenarios of multi-objective synthesis will be discussed

in the next section to get a satisfactory performance of the suspension system.

3.3. Comparison of Active Suspension Results for Different

Scenarios

For the suspension system 2.10 with performance output 3.2 and measurements

3.3 a different multi-objective control design scenarios were presented to analyze

the potentiality of the trade-offs among the ride comfort, suspension rattle-space

compactness, and road holding characteristics. These scenarios summarized in the

next problems.

Let us consider the problem of minimizing the heave, pitch and roll accelera-
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tions of the driver and suspension travels, and constraining the dynamic tire loads

such that does not exceed the static tire loads, and adding pole placement constraint

to prevent high gained controller.

Problem 3.1 Given H∞ norm bound γ1 and a subset of the open left-half plane D,

design a controller F (s) that minimizes

β1∣∣Tr1ζ(s)∣∣2 + β2∣∣Tr3ζ(s)∣∣2

subject to ∣∣Tr2ζ(s)∣∣∞ ≤ γ1 and assigns the closed-loop poles in D.

The LMIs based solution found using Theorem 3.2 to optimally minimize the weighted

sum β1∣∣Tr1ζ(s)∣∣2+β2∣∣Tr3ζ(s)∣∣2 where, β1 and β2 are fixed real weights and the larger

βi, the more weight is put on penalizing the corresponding norm. Moreover, the so-

lution is constrained by: H∞ norm bound γ1 on ∣∣Tr2ζ(s)∣∣∞ which γ1 is usually

H∞ norm of the corresponding passive (open-loop) system and this done by solving

Theorem 3.1, and closed-loop poles assignment in the LMI region which defined in

Theorem 3.3. The results shown in Table 3.2.

Table 3.2. The stochastic responses of Problem 3.1 results for β1=30, β2=0.01, and
c=200 (the rectangle length of LMI region)

RMS ∥Tr1ζ∥2 ∥Tr2ζ∥∞ ∥Tr3ζ∥2 ∥Tz̈dζ∥2 ∥Tθ̈ζ∥2 ∥Tφ̈ζ∥2

Passive 0.0752 0.009 4.7347 2.1738 1.3562 3.9816
Problem 3.1 0.0725 0.0074 2.4697 1.3161 1.0928 1.7813

Let us consider the problem of minimizing the suspension travels and the

dynamic tire loads, and constraining the heave, pitch, and roll accelerations of the

driver with satisfied bound, and adding pole placement constraint to prevent high

gained controller.

Problem 3.2 Given H2 norm bound γ2 and a subset of the open left-half plane D,
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design a controller F (s) that minimizes

β1∣∣Tr1ζ(s)∣∣2 + β2∣∣Tr2ζ(s)∣∣∞

subject to ∣∣Tr3ζ(s)∣∣2 ≤ γ2 and assigns the closed-loop poles in D.

Employing the Theorems 3.1, 3.2, and 3.3 the solution found and shown in Table

3.3.

Table 3.3. The stochastic responses of Problem 3.2 results for β1=1, β2=1, and c=200
(the rectangle length of LMI region).

RMS ∥Tr1ζ∥2 ∥Tr2ζ∥∞ ∥Tr3ζ∥2 ∥Tz̈dζ∥2 ∥Tθ̈ζ∥2 ∥Tφ̈ζ∥2

Passive 0.0752 0.009 4.7347 2.1738 1.3562 3.9816
Problem 3.2 0.0684 0.0708 1.2017 0.7322 0.6847 0.6626

Let us consider the problem of minimizing the heave, pitch, and roll accelera-

tions of the driver, while constraining the suspension travels and the dynamic tire

loads with satisfied bounds, and adding pole placement constraint to prevent high

gained controller.

Problem 3.3 Given H∞ and H2 norm bounds γ1 and γ2, respectively, and a subset

of the open left-half plane D, design a controller F (s) that minimizes ∣∣Tr3ζ(s)∣∣2

subject to ∣∣Tr1ζ(s)∣∣∞ ≤ γ1 and ∣∣Tr2ζ(s)∣∣2 ≤ γ2 and assigns the closed-loop poles in

D.

Employing the Theorems 3.1, 3.2, and 3.3 the solution found and displayed in Table

3.4.

Table 3.4. The stochastic responses of Problem 3.3 results for c=200 (the rectangle
length of LMI region).

RMS ∥Tr1ζ∥2 ∥Tr2ζ∥∞ ∥Tr3ζ∥2 ∥Tz̈dζ∥2 ∥Tθ̈ζ∥2 ∥Tφ̈ζ∥2

Passive 0.0752 0.009 4.7347 2.1738 1.3562 3.9816
Problem 3.3 0.0746 0.0759 0.914 0.5664 0.562 0.4458

For the comparison purpose, the percentage changes of each suspension design
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methodology over the passive one are shown in Table 3.5. The percentage changes

are computed as follows:

% change =
∥.∥passive − ∥.∥controlled

∥.∥passive
× 100 (3.15)

The results show that the design using Problem 3.1 provide a good compromises

Table 3.5. The percentage changes of each active suspension design methodology over
the passive one.

% Change ∥Tr1ζ∥2 ∥Tr2ζ∥∞ ∥Tr3ζ∥2 ∥Tz̈dζ∥2 ∥Tθ̈ζ∥2 ∥Tφ̈ζ∥2

LQG 6.72% 1.29% 32.87% 37.18% 33.98% 31.52%
Problem 3.1 3.66% 18.28% 47.84% 39.46% 19.42% 55.26%
Problem 3.2 9.11% -683.52% 74.62% 66.31% 49.51% 83.35%
Problem 3.3 0.83% -739.92% 80.69% 73.94% 58.55% 88.8%

among the performance characteristics compared to other methodologies, where, it

reduces RMS accelerations, the RMS suspension travels and the RMS tire deflections

by 47.84%, 3.66% and 18.28%, respectively, in comparison with the passive one. The

main drawbacks of the solutions of Problems 3.2 and 3.3 are deteriorating the RMS

tire deflections by −683.52% and −739.92%, respectively.

24



4. SEMI ACTIVE SUSPENSION CONTROL DESIGN

In This chapter the classical semi active suspension controls namely skyhook, ground-

hook, and hybrid have been reviewed in Sections 4.2, 4.3 and 4.4, respectively. LMI

optimization method has been proposed to obtain the semi active damping coeffi-

cients are presented in Section ??. Since the control designing is in discrete-time

domain, a discretizing method discussed in Section 4.1.

4.1. Continuous Time System Discretization

As a previous step before discussing the semi active control methods, it is worth

mentioning that the control designing in such these methods is in real time which

involved a procedure for discretizing the continuous-time state space equations. The

discrete-time state equation and output equation should be derived that yield the

exact values at t = kT , where k = 0,1,2, ...

Recall the continuous-time state and output equations 2.10 and 3.2:

ẋ =Ax +Bζζ +Buu

r =Crx +Drζζ +Druu

The discrete-time representation of the equations 2.10 and 3.2 will take the form:

x((k + 1)T ) =Ad(T )x(kT ) +Bdζ(T )ζ(kT ) +Bdu(T )u(kT ) (4.1)

r(kT ) =Crx(kT ) +Drζζ(kT ) +Druu(kT ) (4.2)
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where:

Ad(T ) =eAT

Bdζ(T ) =(∫

T

0
eAλdλ)Bζ = A

−1(eAT − I)Bζ

Bdu(T ) =(∫

T

0
eAλdλ)Bu = A

−1(eAT − I)Bu

where A is nonsingular matrix. Since the sampling period T is fixed, the matrices

Ad, Bdζ and Bdu are constant. The matrices Cr, Drζ and Dru do not depend on the

sampling period T . For detailed derivations see (Ogata et al., 1995).

4.2. Skyhook Approach

The principle of this approach is to design a controllers so that the vehicle body is

“linked” to the sky frame in order to reduce the vertical oscillations of the chassis

and the axle independently of each other (Savaresi et al., 2010). The skyhook

configuration is shown in Fig.4.1 which the fictitious dampers cskyi link the sprung

mass ms to some inertial references in sky. The skyhook dampers focuse on sprung

mass to isolate it from road excitation, by increasing the skyhook damping coefficient

the motion of the sprung mass decreases, so the skyhook control is considered as

comfort oriented semi active control approach.

The equations of motion of this system are as follows:

Bouncing of the sprung mass:

msz̈G = −k1(z1 − zu1) − k2(z2 − zu2) − k3(z3 − zu3) − k4(z4 − zu4)

− c1(ż1 − żu1) − c2(ż2 − żu2) − c3(ż3 − żu3) − c4(ż4 − żu4)

− Fsky1 − Fsky2 − Fsky3 − Fsky4 (4.3)
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Figure 4.1. Ideal skyhook configuration of full car model.

Pitching of the sprung mass:

Iyθ̈ = k1lf(z1 − zu1) + k2lf(z2 − zu2) − k3lr(z3 − zu3) − k4lr(z4 − zu4)

+ c1lf(ż1 − żu1) + c2lf(ż2 − żu2) − c3lr(ż3 − żu3) − c4lr(ż4 − żu4)

+ lfFsky1 + lfFsky2 − lrFsky3 − lrFsky4 (4.4)

Rolling of the sprung mass:

Ixφ̈ = k1
tf
2
(z1 − zu1) − k2

tf
2
(z2 − zu2) + k3

tr
2
(z3 − zu3) − k4

tr
2
(z4 − zu4)

+ c1
tf
2
(ż1 − żu1) − c2

tf
2
(ż2 − żu2) + c3

tr
2
(ż3 − żu3) − c4

tr
2
(ż4 − żu4)

+
tf
2
Fsky1 −

tf
2
Fsky2 +

tr
2
Fsky3 −

tr
2
Fsky4 (4.5)

Vertical Direction for each wheel:

mui z̈ui = ki(zi − zui) + ci(żi − żui) − kT (zui −wi) , i=1,. . . ,4 (4.6)

27



where all the vehicle parameters and the variables are kept without change as in

Chapter 2 except that the passive damping coefficients ci are replaced by some

smaller values defined later in this chapter and Fskyi = cskyi żi is the skyhook damping

force with cskyi > ci, i = 1, ...,4.

The frequency response of this system for different values of the skyhook damp-

ing coefficient cskyi are shown in Fig.4.2 and it can be noticed that as the skyhook

damping coefficient increases the frequency response around the natural frequency

of sprung mass (≈ 10rad/sec) decreases.
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Figure 4.2. Heave suspension deflection frequency response for different values of cskyis.

But in realistic automotive applications the previous representation of skyhook

control is not possible because the control elements should be between the sprung

mass and the unsprung masses, so the alternative applicable skyhook control it will

be discussed as follows.

The alternative configuration must be as showed in Fig.2.1 where a semi active

dampers are mounted in parallel to passive suspension components. The main func-

tionality of semi active dampers are to generate adjusted damping forces under

different conditions on the sprung mass to imitate the ideal skyhook control perfor-

mance. Once the semi active damper is chosen for realization, one must determine

how to adjust the damper such that emulates the skyhook damper. First let us

define some parameters and conventions that will be used throughout the controller

designing. The parameters which induced by i is for i = 1,2,3 and 4 which refer to
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the front-left, the front-right, the rear-left, and the rear-right corners of the vehicle,

respectively. There is a relation between the cskyi and ci such that cskyi = cmaxi−cmini
,

where cmini
= ci. The relative velocity is (żi−żui), and when the two masses (mui and

the part i of the sprung mass) are separating it means that (żi− żui) is positive, and

when the two masses (mui and the part i of the sprung mass) are coming together

it means that (żi − żui) is negative. Now under these definitions, in the case when

the part i of the sprung mass is moving upwards (żi is positive) and the two masses

are separating then the ideal skyhook force due to skyhook damper cskyi is:

Fskyi = −cmaxi żi (4.7)

the semi active force due to semi active damper csai which is in tension is:

Fsai = −csai(żi − żui) (4.8)

to emulate the skyhook damper the semi active damper should generate force equal

to the force generated by the skyhook damper, or:

Fskyi = −cmaxi żi = −csai(żi − żui) = Fsai (4.9)

by solving for csai in terms of cmaxi and using the solution to find the semi active

damping force:

csai =
cmaxi

(żi − żui)
żi⇒ Fsai = cmaxi żi (4.10)

in the case when the part i of the sprung mass is moving downwards (żi is negative)

and the two masses are coming together then the ideal skyhook force due to skyhook

damper cskyi is:

Fskyi = cmaxi żi (4.11)
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the semi active force due to semi active damper csai which is in compression is:

Fsai = csai(żi − żui) (4.12)

to emulate the skyhook damper the semi active damper should generate force equal

to the force generated by the skyhook damper, or:

Fskyi = cmaxi żi = csai(żi − żui) = Fsai (4.13)

by solving for csai in terms of cmaxi and using the solution to find the semi active

damping force:

csai =
cmaxi

(żi − żui)
żi⇒ Fsai = cmaxi żi (4.14)

It can be conclude that when the product żi(żi− żui) is positive then the semi active

damping force is defined by Eq.4.14. In the case when the part i of the sprung mass

is moving upwards (żi is positive) and the two masses are coming together then the

ideal skyhook force due to skyhook damper cskyi is in the negative direction, the

semi active damper csai which is in compression can not apply force in the same

direction as the skyhook damper, so in this case minimum damping is preferred to

be applied by the semi active damper. The final case, when the part i of the sprung

mass is moving downwards (żi is negative) and the two masses are separating then

the ideal skyhook force due to skyhook damper cskyi is in the positive direction, the

semi active damper csai which is in tension can not apply force in the same direction

as the skyhook damper, so in this case minimum damping is preferred to be applied

by the semi active damper. Summarizing these four cases, the well known skyhook

policy (Goncalves, 2001) can be written as follows:

Fsai =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cmaxi żi if żi(żi − żui) ≥ 0

0 if żi(żi − żui) < 0

(4.15)
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Substituting the semi active damping force Fsai = ui to the Equations 2.1-2.4 the

practical skyhook controlled semi active suspension system can be obtained.

4.3. Groundhook Approach

In a dual way to the skyhook case, now the fictitious dampers cgroi link the unsprung

masses mui to some inertial references in ground. The groundhook configuration is

shown in Fig.4.3. The groundhook dampers focus on unsprung masses to keep them
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Figure 4.3. Ideal groundhook configuration of full car model.

in constant contact with road surface as possible, by increasing the groundhook

damping coefficients the motion of the unsprung masses decreases, so the ground-

hook control is considered as road holding oriented semi active control approach.

The equations of motion of this system are as follows:

Bouncing of the sprung mass:

msz̈G = −k1(z1 − zu1) − k2(z2 − zu2) − k3(z3 − zu3) − k4(z4 − zu4)

− c1(ż1 − żu1) − c2(ż2 − żu2) − c3(ż3 − żu3) − c4(ż4 − żu4) (4.16)
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Pitching of the sprung mass:

Iyθ̈ = k1lf(z1 − zu1) + k2lf(z2 − zu2) − k3lr(z3 − zu3) − k4lr(z4 − zu4)

+ c1lf(ż1 − żu1) + c2lf(ż2 − żu2) − c3lr(ż3 − żu3) − c4lr(ż4 − żu4) (4.17)

Rolling of the sprung mass:

Ixφ̈ = k1
tf
2
(z1 − zu1) − k2

tf
2
(z2 − zu2) + k3

tr
2
(z3 − zu3) − k4

tr
2
(z4 − zu4)

+ c1
tf
2
(ż1 − żu1) − c2

tf
2
(ż2 − żu2) + c3

tr
2
(ż3 − żu3) − c4

tr
2
(ż4 − żu4) (4.18)

Vertical Direction for each wheel:

mui z̈ui = ki(zi − zui) + ci(żi − żui) − kT (zui −wi) − Fgroi , i=1,. . . ,4 (4.19)

where all the vehicle parameters and the variables are kept without change as in

Chapter 2 except that the passive damping coefficients ci are replaced by some

smaller values defined later in this chapter and Fgroi = cgroi żui is the groundhook

damping force with cgroi > ci, i = 1, ...,4.

The frequency response of this system for different values of the groundhook

damping coefficients cgroi are shown in Fig.4.4 and it can be noticed that as the

groundhook damping coefficient increases the frequency response around the natural

frequency of unsprung mass (≈ 100 rad/sec) decreases.

But in realistic automotive applications the previous representation of ground-

hook control is not possible. The alternative configuration must be as showed in

Fig.2.1 where a semi active dampers are mounted in parallel to passive suspension

components. The main functionality of semi active dampers are to generate ad-

justed damping forces under different conditions on the unsprung mass to imitate

the ideal groundhook control performance. Once the semi active damper is chosen

for realization, one must determine how to adjust the damper such that emulates
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Figure 4.4. Heave tire deflection frequency response for different values of cgrois.

the groundhook damper. As in skyhook case there is a relation between the cgroi

and ci such that cgroi = cmaxi − cmini
, where cmini

= ci. The well known groundhook

control policy can be derived through the same reasoning used for skyhook control

(Goncalves, 2001):

Fsai =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

cmaxi żui if − żui(żi − żui) ≥ 0

0 if − żui(żi − żui) < 0

(4.20)

Substituting the semi active damping force Fsai = ui to the Equations 2.1-2.4 the

groundhook controlled semi active suspension system can be derived.

4.4. Hybrid Approach

An alternative semi active control policy known as hybrid control has been shown to

take advantage of the benefits of both skyhook and groundhook control (Goncalves,

2001). The suspension system with hybrid control can be set up to operate as

skyhook or groundhook controlled system, or a combination of both. The hybrid

configuration is shown in Fig.4.5.

The equations of motion of this system are as follows:

33



Z1

Z4

Z3

Rolling

Pitching

X

Y

ZG

ms

lf

lr

tf

tr
v

K4 Zu4
C4

W4KT

mu4

K2 Zu2

C2

W2KT

mu2

K1 Zu1

C1

W1KT

mu1

K3 Zu3

C3

W3KT

mu3

Z2

KF

a.Csky2

(1-a).Cgro1

(1-a).Cgro2

(1-a).Cgro3

(1-a).Cgro4

a.Csky4

a.Csky3

a.Csky1

Figure 4.5. Ideal hybrid configuration of full car model.

Bouncing of the sprung mass:

msz̈G = −k1(z1 − zu1) − k2(z2 − zu2) − k3(z3 − zu3) − k4(z4 − zu4)

− c1(ż1 − żu1) − c2(ż2 − żu2) − c3(ż3 − żu3) − c4(ż4 − żu4)

− α1Fsky1 − α2Fsky2 − α3Fsky3 − α4Fsky4 (4.21)

Pitching of the sprung mass:

Iyφ̈ = k1lf(z1 − zu1) + k2lf(z2 − zu2) − k3lr(z3 − zu3) − k4lr(z4 − zu4)

+ c1lf(ż1 − żu1) + c2lf(ż2 − żu2) − c3lr(ż3 − żu3) − c4lr(ż4 − żu4)

+ lfα1Fsky1 + lfα2Fsky2 − lrα3Fsky3 − lrα4Fsky4 (4.22)
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Rolling of the sprung mass:

Ixθ̈ = k1
tf
2
(z1 − zu1) − k2

tf
2
(z2 − zu2) + k3

tr
2
(z3 − zu3) − k4

tr
2
(z4 − zu4)

+ c1
tf
2
(ż1 − żu1) − c2

tf
2
(ż2 − żu2) + c3

tr
2
(ż3 − żu3) − c4

tr
2
(ż4 − żu4)

+
tf
2
α1Fsky1 −

tf
2
α2Fsky2 +

tr
2
α3Fsky3 −

tr
2
α4Fsky4 (4.23)

Vertical Direction for each wheel:

mui z̈ui = ki(zi − zui) + ci(żi − żui) −KT (zui −wi) − (1 − αi)Fgroi , i=1,. . . ,4 (4.24)

where all the vehicle parameters and the variables are kept without change as in

Chapter 2 except that the passive damping coefficients ci are replaced by some

smaller values defined later in this chapter. Fgroi = cgroi żui is the groundhook damp-

ing force with cgroi > ci, Fskyi = cskyi żi is the skyhook damping force with cskyi > ci

and αi is the relative ratio between the skyhook and groundhook control for i = 1,2,3

and 4.

From these equations it can be noticed that, when αi is 0 the system is reduced to

be groundhook controlled suspension system, and when αi is 1 the system is reduced

to be skyhook controlled suspension system. The frequency responses in the figures

4.6 and 4.7 show that the value 0.5 of αi yields a good trade-off between skyhook

and groundhook controlled suspension systems.

But in realistic automotive applications the previous representation of hybrid

control is not possible. The alternative configuration must be as showed in Fig.2.1.

Combining the equations 4.15 and 4.20 the well known hybrid control policy can be

derived:

σgroi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

żui if − żui(żi − żui) ≥ 0

0 if − żui(żi − żui) < 0
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Figure 4.6. Heave tire deflection frequency
response for different values of
αis for cskyi = cgroi = 2ci.
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Figure 4.7. Heave suspension deflection
frequency response for differ-
ent values of αis for cskyi =
cgroi = 2ci.

σskyi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

żi if żi(żi − żui) ≥ 0

0 if żi(żi − żui) < 0

then the hybrid control law is:

Fsai = Gi(αiσskyi + (1 − αi)σgroi) (4.25)

where Gi is a constant gain and equals cmaxi . Substituting the semi active damping

force Fsai = ui to the Equations 2.1-2.4 the hybrid controlled semi active suspension

system can be derived.

The design parameters for the three approaches are chosen as follows (Blan-

chard, 2003):

cmini
= 0.2ci and cmaxi = 2.2ci (4.26)

where ci are the passive damping coefficients as defined in Table 2.1, and in the

configuration Fig.s 4.1, 4.3 and 4.5 ci are cmini
instead, i = 1, ...,4.

The frequency responses of the skyhook, groundhook and hybrid controlled

suspension to roll input (ζ1 = −ζ2 = ζ3 = −ζ4) compared to passive one were ex-
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amined and shown in Fig.s 4.8 -4.10. From frequency response figures it can be
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Figure 4.10. Roll acceleration frequency response to roll input.

concluded that skyhook control improves the response at low frequencies (around

the sprung mass natural frequency), while increases the response at high frequen-

cies (around the unsprung mass natural frequency), that means the skyhook control

successes in improving ride comfort performance but fails in improving road holding

performance. Otherwise, groundhook control improves the response at high frequen-

cies (around the unsprung mass natural frequency), while increases the response at

low frequencies (around the sprung mass natural frequency), that means the ground-

hook control successes in improving road holding performance but fails in improving

ride comfort performance which it is worse than passive suspension. Hybrid control

provides a good compromise between skyhook and groundhook controls, such that
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improves ride comfort and road holding at the same time and still performs somehow

better than the passive suspension system.
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5. LMI OPTIMIZATION OF SKYHOOK CONTROL

In literature specially in (Blanchard, 2003), (Ihsan et al., 2008) and (Du et al.,

2005) works, they have not presented a methodical way to find the design param-

eters (cmini
, cmaxi) of skyhook control law. In (Poussot-Vassal et al., 2006) an

optimization method has been proposed but for a quarter car model. Here, a novel

methodology based on LMI optimization is proposed and introduced to upgrade the

aforementioned design parameters.

5.1. Conventional Skyhook Control Law

For the design of a feedback law for skyhook control which discussed in Section 4.2,

consider the measurements of the vertical velocity at each corner of the sprung mass

and the suspension velocities, which can be written as:

y = Cyx (5.1)

where:

y = (ż1...ż4 ż1 − ˙zu1 ...ż4 − ˙zu4)

Cy =

⎛
⎜
⎜
⎝

04×7 Ψ 04×4 04×4

04×7 Ψ −I4 04×4

⎞
⎟
⎟
⎠

The static output feedback structure is:

u(k) = Fy(k) (5.2)

where the gain F is to be determined in this section. It is worth mentioning that

the skyhook controller F designing is in discrete time domain, so the system is

discretized as discussed in Section 4.1 for sampling time T = 10−2 sec. In order to

find F the following theorems are reviewed.
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Theorem 5.1 (Discrete-time H∞ state feedback): (De Oliveira et al., 2002)

There exists a controller in the form 5.2 such that the inequality ∣∣Trζ(z)∣∣∞ ≤ γ21

holds if and only if the LMI

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P AdX +BduL Bdζ 0

∗ X +XT − P 0 (CrX +DruL)T

∗ ∗ I DT
rζ

∗ ∗ ∗ γ1I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0

holds, where the matrices X and L and the symmetric matrix P are the variables of

appropriate dimensions.

Theorem 5.2 (Discrete-time H2 state feedback): (De Oliveira et al., 2002)

There exists a controller in the form 5.2 such that the inequality ∣∣Trζ(z)∣∣2 ≤ γ22 holds

if and only if the LMIs

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P AdX +BduL Bdζ

∗ X +XT − P 0

∗ ∗ I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

> 0,

⎛
⎜
⎜
⎝

W CrX +DruL

∗ X +XT − P

⎞
⎟
⎟
⎠

> 0 and

Trace(W ) < γ2

hold, where the matrices X and L and the symmetric matrices P and W are the

variables of appropriate dimensions.

It is desired to synthesize static output feedback problem. In order to solve static

output feedback problems involving stability and multi-objective control it is as-

sumed that the measurement matrix Cy in 5.1 could be transformed to the form

40



[I 0] see Remark 5.1, and the LMI variables L and X should have the structures:

L ∶= (Lout 0) , X ∶=

⎛
⎜
⎜
⎝

Xout 0

X12 X22

⎞
⎟
⎟
⎠

(5.3)

Then a static output feedback gain F is found in form 5.2, where in the context of

state feedback problem:

K = (F 0) = (LoutX−1
out 0) (5.4)

where K is the state feedback gain.

For the skyhook control problem the measurements (ż1...ż4) are needed to the

feedback, while the others (ż1 − ˙zu1 ...ż4 − ˙zu4) are needed to formulate the actuating

conditions in 4.15. Each input ui is allowed to get feedback only from the cor-

responding measurement yi, this leads to adopt the decentralized control concept

(Rubió-Massegú et al., 2013). In order to solve this issue, a diagonal structure is

imposed on the matrices Lout and Xout to derive a diagonal matrix for the gain F .

Remark 5.1 The measurement matrix Cy in 5.1 shall be full row ranked to be able

to be transformed to [I 0] but it is not. To overcome this problem the following

remedy is suggested: Since the forth row ż4 is linearly dependent on the first three

rows, it can be written with respect to them as:

ż4 = −
tr
tf
ż1 +

tr
tf
ż2 + ż3

so it can be omitted provided that the skyhook damping coefficients at the rear corners

csky3 and csky4 are equal. Then, the measuring signals are reduced to 7 instead of 8.

A similarity transformation matrix Ttr generally is not unique. A special form can

be obtained by:

Ttr = (CT
y (CyC

T
y )

−1 C�

y
)
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where C�

y denotes an orthogonal basis for the null space of Cy.

Recall the Problem 3.1 but in discrete time domain which can be reformulated as

follows:

Problem 5.1 Given H∞ norm bound γ1 design a static output feedback controller

with gain F that minimizes

β1∣∣Tr1ζ(z)∣∣2 + β2∣∣Tr3ζ(z)∣∣2

subject to ∣∣Tr2ζ(z)∣∣∞ ≤ γ1.

Employing the Theorems 5.1 and 5.2 for the ideal skyhook system 4.3-4.6 (without

changing the passive damping coefficients) and the measurement equation 5.1 taking

into account the aforementioned discussions and Remark 5.1 the solution for the

controller gain F is found:

F = (diag(4978.3 ,4978.3 ,511.1 ,511.1) 04×4) (5.5)

Thus,

cskyi = 4978.3 , i = 1,2 (5.6)

cskyi = 511.1 , i = 3,4 (5.7)

In Section 4.2 it has been clarified that the ideal skyhook configuration is not

feasible and the alternative practical one that handling actuating conditions has

been proposed for the realization of skyhook concept. The damping coefficient of

the semi active dampers have the relation with the skyhook ones:

cmaxi = cskyi + cmini
= 4978.3 + 0.2ci = 4.059ci , i = 1,2 (5.8)

cmaxi = cskyi + cmini
= 511.1 + 0.2ci = 0.515ci , i = 3,4 (5.9)
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where ci the passive damping coefficients defined in the Table 2.1. In skyhook policy

4.15 the minimal damping coefficients are cmini
= 0.2ci instead of zeros. Moreover,

after applying several simulations on different values of the passive damping coeffi-

cients, it is found that the modified values ci = 0.2ci give the best results.

After synthesizing the practical skyhook suspension with the upgraded max-

imal and minimum damping coefficients cmaxi and cmini
, respectively, the stochastic

responses of the skyhook suspension with the obtained design parameters are com-

puted as follows:

RMS(ri) =

¿
Á
ÁÀ 1

N

N

∑
n=1

∣rin ∣
2 (5.10)

where N is number of samples and ri is the regulated output for i = 1, . . . ,11.

The results are compared to skyhook suspension design in (Blanchard, 2003) and

displayed in Table 5.1. The results show the advantages of keeping some passive

Table 5.1. The stochastic responses of the passive and Conventional skyhook suspen-
sions.

(Blanchard, 2003) LMI
RMS Passive Skyhook Conventional

Configuration Skyhook

Heave-Suspension Travels 0.0046 0.0071 0.0049
Benefit vs passive - -55.2% -6.27%

Heave-Tire deflections 0.0016 0.0056 0.0024
Benefit vs passive - -252.64% -49.41%

Heave Acceleration 0.1522 0.13 0.1008
Benefit vs passive - 11.65% 33.78%

Pitch Acceleration 0.0935 0.07 0.0630
Benefit vs passive - 24.69% 32.59%

Roll Acceleration 0.28 0.2591 0.186
Benefit vs passive - 7.47% 33.28%

damping forces accompanying the semi active damping forces while synthesizing the

skyhook controller, because in some works in literature like (Blanchard, 2003) the

passive dampers are excluded from the suspension system. However, the suspen-

sion travels and tire deflections performances are deteriorated compared to passive

suspension and this problem leads to consider more powerful alternative skyhook
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control law to overcome these drawbacks.

5.2. Alternative Skyhook Control Law

The conventional semi active damper that proposed in the previous section can only

generate the damping force proportional to body’s corner velocity (żi) which results

in worse responses with respect to drive safety as seen in Table 5.1. An alternative

version of skyhook control law has been utilized to conduct a variable damping as

clarified in (Sammier et al., 2003) and (Poussot-Vassal et al., 2006). In this version

of skyhook control the body’s corner vertical velocity (żi) as well as the axle velocity

(żui) affect the body and axle accelerations. Unlike to conventional skyhook control

in which the body and axle accelerations are merely affected by the body’s corner

vertical velocity (żi). The adapted semi active damper that emulates a skyhook

damper consists in changing the damping coefficient according to the body’s corner

vertical speed (żi) and to the suspension deflection speed (żi−żui) such that generates

the damping force as follows:

ui =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

αcmaxi(żi − żui) + (1 − α)cmaxi żi if żi(żi − żui) ≥ 0

cmini
(żi − żui) if żi(żi − żui) < 0

(5.11)

where cmaxi and cmini
are the maximal and minimal damping coefficients, respec-

tively, achieved by the continuously variable controlled semi active damper (i.e. MR

damper). α ∈ [0,1] is a tuning parameter that modifies the suspension system

behavior.

To design the control law in the on-mode in Eq. 5.11 the simplification made

to ease the design procedure such that:

ui =αcmaxi(żi − żui) + (1 − α)cmaxi żi (5.12)

=cmaxi żi − αcmaxi żui (5.13)
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Dealing with the control law in Eq.5.13 the measurements of body’s corner vertical

speeds (żi) and axle speeds (żui) are needed (which are usually not measurable in

industrial application, but can be obtained by doing some numerical derivations and

integrations on the measurable quantities). Modifying the measurements in Eq.5.1

the new ones can be written as:

y = Cyx (5.14)

where:

y = (ż1 . . . ż4 ˙zu1 . . . ˙zu4)

Cy =

⎛
⎜
⎜
⎝

04×7 Ψ 04×4 04×4

04×7 04×3 I4 04×4

⎞
⎟
⎟
⎠

Since the measurement matrix Cy is not full row rank, the Remark 5.1 should be

taken into account to solve the Problem 5.1, except that the assumption on the

damping coefficients to be equal at front side and at rear side is left out.

The gain F is desirable to take the form:

F = (diag(cmax1 cmax2 cmax3 cmax4) −α × diag(cmax1 cmax2 cmax3 cmax4))

and this involves to impose a structural constraints on the LMI variables L and X

as illustrated in 5.3 where:

Lout = ([diag(Lout1 Lout2 Lout3) ; 01×3] −α × diag(Lout1 Lout2 Lout3 Lout4))

Xout = (diag(Xout1 Xout2 Xout3 Xout4) diag(Xout1 Xout2 Xout3 Xout4))

Employing the Theorems 5.1 and 5.2 for the discrete time suspension system 4.1-4.2

(without passive dampers) and the measurement equation 5.14 the solution for the

controller gain F is found with fixed α = 0.5 for the control law in Eq. 5.13:

cmax1 = 1759.6, cmax2 = 2059.3, cmax3 = 1065.9 and cmax4 = 1291.45 (5.15)
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For the realization of practical semi active suspension which handling the

actuating condition on the semi active damper, the obtained design parameters 5.15

are synthesized to generate the damping force that illustrated in 5.11. The accept-

able results are found by setting cmini
= 0.5ci in 5.11 and passive damping coefficients

ci = 0. The relationship between the RMS performance quantities of the achieved

suspension system and α are shown in Fig.s 5.1-5.5. In the range α<0.5 the RMS of

heave, pitch and roll accelerations are less than their counterparts in the range α>0.5

which achieved ride comfort but at the expense of drive safety resulting in soft sus-

pension. Furthermore, In the range α>0.5 the RMS of heave suspension travel and

heave tire deflection are less than their counterparts in α<0.5 which achieved drive

safety but at the expense of ride comfort resulting in hard suspension. The value
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Figure 5.1. Relationship between RMS
heave suspension travel and
α.
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Figure 5.2. Relationship between RMS
heave tire deflection and α.

0.5 of α gives a good compromise between the two conflicting objectives namely,

the comfort ride and drive safety. The RMS values of the suspension responses are

shown in Table 5.2 and the percentage change over the passive suspension also ex-

hibited. The alternative control law 5.11 gives better results with respect to drive

safety compared to the conventional one in 4.15.
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Figure 5.5. Relationship between RMS roll acceleration and α.

5.3. Frequency Domain Responses

For comparison purpose, the frequency responses for passive, active designed by

solving Problem 3.1, and semi active designed by optimizing the alternative Skyhook

suspension systems to roll input are plotted in Figures 5.6, 5.7 and 5.8 in order to

understand how every frequency component affects the performance indices. Since

the Skyhook control design is in real time, the transfer function of Skyhook controlled

suspension system is estimated by the Matalb function tfest. The results show

that how the semi active suspension is a compromise solution between the active

and passive suspensions.
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Table 5.2. The stochastic responses of the passive and alternative skyhook suspension
for α = 0.5.

LMI
RMS Alternative

Skyhook

Heave-Suspension Travels 0.004
Benefit vs passive 11.8%

Heave-Tire deflections 0.0017
Benefit vs passive -8%

Heave Acceleration 0.11
Benefit vs passive 22%

Pitch Acceleration 0.07
Benefit vs passive 24%

Roll Acceleration 0.21
Benefit vs passive 24.9%
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Figure 5.6. Roll acceleration frequency re-
sponse magnitudes of passive,
Skyhook and active designed
by solving Problem 3.1 suspen-
sion systems to the roll input:
(solid) passive, (dashed) Sky-
hook and (dotted) active.
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6. CONCLUSION AND FUTURE WORK

In this thesis, an active suspension optimal control techniques have been presented

and the behavior of an active suspended vehicle using these techniques has been

assessed, which achieved a good trade-off between ride comfort and drive safety.

However, the active control laws are realized by force actuators which consume much

energy. Motivated by the demand of energy saving, a semi active suspension control

techniques have been proposed where the semi active control laws are realized by

MR shock absorbers which are less energy-consumed compared to force actuators.

The classical semi active suspension controls have been studied (skyhook, ground-

hook and hybrid control) and the frequency responses for each semi active control

method has been plotted in order to gain a deep understanding of how every fre-

quency component affects the performance indices. The results were as it has been

expected, the skyhook control improve the ride comfort since it focuses on sprung

mass, the groundhook control enhances the drive safety since it focuses on unsprung

masses, and the hybrid control offers the advantages of both latter methods. The

values of MR damping coefficients play a crucial role in the suspension system’s

performance, where in literature a systematic method to compute these coefficients

has not been clarified. The LMI optimization has been very popular among control

systems in recent years, it has been utilized for active suspension system but ac-

cording to author’s knowledge it has not been exploited for semi active suspension

system. So, this work highlighted the feasibility and advantages of using LMI to ob-

tain the MR damping coefficients. Since the concern is on ride comfort, the skyhook

control has been optimized by LMI. The ideal skyhook configuration was optimized

and then the resulted coefficients were synthesized to practical configuration. The

results of the optimized conventional skyhook control were satisfied in respect to

ride comfort but at expense of drive safety which resulted in excessive suspension

bottoming and interrupted contact of wheels to road surface. The latter drawbacks
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were the driving force for searching an alternative skyhook control to improve drive

safety. The optimized alternative skyhook control therefore mitigated the contradic-

tion between ride comfort and drive safety which prevented an excessive suspension

bottoming. The alternative skyhook control improved the drive safety compared to

its conventional counterpart where the suspension system requirements (minimizing

the vehicle body accelerations, the dynamic tire load and the suspension travels)

have been achieved.

The future work will focus on finding a remedy to improve road holding criteria

of the comfort oriented semi active suspension, one remedy is such using another semi

active configuration which has studied in (Koch et al., 2011), where a low bandwidth

actuator has been added in series to the passive spring to realize a time varying

stiffness and damping suspension system. The exploiting of LMI optimization for

the latter configuration is promising enough to find an optimized results such that

the road holding criteria will not be deteriorated as well as the ride comfort criteria.
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Rubió-Massegú, J., Rossell, J.M., Karimi, H.R., and Palacios-Quinonero, F. (2013).

Static output-feedback control under information structure constraints. Automat-

ica 49(1), 313–316.

Sammier, D., Sename, O., and Dugard, L. (2003). Skyhook and h∞ control of

semi-active suspensions: some practical aspects. Vehicle System Dynamics 39(4),

279–308.

Savaresi, S.M., Poussot-Vassal, C., Spelta, C., Sename, O., and Dugard, L. (2010).

Semi-active suspension control design for vehicles. Elsevier.

Scherer, C., Gahinet, P., and Chilali, M. (1997). Multiobjective output-feedback

control via lmi optimization. IEEE Transactions on automatic control 42(7),

896–911.

Scherer, C., and Weiland, S. (2000). Linear matrix inequalities in control. Lecture

Notes, Dutch Institute for Systems and Control, Delft, The Netherlands 3(2).

54



Skogestad, S., and Postlethwaite, I. (2007). Multivariable feedback control: analysis

and design. volume 2. Wiley New York.

for Standardization, I.O. (1997). ISO catalogue. International Organization for

Standardization.

Taghirad, H.D., and Esmailzadeh, E. (1998). Automobile passenger comfort assured

through lqg/lqr active suspension. Journal of vibration and control 4(5), 603–618.
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