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ABSTRACT 

NEW APPROACHES TO IMPROVE ESTIMATOR PERFORMANCE FOR 

QUADROTORS  

Aziz KABA 

Department of Avionics 

Eskişehir Technical University, Institute of Graduate Programs, August 2019 

Supervisor: Assoc. Prof. Dr. Emre KIYAK 

 

In order to use Kalman filter effectively, covariance matrices of process and 

measurement noise must be known a priori. Nevertheless, these values may not be known 

exactly which causes the filter to work under suboptimal and even in divergent conditions. 

In most cases, these parameters are guessed or tuned by trial and error approach both of 

which do not guarantee optimality and convergence. To ensure near - optimal conditions 

for the measurement noise, a bio-inspired artificial bee colony optimization algorithm 

based Kalman filter offline tuning scheme is introduced. In addition, an objective function 

is proposed to handle the convergence problem of the existing function. Mathematical 

proofs are derived for the convergence problem and also for proposed function to define 

its behavior on the search space. Simulation outputs are compared with genetic algorithm 

based Kalman filter for both objective functions. 

Since optimization of both process and measurement noise covariance matrices is 

a challenging task in literature,   an evolutionary algorithm based Kalman filter is 

proposed to simultaneously estimate the process and measurement noise covariance 

matrices of the Kalman filter to improve the performance of the sub – optimal filter.  A 

surrogate – assisted fitness function is also introduced to achieve multi – dimensional 

simultaneous optimization with finite time consideration. Results are compared with an 

optimal Kalman filter by means of absolute error, root mean square error, and mean 

absolute error. 

Efficacy of the proposed algorithms and functions are shown according to the 

performed simulations and numerical results of the Monte Carlo simulations.  

Keywords: Kalman filter, Artificial bee colony, Evolutionary algorithm, Noise 

 optimization, Quadrotor. 
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ÖZET 

DÖNER KANATLARDA KESTİRİMCİ PERFORMANSININ 

İYİLEŞTİRİLMESİ İÇİN YENİ YAKLAŞIMLAR 

Aziz KABA 

Havacılık Elektrik - Elektroniği Anabilim Dalı 

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Ağustos 2019 

 

Danışman: Doç. Dr. Emre KIYAK 

 

Kalman filtresinin verimli çalışabilmesi, ölçüm ve sistem gürültüleri kovaryans 

matrislerinin öncül bilgisine bağlıdır. Fakat bu değerler tam olarak bilinemediğinden 

filtrenin en iyi durumunun altında çalışmasına hatta ıraksamasına neden olmaktadır. Bu 

değerlerin bulunması çoğunlukla, her ikisi de eniyilik ya da yakınsaklığı garantilemeyen 

tahmin ve deneme yanılma yöntemlerine dayanmaktadır. Bu çalışmada, ölçüm 

gürültüsünün eniyiye yakın durumunu elde edebilmek için biyo-esinli yapay arı koloni 

algoritması tabanlı Kalman filtresi çevrimdışı parametre kestirimi algoritması 

tanıtılmıştır. Ayrıca, mevcut fonksiyonunun yakınsama sorununu çözmek için bir amaç 

fonksiyonu önerilmiştir. Çalışmada, yakınsama sorunu ve önerilen fonksiyonun çözüm 

uzayındaki davranışlarını gösteren matematiksel ispatlar gerçeklenmiştir. Benzetim 

sonuçları genetik algoritma tabanlı Kalman filtresi ile her iki fonksiyon için de 

kıyaslanmıştır. 

 Ölçüm ve sistem gürültü kovaryans matrislerinin aynı anda eniyilenmesi zor bir 

problem olduğundan, bir evrimsel algoritma tabanlı Kalman filtresi önerilmiş ve her iki 

matrisinde eşzamanlı kestirilerek eniyi değerlere yakınsaması amaçlanmıştır. Ayrıca, 

eniyi değerlere ulaşılmasındaki zaman kısıtı da göz önüne alınarak çok – boyutlu vekil 

bir amaç fonksiyonu önerilmiştir. Algoritma sonuçları eniyi Kalman filtresi sonuçları ile 

mutlak hata, karesel ortalama hata ve ortalama mutlak hata metrikleri ile kıyaslanmıştır. 

 Gerçekleştirilen benzetimler ve Monte Carlo benzetim sonuçları önerilen 

algoritma ve fonksiyonların verimliliğini göstermiştir. 

Anahtar Kelimeler:  Kalman filtresi, Yapay arı kolonisi, Evrimsel algoritma, Gürültü  

eniyilemesi, Döner kanat.  
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1. INTRODUCTION 

 

A quadrotor is a type of unmanned aerial vehicle (UAV) that consists of four rotors 

which are placed on a cross type rigid frame. Thus, it does not have any moving parts 

actuated by servos, for instance, rudder for yaw control or elevator for height control. The 

elimination of the moving parts such as servomotors in quadrotors make them 

advantageous in comparison with fixed – wing UAV counterparts.  Also, due to vertical 

take – off and landing capabilities of the quadrotors, some launching and landing 

restrictions are removed (e.g. runway to runway navigation). Furthermore, hovering and 

low speed flight capabilities of the quadrotors enhance the usage area and applications 

such as climate forecasting, search and rescue, infrastructure inspection, coast border 

surveillance, road traffic surveillance, aerial photography, 3D mapping for civil 

applications as well as military ones [1] - [2]. Also, group of quadrotors may also be 

combined to form a swarm to complete some global tasks as well as local ones. Swarm 

tasks and formations for quadrotors are generally observed as target localization [3], 

search [4], and distributed formation control [5]. A quadrotor prototype is seen in Figure 

1.1. 

 

Figure 1.1. Quadrotor prototype [6] 
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1.1. Problem Background 

To complete the autonomous tasks for swarms as well as a single quadrotor for 

aforementioned civil and military applications, a mathematical model of the quadrotor is 

needed. Such model may be obtained by Newton – Euler or Euler - Lagrange formalisms 

[7] and system identification methods [8]. 

In spite of mechanical simplicity and wide range of applications, quadrotors suffer 

from dynamic and kinematic nonlinearities, coupling effects between states, multi – input 

multi output (MIMO) underactuated control, internal and external disturbances such as 

time – varying model parameter errors, modeling uncertainty, unmodeled physical 

dynamics, wind and ground effects, respectively [9].  

These drawbacks of the quadrotors must be overcome in order to use them safely in 

aforementioned applications. So, proper control techniques are widely studied in 

literature in order to deal with challenging environment of the quadrotor. Recent studies 

of quadrotor control include composite learning neural approximation and disturbance 

estimator based nonsingular terminal sliding mode controller (SMC) for finite – time 

response [10], disturbance observer based hovering control with 𝐻∞ synthesis [11], 

nonlinear robust compensator and backstepping control for trajectory tracking on 

discontinuous disturbances [12], adaptive fault tolerant control based on disturbance 

observer for multi – actuator faults, parameter uncertainties and external disturbances 

[13], energy – coupling based hierarchical controller for positioning and payload swing 

elimination [14], learning – rate based SMC for altitude control of a variable load 

quadrotor [15] and saturated control for spatial trajectory tracking based on 

heterogeneous comprehensive learning particle swarm optimization [16].  

However, to achieve an optimal control to reduce errors whether on trajectory 

tracking or in attitude control; accurate recovery of the controlled states is needed. State 

information may be obtained from commercially available sensors such as 

accelerometers, gyroscopes, magnetometers and GPS. Unfortunately, due to low – cost 

nature of the sensors along with vibrations and electromagnetic torques produced in 

motors, performance of the sensors degrades very noticeably. In order to eliminate the 

heavy noise hence increase the reliability of the low – cost sensors that are commonly 

used in quadrotors, an observer/estimator is needed in parallel with the controller.  Such 

observer structures applied on quadrotors and UAVs include nonlinear signal – correction 

observer for intense stochastic non – Gaussian noise [17], nonlinear observer for ego – 
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motion with optical flow control [18], and sliding mode observer with nonlinear 

complementary filter based attitude estimation [19].  

When sensor or system noise is known to be Gaussian distributed, then Kalman filter 

(KF) guarantees to be optimal estimator that optimality of the filter is based on the mean 

square error (MSE). Among all other estimation algorithms, Kalman filter (KF) is very 

popular thanks to its computationally effective recursive formulas. KF is a linear 

minimum mean square error (LM-MSE) estimator that minimizes error covariance 

matrix. Some examples of KF algorithm on quadrotors may be found in [20] - [21] and 

its common variants are listed as extended Kalman filter (EKF) [22], unscented Kalman 

filter (UKF) [23], adaptive Kalman filter (AKF) [24] and so on. Recent extended variants 

of KF are widely used in observer and estimator schemes in quadrotor, UAV and IMU 

applications such as dual fast orthogonal KF based adaptive model predictive control 

(MPC) for linear state space model identification and state estimation for altitude control 

[25], Unscented KF (UKF) designed in 𝑆𝑂(3)𝑥ℝ3 space for simultaneous attitude and 

gyroscope bias estimation which is invariant to fixed or moving reference frame [26], 

adaptive neural observer based on extended KF (EKF) for quadrotor sensor fault detection 

[27], heading estimation based on robust adaptive KF (RAKF) for gyroscope, 

accelerometer and magnetometer sensor fusion [28] and also a hybridization of EKF and 

ant colony optimization (ACO) method for state estimation of nonlinear systems [29]. 

To ensure minimum MSE estimation of the model state utilized by optimal Kalman 

gain, some certain assumptions must be met such as:  

 Plant is linear and its model as state – space form is known, 

 Process and measurement noises have zero mean and white Gaussian 

distributions, 

 Covariance matrices of noises are known a priori [30]. 

However, in practical applications, these assumptions are hardly hold and the 

measurement noise covariance matrix R with the process noise covariance matrix Q are 

not exactly known [31]. Deficiency of prior knowledge on process noise covariance 

matrix Q and measurement noise covariance matrix R effects the Kalman gain that serves 

as optimality factor between mathematical models versus sensor measurements. 

Underestimation or overestimation of Q and R matrices may cause the filter to deviate 

from optimal to sub – optimal. Further, this deviation may lead deteriorated outputs which 

in turn results nullification problems in state estimation [32]. Such lack of knowledge, 
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especially on R [33]- [34] may force the filter performance be far from optimal, and 

estimation quality of the filter may be deteriorated which further leads to divergence 

problems [32]. So, tuning of R is an important topic for quadrotors since sensor 

measurements are heavily disturbed by noise which is modeled by R matrix. 

Tuning of a priori filter statistics are overlooked due to complex and challenging 

tasks of modelling, control and estimation. Furthermore, parameter tuning generally relies 

on trial and error or guessing approaches and all these methods depend on designer’s 

experience level. Also, neither of the aforementioned methods guarantee the optimality 

of the filter. Besides, it is showed that either underestimation or overestimation of a prior 

R/Q division may lead to noisy or divergent filter response, respectively [35]. So, superior 

KF performance for the state estimation problem of the quadrotor may be obtained by 

proper a prior tuning of the filter statistics.  

An optimization based technique is necessary to avoid these time – consuming or 

experience dependent ad – hoc methods to obtain better filtering performance [36]. 

Recent optimization based techniques that are used in aerospace field include meta – 

model multi – objective particle swarm (PSO) for effective optimization of Bump inlet 

[37], multi – dimension airfoil shape optimization by adaptive hybrid evolutionary 

algorithm [38], aerodynamic shape optimization and design of a rotor for improving 

performance of unmanned helicopter [39]. 

1.2. Related Works 

Studies that are focused on KF a prior covariance matrix tuning via optimization 

approaches are generally consist of genetic algorithms (GA). A hybrid algorithm based 

on EA and fuzzy inference system (FIS) is proposed in [34] for R matrix tuning of the 

rocket tracking problem where Q matrix is assumed to be known. The initial value of the 

R matrix is determined offline by EA and updated online by FIS. GA based KF parameter 

optimization is proposed in [35] for a single state dynamical model which is pitch angle 

response of a UAV. The importance of the proper choice for the R/Q value for pitch angle 

response of the UAV is showed for scalar case. For small values of the division, KF trusts 

pitch angle measurement more than dynamical model, thus yields noisy estimation. On 

the contrary, KF trusts dynamical model more than the sensor measurement in some cases 

such as disturbances, estimation yields divergent behavior.  An optimal EKF is proposed 

in [40]. Optimality of the proposed algorithm is ensured by GA in order to tune Q and R 
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matrices. For performance evaluation, an EKF which is designed by trial and error is used 

for baseline comparison. Another application of GA based KF is presented in [41] for 

state of charge estimation in battery management systems. A single input – single output 

(SISO) system model is considered. Optimization is carried out by GA and as a result, 

root mean square error (RMSE) is reduced in comparison with initial values. In [42], a 

FIS - KF that is optimized by GA is presented for autonomous underwater vehicle. In the 

presented algorithm, Q is assumed to be known and R is assumed to be unknown. To 

overcome insufficient knowledge problem on the a priori filter statistic R, FIS is used to 

tune the R matrix according to the innovation difference in which GA is used to optimize 

the fuzzy membership functions for certain performance criteria. 

Besides GA, new optimization algorithms are developed with the requirement of 

the faster and robust optimization algorithms due to nonlinear, nondifferentiable, multi – 

modal and dynamic environments of the modern problems. Applications of such 

algorithms that are used in KF tuning problem include particle swarm optimization 

(PSO), fruit – fly optimization (FOA), differential evolution (DE) and cuckoo search (CS) 

algorithms  [36] - [43] and  [44] . A recently developed algorithm based on foraging 

behaviors of the bee swarm is artificial bee colony algorithm (ABC) [45]. ABC algorithm 

is capable of handling multi – objective and multi – modal fitness functions with relatively 

few parameters to be adapted. Remarkable efficacy of the ABC algorithm with respect to 

EA, PSO, DE and GA optimization algorithms is showed in [46] and [47]. An additional 

comparison with aforementioned algorithms with total of 50 benchmark functions is 

presented in [48]. In this study, according to the logarithmic mean absolute error metric, 

ABC is better at converging to real value at least in the order of 102. 

1.3.  Contributions 

In the light of given problem formulation and literature analysis, main contributions 

of this dissertation can be categorized twofold and listed as: 

First main category is to reduce the dimension of search space to optimize only R 

matrix since sensor noise is very important and heavily distributed for quadrotors. This 

category includes five contributions as:  

First contribution covers the employment of the ABC algorithm in conjunction with 

KF to optimize the measurement noise matrix as a novel hybridization scheme based on 

the superiority of the relatively recent ABC algorithm that includes advantages such as 
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foraging behavior, global converging ability in multi – modal objective functions, better 

error performance, and less number of parameters to be tuned.  

Second contribution covers the novel mathematical background and investigations 

associated with divergence problem that is observed with the commonly used objective 

function in the literature when Q matrix is considered to be known and R matrix is 

unknown. It is showed in this dissertation that when Q is known and R is unknown, bio – 

inspired or intelligent optimization algorithms will diverge to infinity or upper bound 

when common objective function in literature is used.  

To overcome aforementioned divergence problem and to find a quasi – optimal 

solution to the filtering problem, a novel fitness function is proposed. Also, a 

mathematical proof is supplied to define the effects of the proposed function in the 

feasible search space as a third contribution.  

Fourth contribution includes the comparison of the proposed algorithm and the 

objective function with optimal KF (OKF), which is an objective comparison in sense of 

minimum – MSE. In the literature, comparisons with initial guess or trial and error 

approaches are handled that both of which do not guarantee an optimality or convergence 

criteria for the proposed hybridization scheme.  

Lastly, different number of MC simulations are conducted to show the robustness 

of the proposed algorithm under stochastic environment of the noise. 

Second main category is to optimize both noise matrices and all states 

simultaneously that leads to multi – dimension optimization problem which in turn brings 

more efficient overall calculation time for the proposed algorithms and fitness functions.  

First, an evolutionary algorithm based Kalman filter (EA – KF) is proposed for 

tuning the unknown noise statistics, namely Q and R matrices.  

Secondly, multiple input – multiple output (MIMO) attitude model of the quadrotor 

is presented for modelling, thus more complete mathematical representation is achieved 

in comparison with SISO systems.  

Thirdly, tuning and optimization of both Q and R matrices are considered. So, a 

prior exact knowledge of filter statistics is not necessary. As a consequence, this algorithm 

yields more general, multi - dimensional and complete solution for the problem.  

Fourthly, a novel fitness function is proposed to achieve simultaneous multi – 

dimensional optimization in EA – KF algorithm to reduce overall time of the algorithm.  
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Lastly, performance metrics are enhanced from absolute error to root mean square 

error, mean absolute error, error variance for better objective comparison.  

To sum up, this thesis proposes a novel hybridization scheme based on the 

employment of ABC algorithm, deals with divergence phenomena of the measurement 

noise matrix, proposes a novel objective function to overcome this limitation, presents an 

objective comparison with OKF, gives mathematical proofs, also includes MIMO 

quadrotor modelling, another novel multi – objective fitness function, simultaneous 

tuning of Q and R values, RMSE, MAE, VAR and ABSE metric evaluations, 3D position 

control and comparison with widely used GA optimization method thus fills the gap in 

the literature for the complete quadrotor estimator a prior measurement and process noise 

covariance tuning. Efficacy of the proposed methods are shown by different number of 

Monte Carlo simulations for discrete quadrotor model on 3D trajectory. 

1.4. Organization of the Thesis 

The remainder of the thesis is as follows. In section 2, quadrotor modelling is 

covered. In section 3, EA and ABC algorithms are introduced. In section 4, ABC – KF 

hybridization scheme and objective function duo is given and mathematical backgrounds 

are derived. Also, EA – KF algorithm is given. In section 5, both numerical and graphical 

results are given with performance evaluation. The thesis is summarized with conclusions 

in section 6. 
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2. QUADROTOR MODEL 

 

 A quadrotor is an underactuated UAV that has four independently running motors, 

all facing upwards and attached to the cross type rigid frame. Rotors are divided in two 

pairs and rotate in opposite directions. While first pair (1 – 3) rotates counter - clockwise, 

second pair (2 – 4) rotates clockwise. Vertical motion is generated by increasing or 

decreasing the rotation speeds of all rotors, simultaneously. Increasing the rotor speeds 

equally yields lift force. When lift force is bigger than the weight of the quadrotor then 

upward motion is generated. Pitch motion is generated by difference between 1st and 3rd 

rotors where roll motion is generated by difference between 2nd and 4th rotors, 

respectively. Yaw motion is realized by difference between the rotor pairs. Since the 

quadrotor is underactuated, X and Y states are controlled by pitch and roll motions, 

respectively. A quadrotor is given in  

Figure 2.1 with its associated reference frames, rotors and Euler angles. 

 

 

Figure 2.1. Quadrotor reference frames 
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States of the quadrotor must be estimated to ensure safe and efficient flight over 

the defined trajectory. A sufficient estimation procedure requires mathematical model of 

the quadrotor.  Mathematical model of the quadrotor is obtained by both kinematic and 

dynamic equations.  

2.1. Quadrotor Kinematics 

Two different frame systems are required to derive the kinematic equations of the 

quadrotor.  First frame is body – fixed frame, denoted as B and its elements are 

{xb, yb, zb} ∈ ℝ
3. Second frame is earth – fixed frame, denoted by I and its elements are 

{xi, yi, zi} ∈ ℝ
3.  Let ξ be position vector and η be Euler angle vector of the quadrotor 

with respect to the earth - fixed frame. On the body fixed - frame, while ς vector represents 

linear velocity,   vector represents angular velocity of the quadrotor. Elements of vectors 

are defined as in Eq. (2.1). 

{
 
 

 
 𝝃 = {𝑥, 𝑦, 𝑧} ∈ ℝ3

 𝜼 = {𝜃, 𝜙, 𝜓} ∈ ℝ3

𝝇 = {𝜍1, 𝜍2 , 𝜍3} ∈ ℝ
3

  = { 1, 2 , 3} ∈ ℝ
3

 

 

(2.1) 

 

Remark 1. The Euler angles are bounded as 𝜃 ∈ (−
𝜋

2
,
𝜋

2
), 𝜙 ∈ (−

𝜋

2
,
𝜋

2
) and 𝜓 ∈ (−𝜋, 𝜋). 

 

 Linear and angular velocity vectors of quadrotor that are defined on the B frame 

can be converted to the I frame via rotation matrices. According to the yaw, pitch and roll 

(𝜓, 𝜃, 𝜙) sequence, the rotation matrix that transfers the linear velocity from B to I is 

constructed from Eq. (2.2) – Eq. (2.5) and defined in Eq. (2.6) [49].   

  

𝑅𝜙 = [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] (2.2) 

𝑅𝜃 = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
] (2.3) 

𝑅𝜓 = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

] (2.4) 
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𝑅𝑏
𝑖 = 𝑅𝜙𝑅𝜃 𝑅𝜓 (2.5) 

𝑹𝑏
𝑖 = [

𝑐𝜃𝑐𝜓 𝑠𝜃𝑠𝜙𝑐𝜓 − 𝑠𝜓𝑐𝜙  𝑠𝜃𝑐𝜙𝑐𝜓 + 𝑠𝜓𝑠𝜙
𝑐𝜃𝑠𝜓  𝑠𝜓𝑠𝜃𝑠𝜙 + 𝑐𝜓𝑐𝜙 𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (2.6) 

 

As 𝑹𝑏
𝑖  and rotation matrix that transfers the angular velocity from B to I is defined in Eq.  

(2.7) as 𝑹̅𝑏
𝑖  [49]. 

𝑹̅𝑏
𝑖 = [

1 0 −𝑠𝜃
0 𝑐𝜙 𝑠𝜙𝑐𝜃
0 −𝑠𝜙 𝑐𝜙𝑐𝜃

] (2.7) 

here 𝑐 and 𝑠 are abbreviations of cos and sin, respectively. Since 𝑹𝑏
𝑖  is orthogonal matrix, 

transformation from I to B is obtained as: 

𝑹𝑖
𝑏 = 𝑹𝑏

𝑖 −1 = 𝑹𝑏
𝑖 𝑡  (2.8) 

where 𝑹𝑏
𝑖 −1 exists from Remark 1.  

An integrated measurement unit (IMU) is a combination of sensors that include 

gyroscope, accelerometer and magnetometer. An IMU can measure angular rates on body 

fixed frame albeit Euler angles are not measurable directly. However, it is possible to 

construct a transformation from angular rates 𝑃, 𝑄, 𝑅 to Euler angular rates (𝜓̇, 𝜃̇, 𝜙̇)  via 

Eq. (2.9) – (2.10) [50]. 

   [
𝑃
𝑄
𝑅
] =  𝑅𝜙𝑅𝜃 [

0
0
𝜓̇
] + 𝑅𝜙 [

0
𝜃̇
0
] + [

𝜙̇
0
0

] (2.9) 

 

   [
𝑃
𝑄
𝑅
] = [

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

𝜃] [

𝜙̇

𝜃̇
𝜓̇

] (2.10) 

 

Using Eq. (2.6) - (2.7) kinematic model of the quadrotor is obtained as [51]: 

{
𝝃̇ =  𝑹𝑏

𝑖 𝝇

𝜼̇  =  𝑹̅𝑏
𝑖 

 (2.11) 
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2.2. Quadrotor Dynamics 

Forces and torques act on quadrotor that are obtained by Newton – Euler formalism 

in B frame are given in Eq.  (2.12). 

{
∑𝑭 = 𝑚𝝇̇ +  x (𝑚𝝇)   

∑𝝉  = 𝑱̇  +    x (𝑱)
 

(2.12) 

where m is the mass of the quadrotor and 𝐉 ∈  ℝ3x3  is the inertia matrix consisting 

of principal moment of inertias as diag([Ix Iy Iz]) [6].  Total external forces and torques 

exerted on quadrotor are expanded in Eq. (2.13). 

{
∑𝑭 = 𝑭𝑟𝑜𝑡 −  𝑭𝑔𝑟𝑎 − 𝑭𝑎𝑟𝑑 − 𝑭𝑑𝑖𝑠

∑𝝉 =  𝝉𝑟𝑜𝑡 − 𝝉𝑔𝑦𝑟  − 𝝉𝑎𝑟𝑑  −  𝝉𝑑𝑖𝑠 
 

(2.13) 

Here, 𝑭𝑟𝑜𝑡 = [0, 0, ∑𝐹𝑖]
𝑡 ∈ ℝ3 is force vector and 𝝉𝑟𝑜𝑡 = [𝑙(𝐹2 − 𝐹4), 𝑙(𝐹1 − 𝐹3),

𝑑

𝑏
∑(−1)𝑖+1𝐹𝑖]

𝑡 ∈ ℝ3 is torque vector that are produced by rotors where  𝐹𝑖: forces of 

each rotor [N], 𝑏: thrust coefficient [Ns2], 𝑑: drag coefficient [Nms2], 𝑙: length of arm 

[m] and  𝑖 ∈ ℤ , 𝑖 ⊂ [1,4]. 𝑭𝑔𝑟𝑎 = 𝑚𝑹𝑖
𝑏𝑮 ∈ ℝ3  is gravitational force vector where 𝑮 =

[0, 0, 𝑔]𝑡 and 𝑔 = 9.81 [ms−2]. 𝝉𝑔𝑦𝑟 is gyroscopic impact torque, 𝝉𝑎𝑟𝑑 = 𝑲𝑟  is 

aerodynamic torque, 𝑭𝑎𝑟𝑑 = 𝑲𝑡𝝇  is aerodynamic drag force. 𝑭𝑑𝑖𝑠 and 𝝉𝑑𝑖𝑠 are given as 

disturbance force and torque, respectively [9]. Taking derivative of Eq. (2.11) with 

respect to time and using Eq. (2.12) and (2.13), six degree - of - freedom (6 - DOF) model 

of the quadrotor without disturbances is obtained for translational motion in Eq. (2.14) 

and rotational motion in Eq. (2.15) [52]. 

𝝃̈ =
1

𝑚
𝑹𝑏
𝑖 𝑭𝑟𝑜𝑡  −  𝑮 − 

1

𝑚
𝑹𝑏
𝑖 𝑲𝑡𝑹𝑖

𝑏𝝃̇ (2.14) 

𝜼̈ =  𝑹̅𝑖
𝑏𝑱−𝟏𝝉𝑟𝑜𝑡  − 𝑹̅𝑖

𝑏𝑱−𝟏(𝑹̅𝑏
𝑖 𝜼̇ x 𝑱𝑹̅𝑏

𝑖 𝜼̇)

−𝑹̅𝑖
𝑏𝑱−𝟏𝑲𝑟𝑹̅𝑏

𝑖 𝜼̇ 

−𝑹̅𝑖
𝑏 (
𝝏𝑹̅𝑏

𝑖

𝝏𝜙
𝜙̇ + 

𝝏𝑹̅𝑏
𝑖

𝝏𝜃
𝜃̇) 𝜼̇

    

 

 

(2.15) 

where 𝑹̅𝑖
𝑏 = 𝑹̅𝑏

𝑖 −1.   
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3. OPTIMIZATION ALGORITHMS 

 

Every problem that has a practical background or real – world connection from 

scientific to engineering field faces a common task: optimization. Determining a set of 

all feasible candidate solutions with a metric measure for their worth define the 

optimization problem in which the ultimate goal is to find the best solutions from the 

candidates. For example, in the aerospace field, to optimize the parameters of an airfoil 

to achieve the target surface pressure distribution is crucial so as to design an aircraft.  

Another example would be the optimization of dynamic trajectory planning of an 

unmanned vehicle that includes position, orientation and velocity for obstacle avoidance 

motion [53].  

Optimization is a searching process for the best possible solution under the 

determined conditions. Core of the optimization corresponds to finding the minimum or 

the maximum value of the given function. While this minimum value represents the effort, 

maximum value represents the profitability. Optimization is a field of science that accepts 

lots of the real problems including decision making in the area of engineering, aerospace 

and so on. Although decision making process includes various alternatives, it is directed 

by our desires to choose the best alternative available. Among the all possible alternatives, 

the measure of being best is evaluated by a performance index or objective function [54].  

Elements of the objective function can be listed as profit, time, energy and also 

their appropriate combinations. The objective depends on the given system dynamics. 

The dynamics are generally defined with parameters or unknowns. So, main reason of the 

optimization is to optimize the objective function with respect to system parameters [55].  

In an optimization algorithm, defining parameters, constraints and objective of a 

problem is called as modelling. To create a model that is specific to the problem is first 

and maybe the most important step of the optimization. If the model is simple then it will 

not be sufficient enough to solve the real problem. On the other hand, if the model is too 

complicated then problem will become hard to solve and even unsolvable [55]. 

An optimization algorithm is not capable of solving all the problems alone. So, 

for different kind of optimization problems, different types of optimization algorithms are 

created. Generally, where and how to apply these available optimization algorithms for 

the specific problem depends on the user experience and knowledge. While an 

optimization method is very successful to solve a kind of problem, it may fail to solve 
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other problems. This is the reason why new optimization algorithms are being created 

and branched into different subcategories [55].  

In this thesis, an evolutionary algorithm and a bio – inspired algorithm: artificial 

bee colony are covered and combined with Kalman filter to create novel algorithms to 

optimize the a priori filter statistics. 

3.1. Evolutionary Algorithm 

Evolutionary algorithms or evolutionary computation may offer solutions to the 

problems, that researchers facing difficulties, such as non – differentiable functions or 

functions having large number of dimensions so that mathematical or numerical methods 

would fail. Also evolutionary algorithms would take place when heuristic solutions are 

not available or available solutions are not satisfactory enough for the specific problem 

[56]. Since traditional and standard optimization methods would not able to bring 

solutions to the problems that include increased complexity with minimum effort in finite 

time period, evolutionary and genetic algorithms have been used for several decades [57]. 

Evolutionary algorithm operates on a search space S, which is a set. Points of the 

search space S are generally assigned via a function f which is already known as objective 

function. Objective function is defined from S to R that is a subset of ℝ as 𝑓: 𝑆 → 𝑅 ⊆ ℝ. 

A collection of points from search space S is called as population P. The elements of 

population collection P is called as individual solutions or just individuals. The total 

number of elements of the P is population size n.  Iteration index of the evolutionary 

algorithm is called as generation G. In each generation G, individuals of the P change. So 

every generation is shown with its subscript t that denotes the iteration index or 

generation.  Then first population is denoted as P0. This very first step is called the 

initialization phase of the evolutionary algorithm [57].  

The function that relates the each individual in the search space to the real value is 

computed at every generation t and stored in the memory to compare and select the 

superior individuals. The individuals of the first population P0 or current generation Pt is 

called parents. The parents are selected and this selection process is called as reproduction 

phase. Although there are several methods for reproduction phase, the selection generally 

occurs via the value of the objective function f. Next step is a random variation to the 

parent population that divides into two: mutation and crossover. While mutation is done 

with one random individual, crossover accepts at least two different individuals to create 
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a random one.  After crossover and mutation operators, recently created child from their 

parents are called as offspring. Then, selection for replacement occurs similar to the 

selection for reproduction. So, new generation Pt+1 is selected from Pt and offspring so 

that the fittest individuals have survived into the new generation. Then a comparison step 

is implemented to see whether one or more termination conditions are met or not. If so, 

then algorithm is ended with last generation Pt+1. Otherwise, evolutionary algorithm cycle 

starts from reproduction phase to create better individuals and population until one of the 

criteria is met [58]. Flowchart representation of the evolutionary algorithm is given in 

Figure 3.1. 

 

Figure 3.1. Flowchart of the evolutionary algorithm [58] 

3.2. Artificial Bee Colony Algorithm 

Swarm intelligence is defined as designing algorithms derived from social behaviors 

of animal societies in which sufficient and necessary conditions to obtain swarm 

intelligence are self – organization and division of labor [59]. ABC algorithm is a recent 

bio - inspired swarm intelligence algorithm that utilizes foraging behavior and also a 
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subcategory of bee swarm algorithm. In the case of ABC algorithm, food sources, 

employed foragers and unemployed foragers are important elements of collective 

behaviors and recruitment to a nectar source with abandonment of a source are two 

leading modes of the algorithm. While food source is defined by its “profitability”, 

employed foragers are exploiting these food sources with information of distance to the 

nest, direction from nest and richness of the nectar amount of the source. Unemployed 

foragers are divided into two subgroups as scouts and onlookers. Scouts are exhibiting 

random search process or so-called exploration and onlookers are waiting in the nest’s 

dance area to gather information from employed bees to choose and exploit a candidate 

food source. The information exchange between employed foragers and onlookers is 

supplied by waggle dance.  Profitability of the food source is proportional to dance 

duration. So, the more nectar there is in a food source, the longer the dance will last. As 

a consequence, the probability for the food source to be chosen by onlookers will increase 

[45].  Graphical representation of the forager bee behaviors is given in Figure 3.2.  

The pseudocode of the algorithm is [45] - [46]: 

 Initialize food sources and send scouts 

 DO 

o Send employed foragers to food sources and determine their profitability 

o Calculate the probabilities of food sources to be chosen by onlookers 

o Send onlookers to food sources and determine their profitability 

o If source is exhausted, then abandon the source 

o Send scouts into random food sources 

o Memorize the best food source  

 WHILE  

o Maximum iteration number is not reached 

  In algorithm, while the position of the food source is a candidate solution for the 

objective function, the profitability of the food source is the fitness value of the objective 

function. Number of bees in the swarm is divided into two groups in which one half of 

the swarm is assigned as employed bees and the other half the swarm is assigned as 

onlooker bees. At initialization, bees are randomly produced as swarm size. After 

searching initial food sources, employed foragers share profitability and position of the 

food sources with onlooker bees in dance area. Then, onlooker bees choose the best 

suitable food source depending on the probability as calculated in Eq. (3.1) [46]. 
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𝑝𝑛 =
𝑓𝑖𝑡𝑛

∑ 𝑓𝑖𝑡𝑘
𝑁
𝑘=1

 (3.1) 

where 𝑝𝑛 is probability of the nth. source, 𝑁 is the swarm size, 𝑓𝑖𝑡𝑛 is the fitness value 

of the nth. solution which is evaluated by its associated employed bee. Before starting a 

new search, bees modify the position in their memory to look for the better source as 

given in Eq. (3.2). If the recent generated source is better than the old one, then the 

position of the better source is replaced with previous solution in memory [46].  

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (3.2) 

𝜑𝑖𝑗 ∈ [−1,1] is a random number, 𝑣𝑖𝑗 is the recent generated position around 

neighborhood of previous solution 𝑥𝑖𝑗 , 𝑘 ∈ {1,2, … , 𝐸𝑁} where EN is the number of 

employed bees [46]. 

 

Figure 3.2. Graphical representation of the forager bee behaviors [45]  
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4. PROPOSED METHODS 

 

In order to obtain superior estimator performance and overcome the highly 

distributed Gaussian random noise from the sensors two methods are proposed. 

Proposed methods bring more systematic approach to de facto tuning procedures such 

as trial and error or guessing. Also, each method has its own solution to the problem 

thus they are not substituted with each other. While ABC – KF deals with optimization 

and tuning of measurement noise matrix R, EA – KF algorithm deals with Q and R both. 

In the heart of two methods there are also novel objective functions that evaluate the 

whether candidate solutions are feasible or not. Another novel approach of the methods 

is to mathematically prove the behaviors of the functions which is taking the literature 

one step ahead in comparison with studies that include just simulation results.   

4.1. ABC – KF Algorithm 

Since process noise matrix Q is assumed to be known and measurement noise 

matrix R is the operand for ABC algorithm then 2 - dimensional search space is reduced 

into 1D - dimensional. Dimension reduction will not only bring less computational efforts 

but also it may result in more accurate optimization values for R. Commonly used 

objective function [41], [43] - [44]  is given in Eq. (4.1) and called as covariance of the 

state estimation error:  

𝑓𝑚𝑖𝑛 = 𝐶[𝑒̂𝑘] =   𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)
𝑡] (4.1) 

where 𝐶[ ] is covariance operator and 𝑒̂𝑘 is state estimation error. However, 1D 

optimization comes with a problem in Eq. (4.1) that R tends to diverge to upper bound on 

optimization algorithm. To show this divergence phenomena, a proof is given in the next 

section. 

4.1.1. Proof of divergence under dimension reduction 

 

Remark 4.1:  

MSE optimal Kalman gain 𝐾𝑘 is given as: 

𝐾𝑘 = 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡[𝐻𝑘𝑃𝑘,𝑘− 1𝐻𝑘

𝑡 +  𝑅]−1 (4.2) 
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Lemma 4.1:  

Woodbury matrix identity  

If [𝐴 + 𝐵𝐶𝐷 ]−1 exists then following equation holds: 

[𝐴 + 𝐵𝐶𝐷 ]−1 = 𝐴−1 − 𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 (4.3) 

Proof:  

Let 𝑇 =   [𝐴 + 𝐵𝐶𝐷 ] ∈ ℝ𝑛𝑥𝑛 .  

𝑇−1𝑇 =  𝑇𝑇−1 = 𝐼𝑛𝑥𝑛 𝑖𝑓𝑓 𝑇
−1 exists. 

Since [𝐴 + 𝐵𝐶𝐷 ]−1 exists then,  

[𝐴 + 𝐵𝐶𝐷 ][𝐴−1 − 𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1] must be equal to 𝐼𝑛𝑥𝑛.  

 

 𝐴𝐴−1 −  𝐴𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 +  𝐵𝐶𝐷𝐴−1 

− 𝐵𝐶𝐷𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 

 

 

(4.4) 

 𝐼 +  𝐵𝐶𝐷𝐴−1 − 𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 

− 𝐵𝐶𝐷𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 
(4.5) 

 𝐼 +  𝐵𝐶𝐷𝐴−1 − (𝐵 −  𝐵𝐶𝐷𝐴−1𝐵)( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 

 

(4.6) 

 𝐼 +  𝐵𝐶𝐷𝐴−1 − 𝐵𝐶(𝐶−1 −  𝐷𝐴−1𝐵)( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 
(4.7) 

 𝐼 +  𝐵𝐶𝐷𝐴−1 − 𝐵𝐶𝐼𝐷𝐴−1 
(4.8) 

 𝐼 +  𝐵𝐶𝐷𝐴−1 − 𝐵𝐶𝐷𝐴−1 
(4.9) 

 𝐼 
(4.10) 

Then 𝐴−1 − 𝐴−1𝐵( 𝐶−1 +  𝐷𝐴−1𝐵)−1𝐷𝐴−1 is inverse of [𝐴 + 𝐵𝐶𝐷] matrix. Thus proof 

is completed. 
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Assumption 4.1:  

Error covariance matrix is 𝑃𝑘,𝑘− 1 is nonsingular for 𝑘 ≤ 𝑛. This assumption is not strict. 

It is needed to use Lemma 4.1.  However, Lemma 4.1 may further be rearranged 

algebraically to drop this assumption if it is needed.  

 

Lemma 4.2:  

𝑅 is defined as diagonal matrix and 𝑅𝑖𝑖  ≠ 0. 

𝑅 =  [
𝑅11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝑛𝑛

] 

 

(4.11) 

Then 𝑅 is nonsingular and 𝑅−1 is: 

𝑅−1 = 

[
 
 
 
 
1

𝑅11
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝑅𝑛𝑛]
 
 
 
 

 

 

 

(4.12) 

Proof:  

R is nonsingular iff  |𝑅|  ≠ 0.    

 |𝑅|  
 

(4.13) 

 |
𝑅11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝑛𝑛

| 

 

 

(4.14) 

 ∏ 𝑅𝑖𝑖
𝑛
𝑖=1  

 

(4.15) 

 𝑅11𝑅22…𝑅𝑛𝑛  (4.16) 

 ≠ 0  
 

(4.17) 

 R is nonsingular. (4.18) 

Although it is simple to show inverse by direct multiplication, another way to prove it is 

to use minor definition. So, 𝑅−1 is defined as: 
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 
[(−1) 𝑖+𝑗𝑀𝑖𝑗]

𝑡

det (𝑅)
,    𝑖, 𝑗 = 1,2, … 𝑛 

 

(4.19) 

 
[
 
 
 
 
 
 (−1) 2|

𝑅22 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝑛𝑛

| ⋯ 0

⋮ ⋱ ⋮

0 ⋯ (−1) 𝑛+𝑛|
𝑅11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝑛−1𝑛−1

|
]
 
 
 
 
 
 

𝑅11𝑅22…𝑅𝑛𝑛
 

 

 

 

 

(4.20) 

 

[
 
 
 
 
∏ 𝑅𝑖𝑖
𝑛
𝑖=2

∏ 𝑅𝑖𝑖
𝑛
𝑖=1

⋯ 0

⋮ ⋱ ⋮

0 ⋯
∏ 𝑅𝑖𝑖
𝑛−1
𝑖=1

∏ 𝑅𝑖𝑖
𝑛
𝑖=1 ]

 
 
 
 

  

 

 

 

(4.21) 

 [

𝑅22…𝑅𝑛𝑛

𝑅11𝑅22…𝑅𝑛𝑛
⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑅11…𝑅𝑛−1𝑛−1

𝑅11𝑅22…𝑅𝑛𝑛

]  

 

 

 

(4.22) 

 [

1

𝑅11
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝑅𝑛𝑛

] 

 

(4.23) 

then Eq. (4.23) completes the proof. 

 

Remark 4.3:  

MSE optimal state estimation formula is:  

𝑥̃𝑘,𝑘 = 𝑥̂𝑘,𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘,𝑘− 1) (4.24) 

Definition 4.1: 

Let us represent the situation of 𝑅  →  ∞ with limit operator lim
𝑅 → ∞

to achieve a simple 

understanding and also to create an analogy between real valued functions and matrices. 

(Note that limit does not defined on matrix calculations.) So, whenever 𝑅  →  ∞ situation 

is investigated for matrix calculations (multiplication, addition, subtraction and inverse 

operator), previous knowledge on real valued functions and limits such as lim
𝑅 → ∞

 f(R) is 

used for analogy and ease of reading the matrix calculations.  
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Assumption 4.2: 

 lim
𝑅 ̅ → ∞

 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡   ∈ ℝ𝑛𝑥𝑛 & lim

𝑅 ̅ → ∞
  (𝐻𝑘 𝑅̅

−1𝐻𝑘
𝑡 + 𝑃𝑘,𝑘− 1

−1)−1 ∈ ℝ𝑛𝑥𝑛. Assumption is 

needed to guarantee the existence of limit of the Kalman gain. If these limits converge, 

then limit on Eq. (4.25) also exists.  

 

Remark 4.4:  

State extrapolation of the KF is defined as  𝑥̂𝑘,𝑘− 1 = 𝐹𝑘,𝑘−1𝑥̃𝑘−1,𝑘−1 + 𝐵𝑘−1𝑢𝑘−1. True 

state equation is defined as 𝑥𝑘+1 = 𝐹𝑘+1,𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘.  

 

 Theorem 4.1:  

Standard fitness function on Kalman filter Eq. (4.1), will be minimized when 𝑅  →  ∞ 

under 𝑥𝑘 = 𝑥̂𝑘,𝑘−1 condition. 

 

Proof: 

Let  𝑅̅ is the optimized value of the 𝑅 and 𝑅̅  ≠ 𝑅 . Also let 𝐾̅𝑘 is sub – optimal Kalman 

gain for 𝑅̅. Using Remark 4.2 and taking limit 𝑅 ̅  →  ∞ on both sides yield: 

 lim
𝑅 ̅ → ∞

𝐾̅𝑘 = lim
𝑅 ̅ → ∞

 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡[𝐻𝑘𝑃𝑘,𝑘− 1𝐻𝑘

𝑡 + 𝑅̅]−1 (4.25) 

Using Lemma 4.1, 

 lim
𝑅 ̅ → ∞

 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡(𝑅̅−1 − 𝑅̅−1𝐻𝑘 (𝐻𝑘 𝑅̅

−1𝐻𝑘
𝑡 +

 𝑃𝑘,𝑘− 1
−1)−1𝐻𝑘

𝑡𝑅̅−1 ) 

 

 

(4.26) 

 lim
𝑅 ̅ → ∞

 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡𝑅̅−1(𝐼 − 𝐻𝑘 (𝐻𝑘 𝑅̅

−1𝐻𝑘
𝑡 +

 𝑃𝑘,𝑘− 1
−1)−1𝐻𝑘

𝑡𝑅̅−1 ) 
(4.27) 

Under Assumption 4.2, 

 lim
𝑅 ̅ → ∞

( 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡) lim
𝑅 ̅ → ∞

(𝑅̅−1) lim
𝑅 ̅ → ∞

(𝐼 − 𝐻𝑘 (𝐻𝑘 𝑅̅
−1𝐻𝑘

𝑡 +

 𝑃𝑘,𝑘− 1
−1)−1𝐻𝑘

𝑡𝑅̅−1 ) 

 

(4.28) 
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Using Lemma 4.2, 

 lim
𝑅 ̅ → ∞

𝐾̅𝑘 = [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] = 𝟎 ∈ ℝ𝑛𝑥𝑛 
 

(4.29) 

So, 𝑅 ̅  →  ∞ => 𝐾̅𝑘 → 0 is obtained. Using Remark 4.3 and taking limit for 𝐾̅𝑘 → 0: 

 lim
 𝐾̅𝑘→ 0

𝑥̃𝑘,𝑘 = lim
𝐾̅𝑘→ 0

𝑥̂𝑘,𝑘−1 + 𝐾̅𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘,𝑘− 1) 
 

(4.30) 

 lim
 𝐾̅𝑘→ 0

𝑥̃𝑘,𝑘 = lim
𝐾̅𝑘→ 0

𝑥̂𝑘,𝑘−1 + lim
𝐾̅𝑘→ 0

𝐾̅𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘,𝑘− 1) 
 

(4.31) 

 lim
 𝐾̅𝑘→ 0

𝑥̃𝑘,𝑘 = 𝑥̂𝑘,𝑘−1 (4.32) 

Then 𝐾̅𝑘 → 0 => 𝑥̃𝑘,𝑘 → 𝑥̂𝑘,𝑘−1 is obtained. Since 𝐾̅𝑘 → 0, then sub – optimal state 

estimation will be equal to the state extrapolation. 

For given fitness function Eq. (4.1), since 𝑥̃𝑘,𝑘 → 𝑥̂𝑘,𝑘−1 then: 

𝑓𝑚𝑖𝑛 =  𝐸 [(𝑥 − 𝑥̂𝑘,𝑘−1)(𝑥 − 𝑥̂𝑘,𝑘−1)
𝑡
] (4.33) 

Since 𝑥𝑘 = 𝑥̂𝑘,𝑘−1 condition is given in theorem: 

=  𝐸 [(𝑥̂𝑘,𝑘−1 − 𝑥̂𝑘,𝑘−1)(𝑥̂𝑘,𝑘−1 − 𝑥̂𝑘,𝑘−1)
𝑡
] 

= 0 
(4.34) 

So it is shown with Eq. (4.34) that fitness function Eq. (4.1) is minimized when 𝑅  →  ∞ 

under 𝑥𝑘 = 𝑥̂𝑘,𝑘−1 condition which completes the proof.  

4.1.2. Proof of proposed deceleration function 

In order to overcome this divergence problem, a novel objective function is 

proposed by adding a 𝑓(𝑅) function in Eq. (4.1)  to slow down and saturate the R on the 

feasible boundaries:  

𝑓𝑟 =  𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡 + 𝑓(𝑅)] (4.35) 
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Theorem 4.2:   

Let 𝑓(𝑅) =  𝑅𝑠 such that 𝑠 ∈ (0,1) ⊂ ℝ. Then 𝑓𝑟 objective function will prevent 

divergent behavior of the R value on optimization algorithm. 

 

Proof: 

Proof is trivial. First, let us name the parameters in theorem to refer within the statements:   

𝑠 is called as shaping factor and 𝑓𝑟 is called as deceleration function. 

Then, let us rewrite Eq. (4.35)  in the light of Theorem 4.2: 

𝑓𝑟 =  𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡 + 𝑅𝑠] (4.36) 

Due to linearity of the expectation operator, Eq. (4.36) is written as: 

𝑓𝑟 =  𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡] + 𝐸[𝑅𝑠] (4.37) 

Since shaping factor is constant and defined by 0 < 𝑠 < 1, Eq. (4.37) becomes:  

𝑓𝑟 =   𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡] + 𝑠𝐸[𝑅] (4.38) 

𝑅̅ is the constant optimized value of the R on the related generation of optimization 

algorithm such that 𝐸[𝑅] = 𝑅̅: 

𝑓𝑟 =   𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡] + 𝑠𝑅̅ (4.39) 

As per Eq. (4.1), Eq.  (4.39) is written as: 

𝑓𝑟 =  𝐶[𝑒̂𝑘] + 𝑠𝑅̅ 

= 𝑓𝑚𝑖𝑛  +  𝑠𝑅̅ 
(4.40) 

According to Eq. (4.40) on slow divergence rate of R,  

𝑅  →  ∞ => 𝑓(𝑅) →  𝑀 (4.41) 

where 𝑀 < ∞ thanks to the bounded interval of 𝑠 and slow divergence rate of R. Also, 

𝑓(𝑅)  →  𝑀 =>  𝑓𝑟 →  𝑁 (4.42) 

where 𝑀 ≤ 𝑁 as 𝑓𝑚𝑖𝑛 ≥ 0. Since the main duty of the optimization algorithm is to 

minimize the objective function, ABC algorithm will try to find suitable values of R to 

decrease 𝑁. As 𝑓(𝑅) directly appears in the deceleration function and also shaping factor 



24 

 

is constant then optimization algorithm will seek for lower values of R which will help to 

minimize the deceleration function. Thus, 𝑓(𝑅) will work as a penalty function when 

𝑅  →  ∞. Therefore, divergent behavior of R will diminish thanks to the Eq. (4.35), which 

verifies the statement and completes the proof.  

4.1.3. ABC – KF scheme 

In  

Figure 4.1, flowchart of the ABC - KF algorithm that emphasizes the objective 

function evaluation is given. Algorithm starts with initialization of ABC parameters such 

as limit, maximum iteration and swarm size. After initialization step, ABC algorithm runs 

and bees search for the best possible food sources via exploitation and exploration 

processes. In every iteration, candidate food sources are chosen and sent to the objective 

function to assess the profitability where 𝑅𝑜𝑝𝑡 stands for possible positions of candidate 

solutions and 𝐹𝑜𝑝𝑡 stands for candidate solutions. The objective function evaluation 

phase starts with KF parameter initialization such as Q, x̂0 and P0. According to the 

quadrotor dynamics, extrapolation of the state and covariance takes place. Then new 

measurement is simulated such that sensor error is generated by input parameter 𝑅𝑜𝑝𝑡 

and innovation update is done accordingly. After deriving the innovation difference, an 

important step, which is Kalman gain calculation, occurs via given 𝑅𝑜𝑝𝑡 value. 

Covariance update and state estimation are done according to the Kalman gain. If sample 

size is reached, fitness evaluation will take place by using proposed objective function 

given in Eq. (4.35).   

Evaluated fitness value is assigned as 𝐹𝑜𝑝𝑡 and sent back to the ABC algorithm 

to make a valuation whether desired conditions are satisfied or not. Stopping criteria may 

be listed as maximum number of iterations or convergence of the bees to a specific 𝐹𝑜𝑝𝑡 

within a limited number of generations. If conditions are not met, then the algorithm 

jumps into the beginning of the ABC and new 𝑅𝑜𝑝𝑡  value is searched. On the contrary, 

proposed method terminates and assigns  𝑅 =  𝑅𝑜𝑝𝑡 then stores the data on the flight 

controller. Lastly, in online KF procedure, optimized value R along with Q are used to 

estimate the measurable states of the quadrotor to dynamically control and eliminate the 

errors on low – cost sensor. 
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Figure 4.1. Flowchart of the proposed ABC - KF algorithm 

4.2. EA – KF Algorithm 

A quadrotor model is subjected to some internal and external disturbances that may 

be modeled as process noise and measurement noise, respectively. The process noise 𝑤𝑘 

is sometimes referred as modelling error that is added over the states and the measurement 

noise 𝑣𝑘 is sometimes referred as sensor error that is added over the outputs. So, complete 

model for linear - discrete quadrotor model with additive noises is given in Eq. (4.43).  

𝑥𝑘+1 = 𝐹𝑘+1,𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 

 

(4.43) 
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4.2.1. EA – KF Scheme 

The covariance matrices of 𝑤𝑘 and 𝑣𝑘  are Q and R matrices that are defined by Eq. (4.44) 

- (4.45)  and their cross correlation is given in Eq. (4.46)  [60]: 

𝐸[𝑤𝑘𝑤𝑛
𝑡] =  {

𝑄𝑘  , 𝑛 = 𝑘
0    , 𝑛 ≠ 𝑘

 (4.44) 

𝐸[𝑣𝑘𝑣𝑛
𝑡] =  {

𝑅𝑘   , 𝑛 = 𝑘
0    , 𝑛 ≠ 𝑘

 (4.45) 

𝐸[𝑣𝑘𝑤𝑛
𝑡] =  0 (4.46) 

The KF with exact values of Q and R (OKF) is derived through Eq. (4.47) - (4.51) [20, 

24, 60]. 

𝑥̂𝑘,𝑘− 1 = 𝐹𝑘,𝑘−1𝑥̃𝑘−1,𝑘−1 + 𝐵𝑘𝑢𝑘−1 (4.47) 

𝑃𝑘,𝑘− 1 = 𝐹𝑘,𝑘−1𝑃𝑘−1,𝑘−1𝐹
𝑡
𝑘,𝑘−1 + 𝑄𝑘 

 

(4.48) 

𝐾𝑘 = 𝑃𝑘,𝑘− 1𝐻𝑘
𝑡[𝐻𝑘𝑃𝑘,𝑘− 1𝐻𝑘

𝑡 + 𝑅𝑘]
−1 

 

(4.49) 

𝑃𝑘,𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘,𝑘−1 
 

(4.50) 

𝑥̃𝑘,𝑘 = 𝑥̂𝑘,𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘𝑥̂𝑘,𝑘− 1) (4.51) 

Here, 𝑥̂ is state extrapolation, 𝑃𝑘,𝑘− 1 is covariance extrapolation, 𝐾𝑘 is Kalman gain, 𝑃𝑘,𝑘 

is covariance correction and lastly 𝑥̃ is state estimation. To achieve an unbiased estimate, 

KF must be initialized according to Eq. (4.52) - (4.53) [60]: 

 

𝑥̂0 =  𝐸[𝑥0] 

 

(4.52) 

𝑃0 =  𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)
𝑡] 

(4.53) 

The role of the KF, as being LM – MSE estimator, is to eliminate the noises from 

states and outputs. To accomplish this task optimally, the filter must be initialized with 

exact values of Q and R matrices as OKF. The more difference between exact and tuned 

values of Q and R increases, the more filter performance decreases. So, EA – KF is 
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proposed to minimize this difference and increase the performance of the sub – optimal 

filter.  

EA – KF method (algorithm 1) starts with initialization of simulation parameters. 

Then, EA procedure is initialized and ran. After a number of EA subroutine evaluation is 

reached to MC limit, an average value is calculated for all found solutions of the Q and 

R values. These mean values are then stored into flight controller. Further, the quadrotor 

simulation (QS) is ran and performance evaluation for EA – KF solution is compared to 

the OKF for reference trajectory of the attitude angles.  

In EA subroutine (algorithm 2), first generation of population is produced as Eq. (4.54): 

 

𝑃𝑜𝑝𝑖 =
(𝑈𝐵𝑘 − 𝐿𝐵𝑘)

𝑟𝑘
+ 𝐿𝐵𝑘 (4.54) 

Where 𝑃𝑜𝑝 is population, 𝑖 is index of population size, 𝑈𝐵 is upper bound, 𝐿𝐵 is lower 

bound, 𝑟 is Gaussian random variable and 𝑘 is index of search space dimension. 

Dimension of the search space is 6 which are [𝑄𝜃, 𝑄𝜙, 𝑄𝜓, 𝑅𝜃, 𝑅𝜙, 𝑅𝜓]. The functions 

used for selection, crossover and mutation phases are stochastic uniform function, 

crossover scattered and Gaussian mutation, respectively. Single EA subroutine is 

evaluated until one of the stopping criteria occurs: 1) maximum number of generation is 

reached or 2) stall limit is reached or 3) function tolerance value is reached.  

Fitness evaluation subroutine (algorithm 3) is an important step in EA subroutine 

to assess the performance of the population members. To evaluate whether candidate 

solutions are optimal or not, an objective function is proposed in Eq. (4.55). 

KF subroutine (algorithm 4) takes place in Eq. (4.55) as 𝑥̃. Estimation results are 

obtained according to OKF Eq. (4.47) - (4.51) but with candidate Q and R values. The 

difference between 𝑥 and 𝑥̃ is calculated by means of attitude angles for sample size and 

called as estimation error. Then, these estimation errors are used to calculate estimation 

error covariance values. Since there are 3 attitude angles, 3 different estimation error 

covariance values are calculated. 
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4.2.2. Proposed multi – dimensional function 

 

𝑓𝑖𝑡 = max  { (
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̃𝑖

𝑛

𝑖=1

) ∗ (𝑥𝑖 − 𝑥̃𝑖)
𝑡)

𝑗

} (4.55) 

Here, 𝑓𝑖𝑡 is fitness value of the function, 𝑛 is sample size, 𝑥 is output of QS, 𝑥̃ is output 

of KF estimation, 𝑖 is index of sample size and 𝑗 is index of estimation error covariance 

values.  

The maximum element of the obtained set of covariance values is chosen as the 

fitness value. The idea behind choosing the maximum element is simple: if the maximal 

element of the set is minimized then all elements will be minimized.   

Eq. (4.55) is a surrogate - assisted objective function, because, in ideal case 

calculations must be based on population itself rather than finite collection of 

representative data of population. A theoretical covariance of the random variables based 

on expectation operator is given in Eq. (4.56).  

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝐸[(𝑥 − 𝑥̃)(𝑥 − 𝑥̃)𝑡] (4.56) 

However in simulations, due to computational burden, a finite sample size is 

chosen as 𝑛 which is the number of finite collection of population and expectation 

operator is approximated with sample size. As sample size 𝑛 →  ∞, error of the employed 

surrogate - assisted objective function will tend to zero which brings asymptotical 

stability. Thus, with increasing sample size, sample covariance in Eq. (4.55) will reach to 

theoretical covariance in Eq. (4.56) but computation and time demand will increase, too.  

4.2.3. EA – KF pseudo code 

Pseudo code of the EA – KF algorithm is given to obtain a better understanding 

of the method. Pseudo – code can exhibit interactions between sub – routines and main 

routines and can show where and when the equations and proposed function are used 

within the scheme. Pseudo – code is divided into four sections. First algorithm covers the 

main routine, second algorithm includes EA subroutine, third algorithm shows an 

important step which is evaluation of fitness function and lastly, fourth algorithm covers 

implementation of KF. 
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Algorithm 1: 

EA – KF Algorithm 

 Initialize simulation parameters 

 DO 

o Run EA subroutine 

 WHILE (Max. number of MC simulation is not reached) 

 Average the results of MC simulations 

 Store the results to flight controller 

 Run QS (Eq. (4.43)) with average optimized values (Q, R) 

 

Algorithm 2: 

EA subroutine 

 Initialize parameters 

 Produce first generation 

 DO 

o Run fitness evaluation subroutine 

o Selection 

o Crossover 

o Mutation  

 WHILE (Max. generation and stall limit and function tolerance is not reached) 

 

Algorithm 3: 

Fitness Evaluation subroutine 

 Run QS (Eq. (4.43)) 

 Run KF subroutine 

 Calculate estimation errors between KF and QS for (𝜃, 𝜙, 𝜓) (Eq. (4.55)) 

 Calculate estimation error covariance of (𝜃, 𝜙, 𝜓) (Eq. (4.55)) 

 Return maximum estimation error covariance value (Eq. (4.55)) 

 

Algorithm 4: 

KF subroutine 

 Initialize KF  and (Q, R) parents (Eq. (4.52) - (4.53)) 
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 DO 

o State extrapolation (Eq. (4.47)) 

o Covariance extrapolation (Eq. (4.48)) 

o Kalman gain calculation (Eq. (4.49)) 

o Covariance update (Eq. (4.50)) 

o State estimation (Eq. (4.51)) 

 WHILE (Sample size is not reached) 
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5. RESULTS AND PERFORMANCE EVALUATION 

 

This section of the thesis covers the simulation results of the previously developed 

algorithms namely ABC – KF and EA – KF and their counterparts of proposed objective 

functions. So, numerical results along with tables and figures are supplied within this 

section so as to provide a comparison and performance evaluation of the algorithms and 

functions.    

5.1. ABC – KF 

The simulations are realized on discrete quadrotor model in order to show and 

evaluate the efficacy of the proposed hybrid ABC - KF algorithm along with the 

introduced deceleration function 𝑓𝑟. In order to decrease computational burden of the 

meta - heuristic objective function evaluation step, a simplified discrete - time versions 

of Eq. (2.14) – (2.15) are used on simulations. Simplification is made according to [61] 

which assumes quasi – stationary flight with non – aggressive maneuvers such that small 

angle movements on 𝜼 vector are allowed and also aerodynamic constants are taken as 

𝑲𝑡 → 0,𝑲𝑟 → 0. A position controller is performed to track the waypoints in 3D space. 

Output of motor forces to control the quadrotor for given trajectory are depicted in Figure 

5.1. Waypoints and trajectory of the quadrotor are given in Figure 5.2. In addition, 

references and position controller response of the quadrotor are given in Figure 5.3 to 

Figure 5.5.  The parameters that are used in simulations and in optimization algorithms 

are given in Table 5.1. Common parameters of the optimization algorithms such as 

population size in GA and colony size in ABC are equally chosen to make a fair 

comparison between algorithms. Simulations are repeated for N = 10, 30, 100, and 300 

MC runs and mean values are used in analysis and results. 
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Figure 5.1. Motor forces of quadrotor 

 

Figure 5.2. 3D trajectory of quadrotor 
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Table 5.1. Simulation parameters 

GA Parameters ABC Parameters Simulation Parameters 

Population Size 10 Colony Size 10 MC Run 10 to 300 

Generations 50 Max. Iteration 50 Time Step 0.1 

Stall Gen. Limit 50 Limit 50 Sample Number 1600 

Crossover Rate 0.7   Shaping Factor 1e-3 to 1e-5  

Mutation Rate 0.1     

 

 

Figure 5.3. X axis position control response of quadrotor 

 

Figure 5.4. Y axis position control responses of quadrotor 



34 

 

 

Figure 5.5. Z axis position control responses of quadrotor 

The diagonal elements of the Q and R covariance matrices along with lower and upper 

bounds for X, Y and Z-axes are given in Table 5.2. Bounds are assigned to show the 

divergent behavior of the optimization algorithms on common objective function (𝑓𝑚𝑖𝑛) 

and based on prior knowledge. X, Y and Z positions are selected for figure representation 

and numerical calculations.  

Table 5.2. Noise characteristics 

 X Y Z 

Q [m2] 0.02 0.04 0.06 

LBR [m2] 0.057 0.085 0.131 

R [m2] 0.1 0.2 0.3 

UBR [m2] 0.171 0.255 0.393 

 

Measurement noise and process noise with variances given in Table 5.2 are added 

as disturbance to the 3D trajectory of the quadrotor. X, Y and Z states are assumed to be 

measurable by sensors. Then according to the proposed algorithm and related parameters 

given in tables, optimization algorithms are run. Figure 5.6 to Figure 5.11 show outputs 

of the ABC – KF algorithm for 𝑓𝑟 function in comparison with sensor readings for X, Y 
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and Z axes, respectively. Analysis of sensor noise and ABC – KF error for all axes is 

given in Table 5.3.  

Table 5.3. Comparison of sensor noise with ABC - KF Error 

  
X Y Z 

Max. noise in + direction [m] 1.053 1.757 1.698 

Max. noise in -  direction [m] 0.938 1.683 2.083 

Total noise [m] 2.054 3.440 3.781 

Variance of noise [m2] 0.0972 0.209 0.2983 

Max. ABC-KF error in + direction [m] 0.046 0.064 0.01 

Max. ABC-KF error in - direction [m] 0.039 0.074 0.009 

Total error [m] 0.085 0.138 0.019 

Variance of ABCKF error [m2] 2E-04 5E-06 9E-06 

 

It is observable from Figure 5.6 to Figure 5.11 and Table 5.3 that ABC - KF method can 

handle sensor errors up to 2 [m] with variances up to 0.3 [m2] and reduces noise up to 

0.04 [m] with variances as low as in the order of 10-6 [m2].  
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Figure 5.6. ABC - KF estimation and sensor measurement for X axis. 

 

 

Figure 5.7. ABC - KF estimation and sensor measurement error for X axis 
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Figure 5.8. ABC - KF estimation and sensor measurement for Y axis 

 

 

Figure 5.9. ABC - KF estimation and sensor measurement error for Y axis 
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Figure 5.10. ABC - KF estimation and sensor measurement for Z axis 

 

 

Figure 5.11. ABC - KF estimation and sensor measurement error for Z axis 

Figure 5.12 to Figure 5.17 show outputs of the GA – KF algorithm for the 

proposed 𝑓𝑟 function in comparison with sensor readings for X, Y and Z axes, 

respectively.  
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Figure 5.12. GA - KF estimation and sensor measurement for X axis. 

 

 

Figure 5.13. GA - KF estimation and sensor measurement error for X axis 
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Figure 5.14. GA - KF estimation and sensor measurement for Y axis. 

 

 

Figure 5.15. GA - KF estimation and sensor measurement error for Y axis. 
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Figure 5.16. GA - KF estimation and sensor measurement for Z axis 

 

 

Figure 5.17. GA - KF estimation and sensor measurement error for Z axis 
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Figure 5.18. Comparison of ABC-KF and OKF difference versus GA-KF and OKF difference: X 

axis 

 

 

Figure 5.19. Comparison of ABC-KF and OKF difference versus GA-KF and OKF difference: Y axis 
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Figure 5.20. Comparison of ABC-KF and OKF difference versus GA-KF and OKF difference: Z 

axis 

OKF is evaluated and differences between the outputs of both algorithms and OKF 

are calculated. It is seen that the difference between ABC – KF and OKF is significantly 

lower than the difference between GA – KF and OKF. The difference vectors for X, Y 

and Z axes given in Figure 5.18 to Figure 5.20 clearly show that proposed ABC – KF 

algorithm is closer to optimality and GA – KF has more tendency into sub – optimality 

for all axes.  

Table 5.4. Simulation results of ABC - KF 

   X Y Z 

N = 10 

fr 

gaKF 0.110 0.215 0.333 

abcKF 0.104 0.189 0.304 

fm 

gaKF 0.157 0.241 0.355 

abcKF 0.168 0.254 0.391 

N = 30 fr gaKF 0.105 0.214 0.328 
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abcKF 0.103 0.197 0.307 

fm 

gaKF 0.155 0.240 0.361 

abcKF 0.168 0.250 0.392 

N = 100 

fr 

gaKF 0.108 0.208 0.326 

abcKF 0.101 0.198 0.311 

fm 

gaKF 0.157 0.235 0.361 

abcKF 0.167 0.247 0.391 

N = 300 

fr 

gaKF 0.109 0.206 0.324 

abcKF 0.102 0.201 0.308 

fm 
gaKF 0.157 0.233 0.365 

abcKF 0.167 0.248 0.391 

 

For GA – KF and ABC – KF, both objective functions are evaluated along X, Y 

and Z – axes and numerical results of the simulations are given in Table 5.4. Under the 

𝑓𝑚𝑖𝑛 rows of the Table 5.4, due to divergent behavior on 1D optimization with commonly 

used objective function, both algorithms are converged into the upper bounds. 

Comparisons between proposed 𝑓𝑟 function and 𝑓𝑚𝑖𝑛 function for both algorithms are 

given in Figure 5.21 to Figure 5.26 for X, Y and Z axes. It is clearly seen from figures 

that both algorithms performed better in proposed 𝑓𝑟 function in comparison with 

existing 𝑓𝑚𝑖𝑛 function in all axes. 
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Figure 5.21. Error between fr and fmin functions for GA - KF: X axis 

 

 

Figure 5.22. Error between fr and fmin functions for GA - KF: Y axis 
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Figure 5.23. Error between fr and fmin functions for GA - KF: Z axis 

 

 

Figure 5.24. Error between fr and fmin functions for ABC – KF: X axis 
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Figure 5.25. Error between fr and fmin functions for ABC – KF: Y axis 

 

 

Figure 5.26. Error between fr and fmin functions for ABC – KF: Z axis 

Conclusions derived from figures comply with absolute error analysis that is given 

in Table 5.5. Results of the performed simulations show that proposed ABC – KF 

algorithm along with proposed 𝑓𝑟 function has the best performance thanks to the lowest 

error values for all axes and MC trials.  
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Table 5.5: Comparison of absolute errors for different MC runs 

 

   X Best Y Best Z Best 

N = 10 

fr 

gaKF 0.010  0.015  0.033  

abcKF 0.004 ٭ 0.004 ٭ 0.011 ٭ 

fm 

gaKF 0.057  0.041  0.055  

abcKF 0.068  0.054  0.091  

N = 30 

fr 

gaKF 0.005  0.014  0.028  

abcKF 0.003 ٭ 0.007 ٭ 0.003 ٭ 

fm 

gaKF 0.055  0.040  0.061  

abcKF 0.068  0.050  0.092  

N = 100 

fr 

gaKF 0.008  0.008  0.026  

abcKF 0.001 ٭ 0.011 ٭ 0.002 ٭ 

fm 

gaKF 0.057  0.035  0.061  

abcKF 0.067  0.047  0.091  

N = 300 

fr 

gaKF 0.009  0.006  0.024  

abcKF 0.002 ٭ 0.008 ٭ 0.001 ٭ 

fm 

gaKF 0.057  0.033  0.065  

abcKF 0.067  0.048  0.091  
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5.2. EA – KF 

 

Simulation of the derived quadrotor model is repeated for 50 MC trials in order to 

calculate the expected value of EA – KF results due to random nature of the algorithm 

along with randomized initial population generation as given in Eq. (4.54). Simulation 

is ran for 100 seconds which is the result of 10 Hz sampling rate and size of 1000 

samples. Parameters used in EA algorithm are given in Table 5.6.  

 

Table 5.6: EA Parameters 

 

Population Size 25 

Generation 200 

Crossover Rate 0.9 

Mutation Rate 0.1 

Stall Limit 100 

Dimension 6 

 

True responses of quadrotor simulation and noisy sensor measurements for pitch, 

roll and yaw angles are given from Figure 5.27 to Figure 5.29.  
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Figure 5.27. Comparison of true responses vs. measurements of quadrotor attitude simulation: 

Theta angle 

 

 

Figure 5.28. Comparison of true responses vs. measurements of quadrotor attitude simulation: Phi angle 
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Figure 5.29. Comparison of true responses vs. measurements of quadrotor attitude simulation: Psi angle 

Mean outputs of EA – KF algorithm are stored and evaluated on quadrotor 

simulation to show effectiveness of the proposed algorithm. From Figure 5.30 to Figure 

5.32, comparison of mean EA – KF outputs with respect to noisy sensor measurements 

are given. It is seen from the figures that the proposed EA – KF algorithm is capable of 

handling noises up to +43.6%, -67.4% for pitch, +40.3%, -86.9% for roll and +59.05%, - 

80.82% for yaw angles. SNR of the EA – KF noise reduction for Figure 5.30 to Figure 

5.32 are calculated as 7.49 dB, 7.36 dB and 8.61 dB, respectively.  

In Table 5.7, numerical results of the EA – KF method are given. It is observed 

from the table that mean results of the EA – KF algorithm are very close and convergent 

to the real Q and R values. Also note that, pitch angle estimation of EA – KF algorithm 

has lowest absolute error in both Q and R values. 

Table 5.7: Numerical results of EA - KF algorithm and absolute error analysis 

 

  TRUE EA - KF ABSE 

PITCH 
Q 0.001500 0.001704 0.000204 

R 0.030000 0.031894 0.001894 

ROLL 
Q 0.001750 0.002111 0.000361 

R 0.035000 0.038988 0.003988 

YAW 
Q 0.002000 0.002753 0.000753 

R 0.040000 0.036401 0.003599 
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Figure 5.30. Mean EA - KF vs. measurement comparison for pitch angle 

 

 

Figure 5.31. Mean EA - KF vs. measurement comparison for roll angle 
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Figure 5.32. Mean EA - KF vs. measurement comparison for yaw angle 

Since OKF is LM – MSE estimator, proposed EA – KF algorithm is compared with 

OKF to evaluate whether results are competitive or not. In this comparison, if mean 

results of the EA – KF algorithm tend to the OKF results, then EA – KF is said to be 

close to the optimality in terms of MSE. On the other hand, if mean outputs of EA – KF 

are slightly different from the OKF, then EA – KF is said to be not an optimal estimator 

in terms of MSE.  

These comparisons are covered from Figure 5.33 to Figure 5.35. There are two 

concepts for comparison of results from figures. The first one is to observe whether both 

of the errors (OKF and EA – KF) are close enough to the zero or not. The second one 

is, whether EA – KF errors are close enough to OKF errors or not. If both concepts hold, 

then EA – KF is said to be an efficient algorithm that reduces noise to zero level and an 

optimal algorithm that minimizes error to OKF. From Figure 5.33 to Figure 5.35 it can 

be concluded that, EA – KF error is very close to the zero level, in the range of 1E-3 

for pitch, 1.1E-3 for roll and 1.5E-3 for yaw and the differences between EA – KF 

and OKF error outputs are very low. It is also an immediate result concluded from Figure 

5.33 and Table 5.7 since absolute error of EA – KF estimation for pitch angle is the 

lowest among all angle estimators, EA – KF error of that estimator is the lowest one and 

it has the closest error distribution with respect to OKF error.  
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Figure 5.33. Mean EA - KF error vs. OKF error comparison for pitch angle 

 

 

Figure 5.34. Mean EA - KF error vs. OKF error comparison for roll angle 
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Figure 5.35. Mean EA - KF error vs. OKF error comparison for yaw angle 

 

In Table 5.8, RMSE, mean absolute error (MAE) and variance (VAR) analyses for 

the comparison of noise, OKF and EA – KF algorithm are given. Noise rows of the 

Table 5.8 show the total error consists of process and measurement noises. The aim of 

this work is to minimize these noises. However due to KF equations, with optimal tuning 

parameters, OKF output is the minimum achievable error in terms of MSE. So, OKF 

rows of the Table 5.8, show minimum MSE. It means that proposed EA – KF method 

can minimize the error (noise cells in table) as low as OKF. It is concluded from Table 

5.8 that for all attitude angles (pitch, roll and yaw) and for all type of error analyses 

(RMSE, MAE, VAR) proposed EA – KF method is very close to OKF and total error 

noise is reduced considerably.  
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Table 5.8: RMSE, MAE and VAR analysis of Noise, OKF and EA - KF method 

 

  RMSE MAE VAR 

PITCH 

NOISE 0.174152 0.141007 3.03E-02 

EA - KF 0.000294 0.000235 8.62E-08 

OKF 0.000275 0.000220 7.56E-08 

ROLL 

NOISE 0.191898 0.153627 3.68E-02 

EA - KF 0.000348 0.000282 1.21E-07 

OKF 0.000321 0.000260 1.03E-07 

YAW 

NOISE 0.195064 0.156063 3.80E-02 

EA - KF 0.000428 0.000345 1.82E-07 

OKF 0.000283 0.000228 8.00E-08 

 

So, designed simulations with given parameters and derived quadrotor model 

showed that proposed EA – KF method is capable of converging to optimal Q and R 

values with very small absolute error in multi – dimensional search space. Also, KF 

tuned with EA – KF output has very close error behavior with OKF which is LM – MSE 

estimator. 
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6. CONCLUSIONS 

 

Firstly, a novel ABC – KF hybridization is proposed in order to optimize the 

measurement noise covariance matrix. Proposed method is compared with GA - KF 

method that is widely used in literature. While searching for measurement noise value 

under the assumption of knowledge on process noise, it is observed that commonly used 

objective function is unable to bring feasible and convergent solutions to the optimization 

problem. Since optimization algorithms diverge to the upper bounds for all iterations on 

1D search space, a novel deceleration function is proposed to solve this problem. 

Mathematical proof is given to explain the divergence phenomena and logic behind the 

deceleration function with its behavior on 1D search space. Then a simulation is designed 

for the navigation problem of the quadrotor in 3D space that employs a position controller 

for discrete quadrotor dynamic model. The system is disturbed via process and 

measurement noises that are assumed to be Gaussian distributed. Thus, an appropriate 

model is achieved with noises due to the low – cost nature of the quadrotor sensors.  

ABC – KF and GA – KF are evaluated on quadrotor system first to search for 

optimal noise covariance values then to eliminate noise on sensors measurements. 

According to numerical analysis, ABC – KF attains better performance with respect to 

GA – KF for all axes. Also, deceleration function is superior to common objective 

function in convergence to the optimal values. Both algorithms are compared with OKF. 

It is seen that ABC – KF is closer to the OKF then GA – KF which in turn brings the 

result that ABC – KF is more optimal then GA – KF regarding MSE. Lastly, absolute 

errors for different MC trials are determined and best algorithm is chosen according to 

numerical errors. For all MC trials and axes, proposed ABC – KF and 𝑓𝑟 deceleration 

function duo outperformed the others thanks to the lowest error performance. According 

to the performed simulations, numerical results comply with figures and with given 

proofs thus efficacy of the ABC – KF algorithm along with 𝑓𝑟 function is denoted. 

Secondly, EA - KF method is proposed to tune the process and measurement noise 

covariance matrices of the KF. A MC trial is applied to evaluate the stochastic behavior 

of the proposed algorithm and randomized initial population generation. The proposed 

method is simulated on a linear – discrete time MIMO quadrotor attitude model to show 

its effectiveness. Mean values of the EA – KF results are used for quadrotor simulation. 

To achieve multi – objective optimization, a fitness function is proposed to handle all the 
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variables at once for complete solution to the problem. Fitness function is also adopted 

for finite simulation as sample covariance which models the population covariance. 

Outputs of the estimated attitude angles showed that EA – KF is capable of handling 

noises up to 80% of the true signal and SNR up to 8.6 dB. Results of the EA – KF 

algorithm are also compared to OKF since it is the LM – MSE estimator. It is shown that 

estimation error of EA – KF algorithm is in the range of 1.5E-3 and performs nearly as 

same as OKF. For numerical comparison of the algorithm; ABSE, RMSE, MAE and VAR 

analyses are conducted. Taking OKF as a lower bound in MSE optimality, EA – KF errors 

converge to the OKF which in turn brings the conclusion that EA – KF is a sub – optimal 

filter and it is converging to the optimal filter with a very small error ratio.  
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