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ABSTRACT

COGNITIVE NETWORK OPTIMIZATION VIA NETWORK VIRTUALIZATION

Tobie Yefferson BIYIHA AFOUNG

Department of Electrical and Electronics Engineering
Program in Telecommunications

Anadolu University, Graduate School of Sciences, July 2019

Supervisor: Assoc. Prof. Dr. Nuray AT

Cognitive networks are designed to sense, monitor and extract valuable data from
their physical environment, and adapt quickly to support complex network applications
in order to satisfy fast changing service demands. Virtualization technologies such as
Software-Defined Network (SDN) and Network Function Virtualization (NFV) can be
combined to create new frameworks offering the advantages of both SDN and NFV.
These include dynamic resource reservation and flexible virtual network creation via
NFV, and programmability of these resources and easy network management via SDN.
These new combined frameworks could be leveraged to optimize and manage cognitive
network architectures. However, optimizing cognitive networks using combined
SDN/NFV frameworks requires new network management techniques and fast virtual
network provisioning algorithms to replace the legacy manual algorithms. In this study,
a new system called AUTOVNET introducing automation in the management and
provisioning of virtualized software-defined networks is designed and implemented.
AUTOVNET simplifies the manual configurations from the network administrator and
increases the flexibility and adaptability of virtual networks. In addition, AUTOVNET
performs pre-virtualization fault detection and deep packet analysis to determine the
best healthy routing option between the source and destination hosts in the network.
This approach allows the network administrator to easily and rapidly create, configure

and manage virtual networks in larger complex network topologies.

Keywords: Cognitive network, Network virtualization, Software-defined network,
Network function virtualization, Network management, OpenVirteX



OZET

AG SANALLASTIRMASI UZERINDEN BILISSEL AG OPTIMIZASYONU

Tobie Yefferson BIYIHA AFOUNG

Elektrik Elektronik Miihendisligi Boliimii
Telekomiinikasyon Programi

Anadolu Universitesi, Fen Bilimleri Enstitiisii, Temmuz 2019

Danigman: Dog. Prof. Dr. Nuray AT

Biligsel aglar, bulunduklar1 fiziksel ortami algilamak, izlemek ve ortama ait degerli
verileri elde etmek; karmasik ag uygulamalarini ve hizla degisen servis taleplerini
zamaninda kendini uyarlayarak desteklemek iizere tasarlanmiglardir. Yazilim tanimli ag
(SDN) ve ag fonksiyon sanallagtirmast (NFV) gibi sanallagtirma teknolojileri, her iki
teknolojinin avantajlarin1 sunan yeni g¢ergeveler olusturmak igin birlestirilebilir. Bu
avantajlar NFV ile dinamik kaynak ayirma, esnek sanal ag olusturma islemlerini ve
SDN ile bu kaynaklarin programlanmasi ve ag yonetiminin kolaylikla yapilabilmesini
igerir. Dolayisiyla, bu yeni c¢ergeveler bilissel ag mimarilerinin iyilestirilmesi ve
yonetiminde kullanilabilirler. Bununla beraber, bilissel aglarin SDN/NFV c¢erceveleri
kullanilarak iyilestirilmesi, geleneksel manuel algoritmalar1 degistirecek yeni ag
yonetim teknikleri ve hizli sanal ag saglama algoritmalarini gerektirir. Bu calismada,
AUTOVNET olarak adlandirilan, sanallastirilmis yazilim tanimli ag saglama ve
yonetiminde otomasyonu tanitan yeni bir sistem tasarlanmis ve gerceklenmistir.
AUTOVNET ag yoneticisinin manuel olarak yapmasi gereken yapilandirmalar
basitlestirir ve sanal aglarin esneklik ve uyarlanabilirligini arttirir. Bunun yani sira,
AUTOVNET agdaki kaynak ve hedef terminaller arasindaki en saglikli yonlendirme
secenegini belirlemek {izere sanallagtirma Oncesi hata tespit ve derin paket analizini
gerceklestirir. Bu yaklasim, ag yoneticisinin daha biiyiik ve karmasik ag topolojilerinde

hizl1 ve kolay bir sekilde sanal ag olusturmasi, yapilandirmasi ve yonetmesini saglar.

Anahtar Kelimeler: Bilissel ag, Ag sanallastirilmasi, Yazilim tanimli ag (SDN), Ag
fonksiyon sanallastirilmast (NFV), Ag yonetimi, OpenVirteX
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1. INTRODUCTION

Over the last decades, Internet technology has undergone very few changes even
though data communications and Internet traffic have surged increasingly at a very fast
pace. This lack of adaptation to current network conditions has led to suboptimal
network performances. Current network frameworks, behaviors, policies, and protocols
do not have adequate response mechanisms to make intelligent adaptations. These
networks heavily rely on routing algorithms to forward packets over the network, and
external operators to perform manual configurations and policy decisions. Furthermore,
limited information is shared between network elements and network failures can only
be detected once packets are lost. For example, switches and routers follow strict rules
for transferring packets and have very little knowledge about the activity (network
status) on the other end of the network. This current network framework was originally
designed to simplify the design of network devices and reduce the overall complexity of
the network. As a result, these networks became rigid and network problems could only
be detected and resolved, with little means of predicting them.

Cognitive networking embraces complexity to provide end-to-end optimal network
performance. In (Thomas, DaSilva, & MacKenzie, 2005), R. Thomas and al. defined for
the first time the term Cognitive Network (CN) as a network that uses cognitive
processes (sensing, learning, and adaptation) to perceive the state of the entire network
in real-time, then plans, decides, and acts, i.e., learns from collected network data and
adapts accordingly to meet end-to-end network goals.

The cognitive approach aims to develop proactive networks capable of using
intelligent network devices to collect network data, make network predictions, easily
adjust their activities, and modify their configurations to adapt to current and future
network conditions. CNs can detect and manage network problems before they occur
and use each network scenario to improve their problem-solving abilities. As a result,
CNs increase the performance and efficiency of the network and optimize end-to-end
network traffic between the source and destination for the entire network (Fortuna &
Mobhorcic, 2009).

A network is said to be cognitive when self-aware and self-adjusting components
replace all statically configured portions of the network. Cognitive networking ushers a



new era of communication with promising network architectures offering the best end-
to-end performance by adjusting automatically network parameters for optimal data

transfer between devices.

1.1. The Problem Statement

There are multiple research directions on how to optimize cognitive networks. One
uses artificial intelligence models and game theory to predict future network behaviors
and network problems beforehand. Another direction focuses on how to utilize new
networking frameworks like virtualization technologies such as Software-Defined
Networks (SDNs) and Network Function Virtualization (NFV) and their combinations
to optimize the management of cognitive networks since both paradigms offer
adaptability, flexibility and programmability.

Some challenges and open questions regarding research on the combination SDN and
NFV for better network performance and the challenges of modeling, managing and
optimizing their combined architectures are summarized below,

Network information extraction

A proper management system for cognitive networks must be able to fetch accurate
network information from the physical network. This information can then be updated
at regular time intervals and used by a central management system to coordinate
network operations.

Virtualization layer design

Combining SDN and NFV paradigms requires a virtualization layer or hypervisor.
There are different hypervisors architectures, from hardware-enhanced to pure software-
based, distributed and centralized ones. However, a general understanding of how these
hypervisors operate is needed in order to design, create, configure, and manage the
network. Moreover, additional research is needed to properly select the hypervisor for
simulations since the architecture and operation of this hypervisor will affect the
performance of the network.

Fast virtual network configuration and provisioning

Combining SDN and NFV to create virtual networks requires mapping of physical
network resources to virtual ones. The challenge is to rapidly map these resources.
Therefore, a sophisticated mapping scheme should be designed to rapidly configure and

provide virtual networks according to users' demands.



Automatic management

CNs consist of intelligent and programmable network nodes (Thomas, Friend,
Dasilva, & Mackenzie, 2006). For this reason, SDN and NFV technologies can be used
to efficiently manage these programmable networks. However, this management must
be automatic and/or autonomous to fit into the cognitive nature of the system.
Therefore, management systems must be designed to automatically detect and predict
network scenarios such as link failures, to ensure end-to-end performance with limited

human intervention, as promised by CNs.

1.2. The Objective and Relevance of The Study

This study addresses the challenges of manual configuration in SDN virtualization
and provides a solution called AUTOVNET, a self-configurable module that replaces
the network embedder module in the traditional OpenVirteX (OVX) system architecture
(Ali Al-Shabibi et al., 2014) to enable automatic virtual SDN configuration for a variety
of network topologies and dynamic scenarios. We begin by developing an algorithm to
extract network information from the underlying network topology and later use this
information to create a network repository (database). The management module
AUTOVNET uses this database to minimize manual configurations and to rapidly
create and configure virtual SDN networks.

The second major contribution of the study is fault detection and fault prevention.
AUTOVNET can analyze network data from Wireshark (Ndatinya, Xiao, Rao
Manepalli, Meng, & Xiao, 2015) and carry out pre-virtualization faulty link/switch
detection. In other words, AUTOVNET is a proactive fault management system that
detects and isolate faulty network resources to enable the creation of healthier virtual
networks.

The third major contribution of the study is on performance management.
AUTOVNET is a pure software implementation written in Python programming.
AUTOVNET can perform performance computations to determine congested routes as
well as packet delay analysis to automatically determine optimal routes for data transfer
between devices and avoid congested routes to maximize network resource utilization

and create faster virtual networks.



1.3. Thesis Organization

The remainder of the thesis is structured as follows:

Chapter 2 gives detailed background information on cognitive networks. It also
describes the general capabilities of cognitive networks, the cognitive cycle, and aspects
of cognitive network management. Furthermore, it provides a brief summary of the
different types of cognitive networks in the literature.

Chapter 3 addresses the optimization of cognitive networks via SDN, NFV, and
combined SDN/NFV. It first provides a detailed background on SDN and NFV
and describes their respective architectural frameworks. It explores the
optimization benefits of both SDN and NFV and offers comparisons between
SDN and traditional networks as well as between SDN and NFV technologies.

This chapter finally discusses the different types of hypervisor architectures and
reviews the limitation of available virtualization solutions using OpenFlow in the
literature.

Chapter 4 is mainly concerned with the design and implementation of
AUTOVNET. It describes how the system architecture of AUTOVNET compares
to tradition OVX (an SDN hypervisor) system architecture, and explains the
management capabilities (configuration, fault and performance) of AUTOVNET
as well. Mininet, Floodlight and Wireshark tools are also presented in this chapter
as they are used for the simulations. Furthermore, the two AUTOVNET
operations (random and smart virtualization) are explained and tested in Spyder
IDE. The results show that AUTOVNET improves on the legacy OVX
architecture by providing rapid virtual network configurations and fault detection
with limited manual configurations (inputs) from the network administrator.

Chapter 5 concludes the study and provides recommendations and thoughts on

future work.



2. BACKGROUND ON COGNITIVE NETWORKS

In this chapter, we first introduce the concepts and capabilities of Cognitive Networks
(CNs) (Sec. 2.1). Afterwards, Sec. 2.2 gives a detailed view and stages in the cognitive
cycle. In Sec. 2.3, we review the various cognitive network management schemes in the
literature. Finally, Sec. 2.4 explores the two types of cognitive networks, namely the
cognitive wireless network and the cognitive Internet network.

2.1. General Capabilities of Cognitive Networks

Every CN must be able to sense and monitor the physical environment (sensing
capabilities), analyze and extract useful information from sensed data (learning
capabilities) and reconfigure its parameters according to current physical environmental
conditions (adaptive capabilities) (Nazmul Siddique, Syed Faraz Hasan, & Salahuddin
Muhammad Salim Zabir, 2017).

2.1.1. Sensing capability
CNs have the ability to sense or capture real-time information from the physical

environment. In wireless networks, sensing is very important. For example, this

capability can be used for channel monitoring, interference avoidance, and wireless

device power monitoring. Likewise, in wired networks, sensing plays a vital role in

decision making and routing. Sophisticated algorithms like autonomous learning and

network protocols can be used to capture temporal variations in the physical network

environment. Additional, sensing capabilities involve:

= Network monitoring: A CN can monitor network activities and detect congested as
well as under-utilized network resources. This may be used to increase network
resource utilization since service running on congested network resources can be
redirected to idle network resources. A CN with resource sharing mechanisms
monitors the network and allow the utilization of network resources by secondary
users when primary users are inactive.

= Location identification: CNs are able to identify and determine the location of
network entities. In recent years, location technologies have led to location-based
services (FCC, 2012) and ultrafast routing.

= Path discovery: A CN can determine the best path to establish communications
between its terminals. Some terminals might be reachable after one or multiple

network entities (router, switches, and servers) and multiple routes might lead to the
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same network device. That’s why, the ability to select the appropriate
communication path between CN terminals is very important.

=  Service discovery: A CN analyzes services subscribed by the network users and
recommends other appropriate services that the user might be interested in. Machine
learning algorithms like “recommender systems” are based on this concept. Service
discovery is also important for creating clusters or group devices utilizing the same

applications and services together.

2.1.2. Learning capability

The sensing capability provides resource awareness, whereas learning capability
enables the network to be programmed dynamically according to the physical network
environment. CNs can be programmed to use a variety of transmission, access and
network topologies and technologies supported by their hardware resources.

Reconfigurations supported by CNs can be given as follows:

= Resource agility: This is the ability of a CN to change its network topology. This
ability dynamically selects the appropriate network resources and routing paths for
communications between network terminals.

» Flexible network: A CN is an opportunistic network (Nazmul Siddique et al., 2017)
which adapts constantly to variations in network scenario. The real-time data
acquired during sensing enables the network to adequately select a new network
topology and communication paths.

= Dynamic system access: A CN may contain multiple heterogeneous systems
providing a variety of services running on different communication protocols. Thus,
system access reconfiguration is necessary in order to be compatible and fully
support every system.

2.1.3. Adaptive capability

The adaptive capability provides the ability to fine-tune network parameters and
functions based on collected network data and meet Quality of Service (QoS) goals.

Based on the monitoring and learning capabilities discussed before, CNs are able to

self-organize their network operations and provide faster network connectivity and

greater performance. The adaptive capabilities of CNs involves the following:

= Resource management: An improved resource management scheme is needed to

efficiently organize information on network resources and allocate these resources



to minimize network failures and maximize network efficiency. A resource pooling
technique can be utilized to manage network resources as in cloud computing.
= Connection management: The large heterogeneous nature of CNs has increased
the complexity of routing. Connection management techniques can help in network
discovery and provide useful information. This information can be used to select the
best routes for data transfer between network devices. Connection management can
equally be useful in capacity measurement to minimize network congestion and
under-utilization of network resources.
2.2. Cognitive Cycle
Based on the information collected during sensing and monitoring, CNs uses the
cognitive cycle to methodologically decide on the best course of action (Vishram
Mishra , Jimson Mathew, & Chiew-Tong Lau, 2017). The cognitive cycle is made up of
various stages or states through which the CN continuously monitors the physical

environment and acts accordingly. The cognitive cycle is shown in Figure 2.1.

Physical
Environment

Figure 2.1. Cognitive cycle

The cognitive cycle starts with sensing the environmental state. During this state,
physical network parameters are recorded. Next, these parameters are analyzed to obtain
more physical and logical figures. Based on these analyses and the operational
requirements (bandwidth, speed, latency, service capacity, etc.) of network services, the
cognitive network responses accordingly and makes a decision in the next phase. The
decision involves the adaptation or reconfiguration of the network system parameters to
avoid performance degradation and ensure optimal network settings in different
environmental scenarios. However, when the existing network parameters are already

perfectly adapted to the current network state, the adaptation state will not be
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applicable. In this case, there is no adaptation and the cycle restarts with the next
cognitive sensing phase.

2.3. Cognitive Network Management

Cognitive network management (Ayoubi et al., 2018) refers to all activities
associated with running a cognitive network. Network management can be divided into
the following areas; Fault, Configuration, Accounting, Performance, and Security
(FCAPS) (Alexander Clemm, 2006) management.

2.3.1. Fault management

Fault management deals with failures (hardware or software failures) that occur in the
network. Fault management, therefore, relies on network monitoring to ensure that all
system functions are running smoothly, and failure mechanisms are properly activated
when faults occur. Fault management is critical to ensure optimal user experience, i.e.,
users do not experience service disruptions and that when they do, these disruptions
have minimal impact on the overall service experience. Fault management functions
include network monitoring, alarm management, fault detection, fault diagnosis, fault

prevention, fault prediction, troubleshooting, and proactive fault management.

2.3.2. Configuration management

All the devices within a network need to be configured for the network to function
properly as a homogenous unit. Configuration management performs the modification
of the configuration settings of network equipment. This includes initial configuration
(i.e., startup configurations required to properly connect all network entities), and
ongoing configuration (i.e., the operational configuration that continuously adjusts or
updates core network settings to provide novel network services and functionalities).
Configuration management is very critical since other network management functions
depend on it to provide an acute diagnosis. With a defective configuration management
system, the network provider will be unable to fine-tune network services.
Configuration management functions include network resource configuration, network
auditing, network configuration backup, and device synchronization.
2.3.3. Accounting management

It is essential for any organization to properly evaluate the cost/benefit ratio of their
services and generate revenues for the services they provide. Accounting management
provides the functions that allow businesses to generate revenue for the services they

provide and keep track of their usage. From accounting data, service providers might
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terminate an unprofitable service to invest in a more lucrative one. Accounting
management functions include fraud detection, service consumption data collection, and

business model forecast.

2.3.4. Performance management

The performance of a network is characterized by a number of performance
measurements known as performance metrics. These metrics provide a measurement of
the behavior of the network under a variety of physical conditions. Some performance
metrics include:

e Throughput: This measures the number of communication units performed per unit
time. The communication units depend on the type of the network layer. For
example, bytes per seconds for link layer transmission and service per second for
web service throughput measured at the application layer.

e Delay: This is measured per unit time. Network services experience different types
of delay which are measured differently. For example; packet delay at the network
layer and octet delay during transmission at the link layer.

e Quality of Service: This parameter shows how well a service performs under certain
conditions. For example, the percentage of packets dropped in a communication
system can determine whether the output is of acceptable quality or otherwise there
is a need for retransmission.

Understanding these performance metrics and providing real-time optimized network
settings suitable for higher throughput, lesser delays and greater service quality in a
variety of network scenarios are key aspects to enhance the overall user experience.
2.3.5. Security management

The last letter “S” in FCAPS stands for security. Security management deals with all
aspects related to securing the network from the spread of worms and viruses, threats
from hacker attacks and malicious intrusion attempts. Two aspects of security
management exist, namely, security of management and management of security.
Security of management deals with the security of all management operations like
password request before data access and the request for access privileges to view
sensitive corporate data. Whereas, management of security deals with the security of the
network system itself. Some of the threats management of security deals with include

hacker attacks, Denial-of-Service (DoS) attacks, viruses and worms, and spam. Some



management of security strategies includes Intrusion Detection System (IDS), firewalls,

and blacklists.

2.4. Types of Cognitive Networks

In this section, we briefly describe the two types of CNs, that is, cognitive wireless
(cognitive radio network) and cognitive Internet (cognitive core network). As a
reminder, this thesis will focus solely on Cognitive Internet. Nevertheless, a review of
the cognitive Internet, as well as cognitive wireless, is aimed at painting a broader view

of the cognitive network world.

2.4.1. Cognitive wireless

Currently, the static spectrum allocation policy is used to assign spectrum channels to
license holders by governmental agencies on a long-term basis for large geographical
coverage. This policy is very inefficient because it turns out that these license spectrum
holders use the spectrum, sporadically leading to underutilization of wireless resources.
In a world with increasing demand for wireless channels, a new allocation policy is
needed for efficient spectrum usage.

Cognitive Radio Network (CRN) proposed to solve these spectrum problems by
implementing dynamic spectrum allocation techniques (lan F. Akyildiz, Lee, Vuran, &
Mohanty, 2006). A CRN uses Cognitive Radios (CRs) which has the capacity to access
and share the wireless channel with licensed holders in an opportunistic manner
(Khozeimeh & Haykin, 2010). CRN has as goals to guarantee seamless communication,
reliable QoS and minimize interference (Haykin). These goals can be realized through
efficient and dynamic management (l. F. Akyildiz, Lee, Vuran, & Mohanty, 2008) of
the wireless spectrum.

CRs operates as follows:

¢ Monitor and identify idle and available channels

e Select the best available spectrum

e Collaborate with other CRs to avoid channel access monopoly

e Vacate the channel seamlessly when a licensed holder is detected.

2.4.2. Cognitive Internet
Our modern society is centered around communication networks. Sophisticated
network applications and advanced wireless technologies have changed the way we

share information and communicate with one another. The Internet represents the
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communication medium of the modern era as well as a platform delivering services like
social networks, e-commerce, and video-on-demand. However, as the Internet
represents a global interconnection of complex heterogeneous networks, several issues
about its management and performance are rising increasingly. The legacy
Transmission Control Protocol/Internet Protocol (TCP/IP) architecture created in 1983
was not designed to support the Quality of Service (QoS) requirements of modern
multimedia applications due to lack of adaptability and cross-layer mechanisms (R.
Jain, 2006). For this reason, both academic and industrial researchers are focusing on
adaptable network protocols to optimize core network performance in a decentralized
manner.

The future Internet (Stuckmann & Zimmermann, 2009) is said to be a self-
manageable system called the autonomic computing paradigm. This paradigm is based
on the principles of self-optimization, self-healing, self-configuration, self-protection,
and content awareness. In this context, the communication system would be capable of
autonomous management, limiting human intervention. Autonomous network devices
should be able to reconfigure themselves and constantly adapt to changing network
conditions in order to avoid performance degradations with limited manual
configurations. Thus, the behavior of these autonomous systems must be guided by
high-level rules defined by administrative and business policies.

There are key enabling technologies to support self-adaptation within the TCP/IP
stack and pave the path to the evolution and deployment of cognitive Internet solutions.
These technologies include cross-layer design, distributed and agent-based solutions,
Artificial Intelligence/ Machine Learning (AI/ML) based algorithms and autonomic
network architectures.

To sum up, the cognitive core network is an evolution of the concept of cognitive
wireless network (Di Benedetto, Cattoni, Fiorina, Bader, & De Nardis, 2015). While
cognitive radio technologies focus on tuning the parameters of the link and physical
layers to provide efficient spectrum management, cognitive core technologies, on the
other hand, expands the dynamic tuning of network parameters to improve overall
network performance at a system-wide scale.

This thesis focuses on the optimization of the cognitive core network architecture and
proposes an autonomic network management system which can be leveraged to

dynamically manage large complex heterogeneous network topologies.
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3. OPTIMIZATION OF COGNITIVE NETWORKS

CNs can monitor and collect useful data from the physical environment, and after
analyzing this data, react in a timely manner to satisfy all related requirements in order
to maximize network capacity and quality of service (QoS) at all times and in all
scenarios. This is known as cognitive network optimization. It should be noted that
effective optimization should provide:

e Load balancing: Load balancing plays a critical role in full optimization activities,
especially in cases where there is the need to efficiently distribute the incoming
workload (network traffic) across multiple network resources to avoid traffic
congestion and decrease latency. User demands and quality of service requirements
of an application can trigger the obligatory reconfiguration activity of core network
elements.

e Network resource management optimization: To cope with traffic growth, investing
in additional network infrastructure is often not an option. Service providers and
enterprises are always under pressure from investors to attain the highest possible
output with little investment in order to maximize the profit. Therefore, improving
and efficiently utilizing the available network infrastructure by implementing strong
network resource optimization solutions is the key for all business models.

Several optimization techniques (Z. S. Zhang, Long, & Wang, 2013) are currently
designed and tested by both industrial and academic researchers with the most
promising being the Network Virtualization (NV).

The International Telecommunication Union Sector (ITU-T) (ITU-T, 2012) defines
the concept of NV as the creation of network partitions, logically isolated on a shared
physical network so that heterogeneous clusters of multiple virtual networks can coexist
simultaneously over the same network resources. The idea of network virtualization that
allows several virtual networks to coexist within a single physical network is not novel.
Conventional technologies such as Virtual Private Network (VPN), Voice over IP
(VolP) and Virtual Local Area Network (VLAN) are commonly used to build isolated
networks over shared physical infrastructures.

Technologies like VPN and VolIP services are examples of overlay networks. An

overlay network is a logical network which runs independently and does not cause any
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changes to the underlying physical network. Figure 3.1 shows an overlay network

architecture.

Overlay Network

Physical Network

Figure 3.1. Overlay network (Elsen, 2013)

The following design goals must be achieved in the realization of a network

virtualization solution:

Isolation: Since multiple independent virtual networks coexist over the same
physical infrastructure, their operations may cause interference resulting in
instability in the entire network ecosystem. In order to mitigate these interferences,
the virtualization solution must provide secure isolations, such as performance,
security, control plane, and data plane isolation among the virtual networks.

Network abstraction: This involves hiding the overall underlying characteristics of
physical network resources from the virtual network tenants and provides simplified
interfaces for resources access and control. The network virtualization solution has
the ability to customize network operations and manage all virtual networks
independently.

Topology awareness and rapid reconfigurability: The network virtualization
solution must provide effective use of the virtual resources during the creation of
virtual networks and allow the dynamic reconfiguration of these networks during
optimization processes.

Performance: Network virtualization increases the complexity of the overall
network ecosystem leading to significant performance degradation of the network.
Thus, the network virtualization solution must guarantee virtual network
performances that are as good as non-virtualized networks, keeping any

performance degradation to the minimum.
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Programmability: The network virtualization solution should support the
programmability of both control and data plane in order to provide evolvability and
flexibility of the virtual networks using customized protocols, new control schemes,
and packet forwarding or routing functions. Furthermore, programmability allows
each virtual network to support the rapid deployment of new network architectures
and control schemes independent of other virtual network architectures.
Management: The network virtualization solution should provide an effective and
integrated management system capable of accessing both physical and virtual
resource information. Due to rapid changes of the virtualized network ecosystem,
network management is essential to monitor all network operations in order to
troubleshoot network failures.

Mobility: The network virtualization solution should support the mobility of virtual
resources including computing resources, applications, and services across virtual
networks in order to meet their QoS requirements, respond effectively to users’
demands, and increase the efficiency of the entire network.

Network virtualization is still in its early stages and there are many open research

opportunities to develop new virtualized architectures, applications, and systems.

Currently, there are three key network virtualization solutions (R. Jain & Paul, 2013):
Software-Defined Networking (SDN), Network Function Virtualization (NFV), and

Cloud Computing as illustrated in Figure 3.2.

NFV

Function Abstraction

Virtu
aliza

tign Cloud

Computation Abstraction

SDN

Networking Abstraction

Figure 3.2. Network virtualization technologies
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This thesis exploits SDN and NFV to optimize the cognitive network architecture.
Cloud computing, on the other hand, is not covered, but rather recommended as future
research direction.

The remaining of this chapter can be outlined as follows; Sec. 3.1 introduces
cognitive network optimization via SDN, presents a background on SDN, SDN
architecture and compares between SDN and traditional networks. Sec. 3.2 explores
cognitive network optimization via NFV, presents a background on NFV, NFV
architecture, and compares the concepts SDN and NFV. Finally, Sec. 3.3 concludes this
chapter by presenting the combined NFVV/SDN optimization and related works.

3.1. Optimization via Software Defined Networking (SDN)

This section first introduces background on SDN and SDN architecture and reports
on the optimization benefits of using SDN. Finally, this section concludes with a
comparison between SDN and traditional networking.

3.1.1. Background on Software-Defined Networks (SDN)

Currently, SDN is significantly attracting attention from both industry and academia
as an important architectural solution for the management of large-scale networks,
which may require dynamic re-configuration and re-policing from time to time. The
goals of SDN include the ability to accelerate innovation, network business cycles,
adapt to customer demands and customize network resources to include service-aware
networking.

The ITU (ITU-T, 2014) defines SDN as a set of techniques that allow network
administrators to directly program, manage, control, and orchestrate network resources
to facilitate the operation, design, and delivery of network services in a scalable and
dynamic manner via open interfaces such as OpenFlow (OF) protocol (ONF, 2013).

Prior to the advent of SDN (Tourrilhes, Sharma, Banerjee, & Pettit, 2014),
networking architectures were hardware-driven and proprietary. These conventional
architectures were unable to dynamically and adequately respond to the needs of
modern data centers, carrier environments, and college campuses. As a result, the need
to design a software-driven networking architecture, where configuration and policing
could be done in a dynamic, centralized, and logical manner without the need to

configure every device separately was inevitable.
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3.1.2. SDN framework and architecture

According to the Open Network Foundation (ONF) (ONF, 2015), the SDN paradigm
has the potential to dramatically simplify network deployment, operations,
management, and innovation.

In traditional networks, the data plane is tightly coupled into the same network device
as the control plane. SDN (Hu, Hao, & Bao, 2014) decouples the forwarding functions
and the network control, allowing the underlying infrastructures in the data plane to
become simple programmable packet forwarding and routing network devices.
Similarly, it allows network control and automation in the control plane to be directly
programmable via OF. Figure 3.3 shows the SDN architecture.

Application Plane

APPLICATIONS

NORTHBOUND INTERFACE

Control Plane

CONTROLLERS

SOUTHBOUND INTERFACE

Data Plane

Data Flow Data Flow

Data Flow . Data Flow

Forwarding Forwarding

NETWORK DEVICES

Figure 3.3. Software-Defined Network (SDN) framework and architecture (Hoang, 2015)

A programmable SDN controller logically centralized in the control plane manages
and directs all packet transfer and routing policies in the network via the OF protocol.
This protocol sets the rules of communication between the data plane and the control
plane through the southbound interface. Whereas, the northbound interface is used for
communications between the application layer and the control plane using the
application programming interface called REST APl (REST-API).

The SDN architecture is divided into three planes or layers: data (infrastructure),

control, and application planes (ONF, 2014).
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3.1.2.1. Data plane (infrastructure layer)

The data plane is sometimes referred to as the forwarding plane or infrastructure
layer. This plane is mainly composed of basic traffic processing or traffic forwarding
resources like routers and switches. The data plane is responsible for the forwarding and
routing of data traffic (Braun & Menth, 2014). In addition to routing and packet
steering, the data plane collects datagram which is used by the controller to monitor,
update, and optimize the performance of the network according to QoS requirements.

In SDN, all control functions associated with the data plane of traditional networks
have been abstracted and transferred to the centralized SDN controller in the control
plane. As such, all forwarding, and routing actions performed by elements in the data
plane are predetermined in the flow tables of the controller. The data plane contains the
underlying network resources which can be virtualized, managed and controlled via the
control plane or other implementation planes.

The OF-witches in the data plane communicates with the SDN controller in the
control plane through the southbound interface using the OpenFlow (OF) protocol,
which determines the operation and management messages.

OF was initially designed to decouple the simple forwarding hardware elements from
the routing software intelligence to allow testbed and academic research networks to
rapidly deploy and evaluate new algorithms and control methods. Later, OF was
adopted by industries because it guaranteed business benefits for hardware
manufacturers and provided an open control interface to the operating systems of
network devices.

There are three different types of OpenFlow messages defined by the OF protocol,
namely, Asynchronous messages (initiated by OF-switch to the controller), Controller-
to-Switch messages (initialed by the SDN controllers to the OF-switch), and Symmetric
Messages (initiated by either the OF-switch or the SSDN controller) (Azodolmolky,
2013). Figure 3.4 shows the three OpenFlow messaging protocols and their functions.
Under OF rules, each incoming packet is matched with a specific header, if a packet
marches multiple header in the flow entries, the selected entry is the one with the
highest priority. The basic OF actions include deny forwarding, forward as default,
forward to the controller, forward out through, and modify various field headers in the
packet. The counter numbers the packet processes by the protocol rule and flow entries
are deleted if their processing time exceeds a specific time frame.
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1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
3. Send to normal processing pipeline

4. Modify fields
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Figure 3.4. OpenFlow messaging protocol (Azodolmolky, 2013)

3.1.2.2. SDN control layer (control plane)

The control layer is considered as a virtual overlay network that is logically found on
top of the underlying data plane. The forwarding and routing intelligence (the SDN
controller) abstracted from the routing devices in legacy networking resides in this
plane. The control plane contains one or more software controllers that are
programmable and stands as an intermediate layer connecting both the application layer
through a northbound interface like REST API and the data plane through a southbound
interface like OpenFlow. The SDN controller in the control plane provides a centralized

and uniform programmatic interface to the entire network. Figure 3.5 shows an

overview of an SDN controller.
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Figure 3.5. Overview of SDN controller (Y. Zhang, 2018)
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The SDN controller consists of multiple subprocesses and can be installed as a single
consistent unit on commodity servers. The SDN controller contains three fundamental
components: the protocol handler (deals with legacy network protocols), the
applications (use network information), and libraries (to support various southbound
interfaces). Using these components, the SDN controller can perform functions such as
management of network states, implementation of firewall rules, routing, switching,
update flow entries, network device, topology and service discovery.

SDN controller architectures can either be distributed or centralized. A centralized
SDN controller has a single control plane, which performs all control and management
tasks in the entire network, whereas a distributed SDN controller (Jiménez, Cervell6-
Pastor, & Garcia, 2014) has several control planes shared by all the devices in the data
plane. Such distributed architectures are very beneficial for large, complex networks
like data centers since each control plane may handle a specific task such as traffic
engineering and virtual network management. Table 3.1 provides a comparison of the

most popular open source SDN controllers.

Table 3.1. A comparative feature-based analysis of open source SDN controllers (Stancu et al., 2015)
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SDN controllers are software, written in several programming languages like Java,
Python, and C++, and are capable of controlling hardware from various vendors
operating in the same physical architecture. Some SDN controllers (Salman, Elhajj,
Kayssi, & Chehab, 2016) include Floodlightt ONOS, RYU, POX, NOX,
OpenDayL.ight, etc. Several studies and surveys have been carried out to compare these
SDN controllers in terms of their supported platform, southbound and northbound APIs

compatibility, multithreading support, application domain, etc.

3.1.2.3. Application layer

The application layer is logically located above the control layer. It is the topmost
layer in an SDN architecture. The northbound interface between this layer and the
control layer is used to communicate the policy requirements of applications to the SDN
controller. For example; a QoS application may require Voice over IP (VolP) traffic to
be delivered within a specific time frame, and a security application may need to
redirect all the traffic from an infected host to a remediation server. The SDN controller
implements these policies by writing flow table rules that are used for traffic
engineering by switches at the infrastructure layer.

Some fundamental problems may arise during the deployment of a new application
on the network. Since each application has its own objectives, conflicts may occur
between applications over certain changes to the shared network resources. These
conflicts include powering on/off network resources, competition over limited flow
table entries of switches, or network bandwidth scheduling and allocation. As a result,
optimal resource allocation techniques, policy management schemes, and conflict
resolution (AuYoung et al., 2014) are hot research topics in SDN. Vendors such as
Cisco, HP, Brocade, etc., provide out-of-the-box SDN applications to small and large
enterprises, network operators, and data centers to perform tasks like network
monitoring, network security, network management and configuration, network
troubleshooting, etc.

3.1.3. Optimization benefits of SDN

Advantages of SDN implementation include:

e Programmability: Network control in SDN is directly programmable since the
control plane is decoupled from the routing devices in the data plane. With
programmability, network automation can be introduced to rapidly reconfigure and

optimize the Quality of Experience (QoE) of network services like VolP calls.
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Agility and flexibility: Abstracting the forwarding functions from control
intelligence enables network administrators to dynamically adjust traffic flow in the
entire network to meet changing needs. This increases the agility and flexibility of
the network since the network depends on software installed on commodity servers
to dictate network policies.

Centralized management: Logically centralized software-based SDN controllers in
the control plane provide the network intelligence and global oversight of the
network. Forwarding devices in the data plane are simply referred to as “dumb”
switches. The SDN controller may represent the entire network as a single, logical
switch in order to reduce the management complexity of large complex networks.
Vendor-neutral and open standardization: SDN architectural solutions simplifies
network design, deployment, and operations since policing is implemented through
open standard SDN controllers instead of a collection of vendor-specific protocols
and devices.

Other benefits of SDN include support for virtualization and big data, effective QoS

delivery, and centralized security.

3.1.4. Comparison between SDN and legacy networks

In traditional networks, both the data plane and the control plane were encapsulated

together in the same network device as shown in figure 3.6. In traditional networks,

each switch updates its own MAC address tables independently, there is no centralized

network control and visibility. Furthermore, network management difficulties increase

with the growth of independent distributed devices.

On the other hand, SDN is highly advantageous compared to traditional networking

because decoupling the networking intelligence from the forwarding devices centralizes

network control and visibility.

Traditional Network Software-Defined Network

<3

4+—— Control plane
4—— Dataplane

¢

OF-Switch

Figure 3.6. Traditional network vs SDN (Maleki, Hossain, Georges, Rondeau, & Divoux, 2017)
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In addition, the programmability of SDN simplifies network security, management,
automation, reconfiguration, innovation, and optimization of large-scale complex

networks, like data centers and the cognitive core networks.

3.2.  Optimization via Network Function Virtualization (NFV)
This section presents a background on NFV, NFV architecture, and explains the
optimization benefits of NFV. Finally, this section will conclude with a comparison

between SDN and NFV optimization solutions.

3.2.1. Background on Network Function Virtualization (NFV)

Currently, NFV is significantly attracting attention from both academia and industry
as an important shift in network service provisioning. Fundamentally, NFV decouples
network Functions (NFs) from the hardware devices on which they run (ETSI, 2014a).
By so doing, NFV has the potential to significantly reduce the Operation Expenses
(OPEX) and Capital Expenses (CAPEX) of the service providers and facilitates
innovation and deployment of new networking services with increased flexibility and
agility.

The European Telecommunications Standards Institute Group Specification (ETSI
GS) (ETSI, 2018) defines NFV as a set of principles to separate network functions
(i.e., functional blocks within the network infrastructure with well-defined external
interfaces and functional behaviors) from the hardware resources on which they run by
applying virtual hardware abstraction.

Figure 3.7 shows a traditional deployment of large dedicated vendor-proprietary
devices by service providers to provide typical network functions like firewalling,
server load balancing, and network security tools.

The traditional deployment approach in Figure 3.7 creates a large, complex network
environment which is difficult to manage, operate, expensive to maintain, and typically
contains underutilized hardware resources. Furthermore, network automation,
orchestration, and evolvability is very difficult to implement on proprietary-based

equipment with vendor-specific Application Programming interfaces (APISs).
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Figure 3.7. Traditional vs Network Function Virtualization (NFV) deployments

In order to maximize resource utilization and reduce network complexity, NFV was
proposed to break down complex network functions running on specialized vendor
hardware into small functional and manageable units which can be dynamically
orchestrated to form a homogenous virtualized network ecosystem, (see Figure 3.7).

The concept and initial work on NFV was developed in October 2012 by a number of
world’s leading telecommunication service providers during the collaborative
authorship of a white paper (NFV_White_Paper, 2012) calling for research action in
NFV technology. Since November 2012, ETSI was selected by seven of these providers
(namely, BT, Orange, Verizon, AT&T, Deutsche Telekom, Telefonica, and Telecom
Italia) to be the host of the industry group specification for NFV called the ETSI GS
NFV.

Nevertheless, research (Han, Gopalakrishnan, Ji, & Lee, 2015) has shown that several
challenges need to be addressed to implement NFV. These challenges include
portability, integration and interoperability of NFV technological solutions with legacy
networking, and seamless migration of legacy networks to modern NFV platforms.
Similarly, NFV reduces the performance of traditional networks since it increases
latencies, and processing overheads. Moreover, the management, automation, stability,
and security of NFV platforms are very complex and difficult.

The architectural framework of NFV is described below:

3.2.2. NFV architectural framework

The NFV paradigm has the potential to lead rapid service innovation and deployment

through software-based services, improve operational efficiency with automation,

improve capital efficiency by using general purpose hardware to provide specific
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network functions, and improve network flexibility by assigning virtual network
functions to hardware according to users’ demands and QOS requirements. These
network virtualization techniques are also leveraged in cloud computing services (Rao
Battula, 2014).

The NFV architectural framework introduces a new way service provisioning is
realized in the network. NFV decouples software from hardware, introduces dynamic
network operations and network function deployment flexibility.

According to ESTI specifications, (ETSI, 2014c) the NFV architectural framework
shown in Figure 3.8 is made up of three key components: the Network Function
Virtualization Infrastructure (NFVI), Virtual Network Functions (VNFs), and NFV
Management and Orchestration (NFV MANO). Figure 3.8 shows the NFV architecture.

NFV Management and Orchestration
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Figure 3.8. Network Function Virtualization (NFV) architecture (ETSI, 2014b)

3.2.2.1. Network Function Virtualization Infrastructure (NFVI)

The NFVI is composed of all hardware and software elements which make up the
network environment in which VNFs are deployed, executed and managed. The NFVI
can be distributed across several geographical locations. The network links connecting
these locations are also considered to be part of the NFVI. The physical hardware
resources (storage, computing, and network) in NFVI provide storage, processing, and
connectivity. These physical resources can be abstracted to form dynamic virtual

resources like virtual storage, virtual network, and virtual computing. Resource
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allocation and resource release are controlled and performed by the NFV MANO
dynamically to accommodate the consumption of those resources by other network

functions or services.

3.2.2.2. Virtualized Network Function (VNF)

In a legacy non-virtualized network, the VNF enables the virtualization of all
Network Functions (NFs). Types of NFs that can be virtualized include edge devices,
gateway functions, and performance improvement functions (load balancers). Similarly,
application optimization functions (cache and video transcoder) and security functions
(abnormality detection, firewalls, and intrusion detection systems) can also be
virtualized. In NFV, these NFs run as software and can be deployed on one or more
virtual machines to provide network services. The NF composition and type of VNF are
determined by the functionalities and specifications of the provided services (ETSI,
2017).

3.2.2.3. NFV Management and Orchestration (NFV MANO)

NFV requires new management and orchestration functions to perform network
maintenance, administration, operation, and NF provisioning. NFV insulates the
network resources from NFs through abstraction and decoupling.

The NFV MANO is made up of three functional blocks (ETSI, 2014c); the NFV
Orchestrator (NFVO), VNF Manager (VNFM), and Virtualized Infrastructure Manager
(VIM).

The NFV Orchestrator (NFVVO) performs two major functions; resource orchestration
functions by managing NFVI resources across multiple VIMs and network service
orchestration functions by managing the lifecycle of network services.

The VNF Manager (VNFM) manages the lifecycle of VNF instances. Each VNF
instance is associated with a VNF Manager. A VNF manager can be assigned to manage
a single or multiple VNF instances of the same or different types. VNF instances
include software updates and upgrade, VNF configuration and termination, performance
and fault measurements, etc.

Finally, the Virtualized Infrastructure Manager (VIM) is responsible for managing
and controlling NFVI storage, compute and network resources. Specialized VIM may
exist to handle certain types of NFVI resources (e.g., storage-only, compute-only,

network-only resources). Other functions of VIM include the allocation, update, and
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release NFVI resources, as well as the management and provisioning of virtualized

resources.

3.2.3.  Optimization benefits of NFV

The benefits of Network Function Virtualization revolve around its three major
technological breakthroughs; decoupling software from hardware, flexible network
function deployment and dynamic scaling (Mijumbi et al., 2016). Other advantages of

NFV include:

e Optimization of network configuration and topology can be performed in near real-
time based on actual mobility/traffic patterns and service demands.

e Reduces equipment cost and power consumption. Consolidating hardware
equipment increases economies of scale in the IT industry and eliminates the need
for dedicated hardware for network applications and services.

e Reduces development cost by providing the ability to simultaneously run test,
reference and production traffic on the same physical infrastructure.

e Enables a wide variety of network eco-systems and encourages lower risk
innovation from non-corporate organizations like small players and academia.

e Orchestration mechanisms provide automated configuration, installation, scaling-up
and scaling-down of the network capacity.

e Enables service providers to deliver customized services (based on geographical
locations) and provides network isolation for multiple applications, users, and

systems operating on the same physical hardware infrastructure.

3.2.4. Comparison of SDN and NFV concepts

SDN and NFV have many similarities, which makes them more compatible, as they
both advocate for network evolution towards open software. Moreover, both automation
and virtualization play a vital role in achieving SDN and NFV goals. Therefore, due to
the complementarity of SDN and NFV, combining both lead to greater efficiency.
Recent research (Duan, Ansari, & Toy, 2016) has shown that SDN can accelerate the
deployment of NFV by providing automation and flexibility in configuration setup,
connectivity, security operations, and policy control.

However, SDN and NFV offer two different virtualization concepts (A. Jain,
Sadagopan, Lohani, & Vutukuru, 2016). In SDN, virtualization is achieved by
abstracting resources to particular tenants, whereas in NFV, virtualization aims to
abstract NFs from dedicated hardware devices. Because of these differences, SDN
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requires the construction of a new network with OpenFlow supported hardware where
the control and data planes are separated. Whereas NFV can operate on existing
network infrastructures since it can be installed standard servers. Table 3.2 compares
SDN and NFV.

Table 3.2. Comparison of NFV and SDN (Mijumbi et al., 2016)

Issue Software-Defined Networking NFV (telecom networks)

Concept Network Intelligence Abstraction Network Function Abstraction

Promises Open interface and programmable Flexibility, agility and cost
control reduction

Protocol OpenFlow Multiple control protocols (e.g.

NETCONF, SNMP)

Leaders Mostly networking hardware and Mostly Telecom network
software vendors operators

Runs on Control plane on commodity hardware Commodity switches and servers

and data plane on specialized hardware

3.3.  Optimization via Combining SDN and NFV

Although the goals of NFV can be achieved using non-SDN approaches relying on
other techniques currently implemented in many data centers, it is more advantageous to
implement NFV with SDN techniques. This is because SDN separates the control plane
from the data forwarding plane leading to greater efficiency and network simplification.
In addition, SDN architectural solutions facilitate network operation, programmability,
and maintenance procedures.

Combining NFV and SDN to create virtualized SDN (vSDN) offers the benefits of
both SDN and NFV paradigms, i.e., flexible and dynamic resource allocation and
acquisition by network tenants through NFV and a standardized method to program and
manage those resources through SDN.

Some SDN controllers such as Floodlight, ONOS, and OpenDayL.ight provide a form
of network virtualization by allowing certain network applications to utilize isolated
virtual network resources. This is however not considered as full virtualization because
the operation of these virtual networks can only be orchestrated by the parent SDN

controller which does not allow any other SDN controllers to manage these virtual
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networks. Therefore, for Full virtualization, we use a hypervisor to create virtual SDN
networks.

In the following section, we explain how hypervisors are used to create VSDN
networks. We present the two major hypervisors: Flowvisor and OpenVirteX and their

limitations.

3.3.1. Virtualizing SDN networks using hypervisors

Initially, hypervisors were developed for virtual computing to monitor and allocate
physical resources (RAMs, CPUs, storage, etc.) to several virtual machines running on
the shared computing infrastructure (Sonam Srivastava & S.P Singh, February 2016). In
a virtualized SDN architecture, the hypervisor adds an additional abstraction layer
called the virtualization layer. Typically, the virtualization layer or hypervisor sits
between the networking hardware and multiple virtual SDN controllers (A. A. Blenk,
2018). This layer creates and manages logically isolated network partitions or virtual
networks. The virtualization layer reduces the performance of the overall network since
it increases overheads and CPU usage. Thus, optimization is needed to minimize

performance degradation. Figure 3.9 shows a virtualized SDN architecture.

vSDN Network 1 vSDN Network 2

SRR

Figure 3.9. SDN virtualization with hypervisor

The creation of virtual SDN networks using hypervisors involves 3 steps (A. Blenk,
Basta, Reisslein, & Kellerer, 2016): management of the physical SDN network,

virtualization of network attributes, and isolation of network attributes.
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3.3.1.1. Management of the physical SDN network

The programmability of SDN can be employed to facilitate the implementation of
virtual SDN networks. In vSDN architectures, the hypervisor lies between the physical
SDN network and the vSDN controller. Due to its intermediate position, the hypervisor
interacts and monitors the entire physical SDN infrastructure.

The hypervisor creates isolated virtual SDN networks by abstracting the physical
SDN network resources. Packet forwarding and network policing in these virtual SDN
network are controlled by virtual SDN controllers. Figure 3.9 illustrates how the
underlying physical SDN network can be abstracted to produce the two separate vSDN
networks. Non-transparent hypervisor acts as a proxy by intercepting control messages
between the physical SDN network and the vSDN controllers.
3.3.1.2. Virtualization of network attributes

The Hypervisor communicates an abstraction (simplified representation) of the
physical SDN network to the virtual SDN controllers. There are three types of SDN
network abstraction, namely topology, physical node resources, and physical link
resources abstractions.

Topology abstraction involves the abstraction of topology, virtual nodes, and virtual
links information. This information (nodes location and links interconnection) is
transmitted by the hypervisor to the tenants (vSDN controller). The entire network
topology is always hidden from the tenants. As such, multiple physical switches can be
represented by a single virtual switch. This is known as a big switch.

Physical node resource abstraction involves the abstraction of CPU and memory
resource information. CPU resource information can be represented by the percentage
utilization of the CPU or the number of CPU cores available. Consequently, 150% CPU
availability equals to one and a half available cores in a dual core physical CPU.
Similarly, Memory resource information like flow tables may be abstracted using
memory partition representations or the number of hardware or software flow table.
Based on the degree of abstraction, the hypervisor abstracts this information from the
tenants’ view reducing the network complexity.

Physical link resource abstraction involves the abstraction of link buffers, number of
queues, queuing priorities as well as bandwidth information (Chowdhury & Boutaba,
2010). The hypervisor abstracts this information to create virtual networks with specific

loss or delay bounds to guarantee effective service delivery.
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3.3.1.3. Isolation of network attributes

The hypervisor must provide tenants with isolated virtual networks that efficiently
share the same physical infrastructure. Isolated physical resources include data plane
(nodes, links), control plane (instances), and vSDN addressing isolation.

Data Plane Isolation involves the isolation and reservation of data plane physical
resources like link data rates, link queues, flow table spaces, and CPU nodes. These
resources can be isolated to enhance data plane traffic processing between tenants.
Performance variations must be considered when allocating physical resources since
these variations constantly change due to different network workloads and scenarios.
Optimizing the isolation process can prevent a single vSDN network from starving
other virtual networks of physical resources.

Control Plane Isolation involves the isolation of control plane elements from the
tenants. High CPU and memory usage by the vSDN controllers in the control plane can
significantly degrade the performance of data plane processes. As a result, the switches
at the data plane might experience forwarding delays. Therefore, only one vSDN
controller controls a single vSDN network to prevent vSDN controller interferences.
Furthermore, CPU, storage and network resources used by the hypervisor must also be
isolated to provide efficient operation of the hypervisor.

Finally, vSDN addressing isolation involves isolating the different tenants’
forwarding decisions to avoid conflicts. Tenants should have the freedom to direct flows
according to their service demands and configurations. Generally, the attributes of the
physical infrastructure limits flow space addressing in non-vSDN networks. Whereas in
virtualized SDN networks, several addressing approaches can be used. One addressing
technique called the flow space splitting technique suggests the provision of non-
overlapping flow spaces to tenants. Another addressing technique uses the fields not
required by the OF protocol to provide unique vSDN identification and addressing. This
technique allows the tenants to have the entire flow space.

3.3.2. Types of hypervisor architecture

Hypervisor architectures can be classified into centralized and distributed hypervisors
(A. Blenk et al., 2016). A centralized hypervisor architecture has a single central entity
which controls multiple network elements in the underlying physical network
infrastructure. Data centers employing this type of hypervisors have them installed on a

virtual machine on a standard server. On the other hand, a distributed hypervisor
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architecture logically separates its virtualization functions across multiple network

elements.

3.3.2.1. Flowvisor (FV)

FV (Rob Sherwood et al., 2009) was the first OF-based hypervisor used to virtualize,

slice and share SDN resources between multiple vSDN controllers. FV was developed

to isolate production network traffic from experimental network traffic allowing both

experimental and production networks to share the same physical SDN infrastructure.

The architecture and operation of FV are described below:

Architecture: FV is a centralized network hypervisor. It is a pure software which can
run in a virtual machine or on any standard server. FV occupies the virtualization
layer and controls networking traffic between the physical SDN hardware and the
VvSDN controllers. FV abstracts the SDN hardware resources from SDN controllers
by controlling their respective network resource views. FV supports OF 1.0 (ONF,
December 31, 2009).

Flowspace: FV uses the term flowspace to describe a non-contiguous sub-space in
the header field space. FV allocates a unique flowspace to every vSDN tenant to
ensure that the tenants are isolated from one another with non-overlapping
flowspaces. FV intercepts traffic between the tenants and the physical SDN
hardware to rewrite packet headers or generate OF error messages every time
tenants uses the same flowspaces for flow addressing.

Topology Isolation: FV creates network slices by isolating the network topology and
allows each SDN controller to view only the switches and ports under their control
i.e., their slices, (see Figure 3.11). For this, OF messages from the tenants are
rewritten and forwarded by the FV to their respective slices and vice versa.
Bandwidth Isolation: Even though a QoS mechanism for data pane isolation is not
specified in the OF 1.0 version, FV uses priority bits in the data packet to provide
data plane isolation in VLAN. These priority bits (3-bits) are used to set and map
data packets to eight distinct priority queues.

Flow Entries Isolation: Flow entries are limited resources. Therefore, FV monitors
the use of flowspaces, isolates flow entries from different network slices and
prevents VSDN controllers from using the flowspace of other vSDN controllers

when their flowspaces are fully utilized.
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e Control Channel Isolation: FV uses unique transaction identifiers for each tenant in
order to distinguish between network slices. FV equally modifies and rewrites
message identifiers whenever vSDN controllers use identical OF identifiers. Figure
3.10 shows network slicing with FV.
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Figure 3.10. Network slicing with Flowvisor (Rob Sherwood et al., 2009)

Nevertheless, FV experiences a flowspace problem because the same address space is
shared (sliced) between all tenant vSDN controllers. As a result, the flowspace of

tenants is very short and frequently overlaps.

3.3.2.2. OpenVirteX (OVX)

OVX (Ali Al-Shabibi et al., 2014) is a decentralized hypervisor built on the concept
of FV. OV X uses the physical SDN hardware to create virtualized SDN functionalities.
OVX provides topology virtualization and address virtualization. The Address
virtualization is used by OVX to tackle the flowspace problem in FV by providing full
header fields spaces to individual virtual SDN controllers.

The architecture and operation of OV X are described below:

e Architecture: OV X is a pure software-based hypervisor that supports OF 1.0 (ONF,
December 31, 2009) and Oracle Java Version 7 (James Gosling, Bill Joy, Guy
Steele, Gilad Bracha, & Alex Buckley, 2013). OVX can be installed on any
computing platform or standard server in a data center. OVX creates virtual
networks that are more resilient to node and link failures by rewriting the MAC
addresses of physical SDN links and switches. This allows the same network
infrastructure to be used simultaneously by multiple tenants. Figure 3.11 shows the
OVX system architecture.

e Address Isolation: Virtualization in OVX is better than that in FV because OVX
rewrites the tenants’ IP addresses and the MAC addresses of physical SDN switches
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to identify vSDN tenants instead of using packet header fields as FV does. This
process increases the available flowspace for tenants.

e Topology Abstraction: OVX is not a transparent hypervisor because it intercepts and
answers to the link layer discovery protocol messages and other topology discovery
processes. This prevents the tenant vSDN controllers from viewing the entire
physical underlying network. OVX can create “big switches” by merging multiple

physical switches together.
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Figure 3.11. OpenVirteX system architecture (Al-Shabibi et al., 2014)

Comparing OVX and FV (Al-Shabibi et al., 2014) shows that OV X performs better
and delivers a more robust SDN virtualization. However, virtual network creation and
configuration with OV X is very difficult and requires manual configurations from the
network administrator. For this reason, we proposed automatic virtual network
configuration module called AUTOVNET to rapidly create and configure virtual
networks using OV X.

Section 4 provides more details on the drawbacks of OVX and explains how
AUTOVNET is used to automate the creation and configuration of virtual SDN
networks using OV X.

3.4. Review of available vSDN solutions with OpenFlow

Several network virtualization solutions have been implemented with OF (Ahmed

Abdelaziz et al., 2016). In this section, we review some of these implementations and

their limitations.
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VeRTIGO proposed by R. Doriguzzi et al. (Corin, Gerola, Riggio, Pellegrini, &
Salvadori, 2012) applied proxy virtualization to facilitate the design of NV networking
platform with OpenFlow. VeRTIGO improved on Flowvisor to provide customized
virtual topologies where different network resources could be allocated to tenants
depending on their service level requirements (packet loss or maximum latency).
VeRTIGO also allowed customers to either select between topology customization or
routing policing. However, VeRTIGO has the same limitation as Flowvisor, and could
not provide a full isolated address space to each tenant.

In (Jin et al., 2017), the authors used OVX to virtualize optical networks based on
bandwidth availability. They proposed an Optical-OpenVirteX (O-OVX) architecture
consisting of two main modules, Topology Discovery (TD) and Bandwidth on Demand
(BoD) modules. The TD module collects information (optical devices, ports and links)
from the physical network, whereas the BoD module maps the available network
resources and performs virtual network resource allocation. However, this design is
difficult to implement since it uses the Network Embedder module of OV X to receive
vSDN requests from tenants.

Similarly, W. Jeong and al. in (Jeong, Yang, Kim, & Y00, 2017) used OV X to design
an efficient Big Link Allocation Scheme (BAS) for vSDN. A Big link in vSDN is a
single virtual link created by mapping several switches and links. BAS reduces
unnecessary reallocation of resources, provides big links with a greater throughput and
mitigates VSDN performance degradation. However, BAS lacked proper fault detection
capabilities.

The configuration of virtual networks using OV X is very complex and tedious due to
lack of automation. This is because the network administrator has to configure the
virtual networks manually. Motivated by the limitations of the existing research in the
literature, we propose AUTOVNET which replaces the Network Embedder of OVX
(Al-Shabibi et al., 2014) and automatically creates and configures virtual networks from
a simplified vSDN request. In addition, AUTOVNET has fault-detection features to
ensure that virtual networks are created and configured using faultless physical

resources.
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4. AUTOVNET - AUTONOMOUS VIRTUAL NETWORK SYSTEM

In this chapter, we propose an autonomous virtual network management system
called AUTOVNET, describe its implementation and specify its advantages over the
legacy OV X system. AUTOVNET uses the OVX hypervisor to configure virtual SDN
networks. OVX is pure software implemented in Python and has two main advantages
in NV, namely, address virtualization and topology virtualization (see Sec. 3.3.2.2).

Traditional OVX requires manual inputs from the user or network administrator to
configure virtual networks on a given underlying network topology. This is the main
reason setting up even the smallest virtual networks using OV X takes a lot of efforts. As
a result, OVX developers designed the network embedder module (see Figure 3.11) to
map the virtual topology to physical resources and rapidly create virtual networks based
on the user requests.

Nevertheless, the network embedder module did not solve the problem of speeding up
virtual network configurations for larger network topologies, since it equally required
manual configurations from the network administrator. Therefore, larger network
architectures required more complex manual configurations (vSDN request). This
configuration instruction is essentially a script that specifies the MAC addresses and
port information of switches and hosts and how these resources interconnect (link or
node mapping information). Consequently, configuring virtual networks on large
complex networks using OVX required large complex vSDN request scripts which are
time-consuming and challenging to code.

AUTOVNET introduces a novel approach to solve these problems by automating the
virtual network configuration process and minimizes manual instructions. The vSDN
request required by AUTOVNET is extremely simplified, and regardless of the
topology of the underlying network, the network administrator must only specify the
MAC addresses of the source host and the destination host in the script. With
AUTOVNET, the network administrator does not need to know or indicate the MAC
addresses of the edge switches (switches to which the source and destination hosts are
directly connected), intermediate switches (switches connecting the source and
destination hosts), and port information. AUTOVNET automatically fetches this

information.
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4.1. AUTOVNET Management Functions

AUTOVNET is an automatic virtual network management and orchestration system
that is attached to the OV X architecture (Figure 3.11) to replace the network embedder
module of OVX.

Amongst the five management areas of cognitive networks described in Sec. 2.3,
AUTOVNET can perform three of them, namely configuration management, fault

management, and performance management.

4.1.1. AUTOVNET: configuration management

AUTOVNET automatically monitors the underlying physical network and collects
information like MAC addresses of switches and hosts, port numbers, and link
information of the entire network. AUTOVNET uses the vSDN request from the
network administrator to create and configure an OVX “Big Switch”. A “Big Switch” is
a single virtual switch that is created from multiple physical switches. In other words,
the tenant views a single switch representing the underlying physical network. This
technique reduces the configuration complexity of virtual networks and creates
redundant network links within the virtual switch. Moreover, AUTOVNET assigns a

controller to manage and control the virtual network.

4.1.2. AUTOVNET: fault management

AUTOVNET differs from other virtualization modules described in Sec. 3.4 because
it has a built-in fault detection mechanism. Traditionally, OVX abstracts physical
network resources to create virtual networks without checking whether they might be
working properly or not. As a result, if we abstract a broken physical link or damaged
switch to create our virtual node, OVX will create a faulty virtual node. Consequently,
this virtual network will not be able to transmit data traffic between the hosts. To avoid
this type of situations, AUTOVNET performs a pre-virtualization fault analysis to
ensure that all switches and links are functioning properly and lists all potential faulty

resources to avoid using them to create virtual networks.

4.1.3. AUTOVNET: performance management

AUTOVNET uses real-time network data (packet delay, number of packets on links)
to perform congestion analysis. This analysis is used to identify congested routes in the
underlying physical network. After this analysis, AUTOVNET uses resources from the
least congested route to create the virtual network. It should be noted that a “route” is
made up the switches connecting the source host to the destination host. Congestion
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analysis is particularly useful in large complex networks where multiple routes connect
the source and destination hosts. Having the ability to determine which route is the best
will provide a great advantage and AUTOVNET accomplishes this task.
4.2. AUTOVNET Architecture

AUTOVNET simplifies the configuration of virtual networks using OpenVirteX
(OVX). Figure 4.1 shows the architecture of AUTOVNET. AUTOVNET is an
automatic virtual network management and orchestration system that is attached to the

OV X architecture in Figure 3.12 to replace the network embedder module of OV X.
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Figure 4.1. AUTOVNET system architecture

AUTOVNET is pure software implemented in Python programming. It has two main
components: MNET and VNET.

4.2.1. MNET module

The MNET module is directly connected to the physical network. It monitors the
underlying hardware, collects, updates and stores network information in the Network
Information Database (NID). This database is a repository containing information about
all hardware resources and their features, i.e., MAC addresses and port attachment
numbers of all hosts and their corresponding edge switches, switch-to-switch
connection information and bandwidth capacity of the links. The MNET module can

receive real-time Wireshark data to create other databases and performs other analyzes
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such as link budget calculation and deep packet inspection to determine potential
congested links and failing hardware resources.

4.2.2. VNET module

The VNET receives and validates vSDN requests from the network administrator
(source and destination host MAC addresses) and uses the NID and other MNET-
generated databases to make resource allocation and path selection decisions. It
automatically generates a configuration command to instruct OVX to create and
configure the appropriate virtual network for the source and destination hosts. The
VNET isolates physical resources for the creation of virtual networks, manages the
lifecycle and topology of virtual networks, and assigns a specific SDN controller to
manage and control routing and forwarding in each virtual network.

Thus, the MNET and VNET components provide AUTOVNET with cognitive
capabilities like sensing, adapting, and learning capabilities making AUTOVNET a

complete cognitive system.

4.3. AUTOVNET Implementation

An MSI PL627RC Computer with Intel ® Core ™ i7 CPU @ 2.80 GHz, RAM: 8:00
GB, Ubuntu 18.04 as Host Operating System is used as the computing platform in this
research. Mininet V2.2 is used to design and test the SDN network topologies.
Floodlight (\V2.1.2) is used as the SDN Controller. Both AUTOVNET modules (MNET
and VNET) are programmed in Python 3.7.

The three major tools used to design and test AUTOVNET, Mininet (to create and
test the SDN networks), Floodlight (the SDN controller), and Wireshark (to collect data
from the SDN network) are described in the following subsections.

4.3.1. Mininet and network topology design

Mininet is an SDN emulator software. Emulators (Wang, 2014) are commonly used
to recreate or replicate the behavior of real networks. This is very useful for research,
testing, learning, development, debugging, and prototyping SDN networks on a single
computer. Mininet supports OpenFlow and uses a process-based virtualization method
to create a network of virtual controllers, switches (Open vSwitch), hosts and links. It
runs on standard Linux network software and allows network engineers to use Python
scripts to create, design, and test custom topologies. Figure 4.2 shows the Fat Tree

topology used for our analysis in this research.
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Figure 4.2: Fat tree topology

Table 4.1. MAC addresses of the switches and hosts

Network Element Mac Address Description
S17 00:00:00:00:00:00:00:11 Core Switch
S18 00:00:00:00:00:00:00:12 Core Switch
S1 00:00:00:00:00:00:00:01  Edge Switch
S2 00:00:00:00:00:00:00:02 = Edge Switch
S3 00:00:00:00:00:00:00:03 = Edge Switch
S4 00:00:00:00:00:00:00:04 = Edge Switch
S21 00:00:00:00:00:00:00:15 Switch
S10 00:00:00:00:00:00:00:0a Switch
S11 00:00:00:00:00:00:00:0b Switch
S22 00:00:00:00:00:00:00:16 Switch
h1l 00:00:00:00:00:01 Host
h2 00:00:00:00:00:02 Host
h3 00:00:00:00:00:03 Host
h4 00:00:00:00:00:04 Host
h5 00:00:00:00:00:05 Host
h6 00:00:00:00:00:06 Host
h7 00:00:00:00:00:07 Host
h8 00:00:00:00:00:08 Host
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This topology contains 8 hosts, 10 switches, and 20 links. Table 4.1 shows the MAC
addresses of the hosts and switches in the network. Each host is directly connected to a
single switch called the edge switch.

This network topology provides two routes through which the hosts can communicate
with one another. This double routing option is very important because if one of the
routes is broken, the other can be used as backup. For this reason, this type of network
topology is often used to create fast, fault-tolerant data centers (Lebiednik, Mangal, &
Tiwari, 2016)

Similarly, this topology is used in this analysis to test AUTOVNET in a faulty
network scenario, where one route is faulty (contains broken links or inactive switches).
In this case, AUTOVNET should detect the faulty route and use the other backup route

to create the virtual network.

4.3.2. Floodlight

The Floodlight SDN controller was used in our analysis. Table 3.1 shows how
Floodlight compares to other SDN controllers like OpenDayLight, ONOS, NOX, etc.

Floodlight is an open source OpenFlow controller developed by Big Switch
Networks. An active developer community, very good documentation, and minimal
dependencies make this controller easy to build, update, run and use. Floodlight is
written in the Java programming language and licensed by Apache. Floodlight can
manage both OpenFlow and non-OpenFlow networks and supports cloud orchestration
platforms.

$00:00:00:00:01
$00:00:00:00:00:00:00:12

h10.0.0.7

h10.0.0.1

Figure 4.3. Network topology (fat tree) viewed by Floodlight
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The Floodlight has a Web GUI which allows network engineers to view the overall
network topology, all network resources (switches, hosts), switch flow tables, inter-
switch links, and controller state information. The Web GUI also provides some
OpenFlow statistics in an easy to read tabular format that can be reached from
http://<controller-ip>:8080/ui/index.html. Figure 4.3 shows the fat tree topology in
Figure 4.2 represented in the Floodlight Web GUI.

4.3.3. Wireshark

AUTOVNET can analyze data collected by Wireshark to carry out congestion
analysis and deep packet inspections. These analyses are used for load balancing,
effective resource utilization, and best route selection for virtualization.

Wireshark is the most popular open source network packet analyzer (Banerjee,
Ashutosh, & Mukul, 2010). It is used by network professionals as a packet sniffing and
logging tool. Wireshark can capture hundreds of communication protocols and as a
result, it is mostly used for network troubleshooting, communication software, and
protocol developments. A GUI is used to view, browse, and analyze network data.
Wireshark can be installed on most computing platforms like Linux, Windows, and
UNIX. Figure 4.4 shows captured network data in the Wireshark GUI.

02 LLDP 64 TTL = 120

23 7 LLDP 64 TTL = 120

24 .7 6 N LLDP 64 TTL = 120

25 55.102416744 00:00:00_00:00:01 Broadcast ARP 42 Who has 16.0.6.5? Tell 18.0.8.1

26 55.102425235 00:00:00_00:00:05 00:00:00_00:00:01 ARP 42 10.0.0.5 is at 00:00:00:00:00:05

27 55.138125232 10.60.0.1 10.6.8.5 ICMP 98 Echo (ping) request id=ex58fe, seq=27/6912, ttl=64 (reply in 28)
28 55.138145742 10.0.0.5 10.0.0.1 ICMP 98 Echo (ping) reply id=ex58f@, seq=27/6912, ttl=64 (request in 27)
29 55.150076292 ICMP 98 Echo (ping) request id=ex58fe, seq=28/7168, ttl=64 (reply in 30)
30 55.150095389 ICMP 98 Echo (ping) reply id=ex58fe, seq=28/7168, ttl=64 (request in 29)

31 56.101685770
32 56.101698832
33 56.110967784

34 57.115466843

98 Eche (ping) request
ping) reply

LLDP 64 TTL = 120

id=ex58f0,
1d=0x58f6

s5eq=29/7424,

s5eq=29/7424

ttl=64 (reply in 32)
ttl=64 (request in 31

ICMP 98 Echo (ping) request id=ex58fe, seq=30/7680, ttl=64 (reply in 35)
35 57.115476899 ICMP 98 Eche (ping) reply id=0x58f0, seq=30/7680, ttl=64 (request in 34)
36 58.139649826 ICMP 98 Echo (ping) request 1id=ex58f@, seq=31/7936, ttl=64 (reply in 37)

ICMP 98 Echo (ping) reply id=ex58f@, seq=31/7936, ttl=64 (request in 36)

37 58.139672757
38 58.310819875

39 59.163575589

LLDP 64 TTL = 120
98 Echo (ping) request

id=ex58fe,

seq=32/8192,

ttl=64 (reply in 4@)

40 59.163598248 ICMP 98 Echo (ping) reply id=ex58fe, seq=32/8192, ttl=64 (request in 39)
41 60.187741669 TCMP 98 Echo (ping) request id=0x58f@, seq=33/8448, tt1=64 (reply in 42)
42 60.187764558 ICMP 98 Eche (ping) reply id= ), seq=33/8448, ttl=64 (request in 41)
43 60.219553381 00:00:00_00:00:05 100_00:00:01 ARP 42 who has 16.0.8.1?7 Tell 108.0

44 60.220574674 00:00:00_00:00:01 00:00:05 ARP 42 10.0.0.1 is at 00:00:00:00:00:01

45 60.510475632 b 0:56:T6 ):00:01 LLDP 64 TTL = 120

46 61.211656457 ICMP 98 Eche (ping) request 1id=@x58f@, seq=34/8704, ttl=64 (reply in 47)
47 61.211672571 ICMP 98 Echo (ping) reply id=ex58Te, seq=34/8704, ttl=64 (request in 46)
48 62.235702864 ICMP 98 Echo (ping) request 1id=0x58f@, seq=35/8960, ttl=64 (reply in 49)
49 62.235726227 ICMP 98 Echo (ping) reply id=ex58fe, seq=35/8960, ttl=64 (request in 48)

Figure 4.4, Wireshark GUI with captured network data
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4.4. AUTOVNET Operation
Figure 4.5 shows a flowchart of the AUTOVNET operation.

vSDN Request ————————|
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Best Route
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¥
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l

Best Route
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Figure 4.5. Flowchart of AUTOVNET operation
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Figure 4.6 shows the AUTOVNET vSDN configuration algorithm

Algorithm 1: AUTOVNET vSDN configuration algorithm

Input : SH. DH. WS
Output: 5D Ngp

/+* Fetch Network Information wf
Create Network Information Database (N 1)

/+ Metwork Mapping «f
Create Switch Route Database (SRD)
/% Select Virtualization type wf

if Random — Virtualization. then

/+ Random Route Selection “f
BSR = ARD*
else if Smart — Virtualization, then
/» Switch Interface Mapping wlf
Create Switch Interface Database (S0}
f+ Bective Route Mapping wf
Create Active Route Database { ARD)
/% Faulty Route Detection “f
if ARD < SRD, then
f/+ Fault detected wf
BSR = ARD**
else if ARD = SRD. then
/* Healthy network wf
BSR = ARD=**
end
end
end
end
[+ vEDN Confiqguration via OVX «f

vSDNsp = OVX (BSR).

Figure 4.6. AUTOVNET vSDN configuration algorithm

In the following, we discuss the various operations or steps shown in Figure 4.5.
These steps are carried out by AUTOVNET to automatically detect faults in the
network (e.g., broken links), isolate healthy network resources and create virtual
networks.

Since AUTOVNET and OVX are both written in Python, AUTOVNET uses OVX as
a Python library to automatically configure and create a virtual network between two
hosts in the network,

The AUTOVNET algorithm in Figure 4.6 requires three inputs denoted by SH
(source host MAC address), DH (destination host MAC address), and WS (Wireshark
data). The vSDN request only indicates SH and DH.
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The goal of AUTOVNET is to select the Best Switch Route (BSR) which is the
shortest, healthiest, fastest, and least congested route in the network. The BSR contains
switches which are used to create a virtual network between the SH and DH using
OVX. The output of AUTOVNET is denoted by vSDNsp, which represents the virtual
network created by OV X for SH and DH communications.

Mathematically, this output is given by

vSDN¢p, = OVX(BSR). (4.1)

The following steps describe the operation of AUTOVNET.

e Fetch network information

During the process known as sensing, AUTOVNET automatically monitors and
fetches network data from the underlying physical resources via the link layer discovery
protocol to create the Network Information Database (NID).

The fat tree topology in Figure 4.2 is used as the underlying network topology in this
study. Figure 4.7 shows a screenshot the NID when AUTOVNET is executed in Spyder
IDE. The NID contains information on the number of switches and hosts in the network,
as well as the MAC addresses of the hosts and their corresponding edge switches,
switch-to-switch connections and port attachment numbers.

Note that in this section, the operation of AUTOVNET is illustrated using
screenshots from Spyder IDE.

number of switches: 1@
number of Hosts: 8

[["host mac_address' ' Connected Switch ' ' Port'
['00:00:00:00:00:02"' '00:00:00:00:00:00:00:01" '
['66:00:00:00:00:04' '00:00:00:00:00:00:00:02"
['00:00:00:00:00:07' '00:00:00:00:00:00:00:04"
['66:00:00:00:00:01' '00:00:00:00:00:00:00:01"
['60:00:00:00:00:06"' '60:00:00:00:00:080:08:83"
['00:00:00:00:00:05"' '00:00:00:00:00:00:00:03"
['60:60:00:00:00:08"' '60:00:00:00:00:00:08:84"
['00:00:00:00:00:03"' '00:00:00:00:00:00:00:02"

L e N L)
[ U

1]

[["Switch Source mac', ' S Port', " Destination mac ', 'D_Port'],
['60:00:00:00:00:00:00:04", 'BO:0P:00:00:00:00:00:0b", 2],
['00:00:00:00:00:00:00:02", 'P0:00:00:00:00:00:00:15", 2],
['00:00:00:00:00:00:00:04", '00:00:00:00:00:00:80:16", 1],
['e0:0P:00:00:00:00:00:11", 'DO:00:00:00:00:00:00:15", 3],
['e0:00:00:00:00:00:00:03", '00:00:00:00:00:00:00:16", 2],
['60:00:00:00:00:00:00:01", 'BO:0P:00:00:00:00:00:0a", 1],
['00:00:00:00:00:00:00:01", 'P0:00:00:00:00:00:00:15", 17,
['00:00:00:00:00:00:00:12", '00:00:00:00:00:00:80:16", 3],
[ 'PO:00:00:00:00:00:00:12", 1],
[ '00:00:00:00:00:00:80:8a", 2],
[ 'BO:0R:00:00:00:00:00:11", 2],
[ 'P0:00:00:00:00:00:00:0b", 1]]

'90:00:00:00:00:00:00:0a",
'60:00:00:00:00:00:00:02",
'80:00:00:00:00:00:00:0b",
'90:00:00:00:00:00:00:03",

LT R e e N N

Figure 4.7. Network Information Database (NID) viewed in Spyder IDE
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e Network mapping

After the NID is created, AUTOVNET is ready to receive the vSDN request (SH and
DH) from the network administrator. In AUTOVNET, the vSDN request is simplified
compared to the one used in traditional OVX hypervisor. Furthermore, the vSDN
request in AUTOVNET remains unchanged regardless of the underlying network
topology.

The inputs SH and DH, together with the NID are used by AUTOVNET to analyze
the various connections in the physical network topology and create a model
representing the connections in the underlying network. This model shows the
connections between the physical switches in the network.

Given a vSDN request containing the MAC addresses of h1: 00:00:00:00:00:01 as
SH and h5: 00:00:00:00:00:05 as DH, the network model generated by AUTOVNET to
present the connections between the physical switches in the network is shown in Figure
4.8. In this model, the “green” dots represent the physical switches in the network. Note

how Figure 4.8 is very similar to Figure 4.3 (Floodlight’s representation of the network
topology).

Figure 4.8. Network representation of the physical network

Using this model, AUTOVNET computes the shortest routing options between SH
and DH. The topology used in this analysis offers two routing options between any
given SH and DH.

The MAC addresses of the switches in each route are used to generates the Switch
Route Database (SRD). Table 4.2 shows the SRD generated for a VSDN request
containing hl as SH and h5 as DH.
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Table 4.2. Shortest Route Database (SRD) for hl and h5
Route 1 Route 2
00:00:00:00:00:00:00:01 = 00:00:00:00:00:00:00:01
00:00:00:00:00:00:00:0a = 00:00:00:00:00:00:00:15
00:00:00:00:00:00:00:12 = 00:00:00:00:00:00:00:11
00:00:00:00:00:00:00:16 = 00:00:00:00:00:00:00:0b
00:00:00:00:00:00:00:03 = 00:00:00:00:00:00:00:03

The SRD in Table 4.2 shows the two routing options (Route 1 and Route 2) between
hl and h5 in this network topology. For a different network topology offering, for
instance, five shortest routing options between the source and destination hosts, the
corresponding SRD generated by AUTOVNET will contain five routes.

From Table 4.1, the MAC addresses in Route 1 correspond to switches S1, S21, S17,
S11, and S3. Similarly, the MAC addresses in Route 2 correspond to switches S1, S10,
S18, S22, and S3. Switches S1 and S3 are called edge switches and appear in both
routes because they are directly connected to hl and h5 (see Figure 4.2).

Therefore, the network mapping process uses the MAC addresses of the source and
destination hosts, and the Network Information Database (NID) to create Switch Route
Database (SRD).

Once the SRD is created, AUTOVNET allows the network administrator to select
between two virtualization choices, i.e., either random or smart virtualization.

These two choices are explained in the following subsections.

4.4.1. Random virtualization

Random virtualization triggers a process known as random path selection.
e Random route selection

In this process, AUTOVNET randomly selects one routing option from the SRD. The
randomly selected route becomes the Best Switch Route (BSR).

If, for example, Route 1 in SRD is selected randomly, then, Route 1 is considered the
best routing option (BSR) between hl and h5. The switches of Route 1 are isolated and
dedicated to the virtual network. AUTOVNET automatically uses this BSR to configure
OV X to create a vSDN connection between hl and h5 as in E.4.1.

After the execution of AUTOVNET in Spyder IDE, Figure 4.9 shows the random

network virtualization creation steps.

46



wxsxesesx ySDN Request Phase *xswessssx
Enter MAC address of Source
00:00:00:00:00:01

Enter MAC address of Destination

00:00:00:00:00:05]

T *k Rk

Create Switch Route Database

Route * 1 *

['00:00:00:00:00:00:00:01", '00:00:00:00:00:00:00:0a"', '00:00:00:00:00:00:00:12", '00:00:00:00:00:00:00:16', '00:00:00:00:00:00:00:03"]

Route * 2 *

['00:00:00:00:00:00:00:01", '80:00:00:00:00:00:00:15', '0A:A0:00:00:00:00:00:11", '00:00:00:00:00:00:00:6b

whererkakss DECISTON PHASE #dtkiisssss
CHOICE [1] for RANDOM VIRTUALIZATION (Works on any Topology)
CHOICE [2] for SMART VIRTUALIZATION (Specific to Fat-Tree Topology; Wireshark Data Needed)

T * Tt

SELECT 1 or 2

1

RANDOM VIRTUALIZATION SELECTED

FhEREXEREXINETWORK VIRTUALTZATION STARTS**kdkkthiiiis
CONNNECTING TO OPENVIRTEX

Setting up virtual network between ©0:00:00:00:00:01 and ©0:00:00:00:00:05 .....

', '00:00:00:00:00:00:00:03']

Virtual network has been created (network_id {u'mask': 16, u'networkAddress': 167772168, u'controllerurls': [u'tep:localhost:10608'],

u'tenantId': 1}).
Network (tenmant_id 1) has been booted

FHEREXEXEXINETWORK VIRTUALIZATION COMPLETED®*#*#essksses

Figure 4.9. AUTOVNET random virtualization

In Figure 4.9, the vSDN request contains SH and DH as 00:00:00:00:00:01 and
00:00:00:00:00:05, respectively. Using this information, AUTOVNET generates the
SRD containing Route 1 and Route 2. Selecting random virtualization allows
AUTOVNET to choose from either one of these routes to create and configure a vSDN

connection for SH and DH using OV X.

To test whether a vSDN network is created, one can use the ping command in

Mininet. Figure 4.10 shows this step for the case studied; specifically, “il ping -¢3 h5”

command is executed in Mininet.

Hosts configured with IPs, switches pointing to OpenVirteX at 127.

mininet> h1l ping -c3 hs
PING 16.0.8.5 (10.0.08.5) 56(84) bytes of data.
64 bytes from 10. icmp_seq=1 ttl=64 time=26.4 ms

0.0.5:
64 bytes from 10.8.0.5: icmp_seq=2 ttl=64 time=0.827 ms
0.0.5:

64 bytes from 10. icmp_seq=3 ttl=64 time=0.0899 ms

--- 10.0.06.5 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2012ms

rtt min/avg/max/mdev = ©.099/9.116/26.424/12.242 ms
mininet=

Figure 4.10. Testing AUTOVNET random virtualization in Mininet
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From Figure 4.10, it is seen that AUTOVNET has successfully created a vSDN
connection between hl and h5 since all pings between hl and h5 are successfully
transmitted and received with 0% packet loss.

Random virtualization is very fast and works with any given network topology. On
the other hand, random virtualization does not check for faults in the underlying
network and simply creates virtual networks between two hosts using the switches from
a randomly chosen SRD route.

Therefore, if the chosen route has the broken link or an inactive switch, the virtual
network created by AUTOVNET will be faulty by default. To avoid this situation,
AUTOVNET offers a second virtualization option called smart virtualization which can
detect faulty links and inactive switches in the underlying network and avoid using
these resources when creating virtual networks. This virtualization is described as

follows.

4.4.2. Smart virtualization

Smart virtualization requires another input from the network administrator which is
Wireshark data (WS).

When the network is created in Mininet, executing the “pingall” command allows
Wireshark to collect datagram from the network interfaces called WS. WS is analyzed
by AUTOVNET to detect faults, congested and slow routes in the network.

Smart virtualization allows one to test AUTOVNET in two different scenarios: (a) a
healthy network scenario in which all shortest routing options in the network are
operational, in which case AUTOVNET determines and selects the least congested and
fastest route as the best shortest route, and (b) a faulty network scenario in which one or
more links in the network are broken, in which case AUTOVNET detects the faulty
route and uses the other backup route for virtualization.

Using the network topology in Figure 4.2, the Wireshark data collected from a

healthy network and a faulty network are plotted in Figure 4.11 and Figure 4.12.
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Figure 4.11. Wireshark data plot from a healthy network

140

100

sleth] s2-ethd s3-eth? s17-eth2<2-eth? s2-ethl sll-ethl s3-ethd sd-ethlsl0-eth2sll-ethdsl0-eth3 sd-eth? slB-eth s3-cth] s22-eth1s22-eth3
Physical Interfaces of Switches

d-ethd sl-eth? sl8-ethlslL-eth2s22-eth? s3-eth3 sl0-ethl sl-ethd sd-eth3 s2-eth3 sl-eth3 s2l-ethls21-eth?

Figure 4.12. Wireshark data plot from a faulty network

The leftmost bar in Figure 4.11 shows the activity on interface s10-ethl which is the
number of packets at switch S10 at Port 1. Since every connected port on a switch is
powered by an interface, every Switch-to-Switch link has two interfaces (see Figure
4.2). For example, link S21 S17 consists of interfaces s21-eth3 and s17-eth1, where eth3
and eth1 indicate their respective ports.

Notice that Figure 4.12 has fewer bars compared to Figure 4.11. This is because
faulty links have inactive interfaces.

Since we use the network topology in Figure 4.2, the NID remains unchanged. A
vSDN request containing the MAC addresses of h2: 00:00:00:00:00:02 as SH and h8:
00:00:00:00:00:08 as DH, generates the SRD in Table 4.3 during network mapping.
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Table 4.3. Shortest Route Database (SRD) for h2 and h8
Route 1 Route 2
00:00:00:00:00:00:00:01 ' 00:00:00:00:00:00:00:01
00:00:00:00:00:00:00:0a ' 00:00:00:00:00:00:00:15
00:00:00:00:00:00:00:12 = 00:00:00:00:00:00:00:11
00:00:00:00:00:00:00:16 ' 00:00:00:00:00:00:00:0b
00:00:00:00:00:00:00:04  00:00:00:00:00:00:00:04

Under smart virtualization, after network mapping, AUTOVNET moves to the switch

interface mapping stage.

e Switch interface mapping

Using only Wireshark data (WS), AUTOVNET cannot determine if a switch is
healthy or defective. This is because WS only indicates the name of interfaces (e.g. s1-
eth3) without referring to the MAC addresses of the switches. Similarly, NID indicates
the MAC addresses of the switches without referring to the interfaces. To resolve this
problem, AUTOVNET carries out a switch interface mapping process. During this
process, AUTOVNET maps all the interfaces in WS to switches in NID. Consequently,
AUTOVNET identifies all the switches with active interfaces and stores the MAC
addresses of these switches in a database called the Switch Interface Database (SID).

This mapping allows AUTOVNET to use the NID and WS to determine whether a
switch or link is healthy or faulty since a missing interface in WS indicates that the
corresponding link or port on the switch is defective.

e Active route mapping

At this point, the SRD displays the switches in the routing options between SH and
DH, and the SID shows all the switches with healthy interfaces.

To determine whether the switches in SRD are active or healthy, AUTOVNET
checks to see if these switches are also present in SID during a process called active
route mapping. During this process, routes in SRD containing switches also found in
SID, are stored in the Active Route Database (ARD).

The ARD contains routes with both SRD and SID switches. Routes in SRD with non-
SID switches are rejected. This is how AUTOVNET detects faulty routes in the
underlying network topology. Mathematically, the active route mapping compares SRD

and SID which is an intersection operation, that is,
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ARD = SRDn SID 4.2)

From E.4.2, we deduce that the size of ARD should be less than or equal to the size
of SRD. That is,

s(ARD) < s(SRD) (4.3)

where s(SRD) is the size of SRD. For example, the SRD in Table 4.3 has a size of two.

E.4.3 leads to two possibilities. Either s(ARD) is less than s(SRD), in which case
fault is detected and one or more routing options in SRD are eliminated, or s(ARD) is
identical to s(SRD), in which case no fault is detected and all the routing options in
SRD are healthy.

We describe the behavior of AUTOVNET under these two possibilities in the
following subsections.
4.42.1. Case 1: faulty network

In a faulty network scenario, S(ARD) is less than s(SRD). That is,

s(ARD) < s(SRD) (4.4)
E.4.4 indicates that one or more routes in SRD are not in ARD because they
contain inactive or faulty switches.

After the execution of AUTOVNET in Spyder IDE, Figure 4.13 shows the smart

network virtualization creation steps for a faulty network scenario.
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********* VSDN Request Phase *s*s#xssrex
Enter MAC address of Source
00:00:00:00:00:02

Enter MAC address of Destination

60:00:00:00:00:08
****************************************

Create Switch Route Database

Route * 1 *

['00:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:0a', '00:00:00:00:00:00:00:12"', '00:00:00:00:00:00:00:16', '00:00:00:00:00:00:00:04"]
Route * 2 *

['00:00:00:00:00:00:00:01", '00:00:00:00:00:00:00:15', '60:00:00:00:00:00:00:11', '60:00:00:00:00:00:00:0b', '60:00:00:00:00:00:00:04"]
************ DECTSTON PHASE ok ki i

CHOICE [1] for RANDOM VIRTUALIZATION (Works on any Topclegy)
CHOICE [2] for SMART VIRTUALIZATION (Specific to Fat-Tree Topology; Wireshark Data Needed

*****************************************

SELECT 1 or 2

2

SMART VIRTUALIZATION SELECTED

*********** Importing Wireshark Data *#*swxxsses

Checking for Core Active Switches
Switch s21 is active

switch s17 is inactive -

Witch s11 is active
Switch s18 is active

Switch s18 is active

Switch s22 is active

Create Switch Interface Database

['e0:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:02"', '00:00:00:00:00:00:00:03', '00:00:00:00:00:00:00:84"', '00:00:00:00:00:00:00:15",
'06:00:00:00:00:00:00:6b", '60:00:00:00:00:00:00:0a', '00:00:00:00:00:00:00:12", '00:08:00:00:00:00:00:16']

Shortest Route Status

Route 1 is 0Ok

Route 2 1is broken

Create Active Route Database
[['06:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:0a"', '00:00:00:00:00:00:00:12', 'G0:00:00:00:00:00:00:16", 'G0:00:00:80:00:00:00:04"']]

There is only 1 healthy routes between 80:00:00:00:00:02 and 00:00:00:00:00:08
Proceed with Network Virtualization
CONNNECTING TO OPENVIRTEX

Setting up virtual network between 80:00:00:80:00:02 and 00:00:00:00:00:08 .....

Virtual network has been created (network_id {u'mask': 16, u'networkAddress': 167772160, u'controllerUrls': [u'tcp:localhost:1e808'],
u'tenantId’: 1}).
Network (tenant_id 1) has been booted

Figure 4.13. AUTOVNET smart virtualization with a faulty network

To create a faulty network version of the network topology shown in Figure 4.2, the
link between the switches S21 and S17 is disabled using the “link S21 S17 down”
command in Mininet. Figure 4.12 shows the Wireshark data plot of the faulty network.

Using this data and a VvSDN request containing the MAC addresses
00:00:00:00:00:02 as SH and 00:00:00:00:00:08 as DH, which are the MAC addresses
of hosts h2 and h8, respectively, AUTOVNET generates the SRD in Table 4.3 which
shows the routing options (Route 1 and Route 2). Figure 4.13 shows that AUTOVNET
correctly detects network failures by indicating that switch s17 is inactive and Route 2
is broken. The ARD created by AUTOVNET is shown in Table 4.4.
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Table 4.4. Active Route Database (ASD) for h2 and h8 with switch s17 down

Route 1
00:00:00:00:00:00:00:01
00:00:00:00:00:00:00:0a
00:00:00:00:00:00:00:12
00:00:00:00:00:00:00:16
00:00:00:00:00:00:00:04

As predicted in E.4.4, the ARD in this case contains only Route 1. Route 2 was
eliminated since it contained the faulty link and the MAC address of the inactive switch,
S17,00:00:00:00:00:11 (see Table 4.3).

Therefore, Route 1 is considered as the best routing option (BSR) between h2 and h8.
The switches of Route 1 are isolated and dedicated to the virtual network and
AUTOVNET automatically uses this BSR to configure OVX to create a vSDN
connection between h2 and h8 as in E.4.1.

To test whether a vSDN network is created, one can use the ping command in
Mininet. Figure 4.14 shows this step for the case studied specifically “42 ping -c¢3 h8”
command is executed in Mininet.

biyiha@biyihatobie-Pc:~/mininet/mylabo/VN$ sudo python topologyV.py

:zizieizn:;g;{ig Tighhéps, switches pointing to OpenvirteX at 127.0.0.1:6633

PING 10.8.0.8 (10.0.8.8) 56(84) bytes of data.

64 bytes from 10.0.0.8: icmp_seq=1 ttl=64 time=25.5 ms
64 bytes from 10.08.0.8: icmp_seq=2 ttl=64 time=0.914 ms

64 bytes from 10.0.0.8: icmp_seqg=3 ttl=64 time=0.101 ms

--- 10.8.0.8 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2032ms
rtt minfavg/max/mdev = 0.101/8.844/25.519/11.795 ms

mininet=> [f

Figure 4.14. Testing AUTOVNET smart virtualization with faulty network

From Figure 4.14, it is seen that AUTOVNET has successfully created a vSDN
connection between h2 and h8 since all pings between h2 and h8 are successfully

transmitted and received with 0% packet loss.
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4.4.2.2. Case 2: healthy network
In a healthy network scenario, S(ARD) is identical to S(SRD). That is,

s(ARD) = s(SRD) (4.5)

E.4.5 indicates that there are several healthy routes in ARD. Therefore, AUTOVNET
performs congestion analysis to determine which route in ARD is the least congested.
e Congestion analysis

Using the network topology in Figure 4.2 and a VSDN request containing the MAC
addresses of h2: 00:00:00:00:00:02 as SH and h8: 00:00:00:00:00:08 as DH,
AUTOVNET generates the SRD in Table 4.3 which shows the two routing options
(Route 1 and Route 2). The data plotted in Figure 4.11 is collected from this healthy
network by Wireshark. AUTOVNET analyzes these data to determine the fastest and
least congested route. Table 4.5 shows the number of packets on the interfaces of SRD

routes.
Table 4.5. Number of packets on interfaces of Route 1 and Route 2
Interfaces 11 12 13 14 15 16 17 18

Route 1 145 145 175 175 175 175 104 104
Route 2 7 7 101 101 100 100 141 141

Figure 4.15 shows a plot of the total number of packets on the interfaces associated
with Route 1 and Route 2.

175 N Route 1

I I I I Route 2
1 2 3 4 5 & 7 8

Number of Interfaces

Number of Packets
\— = =
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2] ] 3 n =1

[
L

=

Figure 4.15. Congestion plots of SRD routes
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There are eight interfaces on both routes because each switch-to-switch connection
consists of two interfaces and the two routes in SRD (see Table 4.3) consist of four
switch-to-switch connections (five switches connected in series).

Figure 4.15 shows that Route 2 is the least congested routing option because it
contains fewer packets than Route 1.

For deep packet inspection analysis, we consider Internet Control Message Protocol
(ICMP) packets (echo request) time delays because ICMP packets are only generated by
the “ping” command. Other protocols’ packets (see Figure 4.4) include the Address
Resolution Protocol (ARP) and the Link Layer Discovery protocol (LLDP) which are
arbitrarily broadcasted across the network. Figure 4.16 shows the distribution of ICMP

packet time delay on Route 1 and Route 2.

300 Route 1 ~ mean: 0.0085, var: 0.000176
Route 2 ~ mean: 0.0040, var: 0.000022
250
200
150
100
5{:.
0 Hln
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 4.16. Distribution of ICMP packet time delays on healthy SRD routes

From Figure 4.16, the ICMP packet time delay distribution has the mean, 0.0040 and
variance, 0.000022 on Route 2, and the mean, 0.0085 and variance, 0.000176 on Route
1. These statistics indicate that the packets on Route 2 experience lesser delays than
those on Route 1.

Both Congestion and deep packet inspection analyses indicate that Route 2 is the
least congested and the fastest routing option compared to Route 1.

After the execution of AUTOVNET in Spyder IDE, Figure 4.17 shows the smart

network virtualization creation steps for a healthy network scenario.
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xkkxrsiss ySDN Request Phase *#*sssrxksx
Enter MAC address of Source
00:00:00:00:00:02

Enter MAC address of Destination

80:00:00:00:00:08
e e s e e s e e e e e e e e o o o e e o o e e ke

Create Switch Route Database

Route * 1 *

['e0:00:00:00:00:PO:00:01", 'GO:PO:00:00:00:00:00:0a', '60:00:00:00:00:00:00:12', 'PO:00:B0:00:00:00:00:16",

Route * 2 *

['00:00:00:00:00:00:00:01", '00:00:00:00:00:00:00:15', '00:00:00:00:00:00:00:11', '©0:00:00:00:00:00:00:0b",

Exekrkeserts DECISION PHASE *%**%sssksssss
CHOICE [1] for RANDOM VIRTUALIZATION (Works on any Topology)

CHOICE [2] for SMART VIRTUALIZATION (Specific to Fat-Tree Topology; Wireshark Data Needed
ek s ook o ek ok ok sk e

SELECT 1 or 2
2

SMART VIRTUALIZATION SELECTED

wasxxxxswsr  Importing Wireshark Data #ewsssswxssxx

Checking for Core Active Switches|
Switch s21 is active
Switch s17 is active
Switch si1 is active _
Switch s18 is active

Switch s18 is active
Switch s22 is active

Create Switch Interface Database

['00:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:02', '00:00:00:00:00:00:00:03', '00:00:00:00:00:00:00:04",

'00:00:00:00:00:00:00:11", '90:00:00:00:00:00:00:0b', '00:00:00:00:00:00:00:03', '00:00:00:00:00:00:00:12",
Shortest Route Status

Route 1 {is Ok

Route 2 is Ok

Create Active Route Database

[['eP:00:00:00:00:00:00:01"', '0O:00:00:00:00:00:00:0a', '00:00:00:00:00:00:00:12', '00:00:00:00:00:00:00:16",
['00:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:15', '00:00:00:00:00:00:00:11', '00:00:00:00:00:00:00:0b",

There are 2 healthy routes between 08:00:00:00:00:02 and 00:00:00:00:00:08
Proceed with Link Budget Analysis

Deep Packet Analysis

From ICMP Packets time of Arrival Analysis

Switch Link 2 is 0.0067499902297689235 seconds faster than the other paths

Therefore, Route 2 is Selected

['00:00:00:00:00:00:00:01', '00:00:00:00:00:00:00:15', '00:00:00:00:00:00:00:11', '00:00:00:00:00:00:00:0b",

#kaskxkx* A ENETHORK VIRTUALTZATION STARTS*#*###kssssss

CONNNECTING TO OPENVIRTEX

Setting up virtual network between 00:00:00:00:00:02 and 00:00:00:00:00:08 .....

virtual network has been created (network_id {u'mask': 16, u'networkAddress': 167772168, u'controllerurls':
u'tenantId': 1}).

Network (tenant_id 1) has been booted

FkdkkdkkdddANETWORK VIRTUALTZATION COMPLETED ** ks ks

'00:00:00:00:00:00:00:04"]

'00:00:00:00:00:00:00:04"]

'00:00:00:00:00:00:00: 15
'00:00:00:00:00:00:00:16']

'00:00:00:00:00:00:00:04"],
'00:00:00:00:00:00:00:04"]]

'00:00:00:00:00:00:00:04" ]

[u'tcp:localhost:10008'],

Figure 4.17. AUTOVNET smart virtualization for a healthy network

Figure 4.17 shows that in a healthy network scenario, all the switches are active and
the SRD generated by AUTOVNET is identical to the ARD. AUTOVNET uses these

databases to declare that the physical network is healthy. That is, all the switches are

active and the routing options (Route 1 and Route 2) are both operational.

With two active routing options, AUTOVNET must determine which one is the

fastest and least congested route. Following the congestion and deep packet inspection

analyzes described earlier, AUTOVNET computes that Route 2

and the fastest routing option (approximately 4.5ms faster).

As a result, Route 2 is selected as the BSR and its switches are dedicated and used to

create and configure the virtual network using OVX.
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The “ping” command is used in Mininet to test the created vSDN network. Figure
4.18 shows this step for the case studied specifically “A2 ping -c3 h8” command is

executed in Mininet.

biyiha@biyihatobie-Pc:~/mininet/mylabo/VN$ sudo python topologyV.py

Hosts configured with IPs, switches pointing to OpenVirteX at 127.8.0.1:6633
mininet> h2 ping -c3 h8

PING 10.0.0.8 (10.0.0.8) 56(84) bytes of data.

64 bytes from 10.0.0.8: icmp_seqg=1 ttl=64 time=32.2 ms

64 bytes from 10.0.0.8: icmp_seq=2 ttl=64 time=0.993 ms

64 bytes from 10.8.0.8: icmp_seq=3 ttl=64 time=0.100 ms

--- 10.6.6.8 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 0.100/11.105/32.224/14.937 ms

mininet=>

Figure 4.18. Testing AUTOVNET smart virtualization with a healthy network

Figure 4.18 shows that AUTOVNET has successfully created a vSDN connection
between h2 and h8 since all pings between h2 and h8 are successfully transmitted and
received with a 0% packet loss.

Smart virtualization in AUTOVNET offers two key advantages:

(@) Fault detection: In a network with faulty physical resources, smart virtualization
guarantees that the virtual networks created are operational. This is because smart
virtualization detects and disregards all faulty network resources (switches and links)
and uses only the healthy (active) network resources to create the virtual networks.

(b) Load balancing and greater network efficiency: In a network with multiple healthy
routing options, smart virtualization provides load balancing by using the least-
congested routing option (containing idle and underutilized network resources) to create
the virtual network. This method distributes the network load across multiple physical

resources and increases the efficiency of the entire network.
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5. CONCLUSION AND RECOMMENDATION

Future networks such as Cognitive Networks must be able to sense, monitor and
extract valuable data from the physical environment or resources and automatically
reconfigure themselves accordingly to meet growing service demands, limited physical
resources, and increased connectivity for users. As a result, there is a significant
increase in virtualization technologies and optimization research in both the academia
and industry to allow various heterogenous complex networks to coexist and share the
same physical resources without significant deterioration in network performance.
Virtualization concepts like Software-Defined Network (SDN), the abstraction of the
data plane from the control plane, and Network Function Virtualization (NFV), the
abstraction of network platforms from network services are very promising optimization
tools.

In addition, the combination of SDN and NFV to create Virtualized Software-
Defined Networking (vSDN) offers the advantages of both paradigms: dynamic
resource reservation and flexible virtual network creation through NV and
programmability of those resources and easy network management through SDN.
However, vSDN solutions increase the complexity of the network by introducing an
additional layer called the virtualization layer. This layer typically hosts an SDN
hypervisor that handles all virtualization-related tasks.

Virtualized software-defined network is very much at the infancy stage and research
is needed to finally declare this technology as the ultimate virtualization solution
offering the best value-added performance. This is because the existing shortcomings of
virtualized software-defined network architectures are numerous and efficient
implementation methods are required in the design and orchestration of physical and
virtualized network resources. Furthermore, management issues such as security,
configuration, accounting, performance, and fault management become NP-hard for
large complex heterogeneous networks. Automated algorithms designed to reduce
human inputs and improve network efficiency and responsiveness might open a new

chapter to improve the management of these networks.
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5.1. Conclusion

In this thesis, a new approach AUTOVNET was designed and implemented to
automate and address three important management challenges in virtualized SDN
architectures. Network automation in AUTOVNET simplifies manual configurations
from the network administrator and increases the flexibility and adaptability of the
network. The first management issue addressed by AUTOVNET is the rapid
configuration and provisioning of vVSDN networks. OpenVirteX was used as the
hypervisor in the simulations because it offers network topology and address
abstraction. The second management issue addressed was fault detection. AUTOVNET
can detect broken links and defective switches in the underlying physical network
during the pre-virtualization fault detection analysis. These mechanisms ensure that
only healthy network resources are used to create the virtual networks. The third
management issue addressed concerns performance. AUTOVNET analyzes and
compares routing options to select the best resources and as such increases the
efficiency and performance of the entire network by distributing the network load.

AUTOVNET has the following advantages over legacy OV X implementations:

Pure Software Implementation: AUTOVNET is a pure software implemented in
Python language. AUTOVNET can run on any python environment like Spyder IDE
installed on any computer platform (Linux, Windows, etc.). Because OVX is a Python-
based hypervisor, AUTOVNET uses OV X as a Python library to create virtual networks
using Mininet SDN emulator and the Floodlight SDN controller. The programmability
of AUTOVNET facilitates automation, flexibility, and agility.

Fast deployment of virtual networks: AUTOVNET simplifies the vSDN request for
configuring virtual networks with OpenVirteX (OVX). Traditionally, OVX requires a
script specifying the MAC addresses and port numbers of network devices to create a
simple virtual connection between the hosts in the network. This script is very complex
to code and varies for different network topologies. AUTOVNET allows the network
administrator to know very little about the underlying physical network topology. The
script (vSDN request) required by AUTOVNET always remains the same regardless of
the network topology. This is because the MAC addresses of the source and destination
hosts indicated by the network administrator are enough for AUTOVNET to map the
underlying network topology.
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These rapid deployment, provisioning and configuration techniques increase the
flexibility, agility, and programmability of OVX and allow network administrators to

easily configure virtual networks in larger complex network topologies.

Automated pre-virtualization fault detection: Physical network resources are
abstracted by network virtualization technologies to create virtual communications. By
default, if the physical resource is defective, the resulting virtual connection will also be
faulty. Traditional OVX creates virtual networks using physical resources without
checking network faults. AUTOVNET, on the other hand, has a smart virtualization
option that automatically checks and detects network faults such as broken links and
inactive (defective) switches in the physical network. Ultimately, defective network
resources are disregarded, and only healthy resources are shortlisted and used to
guarantee the creation of healthy networks. Using the cognitive lifecycle, frequent
network sensing and monitoring can be implemented at regular time intervals to further
update the network status, produce maintenance reports and keep track of both healthy

and defective physical resources.

Optimal resource selection: In large complex networks, selecting the best possible
routing option is often challenging. In addition, congestion and over-utilization of
physical resources can significantly reduce the performance of the network.
AUTOVNET uses network data from Wireshark to carry out the congestion and deep
packet inspection analysis in order to identify congested routes and uses underutilized
healthy network resources to create virtual networks. Consequently, AUTOVNET
distributes the load in the network across multiple network resources and the increases
network efficiency and performance.

In conclusion, AUTOVNET is a cognitive network management and orchestration
system which monitors and uses network data to automatically create fast, healthy

virtual networks in an SDN-supported physical network.

5.2. Future Work

AUTOVNET answers an open question on fast configuration and rapid virtual
network provision using OVX. Although several designs and techniques have been
implemented over the years to speed up virtual network provisioning in virtualized

software-defined network architectures, the algorithm and coding proposed in this thesis
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(AUTOVNET) have not been implemented before and the results are extremely
promising.

AUTOVNET is very efficient and offers fast virtual network configurations for
large, complex network topologies using OV X, but much remains to be done to design a
scalable management and orchestration system with complete cognitive capabilities.
The followings may be of particular interest for future work.

Greater host capacity: Most real-life data centers and computer communications
involve large, complex heterogeneous networks with multiple users and multi-tenants
(SDN controllers). So far, AUTOVNET can only support two hosts (a source and a
destination) in each virtual network. Therefore, improving the network mapping

algorithm of AUTOVNET will improve the host capacity of the proposed system.

Adaptive switch interface mapping: Random virtualization in AUTOVNET can use
OVX to quickly create and configure a virtual network with two hosts, regardless of the
topology of the network. However, the smart virtualization option only works well for
the fat tree network topology. This is because the switch interface mapping algorithm is
very limited. Developing an adaptive algorithm to map switch data and interface data
will enable the AUTOVNET smart network virtualization option to support larger

network topologies.

Security management: AUTOVNET focuses on fault detection, configuration, and
performance management. Nevertheless, security management is also a very important
aspect of cognitive networks and all autonomous systems must have security

mechanisms against network attacks like Distributed Denial of Service (DDoS) attacks.

Integrating machine learning techniques: Future AUTOVNET versions might
incorporate machine learning models such as neural networks, K-means and support
vector machines to improve the routing option selection mechanisms. These machine
learning models could also be leveraged to dynamically map larger network topologies

and enable virtual network reconfigurations and virtual network host mobility.
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Appendix A

Customized Fat Tree Topology

#!/usr/bin/python

from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch

from mininet.topo import Topo

class fatTreeTopo(Topo):
def __init__(self):
Topo.__init__(self)

#Add hosts

h7 = self.addHost(*h7", cls=Host, ip="10.0.0.7", defaultRoute=None)
h8 = self.addHost('h8", cls=Host, ip="10.0.0.8", defaultRoute=None)
h1 = self.addHost(*h1", cls=Host, ip="10.0.0.1", defaultRoute=None)
h2 = self.addHost(*h2', cls=Host, ip="10.0.0.2", defaultRoute=None)
h4 = self.addHost(*h4", cls=Host, ip="10.0.0.4", defaultRoute=None)
h3 = self.addHost(*h3", cls=Host, ip="10.0.0.3", defaultRoute=None)
h5 = self.addHost('h5', cls=Host, ip="10.0.0.5", defaultRoute=None)
h6 = self.addHost('h6", cls=Host, ip="10.0.0.6", defaultRoute=None)

#Add switches

s10 = self.addSwitch('s10", cls=OVSKernelSwitch)
s3 = self.addSwitch('s3', cls=OVSKernelSwitch)
s17 = self.addSwitch('s17", cls=OVSKernelSwitch)
s4 = self.addSwitch('s4', cls=OVSKernelSwitch)
518 = self.addSwitch('s18', cls=OVSKernelSwitch)
s1 = self.addSwitch(‘s1’, cls=OVSKernelSwitch)
s11 = self.addSwitch(‘s11', cls=OVSKernelSwitch)
s21 = self.addSwitch('s21’, cls=OVSKernelSwitch)
s22 = self.addSwitch('s22', cls=OVSKernelSwitch)
s2 = self.addSwitch('s2', cls=OVSKernelSwitch)

#Add links
self.addLink(h1, s1)
self.addLink(h2, s1)
self.addLink(h3, s2)
self.addLink(h4, s2)
self.addLink(h5, s3)
self.addLink(h6, s3)
self.addLink(h7, s4)
self.addLink(h8, s4)
self.addLink(s1, s21)
self.addLink(s21, s2)
self.addLink(s1, s10)
self.addLink(s2, s10)
self.addLink(s3, s11)
self.addLink(s4, s22)
self.addLink(s11, s4)
self.addLink(s3, s22)
self.addLink(s21, s17)
self.addLink(s11, s17)
self.addLink(s10, s18)
self.addLink(s22, s18)

topos = { 'mytopo’: (lambda: fatTreeTopo() ) }



Appendix B

OpenVirteX Script to create a Virtual network between h1, 00:00:00:00:00:01 and
h8, 00:00:00:00:00:08

# Create the Virtual Network

$ python ovxctl.py -n createNetwork tcp:localhost:10000 10.0.0.0 16

# Create the Virtual Switches

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:01

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:15

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:11

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:0b

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:04

# Create the Virtual Ports

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:01 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:01 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:15 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:15 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:11 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:11 2

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:0b 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:0b 2

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:04 4

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:04 2

# Create Virtual Links

$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:01 2 00:a4:23:05:00:00:00:02 1 spf
$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:02 2 00:a4:23:05:00:00:00:03 1 spf
$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:03 2 00:a4:23:05:00:00:00:04 1 spf
$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:04 2 00:a4:23:05:00:00:00:05 1 spf
# Create Virtual Hosts

$ python ovxctl.py -n connectHost 1 00:a4:23:05:00:00:00:01 1 00:00:00:00:00:01

$ python ovxctl.py -n connectHost 1 00:a4:23:05:00:00:00:05 2 00:00:00:00:00:08

# Create Start Virtual Network

$ python ovxctl.py -n startNetwork 1

Appendix C

OpenVirteX Script to create Big Switch for vSDN connecting h1, 00:00:00:00:00:01
and h8, 00:00:00:00:00:08

# Create the Virtual Network

$ python ovxctl.py -n createNetwork tcp:localhost:20000 10.0.0.0 16

$ python ovxctl.py -n createSwitch 2
00:00:00:00:00:00:00:01,00:00:00:00:00:00:00:15,00:00:00:00:00:00:00:11,00:00:00:00:00:00:00:0b,00:00:00:00:00:00:00:04
$ python ovxctl.py -n createPort 2 00:00:00:00:00:00:00:01 1

$ python ovxctl.py -n createPort 2 00:00:00:00:00:00:00:04 2

$ python ovxctl.py -n connectHost 2 00:a4:23:05:00:00:00:01 1 00:00:00:00:00:01

$ python ovxctl.py -n connectHost 2 00:a4:23:05:00:00:00:01 2 00:00:00:00:00:08

# Start the Virtual Network

$ python ovxctl.py -n startNetwork 2

Appendix D
AUTOVNET Script to create Big Switch for vSDN connecting h1, 00:00:00:00:00:01
and h8, 00:00:00:00:00:08 using OpenVirteX

# Create the virtual SDN network
$00:00:00:00:00:01
$00:00:00:00:00:08
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