

 COGNITIVE NETWORK OPTIMIZATION

 VIA NETWORK VIRTUALIZATION

 Master of Science Thesis

Tobie Yefferson BIYIHA AFOUNG

 Eskişehir, 2019

COGNITIVE NETWORK OPTIMIZATION VIA NETWORK

VIRTUALIZATION

Tobie Yefferson BIYIHA AFOUNG

MASTER OF SCIENCE THESIS

Program in Telecommunications

Supervisor: Assoc. Prof. Dr. Nuray AT

Eskişehir

Anadolu University

Graduate School of Sciences

July 2019

FINAL APPROVAL FOR THESIS

 This thesis titled “Cognitive Network Optimization via Network Virtualization” has

been prepared and submitted by Tobie Yefferson BIYIHA AFOUNG in partial

fulfillment of the requirements in “Anadolu University Directive on Graduate Education

and Examination” for the Degree of Master of Science (M.Sc.) Electrical and

Electronics Engineering Department has been examined and approved on 16/07/2019.

Committee Members Signature

Member (Supervisor) : Assoc. Prof. Dr. Nuray AT ...…………..

Member : Assoc. Prof. Dr. Hakan ŞENEL ……………..

Member : Dr. Ögr. Üyesi Gökhan DINDIŞ ……………..

 Prof. Dr. Murat TANIŞLI

 Director

 Graduate School of Science

iii

ABSTRACT

COGNITIVE NETWORK OPTIMIZATION VIA NETWORK VIRTUALIZATION

Tobie Yefferson BIYIHA AFOUNG

Department of Electrical and Electronics Engineering

Program in Telecommunications

Anadolu University, Graduate School of Sciences, July 2019

Supervisor: Assoc. Prof. Dr. Nuray AT

 Cognitive networks are designed to sense, monitor and extract valuable data from

their physical environment, and adapt quickly to support complex network applications

in order to satisfy fast changing service demands. Virtualization technologies such as

Software-Defined Network (SDN) and Network Function Virtualization (NFV) can be

combined to create new frameworks offering the advantages of both SDN and NFV.

These include dynamic resource reservation and flexible virtual network creation via

NFV, and programmability of these resources and easy network management via SDN.

These new combined frameworks could be leveraged to optimize and manage cognitive

network architectures. However, optimizing cognitive networks using combined

SDN/NFV frameworks requires new network management techniques and fast virtual

network provisioning algorithms to replace the legacy manual algorithms. In this study,

a new system called AUTOVNET introducing automation in the management and

provisioning of virtualized software-defined networks is designed and implemented.

AUTOVNET simplifies the manual configurations from the network administrator and

increases the flexibility and adaptability of virtual networks. In addition, AUTOVNET

performs pre-virtualization fault detection and deep packet analysis to determine the

best healthy routing option between the source and destination hosts in the network.

This approach allows the network administrator to easily and rapidly create, configure

and manage virtual networks in larger complex network topologies.

Keywords: Cognitive network, Network virtualization, Software-defined network,

Network function virtualization, Network management, OpenVirteX

iv

ÖZET

AĞ SANALLAŞTIRMASI ÜZERINDEN BILIŞSEL AĞ OPTIMIZASYONU

Tobie Yefferson BIYIHA AFOUNG

Elektrik Elektronik Mühendisliği Bölümü

Telekomünikasyon Programı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Temmuz 2019

Danışman: Doç. Prof. Dr. Nuray AT

 Bilişsel ağlar, bulundukları fiziksel ortamı algılamak, izlemek ve ortama ait değerli

verileri elde etmek; karmaşık ağ uygulamalarını ve hızla değişen servis taleplerini

zamanında kendini uyarlayarak desteklemek üzere tasarlanmışlardır. Yazılım tanımlı ağ

(SDN) ve ağ fonksiyon sanallaştırması (NFV) gibi sanallaştırma teknolojileri, her iki

teknolojinin avantajlarını sunan yeni çerçeveler oluşturmak için birleştirilebilir. Bu

avantajlar NFV ile dinamik kaynak ayırma, esnek sanal ağ oluşturma işlemlerini ve

SDN ile bu kaynakların programlanması ve ağ yönetiminin kolaylıkla yapılabilmesini

içerir. Dolayısıyla, bu yeni çerçeveler bilişsel ağ mimarilerinin iyileştirilmesi ve

yönetiminde kullanılabilirler. Bununla beraber, bilişsel ağların SDN/NFV çerçeveleri

kullanılarak iyileştirilmesi, geleneksel manuel algoritmaları değiştirecek yeni ağ

yönetim teknikleri ve hızlı sanal ağ sağlama algoritmalarını gerektirir. Bu çalışmada,

AUTOVNET olarak adlandırılan, sanallaştırılmış yazılım tanımlı ağ sağlama ve

yönetiminde otomasyonu tanıtan yeni bir sistem tasarlanmış ve gerçeklenmiştir.

AUTOVNET ağ yöneticisinin manuel olarak yapması gereken yapılandırmaları

basitleştirir ve sanal ağların esneklik ve uyarlanabilirliğini arttırır. Bunun yanı sıra,

AUTOVNET ağdaki kaynak ve hedef terminaller arasındaki en sağlıklı yönlendirme

seçeneğini belirlemek üzere sanallaştırma öncesi hata tespit ve derin paket analizini

gerçekleştirir. Bu yaklaşım, ağ yöneticisinin daha büyük ve karmaşık ağ topolojilerinde

hızlı ve kolay bir şekilde sanal ağ oluşturması, yapılandırması ve yönetmesini sağlar.

Anahtar Kelimeler: Bilişsel ağ, Ağ sanallaştırılması, Yazılım tanımlı ağ (SDN), Ağ

 fonksiyon sanallaştırılması (NFV), Ağ yönetimi, OpenVirteX

v

ACKNOWLEDGEMENTS

 First and foremost, I am truly indebted and wish to express my gratitude to my

supervisor Assoc. Prof. Dr. Nuray AT for her inspiration, excellent guidance, continuing

encouragement, and unwavering confidence and support during every stage of this

endeavor without which, it would not have been possible for me to complete this

undertaking successfully. I also thank her for the insightful comments and suggestions

which continually helped me to improve my understanding. I could not have imagined

having a better advisor and mentor for my study.

 I express my deepest gratitude to the management and staff members of the

Department of Electrical and Electronics Engineering for their kind co-operation and

encouragement, which help me in the completion of my postgraduate program.

 Had I forgotten to appreciate the Turkish government and her scholarship board

(YTB) for providing this opportunity, I would have been an ingrate. I thank my fellow

lab mate, Ibrahim Wonge Lisheshar for the stimulating discussions and for all the fun

we have had in the last two years.

 I would also like to express my heartfelt gratitude to my friends Obby Nawa

Likando and Razak Musa Mohammed for their steadfastness and support.

 Fimally, my wholehearted gratitude to my Mother, Afoung Solange, brothers,

sisters and family relatives for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible without

them. Thank you.

Tobie Yefferson BIYIHA AFOUNG

vi

16/07/2019

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

 I hereby truthfully declare that this thesis is an original work prepared by

me; that I have behaved in accordance with the scientific ethical principles and rules

throughout the stages of preparation, data collection, analysis, and presentation of

my work; that I have cited the sources of all the data and information that could be

obtained within the scope of this study, and included these sources in the references

section; and that this study has been scanned for plagiarism with “scientific plagiarism

detection program” used by Anadolu University, and that “it does not have any

plagiarism” whatsoever. I also declare that, if a case contrary to my declaration is

detected in my work at any time, I hereby express my consent to all the ethical and legal

consequences that are involved.

Tobie Yefferson BIYIHA AFOUNG

vii

TABLE OF CONTENTS

TITLE PAGE………………..……………………………...………………………..... i

FINAL APPROVAL FOR THESIS…………………………………………...…….. ii

ABSTRACT………………...………………………………………………………… iii

ÖZET…………………………………………………...……………………………... iii

ACKNOWLEDGEMENTS………………………………...………………………… v

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES.. vi

TABLE OF CONTENTS……………………………………………………………. vii

LIST OF TABLES…………………………………………………………………….. x

LIST OF FIGURES…………………………………………………………………... xi

INDEX OF ABBREVIATIONS AND SYMBOLS………………………………… xii

1. INTRODUCTION……………………………………………………………….. 1

1.1. The Problem Statement……………………………………………………… 2

1.2. The Objective and Relevance of The Study………………………………… 3

1.3. Thesis Organization………………………………………………………….. 4

2. BACKGROUND ON COGNITIVE NETWORKS……………………………. 5

2.1. General Capabilities of Cognitive Networks……………………………….. 5

2.1.1. Sensing capability ... 5

2.1.2. Learning capability .. 6

2.1.3. Adaptive capability ... 6

2.2. Cognitive Cycle……………………………………………………………….. 7

2.3. Cognitive Network Management……………………………………………. 8

2.3.1. Fault management .. 8

2.3.2. Configuration management ... 8

2.3.3. Accounting management .. 8

2.3.4. Performance management ... 9

2.3.5. Security management ... 9

2.4. Types of Cognitive Networks………………………………………………. 10

2.4.1. Cognitive wireless ... 10

2.4.2. Cognitive Internet ... 10

3. OPTIMIZATION OF COGNITIVE NETWORKS…………...……………... 12

Page

viii

3.1. Optimization via Software Defined Networking (SDN)………………….. 15

3.1.1. Background on Software-Defined Networks (SDN) 15

 3.1.2. SDN framework and architecture……………………………………... 16

3.1.2.1. Data plane (infrastructure layer)…………………………………. 17

3.1.2.2. SDN control layer (control plane)………………………………… 18

3.1.2.3. Application layer…………………………………………………… 20

3.1.3. Optimization benefits of SDN .. 20

3.1.4. Comparison between SDN and legacy networks 21

3.2. Optimization via Network Function Virtualization (NFV)………………. 22

3.2.1. Background on Network Function Virtualization (NFV) 22

3.2.2. NFV architectural framework ... 23

3.2.2.2. Virtualized Network Function (VNF)…………………………….. 25

3.2.2.3. NFV Management and Orchestration (NFV MANO)…………….25

3.2.3. Optimization benefits of NFV .. 26

3.2.4. Comparison of SDN and NFV concepts ... 26

3.3. Optimization via Combining SDN and NFV……………………………… 27

3.3.1. Virtualizing SDN networks using hypervisors....................................... 28

3.3.1.1. Management of the physical SDN network……………….……… 29

3.3.1.2. Virtualization of network attributes……………………………… 29

3.3.1.3. Isolation of network attributes……………………………………. 30

3.3.2. Types of hypervisor architecture……………………………………… 30

3.3.2.1. Flowvisor (FV)……………………………………………………... 31

3.3.2.2. OpenVirteX (OVX)………………………………………………… 32

3.4. Review of available vSDN solutions with OpenFlow……………………... 33

4. AUTOVNET - AUTONOMOUS VIRTUAL NETWORK SYSTEM……..... 35

4.1. AUTOVNET Management Functions………………………………….….. 36

4.1.1. AUTOVNET: configuration management…………....………….…… 36

4.1.2. AUTOVNET: fault management .. 36

4.1.3. AUTOVNET: performance management .. 36

4.2. AUTOVNET Architecture…………………………………………………. 37

4.2.1. MNET module .. 37

4.2.2. VNET module ... 38

Page

ix

4.3. AUTOVNET Implementation…………………………………………...… 38

 4.3.1. Mininet and network topology design………………………………… 38

4.3.2. Floodlight………………………………………………………….……. 40

 4.3.3. Wireshark... 41

 4.4. AUTOVNET Operation……………………………………………….…... 42

4.4.1. Random virtualization………………………………………………… 46

4.4.2. Smart virtualization……………………………………………….…... 48

4.4.2.1. Case 1: faulty network……………………………………….….... 51

4.4.2.2. Case 2: healthy network………………………………………...... 54

5. CONCLUSION AND RECOMMENDATION…………………………….... 58

5.1. Conclusion………………………………………………………………...... 59

5.2. Future Work………………………………………………….…………..... 60

REFERENCES……………………………………………………………………... 62

APPENDIX

RESUME

Page

x

LIST OF TABLES

Page

Table 3.1. A comparative feature-based analysis of open source SDN controllers 19

Table 3.2. Comparison of NFV and SDN .. 27

Table 4.1. MAC addresses of the switches and hosts ... 39

Table 4.2. Shortest Route Database (SRD) for h1 and h5 ... 46

Table 4.3. Shortest Route Database (SRD) for h2 and h8 ... 50

Table 4.4. Active Route Database (ASD) for h2 and h8 with switch s17 down 53

Table 4.5. Number of packets on interfaces of Route 1 and Route 2 54

xi

LIST OF FIGURES

Page

Figure 2.1. Cognitive cycle .. 7

Figure 3.1. Overlay network .. 13

Figure 3.2. Network virtualization technologies .. 14

Figure 3.3. Software-Defined Network (SDN) framework and architecture 16

Figure 3.4. OpenFlow messaging protocol .. 18

Figure 3.5. Overview of SDN controller ... 18

Figure 3.6. Traditional network vs SDN .. 21

Figure 3.7. Traditional vs Network Function Virtualization (NFV) deployments 23

Figure 3.8. Network Function Virtualization (NFV) architecture 24

Figure 3.9. SDN virtualization with hypervisor ... 28

Figure 3.10. Network slicing with Flowvisor .. 32

Figure 3.11. OpenVirteX system architecture ... 33

Figure 4.1. AUTOVNET system architecture ... 37

Figure 4.2: Fat tree topology ... 39

Figure 4.3. Network topology (fat tree) viewed by Floodlight 40

Figure 4.4. Wireshark GUI with captured network data .. 41

Figure 4.5. Flowchart of AUTOVNET operation .. 42

Figure 4.6. AUTOVNET vSDN configuration algorithm ... 43

Figure 4.7. Network Information Database (NID) viewed in Spyder IDE 44

Figure 4.8. Network representation of the physical network ... 45

Figure 4.9. AUTOVNET random virtualization .. 47

Figure 4.10. Testing AUTOVNET random virtualization in Mininet 47

Figure 4.11. Wireshark data plot from a healthy network ... 49

Figure 4.12. Wireshark data plot from a faulty network .. 49

Figure 4.13. AUTOVNET smart virtualization with a faulty network 52

Figure 4.14. Testing AUTOVNET smart virtualization with faulty network 53

Figure 4.15. Congestion plots of SRD routes .. 54

Figure 4.16. Distribution of ICMP packet time delays on healthy SRD routes 55

Figure 4.17. AUTOVNET smart virtualization for a healthy network 56

Figure 4.18. Testing AUTOVNET smart virtualization with a healthy network 57

xii

INDEX OF ABBREVIATIONS AND SYMBOLS

CN : Cognitive Network

QoS : Quality of Service

FCAPS : Fault, Configuration, Accounting, Performance and Security

NV : Network Virtualization

VN : Virtual Network

SDN : Software-Defined Network

OF : OpenFlow

vSDN : virtualized Software-Defined Network

API : Application Programming Interface

ONF : Open Networking Foundation

ITU : International Telecommunications Union

ETSI : European Telecommunications Standards Institute

NFV : Network Function Virtualization

VNF : Virtualized Network Function

NFVI : Network Function Virtualization Infrastructure

NFV MANO : Network Function Virtualization Management and Orchestration

VIM : Virtualized Infrastructure Manager

VNFM : Virtualized Network Function Manager

NFVO : Network Function Virtualization Orchestrator

ICMP : Internet Control Message Protocol

ARP : Address Resolution Protocol

LLDP : Link Layer Discovery Protocol

OVX : OpenVirteX

BSR : Best Switch Route

NID : Network Information Database

SRD : Switch Route Database

SID : Switch Interface Database

ARD : Active Route Database

1

1. INTRODUCTION

 Over the last decades, Internet technology has undergone very few changes even

though data communications and Internet traffic have surged increasingly at a very fast

pace. This lack of adaptation to current network conditions has led to suboptimal

network performances. Current network frameworks, behaviors, policies, and protocols

do not have adequate response mechanisms to make intelligent adaptations. These

networks heavily rely on routing algorithms to forward packets over the network, and

external operators to perform manual configurations and policy decisions. Furthermore,

limited information is shared between network elements and network failures can only

be detected once packets are lost. For example, switches and routers follow strict rules

for transferring packets and have very little knowledge about the activity (network

status) on the other end of the network. This current network framework was originally

designed to simplify the design of network devices and reduce the overall complexity of

the network. As a result, these networks became rigid and network problems could only

be detected and resolved, with little means of predicting them.

 Cognitive networking embraces complexity to provide end-to-end optimal network

performance. In (Thomas, DaSilva, & MacKenzie, 2005), R. Thomas and al. defined for

the first time the term Cognitive Network (CN) as a network that uses cognitive

processes (sensing, learning, and adaptation) to perceive the state of the entire network

in real-time, then plans, decides, and acts, i.e., learns from collected network data and

adapts accordingly to meet end-to-end network goals.

 The cognitive approach aims to develop proactive networks capable of using

intelligent network devices to collect network data, make network predictions, easily

adjust their activities, and modify their configurations to adapt to current and future

network conditions. CNs can detect and manage network problems before they occur

and use each network scenario to improve their problem-solving abilities. As a result,

CNs increase the performance and efficiency of the network and optimize end-to-end

network traffic between the source and destination for the entire network (Fortuna &

Mohorcic, 2009).

 A network is said to be cognitive when self-aware and self-adjusting components

replace all statically configured portions of the network. Cognitive networking ushers a

2

new era of communication with promising network architectures offering the best end-

to-end performance by adjusting automatically network parameters for optimal data

transfer between devices.

1.1. The Problem Statement

 There are multiple research directions on how to optimize cognitive networks. One

uses artificial intelligence models and game theory to predict future network behaviors

and network problems beforehand. Another direction focuses on how to utilize new

networking frameworks like virtualization technologies such as Software-Defined

Networks (SDNs) and Network Function Virtualization (NFV) and their combinations

to optimize the management of cognitive networks since both paradigms offer

adaptability, flexibility and programmability.

 Some challenges and open questions regarding research on the combination SDN and

NFV for better network performance and the challenges of modeling, managing and

optimizing their combined architectures are summarized below,

Network information extraction

 A proper management system for cognitive networks must be able to fetch accurate

network information from the physical network. This information can then be updated

at regular time intervals and used by a central management system to coordinate

network operations.

Virtualization layer design

 Combining SDN and NFV paradigms requires a virtualization layer or hypervisor.

There are different hypervisors architectures, from hardware-enhanced to pure software-

based, distributed and centralized ones. However, a general understanding of how these

hypervisors operate is needed in order to design, create, configure, and manage the

network. Moreover, additional research is needed to properly select the hypervisor for

simulations since the architecture and operation of this hypervisor will affect the

performance of the network.

Fast virtual network configuration and provisioning

 Combining SDN and NFV to create virtual networks requires mapping of physical

network resources to virtual ones. The challenge is to rapidly map these resources.

Therefore, a sophisticated mapping scheme should be designed to rapidly configure and

provide virtual networks according to users' demands.

3

Automatic management

 CNs consist of intelligent and programmable network nodes (Thomas, Friend,

Dasilva, & Mackenzie, 2006). For this reason, SDN and NFV technologies can be used

to efficiently manage these programmable networks. However, this management must

be automatic and/or autonomous to fit into the cognitive nature of the system.

Therefore, management systems must be designed to automatically detect and predict

network scenarios such as link failures, to ensure end-to-end performance with limited

human intervention, as promised by CNs.

1.2. The Objective and Relevance of The Study

 This study addresses the challenges of manual configuration in SDN virtualization

and provides a solution called AUTOVNET, a self-configurable module that replaces

the network embedder module in the traditional OpenVirteX (OVX) system architecture

(Ali Al-Shabibi et al., 2014) to enable automatic virtual SDN configuration for a variety

of network topologies and dynamic scenarios. We begin by developing an algorithm to

extract network information from the underlying network topology and later use this

information to create a network repository (database). The management module

AUTOVNET uses this database to minimize manual configurations and to rapidly

create and configure virtual SDN networks.

 The second major contribution of the study is fault detection and fault prevention.

AUTOVNET can analyze network data from Wireshark (Ndatinya, Xiao, Rao

Manepalli, Meng, & Xiao, 2015) and carry out pre-virtualization faulty link/switch

detection. In other words, AUTOVNET is a proactive fault management system that

detects and isolate faulty network resources to enable the creation of healthier virtual

networks.

 The third major contribution of the study is on performance management.

AUTOVNET is a pure software implementation written in Python programming.

AUTOVNET can perform performance computations to determine congested routes as

well as packet delay analysis to automatically determine optimal routes for data transfer

between devices and avoid congested routes to maximize network resource utilization

and create faster virtual networks.

4

1.3. Thesis Organization

 The remainder of the thesis is structured as follows:

 Chapter 2 gives detailed background information on cognitive networks. It also

describes the general capabilities of cognitive networks, the cognitive cycle, and aspects

of cognitive network management. Furthermore, it provides a brief summary of the

different types of cognitive networks in the literature.

 Chapter 3 addresses the optimization of cognitive networks via SDN, NFV, and

combined SDN/NFV. It first provides a detailed background on SDN and NFV

and describes their respective architectural frameworks. It explores the

optimization benefits of both SDN and NFV and offers comparisons between

SDN and traditional networks as well as between SDN and NFV technologies.

This chapter finally discusses the different types of hypervisor architectures and

reviews the limitation of available virtualization solutions using OpenFlow in the

literature.

 Chapter 4 is mainly concerned with the design and implementation of

AUTOVNET. It describes how the system architecture of AUTOVNET compares

to tradition OVX (an SDN hypervisor) system architecture, and explains the

management capabilities (configuration, fault and performance) of AUTOVNET

as well. Mininet, Floodlight and Wireshark tools are also presented in this chapter

as they are used for the simulations. Furthermore, the two AUTOVNET

operations (random and smart virtualization) are explained and tested in Spyder

IDE. The results show that AUTOVNET improves on the legacy OVX

architecture by providing rapid virtual network configurations and fault detection

with limited manual configurations (inputs) from the network administrator.

 Chapter 5 concludes the study and provides recommendations and thoughts on

future work.

5

2. BACKGROUND ON COGNITIVE NETWORKS

 In this chapter, we first introduce the concepts and capabilities of Cognitive Networks

(CNs) (Sec. 2.1). Afterwards, Sec. 2.2 gives a detailed view and stages in the cognitive

cycle. In Sec. 2.3, we review the various cognitive network management schemes in the

literature. Finally, Sec. 2.4 explores the two types of cognitive networks, namely the

cognitive wireless network and the cognitive Internet network.

2.1. General Capabilities of Cognitive Networks

 Every CN must be able to sense and monitor the physical environment (sensing

capabilities), analyze and extract useful information from sensed data (learning

capabilities) and reconfigure its parameters according to current physical environmental

conditions (adaptive capabilities) (Nazmul Siddique, Syed Faraz Hasan, & Salahuddin

Muhammad Salim Zabir, 2017).

2.1.1. Sensing capability

 CNs have the ability to sense or capture real-time information from the physical

environment. In wireless networks, sensing is very important. For example, this

capability can be used for channel monitoring, interference avoidance, and wireless

device power monitoring. Likewise, in wired networks, sensing plays a vital role in

decision making and routing. Sophisticated algorithms like autonomous learning and

network protocols can be used to capture temporal variations in the physical network

environment. Additional, sensing capabilities involve:

▪ Network monitoring: A CN can monitor network activities and detect congested as

well as under-utilized network resources. This may be used to increase network

resource utilization since service running on congested network resources can be

redirected to idle network resources. A CN with resource sharing mechanisms

monitors the network and allow the utilization of network resources by secondary

users when primary users are inactive.

▪ Location identification: CNs are able to identify and determine the location of

network entities. In recent years, location technologies have led to location-based

services (FCC, 2012) and ultrafast routing.

▪ Path discovery: A CN can determine the best path to establish communications

between its terminals. Some terminals might be reachable after one or multiple

network entities (router, switches, and servers) and multiple routes might lead to the

6

same network device. That’s why, the ability to select the appropriate

communication path between CN terminals is very important.

▪ Service discovery: A CN analyzes services subscribed by the network users and

recommends other appropriate services that the user might be interested in. Machine

learning algorithms like “recommender systems” are based on this concept. Service

discovery is also important for creating clusters or group devices utilizing the same

applications and services together.

2.1.2. Learning capability

 The sensing capability provides resource awareness, whereas learning capability

enables the network to be programmed dynamically according to the physical network

environment. CNs can be programmed to use a variety of transmission, access and

network topologies and technologies supported by their hardware resources.

Reconfigurations supported by CNs can be given as follows:

▪ Resource agility: This is the ability of a CN to change its network topology. This

ability dynamically selects the appropriate network resources and routing paths for

communications between network terminals.

▪ Flexible network: A CN is an opportunistic network (Nazmul Siddique et al., 2017)

which adapts constantly to variations in network scenario. The real-time data

acquired during sensing enables the network to adequately select a new network

topology and communication paths.

▪ Dynamic system access: A CN may contain multiple heterogeneous systems

providing a variety of services running on different communication protocols. Thus,

system access reconfiguration is necessary in order to be compatible and fully

support every system.

2.1.3. Adaptive capability

 The adaptive capability provides the ability to fine-tune network parameters and

functions based on collected network data and meet Quality of Service (QoS) goals.

Based on the monitoring and learning capabilities discussed before, CNs are able to

self-organize their network operations and provide faster network connectivity and

greater performance. The adaptive capabilities of CNs involves the following:

▪ Resource management: An improved resource management scheme is needed to

efficiently organize information on network resources and allocate these resources

7

to minimize network failures and maximize network efficiency. A resource pooling

technique can be utilized to manage network resources as in cloud computing.

▪ Connection management: The large heterogeneous nature of CNs has increased

the complexity of routing. Connection management techniques can help in network

discovery and provide useful information. This information can be used to select the

best routes for data transfer between network devices. Connection management can

equally be useful in capacity measurement to minimize network congestion and

under-utilization of network resources.

2.2. Cognitive Cycle

 Based on the information collected during sensing and monitoring, CNs uses the

cognitive cycle to methodologically decide on the best course of action (Vishram

Mishra , Jimson Mathew, & Chiew-Tong Lau, 2017). The cognitive cycle is made up of

various stages or states through which the CN continuously monitors the physical

environment and acts accordingly. The cognitive cycle is shown in Figure 2.1.

Figure 2.1. Cognitive cycle

 The cognitive cycle starts with sensing the environmental state. During this state,

physical network parameters are recorded. Next, these parameters are analyzed to obtain

more physical and logical figures. Based on these analyses and the operational

requirements (bandwidth, speed, latency, service capacity, etc.) of network services, the

cognitive network responses accordingly and makes a decision in the next phase. The

decision involves the adaptation or reconfiguration of the network system parameters to

avoid performance degradation and ensure optimal network settings in different

environmental scenarios. However, when the existing network parameters are already

perfectly adapted to the current network state, the adaptation state will not be

Adapt

sense Decision

Analyse

Physical
Environment

8

applicable. In this case, there is no adaptation and the cycle restarts with the next

cognitive sensing phase.

2.3. Cognitive Network Management

 Cognitive network management (Ayoubi et al., 2018) refers to all activities

associated with running a cognitive network. Network management can be divided into

the following areas; Fault, Configuration, Accounting, Performance, and Security

(FCAPS) (Alexander Clemm, 2006) management.

2.3.1. Fault management

 Fault management deals with failures (hardware or software failures) that occur in the

network. Fault management, therefore, relies on network monitoring to ensure that all

system functions are running smoothly, and failure mechanisms are properly activated

when faults occur. Fault management is critical to ensure optimal user experience, i.e.,

users do not experience service disruptions and that when they do, these disruptions

have minimal impact on the overall service experience. Fault management functions

include network monitoring, alarm management, fault detection, fault diagnosis, fault

prevention, fault prediction, troubleshooting, and proactive fault management.

2.3.2. Configuration management

 All the devices within a network need to be configured for the network to function

properly as a homogenous unit. Configuration management performs the modification

of the configuration settings of network equipment. This includes initial configuration

(i.e., startup configurations required to properly connect all network entities), and

ongoing configuration (i.e., the operational configuration that continuously adjusts or

updates core network settings to provide novel network services and functionalities).

Configuration management is very critical since other network management functions

depend on it to provide an acute diagnosis. With a defective configuration management

system, the network provider will be unable to fine-tune network services.

Configuration management functions include network resource configuration, network

auditing, network configuration backup, and device synchronization.

2.3.3. Accounting management

 It is essential for any organization to properly evaluate the cost/benefit ratio of their

services and generate revenues for the services they provide. Accounting management

provides the functions that allow businesses to generate revenue for the services they

provide and keep track of their usage. From accounting data, service providers might

9

terminate an unprofitable service to invest in a more lucrative one. Accounting

management functions include fraud detection, service consumption data collection, and

business model forecast.

2.3.4. Performance management

 The performance of a network is characterized by a number of performance

measurements known as performance metrics. These metrics provide a measurement of

the behavior of the network under a variety of physical conditions. Some performance

metrics include:

• Throughput: This measures the number of communication units performed per unit

time. The communication units depend on the type of the network layer. For

example, bytes per seconds for link layer transmission and service per second for

web service throughput measured at the application layer.

• Delay: This is measured per unit time. Network services experience different types

of delay which are measured differently. For example; packet delay at the network

layer and octet delay during transmission at the link layer.

• Quality of Service: This parameter shows how well a service performs under certain

conditions. For example, the percentage of packets dropped in a communication

system can determine whether the output is of acceptable quality or otherwise there

is a need for retransmission.

 Understanding these performance metrics and providing real-time optimized network

settings suitable for higher throughput, lesser delays and greater service quality in a

variety of network scenarios are key aspects to enhance the overall user experience.

2.3.5. Security management

 The last letter “S” in FCAPS stands for security. Security management deals with all

aspects related to securing the network from the spread of worms and viruses, threats

from hacker attacks and malicious intrusion attempts. Two aspects of security

management exist, namely, security of management and management of security.

Security of management deals with the security of all management operations like

password request before data access and the request for access privileges to view

sensitive corporate data. Whereas, management of security deals with the security of the

network system itself. Some of the threats management of security deals with include

hacker attacks, Denial-of-Service (DoS) attacks, viruses and worms, and spam. Some

10

management of security strategies includes Intrusion Detection System (IDS), firewalls,

and blacklists.

2.4. Types of Cognitive Networks

 In this section, we briefly describe the two types of CNs, that is, cognitive wireless

(cognitive radio network) and cognitive Internet (cognitive core network). As a

reminder, this thesis will focus solely on Cognitive Internet. Nevertheless, a review of

the cognitive Internet, as well as cognitive wireless, is aimed at painting a broader view

of the cognitive network world.

2.4.1. Cognitive wireless

 Currently, the static spectrum allocation policy is used to assign spectrum channels to

license holders by governmental agencies on a long-term basis for large geographical

coverage. This policy is very inefficient because it turns out that these license spectrum

holders use the spectrum, sporadically leading to underutilization of wireless resources.

In a world with increasing demand for wireless channels, a new allocation policy is

needed for efficient spectrum usage.

 Cognitive Radio Network (CRN) proposed to solve these spectrum problems by

implementing dynamic spectrum allocation techniques (Ian F. Akyildiz, Lee, Vuran, &

Mohanty, 2006). A CRN uses Cognitive Radios (CRs) which has the capacity to access

and share the wireless channel with licensed holders in an opportunistic manner

(Khozeimeh & Haykin, 2010). CRN has as goals to guarantee seamless communication,

reliable QoS and minimize interference (Haykin). These goals can be realized through

efficient and dynamic management (I. F. Akyildiz, Lee, Vuran, & Mohanty, 2008) of

the wireless spectrum.

CRs operates as follows:

• Monitor and identify idle and available channels

• Select the best available spectrum

• Collaborate with other CRs to avoid channel access monopoly

• Vacate the channel seamlessly when a licensed holder is detected.

2.4.2. Cognitive Internet

 Our modern society is centered around communication networks. Sophisticated

network applications and advanced wireless technologies have changed the way we

share information and communicate with one another. The Internet represents the

11

communication medium of the modern era as well as a platform delivering services like

social networks, e-commerce, and video-on-demand. However, as the Internet

represents a global interconnection of complex heterogeneous networks, several issues

about its management and performance are rising increasingly. The legacy

Transmission Control Protocol/Internet Protocol (TCP/IP) architecture created in 1983

was not designed to support the Quality of Service (QoS) requirements of modern

multimedia applications due to lack of adaptability and cross-layer mechanisms (R.

Jain, 2006). For this reason, both academic and industrial researchers are focusing on

adaptable network protocols to optimize core network performance in a decentralized

manner.

 The future Internet (Stuckmann & Zimmermann, 2009) is said to be a self-

manageable system called the autonomic computing paradigm. This paradigm is based

on the principles of self-optimization, self-healing, self-configuration, self-protection,

and content awareness. In this context, the communication system would be capable of

autonomous management, limiting human intervention. Autonomous network devices

should be able to reconfigure themselves and constantly adapt to changing network

conditions in order to avoid performance degradations with limited manual

configurations. Thus, the behavior of these autonomous systems must be guided by

high-level rules defined by administrative and business policies.

 There are key enabling technologies to support self-adaptation within the TCP/IP

stack and pave the path to the evolution and deployment of cognitive Internet solutions.

These technologies include cross-layer design, distributed and agent-based solutions,

Artificial Intelligence/ Machine Learning (AI/ML) based algorithms and autonomic

network architectures.

 To sum up, the cognitive core network is an evolution of the concept of cognitive

wireless network (Di Benedetto, Cattoni, Fiorina, Bader, & De Nardis, 2015). While

cognitive radio technologies focus on tuning the parameters of the link and physical

layers to provide efficient spectrum management, cognitive core technologies, on the

other hand, expands the dynamic tuning of network parameters to improve overall

network performance at a system-wide scale.

 This thesis focuses on the optimization of the cognitive core network architecture and

proposes an autonomic network management system which can be leveraged to

dynamically manage large complex heterogeneous network topologies.

12

3. OPTIMIZATION OF COGNITIVE NETWORKS

 CNs can monitor and collect useful data from the physical environment, and after

analyzing this data, react in a timely manner to satisfy all related requirements in order

to maximize network capacity and quality of service (QoS) at all times and in all

scenarios. This is known as cognitive network optimization. It should be noted that

effective optimization should provide:

• Load balancing: Load balancing plays a critical role in full optimization activities,

especially in cases where there is the need to efficiently distribute the incoming

workload (network traffic) across multiple network resources to avoid traffic

congestion and decrease latency. User demands and quality of service requirements

of an application can trigger the obligatory reconfiguration activity of core network

elements.

• Network resource management optimization: To cope with traffic growth, investing

in additional network infrastructure is often not an option. Service providers and

enterprises are always under pressure from investors to attain the highest possible

output with little investment in order to maximize the profit. Therefore, improving

and efficiently utilizing the available network infrastructure by implementing strong

network resource optimization solutions is the key for all business models.

 Several optimization techniques (Z. S. Zhang, Long, & Wang, 2013) are currently

designed and tested by both industrial and academic researchers with the most

promising being the Network Virtualization (NV).

 The International Telecommunication Union Sector (ITU-T) (ITU-T, 2012) defines

the concept of NV as the creation of network partitions, logically isolated on a shared

physical network so that heterogeneous clusters of multiple virtual networks can coexist

simultaneously over the same network resources. The idea of network virtualization that

allows several virtual networks to coexist within a single physical network is not novel.

Conventional technologies such as Virtual Private Network (VPN), Voice over IP

(VoIP) and Virtual Local Area Network (VLAN) are commonly used to build isolated

networks over shared physical infrastructures.

 Technologies like VPN and VoIP services are examples of overlay networks. An

overlay network is a logical network which runs independently and does not cause any

13

changes to the underlying physical network. Figure 3.1 shows an overlay network

architecture.

Figure 3.1. Overlay network (Elsen, 2013)

 The following design goals must be achieved in the realization of a network

virtualization solution:

• Isolation: Since multiple independent virtual networks coexist over the same

physical infrastructure, their operations may cause interference resulting in

instability in the entire network ecosystem. In order to mitigate these interferences,

the virtualization solution must provide secure isolations, such as performance,

security, control plane, and data plane isolation among the virtual networks.

• Network abstraction: This involves hiding the overall underlying characteristics of

physical network resources from the virtual network tenants and provides simplified

interfaces for resources access and control. The network virtualization solution has

the ability to customize network operations and manage all virtual networks

independently.

• Topology awareness and rapid reconfigurability: The network virtualization

solution must provide effective use of the virtual resources during the creation of

virtual networks and allow the dynamic reconfiguration of these networks during

optimization processes.

• Performance: Network virtualization increases the complexity of the overall

network ecosystem leading to significant performance degradation of the network.

Thus, the network virtualization solution must guarantee virtual network

performances that are as good as non-virtualized networks, keeping any

performance degradation to the minimum.

14

• Programmability: The network virtualization solution should support the

programmability of both control and data plane in order to provide evolvability and

flexibility of the virtual networks using customized protocols, new control schemes,

and packet forwarding or routing functions. Furthermore, programmability allows

each virtual network to support the rapid deployment of new network architectures

and control schemes independent of other virtual network architectures.

• Management: The network virtualization solution should provide an effective and

integrated management system capable of accessing both physical and virtual

resource information. Due to rapid changes of the virtualized network ecosystem,

network management is essential to monitor all network operations in order to

troubleshoot network failures.

• Mobility: The network virtualization solution should support the mobility of virtual

resources including computing resources, applications, and services across virtual

networks in order to meet their QoS requirements, respond effectively to users’

demands, and increase the efficiency of the entire network.

 Network virtualization is still in its early stages and there are many open research

opportunities to develop new virtualized architectures, applications, and systems.

Currently, there are three key network virtualization solutions (R. Jain & Paul, 2013):

Software-Defined Networking (SDN), Network Function Virtualization (NFV), and

Cloud Computing as illustrated in Figure 3.2.

Figure 3.2. Network virtualization technologies

15

 This thesis exploits SDN and NFV to optimize the cognitive network architecture.

Cloud computing, on the other hand, is not covered, but rather recommended as future

research direction.

 The remaining of this chapter can be outlined as follows; Sec. 3.1 introduces

cognitive network optimization via SDN, presents a background on SDN, SDN

architecture and compares between SDN and traditional networks. Sec. 3.2 explores

cognitive network optimization via NFV, presents a background on NFV, NFV

architecture, and compares the concepts SDN and NFV. Finally, Sec. 3.3 concludes this

chapter by presenting the combined NFV/SDN optimization and related works.

3.1. Optimization via Software Defined Networking (SDN)

 This section first introduces background on SDN and SDN architecture and reports

on the optimization benefits of using SDN. Finally, this section concludes with a

comparison between SDN and traditional networking.

3.1.1. Background on Software-Defined Networks (SDN)

 Currently, SDN is significantly attracting attention from both industry and academia

as an important architectural solution for the management of large-scale networks,

which may require dynamic re-configuration and re-policing from time to time. The

goals of SDN include the ability to accelerate innovation, network business cycles,

adapt to customer demands and customize network resources to include service-aware

networking.

 The ITU (ITU-T, 2014) defines SDN as a set of techniques that allow network

administrators to directly program, manage, control, and orchestrate network resources

to facilitate the operation, design, and delivery of network services in a scalable and

dynamic manner via open interfaces such as OpenFlow (OF) protocol (ONF, 2013).

 Prior to the advent of SDN (Tourrilhes, Sharma, Banerjee, & Pettit, 2014),

networking architectures were hardware-driven and proprietary. These conventional

architectures were unable to dynamically and adequately respond to the needs of

modern data centers, carrier environments, and college campuses. As a result, the need

to design a software-driven networking architecture, where configuration and policing

could be done in a dynamic, centralized, and logical manner without the need to

configure every device separately was inevitable.

16

3.1.2. SDN framework and architecture

 According to the Open Network Foundation (ONF) (ONF, 2015), the SDN paradigm

has the potential to dramatically simplify network deployment, operations,

management, and innovation.

 In traditional networks, the data plane is tightly coupled into the same network device

as the control plane. SDN (Hu, Hao, & Bao, 2014) decouples the forwarding functions

and the network control, allowing the underlying infrastructures in the data plane to

become simple programmable packet forwarding and routing network devices.

Similarly, it allows network control and automation in the control plane to be directly

programmable via OF. Figure 3.3 shows the SDN architecture.

Figure 3.3. Software-Defined Network (SDN) framework and architecture (Hoang, 2015)

 A programmable SDN controller logically centralized in the control plane manages

and directs all packet transfer and routing policies in the network via the OF protocol.

This protocol sets the rules of communication between the data plane and the control

plane through the southbound interface. Whereas, the northbound interface is used for

communications between the application layer and the control plane using the

application programming interface called REST API (REST-API).

 The SDN architecture is divided into three planes or layers: data (infrastructure),

control, and application planes (ONF, 2014).

17

3.1.2.1. Data plane (infrastructure layer)

 The data plane is sometimes referred to as the forwarding plane or infrastructure

layer. This plane is mainly composed of basic traffic processing or traffic forwarding

resources like routers and switches. The data plane is responsible for the forwarding and

routing of data traffic (Braun & Menth, 2014). In addition to routing and packet

steering, the data plane collects datagram which is used by the controller to monitor,

update, and optimize the performance of the network according to QoS requirements.

 In SDN, all control functions associated with the data plane of traditional networks

have been abstracted and transferred to the centralized SDN controller in the control

plane. As such, all forwarding, and routing actions performed by elements in the data

plane are predetermined in the flow tables of the controller. The data plane contains the

underlying network resources which can be virtualized, managed and controlled via the

control plane or other implementation planes.

 The OF-witches in the data plane communicates with the SDN controller in the

control plane through the southbound interface using the OpenFlow (OF) protocol,

which determines the operation and management messages.

 OF was initially designed to decouple the simple forwarding hardware elements from

the routing software intelligence to allow testbed and academic research networks to

rapidly deploy and evaluate new algorithms and control methods. Later, OF was

adopted by industries because it guaranteed business benefits for hardware

manufacturers and provided an open control interface to the operating systems of

network devices.

 There are three different types of OpenFlow messages defined by the OF protocol,

namely, Asynchronous messages (initiated by OF-switch to the controller), Controller-

to-Switch messages (initialed by the SDN controllers to the OF-switch), and Symmetric

Messages (initiated by either the OF-switch or the SSDN controller) (Azodolmolky,

2013). Figure 3.4 shows the three OpenFlow messaging protocols and their functions.

Under OF rules, each incoming packet is matched with a specific header, if a packet

marches multiple header in the flow entries, the selected entry is the one with the

highest priority. The basic OF actions include deny forwarding, forward as default,

forward to the controller, forward out through, and modify various field headers in the

packet. The counter numbers the packet processes by the protocol rule and flow entries

are deleted if their processing time exceeds a specific time frame.

18

Figure 3.4. OpenFlow messaging protocol (Azodolmolky, 2013)

3.1.2.2. SDN control layer (control plane)

 The control layer is considered as a virtual overlay network that is logically found on

top of the underlying data plane. The forwarding and routing intelligence (the SDN

controller) abstracted from the routing devices in legacy networking resides in this

plane. The control plane contains one or more software controllers that are

programmable and stands as an intermediate layer connecting both the application layer

through a northbound interface like REST API and the data plane through a southbound

interface like OpenFlow. The SDN controller in the control plane provides a centralized

and uniform programmatic interface to the entire network. Figure 3.5 shows an

overview of an SDN controller.

Figure 3.5. Overview of SDN controller (Y. Zhang, 2018)

19

 The SDN controller consists of multiple subprocesses and can be installed as a single

consistent unit on commodity servers. The SDN controller contains three fundamental

components: the protocol handler (deals with legacy network protocols), the

applications (use network information), and libraries (to support various southbound

interfaces). Using these components, the SDN controller can perform functions such as

management of network states, implementation of firewall rules, routing, switching,

update flow entries, network device, topology and service discovery.

 SDN controller architectures can either be distributed or centralized. A centralized

SDN controller has a single control plane, which performs all control and management

tasks in the entire network, whereas a distributed SDN controller (Jiménez, Cervelló-

Pastor, & García, 2014) has several control planes shared by all the devices in the data

plane. Such distributed architectures are very beneficial for large, complex networks

like data centers since each control plane may handle a specific task such as traffic

engineering and virtual network management. Table 3.1 provides a comparison of the

most popular open source SDN controllers.

Table 3.1. A comparative feature-based analysis of open source SDN controllers (Stancu et al., 2015)

20

 SDN controllers are software, written in several programming languages like Java,

Python, and C++, and are capable of controlling hardware from various vendors

operating in the same physical architecture. Some SDN controllers (Salman, Elhajj,

Kayssi, & Chehab, 2016) include Floodlight, ONOS, RYU, POX, NOX,

OpenDayLight, etc. Several studies and surveys have been carried out to compare these

SDN controllers in terms of their supported platform, southbound and northbound APIs

compatibility, multithreading support, application domain, etc.

3.1.2.3. Application layer

 The application layer is logically located above the control layer. It is the topmost

layer in an SDN architecture. The northbound interface between this layer and the

control layer is used to communicate the policy requirements of applications to the SDN

controller. For example; a QoS application may require Voice over IP (VoIP) traffic to

be delivered within a specific time frame, and a security application may need to

redirect all the traffic from an infected host to a remediation server. The SDN controller

implements these policies by writing flow table rules that are used for traffic

engineering by switches at the infrastructure layer.

 Some fundamental problems may arise during the deployment of a new application

on the network. Since each application has its own objectives, conflicts may occur

between applications over certain changes to the shared network resources. These

conflicts include powering on/off network resources, competition over limited flow

table entries of switches, or network bandwidth scheduling and allocation. As a result,

optimal resource allocation techniques, policy management schemes, and conflict

resolution (AuYoung et al., 2014) are hot research topics in SDN. Vendors such as

Cisco, HP, Brocade, etc., provide out-of-the-box SDN applications to small and large

enterprises, network operators, and data centers to perform tasks like network

monitoring, network security, network management and configuration, network

troubleshooting, etc.

3.1.3. Optimization benefits of SDN

 Advantages of SDN implementation include:

• Programmability: Network control in SDN is directly programmable since the

control plane is decoupled from the routing devices in the data plane. With

programmability, network automation can be introduced to rapidly reconfigure and

optimize the Quality of Experience (QoE) of network services like VoIP calls.

21

• Agility and flexibility: Abstracting the forwarding functions from control

intelligence enables network administrators to dynamically adjust traffic flow in the

entire network to meet changing needs. This increases the agility and flexibility of

the network since the network depends on software installed on commodity servers

to dictate network policies.

• Centralized management: Logically centralized software-based SDN controllers in

the control plane provide the network intelligence and global oversight of the

network. Forwarding devices in the data plane are simply referred to as “dumb”

switches. The SDN controller may represent the entire network as a single, logical

switch in order to reduce the management complexity of large complex networks.

• Vendor-neutral and open standardization: SDN architectural solutions simplifies

network design, deployment, and operations since policing is implemented through

open standard SDN controllers instead of a collection of vendor-specific protocols

and devices.

 Other benefits of SDN include support for virtualization and big data, effective QoS

delivery, and centralized security.

3.1.4. Comparison between SDN and legacy networks

 In traditional networks, both the data plane and the control plane were encapsulated

together in the same network device as shown in figure 3.6. In traditional networks,

each switch updates its own MAC address tables independently, there is no centralized

network control and visibility. Furthermore, network management difficulties increase

with the growth of independent distributed devices.

 On the other hand, SDN is highly advantageous compared to traditional networking

because decoupling the networking intelligence from the forwarding devices centralizes

network control and visibility.

Figure 3.6. Traditional network vs SDN (Maleki, Hossain, Georges, Rondeau, & Divoux, 2017)

22

 In addition, the programmability of SDN simplifies network security, management,

automation, reconfiguration, innovation, and optimization of large-scale complex

networks, like data centers and the cognitive core networks.

3.2. Optimization via Network Function Virtualization (NFV)

 This section presents a background on NFV, NFV architecture, and explains the

optimization benefits of NFV. Finally, this section will conclude with a comparison

between SDN and NFV optimization solutions.

3.2.1. Background on Network Function Virtualization (NFV)

 Currently, NFV is significantly attracting attention from both academia and industry

as an important shift in network service provisioning. Fundamentally, NFV decouples

network Functions (NFs) from the hardware devices on which they run (ETSI, 2014a).

By so doing, NFV has the potential to significantly reduce the Operation Expenses

(OPEX) and Capital Expenses (CAPEX) of the service providers and facilitates

innovation and deployment of new networking services with increased flexibility and

agility.

 The European Telecommunications Standards Institute Group Specification (ETSI

GS) (ETSI, 2018) defines NFV as a set of principles to separate network functions

(i.e., functional blocks within the network infrastructure with well-defined external

interfaces and functional behaviors) from the hardware resources on which they run by

applying virtual hardware abstraction.

 Figure 3.7 shows a traditional deployment of large dedicated vendor-proprietary

devices by service providers to provide typical network functions like firewalling,

server load balancing, and network security tools.

 The traditional deployment approach in Figure 3.7 creates a large, complex network

environment which is difficult to manage, operate, expensive to maintain, and typically

contains underutilized hardware resources. Furthermore, network automation,

orchestration, and evolvability is very difficult to implement on proprietary-based

equipment with vendor-specific Application Programming interfaces (APIs).

23

Figure 3.7. Traditional vs Network Function Virtualization (NFV) deployments

 In order to maximize resource utilization and reduce network complexity, NFV was

proposed to break down complex network functions running on specialized vendor

hardware into small functional and manageable units which can be dynamically

orchestrated to form a homogenous virtualized network ecosystem, (see Figure 3.7).

 The concept and initial work on NFV was developed in October 2012 by a number of

world’s leading telecommunication service providers during the collaborative

authorship of a white paper (NFV_White_Paper, 2012) calling for research action in

NFV technology. Since November 2012, ETSI was selected by seven of these providers

(namely, BT, Orange, Verizon, AT&T, Deutsche Telekom, Telefonica, and Telecom

Italia) to be the host of the industry group specification for NFV called the ETSI GS

NFV.

 Nevertheless, research (Han, Gopalakrishnan, Ji, & Lee, 2015) has shown that several

challenges need to be addressed to implement NFV. These challenges include

portability, integration and interoperability of NFV technological solutions with legacy

networking, and seamless migration of legacy networks to modern NFV platforms.

Similarly, NFV reduces the performance of traditional networks since it increases

latencies, and processing overheads. Moreover, the management, automation, stability,

and security of NFV platforms are very complex and difficult.

 The architectural framework of NFV is described below:

3.2.2. NFV architectural framework

 The NFV paradigm has the potential to lead rapid service innovation and deployment

through software-based services, improve operational efficiency with automation,

improve capital efficiency by using general purpose hardware to provide specific

24

network functions, and improve network flexibility by assigning virtual network

functions to hardware according to users’ demands and QoS requirements. These

network virtualization techniques are also leveraged in cloud computing services (Rao

Battula, 2014).

 The NFV architectural framework introduces a new way service provisioning is

realized in the network. NFV decouples software from hardware, introduces dynamic

network operations and network function deployment flexibility.

 According to ESTI specifications, (ETSI, 2014c) the NFV architectural framework

shown in Figure 3.8 is made up of three key components: the Network Function

Virtualization Infrastructure (NFVI), Virtual Network Functions (VNFs), and NFV

Management and Orchestration (NFV MANO). Figure 3.8 shows the NFV architecture.

Figure 3.8. Network Function Virtualization (NFV) architecture (ETSI, 2014b)

 3.2.2.1. Network Function Virtualization Infrastructure (NFVI)

 The NFVI is composed of all hardware and software elements which make up the

network environment in which VNFs are deployed, executed and managed. The NFVI

can be distributed across several geographical locations. The network links connecting

these locations are also considered to be part of the NFVI. The physical hardware

resources (storage, computing, and network) in NFVI provide storage, processing, and

connectivity. These physical resources can be abstracted to form dynamic virtual

resources like virtual storage, virtual network, and virtual computing. Resource

25

allocation and resource release are controlled and performed by the NFV MANO

dynamically to accommodate the consumption of those resources by other network

functions or services.

3.2.2.2. Virtualized Network Function (VNF)

 In a legacy non-virtualized network, the VNF enables the virtualization of all

Network Functions (NFs). Types of NFs that can be virtualized include edge devices,

gateway functions, and performance improvement functions (load balancers). Similarly,

application optimization functions (cache and video transcoder) and security functions

(abnormality detection, firewalls, and intrusion detection systems) can also be

virtualized. In NFV, these NFs run as software and can be deployed on one or more

virtual machines to provide network services. The NF composition and type of VNF are

determined by the functionalities and specifications of the provided services (ETSI,

2017).

3.2.2.3. NFV Management and Orchestration (NFV MANO)

 NFV requires new management and orchestration functions to perform network

maintenance, administration, operation, and NF provisioning. NFV insulates the

network resources from NFs through abstraction and decoupling.

 The NFV MANO is made up of three functional blocks (ETSI, 2014c); the NFV

Orchestrator (NFVO), VNF Manager (VNFM), and Virtualized Infrastructure Manager

(VIM).

 The NFV Orchestrator (NFVO) performs two major functions; resource orchestration

functions by managing NFVI resources across multiple VIMs and network service

orchestration functions by managing the lifecycle of network services.

 The VNF Manager (VNFM) manages the lifecycle of VNF instances. Each VNF

instance is associated with a VNF Manager. A VNF manager can be assigned to manage

a single or multiple VNF instances of the same or different types. VNF instances

include software updates and upgrade, VNF configuration and termination, performance

and fault measurements, etc.

 Finally, the Virtualized Infrastructure Manager (VIM) is responsible for managing

and controlling NFVI storage, compute and network resources. Specialized VIM may

exist to handle certain types of NFVI resources (e.g., storage-only, compute-only,

network-only resources). Other functions of VIM include the allocation, update, and

26

release NFVI resources, as well as the management and provisioning of virtualized

resources.

3.2.3. Optimization benefits of NFV

 The benefits of Network Function Virtualization revolve around its three major

technological breakthroughs; decoupling software from hardware, flexible network

function deployment and dynamic scaling (Mijumbi et al., 2016). Other advantages of

NFV include:

• Optimization of network configuration and topology can be performed in near real-

time based on actual mobility/traffic patterns and service demands.

• Reduces equipment cost and power consumption. Consolidating hardware

equipment increases economies of scale in the IT industry and eliminates the need

for dedicated hardware for network applications and services.

• Reduces development cost by providing the ability to simultaneously run test,

reference and production traffic on the same physical infrastructure.

• Enables a wide variety of network eco-systems and encourages lower risk

innovation from non-corporate organizations like small players and academia.

• Orchestration mechanisms provide automated configuration, installation, scaling-up

and scaling-down of the network capacity.

• Enables service providers to deliver customized services (based on geographical

locations) and provides network isolation for multiple applications, users, and

systems operating on the same physical hardware infrastructure.

3.2.4. Comparison of SDN and NFV concepts

 SDN and NFV have many similarities, which makes them more compatible, as they

both advocate for network evolution towards open software. Moreover, both automation

and virtualization play a vital role in achieving SDN and NFV goals. Therefore, due to

the complementarity of SDN and NFV, combining both lead to greater efficiency.

Recent research (Duan, Ansari, & Toy, 2016) has shown that SDN can accelerate the

deployment of NFV by providing automation and flexibility in configuration setup,

connectivity, security operations, and policy control.

 However, SDN and NFV offer two different virtualization concepts (A. Jain,

Sadagopan, Lohani, & Vutukuru, 2016). In SDN, virtualization is achieved by

abstracting resources to particular tenants, whereas in NFV, virtualization aims to

abstract NFs from dedicated hardware devices. Because of these differences, SDN

27

requires the construction of a new network with OpenFlow supported hardware where

the control and data planes are separated. Whereas NFV can operate on existing

network infrastructures since it can be installed standard servers. Table 3.2 compares

SDN and NFV.

Table 3.2. Comparison of NFV and SDN (Mijumbi et al., 2016)

3.3. Optimization via Combining SDN and NFV

 Although the goals of NFV can be achieved using non-SDN approaches relying on

other techniques currently implemented in many data centers, it is more advantageous to

implement NFV with SDN techniques. This is because SDN separates the control plane

from the data forwarding plane leading to greater efficiency and network simplification.

In addition, SDN architectural solutions facilitate network operation, programmability,

and maintenance procedures.

 Combining NFV and SDN to create virtualized SDN (vSDN) offers the benefits of

both SDN and NFV paradigms, i.e., flexible and dynamic resource allocation and

acquisition by network tenants through NFV and a standardized method to program and

manage those resources through SDN.

 Some SDN controllers such as Floodlight, ONOS, and OpenDayLight provide a form

of network virtualization by allowing certain network applications to utilize isolated

virtual network resources. This is however not considered as full virtualization because

the operation of these virtual networks can only be orchestrated by the parent SDN

controller which does not allow any other SDN controllers to manage these virtual

Issue Software-Defined Networking NFV (telecom networks)

Concept Network Intelligence Abstraction Network Function Abstraction

Promises Open interface and programmable

control

Flexibility, agility and cost

reduction

Protocol OpenFlow Multiple control protocols (e.g.

NETCONF, SNMP)

Leaders Mostly networking hardware and

software vendors

Mostly Telecom network

operators

Runs on Control plane on commodity hardware

and data plane on specialized hardware

Commodity switches and servers

28

networks. Therefore, for Full virtualization, we use a hypervisor to create virtual SDN

networks.

 In the following section, we explain how hypervisors are used to create vSDN

networks. We present the two major hypervisors: Flowvisor and OpenVirteX and their

limitations.

3.3.1. Virtualizing SDN networks using hypervisors

 Initially, hypervisors were developed for virtual computing to monitor and allocate

physical resources (RAMs, CPUs, storage, etc.) to several virtual machines running on

the shared computing infrastructure (Sonam Srivastava & S.P Singh, February 2016). In

a virtualized SDN architecture, the hypervisor adds an additional abstraction layer

called the virtualization layer. Typically, the virtualization layer or hypervisor sits

between the networking hardware and multiple virtual SDN controllers (A. A. Blenk,

2018). This layer creates and manages logically isolated network partitions or virtual

networks. The virtualization layer reduces the performance of the overall network since

it increases overheads and CPU usage. Thus, optimization is needed to minimize

performance degradation. Figure 3.9 shows a virtualized SDN architecture.

Figure 3.9. SDN virtualization with hypervisor

 The creation of virtual SDN networks using hypervisors involves 3 steps (A. Blenk,

Basta, Reisslein, & Kellerer, 2016): management of the physical SDN network,

virtualization of network attributes, and isolation of network attributes.

29

3.3.1.1. Management of the physical SDN network

 The programmability of SDN can be employed to facilitate the implementation of

virtual SDN networks. In vSDN architectures, the hypervisor lies between the physical

SDN network and the vSDN controller. Due to its intermediate position, the hypervisor

interacts and monitors the entire physical SDN infrastructure.

 The hypervisor creates isolated virtual SDN networks by abstracting the physical

SDN network resources. Packet forwarding and network policing in these virtual SDN

network are controlled by virtual SDN controllers. Figure 3.9 illustrates how the

underlying physical SDN network can be abstracted to produce the two separate vSDN

networks. Non-transparent hypervisor acts as a proxy by intercepting control messages

between the physical SDN network and the vSDN controllers.

3.3.1.2. Virtualization of network attributes

 The Hypervisor communicates an abstraction (simplified representation) of the

physical SDN network to the virtual SDN controllers. There are three types of SDN

network abstraction, namely topology, physical node resources, and physical link

resources abstractions.

 Topology abstraction involves the abstraction of topology, virtual nodes, and virtual

links information. This information (nodes location and links interconnection) is

transmitted by the hypervisor to the tenants (vSDN controller). The entire network

topology is always hidden from the tenants. As such, multiple physical switches can be

represented by a single virtual switch. This is known as a big switch.

 Physical node resource abstraction involves the abstraction of CPU and memory

resource information. CPU resource information can be represented by the percentage

utilization of the CPU or the number of CPU cores available. Consequently, 150% CPU

availability equals to one and a half available cores in a dual core physical CPU.

Similarly, Memory resource information like flow tables may be abstracted using

memory partition representations or the number of hardware or software flow table.

Based on the degree of abstraction, the hypervisor abstracts this information from the

tenants’ view reducing the network complexity.

 Physical link resource abstraction involves the abstraction of link buffers, number of

queues, queuing priorities as well as bandwidth information (Chowdhury & Boutaba,

2010). The hypervisor abstracts this information to create virtual networks with specific

loss or delay bounds to guarantee effective service delivery.

30

3.3.1.3. Isolation of network attributes

 The hypervisor must provide tenants with isolated virtual networks that efficiently

share the same physical infrastructure. Isolated physical resources include data plane

(nodes, links), control plane (instances), and vSDN addressing isolation.

 Data Plane Isolation involves the isolation and reservation of data plane physical

resources like link data rates, link queues, flow table spaces, and CPU nodes. These

resources can be isolated to enhance data plane traffic processing between tenants.

Performance variations must be considered when allocating physical resources since

these variations constantly change due to different network workloads and scenarios.

Optimizing the isolation process can prevent a single vSDN network from starving

other virtual networks of physical resources.

 Control Plane Isolation involves the isolation of control plane elements from the

tenants. High CPU and memory usage by the vSDN controllers in the control plane can

significantly degrade the performance of data plane processes. As a result, the switches

at the data plane might experience forwarding delays. Therefore, only one vSDN

controller controls a single vSDN network to prevent vSDN controller interferences.

Furthermore, CPU, storage and network resources used by the hypervisor must also be

isolated to provide efficient operation of the hypervisor.

 Finally, vSDN addressing isolation involves isolating the different tenants’

forwarding decisions to avoid conflicts. Tenants should have the freedom to direct flows

according to their service demands and configurations. Generally, the attributes of the

physical infrastructure limits flow space addressing in non-vSDN networks. Whereas in

virtualized SDN networks, several addressing approaches can be used. One addressing

technique called the flow space splitting technique suggests the provision of non-

overlapping flow spaces to tenants. Another addressing technique uses the fields not

required by the OF protocol to provide unique vSDN identification and addressing. This

technique allows the tenants to have the entire flow space.

3.3.2. Types of hypervisor architecture

 Hypervisor architectures can be classified into centralized and distributed hypervisors

(A. Blenk et al., 2016). A centralized hypervisor architecture has a single central entity

which controls multiple network elements in the underlying physical network

infrastructure. Data centers employing this type of hypervisors have them installed on a

virtual machine on a standard server. On the other hand, a distributed hypervisor

31

architecture logically separates its virtualization functions across multiple network

elements.

3.3.2.1. Flowvisor (FV)

 FV (Rob Sherwood et al., 2009) was the first OF-based hypervisor used to virtualize,

slice and share SDN resources between multiple vSDN controllers. FV was developed

to isolate production network traffic from experimental network traffic allowing both

experimental and production networks to share the same physical SDN infrastructure.

The architecture and operation of FV are described below:

• Architecture: FV is a centralized network hypervisor. It is a pure software which can

run in a virtual machine or on any standard server. FV occupies the virtualization

layer and controls networking traffic between the physical SDN hardware and the

vSDN controllers. FV abstracts the SDN hardware resources from SDN controllers

by controlling their respective network resource views. FV supports OF 1.0 (ONF,

December 31, 2009).

• Flowspace: FV uses the term flowspace to describe a non-contiguous sub-space in

the header field space. FV allocates a unique flowspace to every vSDN tenant to

ensure that the tenants are isolated from one another with non-overlapping

flowspaces. FV intercepts traffic between the tenants and the physical SDN

hardware to rewrite packet headers or generate OF error messages every time

tenants uses the same flowspaces for flow addressing.

• Topology Isolation: FV creates network slices by isolating the network topology and

allows each SDN controller to view only the switches and ports under their control

i.e., their slices, (see Figure 3.11). For this, OF messages from the tenants are

rewritten and forwarded by the FV to their respective slices and vice versa.

• Bandwidth Isolation: Even though a QoS mechanism for data pane isolation is not

specified in the OF 1.0 version, FV uses priority bits in the data packet to provide

data plane isolation in VLAN. These priority bits (3-bits) are used to set and map

data packets to eight distinct priority queues.

• Flow Entries Isolation: Flow entries are limited resources. Therefore, FV monitors

the use of flowspaces, isolates flow entries from different network slices and

prevents vSDN controllers from using the flowspace of other vSDN controllers

when their flowspaces are fully utilized.

32

• Control Channel Isolation: FV uses unique transaction identifiers for each tenant in

order to distinguish between network slices. FV equally modifies and rewrites

message identifiers whenever vSDN controllers use identical OF identifiers. Figure

3.10 shows network slicing with FV.

Figure 3.10. Network slicing with Flowvisor (Rob Sherwood et al., 2009)

 Nevertheless, FV experiences a flowspace problem because the same address space is

shared (sliced) between all tenant vSDN controllers. As a result, the flowspace of

tenants is very short and frequently overlaps.

3.3.2.2. OpenVirteX (OVX)

 OVX (Ali Al-Shabibi et al., 2014) is a decentralized hypervisor built on the concept

of FV. OVX uses the physical SDN hardware to create virtualized SDN functionalities.

OVX provides topology virtualization and address virtualization. The Address

virtualization is used by OVX to tackle the flowspace problem in FV by providing full

header fields spaces to individual virtual SDN controllers.

The architecture and operation of OVX are described below:

• Architecture: OVX is a pure software-based hypervisor that supports OF 1.0 (ONF,

December 31, 2009) and Oracle Java Version 7 (James Gosling, Bill Joy, Guy

Steele, Gilad Bracha, & Alex Buckley, 2013). OVX can be installed on any

computing platform or standard server in a data center. OVX creates virtual

networks that are more resilient to node and link failures by rewriting the MAC

addresses of physical SDN links and switches. This allows the same network

infrastructure to be used simultaneously by multiple tenants. Figure 3.11 shows the

OVX system architecture.

• Address Isolation: Virtualization in OVX is better than that in FV because OVX

rewrites the tenants’ IP addresses and the MAC addresses of physical SDN switches

33

to identify vSDN tenants instead of using packet header fields as FV does. This

process increases the available flowspace for tenants.

• Topology Abstraction: OVX is not a transparent hypervisor because it intercepts and

answers to the link layer discovery protocol messages and other topology discovery

processes. This prevents the tenant vSDN controllers from viewing the entire

physical underlying network. OVX can create “big switches” by merging multiple

physical switches together.

Figure 3.11. OpenVirteX system architecture (Al-Shabibi et al., 2014)

 Comparing OVX and FV (Al-Shabibi et al., 2014) shows that OVX performs better

and delivers a more robust SDN virtualization. However, virtual network creation and

configuration with OVX is very difficult and requires manual configurations from the

network administrator. For this reason, we proposed automatic virtual network

configuration module called AUTOVNET to rapidly create and configure virtual

networks using OVX.

 Section 4 provides more details on the drawbacks of OVX and explains how

AUTOVNET is used to automate the creation and configuration of virtual SDN

networks using OVX.

3.4. Review of available vSDN solutions with OpenFlow

 Several network virtualization solutions have been implemented with OF (Ahmed

Abdelaziz et al., 2016). In this section, we review some of these implementations and

their limitations.

34

 VeRTIGO proposed by R. Doriguzzi et al. (Corin, Gerola, Riggio, Pellegrini, &

Salvadori, 2012) applied proxy virtualization to facilitate the design of NV networking

platform with OpenFlow. VeRTIGO improved on Flowvisor to provide customized

virtual topologies where different network resources could be allocated to tenants

depending on their service level requirements (packet loss or maximum latency).

VeRTIGO also allowed customers to either select between topology customization or

routing policing. However, VeRTIGO has the same limitation as Flowvisor, and could

not provide a full isolated address space to each tenant.

 In (Jin et al., 2017), the authors used OVX to virtualize optical networks based on

bandwidth availability. They proposed an Optical-OpenVirteX (O-OVX) architecture

consisting of two main modules, Topology Discovery (TD) and Bandwidth on Demand

(BoD) modules. The TD module collects information (optical devices, ports and links)

from the physical network, whereas the BoD module maps the available network

resources and performs virtual network resource allocation. However, this design is

difficult to implement since it uses the Network Embedder module of OVX to receive

vSDN requests from tenants.

 Similarly, W. Jeong and al. in (Jeong, Yang, Kim, & Yoo, 2017) used OVX to design

an efficient Big Link Allocation Scheme (BAS) for vSDN. A Big link in vSDN is a

single virtual link created by mapping several switches and links. BAS reduces

unnecessary reallocation of resources, provides big links with a greater throughput and

mitigates vSDN performance degradation. However, BAS lacked proper fault detection

capabilities.

 The configuration of virtual networks using OVX is very complex and tedious due to

lack of automation. This is because the network administrator has to configure the

virtual networks manually. Motivated by the limitations of the existing research in the

literature, we propose AUTOVNET which replaces the Network Embedder of OVX

(Al-Shabibi et al., 2014) and automatically creates and configures virtual networks from

a simplified vSDN request. In addition, AUTOVNET has fault-detection features to

ensure that virtual networks are created and configured using faultless physical

resources.

35

4. AUTOVNET - AUTONOMOUS VIRTUAL NETWORK SYSTEM

 In this chapter, we propose an autonomous virtual network management system

called AUTOVNET, describe its implementation and specify its advantages over the

legacy OVX system. AUTOVNET uses the OVX hypervisor to configure virtual SDN

networks. OVX is pure software implemented in Python and has two main advantages

in NV, namely, address virtualization and topology virtualization (see Sec. 3.3.2.2).

 Traditional OVX requires manual inputs from the user or network administrator to

configure virtual networks on a given underlying network topology. This is the main

reason setting up even the smallest virtual networks using OVX takes a lot of efforts. As

a result, OVX developers designed the network embedder module (see Figure 3.11) to

map the virtual topology to physical resources and rapidly create virtual networks based

on the user requests.

 Nevertheless, the network embedder module did not solve the problem of speeding up

virtual network configurations for larger network topologies, since it equally required

manual configurations from the network administrator. Therefore, larger network

architectures required more complex manual configurations (vSDN request). This

configuration instruction is essentially a script that specifies the MAC addresses and

port information of switches and hosts and how these resources interconnect (link or

node mapping information). Consequently, configuring virtual networks on large

complex networks using OVX required large complex vSDN request scripts which are

time-consuming and challenging to code.

 AUTOVNET introduces a novel approach to solve these problems by automating the

virtual network configuration process and minimizes manual instructions. The vSDN

request required by AUTOVNET is extremely simplified, and regardless of the

topology of the underlying network, the network administrator must only specify the

MAC addresses of the source host and the destination host in the script. With

AUTOVNET, the network administrator does not need to know or indicate the MAC

addresses of the edge switches (switches to which the source and destination hosts are

directly connected), intermediate switches (switches connecting the source and

destination hosts), and port information. AUTOVNET automatically fetches this

information.

36

4.1. AUTOVNET Management Functions

 AUTOVNET is an automatic virtual network management and orchestration system

that is attached to the OVX architecture (Figure 3.11) to replace the network embedder

module of OVX.

 Amongst the five management areas of cognitive networks described in Sec. 2.3,

AUTOVNET can perform three of them, namely configuration management, fault

management, and performance management.

4.1.1. AUTOVNET: configuration management

 AUTOVNET automatically monitors the underlying physical network and collects

information like MAC addresses of switches and hosts, port numbers, and link

information of the entire network. AUTOVNET uses the vSDN request from the

network administrator to create and configure an OVX “Big Switch”. A “Big Switch” is

a single virtual switch that is created from multiple physical switches. In other words,

the tenant views a single switch representing the underlying physical network. This

technique reduces the configuration complexity of virtual networks and creates

redundant network links within the virtual switch. Moreover, AUTOVNET assigns a

controller to manage and control the virtual network.

4.1.2. AUTOVNET: fault management

 AUTOVNET differs from other virtualization modules described in Sec. 3.4 because

it has a built-in fault detection mechanism. Traditionally, OVX abstracts physical

network resources to create virtual networks without checking whether they might be

working properly or not. As a result, if we abstract a broken physical link or damaged

switch to create our virtual node, OVX will create a faulty virtual node. Consequently,

this virtual network will not be able to transmit data traffic between the hosts. To avoid

this type of situations, AUTOVNET performs a pre-virtualization fault analysis to

ensure that all switches and links are functioning properly and lists all potential faulty

resources to avoid using them to create virtual networks.

4.1.3. AUTOVNET: performance management

 AUTOVNET uses real-time network data (packet delay, number of packets on links)

to perform congestion analysis. This analysis is used to identify congested routes in the

underlying physical network. After this analysis, AUTOVNET uses resources from the

least congested route to create the virtual network. It should be noted that a “route” is

made up the switches connecting the source host to the destination host. Congestion

37

analysis is particularly useful in large complex networks where multiple routes connect

the source and destination hosts. Having the ability to determine which route is the best

will provide a great advantage and AUTOVNET accomplishes this task.

4.2. AUTOVNET Architecture

 AUTOVNET simplifies the configuration of virtual networks using OpenVirteX

(OVX). Figure 4.1 shows the architecture of AUTOVNET. AUTOVNET is an

automatic virtual network management and orchestration system that is attached to the

OVX architecture in Figure 3.12 to replace the network embedder module of OVX.

Figure 4.1. AUTOVNET system architecture

 AUTOVNET is pure software implemented in Python programming. It has two main

components: MNET and VNET.

4.2.1. MNET module

 The MNET module is directly connected to the physical network. It monitors the

underlying hardware, collects, updates and stores network information in the Network

Information Database (NID). This database is a repository containing information about

all hardware resources and their features, i.e., MAC addresses and port attachment

numbers of all hosts and their corresponding edge switches, switch-to-switch

connection information and bandwidth capacity of the links. The MNET module can

receive real-time Wireshark data to create other databases and performs other analyzes

38

such as link budget calculation and deep packet inspection to determine potential

congested links and failing hardware resources.

4.2.2. VNET module

 The VNET receives and validates vSDN requests from the network administrator

(source and destination host MAC addresses) and uses the NID and other MNET-

generated databases to make resource allocation and path selection decisions. It

automatically generates a configuration command to instruct OVX to create and

configure the appropriate virtual network for the source and destination hosts. The

VNET isolates physical resources for the creation of virtual networks, manages the

lifecycle and topology of virtual networks, and assigns a specific SDN controller to

manage and control routing and forwarding in each virtual network.

 Thus, the MNET and VNET components provide AUTOVNET with cognitive

capabilities like sensing, adapting, and learning capabilities making AUTOVNET a

complete cognitive system.

4.3. AUTOVNET Implementation

 An MSI PL627RC Computer with Intel ® Core ™ i7 CPU @ 2.80 GHz, RAM: 8:00

GB, Ubuntu 18.04 as Host Operating System is used as the computing platform in this

research. Mininet V2.2 is used to design and test the SDN network topologies.

Floodlight (V2.1.2) is used as the SDN Controller. Both AUTOVNET modules (MNET

and VNET) are programmed in Python 3.7.

 The three major tools used to design and test AUTOVNET, Mininet (to create and

test the SDN networks), Floodlight (the SDN controller), and Wireshark (to collect data

from the SDN network) are described in the following subsections.

4.3.1. Mininet and network topology design

 Mininet is an SDN emulator software. Emulators (Wang, 2014) are commonly used

to recreate or replicate the behavior of real networks. This is very useful for research,

testing, learning, development, debugging, and prototyping SDN networks on a single

computer. Mininet supports OpenFlow and uses a process-based virtualization method

to create a network of virtual controllers, switches (Open vSwitch), hosts and links. It

runs on standard Linux network software and allows network engineers to use Python

scripts to create, design, and test custom topologies. Figure 4.2 shows the Fat Tree

topology used for our analysis in this research.

39

Figure 4.2: Fat tree topology

 Table 4.1. MAC addresses of the switches and hosts

Network Element Mac Address Description

S17 00:00:00:00:00:00:00:11 Core Switch

S18 00:00:00:00:00:00:00:12 Core Switch

S1 00:00:00:00:00:00:00:01 Edge Switch

S2 00:00:00:00:00:00:00:02 Edge Switch

S3 00:00:00:00:00:00:00:03 Edge Switch

S4 00:00:00:00:00:00:00:04 Edge Switch

S21 00:00:00:00:00:00:00:15 Switch

S10 00:00:00:00:00:00:00:0a Switch

S11 00:00:00:00:00:00:00:0b Switch

S22 00:00:00:00:00:00:00:16 Switch

h1 00:00:00:00:00:01 Host

h2 00:00:00:00:00:02 Host

h3 00:00:00:00:00:03 Host

h4 00:00:00:00:00:04 Host

h5 00:00:00:00:00:05 Host

h6 00:00:00:00:00:06 Host

h7 00:00:00:00:00:07 Host

h8 00:00:00:00:00:08 Host

40

 This topology contains 8 hosts, 10 switches, and 20 links. Table 4.1 shows the MAC

addresses of the hosts and switches in the network. Each host is directly connected to a

single switch called the edge switch.

 This network topology provides two routes through which the hosts can communicate

with one another. This double routing option is very important because if one of the

routes is broken, the other can be used as backup. For this reason, this type of network

topology is often used to create fast, fault-tolerant data centers (Lebiednik, Mangal, &

Tiwari, 2016)

 Similarly, this topology is used in this analysis to test AUTOVNET in a faulty

network scenario, where one route is faulty (contains broken links or inactive switches).

In this case, AUTOVNET should detect the faulty route and use the other backup route

to create the virtual network.

4.3.2. Floodlight

 The Floodlight SDN controller was used in our analysis. Table 3.1 shows how

Floodlight compares to other SDN controllers like OpenDayLight, ONOS, NOX, etc.

 Floodlight is an open source OpenFlow controller developed by Big Switch

Networks. An active developer community, very good documentation, and minimal

dependencies make this controller easy to build, update, run and use. Floodlight is

written in the Java programming language and licensed by Apache. Floodlight can

manage both OpenFlow and non-OpenFlow networks and supports cloud orchestration

platforms.

Figure 4.3. Network topology (fat tree) viewed by Floodlight

41

 The Floodlight has a Web GUI which allows network engineers to view the overall

network topology, all network resources (switches, hosts), switch flow tables, inter-

switch links, and controller state information. The Web GUI also provides some

OpenFlow statistics in an easy to read tabular format that can be reached from

http://<controller-ip>:8080/ui/index.html. Figure 4.3 shows the fat tree topology in

Figure 4.2 represented in the Floodlight Web GUI.

4.3.3. Wireshark

 AUTOVNET can analyze data collected by Wireshark to carry out congestion

analysis and deep packet inspections. These analyses are used for load balancing,

effective resource utilization, and best route selection for virtualization.

 Wireshark is the most popular open source network packet analyzer (Banerjee,

Ashutosh, & Mukul, 2010). It is used by network professionals as a packet sniffing and

logging tool. Wireshark can capture hundreds of communication protocols and as a

result, it is mostly used for network troubleshooting, communication software, and

protocol developments. A GUI is used to view, browse, and analyze network data.

Wireshark can be installed on most computing platforms like Linux, Windows, and

UNIX. Figure 4.4 shows captured network data in the Wireshark GUI.

Figure 4.4. Wireshark GUI with captured network data

42

4.4. AUTOVNET Operation

Figure 4.5 shows a flowchart of the AUTOVNET operation.

Figure 4.5. Flowchart of AUTOVNET operation

43

Figure 4.6 shows the AUTOVNET vSDN configuration algorithm

Figure 4.6. AUTOVNET vSDN configuration algorithm

 In the following, we discuss the various operations or steps shown in Figure 4.5.

These steps are carried out by AUTOVNET to automatically detect faults in the

network (e.g., broken links), isolate healthy network resources and create virtual

networks.

 Since AUTOVNET and OVX are both written in Python, AUTOVNET uses OVX as

a Python library to automatically configure and create a virtual network between two

hosts in the network,

 The AUTOVNET algorithm in Figure 4.6 requires three inputs denoted by SH

(source host MAC address), DH (destination host MAC address), and WS (Wireshark

data). The vSDN request only indicates SH and DH.

44

 The goal of AUTOVNET is to select the Best Switch Route (BSR) which is the

shortest, healthiest, fastest, and least congested route in the network. The BSR contains

switches which are used to create a virtual network between the SH and DH using

OVX. The output of AUTOVNET is denoted by vSDNSD, which represents the virtual

network created by OVX for SH and DH communications.

 Mathematically, this output is given by

 (4.1)

 The following steps describe the operation of AUTOVNET.

• Fetch network information

 During the process known as sensing, AUTOVNET automatically monitors and

fetches network data from the underlying physical resources via the link layer discovery

protocol to create the Network Information Database (NID).

 The fat tree topology in Figure 4.2 is used as the underlying network topology in this

study. Figure 4.7 shows a screenshot the NID when AUTOVNET is executed in Spyder

IDE. The NID contains information on the number of switches and hosts in the network,

as well as the MAC addresses of the hosts and their corresponding edge switches,

switch-to-switch connections and port attachment numbers.

 Note that in this section, the operation of AUTOVNET is illustrated using

screenshots from Spyder IDE.

Figure 4.7. Network Information Database (NID) viewed in Spyder IDE

45

• Network mapping

 After the NID is created, AUTOVNET is ready to receive the vSDN request (SH and

DH) from the network administrator. In AUTOVNET, the vSDN request is simplified

compared to the one used in traditional OVX hypervisor. Furthermore, the vSDN

request in AUTOVNET remains unchanged regardless of the underlying network

topology.

 The inputs SH and DH, together with the NID are used by AUTOVNET to analyze

the various connections in the physical network topology and create a model

representing the connections in the underlying network. This model shows the

connections between the physical switches in the network.

 Given a vSDN request containing the MAC addresses of h1: 00:00:00:00:00:01 as

SH and h5: 00:00:00:00:00:05 as DH, the network model generated by AUTOVNET to

present the connections between the physical switches in the network is shown in Figure

4.8. In this model, the “green” dots represent the physical switches in the network. Note

how Figure 4.8 is very similar to Figure 4.3 (Floodlight’s representation of the network

topology).

Figure 4.8. Network representation of the physical network

 Using this model, AUTOVNET computes the shortest routing options between SH

and DH. The topology used in this analysis offers two routing options between any

given SH and DH.

 The MAC addresses of the switches in each route are used to generates the Switch

Route Database (SRD). Table 4.2 shows the SRD generated for a vSDN request

containing h1 as SH and h5 as DH.

46

Table 4.2. Shortest Route Database (SRD) for h1 and h5

Route 1 Route 2

00:00:00:00:00:00:00:01 00:00:00:00:00:00:00:01

00:00:00:00:00:00:00:0a 00:00:00:00:00:00:00:15

00:00:00:00:00:00:00:12 00:00:00:00:00:00:00:11

00:00:00:00:00:00:00:16 00:00:00:00:00:00:00:0b

00:00:00:00:00:00:00:03 00:00:00:00:00:00:00:03

 The SRD in Table 4.2 shows the two routing options (Route 1 and Route 2) between

h1 and h5 in this network topology. For a different network topology offering, for

instance, five shortest routing options between the source and destination hosts, the

corresponding SRD generated by AUTOVNET will contain five routes.

 From Table 4.1, the MAC addresses in Route 1 correspond to switches S1, S21, S17,

S11, and S3. Similarly, the MAC addresses in Route 2 correspond to switches S1, S10,

S18, S22, and S3. Switches S1 and S3 are called edge switches and appear in both

routes because they are directly connected to h1 and h5 (see Figure 4.2).

 Therefore, the network mapping process uses the MAC addresses of the source and

destination hosts, and the Network Information Database (NID) to create Switch Route

Database (SRD).

 Once the SRD is created, AUTOVNET allows the network administrator to select

between two virtualization choices, i.e., either random or smart virtualization.

These two choices are explained in the following subsections.

4.4.1. Random virtualization

 Random virtualization triggers a process known as random path selection.

• Random route selection

 In this process, AUTOVNET randomly selects one routing option from the SRD. The

randomly selected route becomes the Best Switch Route (BSR).

 If, for example, Route 1 in SRD is selected randomly, then, Route 1 is considered the

best routing option (BSR) between h1 and h5. The switches of Route 1 are isolated and

dedicated to the virtual network. AUTOVNET automatically uses this BSR to configure

OVX to create a vSDN connection between h1 and h5 as in E.4.1.

 After the execution of AUTOVNET in Spyder IDE, Figure 4.9 shows the random

network virtualization creation steps.

47

Figure 4.9. AUTOVNET random virtualization

 In Figure 4.9, the vSDN request contains SH and DH as 00:00:00:00:00:01 and

00:00:00:00:00:05, respectively. Using this information, AUTOVNET generates the

SRD containing Route 1 and Route 2. Selecting random virtualization allows

AUTOVNET to choose from either one of these routes to create and configure a vSDN

connection for SH and DH using OVX.

 To test whether a vSDN network is created, one can use the ping command in

Mininet. Figure 4.10 shows this step for the case studied; specifically, “h1 ping -c3 h5”

command is executed in Mininet.

Figure 4.10. Testing AUTOVNET random virtualization in Mininet

48

 From Figure 4.10, it is seen that AUTOVNET has successfully created a vSDN

connection between h1 and h5 since all pings between h1 and h5 are successfully

transmitted and received with 0% packet loss.

 Random virtualization is very fast and works with any given network topology. On

the other hand, random virtualization does not check for faults in the underlying

network and simply creates virtual networks between two hosts using the switches from

a randomly chosen SRD route.

 Therefore, if the chosen route has the broken link or an inactive switch, the virtual

network created by AUTOVNET will be faulty by default. To avoid this situation,

AUTOVNET offers a second virtualization option called smart virtualization which can

detect faulty links and inactive switches in the underlying network and avoid using

these resources when creating virtual networks. This virtualization is described as

follows.

4.4.2. Smart virtualization

 Smart virtualization requires another input from the network administrator which is

Wireshark data (WS).

 When the network is created in Mininet, executing the “pingall” command allows

Wireshark to collect datagram from the network interfaces called WS. WS is analyzed

by AUTOVNET to detect faults, congested and slow routes in the network.

 Smart virtualization allows one to test AUTOVNET in two different scenarios: (a) a

healthy network scenario in which all shortest routing options in the network are

operational, in which case AUTOVNET determines and selects the least congested and

fastest route as the best shortest route, and (b) a faulty network scenario in which one or

more links in the network are broken, in which case AUTOVNET detects the faulty

route and uses the other backup route for virtualization.

 Using the network topology in Figure 4.2, the Wireshark data collected from a

healthy network and a faulty network are plotted in Figure 4.11 and Figure 4.12.

49

Figure 4.11. Wireshark data plot from a healthy network

Figure 4.12. Wireshark data plot from a faulty network

 The leftmost bar in Figure 4.11 shows the activity on interface s10-eth1 which is the

number of packets at switch S10 at Port 1. Since every connected port on a switch is

powered by an interface, every Switch-to-Switch link has two interfaces (see Figure

4.2). For example, link S21 S17 consists of interfaces s21-eth3 and s17-eth1, where eth3

and eth1 indicate their respective ports.

 Notice that Figure 4.12 has fewer bars compared to Figure 4.11. This is because

faulty links have inactive interfaces.

 Since we use the network topology in Figure 4.2, the NID remains unchanged. A

vSDN request containing the MAC addresses of h2: 00:00:00:00:00:02 as SH and h8:

00:00:00:00:00:08 as DH, generates the SRD in Table 4.3 during network mapping.

50

Table 4.3. Shortest Route Database (SRD) for h2 and h8

 Under smart virtualization, after network mapping, AUTOVNET moves to the switch

interface mapping stage.

• Switch interface mapping

 Using only Wireshark data (WS), AUTOVNET cannot determine if a switch is

healthy or defective. This is because WS only indicates the name of interfaces (e.g. s1-

eth3) without referring to the MAC addresses of the switches. Similarly, NID indicates

the MAC addresses of the switches without referring to the interfaces. To resolve this

problem, AUTOVNET carries out a switch interface mapping process. During this

process, AUTOVNET maps all the interfaces in WS to switches in NID. Consequently,

AUTOVNET identifies all the switches with active interfaces and stores the MAC

addresses of these switches in a database called the Switch Interface Database (SID).

 This mapping allows AUTOVNET to use the NID and WS to determine whether a

switch or link is healthy or faulty since a missing interface in WS indicates that the

corresponding link or port on the switch is defective.

• Active route mapping

 At this point, the SRD displays the switches in the routing options between SH and

DH, and the SID shows all the switches with healthy interfaces.

 To determine whether the switches in SRD are active or healthy, AUTOVNET

checks to see if these switches are also present in SID during a process called active

route mapping. During this process, routes in SRD containing switches also found in

SID, are stored in the Active Route Database (ARD).

 The ARD contains routes with both SRD and SID switches. Routes in SRD with non-

SID switches are rejected. This is how AUTOVNET detects faulty routes in the

underlying network topology. Mathematically, the active route mapping compares SRD

and SID which is an intersection operation, that is,

Route 1 Route 2

00:00:00:00:00:00:00:01 00:00:00:00:00:00:00:01

00:00:00:00:00:00:00:0a 00:00:00:00:00:00:00:15

00:00:00:00:00:00:00:12 00:00:00:00:00:00:00:11

00:00:00:00:00:00:00:16 00:00:00:00:00:00:00:0b

00:00:00:00:00:00:00:04 00:00:00:00:00:00:00:04

51

 (4.2)

 From E.4.2, we deduce that the size of ARD should be less than or equal to the size

of SRD. That is,

 (4.3)

where s(SRD) is the size of SRD. For example, the SRD in Table 4.3 has a size of two.

 E.4.3 leads to two possibilities. Either s(ARD) is less than s(SRD), in which case

fault is detected and one or more routing options in SRD are eliminated, or s(ARD) is

identical to s(SRD), in which case no fault is detected and all the routing options in

SRD are healthy.

 We describe the behavior of AUTOVNET under these two possibilities in the

following subsections.

4.4.2.1. Case 1: faulty network

 In a faulty network scenario, s(ARD) is less than s(SRD). That is,

 (4.4)

 E.4.4 indicates that one or more routes in SRD are not in ARD because they

contain inactive or faulty switches.

 After the execution of AUTOVNET in Spyder IDE, Figure 4.13 shows the smart

network virtualization creation steps for a faulty network scenario.

52

Figure 4.13. AUTOVNET smart virtualization with a faulty network

 To create a faulty network version of the network topology shown in Figure 4.2, the

link between the switches S21 and S17 is disabled using the “link S21 S17 down”

command in Mininet. Figure 4.12 shows the Wireshark data plot of the faulty network.

 Using this data and a vSDN request containing the MAC addresses

00:00:00:00:00:02 as SH and 00:00:00:00:00:08 as DH, which are the MAC addresses

of hosts h2 and h8, respectively, AUTOVNET generates the SRD in Table 4.3 which

shows the routing options (Route 1 and Route 2). Figure 4.13 shows that AUTOVNET

correctly detects network failures by indicating that switch s17 is inactive and Route 2

is broken. The ARD created by AUTOVNET is shown in Table 4.4.

53

 Table 4.4. Active Route Database (ASD) for h2 and h8 with switch s17 down

 As predicted in E.4.4, the ARD in this case contains only Route 1. Route 2 was

eliminated since it contained the faulty link and the MAC address of the inactive switch,

S17, 00:00:00:00:00:11 (see Table 4.3).

 Therefore, Route 1 is considered as the best routing option (BSR) between h2 and h8.

The switches of Route 1 are isolated and dedicated to the virtual network and

AUTOVNET automatically uses this BSR to configure OVX to create a vSDN

connection between h2 and h8 as in E.4.1.

 To test whether a vSDN network is created, one can use the ping command in

Mininet. Figure 4.14 shows this step for the case studied specifically “h2 ping -c3 h8”

command is executed in Mininet.

Figure 4.14. Testing AUTOVNET smart virtualization with faulty network

 From Figure 4.14, it is seen that AUTOVNET has successfully created a vSDN

connection between h2 and h8 since all pings between h2 and h8 are successfully

transmitted and received with 0% packet loss.

Route 1

00:00:00:00:00:00:00:01

00:00:00:00:00:00:00:0a

00:00:00:00:00:00:00:12

00:00:00:00:00:00:00:16

00:00:00:00:00:00:00:04

54

4.4.2.2. Case 2: healthy network

 In a healthy network scenario, s(ARD) is identical to s(SRD). That is,

 (4.5)

 E.4.5 indicates that there are several healthy routes in ARD. Therefore, AUTOVNET

performs congestion analysis to determine which route in ARD is the least congested.

• Congestion analysis

 Using the network topology in Figure 4.2 and a vSDN request containing the MAC

addresses of h2: 00:00:00:00:00:02 as SH and h8: 00:00:00:00:00:08 as DH,

AUTOVNET generates the SRD in Table 4.3 which shows the two routing options

(Route 1 and Route 2). The data plotted in Figure 4.11 is collected from this healthy

network by Wireshark. AUTOVNET analyzes these data to determine the fastest and

least congested route. Table 4.5 shows the number of packets on the interfaces of SRD

routes.

Table 4.5. Number of packets on interfaces of Route 1 and Route 2

Interfaces I1 I2 I3 I4 I5 I6 I7 I8

Route 1 145 145 175 175 175 175 104 104

Route 2 7 7 101 101 100 100 141 141

 Figure 4.15 shows a plot of the total number of packets on the interfaces associated

with Route 1 and Route 2.

Figure 4.15. Congestion plots of SRD routes

55

 There are eight interfaces on both routes because each switch-to-switch connection

consists of two interfaces and the two routes in SRD (see Table 4.3) consist of four

switch-to-switch connections (five switches connected in series).

 Figure 4.15 shows that Route 2 is the least congested routing option because it

contains fewer packets than Route 1.

 For deep packet inspection analysis, we consider Internet Control Message Protocol

(ICMP) packets (echo request) time delays because ICMP packets are only generated by

the “ping” command. Other protocols’ packets (see Figure 4.4) include the Address

Resolution Protocol (ARP) and the Link Layer Discovery protocol (LLDP) which are

arbitrarily broadcasted across the network. Figure 4.16 shows the distribution of ICMP

packet time delay on Route 1 and Route 2.

Figure 4.16. Distribution of ICMP packet time delays on healthy SRD routes

 From Figure 4.16, the ICMP packet time delay distribution has the mean, 0.0040 and

variance, 0.000022 on Route 2, and the mean, 0.0085 and variance, 0.000176 on Route

1. These statistics indicate that the packets on Route 2 experience lesser delays than

those on Route 1.

 Both Congestion and deep packet inspection analyses indicate that Route 2 is the

least congested and the fastest routing option compared to Route 1.

 After the execution of AUTOVNET in Spyder IDE, Figure 4.17 shows the smart

network virtualization creation steps for a healthy network scenario.

56

Figure 4.17. AUTOVNET smart virtualization for a healthy network

 Figure 4.17 shows that in a healthy network scenario, all the switches are active and

the SRD generated by AUTOVNET is identical to the ARD. AUTOVNET uses these

databases to declare that the physical network is healthy. That is, all the switches are

active and the routing options (Route 1 and Route 2) are both operational.

 With two active routing options, AUTOVNET must determine which one is the

fastest and least congested route. Following the congestion and deep packet inspection

analyzes described earlier, AUTOVNET computes that Route 2 is the least congested

and the fastest routing option (approximately 4.5ms faster).

 As a result, Route 2 is selected as the BSR and its switches are dedicated and used to

create and configure the virtual network using OVX.

57

 The “ping” command is used in Mininet to test the created vSDN network. Figure

4.18 shows this step for the case studied specifically “h2 ping -c3 h8” command is

executed in Mininet.

Figure 4.18. Testing AUTOVNET smart virtualization with a healthy network

 Figure 4.18 shows that AUTOVNET has successfully created a vSDN connection

between h2 and h8 since all pings between h2 and h8 are successfully transmitted and

received with a 0% packet loss.

 Smart virtualization in AUTOVNET offers two key advantages:

(a) Fault detection: In a network with faulty physical resources, smart virtualization

guarantees that the virtual networks created are operational. This is because smart

virtualization detects and disregards all faulty network resources (switches and links)

and uses only the healthy (active) network resources to create the virtual networks.

(b) Load balancing and greater network efficiency: In a network with multiple healthy

routing options, smart virtualization provides load balancing by using the least-

congested routing option (containing idle and underutilized network resources) to create

the virtual network. This method distributes the network load across multiple physical

resources and increases the efficiency of the entire network.

58

5. CONCLUSION AND RECOMMENDATION

 Future networks such as Cognitive Networks must be able to sense, monitor and

extract valuable data from the physical environment or resources and automatically

reconfigure themselves accordingly to meet growing service demands, limited physical

resources, and increased connectivity for users. As a result, there is a significant

increase in virtualization technologies and optimization research in both the academia

and industry to allow various heterogenous complex networks to coexist and share the

same physical resources without significant deterioration in network performance.

Virtualization concepts like Software-Defined Network (SDN), the abstraction of the

data plane from the control plane, and Network Function Virtualization (NFV), the

abstraction of network platforms from network services are very promising optimization

tools.

 In addition, the combination of SDN and NFV to create Virtualized Software-

Defined Networking (vSDN) offers the advantages of both paradigms: dynamic

resource reservation and flexible virtual network creation through NV and

programmability of those resources and easy network management through SDN.

However, vSDN solutions increase the complexity of the network by introducing an

additional layer called the virtualization layer. This layer typically hosts an SDN

hypervisor that handles all virtualization-related tasks.

 Virtualized software-defined network is very much at the infancy stage and research

is needed to finally declare this technology as the ultimate virtualization solution

offering the best value-added performance. This is because the existing shortcomings of

virtualized software-defined network architectures are numerous and efficient

implementation methods are required in the design and orchestration of physical and

virtualized network resources. Furthermore, management issues such as security,

configuration, accounting, performance, and fault management become NP-hard for

large complex heterogeneous networks. Automated algorithms designed to reduce

human inputs and improve network efficiency and responsiveness might open a new

chapter to improve the management of these networks.

59

5.1. Conclusion

 In this thesis, a new approach AUTOVNET was designed and implemented to

automate and address three important management challenges in virtualized SDN

architectures. Network automation in AUTOVNET simplifies manual configurations

from the network administrator and increases the flexibility and adaptability of the

network. The first management issue addressed by AUTOVNET is the rapid

configuration and provisioning of vSDN networks. OpenVirteX was used as the

hypervisor in the simulations because it offers network topology and address

abstraction. The second management issue addressed was fault detection. AUTOVNET

can detect broken links and defective switches in the underlying physical network

during the pre-virtualization fault detection analysis. These mechanisms ensure that

only healthy network resources are used to create the virtual networks. The third

management issue addressed concerns performance. AUTOVNET analyzes and

compares routing options to select the best resources and as such increases the

efficiency and performance of the entire network by distributing the network load.

 AUTOVNET has the following advantages over legacy OVX implementations:

Pure Software Implementation: AUTOVNET is a pure software implemented in

Python language. AUTOVNET can run on any python environment like Spyder IDE

installed on any computer platform (Linux, Windows, etc.). Because OVX is a Python-

based hypervisor, AUTOVNET uses OVX as a Python library to create virtual networks

using Mininet SDN emulator and the Floodlight SDN controller. The programmability

of AUTOVNET facilitates automation, flexibility, and agility.

Fast deployment of virtual networks: AUTOVNET simplifies the vSDN request for

configuring virtual networks with OpenVirteX (OVX). Traditionally, OVX requires a

script specifying the MAC addresses and port numbers of network devices to create a

simple virtual connection between the hosts in the network. This script is very complex

to code and varies for different network topologies. AUTOVNET allows the network

administrator to know very little about the underlying physical network topology. The

script (vSDN request) required by AUTOVNET always remains the same regardless of

the network topology. This is because the MAC addresses of the source and destination

hosts indicated by the network administrator are enough for AUTOVNET to map the

underlying network topology.

60

 These rapid deployment, provisioning and configuration techniques increase the

flexibility, agility, and programmability of OVX and allow network administrators to

easily configure virtual networks in larger complex network topologies.

Automated pre-virtualization fault detection: Physical network resources are

abstracted by network virtualization technologies to create virtual communications. By

default, if the physical resource is defective, the resulting virtual connection will also be

faulty. Traditional OVX creates virtual networks using physical resources without

checking network faults. AUTOVNET, on the other hand, has a smart virtualization

option that automatically checks and detects network faults such as broken links and

inactive (defective) switches in the physical network. Ultimately, defective network

resources are disregarded, and only healthy resources are shortlisted and used to

guarantee the creation of healthy networks. Using the cognitive lifecycle, frequent

network sensing and monitoring can be implemented at regular time intervals to further

update the network status, produce maintenance reports and keep track of both healthy

and defective physical resources.

Optimal resource selection: In large complex networks, selecting the best possible

routing option is often challenging. In addition, congestion and over-utilization of

physical resources can significantly reduce the performance of the network.

AUTOVNET uses network data from Wireshark to carry out the congestion and deep

packet inspection analysis in order to identify congested routes and uses underutilized

healthy network resources to create virtual networks. Consequently, AUTOVNET

distributes the load in the network across multiple network resources and the increases

network efficiency and performance.

 In conclusion, AUTOVNET is a cognitive network management and orchestration

system which monitors and uses network data to automatically create fast, healthy

virtual networks in an SDN-supported physical network.

5.2. Future Work

 AUTOVNET answers an open question on fast configuration and rapid virtual

network provision using OVX. Although several designs and techniques have been

implemented over the years to speed up virtual network provisioning in virtualized

software-defined network architectures, the algorithm and coding proposed in this thesis

61

(AUTOVNET) have not been implemented before and the results are extremely

promising.

 AUTOVNET is very efficient and offers fast virtual network configurations for

large, complex network topologies using OVX, but much remains to be done to design a

scalable management and orchestration system with complete cognitive capabilities.

The followings may be of particular interest for future work.

Greater host capacity: Most real-life data centers and computer communications

involve large, complex heterogeneous networks with multiple users and multi-tenants

(SDN controllers). So far, AUTOVNET can only support two hosts (a source and a

destination) in each virtual network. Therefore, improving the network mapping

algorithm of AUTOVNET will improve the host capacity of the proposed system.

Adaptive switch interface mapping: Random virtualization in AUTOVNET can use

OVX to quickly create and configure a virtual network with two hosts, regardless of the

topology of the network. However, the smart virtualization option only works well for

the fat tree network topology. This is because the switch interface mapping algorithm is

very limited. Developing an adaptive algorithm to map switch data and interface data

will enable the AUTOVNET smart network virtualization option to support larger

network topologies.

Security management: AUTOVNET focuses on fault detection, configuration, and

performance management. Nevertheless, security management is also a very important

aspect of cognitive networks and all autonomous systems must have security

mechanisms against network attacks like Distributed Denial of Service (DDoS) attacks.

Integrating machine learning techniques: Future AUTOVNET versions might

incorporate machine learning models such as neural networks, K-means and support

vector machines to improve the routing option selection mechanisms. These machine

learning models could also be leveraged to dynamically map larger network topologies

and enable virtual network reconfigurations and virtual network host mobility.

62

REFERENCES

Ahmed Abdelaziz, Tan Fong Ang, Mehdi Sookhak, Suleman Khan, Athanasios

Vasilakos, Chee Sun Liew, & Adnan Akhunzada. (2016). Survey on Network

Virtualization Using OpenFlow: Taxonomy, Opportunities, and Open Issues.

KSII Transactions On Internet And Information Systems, 10 (10), 234-245.

Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation

dynamic spectrum access/cognitive radio wireless networks: A survey.

Computer Networks, 50 (13), 2127-2159. doi:10.1016/j.comnet.2006.05.001.

Akyildiz, I. F., Lee, W. Y., & Mohanty, S. (2008). A survey on spectrum management

in cognitive radio networks. IEEE Communications Magazine, 46 (4), 40-48.

doi:Doi 10.1109/Mcom.2008.4481339.

Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G., Salvadori, E.,

& Snow, B. (2014). OpenVirteX: Make Your Virtual SDNs programmable.

Paper presented at the Proceedings of the third workshop on Hot topics in

software defined networking - HotSDN '14.

Alexander Clemm. (2006). Network Management Fundamentals [Press release].

Ali Al-Shabibi, Marc De Leenheer, Matteo Gerolay, Ayaka Koshibe, William Snow, &

Parulkar, G. (2014). OpenVirteX: A Network Hypervisor. Open Networking

Laboratory, Menlo Park, CA 94025, USA, 1-2.

AuYoung, A., Ma, Y., Banerjee, S., Lee, J., Sharma, P., Turner, Y., Mogul, J. (2014).

Democratic Resolution of Resource Conflicts Between SDN Control Programs.

Ayoubi, S., Limam, N., Salahuddin, M. A., Shahriar, N., Boutaba, R., Estrada-Solano

(2018). Machine Learning for Cognitive Network Management. IEEE

Communications Magazine, 56 (1), 158-165. doi:10.1109/mcom.2018.1700560.

Azodolmolky, S. (2013). Software defined Network with OpenFlow: Packt Publishing.

Banerjee, U., Ashutosh, V., & Mukul, S. (2010). Evaluation of the Capabilities of

WireShark as a tool for Intrusion Detection, 6 (4), 34-43.

63

Blenk, A., Basta, A., Reisslein, M. (2016). Survey on Network Virtualization

Hypervisors for Software Defined Networking. IEEE Communications Surveys

& Tutorials, 18 (1), 655-685. doi:10.1109/comst.2015.2489183.

Blenk, A. A. (2018). Towards Virtualization of Software-Defined Networks: Analysis,

Modeling, and Optimization.

Braun, W., & Menth, M. (2014). Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices 6 (9), 16-23.

Chowdhury, N. M. M. K., & Boutaba, R. (2010). A survey of network virtualization

Computer Networks, 54 (5), 862-876. doi:10.1016/j.comnet.2009.10.017.

Corin, R. D., Gerola, M., Riggio, R., Pellegrini, F. D., & Salvadori, E. (2012).

VeRTIGO: Network Virtualization and Beyond, European Workshop on

Software Defined Networking, 9 (3), 71-84.

Di Benedetto, M.-G., Cattoni, A. F., Fiorina, J., Bader, F., & De Nardis, L. (2015).

Cognitive Radio and Networking for Heterogeneous Wireless Networks.

Duan, Q., Ansari, N. (2016). Software-defined network virtualization: an architectural

framework for integrating SDN and NFV for service provisioning in future

networks. IEEE Network, 30(5), 10-16. doi:10.1109/MNET.2016.7579021.

Elsen, C. (2013). Physical networks for VMware NSX. On edge of cloud computing.

ETSI. (2014). Network Function Virtualization (NFV); Infrastructure; Network domain.

ETSI GS NFV-INF 005, 1.1.1.

ETSI. (2014). Network Function Virtualization Architectural framework. ETSI GS NFV

002, 1.2.1.

ETSI. (2014). Network Function Virtualization Management and Orchestration. ETSI

GS NFV-MAN 001, 1.1.1.

ETSI. (2017). Network Function Virtulization (NFV); Use Cases. ETSI GR NFV 001,

1.2.1.

ETSI. (2018). Network Function Virtualization (NFV); Terminology for Main Concepts

in NFV. ETSI GS NFV 003, 1.3.1.

64

FCC. (2012). Location-Based Services - An Overview Of opportunitiea and Other

Considerations. Federal Communications Commission Wireless

Telecommunications Bureau.

Floodlight Controller. (2002). http://www.projectfloodlight.org/floodlight/. Retrieved

from http://www.projectfloodlight.org/floodlight/. (Access Date: 20/01/2019)

Fortuna, C., & Mohorcic, M. (2009). Trends in the development of communication

networks: Cognitive networks, 53 (12), 13-17.

Han, B., Gopalakrishnan, V., Ji & Lee, S. (2015). Network Function Virtualization:

Challenges and Opportunities for Innovations. IEEE Communications Magazine,

53(2), 90-97. doi:Doi 10.1109/Mcom.2015.7045396.

Haykin, S. (2007). Cognitive Radio, Fundamental Issues and Research Challenges.

IEEE, Hamilton Chapter.

Hoang, D. (2015). Software Defined Networking ? Shaping up for the next disruptive

step? Journal of Telecommunications and the Digital Economy(AJTDE), 3 (4),

45-55.

Hu, F., Hao, Q., & Bao, K. (2014). A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation. IEEE Communications Surveys &

Tutorials, 16 (4), 2181-2206. doi:10.1109/COMST.2014.2326417.

ITU-T. (2012). Framework of network virtualization for future networks (ITU-T

Y.3011).

ITU-T. (2014). Framework of software-defined networking. Series Y: Global

Information Infrastructure, Internet Protocol Aspects And Next-Generation

Networks Future networks (Telecommunication Standardization Sector of ITU).

Jain, A., Sadagopan, N. S., Lohani, S. K., & Vutukuru, M. (2016). A comparison of

SDN and NFV for re-designing the LTE Packet Core. Paper presented at the

2016 IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN).

Jain, R. (2006). Internet 3.0: Ten problems with current Internet architecture and

solutions for the next generation. MILCOM, Military Communications

Conference, 1 (7), 2309-2317. doi:10.1109/MILCOM.2006.301995.

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

65

Jain, R., & Paul, S. (2013). Network Virtualization and Software Defined Networking

for Cloud Computing: A Survey. IEEE Communications Magazine, 51 (11), 24-

31. doi:Doi 10.1109/Mcom.2013.6658648.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, & Alex Buckley. (2013). The Java®

Language Specification Java SE 7 Edition. Oracle and Java Final Release.

Jeong, W., Yang, G., Kim, S. M., & Yoo, C. (2017). Efficient Big Link Allocation

Scheme in Virtualized Software-defined Networking. 2017 13th International

Conference on Network and Service Management (Cnsm).

Jiménez, Y., Cervelló-Pastor, C., & García, A. J. (2014). On the controller placement

for designing a distributed SDN control layer. Paper presented at the 2014 IFIP

Networking Conference.

Jin, B., Guo, B., Huang, H., Li, S., Shang, Y., & Huang, S. (2017). An implementation

of optical network virtualization based on OpenVirteX. Paper presented at the

2017 16th International Conference on Optical Communications and Networks

(ICOCN). <Go to ISI>://WOS:000425859500191.

Khozeimeh, F., & Haykin, S. (2010). Self-Organizing Dynamic Spectrum Management

for Cognitive Radio Networks. Paper presented at the 2010 8th Annual

Communication Networks and Services Research Conference.

Lebiednik, B., Mangal, A., & Tiwari, N. (2016). A Survey and Evaluation of Data

Center Network Topologies.

Maleki, A., Hossain, M., Georges, J.-P., Rondeau, E., & Divoux, T. (2017). An SDN

Perspective to Mitigate the Energy Consumption of Core Networks – GEANT2.

Mijumbi, R., De Turck, F., & Boutaba, R. (2016). Network Function Virtualization:

State-of-the-Art and Research Challenges. IEEE Communications Surveys &

Tutorials, 18 (1), 236-262. doi:10.1109/comst.2015.2477041.

Mininet. (2004). Network Emulator. http://mininet.org/download/. Retrieved from

http://mininet.org/download/ (Access Date: 23/02/2019).

http://mininet.org/download/
http://mininet.org/download/

66

Nazmul Siddique, Syed Faraz Hasan, & Salahuddin Muhammad Salim Zabir. (2017).

Opportunistic Networking Vehicular, D2D and Cognitive Radio Networks CRC

Press Taylor & Francis.

Ndatinya, V., Xiao, Z., Rao Manepalli, V., Meng, K., & Xiao, Y. (2015). Network

forensics analysis using Wireshark (Vol. 10).

NFV_White_Paper. (2012). Network Functions Virtualisation: An Introduction,

Benefits, Enablers, Challenges & Call for Action. ETSI.

ONF. (2013). OpenFlow Switch Specification. Retrieved from http://onf/tutorial/.

ONF. (2014). SDN Architecture. Open Networking Foundation (ONF) TR-502, Issue 1.

ONF. (2015). Framework for SDN: Scope and Requirements. Open Networking

Foundation (ONF) TR-516, Version 1.0.

ONF. (2009). OpenFlow Switch Specification. Open Networking Foundation Version

1.0.0 (Wire Protocol 0x01) (ONF TS-001).

OpenVirteX. (2010). Tutorial http://ovx.onlab.us/gettingstarted/tutorial/. Retrieved

from http://ovx.onlab.us/gettingstarted/tutorial/ (Access Date: 15/03/2019).

Rao Battula, L. (2014). Network Security Function Virtualization (NSFV) towards

Cloud computing with NFV Over Openflow infrastructure: Challenges and

novel approaches.

REST-API. (2002). Tutorial. http://www.restapitutorial.com. Retrieved from

http://www.restapitutorial.com (Access Date: 17/02/2019).

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick

McKeown, & Parulkar, G. (2009). FlowVisor: A Network Virtualization Layer.

Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2016). SDN Controllers: A

Comparative Study. Paper presented at the Proceedings of the 18th

Mediterranean Electrotechnical Conference Melecon 2016. <Go to

ISI>://WOS:000390719500129.

Sonam Srivastava, & S.P Singh. (2016). A survey on Virtualization and Hypervisor-

based Technology is Cloud Computing Environement. International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), 5(2).

http://ovx.onlab.us/getting
http://ovx.onlab.us/getting
http://www.restapitutorial.com/
http://www.restapitutorial.com/

67

Stancu, A. L., Halunga, S., Vulpe, A., Suciu, G., Fratu, O., & Popovici, E. C. (2015). A

comparison between several Software Defined Networking controllers. 12th

International Conference on Telecommunication in Modern Satellite, Cable and

Broadcasting Services.

Stuckmann, P., & Zimmermann, R. (2009). European Research on Future Internet

Design. IEEE Wireless Communications, 16 (5), 2721-2734, doi:Doi

10.1109/Mwc.2009.5300298.

Thomas, R. W., DaSilva, L. A., & MacKenzie, A. B. (2005). Cognitive networks. Paper

presented at the First IEEE International Symposium on New Frontiers in

Dynamic Spectrum Access Networks, 2005. DySPAN 2005.

Thomas, R. W., Friend, D. H., and Dasilva, L. A. (2006). Cognitive networks:

adaptation and learning to achieve end-to-end performance objectives. IEEE

Communications Magazine, 44 (12), 51-57. doi:10.1109/MCOM.2006.273099.

Tourrilhes, J., Sharma, P., Banerjee, S., & Pettit, J. (2014). SDN and OpenFlow

Evolution: A Standards Perspective, 47 (12), 32-45.

Vishram Mishra , Jimson Mathew, & Chiew-Tong Lau. (2017). QoS and Energy

Management in Cognitive Radio Network: Springer International Publishing.

Wang, S. (2014). Comparison of SDN OpenFlow network simulator and emulators:

EstiNet vs. Mininet. Paper presented at the 2014 IEEE Symposium on

Computers and Communications (ISCC).

Zhang, Y. (2018). Network Function Virtualization, Concepts and Applicability in 5G

Networks: John Wiley & Sons, Inc.

Zhang, Z. S., Long, K. P., & Wang, J. P. (2013). Self-Organization Paradigms and

Optimization Approaches for Cognitive Radio Technologies: A Survey. Ieee

Wireless Communications, 20 (2), 36-42. doi:Doi 10.1109/Mwc.2013.6507392.

Appendix A

Customized Fat Tree Topology

#!/usr/bin/python

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch

from mininet.topo import Topo

class fatTreeTopo(Topo):

 def __init__(self):

 Topo.__init__(self)

 #Add hosts

 h7 = self.addHost('h7', cls=Host, ip='10.0.0.7', defaultRoute=None)

 h8 = self.addHost('h8', cls=Host, ip='10.0.0.8', defaultRoute=None)

 h1 = self.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None)

 h2 = self.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)

 h4 = self.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

 h3 = self.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)

 h5 = self.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None)

 h6 = self.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None)

 #Add switches

 s10 = self.addSwitch('s10', cls=OVSKernelSwitch)

 s3 = self.addSwitch('s3', cls=OVSKernelSwitch)

 s17 = self.addSwitch('s17', cls=OVSKernelSwitch)

 s4 = self.addSwitch('s4', cls=OVSKernelSwitch)

 s18 = self.addSwitch('s18', cls=OVSKernelSwitch)

 s1 = self.addSwitch('s1', cls=OVSKernelSwitch)

 s11 = self.addSwitch('s11', cls=OVSKernelSwitch)

 s21 = self.addSwitch('s21', cls=OVSKernelSwitch)

 s22 = self.addSwitch('s22', cls=OVSKernelSwitch)

 s2 = self.addSwitch('s2', cls=OVSKernelSwitch)

 #Add links

 self.addLink(h1, s1)

 self.addLink(h2, s1)

 self.addLink(h3, s2)

 self.addLink(h4, s2)

 self.addLink(h5, s3)

 self.addLink(h6, s3)

 self.addLink(h7, s4)

 self.addLink(h8, s4)

 self.addLink(s1, s21)

 self.addLink(s21, s2)

 self.addLink(s1, s10)

 self.addLink(s2, s10)

 self.addLink(s3, s11)

 self.addLink(s4, s22)

 self.addLink(s11, s4)

 self.addLink(s3, s22)

 self.addLink(s21, s17)

 self.addLink(s11, s17)

 self.addLink(s10, s18)

 self.addLink(s22, s18)

topos = { 'mytopo': (lambda: fatTreeTopo()) }

Appendix B

OpenVirteX Script to create a Virtual network between h1, 00:00:00:00:00:01 and

h8, 00:00:00:00:00:08

Create the Virtual Network

$ python ovxctl.py -n createNetwork tcp:localhost:10000 10.0.0.0 16

Create the Virtual Switches

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:01

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:15

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:11

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:0b

$ python ovxctl.py -n createSwitch 1 00:00:00:00:00:00:00:04

Create the Virtual Ports

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:01 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:01 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:15 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:15 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:11 1

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:11 2

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:0b 3

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:0b 2

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:04 4

$ python ovxctl.py -n createPort 1 00:00:00:00:00:00:00:04 2

Create Virtual Links

$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:01 2 00:a4:23:05:00:00:00:02 1 spf

$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:02 2 00:a4:23:05:00:00:00:03 1 spf

$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:03 2 00:a4:23:05:00:00:00:04 1 spf

$ python ovxctl.py -n connectLink 1 00:a4:23:05:00:00:00:04 2 00:a4:23:05:00:00:00:05 1 spf

Create Virtual Hosts

$ python ovxctl.py -n connectHost 1 00:a4:23:05:00:00:00:01 1 00:00:00:00:00:01

$ python ovxctl.py -n connectHost 1 00:a4:23:05:00:00:00:05 2 00:00:00:00:00:08

Create Start Virtual Network

$ python ovxctl.py -n startNetwork 1

Appendix C

OpenVirteX Script to create Big Switch for vSDN connecting h1, 00:00:00:00:00:01

and h8, 00:00:00:00:00:08

Create the Virtual Network

$ python ovxctl.py -n createNetwork tcp:localhost:20000 10.0.0.0 16

$ python ovxctl.py -n createSwitch 2

00:00:00:00:00:00:00:01,00:00:00:00:00:00:00:15,00:00:00:00:00:00:00:11,00:00:00:00:00:00:00:0b,00:00:00:00:00:00:00:04

$ python ovxctl.py -n createPort 2 00:00:00:00:00:00:00:01 1

$ python ovxctl.py -n createPort 2 00:00:00:00:00:00:00:04 2

$ python ovxctl.py -n connectHost 2 00:a4:23:05:00:00:00:01 1 00:00:00:00:00:01

$ python ovxctl.py -n connectHost 2 00:a4:23:05:00:00:00:01 2 00:00:00:00:00:08

Start the Virtual Network

$ python ovxctl.py -n startNetwork 2

Appendix D

AUTOVNET Script to create Big Switch for vSDN connecting h1, 00:00:00:00:00:01

and h8, 00:00:00:00:00:08 using OpenVirteX

Create the virtual SDN network

$ 00:00:00:00:00:01

$ 00:00:00:00:00:08

 RESUME

Name-Surname : Tobie Yefferson BIYIHA AFOUNG

Language : English, French, and Turkish

Birthplace and Year : Yaounde, Cameroon / 1995

Email : biyihatobie@hotmail.com

EDUCATION

2017 – 2019 Anadolu University, Graduate School of Science, Electrical

and Electronics Engineering, Telecommunications.

2010 – 2014 University of Buea, Faculty of Engineering and Technology

Electrical and Electronics Engineering Department,

 Telecommunications Systems Engineering.

WORK EXPERIENCE

2016 Cameroon Oncology Center, Douala, Cameroon,

 Computer Applications Engineer.

2013 – 2014 Cameroon Railway Cooperation, Douala, Cameroon,

 Information Systems Engineer (Internship).

CONFERENCE PAPER

• Nuray AT, Tobie Yefferson BIYIHA AFOUNG (2019), Making Virtual and

Augmented Reality Real via Network Virtualization, 1st International Conference

on Virtual Reality, Turkey.

