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Burak BENLİGİRAY
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Yakın zamanda ulaşılması kolaylaşan yüksek paralel işlem gücü ve etiketli görsel veriden

yararlanılarak derin öğrenmede kaydedilen gelişmeler görsel tanıma başarımında kayda

değer ilerlemelere neden olmuştur. Bu çalışmalardan ortaya çıkan yöntemler arasından

büyük miktarda etiketli veri ile denetimli eğitilen derin evrişimsel sinir ağları çeşitli görsel

görevlerde tutarlı bir biçimde en iyi sonuçları vermektedir. Buna karşın bu yöntemlerin

ihtiyaç duyduğu veri miktarı gerçek dünyadaki uygulamalardaki faydalarını sınırlamaktadır.

Bu çalışmada derin evrişimsel sinir ağlarını bu uç seviyedeki veri gereksinimden kur-

tarmanın yollarını araştırdık. İlk olarak, ImageNet öneğitiminden aktarılan temsillerin

hedef veri dağılımı oldukça farklı olsa bile aşırı uyumu azalttığını gösterdik. Buna ek

olarak çözümsel olarak tasarlanmış modellerle rassal olarak eğitim verisi üretmek için

iki yaklaşım önerdik. Önerilen ilk yaklaşım, tanınacak hedef örüntülerin düşük sevi-

yeli olduğu durumlarda kullanılabilir olan Gestalt ilkelerine dayalı olarak tamamen ya-

pay eğitim verisi üretilmesidir. Buna karşılık eğer tanınacak hedef örüntü yüksek sevi-

yeli ise eğitim verisi ImageNet benzeri mevcut bir veri kümesinden türetilir. Çözümsel

olarak tasarlanmış unsurlardan faydalanan bu iki yöntem modele bilgi yerleştirerek veri

bağımlılığını azaltmaktadır.

Anahtar Sözcükler: Derin Öğrenme, Evrişimsel Sinir Ağları, Gestaltçı Eğitim, Özdene-

timli Öneğitim.
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ABSTRACT

IMPROVEMENT OF DEEP NEURAL NETWORKS

BY INTELLIGENT MODEL INITIALIZATION

Burak BENLİGİRAY

Department of Electrical and Electronics Engineering

Programme in Electronics

Eskişehir Technical University, Institute of Graduate Programs, August 2019

Supervisor: Prof. Dr. Ömer Nezih GEREK

Developments in deep learning leveraging the recent abundance of parallel computational

power and visual data have resulted in significant advances in visual recognition perfor-

mance. Among the methods that have emerged from this work, deep convolutional neural

networks trained with a large amount of data in a supervised manner has been able to con-

sistently deliver state of the art performance in various visual tasks. However, the amount

of data this method requires limits its usefulness in real-world applications. In this study,

we investigate methods to relieve deep convolutional neural networks from extreme data

dependency. First, we show that transferring representations from ImageNet pretraining

reduces overfitting even if the target data distribution is significantly different. In addition,

we propose two approaches to stochastically generate training data using analytically de-

signed models. The first approach is to generate entirely synthetic training data based on

Gestalt principles, which is suitable when the target pattern to be recognized is low-level.

Alternatively, if the target pattern to be recognized is high-level, training data is derived

from an existing dataset such as ImageNet. By utilizing analytically designed elements,

these two approaches inject knowledge to the model and reduce data-dependency.

Keywords: Deep Learning, Convolutional Neural Networks, Gestaltist Training, Self-

supervised Pretraining.
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1. INTRODUCTION

A convolutional neural network (CNN) is a specific type of architecture that is predomi-

nantly composed of convolutional layers, which are different from fully-connected layers

in that their outputs are computed using only the inputs that are in close proximity to each

other [1]. In other words, convolutional layers omit to model the correlation between

spatially distant parts of the input in order to sparsify the redundancy [2]. This architec-

ture is inherently useful for input data captured from a sensor array, where the correlation

between the values read by more distant sensors are indeed weaker due to the laws of

physics. An image captured by a 2D camera sensor is a good example of this kind of

data, which predicts CNNs to be especially suitable for vision applications.

The CNN architecture was widely known for a long time and work on deep learn-

ing (learning stacked nonlinear models) has been going on for decades with relative suc-

cess [3, 4]. However, it took the deep CNN model, AlexNet [5], winning The ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2012 [6] in a decisive manner to

attract the mass attention of computer vision researchers, and they have been fascinated

with CNNs ever since.

CNNs allow visual recognition tasks that once required specifically designed meth-

ods [7, 8] to be conquered with a general-purpose, end-to-end approach [5, 9, 10]. Even

the ultimate benchmark of visual recognition, human performance, was surpassed by

CNNs in complex vision tasks [11, 12]. However, models with a large number of pa-

rameters such as deep neural networks have a notorious weakness: They tend to overfit

with limited training data, which causes them to fail at generalizing their knowledge to all

possible cases [13].

The leap in performance achieved by machine learning-based methods in computer

vision have resulted a heavy tendency towards more data-dependent methods. This even

resulted in a new field to emerge, AutoML, which applies machine learning to determine

the hyperparameters of machine learning methods for ultimate data dependency [14, 15].

It must be noted that even Bayesian hyperparameter optimization [16] is not standard

practice in deep learning applications, and hyperparameters tend to be selected by a hybrid

of grid and manual search. Similarly, there have been attempts to automate neural network
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architecture design [17, 18], but in almost all applications, analytically designed general-

purpose architectures [5, 19, 20] are preferred. The layers themselves are all manually

designed as well. For example, convolutional layers are designed to provide translation

equivariance, yet not rotation equivariance. The main reason behind this is simply that

the ImageNet dataset does not include upside down images of dogs. Furthermore, data

augmentation is done only with crops and horizontal mirrors of the image, because the

designer knows that these are the specific invariances required for most cases. Countless

additional examples can be given to show that relying on domain knowledge is the norm

in designing deep learning methods.

One should wonder why data dependency is presented as a magic bullet and analyt-

ical design is ostracized, considering that all significant developments in deep learning-

based computer vision have resulted from analytical design (convolutional layers [1], data

augmentation [21], residual connections [22], etc.). In general, analytical approaches re-

strict a model’s degrees of freedom, while data-dependent approaches relax them. In other

words, data dependency breeds data hunger, which causes overfitting unless it is satisfied.

Nevertheless, this approach is forced by the “tech giants” using grants, donations and in-

fluential researchers in their payrolls to leverage their abundant computation power and

proprietary datasets. The palpable stagnation in deep learning-based computer learning

research in the last few years (already referred to as the beginning of the third AI winter

by some) can be attributed to this situation.

In this thesis, we focus on methods that are aimed to relieve deep learning-based vi-

sion applications from data dependency. In particular, we investigate three main methods:

• ImageNet pretraining: Pretraining with the ILSVRC object classification task is a

well-established method of transfer learning that reduces overfitting for target tasks

where the data is composed of natural images similar to ImageNet [23]. We present

case studies where the target task data is from a significantly different domain, yet

ImageNet pretraining is still very beneficial.

• Gestalt learning: In this approach, a generative model is analytically designed to

stochastically produce a pattern that is recognized as a whole, called a Gestalt. To

be able to design a generative model that is adequately general, the Gestalt to be

generated has to be low-level (e.g., edges and blobs, rather than cats and dogs).
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The generated examples are then used to train CNNs, which is a completely data-

independent process.

• Self-supervised pretraining: This method also involves analytically designing a

model that can stochastically generate data. However, unlike Gestalt learning, the

generated data in this method is derived from existing data. This method can be

seen as a middle ground between ImageNet pretraining and Gestalt learning.

As a result of our research, we have come to the general conclusion that data de-

pendency is indeed a great problem for deep neural networks, which can be alleviated by

regularization. Injecting knowledge to the model by pretraining can be seen as a type of

regularization, as the benefits are identical. While pretraining can be done in a heavily

data-dependent way (i.e., through supervised methods), there are also manual design-

heavy methods (self-supervised pretraining and Gestalt learning). The reintroduction of

design to computer vision allows a synthesis of the traditional theory-based methods and

the more recent data-dependent methods.

If we delve deeper into our findings, we can say that supervised pretraining using

the ImageNet dataset has a much more universal benefit than it is generally assumed.

Our results indicate that researchers should be more liberal in employing it in unusual

domains, and even in non-visual tasks.

Possibly the most unique contribution of this thesis is the introduction of a com-

pletely data-independent method of employing CNNs, which we have named Gestalt

learning. This includes the modeling of a visual skill based on the Gestalt theory of

perception and designing a training task to teach this skill to the model. Then, the result-

ing model can be used to solve the related vision problem even without fine-tuning using

real data. Although cases have been presented where CNNs are trained with generated

examples to solve toy problems [24], there are not any examples in the literature where

this approach is used to solve a real vision problem. We apply our proposed method to an

established vision problem, specifically edge detection, and demonstrate success. From

a different viewpoint, we propose a method to represent theory-based vision methods

in the form of a CNN, which enables the integration of these methods with the current

end-to-end deep learning paradigm.

Finally, we aimed to find a middle ground between the extremely data-dependent
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supervised pretraining and the data-independent Gestalt learning in the form of self-

supervised pretraining. This method both familiarizes the model with a specific data

distribution and also injects visual knowledge in the form of a surrogate pretraining task.

Moreover, unlike supervised training which transfers all levels of representations, the

proposed surrogate task can be modified to transfer only the representations below an

arbitrary level.

The structure of this dissertation is as follows: We start with an introduction to

deep neural networks for visual recognition in Chapter 2. Then, we introduce ImageNet

pretraining and present case studies where it is shown to be beneficial even when the

target data is from a vastly different domain in Chapter 3. This is followed by Chapter 4

where Gestalt learning is introduced. In Chapter 5, a self-supervised pretraining method

based on spatial context is proposed that derives training data stochastically from a source

dataset. We end with concluding remarks in Chapter 6.
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2. NEURAL NETWORKS

In this chapter, we are going to introduce neural networks (historically referred to as arti-

ficial neural networks), which are hierarchical, nonlinear function approximators inspired

by organic neural systems [25]. While the biomimetic narrative incited interest, neural

networks have been criticized from theoretical and practical standpoints. They are com-

monly referred to as black boxes, as it is not clear how the approximation they perform can

be analyzed [26]. Consequently, the field experienced some of its breakthroughs based on

intuition and experimentation, rather than a strong theoretical background. On the practi-

cal side, neural network performance is highly dependent on the choice of hyperparame-

ters (number of layers, learning rate, etc.), which can only be optimized empirically [27].

On top of these issues, neural networks were regularly outperformed by support vector

machines [28] in various applications [29, 30, 31], especially when well-crafted repre-

sentations are used as inputs. This resulted in a relative fade into obscurity, until a recent

comeback in performance with deeper architectures.

2.1. Neural Network Structure

The fundamental computing unit of a neural network is the neuron, which applies a non-

linearity ϕ() to the product of its inputs x and weight parameters w to generate an output

y. An additional parameter b is commonly added to the product to induce a bias that is

independent from the input [32].

y = ϕ(wTx+ b) (2.1)

See Figure 2.1 for an illustration of a neuron. Note that although the transformation

applied by the weight and bias parameters are linear, the additional nonlinear activation

function allows the neuron to approximate nonlinear functions.

Various network architectures can be obtained by interconnecting neurons in spe-

cific patterns. Most commonly, neurons are grouped in parallel as layers (see Figure 2.2

for a fully-connected layer), where each neuron in the layer receives the entire input.

Then, the computation on a layer can be represented as a matrix-vector multiplication,
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Figure 2.1: A single neuron. Inputs are multiplied with weight parameters, and the results are
added together with a bias term to apply a linear transformation. A nonlinear activation function
is applied to this output, making the overall operation a nonlinear transformation.
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Figure 2.2: A layer composed of 4 parallel neurons. Each node denoted with N is a neuron as
illustrated in Figure 2.1.
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Figure 2.3: A multilayer perceptron (MLP). This MLP has two layers, each of which is composed
of 4 neurons. The number of neurons in the last layer determines the output size.

which is embarrassingly parallelizable. This can be represented as below, where ϕ · ()
operates element-wise on the product:

y = ϕ · (Wx+ b) (2.2)

The multilayer perceptron (MLP) is the most straightforward neural network ar-

chitecture, which is essentially a stack of fully-connected layers. Since the layers are

fully-connected, each neuron is connected to all neurons in the previous and following

layers (see Figure 2.3). Each layer processes the data it received from the previous layer,

and passes its output onto the next layer [33]. This succession generates hierarchically

higher levels of data representations along the network [2].

As fully-connected layers include all possible connections, variations can be ob-

tained by eliminating some of these. As seen in Figure 2.1, each input connection to

a neuron requires an additional parameter. Removing obsolete connections reduces the

number of parameters of the model, which decreases complexity without harming the

model’s representation power. Therefore, it is in our greatest interest to remove as many

obsolete connections as possible. Knowledge of the data distribution is very useful for

this, as it allows us to analytically determine which connections to remove.

In some applications, all input examples have the same spatial alignment. For exam-

ple, while doing identity verification on biometric passport photos, we can assume that all

input examples are going to be aligned. Then, we can design a layer composed of neurons

that are specialized on different regions. For example, a neuron only sees input data from
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Figure 2.4: A locally-connected layer. Compare with Figure 2.2 and notice the smaller number
of connections, which results in fewer parameters.

the eye region, while another neuron only sees input data from the mouth region. This

can be achieved by a locally-connected layer (see Figure 2.4). From a machine learning-

perspective, the advantage of using a locally-connected layer over a fully-connected layer

is to reduce the number of model parameters, which reduces the amount of training data

needed to avoid overfitting.

It is rare to encounter problems where examples are spatially aligned, so locally-

connected layers are not used often. However, for spatiotemporal data, locality is always

an important clue that fully-connected layers do not utilize. In these cases, convolutional

layers become useful. A convolutional layer is a variation of a locally-connected layer,

where each neuron is applied not to a single region, but rather to all regions in parallel. See

Figure 2.5 for an illustration. Note that although there are 4 inputs and 4 neurons, since

each neuron is applied at each possible position, the layer has 16 outputs. As the number

of neurons did not change, this layer has the same number of parameters as the locally-

connected layer in Figure 2.4. Although the number of parameters did not increase in this

layer, more input connections are going to be needed in the next layer to accommodate for

the larger number of outputs, which is going to increase the overall number of parameters

in the model. For most applications, this is acceptable in return of achieving translation

equivariance, which means having an equivalently translated output when the input is

translated. Another advantage of convolutional layers over locally-connected layers is that

since each neuron is applied to all regions, they “see” more training data. Following from

the biometric photo example, a neuron may learn representations from eye regions that
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Figure 2.5: A convolutional layer. The neurons with the same index (e.g., the 4N0s) share weight
parameters.

9



x0

x1

x2

x3

x4

max()

max()

y1

y2

Figure 2.6: A max pooling layer, which is used to downsample feature maps spatially and across
channels.

can help it recognize mouth regions better. In that regard, forcing neurons to specialize is

generally not a good idea.

While convolutional layers are far superior to fully-connected layers when data

locality is strong, they still cause the number of parameters to explode quickly when

stacked. For this reason, they are commonly used with max pooling layers (see Fig-

ure 2.6). This layer does not have any learnable parameters, it simply passes the local

maxima to the next layer, effectively downsampling the feature map spatially and across

channels. In [34], max pooling layers are replaced with 1×1 convolutional layers, which

downsample the feature map only across channels. Even if max pooling is not used,

stacked convolutional layers downsample the representations spatially, causing CNNs to

operate similar to a bag-of-visual-words approach [7, 35]. There have been work on

capsule networks as an alternative to this rather aggressive type of abstraction [36], but

these architectures have yet to be proven viable for high-level tasks such as natural object

recognition.

We have covered the architectural choices based on analyzing the spatial properties

of the input, which are relevant to the following chapters. There are many other important

elements of CNN architecture such as layer blocks [37], residual connections [22] and

batch normalization layers [38]. However, we are not going to attempt to cover these

subjects fully in this thesis.
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2.2. Deep Neural Networks

Deep learning is the practice of learning stacked nonlinear models. Therefore, any net-

work architecture that is composed of at least two layers is considered to be deep. How-

ever, an implied property of deep neural networks is that rather than relying on manually

crafted descriptors, they tend to operate on the input data directly. In other words, earlier

stages of a deep neural network learn representations, while later stages learn the target

task, and the transition is obscure [2].

Theoretically, any function can be approximated to a given accuracy using an MLP

with two layers [39]. However, this is not feasible for relatively complex problems, as

the required model size (i.e., the number of neurons) will be very large. The amount

of data required to train a well-generalizing neural network increases exponentially with

the number of model parameters, which is a manifestation of the curse of dimensional-

ity [40]. Two-layered, wide architectures are not practical for complex problems due to

their computation power and training data requirements. Regarding these aspects, deeper

architectures are exponentially more efficient [41, 42].

Deep learning aims to capture representations that are built on top of each other.

Preferably, these representations should grow more abstract along the hierarchy to be

able to disentangle the underlying causes of variation in the data [2]. A useful definition

of abstraction is “being invariant against unimportant variations”, and in deep learners,

this is provided by downsampling (e.g., pooling) and sparsifying (e.g., convolutional lay-

ers, regularization) elements. A good example of a deep architecture learning abstract

representations without an explicit incentive is reported by Liu et al. [43]. After training

a CNN to recognize identities from face images, it was observed that individual neurons

from later layers selectively responded to semantic high-level attributes, such as gender,

age, and race. Abstract representations are what humans depend on for high-level rea-

soning, and their invariance against irrelevant changes enables them to be applicable for

a wide range of inputs. Since deep learning can generate abstract representations, it is a

suitable tool for developing machine intelligence.

Although deep learners are efficient and have strong representation capabilities,

there was a lack of success in using deep models in the earlier literature. The appar-

ent reason is the difficulty of training [44], with two prominent milestones set along the
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way. The first one was Hinton et al. successfully training a deep generative model with

a greedy strategy [3]. This was followed by Krizhevsky et al. using a more traditional

training strategy to outperform the state of the art methods in a complex object classifica-

tion task by a wide margin [5]. Let us discuss how neural networks are trained in the next

section.

2.3. Training Neural Networks

Neural networks approximate functions by learning suitable weight parameters. Training

a network consists of defining a cost function and optimizing it for a given dataset. The

most common training strategy for neural networks is iterating over the following two

steps:

• Gradients of the cost function with respect to a mini-batch of examples are calcu-

lated for all layers using backpropagation [45];

• Weights are updated simultaneously by gradient descent to lower the cost function

with respect to the mini-batch.

Alternatively, there have been attempts to train layers in sequence [3, 46] or adding

intermediate outputs to the architecture [37] to be able to use deeper architectures, but

“tricks” (various regularization methods [2], residual connections [22], batch normaliza-

tion [38], etc.) were discovered later on that allowed the regular backpropagation algo-

rithm to be used successfully with very deep architectures.

Models used for machine learning are either generative or discriminative (this is

somewhat of an oversimplification, e.g., [47]). The problems we face in the real-world—

such as recognition and control—can often be modeled as tasks to be solved discrimina-

tively (e.g., “Is this product faulty?”). While training a model, if ground truth is used in

the calculation of the cost function, the process is referred to as being supervised. Since

discriminative models output labels or regressed values that can be compared to ground

truth, they are inherently suitable to be trained in a supervised manner. Due to the fact

that we want to solve problems that can be solved with discriminative models more, su-

pervised training is used frequently both in academia and industry.

In unsupervised training, only the input examples are used to calculate the cost func-

tion. Since most of the data available on the Internet is not manually labeled, unsupervised
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methods have a distinct advantage in that they can utilize more data. The problem with

unsupervised training is that the related tasks tend to be generative. For example, de-

noising autoencoders are trained to filter out artificial noise from input examples [48].

This task essentially requires the model to generate a denoised example, which means

that the model has to be generative. Although generative models can be modified to pro-

duce representations to be used in discriminative tasks, they underperform compared to

authentically discriminative models [2]. Since it is difficult to model real-world problems

as generative tasks, this limits the usefulness of unsupervised training.

An interesting hybrid of supervised and unsupervised training is self-supervised

training [49]. Here, a task is designed analytically to generate example–label pairs with-

out using any ground truth. Then, using the generated example–label pairs, the model

is trained in a supervised manner. Nevertheless, the approach is not exactly supervised,

as it does not require ground truth. The advantage of this approach is that it allows dis-

criminative models to be trained with unlabeled data. This approach cannot outperform

supervised training with a very large amount of labeled data, but it is a very good alterna-

tive if the amount of labeled data is limited.

2.3.1. Unsupervised training

A generative method learns P (X) without supervision, where X is the input. In other

words, it learns to generate likely inputs, depending on its hidden variables. This is

not sufficient for tasks like classification or regression, which require the estimation of

P (Y |X), where Y is the desired output. Representations that are useful to estimate

P (X) tend to be effective for estimating P (Y |X); therefore, representations learned for

generation can be used as inputs of a supervised learner with strong smoothness assump-

tions [2]. The fact that deep generative models are not limited to generative tasks makes

them widely relevant.

Hinton et al. proposed greedy, layer-wise unsupervised training of stacked restricted

Boltzmann machines (RBM) [50], which is called a deep belief net (DBN) [3]. It was

shown that RBMs could be replaced with alternative generative elements, such as autoen-

coders [51, 4]. Denoising autoencoders are a better performing variant of these networks,

which are trained to remove the stochastic noise added to the input [52]. Unlike DBNs,

deep Boltzmann machines consist of undirected connections of RBMs [53]. The added
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top-down connections result in better performance, at the cost of estimating the intractable

model expectations using Markov chain Monte Carlo [54]. There is also work on design-

ing generative models that can be trained by backpropagation, in the hope of being able

to use the backpropagation-related tricks that have helped supervised learners substan-

tially [55].

2.3.2. Supervised training

Backpropogation jointly trains all layers of a neural network to approximate P (Y |X).

This appears more appealing than layer-wise training to approximate P (X), as it is more

specific to the target task. However, earlier experiments showed that training MLPs with

more than 3 layers by backpropogation rarely yielded good results [33]. Greedy, layer-

wise supervised training (similar to what was done with DBNs [3]) also did not produce

favorable results for MLPs [4]. In fact, it was debated not long ago that it is not feasible

to train a deep learner solely by supervised backpropagation [41, 56, 44].

For non-trivial tasks, the objective function of a supervised deep learner is highly

non-convex [13]. Using a first-order method (e.g., gradient descent) to optimize this non-

convex function of model parameters results in getting stuck at local minima. This prob-

lem was commonly solved by initializing the training at “a good basin of attraction” by

unsupervised pretraining [13].

Jarrett et al. reported that with architectures optimized for the specific application,

unsupervised deep learners do not have a significant advantage over supervised deep

learners [35]. Supporting this claim, Krizhevsky et al. achieved a spectacular break-

through at a complex vision task, mostly using already available methods [5]. The re-

sulting architecture is known as the deep convolutional neural network, which is the go-to

method for achieving state of the art results in vision applications today. We are going to

discuss CNNs in the next section.

2.4. Convolutional Neural Networks

In the classic MLP, all neuron outputs of the previous layer are connected to all neuron

inputs of the next layer. The resulting fully connected layers have great representation

power. However, since each connection has a weight parameter, stacking many fully
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connected layers quickly increases the number of parameters in the model. Sparsifying

the connections by removing unnecessary ones will result in a smaller model and reduce

overfitting.

When designing a neural network architecture for a specific application, a good rule

of thumb is that inputs with immediate correlations should be connected together to the

neurons. In the case of simultaneous raw readings from a sensor array (e.g., an image),

readings from sensors that are closer to each other will have stronger correlations. It is

safe to assume that in a natural image, two neighboring pixels read similar values, while

the same cannot be said for two pixels at the opposite borders of the image. Hence, if a

sparser network is desired, it is best to sever connections that model the relations between

distant pixel values.

Relevant features—edges, blobs and higher level features—may appear at any part

of the image. The model should be able to respond to all features, regardless of their

position. Then, a neuron that has learned to respond to a certain feature should be applied

periodically throughout the image. The combination of only using the local pixels and

repeating the product operation by translation is equivalent to convolution with a kernel.

The layers where the connections are arranged to apply this operation are called convolu-

tional layers. A neural network with convolutional layers is called a CNN, and is used as

early as 1989 [1].

According to Jarrett et al., majority of object recognition systems are composed of a

filter bank, a nonlinear operation and a pooling operation [35]. For example, in SIFT [57],

a set of edge filters with different scales and orientations are applied—or at least, the end

result is equivalent. Determining the scale and orientation is the nonlinear operation, and

computing the gradient orientation histogram is the pooling operation. CNNs fit the same

description, where convolutional layers are filter banks and the activation functions act as

the nonlinear operations. CNNs commonly end with fully connected layers, which act as

pooling operations. Additionally, some architectures use explicit pooling layers between

convolutional layers [5].

CNNs are a fairly old concept, which were not considered to be an alternative to

more recent object recognition methods [7, 8]. However, the success with unsupervised

deep learners implied the possibility of a well performing deep CNN. Krizhevsky et al.’s

implementation of an 8 layer CNN (commonly referred to as AlexNet, see Figure 2.7) [5]
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Figure 2.7: The AlexNet architecture. Conv denotes convolutional layers, Pool denotes max
pooling layers, Norm denotes local response normalization layers (not commonly used in other
architectures) and FullConn denotes fully-connected layers.

was the first one to deliver state of the art results in ILSVRC [6]. Following 2012, all

tasks in ILSVRCs were won by CNNs (e.g., [58, 37, 34]).

Bengio et al. attribute the recent success of CNNs to [2]:

• GPU computation that allows for longer training [59, 10],

• Data augmentation [10],

• Large number of tasks (e.g., 1000 classes for ImageNet classification [60]),

• Convolutional architecture [1] and max-pooling layers [61],

• Rectifying nonlinearities as activation functions [62],

• Careful parameter initialization [44],

• Careful parameter update and adaptive learning rate heuristics [63],

• Layer-wise feature normalization [5],

• Dropout [64].
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Figure 2.8: The origin is a saddle point for f(x, y) = x2 − y2.

Since the list above was compiled in 2013, more progress was made. Google’s team

managed to secure ILSVRC 2014 with a 22-layer network [37], while Microsoft’s team

won the first place in ILSVRC 2015 with a 152-layer network [34, 65]. A significant

barrier to increasing depth is the accumulated shifts in the calculated gradients along

the layers (the exploding/vanishing gradient problem [66]). GoogLeNet combats this

by utilizing auxiliary output layers along the network during training [37]. Since these

outputs are not as distant to the earlier layers as the outputs at the end of the network,

the gradients they provide are less degraded. Later on, batch normalization becomes the

standard solution of this problem [38], which is also used in the 152-layer ResNet [20].

Another important addition to this list are residual connections, proposed by He et

al. [22]. These are identity connections that bypass groups of layers. Since the values

from the earlier layer are always propagated forwards, layers only have to learn the resid-

ual differences. He et al. report that using this architecture, classification performance

improves continuously with depth [20].

2.5. Model Initialization

Backpropagation is an iterative training algorithm; therefore, it requires the neuron weights

to be initialized. Initializing all weights at zero is not preferable, because it produces a

perfectly symmetrical model. Backpropagation updates weights according to their indi-

vidual gradients. In the case where all weights and their gradients are the same, they will

not be able to diverge and specialize [27]. Moreover, the origin of the objective function

is a saddle point [33], which can trap optimization algorithms depending on first order
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gradients [67]. Even though they are not local minima, gradients are zero at saddle points

(see Figure 2.8).

2.5.1. Random initialization

Weights can be sampled from a random distribution to introduce asymmetry to the initial

model. However, the characteristics of the selected distribution is important. Having

weights with excessively large magnitudes will cause the majority of the neurons to be

saturated. The resulting initialization point will be on a flat part of the objective function,

and training will be slow [33]. On the other hand, very small weights will result in small

gradients, hence slow training [68]. Under these circumstances, the best solution is to use

a random distribution of medium-sized, zero-mean numbers. Hinton et al. use normal

distribution to initialize the first truly deep learner [3], while Saxe et al. report that all

zero-mean distributions perform similarly [69]. Martens proposes sparse initialization,

where only a limited number of weights for each neuron are initialized, and the rest are

left at zero [70]. Glorot and Bengio normalize the initialization weights with respect to

the number of fan-ins and fan-outs of each neuron [44] (commonly referred to as Xavier

initialization by various deep learning frameworks). He et al. adapt this method to be

used with rectified linear unit (ReLU) activation functions [34]. Batch normalization

is a recently discovered operation that is used in-between CNN layers that reduces the

dependence on the exact distribution of initialization [38].

2.5.2. Initialization for performance

In Section 2.5.1, we have discussed the random initialization of weights. The main ob-

jective of a good random initialization is to set up suitable conditions for training. It is

noticed that failing at this step can render a network virtually untrainable. Furthermore,

initialization is not only important for avoiding failure, but also for obtaining optimal

training results.

Training begins at a point on the objective function decided by the initialization.

Backpropagation is a greedy algorithm, which is only able to converge to the local min-

imum. Since backpropagation will not be able to escape the basin of attraction it was

initialized at, its optimization capability is strictly dependent on the initialization [13]. As
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Figure 2.9: The objective function of a single parameter model. Training will converge to the
global minimum only if the parameter is initialized at the part shown as a solid curve.

a result, a small subset of possible initializations will be able to converge to the global

minimum (see Figure 2.9).

Our estimation of the target function is almost never exactly accurate, which is an

issue. This may happen when the training data is not representative enough or the cost

function is not suitable for the target task. The result is that even if we find the parameters

that yield the minimum training loss, they may not be optimal for the target task. In this

case, the solution that is more preferable to converge at is not at the global minimum,

but most likely at (or near) one of the local minima. Again, a small subset of possible

initializations will be able to converge to the desired minimum. Therefore, in the case

where the objective function is not able to represent the target task accurately, a good

initialization can provide regularization.

An interesting approach is trying to come up with a good initialization point man-

ually. It is a frequently observed fact that the first layer of a trained CNN contains lots

of Gabor-like filters [35, 71, 58]. Serre et al. set the first layer of a network to be Gabor

filters based on biophysiological observations, and train only the second layer [72]. In

response, Jarrett et al. report that even when compared with using random weights at the

first layer, Gabor filters perform worse [35]. They also point out that even if we set the

first layer to be Gabor filters, the following layers do not follow a perceptible pattern.

Then, analytically manipulating weights is not a feasible initialization method.
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Figure 2.10: The trajectory of training and test losses with and without pretraining.

2.5.3. Unsupervised pretraining

Before AlexNet [5], unsupervised pretraining was seen as a must step of training super-

vised deep learners [13]. It is not difficult to consider unsupervised pretraining as an

initialization method, as its objective is to find a good starting point for training. During

our discussion about random initialization, we have seen that some characteristics of the

distribution that the parameters are drawn from may be critical. Erhan et al. tested if

unsupervised pretraining simply provided a suitable distribution for initialization [56].

They pretrained a network, created a distribution from the resulting weights, and initial-

ized networks with random samples from this distribution. Even though this performed

better than random initialization from uniform distribution, unsupervised pretraining out-

performed these two alternatives significantly. Another advantage of unsupervised pre-

training reported by Erhan et al. is that it provides robustness against the differences in

the random initialization seeds [56]. In other words, randomly initialized networks will

have lesser performance variance if they are pretrained first. Similarly, Glorot and Ben-

gio report that networks initialized with unsupervised training are more robust against the

type of nonlinear activation function or random initialization distribution used [44].

Let us illustrate the effect of pretraining when our estimation of the target function

is not accurate. See Figure 2.10. Training loss declines smoothly whether pretraining is

applied or not. In the figure, pretrained training loss has saturated at a lower value, yet

the opposite may also happen. However, the important metric is the test loss. Test loss is

typically more volatile across iterations compared to training loss, as optimization is done

with respect to the training data. Test loss without pretraining trends upward after some
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point, which indicates overfitting. In contrast, the regularization provided by pretraining

causes test loss to saturate at a low value.

Unsupervised pretraining seems to be the only feasible initialization method. How-

ever, AlexNet [5] and later CNNs trained with the ImageNet dataset regularly omit it. The

reason for this is likely that the recent unsupervised training methods fall short when com-

pared with the ever-improving “art” of training CNNs with backpropagation. The logical

solution then is to apply supervised or self-supervised pretraining for initialization. This

approach is highly analogous with transfer learning, which will be discussed in the next

section.

2.6. Transfer Learning

The most commonly considered case in machine learning is when the training data is

sampled from the test data distribution. On the other hand, additional training data that

is not directly relevant to the target task may be available. In general terms, extracting

knowledge from such additional data and using it as leverage in the target task is called

transfer learning [73].

More commonly, the additional data belongs to a different domain (i.e., sampled

from another distribution). For example, New York Stock Exchange data can be used to

train a machine learning-based trader that will operate in a smaller national stock market.

Alternatively, the additional data may belong to a different task. A speech recognition

dataset may be used to train a system that aims to identify music tracks.

Transfer learning requires the additional data to be of some relevance to the target

task. If the knowledge that can be extracted from the additional data is not useful for the

target task, the respective transfer will be fruitless. For example, it is not expected that

representations learned from stock prices will be useful in speech recognition. However,

this intuition may not be correct, as it can also be argued that even between these two

tasks, some basic properties (e.g., frequency selectiveness) can be transferred. There is

no method of estimating the degree of transferability between tasks and domains with-

out experimentation. We are going to provide some interesting examples of unexpected

transferability in Chapter 3.
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2.6.1. Transfer deep learning

In practice, transfer learning is usually implemented as a two-step process. Firstly, a

model is pretrained with the additional data. Then, the data representing the target task

is used to fine-tune the model. Transfer learning is also utilized implicitly by all deep

learners, even when there are no apparent pretraining and fine-tuning steps. We have

mentioned that deeper architectures are more efficient, because their individual neurons

have to be reused to construct a wide scale of representations. For example, a CNN

may learn gradient-based high-level representations for image recognition. All of these

high-level representations will be based on the same low-level oriented gradient opera-

tors. Additionally, learned representations are reused for different tasks. A CNN that has

learned to detect cars and motorcycles can use the same representation for both car and

motorcycle wheels.

Transfer learning is an inherent characteristic of deep learning, which may be the

reason why deep learners respond well to its explicit applications. Bengio et al. investi-

gate if shallow and deep models benefit from transfer learning differently [42]. The three

tasks in the study are to classify the examples of a character set (digits, uppercase letters

or lowercase letters) from the NIST dataset [74]. Out-of-domain data are produced by

applying various transformations to the examples, such as blur, elastic deformation and

occlusion. Transferring from different tasks and domains improved the deep model’s per-

formance in the original task greatly, beating previously published results. In contrast,

the shallow model’s performance is either not affected significantly, or degraded. Note

the similarity of these results to the ones from the studies in Chapter 3; when only a few

layers of the CNN is fine-tuned, data augmentation does not improve (or even degrade)

performance.

Yosinski et al. investigate transfer learning in CNNs with a more complex task,

ImageNet object classification [71]. The authors test the assumption that the initial layers

of a CNN will be more general, and later layers will grow in specificity. It is reasonable

to expect that transferring only the general layers will be preferable, as it is shown that

some initializations (and hence transfers) may do more harm than good [13]. However,

Yosinski et al.’s experiments show that even when two CNNs are trained for very different

tasks (one classifies man-made objects while the other classifies natural objects), transfer-
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ring all layers results in the most significant increase in performance when followed by

fine-tuning in the target task. This suggests that visual tasks can utilize a common set of

representations, of which some are far more complex than Gabor features. A more ex-

treme demonstration of this phenomenon is using the high level representations of a CNN

trained to classify ImageNet objects to classify biomedical images without any fine-tuning

with the target task (see Section 3.2). This shows that even when the tasks and domains

are vastly different, transferring representations may be useful in vision applications.

2.6.2. Curriculum learning

As discussed in Section 2.5.2, a single random initialization is not likely to deliver optimal

results. State of the art results in the literature are produced by repeating the experiment

many times with different seeds [27], and choosing a well-performing set of models to

form an ensemble [37, 20]. This is akin to doing a random search in a nearly infinite

parameter space, where each query takes a week of training time. There are two non-

mutually exclusive improvements over this. The first one is to replace the gradient de-

scent of the backpropagation algorithm with a less greedy alternative (e.g., a second order

method [75]), so that the initial basin of attraction (w.r.t. gradient descent) can be escaped

in favor of a better one. The second one is to start with an alternative objective function

with a different topology than the target objective function. Even if the initialization point

is at a bad basin of attraction in the target objective function, the alternative objective

function is chosen such that it guides the training towards a good basin of attraction in

the target objective function. Then, training is finalized in the target objective function,

where the minimum of the good basin of attraction is achieved. Unsupervised pretraining

and transfer learning were discussed as two methods where this approach was used.

Unsupervised pretraining and transfer learning make use of already available tasks

to improve performance. There are two problems with this approach. First, given that the

target task is sufficiently unique, no other task will be able to produce high level transfer-

able representations. Second, each task switching will result in a noncontinuous change

in the objective function. Instead, transferring from a series of continually evolving tasks

will likely give better results with gradient descent. These two problems can be solved by

specifically designing a set of training tasks for the target task.

Bengio et al. coin the term curriculum learning to describe pretraining with a spe-
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(b) The objective function of the target task is more non-
convex. Still, the optimization ends in the global minima
because of good initialization.

Figure 2.11: A curriculum is composed of smoothed versions of the target task. Training at
each task starts at the empty circle and ends at the arrow head. Note that unlike Figure 2.9, all
initializations will converge to the global minimum when curriculum learning is used.

cially designed set of tasks [76]. The authors state that the benefits of curriculum learning

are similar to of unsupervised pretraining. Indeed, unsupervised pretraining can be con-

sidered as a type of curriculum learning, where estimating P (X) is less complex than

estimating P (Y |X).

The main difficulty in training for a complex task is due to the non-convexity of

the objective function. Instead of training directly with the highly non-convex target task,

curriculum learning gradually introduces non-convexity in a set of less complex tasks.

Bengio et al. propose two approaches to design these prior tasks [76]. In the first one,

the target objective function is already known, and its more convex versions are produced

by smoothing (see Figure 2.11). This is not applicable for most cases, as in real applica-

tions, the entire point of training is to explore the target objective function. In the second

approach, the difficulty of the examples from the target dataset are rated, and used with

increasing order of difficulty. Kumar et al. propose self-paced learning to train with a

dataset using the easier examples first [77]. In later work, Gülçehre and Bengio separate
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the target task into subtasks and train the network with these in sequence [24].
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3. IMAGENET PRETRAINING

Regularization puts a soft limit on the flexibility of the model, which reduces overfitting.

It has been shown that unsupervised pretraining after random initialization provides reg-

ularization; hence, improves generalization [41, 56, 44]. In fact, unsupervised pretraining

with the target task data was seen as a necessary initial step before supervised training

for some time [2]. However, the fact that AlexNet, a particularly deep architecture for its

time, was trained in a purely supervised manner for ILSVRC has proven that this was not

the case [5].

The understanding of the fact that deep models can be trained in a purely supervised

manner with enough training data did not happen to be the end of pretraining, but only

transformed it. Instead of unsupervised pretraining, the literature moved on to supervised

pretraining on a large dataset for model initialization. For visual tasks, the object clas-

sification task of ILSVRC became the default pretraining task (generally referred to as

ImageNet pretraining) [23], and this pretraining method consistently delivers state of the

art results in various tasks [78, 79].

It has been proposed to use ImageNet pretrained models for general-purpose visual

recognition [80, 81]. This approach yields state of the art results in tasks where natural

images are used (e.g., object detection [82], image captioning [83]). However, it is easy

to predict that ImageNet pretraining would be less useful if the data distribution of the

target task is different, which is referred to as a domain shift. For example, although Liu

et al. use an ImageNet pretrained model to locate the face regions, they use a separate

model trained only with facial images to predict face attributes [43]. In the case where the

domain shift is extreme, ImageNet pretraining is completely omitted [84, 85].

In this study, we present case studies where the domain shift between the ImageNet

pretraining data and target task data is extreme. In the first one, it is shown that ImageNet

pre-training can be used to reach near-perfect results for recognizing and localizing power

lines from aerial images, even when the images are in infrared spectrum [86]. In further

work, this method has been extended for visualization of recognized power lines for easy

localization [87]. In the second case, ImageNet pre-training is used to learn representa-

tions to be used in cell classification from grayscale microscopic images, and it has been
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Figure 3.1: Examples from the aerial image dataset. The first two columns are infrared images
with and without power lines, the following two columns are visible light images with and without
power lines. The first two rows are easier examples, based on the metric proposed in [89].

shown that these representations can be used to produce acceptable results even with-

out fine-tuning [88]. These studies show that even when the target task is from a vastly

different domain (aerial, microscopic, infrared and grayscale, instead of colored natural

images), ImageNet pre-training is a viable model initialization method.

3.1. Case Study 1–Power Line Recognition from Aerial Images1

The subject of the first case study is to recognize power lines from aerial images. We

will show that although the data distribution for this task is from a completely different

domain, ImageNet pretraining followed by a brief fine-tuning results in almost perfect

recognition performance. Since we are only going to be presenting our findings that

relate to this thesis directly, the reader is advised to refer to the original paper [86] if they

are more interested in the specific use-case.

3.1.1. Aerial image dataset

For this case study, we used an aerial image dataset that we have generated in cooperation

with the Turkish Electricity Transmission Corporation (TEIAS). A helicopter mounted

imaging system was used to capture visible light (VL) and infrared (IR) videos from the

1This section is adapted from [86].
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Figure 3.2: Two alternative methods for using CNNs for power line recognition: end-to-end
classification and CNN feature classification. In end-to-end classification, the network is trained
jointly. In CNN feature classification, the feature extractor and the classifier are trained sequen-
tially. The disconnect is represented by dashed arrows.

air. The video resolutions were 576× 325 for IR and 1920× 1080 for VL. We inspected

the videos, manually selected examples that represent the presence or absence of power

lines, and resized them to 128 × 128 (see Fig. 3.1). The dataset is composed of 2000

positive examples and 4000 negative examples for each domain respectively. The videos

are captured from 21 different geographical locations in Turkey. The examples are cho-

sen to provide a variety of difficulties, due to different backgrounds, lighting and weather

conditions. Using the method in [89], example difficulties are graded into two tiers (see

Fig. 3.1). Finally, the dataset is hosted in a public web repository [90] with the corre-

sponding localization ground truth [91].

3.1.2. Proposed method

We propose two alternative methods for the usage of CNNs for power line recognition

(see Fig. 3.2). The first method is end-to-end classification. In this method, we start

with a CNN that was designed to be used for ILSVRC image classification. We replace

the final layer of this model with a randomly initialized softmax layer with 2 outputs for

binary classification. Then, we train only this final layer until convergence. Following

this, we jointly fine-tune the feature extraction and classification parts.

The second method utilizes the same CNN as a feature extractor. We use only the

parts up to a certain CNN stage, and remove the further layers. The output of the partial

CNN is flattened, dimension-reduced with principal component analysis (PCA), and fed

into a classifier. We train this classifier separately from the CNN.

We have used ResNet-50 [20] and VGG-19 [19] as the preferred architectures.
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These two architectures were chosen because of their relative performances at the ILSVRC

image classification task, where ResNet-50 outperforms VGG-19. We will be investigat-

ing if the performance at this general visual task is indicative of the performance at the

specific task of power line recognition.

The main contribution of VGG models was showing that a fixed kernel size of 3×3

works as good as larger kernel sizes (because earlier architectures were manually tuned

for each layer [5]), and greatly simplifies the architecture design process. A single VGG-

19 net is reported to achieve 7.0% top-5 test error in the ILSVRC image classification

task [19]. For a simpler analysis, we considered the VGG-19 architecture as a composition

of five convolutional stages, as it was implemented for Keras [92] (see Fig. 3.3a).

Szegedy et al. simplified the architecture design further, by first designing inception

blocks, and using them to build GoogLeNet [37]. Similarly, ResNet is designed as a

combination of blocks. The main difference of ResNet is its being much deeper than

earlier architectures. This was achieved by utilizing batch normalization [38] and residual

connections [22], both of which help with vanishing or exploding gradient problem seen

in excessively deep models. A single ResNet-50 net is reported to achieve 5.25% top-5

validation error in the ILSVRC image classification task [20]. Similar to VGG-19, we

analyzed this architecture as a composition of five convolutional stages, based on the

implementation we have used [92] (see Fig. 3.3b).

We used three different methods to classify CNN features. Support vector machines

are popular classifiers that aim to obtain the hyperplane that separates the support vectors

with the largest margin possible [28]. Naive Bayes classifiers assume that the classes

can be represented as stationary Gaussian distributions, and assuming statistically inde-

pendent samples, they maximize the a posteriori probability of an observation to reach

a decision [93]. Conventional decision trees apply classification by splitting the feature

space into smaller sub-categories as long as classification accuracy is not met. Random

forests are ensembles of shallow decision trees for improved robustness against overfit-

ting [94].

3.1.3. Experimental results

In this section, we present experimental results for the two proposed methods: end-to-end

classification and CNN feature classification. Additionally, we investigate the usage of
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different net architectures and image preprocessing methods.

The abbreviations used in the tables are as follows:

IR: Infrared SVM: Support Vector Machine

VL: Visible Light NB: Naive Bayes

Neg: Negative RF: Random Forests

Pos: Positive

3.1.3.1. Implementation details

For end-to-end classification, the final layer of the CNN designed for ImageNet classifi-

cation is replaced with a binary softmax layer. Being the usual practice, only this layer is

trained first. Then, Stage 5 and the following layers (see Fig. 3.3) are fine-tuned jointly.

In CNN feature classification, flattened outputs of convolutional stages are used as CNN

features. Since these features are excessively large, they are dimension-reduced to size

1,024 using PCA.

Keras with TensorFlow backend was used for the CNN [92], and Weka was used

for the classifiers [95]. We ran all experiments with 10-fold cross-validation. For each

fold, the dataset was segmented as 70% training data, 20% validation data and 10% test

data. The learning rate for the CNN final layer was started at 0.1, and halved five times

when the validation loss stopped decreasing. Fine-tuning learning rate was annealed the

same way, but it was initialized at 0.01. Weight decay was set to be 0.001 for all layers.

The classifier parameters were kept as the default values in Weka 3.8.

Two popular alternatives for image pre-processing were tested: (i) forcing zero-

mean by subtracting the dataset average (referred to as mean subtraction), and (ii) linear

normalization to 0–1 scale by dividing by 255.

3.1.3.2. End-to-end classification

We start our experiments with CNNs pre-trained for ILSVRC image classification (from

now on to be referred as ImageNet pre-trained nets). These nets include filters such as

edge and blob detectors in the earlier layers, which are likely to be useful in a majority

of visual tasks. However, they also come with a redundant specialization in recognizing

objects [58]. Therefore, it is not predictable if they will work well for the task at hand.
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Table 3.1: Classification errors in percentages for the end-to-end classification method.

(a) ImageNet pre-training and mean subtraction preprocessing.

IR VL IR VL
VGG-19 1.85 8.167 4.967 8.167

ResNet-50 0.65 1.0 0.25 0.267

Trained last layer Trained last layer &
Fine-tuned Stage 5

(b) ImageNet pre-training and 0–1 normalization preprocessing.

IR VL IR VL
VGG-19 57.183 44.433 1.467 1.967

ResNet-50 0.55 4.7 0.217 0.55

Trained last layer Trained last layer &
Fine-tuned Stage 5

(c) Random weights and mean subtraction preprocessing.

IR VL IR VL
VGG-19 22.283 21.633 27.933 17.5

ResNet-50 40.517 48.983 13.333 20.5

Trained last layer Trained last layer &
Fine-tuned Stage 5

Tables 3.1a and 3.1b show the results with ImageNet pre-trained models, and Table 3.1c

show the results with a randomly initialized model.

As discussed earlier, we train the randomly initialized last layer individually, then

fine-tune the net. The entire net has millions of parameters that can be fine-tuned. The

number of free parameters increase the expressive power of the model. However, if there

is not much training data, this also causes the model to overfit. Since our training set

is relatively small, we must limit the number of free parameters in the model. For this

reason, we limited the fine-tuning to only the final stage (Stage 5 in Fig. 3.3) and the

following layers. In Tables 3.1a–3.1c, the results are given both for training the last layer,

and fine-tuning the last stage.

See Table 3.1a for the results where the ImageNet pre-trained nets are fed mean

subtracted images. We can see that just by training the last layer, we achieve consider-

able performance with features learned from ImageNet pre-training. ResNet-50 performs

significantly better than VGG-19. Following this, we fine-tune the final stage of the nets.

Here, we see that ResNet-50 performance is improved even further, resulting in the best
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Table 3.2: Confusion matrices for the end-to-end classification method (trained final layer and
fine-tuned Stage 5, ImageNet pre-training, mean subtraction preprocessing). Rows are ground
truths, and columns are predictions.

ResNet-50
IR Neg (GT) Pos (GT)

Neg 3994 6
Pos 9 1991

VL Neg (GT) Pos (GT)
Neg 3994 6
Pos 10 1990

VGG-19
IR Neg (GT) Pos (GT)

Neg 3836 164
Pos 134 1866

VL Neg (GT) Pos (GT)
Neg 3691 309
Pos 181 1819

performance that will be reported in this study. On the other hand, IR performance of

VGG-19 is not improved. See Table 3.2 for the confusion matrices where Stage 5 is

fine-tuned.

We repeat the previous experiment by using 0–1 normalization instead of mean

subtraction as the preprocessing method. See the results in Table 3.1b and compare with

Table 3.1a. ImageNet pre-training is done with mean subtraction. This dynamic range

alteration results in inferior performance. What is interesting is that once we fine-tune

Stage 5, the performance improves dramatically, and becomes comparable to using mean

subtraction.

CNN architectures are inherently frequency selective. For this reason, they are sen-

sitive to Gabor wavelet-like structures, even when they are composed of random weights [69].

Then, it is reasonable to expect untrained nets to perform reasonably well in power line

recognition, as they do in other tasks [35]. In other words, ImageNet pre-training may

not have meaningful effect in achieving the performance in Tables 3.1a and 3.1b. To

test the effect of ImageNet pre-training, we generated nets with random weights using

Xavier initialization [44], and repeated the experiments (see Table 3.1c for the results). It

is clear that ImageNet pre-training was significantly beneficial for power line recognition,

even when the images were from the IR spectrum. However, untrained nets were also

able to deliver better than random predictions. See Figure 3.4 for the receiving operator

characteristic curves of the experiments in this section.
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(d) VL, VGG-19

Figure 3.4: Receiver operating characteristic curves of the end-to-end classification method. The
legend is in the order of decreasing area under the curve. Note that the curves overlap and occlude
each other in some figures.

3.1.3.3. Classifying CNN features

In this section, we investigate using the CNN as a feature extractor, and using a variety

of classifiers. The CNNs learn fundamental representations in the earlier layers, such as

directed edges, blobs and patterns. As we move on to higher layers, representations grow

abstract and data-specific. Considering that the data distribution of the ImageNet dataset

and our aerial images dataset is vastly different, the more abstract representations from

the higher layers may not be ideal for us. To test this hypothesis, we extracted features

from different stages of the CNNs, and fed them into classifiers.

See Table 3.3a and Table 3.3b for the CNN feature classification results with mean

subtraction preprocessing. It is clear that similar to the end-to-end classification results,

ResNet-50 outperformed VGG-19. Again, in accordance with the earlier results, infrared
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Table 3.3: Classification errors in percentages for the CNN feature classification method with
mean subtraction preprocessing.

(a) VGG-19

SVM NB RF SVM NB RF
Stage 1 12.383 29.917 26.2 4.933 35.233 24.95
Stage 2 7.4 28.633 24.433 1.9 37.883 26.8
Stage 3 2.267 14.167 18.667 1.15 27.617 20.6
Stage 4 0.917 17.4 16.467 2.0 30.55 21.233
Stage 5 0.85 21.183 11.75 2.85 30.15 21.9

IR VL

(b) ResNet-50

SVM NB RF SVM NB RF
Stage 1 10.07 31.183 23.4 2.717 38.233 26.733
Stage 2 3.95 15.65 19.267 1.7 23.483 20.317
Stage 3 0.833 16.733 11.85 0.883 14.733 19.167
Stage 4 0.417 7.767 10.417 1.67 29.917 19.3
Stage 5 0.417 19.75 11.1 1.083 33.483 22.417

IR VL

Table 3.4: Confusion matrices for the best CNN feature classification method (SVM classifier,
ResNet-50 architecture, Stage 4 features for infrared and Stage 3 feature for visible light images,
mean subtraction preprocessing). Rows are ground truths, and columns are predictions.

IR Neg (GT) Pos (GT)
Neg 3995 5
Pos 20 1980

VL Neg (GT) Pos (GT)
Neg 3978 22
Pos 31 1969
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(a) IR, Features from Stage 4
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(b) VL, Features from Stage 3

Figure 3.5: Receiver operating characteristic curves of the CNN feature classification method.
ImageNet pre-trained ResNet-50 model is used with mean subtraction preprocessing. Stage 4 for
IR and Stage 3 for VL are shown because they delivered the best results (see Table 3.3b).
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Table 3.5: Cumulative running times of the CNN models for a single image in milliseconds.

Stag
e 1

Stag
e 2

Stag
e 3

Stag
e 4

Stag
e 5

End-to
-en

d

VGG-19 3.7 4.1 5.4 8.0 10.0 10.6
ResNet-50 2.2 7.9 11.1 16.6 19.3 21.7

images are classified more easily. If we compare the classifiers, SVM yields the best

classification performance across all conditions. See Table 3.4 for the confusion matrices,

and Figure 3.5 for the receiving operator characteristic curves with the best configurations

in this section.

Let us compare the performances of features extracted from different stages. Nearly

in all cases where naive Bayes or random forest classifiers are used, Stage 3 features

yielded the best results. In contrast, SVM performance improves with higher-level fea-

tures. The best performances in Table 3.3a and 3.3b are comparable to best performances

in Table 3.1a without fine-tuning, which was equivalent to extracting features from Stage

5 and classifying them with a single layer net.

3.1.3.4. Running time

An effective power line warning system should warn pilots at a distance that would be

adequate to take the necessary risk-avoidance maneuvers. In this respect, the running

time of the algorithm is an important factor, as the helicopter may be approaching the

hazard during the running time.

The running times given in Table 3.5 are obtained with an Nvidia GTX 1080 GPU.

The best performing configuration, end-to-end classification with ResNet-50, runs in 21.7

ms, which is reasonable for a real time-application. Running times for PCA projection

and classification with SVM, NB, RF are not significant (< 0.5 ms) and thus are omit-

ted. Note that it is possible to optimize the method for a lower running time by using

lightweight architectures such as MobileNets [96], pruning existing architectures [97], or

using specialized hardware [98].
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Table 3.6: Best performing configurations with each proposed method at infrared and visible light
images.

Proposed Methods Error (%)

IR

End-to-end CNN classification (ResNet-50, ImageNet pre-training,
fine-tuned Stage 5, 0–1 normalization preprocessing) 0.217

CNN features + Support Vector Machine (ResNet-50, Stage 4, Ima-
geNet pre-training, mean subtraction preprocessing) 0.417

DCT features + Random Forest (128×128 descriptors, classical selec-
tion) [99]

3.75

VL

End-to-end CNN classification (ResNet-50, ImageNet pre-training,
fine-tuned Stage 5, mean subtraction preprocessing) 0.275

CNN features + Support Vector Machine (ResNet-50, Stage 3, Ima-
geNet pre-training, mean subtraction preprocessing) 0.883

DCT features + Random Forest (128×128 descriptors, classical selec-
tion) [99]

14.6

3.1.3.5. Comparison of methods

In this section, we present a quantitative comparison of the best performances of various

methods on respective datasets (see Table 3.6). We can see that the results are consistent

for both spectra. End-to-end classification with fine-tuning gives the best results, and

using the CNN as a feature extractor gives comparable results. We compared these results

with a recent method that uses DCT features for classification [99]. This method is applied

with various parameters and classifier types (SVM, RF or NB), and the best results are

given in Table 3.6. It is clear that the proposed application of deep learning on power line

recognition provides a significant improvement.

3.1.4. Visualization2

We have presented the performance of the proposed method with quantitative experi-

ments. In this section, we are going to analyze the proposed method (specifically, the

model from Table 3.1a) further, using various visualization techniques. Let us start by

investigating the saliency maps for positive examples. A saliency map for an image is

obtained by backpropagating the gradient to the respective image. For this purpose, we

used guided backpropagation [101], where only positive ReLU activations propagate gra-

dients. This method is particularly suitable for the task at hand, because it emphasizes

object contours, rather than its body. See Figure 3.6 for saliency maps obtained using

2This section is adapted from [87].
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Figure 3.6: The first row is images from the dataset [90], following rows are saliency maps gener-
ated using regular gradients [100], guided backpropagation [101] and integrated gradients [102],
respectively. Darker colors indicate higher saliency.

different backpropagation methods. The proposed method is sensitive to power lines that

appear as curves, which implies superiority over methods that assume collinearity. An-

other interesting point is that the model has learned to recognize pylons, and use them as

evidence of power lines. Again, a hand-crafted method based on line detection would be

unable to do this. The linear structures of the buildings can be seen to be ignored, which

is desirable. We can also evaluate the dataset based on these saliency maps. Specifically,

the fact that the model focuses on the power lines rather than the background implies that

the dataset is not biased in the way that positive examples share a similar background.

We can also use the saliency map to provide visual feedback to the pilot, as proposed

in [87]. See Fig. 3.7 for examples. To achieve this, we thresholded the saliency map using

Otsu’s method [103], applied Gaussian blur, and superposed it over the original image

with a colormap (see Figure 3.8 for intermediate steps). The saliency map is obtained

with a single backwards pass, meaning that the extra computation is comparable to what

is required for the proposed method. Therefore, our proposed method can be extended to

provide visual feedback and still works in real-time.
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Figure 3.7: The first row shows input images, second row shows saliency maps obtained by guided
backpropagation [101] (darker color indicates higher saliency), and third row shows a visualization
technique that can provide visual feedback for the pilot.

(a) Original
image

(b) Saliency map (c) Tresholded
saliency map

(d) Smoothed
saliency map

(e) Heat map (f) Heat map
superimposed

on image

Figure 3.8: Steps to present the original image and the saliency map simultaneously. The saliency
map is thresholded, the thresholded image is smoothed, and a heat map is produced from the
resulting image. The heat map is superimposed on the original image transparently.

To further analyze how the proposed method functions, let us visualize the activa-

tions. This is done by choosing a single neuron output from a stage, and optimizing for

the highest activation. See the results in Fig. 3.9. Since this model was initialized by Im-

ageNet pre-training we can observe that the representations grow higher in level through

Stage 1–4. However, due to the fine-tuning that we apply, the representations regress to

a much lower level in Stage 5. Then, a combination of these representations are used

to recognize power lines in the Final Stage, as evident from the parallel linearities and

pylon-like structures. We can also say that the final stage has learned to handle power line

appearances of any orientation, based on the variety in the figure.
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Final Stage

Figure 3.9: Activation visualizations for the model in Table 3.1a. The images are zoomed ×2 for
better viewing. The model was initialized by ImageNet pre-training, then Stage 5 and Final Stage
were fine-tuned for power line recognition.

3.1.5. Conclusion

In this study, we proposed two CNN-based power line recognition methods to be used

in a real-time warning system. Unlike previous methods, where the cable lines were

localized, we consider the problem as a binary classification where the scene contains

a power line, or not. Both of the proposed methods use CNNs designed for ImageNet

object recognition. In the first method, end-to-end classification, the CNN is modified

for the target task, and trained jointly. In the second method, CNN feature classification,

features are extracted from the intermediate stages of the CNN, and fed into a classifier.

The best results were obtained with end-to-end classification, where a ResNet-50

model was pre-trained with the ImageNet dataset, and its last stage was fine-tuned with

power line images. In nearly all experiments, infrared images were classified more suc-

cessfully. This shows that it is preferable to use infrared imaging for a power line warning

system. However, the performance with visible light images was also reasonable.

Overall, ResNet-50 performed better than VGG-19, which implies that a model’s
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ImageNet performance tends to be indicative of its performance at other tasks. This would

mean that the results we have achieved can be improved by replacing the pre-trained

network with a newer one that performs better at high-level visual tasks. In addition,

we show that ImageNet pre-training is significantly beneficial for power line recognition,

which is consistent with recent findings in other domains [104].

Contrary to our initial expectation, higher-level features yielded better performance

with the CNN feature classification method. This indicates that, while the representations

in the final layers are being optimized to disentangle higher-level factors of variation (i.e.,

what object does an image contain), they also become better at disentangling lower-level

factors of variation. Therefore, high-level features from pre-trained nets are concluded to

be beneficial in a wide variety of visual tasks. End-to-end classification surpassed CNN

feature classification, because it uses high-level features and allows fine-tuning.

In the experiments without fine-tuning, we observed that the preprocessing method

was critical. Specifically, one should use the preprocessing method that was used in pre-

training, which was mean subtraction in our case. However, fine-tuning nullifies the effect

of the difference between the preprocessing methods used in pre-training and training.

Finally, we showed that even though the architectures we used were designed for

ImageNet object recognition, they performed well at the target task. Aerial images of

visible light and infrared spectra constitute a considerably different domain than the Ima-

geNet dataset. Yet, ImageNet pre-training was observed to affect the experimental results

positively. Moreover, the architecture that performs better at ImageNet object classifica-

tion also performs better at power line recognition, regardless of if they are pre-trained or

not. Considering that better performance at a general purpose visual task results in better

performance at this specific visual task, the premise of a unified net for all visual tasks

looks promising.

3.2. Case Study 2–HEp-2 Cell Classification3

For applications for which the available data is not adequate to train a deep neural net-

work from scratch, training for similar objectives can be used as an initialization strategy.

In this study, cell images are classified using a deep neural network pretrained to classify

objects in natural images. Even though classification of natural images and cell images

3This section is adapted from [88].
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are very different objectives, this approach allows cell images to be classified with rela-

tively high accuracy. The results show that features used for visual classification by deep

convolutional neural networks may be more universal than assumed.

3.2.1. Introduction

Image processing and pattern recognition methods are commonly used in biomedical

imaging to assist medical personnel [105, 106]. These methods can enhance biomedical

images to make the relevant information more perceptible for humans [107] and automate

relatively easier tasks [108]. Since qualified medical personnel is a limited and valuable

kind of human resource, automating parts of their jobs creates significant value.

Indirect immunofluorescence is an important tool in diagnosing autoimmune dis-

eases. In this method, a sample of the subject’s blood serum is applied on the HEp-2 cells

on a slide. The characteristics of the antibodies of the subject can be determined accord-

ing to their interactions with the HEp-2 cells. Different kinds of interactions cause cells to

be stained with different patterns [109]. The images of these cells are examined by expert

personnel to determine the frequency of each staining type. For the results to be reliable,

this may need to be repeated by multiple experts. This application can be described as a

vision-based pattern recognition problem. Initially, methods developed for this problem

can be used to validate human results. As performance increases, the developed methods

can be used to automate the process without any human effort.

In this study, the performance of an ImageNet pretrained GoogLeNet [37] at rec-

ognizing staining patterns of HEp-2 cells is measured4. This is done by removing the

final layer of GoogLeNet, which is a softmax classifier, and replacing it with a multi-class

support vector machine. The remaining layers of the CNN are not fine-tuned at all us-

ing the HEp-2 cell images. Since the CNN is pretrained to recognize objects in natural

images, the learned representations are not expected to be useful in this application. The

experimental results indicate that the learned representations are indeed useful for cell

classification, which gives important clues about the generalness of representations that

CNNs utilize.
4Note that GoogLeNet was the state of the art architecture at the time this study was done.
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3.2.2. Related work

The performance metrics in this section are the mean class accuracies for the dataset

compiled for the challenges held in International Conference on Image Processing (ICIP)

2013 and International Conference on Pattern Recognition (ICPR) 2014. A training set is

made available to the participants, and the performances were measured with a secret test

set. The methods that were not submitted to these challenges could only be tested using

the training set. The results measured in this way are significantly lower than the per-

formances measured in the challenge (e.g., 6.0% difference for Manivannan et al. [110]).

While comparing performances, this factor should be kept in consideration.

The challenge held in ICIP 2013 was won by Shen et al. with 80.7% accuracy [111],

and the challenge held in ICPR 2014 was won by Manivannan et al. with 87.1% accu-

racy [110, 112]. Shen et al. have classified SIFT features and frequency histograms of

local binary descriptors using an SVM. Manivannan et al. decompose the image spa-

tially as concentric rings and extract various local descriptors from them, which are fed to

multiple SVMs. The classification results are obtained as averages of SVM outputs.

Qi et al. use a local binary descriptor variant and Fisher vectors obtained from

RootSIFT descriptors as features [113]. These features are classified using an SVM and

80.0% mean class accuracy was obtained. Extracting features from different Gaussian

scale spaces and using them together has been proposed as a preprocessing method [114].

Gao et al. achieve 96.8% accuracy using CNNs and augmenting the data by rotat-

ing it [115, 85]. The proposed architecture is composed of three convolutional layers, a

fully-connected layer and a classification layer. Compared to other examples in the lit-

erature, this architecture is somewhat shallow [5, 37]. Shallow CNNs composed of few

convolutional layers followed by fully-connected layers have already been used to classify

handwritten digits [1].

While obtaining the 96.8% accuracy ratio, Gao et al. leave one example out and

train with the rest of the images. With this approach, samples from the subject who the

test image belongs to are used for training, which causes the performance measurement

to be extremely optimistic. Leaving one subject out, rather than leaving one sample out

would produce results more comparable to the literature.
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Homogeneous Speckled Nucleolar Centromere NuMem Golgi

Figure 3.10: Examples from different classes of the ICPR 2014 dataset. The first row are “inter-
mediate” and the second row are “positive” examples.

3.2.3. Dataset and preprocessing

There have been three challenges held for HEp-2 cell classification: at ICPR 2012 [116],

ICIP 2013 and ICPR 2014. The dataset used in the first challenge was composed of 1,457

images (723 training–734 test). For the following challenges, the number of images were

increased to 68,429 and two additional classes have been added. 13,596 of the images for

the second dataset have been made available for the researchers as the training set. The

remaining images were kept secret to be used for testing. For this reason, only the training

set could have been used for this study. The dataset also includes a binary mask for each

image, which have been obtained by manual segmentation. These masks were not used

for preprocessing or classification in our study.

Examples from the six classes that are to be recognized are given in Figure 3.10.

The examples on the first row are labeled as intermediate intensity and are not imaged

clearly. The examples on the second row are labeled as positive intensity and display

the characteristics of the related class clearly. For correct classification of intermediate

examples, which constitute the 55% of the dataset, preprocessing needs to be applied.

See Figure 3.11 for an original intermediate intensity image and its rescaled version

for better viewing. Although the rescaled image does not look like the positive intensity

examples, its details are distinguishable. As the preprocessing method, brightness values

of the images are rescaled for zero mean and 1 standard deviation.
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(a) Original (b) Rescaled to 0–255

Figure 3.11: An original example of an intermediate intensity Golgi image and its rescaled version
for better viewing.

3.2.4. Proposed method

In this study, an ImageNet pretrained GoogLeNet [37] has been used. The recent studies

indicate that wider and deeper CNNs achieve higher performance with adequate training

data [65]. Rather than extending the traditional denser CNN architecture, GoogLeNet

uses the network in network approach [117] to mimic a sparse architecture. With this

approach, it has achieved a better performance than AlexNet [5] while having less param-

eters. Models with less parameters are less likely to overfit, require lower memory and

run faster with sequential processors. For these reasons, we found this architecture to be

suitable for the experiment. We should note that as we repeated the experiments in this

study with other ImageNet pretrained architectures, we observed similar results.

CNNs learn representations and classifiers with the same model. The 1000-class

ImageNet classifier at the end of GoogLeNet is of no use to us in this application. CNNs

generally classify using a final softmax layer, which attributes a probability score for

each of the classes. By removing the final layer, we can gain access the highest level

features. In this study, these highest layer features are fed into a multiclass SVM [118].

The remaining layers of the CNN are not fine-tuned.

A problem about using a CNN pretrained with a different task is the difference

in the input format. The ImageNet dataset is generally composed of colored images of

about VGA resolution. Almost all CNNs designed for recognition scale and crop these

images down to 224×224. Our dataset of cell images are composed of grayscale images

with 60−90 width and height. For this reason, we upscaled our images to 224×224
and repeated their channels. This probably has caused color-sensitive representations to
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Table 3.7: Confusion matrix for HEp-2 cell classifications.

Hom. Speck. Nuc. Cent. NuMem Golgi

Homogeneous 1873 496 30 1 76 18

Speckled 537 1701 237 296 54 6

Nucleolar 43 148 2167 145 46 49

Centromere 2 328 63 2343 2 3

NuMem 121 99 68 1 1869 50

Golgi 34 12 88 4 183 403

become obsolete.

3.2.5. Experimental results

The experiments were done with the training set of the ICPR 2014 HEp-2 cell dataset.

Examples were sampled from 83 subjects and the examples from the same subject appear

very similar. Having examples from the same subject both in the training and test set

makes the classification task unrealistically simple. To avoid this, the experiments were

repeated 83 times by leaving one subject out in each iteration. The resulting mean class

accuracy is 74.1%. Considering that the CNN architecture was not designed for this task,

the CNN was not pretrained for a similar task and the extent of preprocessing applied to

the input images, these results are genuinely surprising.

The results are given as a confusion matrix in Figure 3.7. As the Golgi class includes

similar staining patterns with Nucleolar and NuMem, it was frequently confused with

them, resulting in 55.7% class accuracy.

3.2.6. Conclusion

CNNs perform very well at image classification. For applications where there is not

enough data to train a CNN, existing well-performing CNNs can be utilized. In this

study, it was questioned if this approach is feasible even if the pretraining task and the

target task are vastly different. To test this, the highest level features of a CNN pretrained
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for ImageNet classification were used to classify HEp-2 cell images. The performance

achieved in the experiment is surprising in that it comes close to the performance of

methods hand-crafted for this problem.
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4. GESTALT TRAINING

Unlike randomly initialized artificial neural networks, visual systems of animals are not

blank slates at birth. In a seminal work in perceptual psychology, Tinbergen has shown

that herring gull chicks are innately predisposed to specific visual features of their par-

ents [119]. Just moments after these chicks hatch from their eggs, they approach their

mother and peck the red spot on its beak (see Figure 4.1). This triggers the mother’s

regurgitating reflex, allowing it to feed its hatchling. A similar phenomenon can be ob-

served in humans. Infants less than a day old can recognize faces and distinguish their

mothers from others [120]. This ability bootstraps the mother–infant bond, increasing the

probability of the mother to take care of the infant.

Having these primitive visual skills at birth increases the survival rate of the species.

Therefore, there is a significant evolutionary drive for these skills to be had at birth. Al-

though it is clear why newborns have these skills innately, the actual question is how these

skills are gained. Jarrett et al. have shown that even untrained CNNs are quite successful

at extracting features for high-level visual tasks (62.9% classification accuracy with the

Caltech-101 object recognition dataset) [35]. However, they still had to train a classifier

in a supervised manner because recognition is a discriminative task.

We have discussed in Section 2.3 that a visual system needs to be trained in a super-

vised manner to be able to accomplish discriminative tasks. Therefore, it can be said that

animals practically undergo supervised pretraining before being born, despite not getting

Figure 4.1: A herring gull chick pecking the red spot on its mother’s beak. The chicks are predis-
posed to this visual cue innately.
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any visual stimulus. Presumably, representations of useful visual primitives are encoded

in their genes and utilized in initializing their visual systems. This implies the possibility

of initializing a neural network to perform discriminative tasks without using any external

data.

In this chapter, we introduce a new approach to deep learning-based vision doing ex-

actly this, which we have named Gestalt training due to its relation to Gestalt psychology.

The most novel aspect of this method is that it can be used to train deep CNNs—which

are typically data-hungry—without using any external data. This is achieved by analyti-

cally designing a generative model that can stochastically produce examples of a pattern

type. These patterns are special in that they transcend the meaning of their components,

and are called Gestalts. This transcendence in meaning occurs according to the grouping

principles, which have been studied by Gestalt psychologists [121].

We are going to start by providing a brief introduction to the Gestalt theory of

perception in Section 4.1. Then, we use the proposed Gestalt training method to recognize

color constancies (i.e., blobs) in Section 4.2 and edges in Section 4.3.

4.1. Gestalt Theory of Perception

Humans perceive “the whole” immediately and subconsciously [122]. For example, we

understand a shape we see to be a square immediately, without the need to count its edges

and check if its angles are right. In fact, it is unavoidable for neurotypical people to

perceptually deconstruct a square and see it as four arbitrary line segments.

Gestaltists state that our perception of the whole is formed of a hierarchy of Gestalts.

Each Gestalt is a group of lower-level Gestalts. However, Gestalts are indivisible, because

on top of being a sum of parts, they have a transcendent meaning [121]. For example, a

square is formed of four line segments, yet it is much more significant than an arbitrary

formation of four line segments. The more transcendent meaning a Gestalt has, the more

unavoidable it is to be perceived.

Although we are going to be discussing low-level perception, Gestalts apply for

higher-level perception and abstract concepts as well. For example, when we see thou-

sands of soldiers, we perceive them as an army, rather than a crowd of soldiers. In fact, this

the main psychological reason for armies to enforce a very strict uniform code: Gestalts

are perceived more strongly when their parts are more uniform. Therefore, the concepts
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discussed in this chapter are scalable across levels of abstraction.

Laws governing the perception of lower level Gestalts are considered to be largely

innate, meaning that they are not learned [121]. Perceptual grouping is one of these laws,

which governs how we group separate objects. The objects that carry similar qualities

are perceived to be a part of the same group. In addition, these grouping principles work

hierarchically. Below are some examples of these grouping principles [123]:

• Color constancy

• Vicinity

• Similarity

• Closure

• Convexity

• Continuity of direction

• Constant width

• Past experience

• Amodal completion

• Symmetry

• Common motion

Due to the nature of the field of psychology, these definitions are generally made

qualitatively. Desolneux et al. quantify these laws using a probabilistic approach, with

the aim of developing parameter-free feature extraction methods [124]. The Helmholtz

principle is used to do this, which states that large deviations from randomness results in

the perception of a structure. Desolneux et al. use the Helmholtz principle to validate

detections.

Perception of Gestalts is universal in humans, and thus it is general-purpose and

required for all visual tasks. Moreover, the hierarchical structure of Gestalts strongly

resembles representations that deep architectures are designed to learn. Therefore, using

Gestalt principles in deep learning research looks promising.
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4.1.1. Helmholtz principle

Let us introduce the Helmholtz principle as described by Desolneux et al. [124]. As

we have mentioned, they have developed this formulation to set validation criteria for

stochastic observations. In simpler terms, one can think of this as an analytical method of

setting a detection threshold.

The main argument of the Helmholtz principle is that if it is likely for an event to

occur in noise spontaneously, it is not meaningful, and thus should not be detected. Here,

being likely means having a probability of more than 0.5. Then, the optimal detection

threshold is the one that is set exactly at the level where it would only invalidate events

that are likely to occur in noise.

To calculate this, we start with the number of false alarms (NFA):

n: total number of objects

k: number of objects that have the quality

p: probability of an object having the quality

Nconf : number of possible tests

B(n, k, p): the probability of at least k objects having the quality

NFA(n, k, p) = Nconf ·B(n, k, p) (4.1)

Nconf is the number of detection candidates, and B(n, k, p) is the validation threshold for

a group of these candidates. If we have too many candidates, or if it is too common for

at least k objects out of n to have the quality, we would have a lot of false alarms. The

term “having a quality” can also be interpreted as conforming to a particular grouping

principle.

Here, B(n, k, p) can be represented as a binomial sum:

B(n, k, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (4.2)

Finally, the Helmholtz principle states that an event is ε-significant if the following

is true for random data:

NFA(n, k, p) ≤ ε (4.3)

51



Figure 4.2: Different kind of grouping principles are perceived with different ε-significance,
which implies that a universal threshold of 1 is not optimal. For example, the threshold for per-
ceiving faces is very low, causing frequent false alarms.

If this is true for ε ≤ 1, the event is defined to be significant, i.e., the probability of making

this detection in noise is below 0.5.

Let us interpret the meaning of this with extreme examples. For an event to be

significant, its NFA has to be less than 1 in a random example. NFA increases linearly

with Nconf , which means that events observed under very large Nconf are not meaningful.

For example, if we had bought more than half of the lottery tickets, one of these tickets

winning the grand prize would not have surprised us. Similarly, a large B(n, k, p) causes

NFA to be large, thus makes the observation meaningless. Even if we roll a die only

once, the result not being one would not surprise us, as it is more likely for the result to

not be one. We are going to provide a detailed use-case in Section 4.2, which is going to

clarify how the Helmholtz principle is used quantitatively.

Note that deciding that an event is meaningful using the Helmholtz principle is not

equal to the event being meaningful. For example, a friend can claim that he is going

throw a coin five times and always get heads, and proceed to achieve it. Here, Nconf

is 1 (he only tried once) and B(n, k, p) = 0.55, so NFA = 1 · 0.55 � 1. Although

this indicates that we should assume that our friend has cheated, it does not prove it.

The Helmholtz principle solely aims to maximize our expected accuracy in a stochastic

environment, and should not be depended on to yield absolutely correct results.

Another issue with the Helmholtz principle is that in perception, the cost of a false
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Figure 4.3: An illustration of the effect of color constancy on perception. We perceive the group
of black pixels to be the parts of a single object. This applies even though the object has an
arbitrary form.

positive and a false negative is almost never equal. For example, pareidolia is a phe-

nomenon where humans see patterns in random data. These patterns are almost always

faces, because evolutionarily, not recognizing a face is much more costly compared to

falsely recognizing a face on a piece of wood (see Figure 4.2). Unless we can analytically

determine the risks of false positives and false negatives, quantifying NFA analytically

loses its point, as ε would have to be determined empirically.

4.2. Recognizing Color Constancies

Similarity by color constancy is arguably the most basic grouping principle, which is

being able to group neighboring pixels of similar colors (see Figure 4.3). Being able to

recognize color constancy is closely related with two computer vision tools: blob and edge

detectors. Blobs are groups of neighboring pixels with similar colors, and edges are the

disruption of the similarity in color. The fact that this grouping principle is both very basic

and related to these frequently used tools indicate that recognizing it is a fundamental

visual skill.

To embed the maximum amount of information on an image without it being per-

ceived, limits of human perception was studied. It was hypothesized that humans find it

harder to perceive watermarks embedded in the busier regions of images [125]. Busyness

is defined as being of high frequency, or in our terms, a lack of color constancy. It is

proposed that more data can be embedded on image blocks with higher standard devia-

tion. Another approach is avoiding to disturb connectivity [126], and the limits are again

calculated using probability.
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Figure 4.4: The model of a darker square over a lighter background. In the case that each pixel is
either dark or light with equal probability, the individual probabilities of each pixel to conform to
this model is 1/2.

The Helmholtz principle is a generalization of these probabilistic approaches for all

grouping principles [123]. It states that deviation from randomness results in the percep-

tion of structure. In a visual sense, randomness is defined to be white noise with uniform

distribution. Gestalts are structures that are not likely to have happened in this noise by

chance [127]. While the noise is predefined, we have to model the respective Gestalt.

We first calculate the expected number of spontaneous occurrences of a Gestalt in

noise. The Helmholtz principle states that if this number is more than one, this Gestalt

is not perceivable [123]. In contrast, a very small number of false alarms indicates that a

Gestalt is easy to perceive. By using the Helmholtz principle, we can generate examples

of a Gestalt that can be perceived with arbitrary difficulty. Moreover, we can threshold

the difficulty level, as trying to learn an impossible task will be counterproductive.

4.2.1. Modeling color constancy

In this section, we are going to attempt to model color constancy, which is a difficult task

even for this most basic grouping principle.

4.2.1.1. Initial model

Let us introduce the task of detecting black 2×2, 3×3 and 4×4 squares in a 256×256
uniform white noise image. The pixels are assumed to be either light or dark, with equal

probability (see Figure 4.4). The calculation shows that 2×2 squares are barely perceiv-
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(a) 2×2
NFA = 1

(b) 3×3
NFA = 2×10−3

(c) 4×4
NFA = 10−6

Figure 4.5: 2×2, 3×3 and 4×4 black squares in uniform white noise images of size 256×256.
The Gestalts with smaller NFA are more perceivable as expected.

able, with an NFA very close to 1:

Nconf = 253× 253 = 64009 (4.4)

B = 2−16 (4.5)

NFA = Nconf ·B = 0.98 (4.6)

See Figure 4.5 for examples of differently sized squares and the NFA values cal-

culated according to our model. An NFA of 1 means the square should be borderline im-

perceivable, and be confused with other similar patterns in the noise, which is consistent

with the figure. NFA decreases sharply with increasing square size, which corresponds

to easily perceivable squares. While the result of the model is as expected in this particu-

lar case, the model is not very sound. First, it assumes that there are only two gray levels,

which is too coarse. In addition, it is not appropriate to model larger blobs as perfect

squares, and this approach underestimates Nconf , and thus NFA. This model results in

accurate calculations only because the squares being considered are small enough.
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4.2.1.2. Difficulties with an exact model

A grayscale image with 8-bit depth has 256 levels of gray. If we update our calculations

according to this:

B = 256−16 ≈ 0 (4.7)

Following from this, NFA will also be approximately zero for all square sizes,

which is clearly incorrect. The error in this reasoning is the assumption that all gray levels

are sufficiently different. We can perceive the difference between the colors represented

by 255 and 254 when presented side by side, but we would name them both as “white”.

This aspect of our perception can be approximated as being able to distinguish between a

finite number of scales of gray. Say we can distinguish between 8 levels, and recalculate:

B = 8−16 (4.8)

Accordingly, NFA will be far lower than what we expect. The reason for this is

considering only the perfect square shapes when calculating Nconf . Just as colors, we

perceive many similar shapes to be roughly the same. Then, we should also consider the

square-like shapes when calculating Nconf .

Even when modeling this simple Gestalt, we encountered two very difficult ques-

tions:

1. How many scales of gray do we see?

2. Which shapes do we perceive as a square?

Fortunately, these questions only have to be answered if we need an exact model.

Instead, we can be content with the knowledge that perceiving this Gestalt will be more

difficult with smaller square sizes and less constant colors. This knowledge is enough to

generate tasks with different difficulties.

We have mentioned that we do not want to train a network for an impossible task.

For this Gestalt, we can easily determine the threshold where the task becomes impossible

manually, as seen in Figure 4.6. Even without knowing the exact model, we can see that

for 2×2 squares, NFA is larger than 1.
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8×8 7×7 6×6 5×5 4×4 3×3 2×2

Figure 4.6: Dark squares with different sizes in 28 × 28 uniform white noise images. It is not
possible to distinguish squares of size 2×2.
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Figure 4.7: Number of false alarms (NFA) for the square widths in Figure 4.6. Note that NFA
is nearly 1 for squares with size 2×2, which indicates that they would be borderline impossible to
perceive.
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Figure 4.8: Instead of using the absolute NFA values as in Figure 4.7, we can use them to create
a difficulty index.

Figure 4.9: 8× 8 squares of different shades of gray, and a negative example.

Let us validate our observations with quantitative calculations. See Figure 4.7 for

the NFA values for each square size in Figure 4.6. All square sizes larger than 2×2 have

an NFA much lesser than 1, which means that they should be easily perceivable. However,

2×2 squares have an NFA of almost 1, which means they should be borderline impossible

to perceive. Indeed, we can see that the 2×2 square in Figure 4.6 has blended in with the

noise.

We have mentioned that our model is not exactly accurate, and optimal visual sys-

tems set detection thresholds based on false positive/negative risks, which are difficult to

determine analytically. Therefore, the NFA values we have calculated for Figure 4.7 are

not very meaningful. For that reason, we recommend to use them as relative difficulty

indices as shown in Figure 4.8.

4.2.1.3. Designing the task

We have approached the problem as recognizing the existence of color constancy in an

image. The input images may or may not contain a square with constant color (see Fig-

ure 4.9). The task is to decide if it does, which is a form of binary classification. This
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Conv32
3×3

Max pool
2×2

Conv64
3×3×32

Max pool
2×2

Full Conn1024 Full Conn2

Figure 4.10: The CNN architecture used in the experiments. The subscripts indicate the number
of neurons at each layer, and the following numbers indicate kernel sizes.

may not be ideal, because it is shown that deep learners perform better when pre-trained

with stronger supervision [128]. In this context, finding the location of the square would

have been a stronger form of supervision than assigning a binary label. However, our

experiments have shown that CNNs are able to learn to do this classification easily, thus

we opted for classification for implementation convenience.

We created a dataset for each square size shown in Figure 4.6. Each individual

dataset contains 10,000 positive examples of each shade of gray shown in Figure 4.9, and

80,000 negative examples (i.e., the positive–negative ratio is 1).

4.2.1.4. Training with the generated task

We used a CNN architecture with two convolutional layers and two fully-connected layers

(see Figure 4.10). Adam optimizer [129] is used with a training step of 10−5 and a batch

size of 128. The training is continued for up to 50 epochs. At the end of each epoch,

validation error is measured, and training is stopped if 5 consecutive epochs was not able

to improve upon the validation error. Then, the network state that has yielded the lowest

validation error is used to measure the test error.

Let us discuss the results of the training, as shown in Figure 4.11. The error rate is

a logistic function of the square sizes. Larger squares can be recognized easily, followed

by a sharp increase in error with smaller sizes. We have calculated NFA for differently

sized squares. NFA, which quantifies perception difficulty, was increasing with smaller

squares. The fact that our metric of difficulty (Figure 4.8) has a direct relation with the

error rates is encouraging. The error rate is 0.5 at width 2, which means that the CNN

was not able to learn anything useful.

4.2.1.5. Training ResNet-50 to recognize colored constancies

CNNs designed for ImageNet object classification take 224×224 colored images as in-

puts [58, 37, 20]. For compatibility, we generated pretraining images in the same format
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Figure 4.11: Test errors with varying square sizes. The experiments are repeated 5 times. Means
are shown with circular markers and ±1 standard deviations are shown with error bars.

Figure 4.12: 224×224 colored color constancy examples.
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Figure 4.13: Color constancy recognition error rates with ResNet-50 for the examples similar to
the ones in Figure 4.12.

(see Figure 4.12). For the previous image format, we have calculated the minimum square

size that can be perceived to be 3×3. This was validated both by observing the examples

ourselves, and seeing our CNN fail for smaller squares. With the new image format, we

may expect the minimum perceivable square size to increase, because the image size has

increased [123]. However, since there are three channels, two neighboring pixels being

of a similar color is less likely. These two factors roughly negate each other, and the

minimum perceivable square size is again close to 3×3.

Similar to the previous pretraining experiments, we used the newly generated im-

ages to pretrain a randomly initialized network. However, we used a much more deeper

network, ResNet-50 [34]. The test performance can be seen in Figure 4.13. The first thing

to note is that despite the model’s size, it did not overfit. Even for squares of 6×6 size, it

can recognize color constancy almost perfectly.

In the previous experiment, the recognition error rate had a logistic function shape

with a smooth transition. This time, we observe the change to be abrupt, even discon-

tinuous. This is probably because the transition from 0 and 0.5 is squeezed between two

square sizes.

These experiments are run only once to illustrate an interesting phenomenon. The

network sometimes fails to converge, and this becomes more likely with smaller square

sizes. We can overcome this by restarting the pretraining until convergence. We have ob-

served a similar instability for the self-supervised training method proposed in Chapter 5.

It was solved by changing the training task from binary classification to binary ranking.
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We can expect this approach to improve the robustness in this condition as well.

4.3. Deep Gradient Operator1

Despite the great interest on deep learning for high-level computer vision problems, low-

level image processing tasks had been left to classical methods, such as directional gra-

dient filtering, Gaussian blur, etc. The primary reason for this is that it is difficult to do

manual labeling for low-level tasks (e.g., edge detection) because of the excessive work-

load and the ambiguity of the correct labeling. The large amount of labeled data required

by supervised methods can be provided by developing a methodology that produces auto-

matically labeled data. For this study, we have designed a probabilistic generative model

that produces densely labeled synthetic images containing objects with edges at various

noise levels. A convolutional neural network trained with the data produced by this model

in a supervised manner learns to detect edges in real images as well, without regard to its

semantics. Close inspection of the convolutional layers shows that they do not specialize

on classical edge detection stages such as noise removal and directional gradient opera-

tors. Instead, the filters learned by the network are a mixture of these operations, which

motivates further research about the biological mechanisms of the human visual system.

4.3.1. Introduction

The field of image processing focuses on problems such as denoising [131], edge detec-

tion [132] and image compression [133]. On the other hand, computer vision applications

aim to solve higher-level problems such as recognizing the objects in an image [5] or ver-

bally describing a scene [134]. Yet, the common objective of both fields is to recover the

entangled factors of variation in the image [2].

The regions of an image that show higher variation contain more information com-

pared to the more uniform regions. These variations are attempted to be recognized by

modeling them as edges [132], corners [135], lines [136] and keypoints [57]. These types

of gradient-based features can be used in various applications such as fiducial marker

detection [137] and camera calibration [88].

The abrupt changes in illumination, reflectance and physical structures are projected

1This section is adapted from [130].
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on the image as strong color gradients [138]. Since these color gradients, which are

referred to as edges, contain meaningful information about the scene, there have been

many studies on how to detect them [132, 139, 17]. In addition, it has been shown many

times that when a deep convolutional neural network (CNN) is trained for a high-level

task such as object recognition, their earlier layers learn to respond strongly to directed

edges [58, 86]. This implies that edge detection is one of the building blocks of computer

vision methods, including deep learning-based ones.

The term “edge” may be used differently in various sources in the literature. While

lower-level image processing studies define all kinds of distinct color gradients as edges [132],

higher-level computer vision studies do not regard color gradients caused by changes in

illumination (e.g., shadows) as edges [140]. For the image segmentation problem, which

is commonly studied in the context of deep learning, only the contours of entities with

a semantic meaning are aimed to be detected [141, 142]. While using a deep learning-

based method in this study, we focused on the low-level problem, where pixel gradients

are defined as edges.

The low-level problem, where all abrupt color changes in the image are defined as

edges, can be solved with similarly low-level approaches. The most common of these

is convolving the image with analytically designed gradient operators (see Figure 4.14a).

The image is convolved with two orthogonally-directed Sobel operators, corresponding

to depiction of horizontal and vertical gradients. The resulting two response maps form

size-2 (gradient) vectors, which are then fused by evaluating the Euclidian magnitude at

each location. We propose to use a CNN with identical input and output sizes to infer

the intensity variations around the location of each pixel (see Figure 4.14b). We call

this CNN, the deep gradient operator, as it produces its output as a result of a series of

convolution operations, as opposed to a single one. An interesting difference between

the proposed and the traditional gradient methods is that in the traditional method, the

gradient responses from the two analytically designed operators are fused with another

analytically designed method (i.e., the Euclidian norm), while the deep gradient operator

learns the fusing operation along with the gradient filters. Furthermore, the operator does

not explicitly apply a Gaussian blur for noise elimination. Instead, it embeds the necessary

noise elimination process into the layers by learning from labeled data.

The need for a large amount of representative and accurately labeled data is the
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(a) Gradient detection with the Sobel operator.
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(b) Gradient detection with the deep gradient operator.

Figure 4.14: Gradient detection with the Sobel and deep gradient operators. (a) The image is
convolved with two Sobel operators, which are analytically designed to detect horizontal and
vertical gradients. The Euclidian norm of these two response maps gives the gradient map. (b)
The gradient map is inferred with a convolutional neural network in an end-to-end manner. Darker
colors in the image indicate higher gradient responses.
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main obstacle in the way of applying deep learning to most problems. A good work-

around for this problem is to use a probabilistic generative model to produce potentially

infinite number of labeled synthetic data. Using such a model is equivalent to Bayesian

model-based reasoning [143], which requires extensive domain knowledge. Training the

network with the data generated by such a model injects the related domain knowledge to

the network.

In the literature, synthetic data generation was proposed using renders of three-

dimensional models [79, 144]. Similarly, renders of text have been used to generate data

for text recognition [145, 146, 143], where the fonts could be regarded as the source

data for synthetic data generation. In addition, augmenting the training data with mi-

nor transformations is a common trick utilized to produce state of the art results in deep

learning-based computer vision applications [5].

Although probabilistic models are frequently used to derive training data from ex-

isting data, the same is not true for using them to generate training data from scratch. To

be able to design a data-independent and fully generative model, one needs to analytically

determine the characteristics of the data to be generated [143]. Determining these char-

acteristics would also allow us to develop rule-based recognition methods. For the same

reason as we cannot develop a good rule-based method to recognize dogs, we cannot gen-

erate convincing dog images without depending on data. Conversely, these approaches

are both feasible for lower-level problems.

In this study, we start by designing a probabilistic model to generate synthetic edge

images to train the proposed deep gradient operator. This model is designed analytically

by determining the characteristics of edges based on domain knowledge. Since the im-

ages are synthetically generated, their edge locations can be automatically determined.

This information is used to label the images densely, so that each pixel has an individual

label. The task of recognizing the edges in the labeled images is made more difficult by

employing additive noise. The deep gradient operator trained with this data is observed

to be capable of successfully detecting gradients in synthetic, as well as real-life images.

The results are promising for injecting universal knowledge about vision to deep neural

networks to reduce their data-dependence. In addition, the analysis of the trained model

can provide insight on developing better rule-based methods for the vision problem being

considered. Finally, close inspection of the network layers through visualization provides
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insight on how biological vision systems may be seeing edges.

The rest of the paper is structured as follows: In Section 4.3.2, we describe how

synthetic edge images with labels are generated. The deep gradient operator architecture

used in the study is introduced in Section 4.3.3. The training methodology and the results

are given in Section 4.3.4. Finally, the paper concludes with comments about the results

in Section 4.3.5, along with a discussion of potential future work.

4.3.2. Generating edge examples

The proposed method does not require existing training data as most machine learning-

based methods do. As we have stated earlier, we are not going to use an existing dataset

either directly, or to derive new samples from. Instead, the training data is going to be

generated stochastically from scratch, utilizing a model designed based on analytical ob-

servations.

Considering the problem of edge detection, there is a certain duality between color

constancy and edges; for an image to have one, it must also have the other. Just as im-

age processing and computer vision applications are heavily concerned with edges, color

constancy is regarded as one of the fundamental grouping principles in gestalt psychol-

ogy [123]. Although rare, computer vision methods that utilize color constancy to extract

features were also proposed [147].

To train the proposed method, we need to generate images with color gradients. If

we approach this problem from reverse, we can see it as generating images with distinct

color constancies. We can generate a closed shape with a constant color on a background

with another constant color to satisfy this requirement. While generating training data

stochastically, one needs to ensure that the generated outputs are adequately diverse. If

the training examples are composed of similar shapes, the trained model is not going to

be successful with real images.

To generate the shapes to be used in the proposed method, we uniformly sampled 25

points from a circle at the center of the image. We disturbed the locations of these samples

towards random directions and fitted a Bézier curve [148] to them. We, then, filled in the

curves by choosing two random colors for the foreground and background. See the first

row in Figure 4.15 for examples. We also drew only the contours of these shapes, which

are going to act as a dense labeling of pixels to be used for supervised training (see the
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Figure 4.15: The first row are stochastically generated shapes. The second row are the contour
images of the shapes, which are used as pixel labels. The third row are the training data obtained
by adding Gaussian noise to the stochastically generated image.

second row in Figure 4.15).

Since detecting the gradients in the original generated images is very easy, a model

trained for this task would not perform robustly with real images. Therefore, we need to

apply a transformation to make detecting these gradients more difficult. Although we can

disturb the edges, we can also approach the problem from reverse again and disturb the

color constancies. To follow the second approach, we further applied additive Gaussian

noise on the images with 0 mean and 16 standard deviation. This halves the PSNR (peak

signal-to-noise ratio) from 48 dB to 24 dB. See the third row in Figure 4.15 for sample

outputs.

Since we have generated the training data (Figure 4.15, third row) and the labels

of each pixel in the training data (Figure 4.15, second row), we could train a model in a

supervised manner to detect these.

4.3.3. Deep gradient operator architecture

The architecture we have designed takes grayscale images with a size of 128×128 as in-

puts (see Figure 4.16). In the first layer, we have defined 16 convolution kernels with 3×3
sizes. On top of this, we added another convolutional layer with 16 convolution kernels

of size 3×3×16. Since these kernels are a lot more than the traditional two Sobel kernels,

we would expect them to learn to respond to diagonal gradients, along with vertical and
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Figure 4.16: A convolutional neural network with three layers, and equal input and output sizes
has been trained to recognize pixels with high gradients. Darker colors in the image indicate higher
gradient responses.

horizontal gradients. In addition, these kernels should also learn to apply some type of

blurring to reduce the effect of the added noise.

The aim of the third and final layer is to fuse the response map of size 128×128×256
propagated from the earlier layers to obtain a gradient response map. For it to return a

single output per-pixel, a single convolution kernel of size 1×1×256 is defined in this

layer. As a result of using two consecutive convolutional layers with a spatial span of

3×3, each pixel output of the proposed architecture can draw information from a 5×5
window centered on it. This architecture is comparable with the traditional method of

detecting gradients (e.g., in the Canny edge detector [132]) by applying Gaussian blur,

followed by applying two 3×3 Sobel operators and fusing their responses.

As the activation function, ReLU is used for the first two layers, and sigmoid is

used for the final one. As such, a value between 0–1 is inferred for each pixel. When the

model is trained for independent binary classification for each pixel, it can be said that

these outputs indicate the gradient magnitude at each pixel.

4.3.4. Experimental results

When the training data is generated stochastically, there is no need to reuse training

data [143]. Since there would be no overfitting when the training data is not reused,

the proposed method does not benefit from regularization methods such as early stopping

and weight decay. In this study, we trained the model with 9,000 minibatches of size 64,

which means the model has seen 576,000 unique examples. Training is stopped not be-

cause of overfitting, but rather because the loss has saturated. Adam optimizer [129] with

0.001 learning rate is used for training.

See Figure 4.17 for the detected gradients in stochastically generated images. We

presented Sobel results with Gaussian smoothing as well (5×5 window with σ =
√
2), as
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Figure 4.17: The first row are the training data obtained by adding Gaussian noise to the stochas-
tically generated image. The second row are the results of the Sobel operator. The third row are
the results of the Sobel operator after Gaussian blur is applied. The fourth row are the results of
the proposed method. Darker colors in the image indicate higher gradient responses.

that is a commonly used preprocessing step [132]. We can see that the Sobel operator by

itself responds strongly to noise, and even when the image is blurred beforehand, a non-

zero gradient is detected consistently on the background and foreground. On the other

hand, the proposed method returns zero responses (i.e. gradients) on color constancies

with very sparse speckles. In addition, it localizes the contours of the shape precisely in a

thin, yet continuous manner.

We compare these methods quantitatively on 1000 synthetic images that were not

used in training. The problem can be treated as a binary classification problem with binary

cross-entropy loss being the evaluation metric. See Figure 4.18 for the performances of

”Sobel operator by itself”, ”Gaussian blur followed by Sobel operator” and the proposed

”deep gradient operator”. The deep gradient operator outperforms the other two by a large

margin even at the beginning of its training, and improves its performance further as it

sees more examples. In this graph (Figure 4.18), we can clearly observe that the proposed

method does not overfit, which is rather interesting, considering that no regularization

was used. Yet the result can be considered as ”expected”, because the distribution of the

training and test data are the same, and we never re-use any training data.
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Figure 4.18: Mean binary cross-entropy losses calculated with 1000 synthetic images. Each epoch
corresponds to training with 6400 unique examples.

See Figure 4.19 for results on real images. The Sobel operator returns a blurred

output, while responding to noise-like gradients (e.g., grass behind the cameraman, feath-

ers on Lena’s hat, baboon’s fur). Gaussian smoothing somewhat reduces its response to

noise, yet it also results in a degradation in sharpness. The deep gradient operator provides

a very crisp gradient detection, while responding to noise-like patterns minimally.

As a follow-up experiment, we omitted the additive noise while training to achieve a

more responsive version of the proposed method. In the last row, we can see that without

additive noise, the proposed method detects all kinds of gradients in a very sharp way.

Both version can be preferred in different applications. Overall, we argue that the results

provided by the proposed methods are visibly and quantitatively (cross-entropy loww-

wise) better; hence are expected to provide more useful features for further processing,

including edge detection.

In order to present the internal characteristics of the network, we visualize what the

deep gradient operator has learned. In Figure 4.20, 16 kernels from the first layer of the

deep gradient operator are presented. Unlike traditional gradient approximations (such as

Sobel operator), it is difficult to determine the isolated role of each these filters. However,

their structures for responding to edges at different orientations are somewhat eminent,

since the locations of highest and lowest weights are different for each filter. Furthermore,
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Figure 4.19: The first row is the original image. The second row is the output of the Sobel
operator. The third row are the results of the Sobel operator after Gaussian blur is applied. The
fourth row is the output of the proposed method. The fifth row is the output of the proposed
method when the training task is not made more difficult through additive noise. Darker colors in
the image indicate higher gradient responses.
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Figure 4.20: The 16 different 3×3 kernels learned by the first layer of the deep gradient operator.
The weights are linearly scaled so that the lowest value is shown in black and highest value is
shown in white.

Figure 4.21: Activation maximizations of the network. A noise image is optimized for maximum
activation at the output, and the gradients for this operation are shown. The gradients are higher
on the contours (shown in white).

we can also see the blending of smoothing and gradient detection operations, as the filters

themselves are not very sharp.

Finally, we examine activation maximizations for the output of the network. See

Figure 4.21 for gradients that maximize the response of the network to a noise image.

Although the network can see around a restricted window (5×5), we notice that it greatly

favors the continuity of contours. Therefore, we can deduce that the proposed method

implicitly links non-connected pixels by filling the gaps. This can be confirmed from

real-life images, where no gaps naturally exist between detected gradients. Furthermore,

we can see that the shapes of contours we have used for training is reflected in these

activation maximizations, and the model does not favor linearities at all.

4.3.5. Conclusion

Training neural networks require a large amount of data. Yet, some tasks require dense

supervision (e.g., pixel-level labeling), which does not lend itself well to manual labeling.

In this study, we propose to use a probabilistic generative model to produce synthetic edge

images with dense labels. This was possible because edges are low-level features, whose
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characteristics can be determined analytically. Then, training a model with the synthetic

images is equivalent to injecting the knowledge about these characteristic to the model.

As a result, the necessity of feeding CNNs with large amount of labeled data could be

fulfilled.

In addition to the rule-based probabilistic generative model, we propose a particular

CNN architecture to be used for gradient detection, called the deep gradient operator.

This architecture takes an image as an input, and outputs an image with the same size,

with the aim of emphasizing the edge gradient magnitudes at each output pixel. This

CNN is trained using the synthetic data produced by the generative model to estimate the

gradientness of each pixel. The learning task is perturbed by adding noise to the synthetic

images for the aim of robustness improvement in real-life images.

Although some methods such as traditional gradient operators work well on a stand-

alone basis, implementing them as neural networks allows them to be integrated to neural

network-based methods that can further be trained in an end-to-end manner. For example,

the proposed method can be finetuned with real data for context-aware gradient detection.

In that aspect, the proposed work is expected to provide a case study for pretraining. Fur-

thermore, the deep gradient operator can be used as a building block for methods aimed

to solve more complex tasks such as edge and edge segment detection. In this respect, it

can be argued that the proposed method is more flexible and open to improvement com-

pared to the traditional low-level image processing methods. Since the results in artificial

and real-life images are fairly plausible, we conclude that the injection of extensive vi-

sual knowledge through synthetic data really reduces the data-dependency of deep neural

networks. The fine results also inspire and motivate for further research regarding how

the biological human visual system works for the task of edge detection, which is clearly

not a combination of two isolated processes of “noise removal” and “gradient magnitude

evaluation”.
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5. SELF-SUPERVISED PRETRAINING

Although supervised pretraining delivers state of the art results in most cases, it has its

disadvantages. The most obvious of these is that it requires the pretraining data to be

labeled. Although the ImageNet dataset [60] has provided a large amount of labeled

training data to propel deep learning research forward, it is an undeniable truth that the

majority of data in the wild is going to be unlabeled. This dependence on labeled data

becomes a bigger problem when the target task is not similar to the limited labeled dataset

options. For more exotic tasks such as cell classification and power line recognition,

it is obvious that labeling data is going to be much more costly than labeling natural

images. Another problem of supervised pretraining is that it causes the model to gain

an unnecessary specialization related to the pretraining task. For example, ImageNet

pretraining goes beyond familiarizing the model with likely data distributions, and teaches

the model to distinguish between breeds of dogs.

Self-supervised pretraining is an alternative to supervised pretraining. Self-supervision

is generating a task with a known solution from the input data without requiring any la-

bels, and using this solution as supervision. It is advantageous in that since the training

part is supervised, models and tricks that are designed for supervised training can be used,

even if with some changes. In addition, similar to unsupervised pretraining, it does not

need labeled data, which makes it attractive for target tasks that cannot be associated with

an appropriate labeled pretraining dataset.

In this chapter, we propose a self-supervised pretraining method based on spatial

context. As we have described earlier, CNNs learn to model the correlation between

nearby regions. Therefore, disturbing the input data spatially degrades the patterns within.

The task we have designed for self-supervision is disturbing an image twice with differ-

ent intensities, and ranking them based on coherence. This task is similar to other self-

supervision tasks where a model is taught to solve a jigsaw puzzle. The advantage of the

proposed method is that the pretrained model sees the entire spatially disturbed image,

rather than a single of a jigsaw piece at a time. As a result, any off-the-shelf model op-

timized for performance can be used, and higher level representations can be taught. We

showcase the benefits of the proposed method with experiments.
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5.1. Self-supervised Pretraining by Ranking Spatial Coherency1

In self-supervised pretraining, unlabeled data is used to generate a problem with a known

solution, to be used for training. Since self-supervised pretraining is essentially super-

vised, it is more compatible with the supervised fine-tuning to follow, compared to unsu-

pervised methods. In this paper, we propose a self-supervised pretraining method based

on the prior that the patterns are composed of local interdependencies. The proposed pre-

training method consists of spatially disturbing two copies of an image, and ranking them

with respect to coherency. This task cannot be fulfilled without recognizing the patterns

in the image, thus training for it results in learning respective representations. Accord-

ingly, fine-tuning after the proposed pretraining results in better performance compared

to training from scratch.

5.1.1. Introduction

Deep learning methods that have been proposed earlier required models to be pretrained

using unsupervised methods, yet this step has long been abandoned [2]. Instead, training a

CNN in a supervised fashion has become the gold standard, especially for visual tasks for

which a large amount of labeled training data is available [5]. Even in the cases where the

labeled data for the target task is limited, supervised training on the ImageNet dataset [6]

is a very popular pretraining method [23]. Surprisingly, this applies even if the target

domain is vastly different [84, 85, 150].

The majority of the available data is unlabeled, which makes unsupervised ap-

proaches appealing. However, challenges such as ILSVRC [6] are dominated by fully-

supervised methods [5, 151, 20]. The high performance of supervised methods is at-

tributed to a set of tricks that are not easily generalizable to unsupervised methods [2].

Regarding this issue, self-supervised methods are a good alternative to unsupervised

methods for pretraining, as they do not require labels, and are fully compatible with the

supervised fine-tuning to follow.

Self-supervised methods use unlabeled real data to generate a problem with a known

solution, and train the model in a supervised fashion to reach this solution. It should

be noted that this is different than training with synthetic data to inject knowledge to a

1This section is adapted from [149].
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(a) (b) (c)

Figure 5.1: Images from the CIFAR-10 dataset, divided into 4×4 tiles, and permuted to generate
degrees of coherency. (a) is the original image, (b) is a mildly incoherent example, and (c) is an
intensely incoherent example. The proposed pretraining task is to rank (b) and (c) with respect to
coherency.

network [152, 153]. A general self-supervised method should be heavily data-dependent,

and not assume task-specific priors. In other words, the designed pretraining task should

not aim to inject heuristics that may be useful in the target task, but rather familiarize the

model with the data distribution.

Convolutional architectures [1] are used for vision problems based on a prior: Pix-

els nearby have stronger dependencies among each other, and the dependencies between

faraway pixels can be omitted while modeling the data [2]. This implies that CNNs model

patterns as interdependencies of local pixels, and thus these patterns can be obscured by

disturbing the relative positions of the pixels. Based on this reasoning, we propose a

fundamental vision problem that a CNN trained for recognition should be able to solve:

Given two copies of a pattern that are spatially disturbed with different intensities, the

CNN should be able to tell which one is more similar to the original (i.e., which one is

more coherent). See Fig. 5.1 for an example. Even if we had not seen the original im-

age, it would be obvious to us that the mildly incoherent image is more similar to the

original than the intensely incoherent image. This is because there are more patterns in

the mildly incoherent image that matches the representations that we possess. Therefore,

it is reasonable to expect that training for this task is going to be beneficial in learning

representations that model the training data.

To generate examples of the proposed problem, an image is spatially disturbed to

varying degrees with no regard to its contents. Since this process does not require labels,
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the problem is a good candidate to be used for self-supervised pretraining. Moreover,

since both the proposed problem and CNNs are designed based on the same prior, we can

expect the respective pretraining to be beneficial for all vision solutions where a CNN is

applied.

Our main contributions can be listed as follows:

• We propose a novel self-supervised pretraining task, ranking spatially disturbed

images with respect to coherency. Earlier studies aim to estimate the spatial dis-

turbance of a single image, which is a niche problem with no obvious solution.

Instead, we propose to model the problem as ranking, which is far better studied.

• A metric is proposed to quantify the coherency of an image that is disturbed spa-

tially. This metric is used to form the ground truth regarding the ranking of spatially

disturbed image pairs.

• We pose an approach regarding how the spatial disturbance granularity is to be

chosen. To transfer high-level representations, the granularity should be coarse. If

the target task is from a vastly different domain and only low-level representations

are desired to be transferred, the granularity should be fine.

5.1.2. Related work

The main issue that a good initialization tries to solve is the vanishing/exploding gra-

dients problem. Xavier initialization [44] and its variant for ReLU activations [34] are

commonly used for CNN parameter initialization. These are analytical methods, which

do not take the statistics of the data into account. Rather than trying to come up with

an optimal parameter distribution, [154] proposes to pretrain the network for low gra-

dient variance. They show that while this initialization method cannot outperform self-

supervised pretraining, the two complement each other. This indicates that the benefits of

self-supervised pretraining do not overlap with the ones of good initialization methods.

Specifically, self-supervised pretraining teaches useful representations, rather than simply

initializing the parameters at a favorable location on the objective function surface.

Context emerges from spatial, temporal and cross-channel correlations. A large

part of these correlations are local, which allows us to use convolutional layers over fully-

connected ones with success [5, 155]. Context-based self-supervised pretraining methods
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disturb local correlations by permuting or removing data, and train the model to favor the

original data through discriminative or generative tasks. We are going to investigate the

self-supervised pretraining methods based on the dimension they operate on.

5.1.2.1. Self-supervision by spatial context

Self-supervision by spatial context is applicable in most cases, as it only requires grayscale

images, rather than multi-channel images or videos. These methods perform very well,

indicating that a large part of the information in the image lies in local spatial correlations.

[156] proposes a method that extracts two random patches from a 3×3 grid, and

trains the model to classify their relative positions. Since the proposed pretraining task

is classification, the loss does not distinguish between predicting south or north, while

the ground truth is southwest. Another problem is that the pretraining only shows small

patches to the model, which does not allow it to learn higher level representations that span

a larger area. For example, the pretrained part learns to represent “head” and “arms”, and

the layers at the end learn the likely relative spatial positions of these objects. However,

the final layers are stripped before training for the target task, which causes this knowledge

to be lost.

A good body of work utilizes permuted image patches, similar to a jigsaw puzzle.

[157] samples nine image patches in a 3×3 formation, permutes them and feeds them to

a Siamese network. The pretraining task is to predict the index of the permutation. Sim-

ilar to [156]’s work, the objective function does not discriminate between the amount of

error. Nevertheless, the proposed pretraining outperforms most self-supervised pretrain-

ing methods. [158] develops a set of tricks that improve this method further, including

chroma blurring and dependent jittering of patches.

As discussed above, predicting the correct permutation through classification is

problematic. [159] proposes to solve this problem by regressing a permutation matrix,

rather than hard classification of individual permutations.

An interesting self-supervision task to teach local correlations is to have them gen-

erated. [160] removes a part of an image, and has the model paint it back using L2 and

adversarial loss. Since this pretraining method requires the model to be used generatively,

the choice of architecture is limited.
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5.1.2.2. Self-supervision by cross-channel context

In general purpose images, cross-channel context basically means the colors in the im-

age to be viable. We can mention [160]’s inpainting study here again, as if the original

image is colored, the colors used in the inpainted area has to be inferred from surround-

ings. There is also a more straightforward method for using cross-channel context. [161]

regresses the colors of images that are converted to grayscale using an autoencoder-like

architecture. Although the main objective is to colorize, the authors demonstrate that this

task also provides good self-supervision. [162] refines this method for self-supervised

pretraining and improve the performance. [163] combines pretraining tasks that utilize

spatial and cross-channel context. They predict the correct permutation through classifi-

cation, inpaint a missing patch and colorize all patches.

5.1.2.3. Self-supervision by temporal context

[164] mines YouTube videos for patch pairs from consecutive frames. They propose that

the patch pair should be more similar, compared to a random patch, and use this as self-

supervision. [165] extracts features from three consecutive frames and concatenate them.

Then, they binarily classify if the concatenation order is correct. [166] provides stronger

self-supervision by predicting the exact ordering of four frames through classification,

similar to the studies that use spatial context simultaneously.

5.1.2.4. Other self-supervision types

Rather than teaching which transformations damage context (e.g., permutation), [167]

aims to teach which transformations do not damage context. They apply various data

augmentation transformations to image patches, and train the model to classify the patches

that were augmented from the same original image as the same class.

[159] mentions that similar to predicting spatial permutations, we can also permute

regressions, yet this also has the problem of needing to know the ground truths. [168]

pretrains by predicting egomotion. However, they use additional ground truth for egomo-

tion. Therefore, the proposed method is more of an example of transfer learning, rather

than self-supervised pretraining.
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5.1.3. Coherency ranking

As mentioned in Section 5.1.2, there are existing methods that work on permuted image

patches. The pretraining task that these methods utilize is to find the inverse permutation

that is going to revert the image back to its original state. This approach is problematic in

that permutation estimation with neural nets is not straightforward, as illustrated by the

variety of methods proposed in the recent years [156, 157, 159].

The proposed method models the pretraining task as a ranking problem. Specif-

ically, the pretraining task is to rank two images composed of permuted image patches

based on their coherency. This task is equivalent to the one proposed by previous meth-

ods, as finding the inverse permutation of a permuted image is trivial once the proposed

task is learned (one can swap patches until coherency can no longer improve). The advan-

tage of the proposed task is that binary ranking is relatively straightforward to implement

with neural nets.

There are three steps to implementing the proposed method. Firstly, we need to

decide on how the training images are to be permuted. Then, a method needs to be

designed to quantify the coherency of the resulting images. Finally, a method to rank the

image pairs with respect to their coherency values needs to be proposed. We are going to

discuss these steps in the following sections.

5.1.3.1. Permutation granularity

The first question regarding how the images are to be disturbed is granularity. 3×3 tiling

is commonly used in the literature [157, 159, 163], with little justification other than the

effect on performance. Let us discuss this issue, considering the argument made for the

proposed method.

We have argued that since patterns are composed of local interdependencies, they

should disappear with spatial disturbance. The most straightforward method of doing this

is randomly permuting the pixels of an image, as seen in Fig. 5.2, 240×240. In this image,

both the lowest level patterns such as edges, and the highest level patterns such as wolves

have disappeared completely. While ranking the original and the permuted images based

on coherency, referring to both high and low level patterns would be valid. However, a

model that was trained to rank the coherency of these two images would strictly depend
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Figure 5.2: An image from the ImageNet dataset permuted with differing granularity. Permut-
ing coarsely-tiled images only disturbs high level patterns, while permuting finely-tiled images
disturbs all levels of patterns.

on the lower level patterns, as they are easier to learn and more generalizable. Now,

let us compare this case with the opposite extremum, where the 2×2-tiled image and

the original image from Fig. 5.2 are ranked based on coherency. Here, only the highest

level patterns (the wolves) have been damaged, while lower level patterns are left almost

completely intact. The model that was trained with this task has to learn to recognize the

highest level patterns, which also results in lower level representations to be learned by

necessity. Therefore, the degree of granularity used in this task is related to the level of

representations we want to draw from the pretraining dataset. For example, if the target

task does not require representations to recognize wolves, pretraining by 2×2 tiling may

be overly specific, and a finer tiling may give better results. Another factor that must be

considered is the level of detail in each image. An image from the ImageNet dataset (see

Fig.5.2) contains much more detail compared to an image from the CIFAR-10 dataset (see

Fig.5.1), hence the tiling must be adjusted accordingly.

5.1.3.2. Quantifying the coherency of permuted images

To design a metric to estimate the coherency of permuted images, we have to make some

assumptions about the data. Firstly, we assume that the original image has maximum
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Figure 5.3: A 2D color map [169] is permuted randomly, and the respective coherency values are
given below. Disturbances in color gradients indicate incoherency.

coherency. This is not always the case, as some photographs are taken specifically to

produce optical illusions, but this is rare enough to be disregarded. Secondly, we assume

that the information in the original image is distributed uniformly. This is obviously not

correct when the scene is composed of an object and background (e.g., Fig. 5.2). Due to

these assumptions, the proposed metric of coherency is merely an estimate.

We have defined a pattern as local interdependencies, and argued that spatial distur-

bances would damage it. Therefore, our coherency metric, γ, should quantify the change

in relative spatial positions resulting from the permutation. Where n is the number of

tiles, xij is the 2D distance vector between i-th tile and j-th tile in the original image, and

yij is the 2D distance vector between the i-th tile and j-th tile in the permuted image, γ

can be defined as follows:

γ = 1− 1

n2

n∑

i

n∑

j

∥∥xij − yij

∥∥ (5.1)

See Fig. 5.3 for an illustration of permuted images and respective coherency values.

The original image has the maximum coherency value of 1. As the number of tiles that

are permuted increase and neighboring colors clash, the coherency value decreases.

We can observe that although some images in Fig. 5.3 are showing a positive co-
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Figure 5.4: Probability density function of coherency values when all patches of a 4×4-tiled
image are permuted randomly, measured with 1,000,000 samples.

herency value, they are perceived to be completely incoherent. This can be explained

through the Helmholtz principle, which states that for a Gestalt to be perceived, it should

be unlikely for it to occur spontaneously in noise [123]. Therefore, if the coherency value

of a permutation is below the expected coherency value of a completely random permu-

tation, that permutation would also be perceived to be incoherent. Let us calculate this

threshold value using a Monte Carlo simulation approach. See Fig. 5.4 for the distribu-

tion of the resulting coherency when all tiles are randomly permuted. The cumulative

distribution reaches 0.5 at the coherency value of 0.55, which is also the point where the

density peaks. This indicates that if we would need to binarily classify randomly per-

muted images to be incoherent or not, 0.55 would be the correct threshold according to

the Helmholtz principle, which can be validated visually from Fig. 5.3.

5.1.3.3. Implementation details

The final step of the proposed method is learning to rank the coherency values of randomly

permuted images. To do this, we propose to feed the image pairs in the same batch,

calculate a coherency score for each image using the CNN, and calculate a ranking loss

using the coherency score pairs. In practice, this is identical to using a Siamese network,
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Figure 5.5: Training for ranking image pairs in a batch. Batch scores are matched pairwise and
ranked.

where each twin takes one of the image pairs as input [170]. Note that this should not

be confused with the Siamese architectures in self-supervised literature, where each twin

takes only an image patch [156, 157, 159, 163].

The proposed method can use any architecture that was designed for ImageNet ob-

ject classification (e.g., ResNet-101 [34]). We remove the final layer of the model, and

replace it with a densely connected layer with a single output and no activation function.

The resulting model produces a coherency-related score, based on a single input image.

To train this model with a ranking task, we need to produce two scores from respective

images, and compare them. See Fig. 5.5 for an illustration. With a batch size of 4 (chosen

for illustration), we use 2 versions of each image. The CNN produces 4 scores for these

images, which are then fed into the softmax functions in pairs. Following this, we calcu-

late the cross-entropy loss similar to regular binary classification. This ranking by binary

classification is similar to the work by [171], where large scale data is ranked using robust

binary classification. Similarly, we are learning to rank high dimensional data by sparsely

sampling pairs and binarily classifying them.

Another implementation detail about the proposed task is data generation. We gen-

erate permuted images and calculate coherency scores while the GPUs are processing the

previous batch, which does not require extra processing time. The resulting training be-

comes truly stochastic, as each training example pair is used only once. Accordingly, the

need for regularization is minimal. There is also the additional advantage of not needing
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Figure 5.6: Training and validation losses across the epochs for the proposed self-supervised
pretraining method.

excessive storage space, which would be a major problem for distribution (e.g., offline-

permuted ImageNet dataset would be enormous).

5.1.4. Experimental Results

We present the experimental results under two sections. In the first one, we discuss how

the proposed pretraining is done and the resulting performance in the surrogate spatial

coherency ranking task. Following this, we use the pretrained model as an initialization

point for fine-tuning.

5.1.4.1. Pretraining

The pretraining consists of training a randomly initialized ResNet-101 [20] model using

the spatial coherency ranking problem proposed in Section 5.1.3. The learning rate is set

to 0.0001 and the weight decay is set to 0. Recall that we have also not used any regular-

ization for Gestaltist learning in Section 4.3.4. The proposed self-supervised pretraining

and Gestaltist learning methods have the common property of never using the same train-

ing examples more than once, which makes regularization obsolete. This is why a weight

decay of 0 is optimal in this case.

See Figure 5.6 for the training and validation losses of the proposed self-supervised
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pretraining method. Note that even we have not used any regularization, training and

validation losses are identical, and there is no trend upwards that indicates overfitting.

This shows that the choice of 0 weight decay is correct. Again, we refer the reader to

Figure 4.18 where the validation loss for Gestaltist learning was plotted. Similar to Fig-

ure 5.6, the validation loss has saturated and did not show signs of overfitting beyond that

point.

Note that although the loss saturates at some point, it continues decreasing at a

numerically insignificant rate. We have stopped training at 100 epochs as this decrease

slowed down to a negligible amount. At the end of the pretraining, the model is able to

rank image pairs with 91.5% accuracy.

5.1.4.2. Fine-tuning

We compared the proposed method with random initialization and supervised ImageNet

pretraining in classification tasks. For this, we used the CIFAR-10 dataset and the labeled

segments of the STL-10 dataset. For all initialization methods, we used ResNet-101 [20]

by replacing its final layer with a dense layer and a softmax classifier with its number of

outputs equal to the number of classes in the dataset. Learning rate was set to 0.0001,

weight decay was set to 0.0001, and the training was stopped once validation accuracy

calculated on the test set stopped increasing for 5 consecutive epochs. The classification

accuracy reported is this maximum validation accuracy achieved at the test set.

The CIFAR-10 dataset is composed of 50,000 training images and 10,000 test im-

ages of 32×32 size and 10 classes. The training images are segmented as 5 batches of

10,000 training sets. However, it is more common to use all 50,000 for training. In this

study, we repeated the experiments with training set sizes of 1,000 and ranging from 5,000

to 50,000 with 5,000 increments. Furthermore, we did apply any data augmentation. The

aim of this approach is to show the effect of different pretraining methods for different

amounts of fine-tuning data.

The compared initialization methods are random initialization, supervised Ima-

geNet pretraining and the proposed self-supervised pretraining method. See Figure 5.7

for the maximum classification accuracies reached with each method. Supervised Im-

ageNet pretraining vastly outperforms the other two initialization methods as expected.

The proposed self-supervised pretraining is better when there is not enough fine-tuning
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Figure 5.7: Maximum classification accuracies on the CIFAR-10 test set using different initial-
ization methods with different training set sizes.

data, yet random initialization catches up once the fine-tuning set is large enough.

STL-10 also includes images from 10 classes, but this time the images are of size

96×96. The training images are divided into 10 folds, each fold containing 100 exam-

ples. The test set contains 8000 images. The dataset also contains 100,000 unlabeled

images to be used for unsupervised training. These images could have been used for self-

supervision, yet since we have already used the larger ImageNet dataset for this purpose,

we do not need to do this.

See Figure 5.8 for the maximum classification accuracies reached with each method.

The main difference of this experiment from the CIFAR-10 experiment is that the number

of labeled images is far smaller. To close this gap, unlike the CIFAR-10 experiment,

we used data augmentation methods such as translation and mirroring. We can observe

once again that the proposed self-supervised pretraining method is superior to random

initialization when the amount of fine-tuning data is small. Again, as expected, ImageNet

pretraining outperforms both methods across all batches.

5.1.5. Conclusion

Self-supervised pretraining is superior to unsupervised pretraining when the pretrained

model is to be fine-tuned in a supervised manner, as it is more compatible with this fol-

lowing step. To apply self-supervised training, one needs to design a surrogate task for
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Figure 5.8: Maximum classification accuracies on the STL-10 test set using different initialization
methods and training batches. The dashed lines indicate the mean classification accuracy across
the batches.

which problems and their solutions can be generated. Furthermore, the pretrained model

should only be able to solve this problem using fundamental vision skills, rather than

spurious statistical relationships in the data.

CNNs are designed to recognize spatial coherencies. Therefore, a self-supervision

task that depends on this skill would be suitable. Although there are self-supervision

surrogate tasks that depend on recognizing spatial coherency in the literature, they are

rather contrived and impose constraints on the CNN model to be pretrained. We have

posed the same spatial recognition problem in a more simpler way, namely as a problem

of ranking spatial coherencies of two variants of the same image. To be able to do that,

we proposed methods to disturb the spatial coherencies of images and quantify these

disturbances.

A deep CNN model was pretrained with the proposed self-supervised task and was

able to learn to rank images based on their spatial coherencies accurately. Furthermore,

the pretrained model was fine-tuned for image classification and was shown to outperform

randomly initialized models when the amount of fine-tuning data was small.

The proposed pretraining method did not outperform random initialization in all

cases. This is likely because the weight parameters initialized randomly is more con-
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ducive to fine-tuning compared to weight parameters pretrained for 100 epochs with the

ImageNet dataset. Therefore, although the pretraining task does not overfit, it may need to

be stopped earlier for better performance on the fine-tuning task. We plan to discover the

exact tricks to maximize the potential of the proposed self-supervised pretraining method

in future work.
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6. CONCLUSION

Deep learning is the practice of learning stacked nonlinear models. Deep hierarchical

models have a large number of parameters. Although models with a large number of

parameters are more representative—in a machine learning context—they also require

more training data. Without a large amount of data, deep models overfit, which causes

them to perform worse than a shallower model.

The obvious solution to this issue is to simply gather more training data, build larger

models and use more computational resources, which has been the industry’s approach.

However, this approach yields diminishing returns, and is not likely to cause new quantum

leaps.

In this study, we have searched for ways to use well-performing deep models with-

out gathering a large amount of task-specific data. In general, this is done by softly

limiting the degrees of freedom a model has by constraining it. This way, although the

model still has a large number of parameters, it is no longer as eager to fit. The practice

of constraining the flexibility of a model to prevent it from overfitting is called regulariza-

tion.

Weight decay and dropout are some of the most common regularization methods

used in deep learning. In fact, in most vision applications, it is impossible to reach state

of the art performance without employing some kind of regularization. In contrast, these

regularization methods are detrimental while trying to learn from a generative model that

can produce infinitely many examples. Therefore, if we are looking for a way to train

deep models with a small amount of data, we should not look further than regularization.

Although regularization is commonly thought of as an explicit part of the objective

function, it can also be applied indirectly. For example, where a model is initialized

at limits the region of the parameter space it can end up at. Therefore, an intelligent

initialization can be regarded as regularization, as it can have us require a smaller amount

of training data to reach an equivalent performance.

For abstract tasks—such as the ones we have been dealing with in vision for the

last decade—equivalent examples lie on a very wrinkly manifold in the input space. Sim-

ilarly, the objective functions for these tasks are full of local minima and saddle points.
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Although simple methods based on manipulating the random distributions used to ini-

tialize parameters help, they are too primitive to be relied upon by themselves for such

complex problems.

Pretraining is a type of initialization, as its objective is to start the training with the

target task at a favorable starting position. Moreover, it can be considered as a type of

regularization, as it provides exactly the same types of benefits. Historically, unsuper-

vised pretraining had been seen as a must step before supervised training with the target

task. Later on, it was seen that with a collection of alternative regularization methods,

unsupervised pretraining can be omitted, and models can be trained directly in a super-

vised manner. However, this does not mean that pretraining has become obsolete. On the

contrary, it is general practice to initialize models by supervised pretraining with a large

dataset.

The majority of the mainstream computer vision research being done today uses

regular photos and videos. In these cases, ImageNet pretraining is a very good option

for initialization. It can also be argued that vision research is focused on problems that

respond well to ImageNet pretraining, because it allows to demonstrate a substantial im-

provement in performance with minimal effort.

Although ImageNet pretraining is an extremely common initialization tool, it is

either that, or random initialization in today’s literature. Accordingly, we asked two ques-

tions:

1– When does ImageNet pretraining lose its usefulness?

2– When that happens, what alternatives do we have other than random initialization?

In a general sense, ImageNet pretraining loses its usefulness when the target task

is vastly different from ImageNet classification. There are two ways of assessing this

difference. One can either look at the two tasks and intuitively decide on whether or not

to use ImageNet pretraining, or they can approach the problem empirically.

There are some obstacles in the way of trying out ImageNet pretraining with a par-

ticular target task. Firstly, if a custom architecture is being used for the target task—which

is the case for most out of the ordinary vision tasks—one has to do the pretraining them-

selves. This is very unattractive for hit-and-run researchers who mass publish unexplored

use-cases of deep learning. Moreover, even if they already have a pretrained model, this

91



doubles the amount of experiments they need to run, as whether to pretrain or not is yet

another hyperparameter. As a result, there is a tendency to omit ImageNet pretraining

whenever it would not “make sense”.

In this study, we demonstrated with two use-cases from very different domains that

ImageNet pretraining is likely to be helpful in more cases than commonly assumed. In

the first use-case, it was shown that initialization by ImageNet pretraining is very ben-

eficial for recognizing power lines from aerial images. Moreover, these benefits persist

even when the images are in the infrared spectrum. In the second use-case, highest-level

features extracted with an ImageNet pretrained model is used to classify individual cell

images. Surprisingly, this method resulted comparable results to its contemporaries, even

though we had not fine-tuned the model.

The results we have achieved with these two use-cases lets us answer the first ques-

tion of when ImageNet pretraining loses its usefulness: Not as soon as it is commonly

assumed. Therefore, we see use in further studies exploring the benefits of ImageNet

pretraining in odd domains such as biomedical imaging, remote sensing, and maybe even

non-vision applications.

Let us consider pretraining as a type of regularization again to understand the cases

where ImageNet pretraining is not suitable. There are two reasons for a regularization

method to not provide any benefits. Firstly, the regularization may be constraining the

model with a false supposition. Consider weight decay, which suppresses the L2-norm

of model parameters, as a high L2-norm is assumed to be indicative of overfitting. This

hypothesis is often correct, which causes weight decay to improve performance. Alterna-

tively, if we had designed a new method that maximizes the L2-norm of model parameters,

it would encourage overfitting. The equivalent of this in our case is where the knowledge

extracted from ImageNet pretraining not being useful in the target task, or even causing

detriment. The second reason a type of regularization may not be suitable for a particular

task is because its level of intensity is not optimal. If we come back to the weight decay

example, the L2-norm of the model parameters are added to the loss function weighted

by a λ parameter. If λ is too large, weight decay constrains the model too much, and vice

versa. For both cases, the applied weight decay is not optimally beneficial. There is no λ

parameter to tune for ImageNet pretraining, which limits its benefits proportionally to the

difference between the target task and ImageNet pretraining. In the case where the differ-
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ence is extreme, we observe the first case, i.e., the assumption that knowledge extracted

from ImageNet pretraining is going to be beneficial in the target task proves to be false.

Then how do we use a deep model, not gather a large labeled dataset and have

the model not overfit? For the first case, where the ImageNet dataset (or any alternative

dataset) is not applicable to our target task, we propose to use Gestalt learning. In this ap-

proach, we analytically design a generative model that stochastically produces examples.

Then, the generated examples are used to train a deep model. This method is entirely data

independent, and solely relies on the domain knowledge injected to the model through the

generative model design. In this sense, the proposed method is the exact opposite of the

recent hyper-data dependent methods.

Designing the generative model correctly is vital for Gestalt learning to be success-

ful. We argued that these designs should be based on the fundamentals of perceptual

psychology, and demonstrated cases where doing so results in successful implementa-

tions. Moreover, we have validated that the models trained with such generative models

conform to the theory of Gestalt psychology using the Helmholtz principle.

Since Gestalt learning is completely data independent, it can be used when there is

absolutely no training data for a particular vision problem. However, it can also be used

to initialize models where there is a very limited amount of labeled training examples

available. Since it is clearly demonstrated that the knowledge gained through Gestalt

learning can be beneficial at the target task, a model pretrained with Gestalt learning

would be more preferable to a randomly initialized model for fine-tuning with the target

task. This theory should be supported by further empirical evidence.

In the second case, we want to transfer from the ImageNet dataset (or, again, any

alternative dataset), yet want to dial down λ, i.e., we want to decrease the specificity of

the transferred knowledge. Recall that CNNs learn by modeling spatial correlations, and

the locality of these correlations control the level of the representations. For example,

a high level pattern, such as a person, takes up a large part of the image, while a lower

level pattern, such as color constancy, can be represented by a 3×3 blob. By allowing

the CNN to only model highly local correlations, only lower level representations can be

transferred.

To teach the CNN to model a specific level of spatial correlations, we proposed a

novel pretraining task. An image is divided into tiles, and these tiles are shuffled with two
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distinct permutations. Then, the model is asked to rank this image pair in terms of spatial

coherency. The size of the tiles determine the level of representations the model can learn

from this task. Again, this theorized relation between the size of the tiles and the level of

transferred representations should be tested with further studies.

Note that this proposed pretraining task does not require the training examples to

be labeled, yet does supervised training. This is called self-supervised training in the

literature. Therefore, this method not only solves the problem of ImageNet not being

completely suitable for a particular target task, it also allows any large unlabeled dataset to

be used in place of ImageNet. This makes it very suitable for domains such as biomedical

imaging and remote sensing where there is abundant unlabeled data.

The proposed self-supervised pretraining method can be seen as a hybrid of tradi-

tional ImageNet pretraining and Gestalt learning. It is somewhat data dependent, albeit

it does not require the data to be labeled. On the other hand, the pretraining examples it

uses are generated by an analytically designed generative model. This is in accordance

with our problem definition, where we wanted to transfer from the ImageNet dataset, yet

limit the level of representations.

In summary, we have three main findings. The first is that ImageNet pretraining is a

valid initialization method even in very different domains, and should not be overlooked

easily. The second is that even if there is no training data available to transfer from, deep

models can be trained in a completely data independent manner. Finally, a self-supervised

pretraining method based on design fundamentals of CNNs is proposed to bridge the gap

between these two cases.
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PWS Publishing Company, 1996.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification,” in Proc. IEEE Int. Conf.

Comput. Vision (ICCV), pp. 1026–1034, 2015.

[35] K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “What is the best multi-stage archi-

tecture for object recognition?,” in Proc. IEEE Conf. Comput. Vision and Pattern

Recognition (CVPR), pp. 2146–2153, 2009.

[36] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in

Proc. Advances in Neural Inform. Proc. Systems (NIPS), pp. 3856–3866, 2017.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. IEEE Conf.

Comput. Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” in Proc. Int. Conf. Mach. Learning (ICML),

pp. 448–456, 2015.

[39] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathe-

matics of Control, Signals and Syst., vol. 2, no. 4, pp. 303–314, 1989.

98



[40] R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princeton University

Press, 1961.

[41] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Mach.

Learning, vol. 2, pp. 1–127, 2009.

[42] Y. Bengio, F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. Breuel,
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[88] B. Benligiray and H. Çınar Akakın, “HEp-2 cell classification using a deep neural

network trained for natural image classification,” in Proc. Signal Proc. and Com-

mun. Application Conf. (SIU), pp. 1361–1364, 2016.

[89] J. Candamo, R. Kasturi, D. Goldgof, and S. Sarkar, “Detection of thin lines us-

ing low-quality video from low-altitude aircraft in urban settings,” IEEE Trans.

Aerospace and Electron. Syst., vol. 45, no. 3, pp. 937–949, 2009.
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[150] Ö. E. Yetgin and Ö. N. Gerek, “A comparison of corner and saliency detection

methods for power line detection,” in Proc. IEEE Int. Artificial Intell. and Data

Process. Symp., 2017.

[151] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in Proc. Int. Conf. Learning Representations (ICLR), 2015.

[152] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic data

and artificial neural networks for natural scene text recognition,” arXiv preprint,

arXiv:1406.2227, 2014.

[153] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors from 3D

models,” in Proc. IEEE Int. Conf. Comput. Vision (ICCV), pp. 1278–1286, 2015.
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