

A SCALABLE CACHE COHERENT

MEMORY ARCHITECTURE

FOR RECONFIGURABLE COMPUTING

Master of Science Thesis

Gizem YAĞAN

Eskişehir 2019

A SCALABLE CACHE COHERENT MEMORY ARCHITECTURE

FOR RECONFIGURABLE COMPUTING

Gizem YAĞAN

MASTER OF SCIENCE THESIS

Electrical and Electronics Engineering Program

Supervisor: Assist. Prof. Dr. İsmail San

Eskişehir

Eskişehir Technical University

Institute of Graduate Programs

June 2019

FINAL APPROVAL FOR THESIS

 This thesis titled “A Scalable Cache Coherent Memory Architecture for

Reconfigurable Computing” has been prepared and submitted by Gizem YAĞAN in

partial fullfillment of the requirements in “Eskişehir Technical University Directive on

Graduate Education and Examination” for the Degree of Master of Science in Electrical

and Electronics Engineering Department has been examined and approved on

25/06/2019.

Committee Members Title, Name and Surname Signature

Member (Supervisor) : Assist. Prof. Dr. İsmail SAN ………….

Member : Prof. Dr. Atakan DOĞAN ………….

Member : Assist. Prof. Dr. Nihat ADAR ………….

 ………………………………….............

Director of Institute of Graduate Programs

iii

ÖZET

YENİDEN YAPILANDIRILABİLİR HESAPLAMA İÇİN ÖLÇEKLENEBİLİR

ÖNBELLEK-TUTARLI BELLEK MİMARİSİ

Gizem YAĞAN

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Haziran 2019

Danışman: Dr. Öğr. Üyesi İsmail SAN

Alanda programlanabilir kapı dizileri, tekrar programlanabilme ve uygulamaya

özgü verimli donanım tasarlama imkânı sunduğu için yüksek performanslı hesaplamada

büyük bir potansiyele sahiptir. Ancak, algoritmalara özel donanım mimarilerini, tasarım

süreçleri zor olan düşük seviye programlama dilleri ile tanımlamak gerekmektedir. Yakın

zamanda yapılan araştırmalar, yüksek-seviye programlama dilleri ile verimli donanım

tasarımı yapmayı mümkün kılmıştır. Yüksek-seviye sentezleme (YSS) derleyicileri,

yazılım programlarını otomatik olarak kaydedici-transfer seviyesi tasarıma dönüştürerek

programlama kolaylığı sağlar. Bu derleyiciler verilen algoritma için verimli ve bağımsız

veri yollarını ve sonlu durum makinelerini üretirken veriye ulaşımda tutarlı, verimli ve

özel bir bellek mimarisine ihtiyaç duyar. Bu tezde, bir YSS derleyicisi için üretilen veri

yollarını sürekli besleyecek, bekleme sürelerini kısaltacak ve verilerin tutarlı olmasını

sağlayacak ölçeklenebilir önbellek-tutarlı bir bellek mimarisi önerilmiş ve Verilog dilinde

gerçeklenmiştir. Dizin-tabanlı yazmada-güncelle protokolüne uyan bu bellek mimarisi,

yeni bir tutarlılık protokolüne sahiptir. Derleyici tarafından belirlenen tutarlı

önbelleklerin ve dizinlerin sayısı isteğe bağlıdır. Tutarlı önbellekler, farklı tutarlılık

alanlarına ait olabilir ve dizin, tutarlılık trafiğini sadece aynı tutarlılık alanındaki

önbellekler arasında yönetir. Derleyiciye entegre edilen protokolün, 51 temel referans

uygulama için üretilen donanımlarda hatasız bir şekilde çalıştığı yazılım-donanım

karşılaştırması ile doğrulandı. Bu testlerde, L2 önbelleklere bağlı olan 2 dizin yer alırken,

gerçeklenen algoritmaya bağlı olarak değişen L1 tutarlı-önbelleklerin sayısı 2 ile 39

arasındadır. Modelin ölçeklenebilirliği ve performans potansiyeli gösterilmiştir.

Anahtar Sözcükler: Önbellek tutarlılığı, Dizin-tabanlı, Yazmada-güncelle, FPGA

belleği

iv

ABSTRACT

A SCALABLE CACHE COHERENT MEMORY ARCHITECTURE

FOR RECONFIGURABLE COMPUTING

Gizem YAĞAN

Electrical and Electronics Engineering Program

Eskişehir Technical University, Institute of Graduate Programs, June 2019

Supervisor: Assist. Prof. Dr. İsmail SAN

 Field programmable gate arrays have significant potential for high performance

computing since it provides reprogramming and application-specific efficient hardware

design. However, application-specific hardware architectures are required to be defined

by low level programming languages that have hard design processes. Recent researches

allow efficient hardware design with high-level programming languages. High-level

synthesis (HLS) compilers provide ease of programming by automatically converting

software programs to register-transfer level design. These compilers require an efficient,

coherent and special memory architecture on reaching data, while generating efficient

and independent data paths, and finite state machines. In this thesis, a scalable cache

coherent memory architecture that feeds the generated data paths constantly, shortens the

latency time and ensures that the data is coherent, is proposed and implemented in Verilog

language for an HLS compiler. This memory architecture following directory-based

write-update protocol has a novel cache coherence protocol. Number of coherent caches

and directories, specified by the compiler, are arbitrary. Coherent caches can belong to

different coherence domains and the directory manages coherence traffic only between

caches that are in same coherence domain. It is verified by software-hardware comparison

that the protocol integrated to the compiler runs without error in hardware generated for

51 benchmarks. In these tests, there are 2 directories connected to L2 caches, while

number of coherent L1 caches that varies depending on the implemented algorithm is in

the range of 2 and 39. The scalability and performance potential of the model are

demonstrated.

Keywords: Cache coherence, Directory-based, Write-update, FPGA memory

v

25/06/2019

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

 I hereby truthfully declare that this thesis is an original work prepared by me; that

I have behaved in accordance with the scientific ethical principles and rules throughout

the stages of preparation, data collection, analysis and presentation of my work; that I

have cited the sources of all the data and information that could be obtained within the

scope of this study, and included these sources in the references section; and that this

study has been scanned for plagiarism with “scientific plagiarism detection program”

used by Eskişehir Technical University, and that “it does not have any plagiarism”

whatsoever. I also declare that, if a case contrary to my declaration is detected in my work

at any time, I hereby express my consent to all the ethical and legal consequences that are

involved.

...........................

Gizem YAĞAN

vi

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude towards my supervisor

Assist. Prof. Dr. İsmail San for his support, patience and encouragement. His guidance

always helped me during this thesis. I hope that we will continue to work together and to

be part of other quality studies.

I would like to acknowledge Prof. Dr. Atakan Doğan for his support during this

thesis. His contributions to this work are significant. I also would like to thank him and

Assist. Prof. Dr. Nihat Adar for serving on my committee. Their advices will be guidance

to me for rest of academic life.

I would like to thank all members of Erendiz Superbilgisayar Company and

especially to Dr. Kemal Ebcioğlu for his valuable ideas that form the basis of this thesis.

I especially thank to my beloved husband Ali Can Yağan for his support during this

thesis. I am grateful to him for his suggestions and proof reading. I also would like to

thank my parents Fatma Gülmez and Orhan Gülmez, brother Okan Gülmez and

grandparents Zeynep Gülmez and Mehmet Gülmez for their support throughout my life.

Gizem Yağan

vii

TABLE OF CONTENTS

Page

TITLE PAGE ... i

FINAL APPROVAL FOR THESIS .. ii

ÖZET .. iii

ABSTRACT .. iv

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND

RULES ... v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

ABBREVIATIONS ... xii

1. INTRODUCTION .. 1

 1.1. Motivation ... 1

 1.2. Contributions ... 2

 1.3. Thesis Organization ... 2

2. BACKGROUND ... 3

 2.1. Shared Memory Model .. 3

 2.2. Memory Coherence .. 4

 2.2.1. Hardware-based coherence solutions... 6

 2.2.1.1. Coherence protocols ... 6

 2.2.1.2. Write policies ... 7

 2.2.1.3. States .. 13

 2.3. Memory Consistency ... 18

 2.4. Related Works .. 19

3. ESI PROTOCOL .. 22

 3.1. System Overview .. 22

 3.2. Protocol Details .. 24

viii

 Page

 3.2.1. Requests .. 25

 3.2.2. State transfers .. 27

4. HARDWARE DESIGN .. 29

 4.1. Ports and Message Formats .. 30

 4.2. Proposed Hardware Architecture of L1 Caches ... 32

 4.2.1. Possible hazards in an L1 cache and their solutions 41

 4.3. Implementation Details of Directories ... 42

 4.4. Data Races and Their Solutions ... 45

5. VERIFICATION EFFORTS, EXPERIMENTAL RESULTS AND

DISCUSSION ... 49

 5.1. Functional Verification Tests before Integration to Compiler 49

 5.2. Verification Tests of the Proposed Memory Hierarchy Integrated to

Compiler .. 50

 5.3. Greatest Common Divisor Test .. 51

 5.4. Sjeng Test .. 54

 5.5. Matrix Multiplication Test .. 58

 5.6. Advantages of Proposed Protocol ... 59

 5.6.1. Advantages over write-invalidate policy .. 59

 5.6.2. Advantages of reading line from other L1 caches 59

 5.6.3. Advantages over banked organization ... 60

6. CONCLUSION ... 61

REFERENCES .. 62

CURRICULUM VITAE

ix

LIST OF FIGURES

Page

Figure 2.1. A shared memory architecture .. 3

Figure 2.2. An example of coherence problem (a) initial model, (b) problem is

applied to write-back caches, (c) problem is applied to write-back

caches... 5

Figure 2.3. Directory schemes (a) a distributed directory scheme, (b) a central

directory scheme .. 7

Figure 2.4. Initial models for solution to the defined coherence problem (a)

directory-based model, (b) snooping model .. 8

Figure 2.5. Directory-based solution to the coherence problem with write-

invalidate policy .. 9

Figure 2.6. Directory-based solution to the coherence problem with write-update

policy ... 10

Figure 2.7. Solution to the problem that occurs with write-back caches 11

Figure 2.8. Snooping solution to the coherence problem with write-invalidate

policy ... 12

Figure 2.9. Snooping solution to the coherence problem with write-update

policy ... 13

Figure 2.10. An example of consistency problem ... 19

Figure 3.1. One chip system model ... 23

Figure 4.1. The proposed model .. 30

Figure 4.2. Message formats of L1 caches’ ports .. 31

Figure 4.3. Message formats of directories’ ports ... 32

Figure 4.4. The L1 cache pipeline ... 34

Figure 4.5. An opcode of a load request .. 36

Figure 4.6. An opcode of a store request ... 36

Figure 4.7. The flowchart of a load request ... 38

Figure 4.8. The flowchart of a store request .. 40

Figure 4.9. The flowchart of a line_read request coming to directory 44

x

 Page

Figure 4.10. The flowchart of a remote_store request coming to the directory 45

Figure 5.1. Simulation Environment .. 49

Figure 5.2. Transfers during GCD test ... 53

Figure 5.3. Generated design for Sjeng test with coherent caches 56

Figure 5.4. Generated design for Sjeng test with banked caches 57

xi

LIST OF TABLES

Page

Table 2.1. The MESI protocol .. 15

Table 2.2. Solution to the defined coherence problem with the MESI protocol 16

Table 2.3. The Dragon protocol .. 17

Table 2.4. Solution to the defined coherence problem with the Dragon protocol 18

Table 3.1. List of requests coming from a thread unit to an L1 cache 25

Table 3.2. List of requests sent by an L1 cache to a directory 26

Table 3.3. List of requests sent by a directory to an L1 cache 26

Table 3.4. List of requests sent by a directory to an L2 cache 27

Table 3.5. The ESI protocol ... 28

Table 5.1. List of selected tests ... 51

Table 5.2. Synthesis result for GCD test ... 54

Table 5.3. Distribution of L1 caches in 458.sjeng test .. 54

Table 5.4. Analyze of requests that coming to directories .. 55

Table 5.5. Analyze of requests that coming to L2 caches in banked model 55

Table 5.6. Analyze of requests and implementation details .. 58

xii

ABBREVIATIONS

BRAM: Block RAM

CAM : Content-addressable Memory

CPU : Central Processing Unit

DRAM: Dynamic Random-access Memory

HLS : High-level Synthesis

FF : Flip Flop

FFT : Fast Fourier Transform

FIFO : First-in, First-out

FPGA : Field Programmable Gate Array

FSM : Finite State Machine

GCD : Greatest Common Divisor

L1 : Level-1

L2 : Level-2

LLM : Lower Level Memory

LUT : Look Up Table

PCIe : Peripheral Component Interconnect Express (PCI Express)

RAM : Random Access Memory

RTL : Register-transfer Level

1

1. INTRODUCTION

1.1. Motivation

Parallel computing is used in many areas to improve performance in cost effective

way [1]. The memory is one of the bottlenecks behind achieving high performance due

to the gap between processor and memory speed. Therefore, implementing efficient

memory hierarchy is quite important. Memory latency is alleviated by using levels of

caches. In the case of sharing a common memory by these caches, memory consistency

and coherence problems arises. Appropriate memory consistency model and coherence

protocol should be implemented to solve these problems.

Field Programmable Gate Arrays (FPGA’s) are reconfigurable devices that can

implement any digital circuit. These devices include bit-level processing elements whose

numbers can reach a few million [2] and capacity of them increases year by year as

number of transistors on a single chip increases [3]. FPGA’s have significant performance

potential for computing [4], however, implementing an algorithm manually on FPGA’s

is quite difficult. Fortunately, FPGA’s based computing is simplified by High-Level

Synthesis (HLS) compilers that automatically convert a program written in a

programming language, to register-transfer level (RTL). Nevertheless, an efficient

memory hierarchy is not supported by most of these compilers [5].

A special HLS compiler that generates an application specific supercomputer from

a single threaded software program is proposed in [6]. In this thesis, a scalable cache

coherent memory architecture is presented for this compiler.

Proposed memory architecture in this work is composed of coherent caches that

follow directory-based protocol with write-update policy. All of caches that share a line

update their own data with a new copy when one of them stores to this shared line in

write-update policy. This policy has advantages on write-invalidate policy since the

copies of the line are valid after store process. However, write-update policy does not

preferred due to bandwidth overhead. In proposed method, directories always know

correct set of owner caches, therefore, this overhead is alleviated. Furthermore, to our

knowledge, the proposed architecture is the first example of directory-based write-update

protocol.

2

In this proposed model, number of directories is arbitrary, in other words, a model

with one central directory or distributed directories is possible. These directories can be

distributed over L2 caches or memories. Each directory is responsible for managing

coherence traffic only between caches in same coherence domain. In this protocol,

exclusive, shared and invalid states are used to indicate status of a line. Number of caches

and coherence domains are determined by the compiler. In this architecture, the compiler

provides synchronization between the dependent memory operations.

1.2. Contributions

A coherent cache design is proposed in this thesis for the specific HLS compiler.

The contributions are as follows:

1. The first coherence protocol that uses directory-based protocol with write-

update;

2. A novel coherence protocol called as ESI protocol;

3. The first distributed directory scheme implemented on FPGA.

1.3. Thesis Organization

A background on the cache coherence problem and an overview of related works

are presented in Chapter 2. Proposed coherence protocol is discussed in Chapter 3.

Chapter 4 presents implementation details of the proposed hardware. Chapter 5 includes

verification efforts, experimental results and discussion. Finally, conclusions and future

works are given in Chapter 6.

3

2. BACKGROUND

2.1. Shared Memory Model

Parallel processing is necessary to achieve sustainable performance. Parallel

computing machines are classified into four categories based on the type of parallelism,

i.e., Single Instruction Stream Single Data Stream (SISD), Single Instruction Stream

Multiple Data Streams (SIMD), Multiple Instruction Streams Single Data Stream (MISD)

and Multiple Instruction Streams Multiple Data Streams (MIMD) [7]. MIMD machines,

such as multithreading devices and multiprocessors, have capability of executing multiple

instructions on multiple data. These machines are basically designed with shared or

distributed memory model.

In shared memory model, all processors reach to the same address space and the

performance of the model can be improved by caches [8]. Basic structure of the shared

memory multiprocessors is demonstrated in Figure 2.1. All processors (P1, P2, …, PN) are

connected to their private caches (C1, C2, …, CN). These caches communicate with each

other and the memory via a bus. Sharing same address space provides advantages such as

ease of programming. However, shared memory multiprocessors suffer from consistency

and coherence problems.

Figure 2.1. A shared memory architecture

4

2.2. Memory Coherence

Coherence, one of the two main problems of the shared memory multiprocessor,

occurs when more than one cache have same block and at least one of them write(s) to

this block. An example of coherence problem is demonstrated in Figure 2.2. The example

model contains three private caches (C1, C2 and C3) that are connected to the memory via

a bus shown in Figure 2.2 (a). Initially, both C1 and C2 have the block X and the value of

this block is A for both caches and the memory. However, C3 does not have this block.

Remind that caches are implemented with write-through or write-back policy. Caches that

follow write-through policy immediately send new data to the lower level memory (LLM)

when they receive a write request. However, write-back caches do not send written data

to the LLM until this block is replaced. This example demonstrates the problem with both

write-through and write-back private caches in Figure 2.2 (a) and Figure 2.2 (b),

respectively.

In the design with write-through caches, P1 sends a write request to C1 for block X

to change its value as B and then C1 stores B. The cache immediately transfers this write

request to the memory. Although the block X is updated by P1, C2 still has stale data (A).

C2 responds a read request coming from P2 for the block X with stale data and the problem

thus emerges. When C3 receives a read request for the block X from P3, the updated data

B is obtained from the memory since this block is miss. Same requests are applied to the

design with write-back caches in Figure 2.2 (c). In this model, when C1 receives a write

request for the block X from P1, C1 does not immediately transfer the write request to the

memory. C2 again sends stale copy of the block when it receives a read request for block

X. When C3 receives a read request for block X from P3, this request is transferred to

memory since this block is miss. However, the memory sends stale data to C3 since it is

not updated.

Several hardware and software protocols have been introduced in literature, to

overcome coherence problems [9]. The proposed work only includes hardware-based

solutions.

5

Figure 2.2. An example of coherence problem (a) initial model, (b) problem is applied to write-though

caches, (c) problem is applied to write-back caches

6

2.2.1. Hardware-based coherence solutions

Coherent caches are implemented based on two protocols as snooping protocol and

directory-based protocol. These protocols identify the hardware architecture of the

coherence mechanism. They are matched with a proper write policy, such as write-update

and write-invalidate. State bits are also added to coherence design to indicate the situation

of cache blocks.

2.2.1.1. Coherence protocols

Physical organization of coherence mechanism is determined by coherence

protocols. Basically, snooping and directory-based protocols are two classes of them.

In snooping coherence protocol, caches are connected to each other and the LLM

via a bus. Each individual snoopy cache keeps status bits for each data blocks. Necessary

coherence requests are broadcasted on the bus while the bus is simultaneously watched

by all caches. Possible coherence actions can be read miss, update or invalidate. Read

miss is broadcasted when the block requested by processor is not valid in related cache.

The corresponding data is then obtained by copies sent from caches via the bus. Invalidate

or update requests are broadcasted when a cache writes to the block shared with other

caches. Other caches that have corresponding block respond these requests by updating

or invalidating their own copies. Therefore, all caches keep their shared data coherent

with others.

In directory-based protocol, coherence is provided by a hardware component called

as directory. Private caches are connected to either one central directory or distributed

directories by an interconnection network in this model. The information of exact

locations of blocks is kept in directory entries. Caches send requests to directories if

coherence transactions are required. The directory controls status of the data block and

then sends necessary coherence requests to related caches.

In distributed directory schemes, the information of blocks’ locations is distributed

over directories while directories are also distributed over either the memory or caches.

An example of distributed directory scheme is demonstrated in Figure 2.3 (a). In this

model, directories (D1, D2, …, DK) are distributed over memory modules (M1, M2, …,

MK). In central directory schemes, the information is stored in only one directory.

7

However, this situation causes contention since all caches try to access to the same

directory. Figure 2.3 (b) shows an example of central directory scheme.

Figure 2.3. Directory schemes (a) a distributed directory scheme, (b) a central directory scheme

The directory-based protocols scale better than snooping protocols since bandwidth

overhead caused by broadcasting increases with number of processors in snooping

designs [10]. However, directory-based coherence schemes are harder to implement and

require extra messages [10].

2.2.1.2. Write policies

As mentioned before, a cache sends either an invalidate request or an update request

to provide coherence when this cache receives a write request to the block shared among

caches. The update or the invalidate request is chosen according to the write policy, such

as write-update or write-invalidate.

In write-invalidate policy, a cache responds a write request corresponding to the

block shared between caches, by sending invalidate request to owner caches. Caches that

receive an invalidate request naturally invalidates their own copies. The block is then miss

when one of these caches tries to access its copy. Therefore, the new copy of this block

is supplied by the cache that previously writes to the block.

In write-update policy, a cache that receives a write request for a block sends an

update request. The new data is included in this update request. Caches that receive this

8

update request refreshes their copies with this new data. This time, one of these caches

that update its copy can directly obtain this block since the block is hit and updated unlike

write-invalidate policy.

Assume that write-invalidate and write-update policies are applied to the coherence

problem previously defined in Figure 2.2. These policies are implemented with both

directory-based and snooping models. Figure 2.4 demonstrates these models and initial

conditions for both directory-based and snooping protocol. In the directory-based model,

private caches following write-back policy are connected to a central directory via an

interconnection network. Each directory entry contains presence bits since the directory

is a full-map directory. Remind that C1, C2 and the memory initially have the block X and

the value of this block is A. The directory entry corresponding to the block X is also

shown in Figure 2.4 (a). Since three caches are connected to directory, this entry has three

bits. The rightmost two bits of it are one, meaning that C1 and C2 have this block.

However, remaining bit is zero, in other words, C3 does not contain the block. In the

snooping model, caches and the memory are connected to each other via a bus with same

initial conditions shown in Figure 2.4 (b).

Figure 2.4. Initial models for solution to the defined coherence problem (a) directory-based model, (b)

snooping model

Figure 2.5 demonstrates the directory-based solution to coherence problem with

write-invalidate policy. The first request is write B sent by P1 to C1 as in the defined

problem. As a response C1 stores this new value and then sends an invalidate request for

the block X to the directory in order to disable stale copies of the block given in Figure

9

2.5 (a). The directory controls presence bits of this block to determine owner caches. The

invalidate request is then transmitted to C2 by the directory since only C2 has this block

except for C1. The directory changes the presence bit corresponding C2 as zero to indicate

that C2 is not an owner cache anymore. When the invalidate request arrives to C2, the

copy of the block X is immediately disabled.

Remind that the problem emerges when P2 sends a read request to C2 for the block

X. After receiving this request, C2 transfers it to the directory since C2 does not have a

valid copy as demonstrated in Figure 2.5 (b). This situation is called as ping-pong effect.

The directory transfers this read request to C1 since C1 is unique owner of this block.

When the data is received from C1, the directory sends it to C2 shown in Figure 2.5 (c).

Presence bits are also updated by the directory and C2 becomes one of the owners again.

Then, C2 provides correct data to P2 and therefore, the coherence problem is solved.

Figure 2.5. Directory-based solution to the coherence problem with write-invalidate policy

10

Figure 2.6 shows the directory-based solution to the problem with write-update

policy. Firstly, C1 receives write B request for the block X as demonstrated in Figure 2.6

(a). This time, C1 sends an update request instead of an invalidate request to the directory.

This update request contains new data B. Since C2 is also owner of this block, the

directory transfers the update request to it. The directory entry is not changed since caches

that have the block are still same. C2 changes its copy with B after receiving the update

request. When C2 receives a read request for the block X from P2, C2 directly supplies

corresponding data to P2 since it has the recent copy as explicitly shown in Figure 2.6 (b).

Figure 2.6. Directory-based solution to the coherence problem with write-update policy

The memory has stale data for both write-invalidate and write-update policy, since

the private caches follow write-back policy as shown in Figure 2.5 and Figure 2.6. Note

that this situation does not cause any problem even if a cache wants to read a block that

is not cached. Figure 2.7 illustrates actions after C3 receives a read request for the block

X. C3 sends this read request to the directory since it does not have this block. The

directory checks for presence bits to find another owner. The directory chooses one of the

caches that have the block (C1 or C2). For this example, the directory sends the read

request to C1 and the data is provided from it. These actions are same for both write-

invalidate and write-update policies. Write-through private caches protect memory from

having stale data since they flush new data after each write request. The defined coherence

problem is also solved by using these caches as in write-back private caches.

11

Figure 2.7. Solution to the problem that occurs with write-back caches

The snooping model defined in Figure 2.4 (b) also solves the coherence problem

with write-invalidate or write-update policy. Moreover, without communicating with

directory, caches directly broadcast coherence requests on the bus and then related caches

snoops these requests. Figure 2.8 and Figure 2.9 demonstrate solutions to the defined

coherence problem in snooping model with write-invalidate and write-update policies,

respectively.

Write-update policy consumes more bandwidth as compared to write-invalidate

policy since both address and data are sent to update other copies instead of sending

address only as in write-invalidate policy [10]. However, write-invalidate policy suffers

from ping-pong effect since recently written block is invalidated by caches [9].

12

Figure 2.8. Snooping solution to the coherence problem with write-invalidate policy

13

Figure 2.9. Snooping solution to the coherence problem with write-update policy

2.2.1.3. States

In a coherent cache design, each private cache requires to keep information called

as state for each block. Caches obtain necessary properties such as validity, dirtiness,

exclusivity and ownership of blocks from these states [10]. State machines transfer the

states to each other as Modified (M), Owned (O), Exclusive (E), Shared (S), and Invalid

(I). A block with I state means that either it is not stored inside related cache, or it has

stale data. The blocks that are valid and owned by only corresponding cache have a state

either E or M. In fact, clean blocks correspond to E while dirty ones are corresponding to

M. The state is S if either the cache has sent its clean copy to other cache or it has received

a copy from one of them. Furthermore, the state is O if the cache has sent its dirty copy

to other caches and then it becomes responsible for writing this block to the LLM among

sharers. Cache protocol can be implemented by using all these states, i.e., MOESI or just

by selecting some of them, such as MSI, MESI, etc.

14

In a design with write-through private caches, only SI states are sufficient since

write requests are directly transferred to the LLM [11]. A block is tagged as I if a cache

does not have the block or the block is not valid in this cache, otherwise the state is S. In

a design with write-back private caches, at least MSI states are necessary. M state is added

to tag blocks that is written by processors.

Although MSI protocol solves coherence problems, adding exclusive state

alleviates write overhead [11]. Invalidation process is not required when a cache receives

a write request to an exclusive block since the cache knows that it is unique owner of the

block. MESI, one of the most popular protocols, has been first proposed in [12]. Their

coherence mechanism has been designed with snooping and write-invalidate protocols.

Table 2.1 shows states, requests and change in states and also transactions according to

these requests. Caches response two type of requests coming from processor or snooping

on the bus, such as processor read and processor write or bus read and bus read-exclusive,

respectively [13]. A bus read request is broadcasted on the bus when one of the caches

wants to read corresponding block. In a bus read-exclusive request, invalidate request

accompanies to the bus-read request. The cache only accepts processor’s requests for

blocks in I state. Processor read and processor write requests coming to the block in I are

responded by broadcasting bus read and bus read-exclusive requests on the bus,

respectively. The state of the block is changed as E or S according to sharing property of

this block after response to bus-read request is received. Sharing property of blocks is

determined by a special signal. Furthermore, the next state becomes S if sharing signal is

asserted otherwise it becomes E. In the case of receiving a processor write request, the

next state then becomes M for all initial states. However, the cache broadcasts bus read-

exclusive, if the block is in I or S states. Any coherence transaction performed by the

cache is not required for a processor request corresponding to a block in E or M since this

cache is a unique owner. A block that has a state M, E or S maintains its state after a

processor read request is received. Bus read and bus read-exclusive requests coming to

the cache for a valid block are required to change the state as S and I, respectively.

Moreover, corresponding data is flushed if initial state of the block is M or E. In the case

of initial state with S, this data is flushed by only one of the caches among sharers.

15

Table 2.1. The MESI protocol

Current State Request Next State Transaction

M Processor read M -

Processor write M -

Bus read S Flush

Bus read-exclusive I Flush

E Processor read E -

Processor write M -

Bus read S Flush

Bus read-exclusive I Flush

S Processor read S -

Processor write M Bus read-exclusive

Bus read S Flush’

Bus read-exclusive I Flush’

I Processor read E Bus read (S̄)

S Bus read (S)

Processor write M Bus read-exclusive

Suppose that MESI protocol specified in Table 2.1 is applied to the coherence

problem previously given in Figure 2.2. The solution to this problem is given Table 2.2.

Remind that initially C1, C2 and the memory have the block X. Initial states for both

caches’ blocks are S since more than one cache own this block. First request is sent by P1

to write the block X and then C1 broadcasts a bus read-exclusive request to invalidate the

copy of C2. C2 flushes corresponding data and invalidates its copy after receiving this

request. C1 then stores the written data and changes the state of the block X as M. After

this process, P2 sends a read request for the block X and then C2 broadcasts a bus read

request on the bus. C1 snoops this bus read request and supplies corresponding data to C2

before C1 and C2 change their states to S. Finally, P3 sends read request for the block X

and C3 broadcasts a bus-read request since this block is miss. The corresponding data is

provided by either C1 or C2 and then C2 receives this data in S state.

16

Table 2.2. Solution to the defined coherence problem with the MESI protocol

 States for block X

Request C1 C2 C3 Transaction Data Supplied by

- S S - - -

P1 writes to X M I - Bus read-exclusive C2

P2 reads X S S - Bus read (S) C1

P3 reads X S S S Bus read (S) C1 or C2

States are a little bit different for write-update policy. Dragon protocol designed

with snooping model is an example to write-update policy [14]. This protocol includes E,

Shared-Clean (SC), Shared-Modified (SM) and M states. E and M states are same as

explained before while SC and SM states are used instead of S state in this protocol.

Caches that have clean copies of same block tag these blocks as SC while a cache that

modifies the block tags this block as SM. Although more than one cache have same block

in SC state, only one cache has the block in SM state and this cache is responsible for

writing back the block to the LLM. Note that the protocol does not contain I state. Dragon

protocol is demonstrated in Table 2.3 as explained in [13]. A cache receiving a request

from its processor for the block that is miss, broadcasts a bus read request. If there is a

cache that has this block in M or SM states, this cache is responsible for providing data.

Otherwise, the data is supplied by the memory. In the case of receiving a processor read

request that is miss, the cache has corresponding block as either E or SC states. The state

is SC if at least one more cache has this block and it is E if only requester cache has this

block. Caches detect sharing with a special bus line [15]. In the case of receiving a

processor write request corresponding to the block that is miss, the related cache stores

the new data in M or SM state. This state is decided according to sharing after response

of the bus-read request is obtained. This state is M if the block is not shared. Otherwise,

the state is SM so the cache broadcasts a bus update request. Bus update request is used

for updating copies of sharer caches and the response of this request is called as Update.

A cache broadcasts a bus update request when it receives a processor write request to the

blocks SC or SM. Thereafter, states are changed to M if the cache realizes that the block

is not shared anymore. State of a SM block is changed to SC when a cache snoops a bus

update for this block. Therefore, the cache is no longer responsible for writing back the

17

block to the LLM. A cache does not receive bus update requests for blocks in E or M

states since they are not shared. Next state is SC if a cache receives bus read request to a

block with E state. In the case of receiving a bus-read request to the block with M, the

state becomes SM. Other transactions are analogous to previous protocols.

Table 2.3. The Dragon protocol

Current State Request Next State Transaction

 Processor read

(Miss)

E Bus read (S̄)

SC Bus read (S)

Processor write

(Miss)

M Bus read (S̄)

SM Bus read (S) & Bus update

E Processor read E -

Processor write M -

Bus read SC -

SC Processor read SC -

Processor write M Bus update (S̄)

SM Bus update (S)

Bus update SC Update

SM Processor read SM -

Processor write M Bus update (S̄)

SM Bus update (S)

Bus read SM Flush

Bus update SC Update

M Processor read M -

Processor write M -

Bus read SM Flush

Assume that Dragon protocol is also applied to the coherence problem that is

defined in Figure 2.2. The solution to this problem is given Table 2.4. Initially, C1 and C2

caches have the block X in SC state since S state is not valid. C1 broadcasts a bus update

request when it receives write request from its processor. C2 observes this bus update

request for the block X and then updates its copy with previously written new data. New

state of the block X becomes SM for C1 and after this point C1 is responsible for supplying

18

corresponding data for this block to other caches and the memory. Then, C2 receives read

X request from its processor. C2 directly supplies data since it has the block. Finally, P3

sends read request for block X and then C3 broadcasts a bus read request. The data is

supplied by C1 that has modified the block.

Table 2.4. Solution to the defined coherence problem with the Dragon protocol

 States for block X

Request C1 C2 C3 Transaction Data Supplied by

- SC SC - - -

P1 writes to X SM SC - Bus update (S) C1

P2 reads X SM SC - - -

P3 reads X SM SC SC Bus read (S) C1

2.3. Memory Consistency

Consistency, the other challenging problem of the shared memory multiprocessor,

is related to correctness of the shared memory [10]. Figure 2.10 demonstrates a mutual

exclusion protocol as an example of consistency problem [16]. The example includes two

processes and each process contains a critical section. The protocol should assure that

only one of the processes is in the critical section at the same time. However, both of them

can be in critical section in following conditions. Assume that initial values of both

variables a and b are zero. These variables are equalized to one by the Process 1 and

Process 2, respectively, and then processors send write requests to the memory for these

variables since these values are changed. Thereafter, Processor 1 and Processor 2 read

variables b and a from the memory, respectively, to check the correctness of

corresponding if statement. Nevertheless, both of processors are read the values as zero

from memory since previous write requests to the memory are delayed. Both of the

processes are eventually in the critical section. Consistency problems can be handled by

implementing memory consistency model that defines the rules between processes and

19

the memory system [17]. In other words, this model indicates the order of read and write

requests.

In proposed work, the memory model is based on uniprocessor memory model since

the initial software program converted by the compiler is single threaded. Therefore,

memory consistency problem does not occur as in multiprocessors’ memories and

implementing memory consistency model is not required.

Figure 2.10. An example of consistency problem

2.4. Related Works

In literature, several hardware-based coherence protocols have been proposed. Most

of them have been designed with write-invalidate policy. Moreover, both snooping [12,

18, 19] and directory-based [20-23] protocols have been used in these designs. Although

several snooping with write-update protocol have also been implemented [14, 24],

directory-based design with write-update has not been presented based on our researches.

Proposed work is the first example of directory-based coherent cache design with write-

update policy.

Several works have been presented to provide a memory system on FPGAs for

parallel processing in addition to ASIC implementations. Besides works that does not

require a coherence protocol such as [25, 26], a number of studies have also been

presented to implement a coherence protocol on FPGAs.

In [27], symmetric multiprocessor model has been implemented on FPGA with

softcore processors (Nios processors), and the Avalon bus. Since proposed model does

not permit implementation of traditional snooping or directory-based protocols, a

hardware component called as cache coherency module (CCM) has been added to design.

20

CCM snoops the bus and manages coherency between local caches. This kind of protocol

is called as hybrid snooping protocol. Write-invalidate policy is provided by sending

interrupt to all processors by CCM when invalidation is needed. Although defined model

solves coherence problems, it has disadvantageous due to sending interrupt to all

processors even if these processors are irrelevant to the corresponding request.

A coherent cache model that is suitable for both hard and soft processors have been

presented in [28]. These processors provides strict consistency model. In proposed model,

private caches are connected to Central Hub via FIFO based units (FSLs). The Central

Hub provides communication like a bus. In this design, write-once protocol [18] has been

chosen. This is a simple protocol that is implemented in snooping and write-invalidate.

This work has not achieved a sustainable performance with hardware threads since

number of threads is limited due to communication overhead on Central Hub.

In [29], a memory system has been designed for compilers that automatically

converts high-level language to hardware for FPGAs. This memory system is connected

to data path generated by a compiler. In proposed design, memory is partitioned into

coherence clusters. Each coherence cluster have at most one write and at least one read

ports. MARC II supports speculative memory operations on read ports. Each read and

write ports includes a cache. Since each coherence cluster maps to different part of

address space, coherence is only provided inside these clusters. Different coherence

clusters are connected to TechMod via Shared Memory Bus. This TechMod provides an

interface to the memory. Ports in a cluster are connected to each other and the Shared

Memory Bus via Shared Coherence Bus. Both Shared Memory Bus and Shared

Coherence Bus receive requests with dynamic priority. Write-invalidate or write-update

policy can be chosen for each coherence cluster. States are different for read and write

caches. Read caches have valid and invalid states only, while write caches have invalid,

partially exclusive, exclusive and shared states.

In [30], proposed multiprocessor model is implemented with softcore processors

(MicroBlaze processors). In this model, local caches are connected to these processors

with Local Memory Buses (LMBs). Caches and the memory controller are communicated

with each other using a cross bar interconnection network. FIFO based units (FSLs) are

placed between each cache and interconnection network. Memory controller is also

connected to interconnection network via an FSL. Coherence have been provided with

snooping and modified version of MESI protocols. Proposed design also manages mutex

21

variables inside local caches. This design is not scalable since it cannot execute more than

eight thread at the same time. In [31], a directory-based design is proposed to improve

scalability in [30]. This design is similar to previous model. However, a directory has

been connected to interconnection network and memory controller via FSLs. This

directory has been implemented as a duplicate tag directory. MESIF protocol, i.e., MESI

protocol with Forward state, has been chosen to provide coherence.

Memory system is required for FPGA based operating system in [32]. In this design,

coherence is provided by coherent scratchpads. These scratchpads contain a marshaller,

a cache and a router. The coherent scratchpads that belongs to same coherence domain

and a coherent scratchpad controller are connected to each other with rings. Coherent

scratchpads reach to lower level memory via coherent scratchpad controller. This

controller also keeps data and owner bits in private scratchpads [33] for each memory

address. The proposed coherence protocol is snooping with MOSI states.

The proposed design in this thesis is different from other FPGA based coherent

caches in terms of both targeted system and coherence protocol. Proposed coherence

mechanism targets to application specific supercomputer. This supercomputer is

generated by a specific compiler that converts single-thread program written in high level

language to RTL design executing in parallel. All of the previous works has been designed

with snooping protocols except for [31], however, this design implemented with a central

directory and does not provide multiple coherence domains unlike presented coherence

protocol.

22

3. ESI PROTOCOL

3.1. System Overview

High-level synthesis (HLS) compilers are capable of converting a program written

in a high-level language into a low level register-transfer level (RTL) design. A specific

HLS compiler proposed in [6] automatically converts a single-threaded software program

into an application-specific supercomputer. The supercomputer generated by the HLS

compiler runs only its application and its hardware system contains at least one chip. The

generated hardware executes in parallel and gives exactly same results with initial single-

threaded input program of the compiler. Writing software programs manually in parallel

is complicated [34] hence the compiler provides a great opportunity to programmers.

In this developed compiler method [6], each loop in the initial code fragment is

converted automatically to a frequency-optimized finite state machine (FSM) called as

thread unit. Thread units are connected to task and synchronization networks

demonstrated in Figure 3.1. These networks mainly control the threads and determine the

execution order. Thread units are also connected to a memory hierarchy via master ports

to perform memory operations such as load and store. Each master port includes sending

and receiving first-in first-out (FIFO) buffers to transfer data from the thread units to

memory and from memory to the thread units, respectively.

Implementing an efficient memory hierarchy is quite important for any application-

specific hardware design since the memory hierarchy is one of the major barriers on

achieving high performance in many application workloads such as an image

reconstruction application used in medical tomography. The implemented memory model

is based on uniprocessor memory model, since the converted code fragment is single

threaded. The supercomputer requires a memory system with a number of ports to transfer

data and it possesses the following ports in Figure 3.1., where one chip model of the

supercomputer is depicted. This memory system has one or more slave ports that are

connected to hardware thread units. Memory requests sent by thread units are received

via these ports. The memory system also has master ports to communicate with host.

These ports are connected to the host communication network while this network is also

connected to a PCI Express (PCIe) that provides communication with host. Furthermore,

one or more master ports are connected to DDRn controller via one-to-one network. L2

23

caches send requests to the external DRAM unit that contains both tag and data of each

L2 cache line via these ports.

Figure 3.1. One chip system model

The compiler provides some conveniences to the memory system. The memory

system does not receive some requests that occur in multi-threaded software, such as

compare and swap or memory barrier instructions. Moreover, if two instructions refer to

the same address and at least one of them is store, the compiler ensures that logically

earlier one finishes its access before the logically later one starts. This synchronization is

managed by acknowledgement responses sent by memory system as a response to store

requests.

Two different memory models, i.e., bank-interleaved shared caches and coherent

caches, have been presented for this supercomputer [6]. These memory models include

two level of caches (L1 and L2 caches). Moreover, they should be written in Verilog

language.

In bank-interleaved shared cache model, each bank is responsible for different

sections of address space. Any coherence protocol is not required in this model since

memory addresses do not overlap. However, an interconnection networks are required to

connect thread units to L1 caches. It is simpler than coherent cache design, but the

additional interconnection network increases the memory access time.

24

 In coherent cache model, the coherence protocol is required and it uses directory-

based write update protocol. L1 caches are connected to directories and each directory is

connected to a L2 cache bank in this architecture. One of the advantages of this model is

that each thread unit has point-to-point connection to the related L1 cache. Thus, memory

access time is improved. The other advantage is that only caches that hold shared lines

communicate with each other, therefore, communication is restricted. Roll-back or

negative acknowledgement responses are not required in this model. The proposed work

in this thesis is implementation of this coherence protocol and details are given and

discussed in the following sections.

3.2. Protocol Details

 As explained in Chapter 2, coherence protocol is specified by many options such

as snooping or directory-based and write-update or write-invalidate. In the proposed

model, directory-based design has been preferred to obtain a scalable architecture.

Directory-based architectures include one central directory or distributed directories.

Moreover, the number of directories is arbitrary in proposed design hence the design

contains one central directory or distributed directories.

Directories are generally classified according to the kind of kept information, such

as full-map, limited and chained directories [9]. The designed directory is full map

directory. In this scheme, presence bits that indicate owner caches for each block are

stored in directory entries.

In proposed model, write-update policy is implemented. Write-update policy is

better than write-invalidate since write request that is received to a shared cache line is

immediately sent to all sharer caches. However, write-update policy is not popular in

commercial systems since it requires relatively more bandwidth. In proposed model, the

directory always knows the correct set of sharer caches, therefore, the network traffic

caused by write broadcasts is alleviated.

The proposed design has been implemented with ESI states. The ESI protocol

includes only exclusive (E), shared (S) and invalid (I) states of the MESI protocol. Instead

of using M state, extra one dirty bit is kept for each cache line. Shared line also can be

dirty since the policy is write-update.

25

3.2.1. Requests

A thread unit sends load, store flush_all_L1 and flush_all_L2 requests to an L1

cache as listed in Table 3.1. A load request is sent by a thread unit to read a word, half

word or a byte from the memory. Address of the requested data is included in this request.

This request is responded by providing corresponding data. A store request is sent by a

thread unit to write to a word, a half word or a byte to the memory. This request contains

the address and the new data. The cache that receive store request sends an

acknowledgement response at the end of the store process. A flush_all_L1 request is

received by a cache when all load and store requests are responded. An acknowledgment

is sent by a cache after all dirty lines are invalidated and flushed to the directory. One of

the L1 caches receives a flush_all_L2 request and this cache is responsible for forwarding

this request to the directory. The cache sends an acknowledgement to the thread unit, after

this request is transferred. Flush_all_L1 and flush_all_L2 requests are sent to update host

memory so that software and the accelerator have the same copy of the memory in order

that software can resume its operation where accelerator completes its acceleration of the

specific task.

Table 3.1. List of requests coming from a thread unit to an L1 cache

Request Meaning Response

Load Read corresponding block Data

Store Write this data to corresponding block Acknowledgement

Flush_all_L1 Flush and invalidate all dirty lines Acknowledgement

Flush_all_L2 Transfer this request to L2 cache Acknowledgement

Requests coming from an L1 cache to a directory are shown in Table 3.2. A

line_read request is sent by an L1 cache to the directory when this cache receives a thread

request corresponding to an invalid block. The line address is included in this request.

The directory transfers this request to one of the other owners if there is any. Otherwise,

the line is requested from L2 cache. After obtaining the line data, the directory provides

this data to the requester cache. This response also includes the state of the line as

exclusive or shared. A flush or an abandon request is sent by an L1 cache to the directory

when a line is replaced by this L1 cache. Moreover, this request is flush, if the replaced

26

is dirty. Otherwise, it is abandon. A flush request contains the line address, the line data

and the byte mask while abandon request includes only line address. The directory

removes the requester cache among sharers of this line, after receiving one of these

requests. Furthermore, the request is forwarded to the L2 cache by the directory if it is a

flush. A remote_store request is sent by an L1 cache to a directory when this cache writes

to the shared line. The remote_store request contains the new word and the address. The

directory transfers this request to all of the sharer caches as write-update policy requires.

The flush_all_L2 request is directly transferred to the L2 cache by the directory. An

acknowledgement response is sent by a directory to the requester L1 cache after flush,

abandon or flush_all_L2 process is completed.

Table 3.2. List of requests sent by an L1 cache to a directory

Request Meaning Response

Line_read Read this line Line data, state

Flush Flush this data to L2 cache and remove this

cache among sharers

Acknowledgement

Abandon Remove this cache among sharers Acknowledgement

Remote_store Update copies of this block Acknowledgement

Flush_all_L2 Transfer this request to L2 cache Acknowledgement

Table 3.3 illustrates requests sent by a directory to an L1 cache. After a directory

receives a line_read request to the line owned by at least one cache, it forwards this

request to the one of the owner caches. This cache sends corresponding data as a response.

After a remote_store request is received by an L1 cache, this request is sent by a directory

to all of the sharer caches. All of these caches send an acknowledgement response to the

directory after the copy of the line is updated.

Table 3.3. List of requests sent by a directory to an L1 cache

Request Meaning Response

Line_read Read this line Line data

Remote_store Update your copy with this data Acknowledgement

27

Requests sent by a directory to a L2 cache are shown in Table 3.4. In the case of

receiving a line_read request to the line that is not owned by none of the caches, the

directory transfers this request to the L2 cache. Corresponding line data is then provided

by this L2 cache. After receiving a flush or flush_all_L2 request from an L1 cache, these

requests are forwarded to the L2 cache. The L2 cache responds these requests by sending

an acknowledgement.

Table 3.4. List of requests sent by a directory to an L2 cache

Request Meaning Response

Line_read Read this line Line data

Flush Write this line Acknowledgement

Flush_all_L2 Flush all dirty lines Acknowledgement

3.2.2. State transfers

The ESI protocol is demonstrated in Table 3.5. Each L1 cache keeps state bits and

a dirty bit for each one of its lines. Initially, all cache lines are in invalid state. This state

indicates that the cache does not contain valid data for this line. The state of a block is E

if the cache is unique owner of a clean or dirty line. Since the protocol does not contain

modified state, the L1 cache determines dirtiness from the dirty bit. Shared state means

that the line is potentially shared by at least one cache. A shared line can also be either

clean or dirty. Moreover, more than one cache can separately write to the same line

without invalidating other caches’ copies due to the write-update policy.

Only requests received from the thread unit is accepted to the line in I state. The

cache sends a line_read request to the directory after it receives a request corresponding

to an invalid line. The directory responds this request by providing new state (E or S) and

line data. The cache loads this line data in given state. In the case of receiving store

request, the data sent by the thread unit is stored and the dirty bit is set after the line

becomes hit. Moreover, the cache also sends remote_store request if the thread request is

store and the state is shared. Other sharer caches, therefore, update their copy with

recently written data.

A cache receives load, store and line_read requests to the exclusive line as shown

in Table 3.5. A remote_store request is not received from the directory since the cache is

28

unique owner of an exclusive line. The cache immediately supplies the data to the thread

without changing the state and the dirty bit when a load request is received from the thread

unit. On the other hand, the state remains same and the dirty bit becomes one, after

receiving store request is from the thread unit. The line data is sent to the directory when

a line_read request is received. Therefore, the state becomes shared while and dirty bit is

preserved.

The state of a shared line remains same after receiving requests such as load, store,

line_read and remote_store. The dirty bit does not also change after a load request is

received from the thread unit. In the case of receiving a store request, the cache sends a

remote_store request to the directory. The new data is stored, and the dirty bit is set after

the remote_store acknowledgement is received. The cache provides the line data to the

directory when it receives a line_read request to the shared line. After receiving a

remote_store request, new data is stored and then an acknowledgement response is sent

to the directory Note that the dirty bit is not affected by a remote request.

Table 3.5. The ESI Protocol

Current Request Next Coherence Transaction

State D. Bit State D. Bit

E C Load E

C -

D D

C Store E D -

D D

C Line_read S

C Line Data

D D

S C Load S C -

D D

C Store S D Remote_store

D D

C Line_read S C Line Data

D D

C Remote_store S C Acknowledgement

D D

I - Load E C Line_read (E)

- S C Line_read (S)

- Store E D Line_read (E)

- S D Line_read (S) & Remote_store

29

4. HARDWARE DESIGN

In proposed model demonstrated in Figure 4.1, each private L1 cache is connected

to a hardware thread unit. These thread units are finite state machines that are generated

by the compiler. L2 caches are partitioned through address space while directories are

distributed over L2 caches. Note that this work does not include design of L2 caches,

these caches have already been implemented for compiler library. Besides an

implementation with connecting directories to L2 caches, the directories can be connected

directly to the memories without L2 caches.

L1 caches and directories are connected to each other with two interconnection

networks (Coherence 1 and Coherence 2) shown in Figure 4.1. These are butterfly

networks specified in [6]. Coherence 1 is responsible for transmitting requests coming

from L1 caches to the corresponding directory and then sending response that is received

by this directory to the requester L1 cache. Requests are sent by a directory to an L1 cache

via Coherence 2 network. Responses of L1 caches are also sent to the directory via this

network. Cache to cache communication does not occur in proposed design since the

directory manages the communication between caches.

In this model, L1 caches connected to the same directory can belong to different

coherence domain. The directory determines caches that are in same coherence domain

by masking and manages coherence transfers between these caches only.

30

Figure 4.1. The proposed model [6]

4.1. Ports and Message Formats

Each directory and L1 cache have master and slave ports containing one sending

and one receiving FIFO buffer, separately. In slave port, one of them is used for receiving

requests while other one is used for sending responses while one of them is used for

sending request while the other one is used for receiving responses in master port. In

Figure 4.1, master and slave ports are shown by M and S letters, respectively.

Each private L1 cache has three ports as a slave thread port, a master coherence port

and a slave coherence port. An L1 cache receives thread requests with the slave thread

port. Slave thread receive message contains the data, the address and the opcode fields as

shown in Figure 4.2. The opcode field indicates type of the sent request. Response

message to the thread request is also demonstrated in Figure 4.2. This message contains

data only. An L1 cache receives coherence requests coming from the directory via

31

Coherence 2 network from the slave coherence port. Message formats to receive

coherence request and to respond them are illustrated in Figure 4.2. Slave coherence

receive message contains data, address, opcode, cache id and directory id fields. Cache

id and directory id fields indicate the id of the cache corresponding this request and the

directory sending the request, respectively. Slave coherence send message includes line

data, opcode and directory id fields. Coherence requests are sent by an L1 cache to a

directory via Coherence 1 network with the master coherence port. Sending and receiving

message formats of master coherence port are also shown in Figure 4.2. Master coherence

send message contains domain id, byte mask and line data, opcode, tag and cache id.

Coherence domain that the cache belongs to is indicated in domain id field. Byte mask

indicates dirty bytes of the line. Tag is used to specify the acknowledgement responses.

Finally, the master coherence receive message includes ESI state, line data, opcode, tag

and cache id fields. ESI state is state of the requested line.

Figure 4.2. Message formats of L1 caches’ ports

Each directory has three ports as slave coherence receive port, master coherence

port and master L2 port. Message formats of directory ports are demonstrated in Figure

4.3. Directory receives requests sent by L1 caches and then sends responses via

Coherence 1 network from slave coherence port. Slave coherence send and slave

coherence receive message formats of the directory are analogous to master coherence

32

receive and master coherence send message formats of L1 caches, respectively. Requests

are sent by a directory to L1 caches via Coherence 2 network through master coherence

port. Master coherence receive and master coherence send message formats of the

directory are also analogous to slave coherence send and slave coherence receive message

formats of L1 caches, respectively. Master L2 port is used for sending requests and

receiving responses from an L2 cache. Master L2 send message consists of line data with

byte masks, line address, opcode and directory id fields. Moreover, master L2 receive

message contains line data, opcode and directory id fields.

Figure 4.3. Message formats of directories’ ports

4.2. Proposed Hardware Architecture of L1 Caches

Private L1 caches are implemented as direct-mapped write-back caches. Although

direct-mapped caches are not effective in terms of hit rate, they are more suitable for

FPGAs’ structure and can easily be implemented using existing block memories in the

target FPGA device. However, set associative caches are relatively expensive to build on

FPGA in terms of area and performance since they require extra logic to handle

associativity. Number of lines and number of words in a line are arbitrary parameters that

are used to configure the direct-mapped cache and determined by the compiler. Number

of words in a line is same for all caches although number of lines can be different. A

33

dirty line is written back to the L2 cache after it is replaced since caches follow write-

back policy.

L1 caches are pipelined to improve performance and the pipeline is illustrated in

Figure 4.4. This pipeline has four stages as access, compare, check and retire,

respectively, from bottom to top in Figure 4.4.

As explained before, each L1 cache has slave thread, slave coherence and master

coherence ports. In the access stage, both requests received from slave thread and slave

coherence ports are accepted to the cache pipeline if there is no stall in the compare stage.

Access stage contains a block memory for tag and state and corresponding

addresses of both coherence and thread requests are sent to this block memory. After one

clock cycle, the tag and state information available at the output of the access stage that

is fed into the next stage, which is compare state.

In the compare stage, tag and state information becomes ready for both requests.

The information of being hit or miss of the corresponding line is also controlled in

parallel. The line is hit if it is valid and read tag matches with the tag of the requested

line.

The check stage consists of a cache controller (main FSM), a victim cache unit,

block memories for data, dirty bit and byte mask information. The FSM guarantees that

only one request is accepted to this stage at a time. This request can be waiting thread

request, coherence request or new thread request. If the waiting thread request does not

exist, a coherence request is prior than a new thread request. Normally, the coherence

request is always hit, however, it can also be miss in some specific situations. Coherence

requests that are miss are managed by using the victim cache. In the case of being hit, the

data is read from or is written to data BRAM. In the case of receiving a thread request

that is miss, this request is saved to waiting_thread_request register and a line_read

request is sent to the directory. After line data is obtained, it is again saved to the register

until the old line is flushed or abandoned if line replacement is required. The

corresponding line is then become hit. Until waiting_thread_request is completed,

coherence requests are maintained while new thread requests are stalled.

In the last stage, the retire stage, the response of both thread and coherence requests

are sent through slave thread send port and slave coherence send port, respectively.

34

Details about cache components and cache’s behavior after each request are given in the

following paragraphs.

Figure 4.4. The L1 cache pipeline

35

Each L1 cache contains four block RAMs (BRAMs) for keeping tag and state, dirty

bit, byte mask and data. Tags and ESI states are kept in tag and state BRAM for each

cache line. Tag size is determined according to the number of lines in the cache and the

line size. Two bits are enough to keep three different ESI states. A dirty bit is stored for

each cache line in dirty bit BRAM to specify lines that are written before. A byte mask is

kept for each word in byte mask BRAM. Dirty bytes in a word are indicated by these byte

masks to prevent false sharing errors. Finally, data corresponding to each word is kept in

each entry of data BRAM.

Each cache includes a special victim cache unit to manage flush, abandon, line_read

and flush_all_L1 requests. A victim cache unit prevents some hazards. This unit reads

words of a line from data BRAM when reading a whole line is required. The main cache

sends related index of data BRAM when sending flush or abandon request is required.

The victim cache unit reads the line data that is replaced and then store it to its victim

cache. In the case of flush request, byte masks of this line are also read and then they are

sent to the cache with the line data. If this flush request is sent due to receiving

flush_all_L1 request, the line data is not stored in the victim cache. In the case of abandon

request, the line data is only read to keep in the victim cache since the main cache does

not need to line data. The victim cache unit receives line_read request that is hit or miss.

This unit reads the line data from data BRAM and provides it to the main cache in the

case of hit. Otherwise, the line data should exist in the victim cache. In this case, the line

data is read from the victim cache and then it is sent to the main cache. The victim cache

unit also receives remote_store requests if these requests correspond to a line in the victim

cache. The victim cache unit sends the remote_store data to its victim cache.

Victim cache is a small fully associative cache. This cache keeps flushed and

abandoned lines and receives line_read and remote_store requests only related to these

lines. In the case of receiving line_read request, the victim cache reads the line data and

provides it to the victim cache unit. Then, the victim cache unit supplies the line data to

the main cache. In the case of receiving remote_store, the victim cache determines the

corresponding word of the line and updates it with new data. Acknowledgement

responses corresponding to flush and abandon requests are also transmitted to the victim

cache. Therefore, these lines become invalid in the victim cache.

36

Each L1 cache contains a find dirty line unit. This unit determines indexes of dirty

lines from dirty bits and provide them to the victim cache when a flush_all_L1 request is

received.

The thread unit sends a load request to a cache to read the whole word or just a

specific portion of a word such as a half word or a byte. This information is extracted

from specific bits of the opcode field as shown in Figure 4.5. First and second bits of the

opcode field indicates that the load request is a word, a half word or a byte. Right most

two bits of the address field indicates of which half word or byte of word is requested. A

mechanism inside the cache computes the requested data and fills the remaining bits with

zero or sign bit. These bits are sign bit if the leftmost bit of opcode is one and vice versa.

Figure 4.5. An opcode of a load request

A store request corresponds to a word, a half word or a byte. Specific bits of opcode

field indicate the type of a store request as demonstrated in Figure 4.6. The rightmost two

bits of the address field shows which portion of the word will be modified. A mechanism

inside the cache computes the byte mask to indicate the bytes to be written. The new data

is then accordingly stored to data BRAM by using this byte mask.

Figure 4.6. An opcode of a store request

37

Flush L2 request can be received from the thread, after all dirty L1 cache lines are

written back. Only one of the coherent L1 caches receives this request and it is responsible

for forwarding this request to its directory. An acknowledgement is sent to the thread after

receiving acknowledgement from the directory.

Flush_all_L1 request is sent by the thread when all thread requests of all L1 caches

are completed. After this request is received by the cache controller, the find dirty line

unit is activated. This unit determines dirty lines and sends the addresses of the lines to

the victim cache unit. The victim cache unit reads the corresponding words and the byte

masks of these lines and then transmits them to the cache. Therefore, all dirty lines are

written back to the L2 cache through the directory.

The flowchart that is illustrated in Figure 4.7 demonstrates how a load request is

handled in the cache when it receives a load request from its thread. If this load request

is hit, the requested data is computed and directly provided to the thread. Otherwise, a

line_read request is sent to the directory to obtain the line data. The load request is kept

in a register until receiving the line data from directory. Therefore, the cache controller

continues to accept coherence requests. After the line data arrives, this new data and the

state are stored in the corresponding BRAMs with new tag. Dirty bit and byte mask

BRAMs are also updated to indicate that this line is clean. A flush or an abandon request

is then sent to the directory if a replacement is required, in other words, the corresponding

cache entry contains another valid line. Flush request is sent if the current line is dirty.

Otherwise, the request is abandon. Flushed or abandoned line is stored in the victim cache

before it is sent to provide temporary storage of the victim line in order to improve the hit

latency. The cache continues to keep the request in register and coherence requests are

accepted if a flush or an abandon request has been sent. After the acknowledgement

response arrives, the cache sends new data to the thread.

38

Figure 4.7. The flowchart of a load request

39

The flowchart is depicted in Figure 4.8 to show how the cache handles a store

request that is received from its thread unit. When a store request is received from the

thread unit, the cache controller first controls that the line is hit or miss. In the case of

being hit, state of this line is determined by reading the state memory. A remote_store

request is sent to the directory if the line is in S state. The cache controller accepts

coherence requests until an acknowledgement is received from its directory. After an

acknowledgement is obtained or if the cache line is in E state, the new data is written to

the data BRAM. The dirty bit BRAM and byte mask BRAM are also updated to indicate

the dirty line and dirty bytes of this line, respectively. Then, an acknowledgement is sent

to the thread unit. In the case of being miss, same steps with the load miss processes,

which is given in Figure 4.7, are followed. After the line data is provided and replacement

operation is finished if flush or abandon is sent, the store hit process has been performed.

40

Figure 4.8. The flowchart of a store request

A cache receives line_read and remote_store request from its directory. Inherently,

these requests must be always hit since the directory knows correct set of owner caches.

However, they can be miss when a cache is replaced with a line and this request does not

arrive to the directory yet. After receiving remote_store request that corresponds to hit

line, the cache stores this data and then sends an acknowledgement to the directory. A

remote_store request does not impact corresponding byte mask and dirty bit. In the case

of being miss, the data is written to the victim cache without updating data BRAM. The

remote_store request can be sent to the victim cache unit even if it is hit in one special

condition. Assume that a thread request is stalled after a line_read and a flush or an

abandon request is sent, and the line_read response is not arrived yet. After the cache

41

receives remote_store request for the flushed or abandoned line, it becomes hit since the

new line data is not obtained yet. In this special condition, the cache should write this

remote_store data to both the data BRAM and the victim cache.

Line_read requests are always managed by the victim cache unit. In the case of

receiving line_read request to the line that is hit, this unit reads corresponding line from

data BRAM word by word while sending each read word to the slave coherence port.

This port collects these words and sends them to the directory as a line. In the case of

being miss, the line is read from the victim cache and is then sent to the directory.

4.2.1. Possible hazards in an L1 cache and their solutions

Although the compiler itself prevents most of the hazards, the cache is exposed to

some hazards that are discussed in this section. The compiler ensures that flush all and

flush L2 request are sent by threads after all requests are completely responded by all

caches. Hence these requests do not cause a hazard.

The compiler also ensures that any cache does not receive load or store requests

before previous dependent store request is completed. This property solves many

problems caused by receiving store request followed by dependent load or store request.

The line_read and remote_store requests are also independent from previous store request

since all caches do not receive dependent thread request until an acknowledgement to the

store request arrives. This assurance provided by the compiler prevents hazards caused

by receiving thread or coherence requests that is dependent to previous remote_store

request.

Load request that is followed by dependent load, store, line_read or remote_store

request does not cause a hazard. The cache responds these requests without requiring any

additional mechanism. This case is also valid for line_read requests. After receiving

line_read request, the cache responds all dependent thread and coherence requests.

Assume that the cache replaced a line and then received a load or store request for

this line. In this situation, the cache requests this line from the directory. In the case of

receiving line_read or remote_store request after replacement, these requests are handled

via victim cache. The line data is read from victim cache when this request is a line_read.

A remote_store data is written to the victim cache. Therefore, the cache supplies recent

data if it receives line_read request to the same line.

42

4.3. Implementation Details of Directories

Each directory is designed as a set associative cache to increase hit rate. Remind

that each address maps to a set and each set contains several locations called as way in a

set associative cache. Number of sets and number of ways are arbitrary parameters

determined by the compiler and each directory is configured with these parameters.

Directory is not pipelined for this initial version. A detailed explanation of the directory

and its design details are given in the following.

Each directory is responsible for all caches that are connected to it. These caches

can belong to different coherence domains. The directory is designed as a full-map

directory model. In full map directory schemes, presence bits (owner set) that indicate

owner caches for each block are stored in directory entries. This owner set includes caches

that belong to different coherence domain.

Each directory has three ports, slave coherence, master coherence and master L2.

Each port contains sending and receiving FIFOs, separately. Slave coherence port is

connected to the Coherence 1 network. The directory receives requests of the L1 caches

via this port. Master coherence port is used for sending requests to L1 caches via the

Coherence 2 network. The directory sends requests to L2 Cache via master L2 port.

Two type of BRAMs, tag BRAM and owner set BRAM, are contained in each

directory. Tag BRAM keeps tags for each directory entry. Owner set BRAM includes

presence bits for each cache and for each directory entry. Both BRAMs are replicated to

number of ways.

The directory first initializes all BRAMs, before accepting any request. The

directory reads all tag BRAMs to control that the requested line is inside one of them or

not. If it is not inside the ways, one of the empty ways is chosen to save the new tag. In

this model, we assume that an empty set is always available hence a replacement is not

required. After computing the set, the directory reads corresponding owner bits.

A directory receives some requests such as line_read, remote_store, flush, abandon

and flush L2 requests from L1 caches. A flush L2 request is directly sent to the L2 cache.

Flush and abandon requests are also sent to the L2 cache after updating the owner set.

Corresponding line data to line_read request is obtained from one of L1 caches or the L2

cache. Remote_store request is only transferred to sharer caches.

43

The directory reads the corresponding owner set, after receiving request from one

of the L1 caches. This owner set contains presence bits of all caches that is connected to

the directory even if they belong to different coherence domain. Coherence domain is

first determined to find owner set. The information about which coherence domain of the

requester cache belongs to is included in the request received. A mask is applied to the

owner set by the directory to extract the owner set bits of corresponding coherence

domain.

The directory first controls if this tag exists in one of the ways after receiving

line_read request. If this tag is not included in any way, it means none of the caches own

this line. In this case one of the empty ways is chosen to store the corresponding tag. The

owner set bits corresponding to this way are initially all zeros. Even if the tag is matched,

corresponding owner bits to coherence domain of the requester cache may be all zero. In

both cases, since the line is not read by one of the caches, this line_read request is

transferred to the L2 cache as demonstrated in Figure 4.9. This line data is sent in

exclusive state to the requester and the presence bit corresponds to this cache is set when

the line data response received from the L2 cache. In the case of receiving line_read

request to the line that owned by at least one cache in the coherence domain, the line_read

request is transferred to the one of these caches. In fact, the cache that is indicated by the

rightmost bit of owner set bits is chosen in the case of more than one owner. The line data

is sent to the requester cache in shared state and the owner set bit of the requester cache

is set when line data is received.

44

Figure 4.9. The flowchart of a line_read request coming to the directory

The processes after the directory receives a remote_store request from L1 caches is

shown in Figure 4.10. The directory first controls if any sharer cache is in the

corresponding coherence domain. The directory can then receive a remote_store request

to an exclusive line since shared state is sticky. Moreover, the directory ignores this

request and sends an acknowledgement to the requester if only the requester cache own

this line. Otherwise, the remote_store request is transferred to one of the owner caches

by the directory. This request is transmitted to another owner cache when an

acknowledgement response is received. This process is continued until the remote_store

request is transmitted to all sharers. An acknowledgement is sent to the requester cache

when last the acknowledgement to the remote_store request is received.

45

Figure 4.10. The flowchart of a remote_store request coming to the directory

4.4. Data Races and Their Solutions

Assume that presented design is implemented with N number of caches that are in

the same coherence domain and all of them are connected to the same directory.

Following paragraphs proves that the results are correct in all possible data races

situations even if the order of requests changes before arriving to the directory.

Assuming that initially none of the caches have the requested line, C1 and C2 receive

load or store request for this line, respectively. Line_read request of C2 arrives to the

directory before C1’s line_read request. The directory reads this line data from L2 cache

and then sends to the C2 in E state. When the line_read request of C1 cache arrives, the

46

directory forwards this request to C2 cache. C2 cache changes the state of this line as

shared and provides the line data. Then, the directory sends this line data in shared state

to the C2 cache. As a result, both caches have same data in the shared state, regardless of

the order.

This time, assume that initially C2 and C3 have the same line. Assume that C2

receives a store request and then sends a remote_store request to the directory. Then, C1

receives a load or store request to the same line and it sends line read request to the

directory. However, C1’s line_read request arrives to the directory before C2’s

remote_store request. The directory forwards this line_read request to the C2. C2 sends

newly written data to the directory instead of old data. After sending this data to C1, the

directory receives the remote_store request. Then, it sends the remote_store request to

both C1 and C3. Remind that compiler ensures that these requests do not overlap hence

the order becomes unimportant.

Assume that initially only C2 has the line and then C2 replaces this line with sending

flush or abandon request to the directory. Then, C1 sends line_read request to the

directory. However, C1’s line_read request arrives to the directory before C2’s flush or

abandon request. The directory forwards this line_read request to C2 since C2 is still

owner. C2 provides this line data from its victim cache and then the directory sends the

line data in shared state. Then, the flush or abandon request arrives to the directory. The

directory removes C2 among owners and also writes the line to the L2 cache if the request

is flush. Finally, an acknowledgement is sent to the C2 cache, therefore, C2 remove this

line from victim cache. Although C1 becomes exclusive owner of this line while it has the

line in shared state, this situation does not cause any problem.

Suppose that initially C1 and C3 have the line and C2 sends a line_read request to

the directory after it receives a load or store request. Then, C1 receives a store request and

then it sends remote_store request to the directory. However, C1’s request arrives to the

directory before C2’s request. The directory sends this remote store request to only C3

since C2 is not one of the owners yet. After the remote_store request is completed, the

directory receives the line_read request. The newly written data is received from C1 and

then it is sent to the C2 by the directory.

47

Assume that initially both C1 and C2 have the line. Assume that C1 and C2 receive

a store request and then send a remote_store request, respectively. However, C2’s remote

store request arrives to the directory before C1’s remote_store request. Then, the directory

transmits this request to C1. C1 stores remote_store data before the store request that is

received from thread. Then, the other remote_store request arrives to the directory and

then it is forwarded to C1. Therefore, C1’s stores remote_store data after storing the data

received from its thread unit. Remind that the compiler ensures that store requests are

independent hence the order of store requests are not important

Assume that initially C1 and C2 have the line. Suppose that C2 first replaces the line

and then sends flush or abandon request to the directory. Then, C1 stores to this line and

then sends remote_store request to the directory. However, C1’s remote_store request first

arrives to the directory, and then the directory forwards this request to C2. Although the

line is miss in C2, it exists in C2’s victim cache. Therefore, the line in victim cache is

updated with new data. The directory receives the flush or abandon request, after

completing remote_store request. If the request is flush, old data is sent to the L2 cache.

However, that does not emerge a problem since line_read requests is sent to the C1 instead

of the L2 cache.

Assume that initially only C1 has the line. This time, C2 sends a line_read request

and then C1 sends flush or abandon request. However, C1’s flush or abandon request

arrives to the directory before C2’s line_read request. After completing flush or abandon

request, the directory receives the line_read request. Since none of the caches have the

line, the line data is requested from the L2 cache. The directory then provides this data to

the cache C2 in E state.

Assume that initially C1, C2 and C3 have the line. Suppose that C2 and C1 sends a

remote_store and flush or abandon request to the directory, respectively. However, C1’s

flush or abandon request arrives first to the directory. After completing flush or abandon

process, the directory accepts the remote_store request. This request is only forwarded to

the C3 cache since C1 is not one of the owners anymore.

Assume that initially both C1 and C2 have the line and C2 and C1 caches send flush

or abandon requests, respectively, but C1’s flush or abandon request arrives first.

Therefore, the directory receives and completes C2’s flush or abandon request after

48

completing C1’s flush or abandon request. The order of flush or abandon requests is

immaterial.

49

5. VERIFICATION EFFORTS, EXPERIMENTAL RESULTS AND

DISCUSSION

5.1. Functional Verification Tests before Integration to Compiler

Before integrating cache coherent memory to the compiler, many tests have been

performed for verify functionality of proposed memory architecture. Simulation

environment implemented for these tests is illustrated in Figure 5.1. To perform these

tests, new components, such as test bench, thread emulator and L2 emulator, have been

added to design.

Figure 5.1. Simulation environment

Test bench unit is the top module that connects the coherent cache system to thread

emulator units and a L2 emulator unit. Test bench also contains expected and actual

memory footprints to verify the correctness of the proposed coherent cache system. These

memories are initially filled with same random data in the beginning of test. Actual and

expected memory are updated by the L2 and thread emulator units, respectively, during

the test. These two memory units are compared at the end of test. In the case of being

identical, simulation is successful meaning that coherent cache system works functionally

correct.

50

The thread emulator unit is responsible for generating requests and sending these

requests to the cache connected to itself as actual thread unit. In these requests, the opcode

field is randomly selected as load or store and as a word, a half word or a byte. Data field

and address field are also random to increase the coverage space of the infinitely many

request possibilities. The randomly generated requests are sent to the coherent L1 caches

after waiting during random clock cycle. In the case of receiving load request, this unit

also controls correctness of the cache’s response by comparing it with the response

obtained by the expected memory. This unit sends flush_all_L1 request after all thread

emulator units finish their load and store requests and all of these requests are responded.

This unit also sends flush_all_L2 request if it is responsible for sending this request.

The L2 emulator unit is another component that emulates L2 cache. These unit

responds line_read request by reading correct data from top unit. Flush and flush_all_L2

requests are also responded by sending acknowledgement response. These responses are

sent after waiting for a random cycle to verify that cycles between responses does not

matter in the correctness of the system.

The proposed memory architecture is tested with this simulation enviroment. These

tests are repeated by changing parameters such as number of requests, caches’ line size,

directory’s associativity and number of lines in caches and directory. The proposed

memory architecture passed these random verification tests successfully.

5.2. Verification Tests of the Proposed Memory Hierarchy Integrated to Compiler

Proposed memory architecture presented in previous sections are tested with

several algorithms written in C or C++ programming languages. These algorithms are

converted to parallel hardware with our HLS compiler. Obtained results by generated

hardware are verified by comparing the result of initial C or C++ program. The proposed

memory architecture has been successful in 51 different extensive tests. Tested algorithms

include some of the SPEC CPU2000 and SPEC CPU2006 benchmarks and some well-

known algorithms such as greatest common divisor (GCD) and fast Fourier transform

(FFT).

In all these tests, 2 L2 caches and 2 directories are generated as default. Each line

of the L1 cache has 8 word and number of lines is 32 so each L1 cache capacity is 1Kbyte.

Directories are 4-way set associative and number of sets is 64.

51

Number of generated coherent L1 caches depends on the test algorithm and they

are in the range of 2 to 39. Number of coherence domains also depends on the algorithm.

The generated number of L1 caches and coherence domains of selected tests are given in

Table 5.1.

Table 5.1. List of selected tests

Test Number of L1 Caches Number of Coherence Domains

176.gcc 13 2

179.art 5 1

188.ammp 2 1

197.parser 2 1

254.gap 2 1

256.bzip2 30 9

403.gcc 4 2

445.gobmk 18 2

450.soplex 5 2

458.sjeng 39 10

471.omnetpp 11 1

998.specrand 2 1

FFT 2 1

GCD 2 1

5.3. Greatest Common Divisor Test

In GCD test, greatest common divisor of numbers 21 and 1020 is computed. The

transfers during this test are shown in Figure 5.2. Both of L1 caches first receive a load

request to read different words of the same line. Then, both of them send a line_read

request to the directory_0 since all cache lines are initially miss. The request of L1_0

arrives first to the directory and then the directory forwards this request to L2_0. L2 cache

reads corresponding page and sends the line data to the directory_0. The directory_0

transfers this line data to the L1_0 in exclusive state and set this cache as one of the

owners of this line. L1_0 receives this exclusive line and provides thread requested word

that is the first number 21. Simultaneously, directory0 receives line_read request of L1_1.

52

Directory_0 transmits this request to L1_0 since this cache is one of the owners of this

line. L1_0 supplies corresponding line data to directory_0 and changes state of the line as

shared. Directory_0 transfers the line data in shared state to L1_1 and set this cache as an

owner of the line. L1_1 then receives the line data and supplies corresponding word to

thread and this word is value of second number 1020. Finally, L1_0 receives store word

request to a different line hence this line is miss. The cache sends a line_read request to

directory_0. The directory provides line data from L2_0 and sends it to the requestor

cache in exclusive state. The cache stores the new word after receiving line data and

subsequently sends an acknowledgement to the thread. This new word is actually result

of algorithm and the result value is 3. This cache writes the result to the memory via

directory_0 when a flush_all request arrives.

53

Figure 5.2. Transfers during GCD test

Table 5.2 shows the synthesis results of the GCD test. The synthesis is targeted to

a Virtex7 xc7vx330t-3ffg1157 FPGA chip and ISE Design Suite 14.7 synthesis tool is

used.

54

Table 5.2. Synthesis results for GCD test

Logic Utilization Used Available Utilization

Number of Slice Registers 38691 408000 9%

Number of Slice LUTs 35651 204000 17%

Number of fully used LUT-FF pairs 28375 45931 61%

Number of BRAM/FIFO 103 750 13%

5.4. Sjeng Test

458.sjeng test, one of the SPEC CPU2000 benchmarks, has the largest amount of

coherent L1 caches. In this test, 39 coherent L1 caches which belong to different 10

coherence domains are generated. Table 5.3 shows distribution of L1 caches.

Table 5.3. Distribution of L1 caches in 458.sjeng test

Coherence Domain Id of L1 Caches Coherence Domain Id of L1 Caches

0 38, 37 5 9, 8

1 36, 35 6 7, 6

2 34, 33 7 5, 4

3 32, 31, … ,13 8 3, 2

4 12, 11, 10 9 1, 0

Requests that are received to directories are analyzed in Table 5.4. Initially, several

L1 caches send line_read requests to directories and these lines are supplied by L2 caches.

Directory_0 receives 23 line_read requests. 15 of these requests supplied by L2_0 while

other requests are provided by coherent L1 caches. Directory_1 receives 3 line_read

request and all of them is sent to the L2_1. Directory_0 also receives 2 remote_store

request to the different words of same line and this line is shared by 6 caches.

55

Table 5.4. Analyze of requests that coming to directories

Directory

Id

Total Number

of Requests

Number of Line-read

Requests

Number of Remote-

store Requests Total Supplied

by L2

Supplied

by L1

0 25 23 15 8 2

1 3 3 3 0 0

458.sjeng test is also tried with banked organization described in previous chapters.

In this organization, 10 fully-associative L1 caches are used and these caches are

connected to 2 L2 caches. Capacity of caches is identical to coherent caches organization.

Number of line_read requests that arrives to L2 caches, in other words, number of misses

is given in Table 5.5. In this organization, total miss rate is smaller since memory is

partitioned. Besides, all of these requests are supplied by L2 caches since L1 caches do

not communicate with each other.

Table 5.5. Analyze of requests that coming to L2 caches in banked model

 Number of Line-read Requests

L2_0 10

L2_1 10

Frequencies are measured for both model with Virtex7 xc7vx330t-3ffg1157 FPGA

chip and ISE Design Suite 14.7. The frequency of cache coherent design is 261.433 MHz

while the frequency of banked cache design is 261.146 MHz.

Figure 5.3 and Figure 5.4. show overall circuit of generated designs with coherent

and banked model, respectively.

56

Figure 5.3. Generated design for Sjeng test with coherent caches

57

Figure 5.4. Generated design for Sjeng test with banked caches

58

5.5. Matrix Multiplication Test

One of the analyzed tests is matrix multiplication. Two NxN matrices in float type

are multiplied and the result is written into third matrix in this algorithm. Dimension of

matrix (N) is changed in original C code and the test is repeated. Requests received to

directories and the implementation details are analyzed in Table 5.6. Number of generated

coherent L1 caches is 4 and all caches belong to same coherence domain in test realized

by using matrices of size 2x2. In other remaining tests, using matrices of different sizes

4x4, 6x6, …, 14x14, number of L1 caches are 19 and they belong to 4 different coherence

domain. Number of line_read request increases while matrix dimension is increased,

since the algorithm becomes more complex. The ratio of number of line_read request

provided by L2 or L1 depend on dimension of matrices. At the end of algorithm, elements

of result matrix are stored and all of these stores correspond to shared lines. Therefore,

number of remote_store requests equals to number of elements in the matrix for all

dimensions.

Table 5.6. Analyze of requests and implementation details

Matrix

Dimension

Number

of L1

Number

of

Coherence

Domain

Number of line_read

requests

Number of

remote_store

requests
Total Supplied

by L2

Supplied

by L1

2x2 4 1 12 4 8 4

4x4 19 4 18 12 6 16

6x6 19 4 29 15 14 32

8x8 19 4 43 25 18 64

10x10 19 4 62 29 33 100

12x12 19 4 84 46 38 144

14x14 19 4 111 53 58 196

59

5.6. Advantages of Proposed Protocol

5.6.1. Advantages over write-invalidate policy

As mentioned before, write-update policy has advantages over write-invalidate

policy since it suffers from the ping-pong effect. This advantage is clearly observed in

experiments. For instance, all of the store requests correspond to shared lines in matrix

multiplication tests. In 2x2 matrix multiplication, all L1 caches receive a store request to

different words of same line. Then, all of these caches send remote_store requests to the

directory. The directory receives these requests one by one and sends the new word to

other sharer caches.

 Suppose that write-invalidate policy is implemented with same model. This time,

all caches send invalidate requests at the same time to the directory when they receive

store requests. After receiving one of the invalidate requests, the directory transfers this

request to other sharer caches. Then, the cache stores the word as an exclusive owner.

The directory receives other invalidate requests that is stalled in network and the directory

ignores these requests since these caches are not owner of this line anymore. However,

these caches still have store requests, and they should first read the line since the line is

not valid. The directory subsequently receives updated copy of the line from the cache

that previously stores and sends it to the requestor cache as shared line. The cache that

receives line_read sends invalidate request to be an exclusive owner. If the directory

receives other caches’ line_read requests before this invalidate request, this process

becomes more complicated. Finally, the directory should handle with at least 3 more

line_read requests. Occurrence of this situation increases as the size of the matrix

algorithm increases. Moreover, this situation can be frequently observed for all

algorithms due to locality.

5.6.2. Advantages of reading line from other L1 caches

In our model, line_read requests do not send to L2 if at least one of the other L1

caches has the line. The line transfer between caches provided by directory and accesses

to L2 caches are reduced as much as possible. In experiments, cache to cache line transfer

occurs frequently. These transfers provide advantages as compared to reading from L2

cache since tag and data of L2 cache are kept in DRAM.

60

5.6.3. Advantages over banked organization

 As mentioned previous chapters, alternative memory architecture to coherent

cache is banked memory model. This model designed as having at least miss ratio since

memory is partitioned and fully associative caches are employed. However, additional

networks are required between L1 caches and thread units and between L1 caches and L2

caches. In proposed coherent cache model, thread units and L1 caches are directly

connected to each other. The proposed model has advantages since additional network

delay emerges in other model. In sjeng tests, number of misses for both model is

computed. Note that all of these misses are compulsory miss. Total miss count of banked

and coherent models are 20 and 23, respectively. Besides, number of lines supplied by

L2 caches is 18 for coherent model, so it is less than banked model. This situation shows

that coherent model has another advantage for complex tests, since accessing to L2 cache

is much slower. In terms of frequency, cache coherent model has better frequency

although L1 caches and directories have complicated design, since Content-addressable

Memories (CAMs) are used in banked organization.

61

6. CONCLUSION

 In this thesis, a scalable memory architecture is implemented for a specific HLS

compiler. This compiler converts a single threaded software program to application

specific supercomputer and it requires a specific coherent cache system to decrease the

memory access latencies. The memory architecture is coherent and the coherence

protocol of this model is directory-based write-update. All of caches that share a line

update their own data with a new copy when one of them stores to this shared line in

write-update policy. A directory keeps set of owner caches, therefore, it always knows

L1 caches that have a specific line. Directory is external component and it can be

connected to either L2 caches or memory and number of directories is arbitrary.

Directories are responsible for responding requests coming from L1 caches and managing

the communication between them. In this model, L1 caches can belong to different

coherence domain and only the caches that are in same coherence domain are

communicated by directory. The synchronization between dependent memory operations

are managed by the compiler.

In this work, the protocol and its implementation details are presented. This model

is integrated to the compiler and the proposed memory system passed 51 tests. In these

tests, number of generated L1 caches can be different according to the test and maximum

number is observed as 39 in the Sjeng. The tests results show the performance potential

of the model. However, the model could not been extensively analyzed in terms of

performance since the proposed model is primitive. In next step, the model will be

optimized to show performance, e.g., by adding a few pipeline stages to the directory.

One of the other future works is specializing the coherent caches according to input

program by profiler feedbacks. In this way, for each algorithm, determining the most

suitable parameters such as number of lines in each cache, will be possible.

The proposed memory model can be integrated to the multicore CPU (Central

Processing Unit) system as a future work. However, some modifications are required such

as rearranging the requests between memory and multicore CPU systems and

implementing the memory consistency model.

62

REFERENCES

[1] Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction to parallel

computing: Design and Analysis of Algorithms. Redwood City, CA, USA:

Benjamin/Cummings Publishing Company.

[2] Koch, D., Hannig, F., and Ziener, D. (Eds.). (2016). FPGAs for Software

Programmers. Switzerland: Springer International Publishing.

[3] Moore, G. E. (1998). Cramming more components onto integrated

circuits. Proceedings of the IEEE, 86(1), 82-85.

[4] Herbordt, M. C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., and

DiSabello, D. (2007). Achieving high performance with FPGA-based

computing. Computer, 40(3), 50-57.

[5] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., and Zhang, Z. (2011).

High-level synthesis for FPGAs: From prototyping to deployment. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(4),

473-491.

[6] Ebcioglu, K., Kultursay, E., and Kandemir, M. T. (2015). Method and system for

converting a single-threaded software program into an application-specific

supercomputer. Washington, DC, USA: U.S. Patent and Trademark Office. U.S.

Patent No. 8,966,457.

[7] Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE

Transactions on Computers, 100(9), 948-960.

[8] Hennessy, J. L., and Patterson, D. A. (2011). Computer architecture: a quantitative

approach. San Francisco, CA, USA: Elsevier.

[9] Stenstrom, P. (1990). A survey of cache coherence schemes for

multiprocessors. Computer, 23(6), 12-24.

[10] Sorin, D. J., Hill, M. D., and Wood, D. A. (2011). A primer on memory consistency

and cache coherence. Synthesis Lectures on Computer Architecture, 6(3), 1-212.

[11] Jacob, B., Ng, S., and Wang, D. (2010). Memory systems: cache, DRAM, disk.

Burlington, MA, USA: Morgan Kaufmann.

[12] Papamarcos, M. S., and Patel, J. H. (1984). A low-overhead coherence solution for

multiprocessors with private cache memories. ACM SIGARCH Computer

Architecture News, 12(3), 348-354.

63

[13] Culler, D., Singh, J. P., and Gupta, A. (1998). Parallel computer architecture: a

hardware/software approach. Los Altos, CA, USA: Morgan Kaufmann.

[14] McCreight, E. M. (1985). The dragon computer system. Microarchitecture of VLSI

Computers, 83-101.

[15] Archibald, J., and Baer, J. L. (1986). Cache coherence protocols: Evaluation using

a multiprocessor simulation model. ACM Transactions on Computer Systems

(TOCS), 4(4), 273-298.

[16] Lamport, L. (1979). How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers, 9, 690-691.

[17] Tanenbaum, A. S., and Van Steen, M. (2007). Distributed systems: principles and

paradigms. Upper Saddle River, NJ, USA: Prentice-Hall.

[18] Goodman, J. R. (1983). Using cache memory to reduce processor-memory

traffic. ACM SIGARCH Computer Architecture News, 11(3), 124-131.

[19] Katz, R. H., Eggers, S. J., Wood, D. A., Perkins, C. L., and Sheldon, R. G. (1985).

Implementing a cache consistency protocol. ACM SIGARCH Computer

Architecture News, 13(3), 276-283.

[20] Tang, C. K. (1976). Cache system design in the tightly coupled multiprocessor

system. In: Proceedings of National Computer Conference and Exposition, New

York, USA: ACM, pp. 749-753.

[21] Censier, L. M., and Feautrier, P. (1978). A new solution to coherence problems in

multicache systems. IEEE Transactions on Computers, 12, 1112-1118.

[22] Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. (1990). The

directory-based cache coherence protocol for the DASH multiprocessor.

In: Proceedings of the 17th Annual International Symposium on Computer

Architecture, Seattle, Washington, USA: ACM, pp. 148-159.

[23] Heinrich, J. (1997). OriginTM and Onyx2TM Theory of Operations Manual,

Mountain View, CA, USA: Silicon Graphics, Inc. Document No: 007-3439-002.

[24] Thacker, C. P., Stewart, L. C., and Satterthwaite, E. H. (1988). Firefly: A

multiprocessor workstation. IEEE Transactions on Computers, 37(8), 909-920.

[25] Putnam, A., Bennett, D., Dellinger, E., Mason, J., Sundararajan, P., and Eggers, S.

(2008). CHiMPS: A C-level compilation flow for hybrid CPU-FPGA architectures.

In: Proceedings of International Conference on Field Programmable Logic and

Applications, Heidelberg, Germany: IEEE. pp. 173-178.

64

[26] Chung, E. S., Hoe, J. C., and Mai, K. (2011). CoRAM: an in-fabric memory

architecture for FPGA-based computing. In: Proceedings of the 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, Monterey, CA,

USA: ACM, pp. 97-106.

[27] Hung, A., Bishop, W., and Kennings, A. (2005). Symmetric multiprocessing on

programmable chips made easy. In: Proceedings of the Conference on Design,

Automation and Test in Europe, Munich, Germany: IEEE, pp. 240-245.

[28] Woods, D. (2009). Coherent shared memories for FPGAs. MSc Thesis, Toronto,

Canada: University of Toronto: Graduate Department of Electrical and Computer

Engineering.

[29] Lange, H., Wink, T., and Koch, A. (2011). MARC II: A parametrized speculative

multi-ported memory subsystem for reconfigurable computers. In: Proceedings of

the Conference on Design, Automation and Test in Europe, Grenoble, France:

IEEE, pp. 1-6.

[30] Mirian, V., and Chow, P. (2012). Managing mutex variables in a cache-coherent

shared-memory system for FPGAs. In: Proceedings of International Conference on

Field-Programmable Technology, Seoul, South Korea: IEEE, pp. 43-46.

[31] Mirian, V., and Chow, P. (2012). An implementation of a directory protocol for a

cache coherent system on FPGAs. In: Proceedings of International Conference on

Reconfigurable Computing and FPGAs, Cancun, Mexico: IEEE, pp. 1-6.

[32] Yang, H. J., Fleming, K., Adler, M., and Emer, J. (2014). LEAP shared memories:

Automating the construction of FPGA coherent memories. In: Proceedings of the

22nd Annual International Symposium on Field-Programmable Custom Computing

Machines, Boston, MA, USA: IEEE, pp. 117-124.

[33] Adler, M., Fleming, K. E., Parashar, A., Pellauer, M., and Emer, J. (2011). Leap

scratchpads: automatic memory and cache management for reconfigurable logic.

In: Proceedings of the 19th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Monterey, CA, USA: ACM, pp. 25-28.

[34] Patterson, D. A., and Hennessy, J. L. (2008). Computer Organization and Design:

The Hardware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann

Publishes Inc.

CURRICULUM VITAE

Name Surname : Gizem Yağan

Foreign Languages : English

Birth Place and Date : Eskişehir/ 17.05.1993

E-mail : gizemgulmez@eskisehir.edu.tr

Education:

 2019, MSc, Eskişehir Technical University, Graduate School of Sciences,

Electrical and Electronics Engineering Program

 2016, BSc, Anadolu University, Department of Electrical and Electronics

Engineering

Experience:

 2017- , Research Assistant, Eskisehir Technical University, Department of

Electrical and Electronics Engineering

 2016- , Researcher, Erendiz Superbilgisayar Company

Projects:

 2017-2018, Researcher, Erendiz Project, Design Feasibility for Compressed

Imaging Supercomputer

 2015-2016, Undergraduate Student Researcher, Decentralized Time-Delay

Controller Design for Time-Delay Systems, TUBITAK

 2015-2016, Undergraduate Student Researcher, Decentralized Control of

Systems with Commensurate and Uncommensurate Time-Delays, TUBITAK

Awards:

 Graduated as High Honor Student

Skills:

 FPGA, Verilog, VHDL, C programming, MATLAB

