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man Çerkezi in partial fullfilment of the requirement in ”Eskişehir Tech-

nical University Directive on Graduate Education and Examination” for the

Degree of Master of Science in Electrical and Electronics Engineering

Department has been examined and approved on 27/05/2019.

Member Title, Name and Surname Signature

Member (Supervisor): Assist. Prof. Dr. Cihan TOPAL .................
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ABSTRACT

AN OPTIMIZATION METHOD FOR

TWO-DIMENSIONAL LBP FEATURE VECTORS

Llukman ÇERKEZİ

Department of Electrical and Electronics Engineering
Eskişehir Technical University, Institute of Graduate Programs, May 2019

Supervisor: Assist. Prof. Dr. Cihan TOPAL

Local binary patterns (LBP) is considered to be one of the most discrim-

inative and computationally efficient descriptor for many computer vision

applications. Among numerous variants of LBP, there are also approaches

that construct 2-dimensional (2D) histograms to provide a better represen-

tation of texture patterns. Those approaches obtain final feature vector by

either concatenating marginal histograms of 2D distribution; or flattening

the whole distribution in a higher dimensional vector. The resulted feature

vector is a more compact one in the former scenario, however, the vector in

the latter can provide better accuracy.

In this thesis, we propose a method to make LBP features more discrim-

inative by optimizing projections of joint LBP distribution onto the marginal

histograms. In order to find a more efficient representation of the feature

vector, we seek for the least redundant marginal histograms of a joint LBP

distribution via optimizing several constraints. In this way, we aim to have

a more compact feature vector in contrast to the methods which flatten the

joint distribution without sacrificing accuracy. Experiments we perform on

five popular texture datasets show that the proposed method provides higher

recognition rates with the same size feature vectors and comparable results

even with lower dimensional vectors.

Keywords: Local Binary Pattern, Texture Recognition, Optimization.
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ÖZET

İKİ-BOYUTLU YİÖ ÖZNİTELİK VEKTÖRLERİ

İÇİN BİR OPTİMİZASYON YÖNTEMİ

Llukman ÇERKEZİ

Elektrik-Elektronik Mühendisliği Anabilim Dalı
Eskişehir Teknik Üniversitesi, Lisanüstü Eğitim Enstitüsü , Mayıs 2019

Danışman: Dr. Öğr. Üyesi Cihan TOPAL

Yerel İkili Örüntüler (YİÖ) bir çok bilgisayarlı görü uygulamasında en

ayırt edici ve hesaplama açısından etkin tanımlayıcılarından biri olarak nite-

lendirilir. Alanyazında bulunan çok sayıda YİÖ versiyonunun (biçimlerinin)

yanı sıra doku örüntülerinin daha iyi bir gösterim sağlaması için 2-boyutlu

(2B) histogram yaklaşımları mevcuttur. Bu yaklaşımda final öznitelik vek-

torü ya 2B dağılımının marjinal histogramlarını birleştirerek ya da 2B dağılı-

mını düzleştirerek tek bir vektör olarak elde edilir. Birinci durumda elde

dilen öznitelik vektörü daha kompakt iken ikinci durumda elde edilen öznite-

lik vektörü daha iyi performans göstermektedir.

Bu tezde birleşik YİÖ dağılımından elde edilen marjinal histogramlarını

optimize ederek (eniyileştirerek) daha iyi sınıflandırma sağlayan öznitelikler

elde edilmesi için bir eniyileme yöntemi geliştirilmiştir. Öznitelik vektörünün

daha etkili bir gösterimini bulmak amacıyla, çeşitli sınırlamalar optimize ed-

erek (eniyileştirerek) birleşik YİÖ dağılımının en az artıklık içeren marjinal

histogramları araştırılmıştır. Böylelikle, birleşik dağılımı düzleştirerek tek

bir vektöre indirgeyen yöntemlerin aksine doğruluk performansını düşürmey-

erek daha kompakt bir öznitelik vektörünün elde edilmesi hedeflenmiştir.

Beş farklı doku veri setlerinde yapılan deneylerde önerilen yöntemin aynı

boyutta olan öznitelik yaklaşımından daha yüksek tanıma performansı ve

hatta daha küçük boyutlu öznitelik vektörüyle kıyaslanabilir sonuçlar elde

ettiği görülmüştür.

Anahtar Sözcükler: Yerel İkili Örüntüler, Doku Tanıma, Optimizasyon.
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1. INTRODUCTION

In this chapter, an introduction on texture recognition will be given in gen-

eral. Afterwards, the scope of the thesis will be explained.

1.1 Texture Recognition

Texture classification is an active research area in computer vision due to

numerous applications e.g. object recognition, medical image analysis, in-

dustrial inspection, face analysis and biometrics, remote sensing, etc. A

texture is a visual pattern which complies with various statistical properties

such as regularity and uniformity of a certain shape. Analogous to other pat-

tern analysis applications, texture classification also consists of two stages,

i.e. feature extraction and recognition. However, since a texture comprises

of a repeating pattern of a certain structure with different levels of modal

variation, there is an amount of redundancy that feature extraction methods

should avoid. For this reason, the former stage has substantial importance in

texture recognition due to the fact that poor feature representation will not

provide good accuracy results regardless the employed classifier. Therefore

extracted features should be able to embrace intraclass variations caused by

illumination, rotation and scale, as well as it should provide a distinctive

representation for sufficient discrimination of individual classes.

Early feature extraction methods consist of various approaches. One

of the most popular approach is to utilize statistical analysis of textures for

feature extraction purpose [10, 11]. The Bag of Words method with its vari-

ants which represents the texture as histogram of discrete vocabulary local

features is also an efficient method [12]. Other important texture descriptors

include filter banks [13], random features [14], sparse descriptor like Scale In-

variant Feature Transform (SIFT) [15] and dense descriptor like Histogram

of Oriented Gradients (HOG) [16].

Ojala et al. [17] proposed Local Binary Pattern (LBP) as a texture

descriptor which is shown to be very efficient in variety of applications such

as face recognition, medical image analysis, texture classification and many

others [18]. A LBP feature vector is constructed by pattern encoding and

1



histogram accumulation steps [19]. In the näıve version of LBP, the center

pixel is compared to its neighbor pixels in order to form a bit sequence. Later,

that bit sequence is interpreted as a binary number and used to increase the

corresponding bin in an histogram. This operation is repeated for all pixels

in the image and thus the feature vector is obtained.

Numerous methods are proposed for construction of LBP histograms

to improve the accuracy. Among many others, a popular approach is to

utilize LBP information to obtain a multi-dimensional (usually 2D) joint

histogram [20]. Joint LBP histograms can be built by considering various

encoding strategies for different LBP types. Final feature vector is obtained

by either concatenating marginal histograms; or flattening the whole joint

histogram in a higher dimensional vector by concatenating all rows.

In this thesis, we propose a method to obtain more discriminative LBP

features by optimizing projections of 2D joint distribution onto the marginal

histograms. For this purpose, we perform several recognition tasks by opti-

mizing several attributes of feature distributions such as entropy, joint en-

tropy, mutual information, correlation and variance. In this way, we seek for

the least redundant axes in which the 2D histogram accumulation will be pro-

jected in order to have a better feature representation, hence higher accuracy.

Experiments we perform on popular texture datasets show that the optimized

LBP features outperform the recognition rates obtained by the naive method

with the same vector size. In addition, the proposed method achieves compa-

rable accuracy results even with the concatenated lower-dimensional vectors

compare to the higher-dimensional vectors obtained by histogram flattening.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Section 2 gives an overview of

related work including näıve LBP with its extensions, variants of LBP and

applications of LBP. In Section 3 we explain the proposed method in detail.

In Section 4 we present our experimental results and discuss our findings.

And in Section 5 we provide concluding remarks for the thesis study.
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2. RELATED WORK

In this Section, first we will provide detailed information about näıve LBP

including some of basic extensions (Section 2.1). In the Section 2.2 we explain

in detail a Completed Binary Pattern since it provides important concepts

which will be used in this work. Finally, we briefly explain other variants

of LBP (Section 2.3) and various applications (Section 2.4) where LBP has

been successfully applied.

2.1 Näıve LBP

A LBP code proposed by Ojala et al. [17] of a given pixel in an image is

calculated as follows:

LBPP,R =
P−1
∑
p=0

s(gp − gc)2p, s(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x ≥ 0

0, otherwise
(2.1)

where gc and gP are central pixel and corresponding neighbour pixel respec-

tively. Here P is the total number of involved neighbor pixels and R is the

radius from central pixel to neighbor pixels as it is shown in Fig. 2.1. The

näıve version LBPP,R has two main drawbacks, the dimension of feature vec-

tor is exponentially increased depending on neighbour pixel P which will lead

to sparse distributions and it is not robust against rotation. For this reason,

authors in [17] introduced the next variant of naive LBP code called Uniform
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Figure 2.1: LBP sampling scheme for P = 8 and R = 1.
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Rotation 𝑅 

Figure 2.2: The 14 different uniform patterns for sampling rate P = 4.

LBP.

The uniformity measure (U) value of LBP patterns is defined as number

of bitwise 0 − 1 changes, as follows:

LBP u2
P,R = U(LBP SP,R) = ∣s(gP−1 − gc) − s(g0 − gc)∣+

∣
P−1
∑
p=1

s(gp − gc) − s(gp−1 − gc)∣
(2.2)

If the value LBP u2
P,R is lower or equal then 2, the corresponding pattern

is considered uniform, otherwise the pattern will be considered non-uniform.

In general for different number of neighborhood P , there are P × (P − 1) + 2

different uniform patterns [21] (see Fig. 2.2). There are two main advantages

of uniform pattern over the naive LBP code. First, most of the uniform pat-

terns in natural images (textures) are uniform [17]. In our experiments car-

ried out in Outex TC 00010 [17], KTH-TIPS2b [22], UIUC [12], UMD [23],

Brodatz [24] datasets, using (P,R) = (8,1) uniform patterns account approx-

imately 85% of all patterns.
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Spot Spot/flat Line End Edge Corner 

Figure 2.3: Texture Primitives detected by uniform LBP.

Second, uniform patterns are more statistically robust than näıve ones,

i.e. more robust to noise. On the other hand, feature vector obtained using

uniform pattern is more compact since the number of possible of uniform

pattern labels is significantly lower [21] (see Table 2.1). Furthermore uniform

patterns can be regarded as micro-texton i.e., spots, flat areas, edges, edges

end, curves and so on (see Fig. 2.3).

Nevertheless, uniform patterns are not robust to rotation. To achieve

the rotation invariance the following condition must be satisfied:

LBP riu2P,R =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

∑
P−1
p=0 s(gp − gc), if U(LBP SP,R) ≤ 2

P + 1, otherwise
(2.3)

Notice that LBP riu2
P,R has range of [0, P + 1]. After the particular LBP

is calculated for each pixel in an image, the final feature vector is obtained

by histogram of corresponding LBP values (see Fig. 2.4). For more details

[17] and [21] provide comprehensive explanation about LBP.

The original version of LBP code has significant limitation since it cap-

tures small spatial support area. For (P,R) = (8,1) näıve LBP operator can

capture only local 3× 3 neighbourhood, for this reason large scale structures

are not considered. On the other hand, adjacent LBP codes are not totally

Table 2.1: A comparison of featrure vector dimension for naive LBP (LBPP,R),
uniform LBP (LBP u2P,R) and rotation invariant LBP (LBP riu2P,R ) for

different values of P .

P LBPP,R LBP u2
P,R LBP riu2

P,R

8 256 59 10

16 65536 243 18

24 16777216 555 26

5
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Figure 2.4: Example of an input texture (left), corresponding LBP image
(middle), and LBP histogram (right).

independent. Figure 2.5 displays two adjacent LBP2,1 patterns (the sub fig-

ure in the left). The second pixel is the centre pixel of first LBP pattern and

also the left neighbour pixel for the second LBP pattern. The third pixel also

is the right neighbour pixel for the first LBP Pattern and the centre pixel for

the second LBP pattern. Thus, these two pixels will be considered for two

different cases. Looking the Eq. 2.1 we observe the second and third pixels

take both gp and gc values for both cases. Analysing sign function s(x) in

Eq. 2.1 we conclude that the second and third pixels’ value can not be zero

at the same time. The example above shows that adjacent pixels’ of LBP

code have dependency on each other.

One solution to handle this problem is to use multiscale LBP, in other

words, combining N different LBP operators with varying P and R, so each

pixel will have N different LBP codes. In this way both micro and macro

pattern will be considered. The best way to obtain information is by taking

joint distribution of these codes. However the resulted distribution would be

in high dimension that results a sparse distribution even for small texture

size. For example, joint distribution of LBP u2
8,1, LBP

u2
16,2 and LBP u2

24,3 would

contain 59 × 243 × 555 ≈ 7 × 106 bins, which is impractical. One solution is

to take in consideration only marginal histograms. In this case, the statis-

tical independence of the outputs of the different LBP operators can not be
 

 

 

 

 

Figure 2.5: Two adjacent LBP2,1 neighbourhoods and an impossible
combination of codes. A dark blue disk means the gray level of

sample is lower than that of the centre.
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guaranteed. It is shown that using multi-scale analysis often increases the

discriminative power of the feature vector [17].

For the aforementioned facts, researchers have come up with different

strategies. Instead using only multi-scale LBPs they proposed also to use

different variants of LBPs within the same scale. The Completed Local

Binary Pattern [20] is the most well-known approach which will be explained

in following subsection.

2.2 Completed LBP

Guo et al. [20] created joint distribution of completed LBPs (CLBP), namely

three different type of LBP, i.e., LBP Sign, LBP Magnitude and LBP Center.

Note that LBP Sign is the same as naive LBP. CLBP Magnitude is calculated

as follows:

LBP M =
P−1
∑
p=0

s(∣gp − gc∣, c)2pwhere c =
1

P

P−1
∑
p=0

∣gp − gp∣ (2.4)

we can derive LBP M riu2
P,R exactly the same way as LBP riu2

P,R .

Note that the only difference between these two types of LBP is their

thresholds. They obtain the final feature vector in two different ways. In the

first one, they merge marginal histograms into one vector, and in the second

one, they flatten the entire multi-dimensional histogram into one higher-

dimensional vector.

Furthermore, they investigate why LBP SP,R can extract texture fea-

tures reasonable well. For this reason, they define local difference vector

[d0, d1, ..., dP−1] where dp = gp − gc. The components gc and gp are central

pixel and neighbors pixels respectively. The value dp can be formulated as

follows:

dp = sp ∗mp and

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

sp = sign(dp)

mp =∣ dp ∣
where sp =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

sp = 1, dp ≥ 0

−1, dp < 0
(2.5)

It can be seen that LBP SP,R utilizes only sp vector, where −1 value

is changed to 0. They investigate which component sp or mp convey more

information to represent the local difference vector dp. This can be verified by

7



reconstructing dp using only one component and checking the reconstruction

error. The difference vector dp can be well modelled by Laplace distribution

QL(g) = e
−g
λ

2λ depends on the image content. It is obvious that dp can not

be reconstructed using only one component. For this purpose there are used

some prior probability distribution of sp and mp.

They reconstruct local difference dp using only magnitude component

dp as follows:

dmp =mp ⋅ s
′

p (2.6)

where s
′

p is modelled by Bernoulli distribution. Similarly local difference dp

using only sing component sp as follows:

dsp =m
′

p ⋅ sp (2.7)

where mp can be set as the mean value of the magnitude component mp.

The local difference reconstruction errors for dsp and dmp are defined as:

Es = E[(dp − dsp)2] , Em = E[(dp − dmp )2] (2.8)

They showed both theoretically and experimentally that the reconstruction

error of Em is four times higher than Es. Thus, it is proven that sp namely,

LBP SP,R preserves more information than magnitude component mp.

2.3 Other Variants of LBP

In the literature there are many variants of LBP proposed by researchers for

different applications. This section introduces most well-known variants of

LBP.

Extended Local Binary Patterns (ELBP). Liu et al. [25], pro-

posed to use intensity and difference based local features. They use four

descriptors central-pixel intensity (CI-LBP), neighbours intensity (NI-LBP),

radial difference (RD-LBP) and angular-difference (AD-LBP). Inspired by

Guo et al. [20], they combine these descriptors jointly or hybridly. However

high dimensional feature vector caused by flattening multi dimensional joint

distribution may not be suitable for real time purposes.

Local Ternary Pattern (LTP). Tan et al. [26], propose a new de-

scriptor called LTP a generalization of LBP which is more discriminant and
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more robust to noise in uniform regions. Näıve LBP forms its binary pattern

by looking the difference between central pixel with neighbours pixels, thus

it is sensitive in near-uniform image regions. In order to handle this problem

authors proposed 3-level ternary code. If the difference between the center

and neighbour pixels is in the range ±t it is set to 0 value, and ones above

the value t assigned to −1 and finally ones below the threshold t assigned to

−1. The threshold t is user-specified. Since the generated output may have

three different values, they propose a coding scheme that splits each ternary

pattern into its positive and negative groups.

Rotation Invariant Local Phase Quantization (RILPQ). Ojan-

sivu at at. [27], proposed a descriptor named Local Phase Quantization

(LPQ) for texture classification that is robust to image blur. The descriptor

operates in Fourier phase domain computed locally in a window for every

pixel in image. Since phase information is used, the descriptor is robust

against uniform illumination changes. Rotation invariant version of LPQ

named RILPQ is generalized in [28].

Covariance and Local Binary Pattern Difference (COV-LPBD).

Hong et al., address the problem of combining LBP(-like) features with other

discriminative descriptors, since LBP is an index of discrete patterns [29].

They proposed descriptor named Covariance and LBP Difference (COV-

LBPD) which is able to capture intrinsic features in a compact manner.

Local Binary Count (LBC). Zhao et al. proposed a novel descriptor

called Local Binary Count (LBC) [30] . On the contrary to LBP which aims

to extract the local binary structure; LBC extract local binary difference

information and abandon the structural information. They also proposed

completed LBC (CLBC) scenario to enhance the performance of texture

classification.

Dominant Local Binary Pattern. Liao et al. proposed to com-

bine two sets of features i.e., dominant LBP (DLBP) and features extracted

using circularly symmetric Gabor filter response [31]. DLBP captures most

dominant patterns while Gabor-based features aim to give global textural

information.

Bianconi et al. investigate the effectiveness of Dominant LBP (DLBP)

[32]. They conclude that DLBP provides a significant compression rate and

retaining information about the patterns’ labels improves the discrimination

capability of DLBP.

9



Fathi and Nillchi aimed to utilize more efficient both and non-uniform

patterns [33]. Their proposed LBP variant uses a circular majority voting

filter and convenient rotation-invariant labeling scheme to obtain regular

uniform and non-uniform patterns. Thus proposed LBP variant becomes

more discriminative and robust against the noise.

Zhou et al. addressed the problem of uniform patterns in LBP code [34].

Uniform patterns ignore important texture information and are sensitive to

noise. Their method combines and classifies “non-uniform” local patterns

based on their structure and probability of occurrence and then becomes

more robust against noise.

discriminative Completed Local Binary Pattern (disCLBP).

Guo et al. presented a new learning framework to obtain discriminative pat-

terns which is formulated into three-layered model [35]. Their framework can

be combined with LBP-based approaches. In the first layer, most robust and

dominant patterns are learnt while in second layer the most discriminative

patterns with respect to each class are estimated. Finally in the last layer,

representation capability of features is maximized using patterns obtained in

the second layer.

Median Robust Extended Local Binary Pattern (MRELBP).

Naive LBP is very sensitive to image noise and suffers to capture micros-

tucture information. Liu et al. [36], proposed MRELBP which compares

regional image filter responses (median filter) rather than raw image inten-

sities in order to overcome above problems. Proposed descriptor is able to

capture both micro-structure and macro-structure of texture and it is robust

against to noise.

Scale Selective Local Binary Pattern. Guo et al. addressed the

scale problem of LBP [37]. They build histogram of pre-learned dominant

patterns after image is derived by Gaussian filter. Eventually, the maximal

frequency among scale space is considered as the scale invariant feature for

each pattern.

Improved Local Binary Pattern (ILBP). Lu et al. proposed a new

descriptor named ILBP where they discover an important group of primitives

such as lines, T-junctions and cross-intersections which forms a non-uniform

patterns [38]. They show that these primitives are also robust against mono-

tonic gray-scale variation and rotation and show better performance than

LBP.
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Pixel Based Local Binary Pattern Descriptor. Cote et al. in-

stead of representing the whole texture image with one LBP histogram, they

proposed to increase the classification accuracy trough a novel pixel-based

classification mechanism [39]. They assigned label of an image bu aggregat-

ing pixels label through a voting process. The proposed method suffers in

terms computational complexity since it makes pixel-based classification.

Completed Discriminative Local Features (CDLF). Zhang et al.

proposed an adaptive histogram accumulation algorithm (AHA) [19]. AHA

assigns different weights for each local region by means of local contrast infor-

mation. The contribution is high around the edges while it is low at the flat

regions. AHA technique could be applied on any encoding strategy including

joint distribution approach, however the improvements are not dramatic.

A comprehensive taxonomy about recent developments about LBP can

be found in [18] and [40]. There are also some recent studies about deep LBP

network inspired by well-known algorithm in deep learning named convolu-

tional neural network (CNN).

Local Binary Pattern Network. Xi et al. [41], proposed a novel

architecture named Local Binary Pattern Network (LBPNet). The architec-

ture is inspired by CNN topology whereas instead of constitutional kernels

LBP descriptor is replaced. One advantage of model is that avoids model

learning since LBP is off-the-shelf descriptor. Extensive experimental results

on FERET and LFW datasets show that proposed model achieve comparable

results to other unsupervised methods.

Local Binary Convolutional (LBC) Neural Networks. Juefei-Xu

et al. [42], motivated by LBP propose Local Binary Convolutional (LBC)

network. LBC layer is built up from set of fixed sparse pre-defined binary

convolutional filters. The LBP layer need to learn 9× to 169× less parameters

which make it more efficient in term of computation cost than standard

convolutional layers. They show both theoretically and experimentally that

LBC layers are good approximation of standard convolutional layers.

2.4 Applications of LBP

Texture analysis has a variety applications in computer vision. Since LBP

has shown efficient performance in texture classification, researches have pro-

posed different methods to use in other application domains. Thus LBP and
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To find the weights wj for the weighted χ2 statistic (Equation 6), the follow-
ing procedure was adopted: a training set was classified using only one of the
18*21 windows at a time. The recognition rates of corresponding windows on
the left and right half of the face were averaged. Then the windows whose rate
lay below the 0.2 percentile of the rates got weight 0 and windows whose rate
lay above the 0.8 and 0.9 percentile got weights 2.0 and 4.0, respectively. The
other windows got weight 1.0.

The CSU system comes with two training sets, the standard FERET training
set and the CSU training set. As shown in Table 2, these sets are basically subsets
of the fa, fb and dup I sets. Since illumination changes pose a major challenge
to most face recognition algorithms and none of the images in the fc set were
included in the standard training sets, we defined a third training set, called the
subfc training set, which contains half of the fc set (subjects 1013–1109).

Table 2. Number of images in common between different training and testing sets.

Training set fa fb fc dup I dup II Total number of images

FERET standard 270 270 0 184 0 736
CSU standard 396 0 0 99 0 501
subfc 97 0 97 0 0 194

The permutation tool was used to compare the weights computed from the
different training sets. The weights obtained using the FERET standard set gave
an average recognition rate of 0.80, the CSU standard set 0.78 and the subfc set
0.81. The pairwise comparison showed that the weights obtained with the subfc
set are likely to be better than the others (P(subfc > FERET)=0.66 and P(subfc
> CSU)=0.88).

The weights computed using the subfc set are illustrated in Figure 5 (b).
The weights were selected without utilising an actual optimisation procedure
and thus they are probably not optimal. Despite that, in comparison with the
nonweighted method, we got an improvement both in the processing time (see
Table 3) and recognition rate (P(weighted > nonweighted)=0.976).

The image set which was used to determine the weights overlaps with the fc
set. To avoid biased results, we preserved the other half of the fc set (subjects

(a) (b)

Fig. 5. (a) An example of a facial image divided into 7x7 windows. (b) The weights
set for weighted χ2 dissimilarity measure. Black squares indicate weight 0.0, dark grey
1.0, light grey 2.0 and white 4.0.

Figure 2.6: An example of facial image divided into 7 × 7 blocks (left). The
weights set for χ2 dissimilarity measure (right). The black windows
indicate zero impact while the white block indicate high impact [4].

its variants play an important role in biometric recognition, segmentation,

detection and face analysis [21].

Ahonen et al. [4], utilize LBP for face recognition purposes. Since the

dataset contain no rotational changes they utilized uniform LBPs. In order

to represent better the face, they propose to divide face into several blocks

called facial regions and extract for each region local binary patterns. They

construct final feature vector by concatenating the local LBP histograms.

So both statistics of the facial micro-patterns and their spatial locations are

represented. They also find out that some facial regions have more discrim-

inative information than others. So they assign for each region a weighted538 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

Fig. 6. Visualization of LBP and LDP (in 0 direction) representations.
(a) Original face image. (b) LBP. (c) The second-order LDP. (d) The
third-order LDP. (e) The fourth-order LDP.

2) LBP encodes the relationship between the central point and
its neighbors, but LDP encodes the various distinctive spa-
tial relationships in a local region and, therefore, contains
more spatial information.

D. Histogram of Local Derivative Pattern

In this paper, the LDP method presented in the above sub-
section is used for face representation. The procedure applies
a high-order local feature operator on each pixel to extract dis-
criminative features from its neighborhood. We model the distri-
bution of high-order local derivative pattern by spatial histogram
[1], [30], because it is more robust against variations in pose
or illumination than holistic methods [1]. Given a direction ,

are spatially divided into rectangular regions represented
by , from which spatial histograms
are extracted as

(13)

where is the LDP histogram feature extracted from
the local region . Note that the regions do not have to be
rectangular or of the same size. For example, spatial histograms
can be extracted from circular regions with different radiuses.

Many similarity measures for histogram matching have been
proposed. In this paper, histogram intersection is used to mea-
sure the similarity between two histograms

(14)

where is the histogram intersection statistic with
and . Equa-

tion (14) is used to calculate the similarity for the nearest
neighbor classifier. This measure has an intuitive motivation
in that it calculates the common parts of two histograms. Its
computational complexity is very low as it requires only simple
operations. It should be noted that it is also possible to use other
measures such as the chi-square distance [17].

III. EXTENDING HIGH-ORDER LOCAL PATTERN TO

FEATURE IMAGES

Similar to LBP, the LDP presented in Section II encodes
spatially varying patterns in local regions of an image. Concep-
tually, it is anticipated that extending the proposed high-order
local pattern description to feature images containing wider
range of appropriate discriminative features could achieve a
higher level of system performance. In this section, we investi-
gate the feasibility and effectiveness of extending LDP beyond
spatial domain to feature domain. In image processing and
object recognition, Gabor features are widely used image fea-
ture descriptors extracted by a set of Gabor wavelets (kernels)
which model the receptive field profiles of cortical simple cells
[5], [6], [15], [28], [29]. They can capture the salient visual
properties in an image, such as spatial characteristics, because
the kernels can selectively enhance features in certain scales
and orientations. Here, we extend LDP to Gabor feature images
to enhance the object representation capability. The Gabor
wavelets (kernels, filters) can be defined as follows [15]:

(15)
where , , ,

, , ,
is the frequency, is the orientation, , and

.
Let denote the Gabor features of an image, where

and are the orientation and scale of the kernel, respectively. Its
-order derivatives along 0 , 45 , 90 , and 135 directions at

can be written as

(16)

(17)

(18)

(19)

When , , , 45 , 90 , 135 is the same as
the original Gabor complex feature . The real and imag-
inary parts of the -order derivatives are denoted
as and , respectively. The -order
Gabor LDP, , in directions at is de-
fined as

(20)

Figure 2.7: Visualization of LBP and LDP outputs. (a) Input face image. (b)
Corresponding LBP Image. (c) The second-order LDP. The

third-order and fourth-order LDP in (d) and (e) respectively [5]
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Fig. 7. Overview of the proposed face recognition framework. 

4. Face representation 

With the proposed descriptors detailed in Section 3 , our face feature representation pipeline is similar to the one pro- 

posed by Ahonen et al. [1] , but incorporates a more sophisticated illumination normalization step as used by Tan and Triggs 

[35] . Fig. 4 illustrates the proposed extended set of features, and Fig. 7 summarizes the main operation for the face recog- 

nition pipeline. Histogram feature extraction from a face image involves the following steps: 

(1) Crop the face region and align the face by mapping the eyes to a canonical location with a similarity transform. 

(2) Photometrically normalize the cropped faces by utilizing the preprocessing sequence approach [35] . 

(3) Divide the face image into a non-overlapping grid with equally sized subregions. 

(4) For each subregion, apply a feature extraction operator ( e.g. ADLBP_S) to each pixel. Afterward, create a histogram of 

the feature values and concatenate these histograms into a single feature vector to represent the face image. 

4.1. Histogram features 

In order to incorporate more spatial information into the final descriptor, the proposed feature images were spatially 

divided into multiple non-overlapping regions and histograms were extracted from each region. More precisely, a face image 

I i is divided into 
√ 

w × √ 

w non-overlapping sub-regions, from each of which a sub-histogram feature of dimensionality m 

is extracted and is normalized to sum one. By concatenating these regional sub-histograms into a single vector, a final 

histogram feature h 

o 
i of dimensionality n = mw is obtained for face representation. We propose to compare three choices for 

the extracted features: The uniform (“u2”) patterns, all of the patterns (“full”), and the LDP scheme (“ldp”) as just discussed 

in Section 3.3 . 

Let h 

o 
1 i , h 

o 
2 i , h 

o 
3 i , h 

o 
4 i , h 

o 
5 i and h 

o 
6 i denote the histogram feature produced by descriptor LBP _ S , LBP _ M , ADLBP _ S , ADLBP _ M , 

RDLBP _ S and RDLBP _ M respectively, as illustrated in Fig. 7 . 

4.2. Dimensionality reduction and feature fusion 

The proposed extended set of LBP descriptors provide rich information, but need to be used to construct a powerful 

classifier. Recent methods frequently combine multiple local features such as LBP, LTP, SIFT, LPQ and Gabor [6,15,35] , where 

the actual combination strategy ranges from simple summing at the decision level to multiple kernel learning. For the 

specific problem of face recognition, linear projection models [28,37] and kernel LDA [35] have been used. We strived to 

show that the proposed radial and angular difference descriptors, which are designed to encode additional types of local 

texture information, do capture information complementary to that of intensity-based descriptors and thus, when combined, 

improve overall face recognition performance. 

A straightforward way to fuse the proposed features is to concatenate the feature vectors. Since the dimensionality n 

of a single histogram feature h 

o 
ki (k = 1 , . . . , 6) is already relatively high, a drawback of feature concatenation is the so- 

called “curse of dimensionality”, creating significant burdens on memory, storage and computation. Like other researchers 

[14,17,28,37] , we believe that strong correlations exist between the proposed features and that most of the dimensions carry 

redundant information, and hence further dimension reduction is necessary. 

The standard PCA technique selects a dimensionality reducing linear projection that maximizes the scatter of all pro- 

jected samples, which means the scatter being maximized is due not only to the interclass scatter that is useful for 

Figure 2.8: The pipeline of ELBP based face recognition algorithm [6].

parameter, in order to take this advantage (see Fig. 2.6). Authors in their an-

other study have proposed similar method and discussed possible extensions

[43].

Zhang et al. [5], propose a Local Derivative Pattern (LDP) for face

recognition purpose. LDP encodes directional pattern features based on local

derivative variations (see Fig. 2.7). Proposed descriptor outperforms LBP for

both face identification and verification scenarios under various conditions.

Liu et al. [6], use descriptor proposed by Zhuo et al. [34] for face

recognition task. They calculate six different LBP-like descriptors from each

facial region. Due to the high dimensionality they used whitened PCA to

produce more compact and discriminative features (see Fig. 2.8). Extensive

experiments carried out in three datasets show that their method outperforms

other well known systems. A comprehensive survey about LBP based method

for face recognition can be found in [44].

In [7], Shan et al. propose a method for learning discriminative LBP

bins using AdaBoost algorithm with application to facial expression recog-

nition (see Fig. 2.9). They validate experimentally that uniform LBP with

multiscale variations have explicit impact on performance.

Mu et al. [45], employ LBP as a region descriptor in the task of human

detection. They compare LBP descriptor with existing gradient based local

feature used in human detection and show that LBP is more discriminative.

Nevertheless, existing LBP method does not suit properly in the problem of

human detection due to its high complexity and lack of semantic consistency.

For this, they propose Semantic-LBP and Fourier-LBP and demonstrate the

effectiveness of these two variants over the traditional features for human

13



Figure 1: A face image is divided into sub-regions from which LBP histograms are ex-
tracted and concatenated into a single, spatially enhanced feature histogram.

Figure 2: The sub-regions selected by AdaBoost for each facial expression. From left to
right: Anger, Disgust, Fear, Joy, Sadness, and Surprise.

are their tolerance against monotonic illumination changes and their computational sim-
plicity. In the original LBP-based facial representation [1, 13], as shown in Figure 1,
face images are first equally divided into non-overlapping sub-regions to extract the LBP
histograms within each sub-region, which are then concatenated into a single, spatially
enhanced feature histogram. Possible criticisms of this method are that dividing the face
into a grid of sub-regions is somewhat arbitrary, as sub-regions are not necessary well
aligned with facial features, and that the resulting facial representation suffers from fixed
size and position of sub-regions. To address these, in [18, 12], by shifting and scaling a
sub-window over face images, many more sub-regions are obtained, and then Adaboost
[11] is adopted to select the most discriminative sub-regions in term of LBP histogram.
Figure 2 shows the selected sub-regions for each facial expression.

In most of the existing work, LBP histograms are extracted from local facial regions
as the region-level description, where the n-bin histogram is utilized as a whole. How-
ever, not all bins in the LBP histogram are necessary to contain useful information for
facial representation. It is helpful and interesting to have a closer look at the local LBP
histogram at the bin level, to identify the discriminative LBP-Histogram (LBPH) bins for
better facial representation. To our best knowledge, this problem has not been investi-
gated in the existing work. In this paper, we propose to learn discriminative LBPH bins
for the task of facial expression recognition. Adaboost (Section 3) is adopted to learn LBP
features at the bin level. Our experiments (Section 4) illustrate that the selected LBPH
bins provide a much more compact facial representation, reducing feature length greatly,
while producing better facial expression recognition performance. We experimentally
verify the validity of uniform patterns for facial representation from the point view of ma-
chine learning. We also evidently show that it is necessary to consider multiscale LBP for
facial representation. By adopting Support Vector Machine (SVM) with the selected mul-
tiscale LBPH bins, we obtain the recognition performance of 93.1% on the Cohn-Kanade
database, which is comparable to the best performance reported so far on the database.

Related Work — As a powerful means of texture description, LBP features have been

Figure 2.9: The sub-regions selected by AdaBoost for each facial expression.
From left to right: Anger, Disgust, Fear, Joy, Sadness, and

Surprise [7].

detection in INRIA human dataset.

Roy et al. [46], propose Haar Local Binary Patterns which exploits the

concepts of Haar feature and LBP for face detection in unfavourable image

conditions. Their proposed descriptor is robust against strong illumination

conditions, pose and background.

Wang et al. [8], propose similar approach by combining trilinear inter-

polated Histogram of Oriented Gradients (HOG) with LBP in the scenario

of human detection (see Fig. 2.10). The proposed method shows better

performance than other state-of-the-art methods in INRIA dataset.

Nanni et al. [47], provide a good comparison of recent variants of

LBP-like features in the context of bio-imaging applications. They pro-

pose also a novel descriptor named elongated quinary pattern which use

elliptical neighbourhood and quinary encoding. Proposed descriptor out-

performs naive LBP in three widely-used datasets each comprising different

bio-imaging problems.

Yi and Eramian in [9], employ LBP as a sharpness metric for robust

segmentation algorithm to separate in and out of focus image regions. Pro-

posed sharpness metric is based on observation that in the blurry regions local

image patches have significantly fewer certain local binary pattern compared

part based detectors [16, 19, 32] can alleviate the occlusion
problem to some extent by relying on the unoccluded part
to determine the human position.
In order to integrate the advantage of part-based detec-

tors in occlusion handling to the sliding-window detectors,
we need to find the occluded regions inside the sliding win-
dow when partial occlusion appears. Therefore, we have
to answer two key questions: 1)How to decide whether the
partial occlusion occurs in a scanning window? 2)If there
is partial occlusion in the sliding window, how to estimate
its location?
To infer the occluded regions when partial occlusions

happen, we propose an approach based on segmenting the
“locally distributed” scores of the global classification score
inside each sliding window.
Through the study of the classification scores of the lin-

ear SVM on the INRIA dataset [8, 9], we found an interest-
ing phenomenon: If a portion of the pedestrian is occluded,
the densely extracted blocks of Histograms of Oriented Gra-
dients (HOG) feature [8] in that area uniformly respond to
the linear SVM classifier with negative inner products.
This interesting phenomenon leads us to study the cause

behind it. The HOG feature of each scanning window
is constituted by 105 gradient histograms extracted from
7 × 15 = 105 blocks (image patches of 16 × 16 pixels).
By noticing the linearity of the scalar product, the linear
SVM score of each scanning window is actually an inner
product between the HOG feature (i.e. the concatenation of
the 105 orientation histograms) and a vector w, which is
the weighted sum of all the support vectors learned. (The
procedure of distributing the constant bias β to each block
is discussed in section 3.3.)
Therefore, the linear SVM score is a sum of 105 linear

products between the HOG blocks and the corresponding
wi, i = 1, . . . , 105. In our framework, these 105 linear
products are called responses of the HOG blocks. For an
ambiguous scanning window, we construct a binary occlu-
sion likelihood image with a resolution of 7 × 15. The in-
tensity of each pixel in the occlusion likelihood image is the
sign of the corresponding block response.
For each sliding window with ambiguous classification

score, we can segment out the possible occlusion regions by
running image segmentation algorithms on the binary oc-
clusion likelihood image. The mean shift algorithm [4, 5] is
applied to segment the binary image for each window. The
real-valued response of each block is used as the weight-
ing density of each pixel in the mean shift framework. The
segmented regions with a negative overall response are in-
ferred as an occluded region for scanning window. Some
examples of the segmented occlusion likelihood image are
shown in Figure 1. The negative regions are possible oc-
cluded regions.
Once the occluded regions are detected, we minimize the

occlusion effects by resorting to a part-based detector on the
unoccluded area. (See details in Section 3.3).
The contribution of this paper is three-fold: 1) Through

occlusion inference on sliding window classification re-
sults, we propose an approach to integrate the advantage
of part-based detectors in occlusion handling to the sliding-
window detectors; 2) An augmented feature, HOG-LBP,
which combines HOG with cell-structured Local Binary
Pattern (LBP) [3], is proposed as the feature, based on
which the HOG-LBP human detector achieves better per-
formance than all of known state-of-the-art human detectors
[8, 28, 18, 34, 25, 27, 20] on INRIA dataset (refer to section
3.1 and section 4 for details). 3) We simplify the trilinear
interpolation procedure as a 2D convolution so that it can
be integrated to the integral histogram approach, which is
essential to the efficiency of sliding window detectors.

2. Related Work

Wu and Nevatia [32, 33] use Bayesian combination to
combine the part detectors to get a robust detection in the
situation of partial occlusion. They assume the humans
walk on a ground plane and the image is captured by a cam-
era looking down to the ground. Stein [26] takes advantage
of occlusion boundaries to help high-level reasoning and
improve object segmentation. Lin and Tang [6] presents a
framework to automatically detect and recover the occluded
facial region. Fu et al. [23] proposed a detection algorithm
based on the occlusion reasoning and partial division block
template matching for tracking task.
Mu et al. [20] state that traditional LBP operator in [2]

does not suit the human detection problem well. We pro-
posed a different cell-structured LBP. The scanning window
are divided into non-overlapping cells with the size 16×16.
The LBPs extracted from cells are concatenate into a cell-
structured LBP, similar to the cell-block structure in [8]. As
shown in Figure 6(a) in the experiments section, the de-
tection results based on our cell-structured LBP are much
better than [20].

3. Approach

The human detection procedure based on the HOG-LBP
feature is shown in Figure 2. Our occlusion handling idea is
based on global and part detectors trained using the HOG-
LBP feature.

Input image

Compute
gradient at
each pixel

Convoluted
trilinear in-
terpolation

Integral
HOG

HOG-LBP
for each
scanning
window

SVM clas-
sification

Compute
LBP at

each pixel

Integral
LBP

Figure 2. The framework of HOG-LBP detector (without occlu-
sion handling).

33

Figure 2.10: The framework of HOG-LBP detector proposed by [8].
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Fig. 14. Results achieved by different blur detection methods. Final sharpness maps, prior to thresholding for segmentation, are shown.

Figure 14 shows the sharpness maps (prior to final
thresholding) for each algorithm for a few sample images.
Our method is superior than the others under various
background and blurs. We attribute errors mainly to the
shortcomings of the sharpness metrics used by local based
methods–Shi14, Vu, Su (Section II). Moreover, our detection
maps contain mostly high- or low-confidence values which
can be more correctly thresholded.

B. F-Measure

In another experiment, we used an image dependent adap-
tive threshold proposed by [1] for the segmentation with the
threshold defined as:

Tseg = 2

W × H

W∑

x=1

H∑

y=1

I (x, y) (21)

Figure 2.11: The visual results for defocus blur method proposed [9].

with those in sharp regions. Sharpness metric achieves comparative results

and is not computationally expensive (see Fig. 2.11).

Li et al. [48], exploit LBP for the classification of hyperspectral im-

agery at high spatial resolution. LBP is used to extract edges, corners, spots

along with global Gabor features and original spectral features. Finally these

descriptors are fused in one vector for pattern classification process. Exten-

sive experimental results show that proposed method outperforms traditional

methods.

Satpathy et al. [49], propose two sets on novel edge-texture descriptor

for object recognition i.e. Discriminative Local Binary Pattern and Discrimi-

native Ternary Pattern. These two descriptors are proposed by analysing the

weakness of LBP, LTP and RLBP. Proposed descriptors can capture contrast

information in images which is necessary for good representation of object

counters.
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3. Proposed Method

The initial step towards obtaining feature vector is to create a joint 2D

LBP histogram denoted as PS,M(s,m) from LBP Sriu2P,R and LBP M riu2
P,R ,

respectively. Thus the final feature vector is created either by concatenating

marginal histograms PLBP S and PLBP M as S M or by flattening PS,M(s,m)
into one vector S∖M (see Table 3.1 for abbreviations).

While the feature vector dimension of S M is linearly proportional to

the number of neighbors in the employed LBP pattern S∖M is quadratically

proportional to the number neighbors. In this thesis we aim to find whether

there is a more discriminative representation of the 2D LBP histogram which

both comprises of a lower dimensional vector and provides an enhanced ac-

curacy. For this purpose, we seek for a better pair of axes to project 2D

feature accumulation

3.1 Optimization with Principal Component Analysis

The most intuitive method for this is applying principal component analysis

(PCA) to the data and construct the final feature vector as the concatenation

of two axes which we obtain via PCA. PCA is a well-established machine

learning technique which compute new bases called principal components for

an input data and is often utilized for dimension reduction purposes.

On the contrary to many other applications, we do not use PCA for

dimension reduction. Instead, here we apply PCA to the 2D LBP distribution

to obtain least redundant marginal histograms and represent the new feature

by LBPPCA.

For a given image, we compute two different LBP features for each pixel

p:

pLBP = [LBP Sriu2P,R (p) LBP M riu2
P,R (p)]

T
(3.1)

where pLBP is a 2D vector consisting of 2 LBP values. Then, we construct H

matrix where its columns represent pLBP vectors of each pixel in the image:

H = [pLBP1 pLBP2 ... pLBPn] (3.2)
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where H is a 2 x n matrix and n is the number of pixels in the image.

Once we calculate the 2D LBP vector, we apply PCA to find principal

components in order to obtain a more discriminative representation for the

data. We apply transformation matrix P to H as the following:

PH = Q (3.3)

where Q is the transformed 2D LBP histogram. Our aim is to find P such

that the covariance matrix of Q denoted by SY is diagonal matrix. By

diagonalizing covariance matrix of Q, each variable will co-vary as little as

possible with other variables. Thus the redundancy would be diminished.

SY is easily computed as follows

SY = QQT

= (PH)(PH)T

= P (HHT )P T

(3.4)

here HHT is a symmetric matrix (HHT = (HHT )T ). We know that symmet-

ric matrix can be diagonalized by an orthogonal matrix of its eigenvectors,

as follows

HHT = EDET (3.5)

Table 3.1: List of Symbols and Notations

Feature Name Feature Type Constraint Symbol

LBP S M riu2
N,R Marginal - S M

LBP S∖M riu2
N,R Flatten - S∖M

LBP PCA S M riu2
N,R Marginal Cov matrix S MPCA

LBP PCA S∖M riu2
N,R Flatten Cov matrix S∖MPCA

LBP V S M riu2
N,R Marginal Variance S MV

LBP V S∖M riu2
N,R Flatten Variance S∖MV

LBPE S M riu2
N,R Marginal Entropy S ME

LBPE S∖M riu2
N,R Flatten Entropy S∖ME

LBP JE S M riu2
N,R Marginal Joint Entropy S MJE

LBP JE S∖M riu2
N,R Flatten Joint Entropy S∖MJE

LBPMI S M riu2
N,R Marginal Mutual Inf. S MMI

LBPMI S∖M riu2
N,R Flatten Mutual Inf. S∖MMI

LBPC S M riu2
N,R Marginal Correlation S MC

LBPC S∖M riu2
N,R Flatten Correlation S∖MC
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Figure 3.1: Traditional 2D LBP histogram and optimized 2D LBP histogram
with PCA and corresponding marginal histograms.

where D is a diagonal matrix and E is a matrix of its eigenvectors, i.e.

HHT . If we select P to be a matrix same as ET and since P −1 = P T holds

for orthogonal matrix, then

SY = P (HHT )P T

= P (P TDP )P T

= (PP −1)D(PP −1)
=D

(3.6)

Thus we can conclude that eigenvectors of HHT are principal compo-

nents of H. The eigenvector with the highest eigenvalues becomes the most

informative one. After obtaining Q, we built our new 2D histogram from it.

We obtain PCA based feature vectors S MPCA and S∖MPCA by concate-

nating the marginal histograms of our new 2D histogram and by flattening

the 2D histogram, respectively. Note that the transformation matrix P , i.e.

eigenvector matrix, is actually a 2D rotation matrix. So the corresponding

2D histogram is formed by rotating the original 2D LBP histogram by the

rotation matrix R of the rotation angle θ (see Eq. 3.7).

R(θ) =
⎡⎢⎢⎢⎢⎣

cos θ − sin θ

sin θ cos θ

⎤⎥⎥⎥⎥⎦
(3.7)

In this way, we compute principle axes via PCA and project 2D LBP accu-

mulation onto them instead of the original axes in an aim to obtain more
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discriminative feature vectors (see Fig. 3.1). Thus we intend to have higher

accuracy values without increasing the feature vector size. Although this

method intuitively seems reasonable to improve the accuracy, we could not

be able to verify this experimentally. When we investigate for a proper ex-

planation, we come up with a reason that PCA assumes the data is linearly

spread out in Euclidean space. In our experimental results we observe that

2D LBP distributions does not spread out linearly, hence we could not achieve

a higher accuracy.

3.2 Is Näıve 2D LBP Histogram The Most Efficient?

Once we obtain the experimental results and see the disappointing accuracies

for S MPCA and S∖MPCA, we are confronted the question if there is still

room for improvement in the 2D LBP histogram or not? We investigate the

answer by a very simple experiment where we take the 2D LBP distribution

and transform it by small steps of rotations as in the Eq. 3.8. Here R(θ) is

rotation matrix, P the original LBP pairs and Prot rotated LBP pairs.

R(θ)PS,M(s,m) = Prot,S,M(s,m) (3.8)

For each θ rotation angle, we obtain marginal histograms Pc(θ) of 2D distri-

bution via projection onto x and y axes. Finally, we attain final feature vector

as the concatenation of marginal histograms and run an entire texture recog-

nition task for each step. In Fig. 3.2 experimental results are shown for the

experiment we performed Brodatz, UMD, and UIUC datasets. It is clearly

seen in the figure that different projections can achieve better results up to

2%. For a specific example, UMD dataset using nearest neighbour classifier,

results for P = 8 and R = 1 gives 97.2% whereas it is only around 94.6%

for plain rotation at 0○. Therefore, we found that the answer for the above

question is yes, there is still potential to have a certain level of improvement

in 2D LBP distribution. In the next subsection, we explain the methods that

we investigate for exploiting the potential optimizations.

3.3 Proposed Optimization Method

After we experimentally validate that there is potential to optimize feature

vectors, we look for an alternative ways to transform the distributions so that
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Figure 3.2: Prospective optimization plot for LBP for three different datasets
using nearest neighbour (left) and support vector machines (right)
classifiers. The accuracy values indicate the success of recognition
task with respect to the corresponding rotation angle of 2D LBP

histogram. For this example we use LBP Sign-LBP Magnitude LBP
pair. LBP Sign and LBP Magnitude are defined as in equations 2.1

and 2.4 respectively.

we achieve better accuracies. Here is a very important detail to emphasize

that we rotate all 2D distributions obtained from different textures with the

same amount of rotation in advance of projection onto marginal histograms

in the experiment shown in Fig. 3.2. However, each texture distribution

might have a different amount of rotation and thus even higher classifica-
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tion accuracies could be achieved. Therefore, we optimize by minimizing

and maximizing several constraints, i.e. variance, correlation, entropy, joint

entropy and mutual information to perform simple specific transformations.

In the optimization process, on the contrary to the method that we ro-

tate 2D distributions by the angle obtained via PCA; we rotate 2D LBP dis-

tributions PS,M(s,m) by a certain angular step and project it onto marginal

histograms. Then we compute aforementioned constraints at each rotation

step and seek for a global maximum or minimum along the entire rotation

space. In this way, we can obtain feature vectors in different rotations for in-

dividual textures. Once we find an extrema, we construct the feature vector

by simply concatenating the marginal histograms (see Fig. 3.3 for pipeline

of proposed method).

With this optimization scheme, we actually insert an extra step in

between constructing the LBP histogram and obtaining the feature vector.

In that step, we simply rotate the 2D histogram PS,M(s,m) with a predefined

angular step until the concatenated marginal histogram hits a peak on the

selected constraint. This additional step of the feature extraction procedure

is symmetric, i.e. it is applied in both training and test stages. Thus the

algorithm would stop around the same rotation angle for identical textures

and obtain similar feature vectors.

In the rest of this section, firstly we explain the statistical concepts

employed in this thesis and then how we put in use them for optimization

purpose.
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Figure 3.3: Feature extraction pipeline for proposed method.
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3.4 Statistical Concepts

In order to proceed with optimization constraints we need first to revisit some

basic probabilistic and information theory concepts. First we will define a

random variable. Random variable is a function which assigns a real value

to each possible outcome of the experiment. In this thesis we will work only

with discrete random variable whose set of values is finite. Probability mass

function (PMF) of random variable X, denoted as pX , is the probability of

the event X = x:

p(x) = P ({X = x}) (3.9)

Note that the value of p(x) is always greater than or equal to 0 and

∑x p(x) = 1.

Besides knowing the PMF of X sometimes we want to summarize the

random variable X with a single representative number. The most common

one is expected value of random variable X defined as:

E[X] = µx =∑
x

xp(x) (3.10)

E[X] is the weighted average of the all possible values of X. For discrete ran-

dom variable X expected value is not necessary a value that can be expected

to turn up (for more properties on expected value see Table 3.2).

3.4.1 Variance

The second most representative quantity is the variance of random variable

X defined as:

V ar(X) = E[(x − µx)2] (3.11)

where µx is mean of discrete random variable X. Variance is the measure of

how spread discrete random variable X is around its mean (see Fig.3.4). The

expected value and the variance are most associated quantities with random

variable X (for more properties on variance see Table 3.2).

3.4.2 Covariance and correlation

The expected value and variance are quantities which provide information

only about random variable itself. There are cases where we want to un-
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derstand the relation between two random variables X and Y . One of the

quantities utilized for this purpose is covariance. The covariance of two ran-

dom variables X and Y is defined as follows:

cov(X,Y ) = E[(X − µx)(Y − µy)] (3.12)

where µx and µy are means of X and Y . For cov(X,Y ) = 0 we say that

X and Y are uncorrelated. Positive covariance value indicates that random

variable X and Y have same trend, while negative covariance value indicates

an opposite trend as shown in Fig. 3.5 (for more properties on covariance

see Table. 3.2).

The correlation coefficient ρ of two random variables X and Y is defined

as:

corr(X,Y ) = ρ = cov(X,Y )√
V ar(X)V ar(Y )

(3.13)

Correlation may be seen as normalized covariance within range of [−1,1].
High positive or negative correlation indicates high dependence between X

and Y while zero correlation implies independence between discrete random

variable X and Y . Bertsekas and Tsitsiklis [1] provide more detailed expla-

nation of above concepts.
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Figure 3.4: Two different distributions which have different variance values.
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Table 3.2: Some well known properties of statistical parameters. The proofs of
properties for expected value, variance and covariance can be found
in [1, 2], while for entropy and mutual information can be found in

[3].

Statical

Parameter
Properties Description

Probability

Mass Function

1. p(x) ≥ 0 Non-negativity Propertiy

2. ∑x p(x) = 1 Normalization Property

Expected Value
1. E[aX + b)] = aE[X] + b X,Y - random variables

2. E[X + Y ] = E[X] +E[Y ] a, b - constant

Variance

1. V ar(X) ≥ 0 X - random variable

2.V ar(X + a) = V ar(X) a - constant

2.V ar(aX) = a2V ar(X)

Covariance

1. cov(X,X) = V ar(X)
2.cov(X,Y ) = cov(Y,X) X,Y - random variable

3.cov(aX, bY ) = ab ⋅ cov(Y,X) a,b - constant

4. cov(X + a, Y + b) = cov(X,Y ))

Entropy and

Joint Entropy

1.H(X) ≥ 0 X,Y - random variable

2.Ha(X) = (loga b)Hb(X) Changing from one base to another

3.H(X,Y ) = H(X) +H(X ∣Y ) Chain Rule

4. H(X ∣Y ) ≠ H(Y ∣X) Conditional Entropy

Mutual

Information

1.I(X;Y ) = H(X) −H(X ∣Y ) X,Y - random variable

2. I(X;Y ) = H(Y ) −H(Y ∣X) Rel. Mutual Information- Entropy

3. I(X;Y ) = H(X) +H(Y ) −H(X,Y )
4. I(X;Y ) = I(Y ;X) Symmetry Property

5. I(X;Y ) ≥ 0 Non-negativity Property

6. I(X;X) = H(X) −H(X ∣X) = H(X)

3.4.3 Entropy and joint entropy

One of the most fundamental concept in information theory is entropy. En-

tropy of a discrete random variable X, denoted as H(X), is defined as fol-

lowing:

H(X) = −
N

∑
i=1
pX(xi) log2 pX(xi) (3.14)

 

x x x 

y y y  

x x x 

y y y 
 

x x x 

y y y 

Figure 3.5: Example of covariance values for three different random variables.
Positive (left), negative (middle) and, zero covariance (left).
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where pX(x) is probability density function of random variable X. The log

is to base 2 and entropy is expressed in bits (for change of basis property

see Table 3.2). Entropy can be thought as functional of random variable

X. Thus its value does not depend on the values taken by random variable

X but only on the probability values. H(x) is interpreted as a measure of

uncertainty of random variable X. The higher entropy of a discrete random

variable X, the less predictable it becomes.

The joint entropy which calculates entropy of pair of random variables

X and Y is defined as follows:

H(X,Y ) = −
N

∑
i=1

M

∑
j=1
pX,Y (xi, yj) log2 pX,Y (xi, yj) (3.15)

where P (X,Y ) is joint probability of random variables X and Y .

3.4.4 Mutual information

Another important concept in information theory which provides information

on how much one random variable tells about another random variable is

Mutual Information (MI). MI between two discrete random variables X and

Y is defined as follows:

I(X,Y ) =H(X) −H(X ∣Y )
=H(Y ) −H(Y ∣X)
=H(X) +H(Y ) −H(X,Y )

(3.16)

where H(X) is entropy of random variable X. H(X ∣Y ), conditional entropy,

is the uncertainty of discrete random variable X, given the observation of

discrete random variable Y . MI, for 2D distributions can also be calculated

as follows:

I(X,Y ) =
N

∑
j=1

N

∑
j=1
pXY (xiyj) log2(

pXY (xiyj)
pX(xi)pY (yj)

) (3.17)

where pX(x) and pY (y) are marginal distributions over discrete random

variable X and Y axes. MI is the reduction of discrete random variable X

after observing Y . High MI increases relevance between marginal histograms.

From Eq. 3.16 we conclude that mutual information of random variable

with itself is equal to entropy of the random variable. This is why entropy
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H(X,Y) 

H(X|Y) H(Y|X) I(X;Y) 

H(X) H(Y)

Figure 3.6: Relation between entropy and mutual information.

sometimes is referred as self-information [3]. The relation between entropy,

joint entropy and mutual is expressed in Venn diagram in Fig. 3.6.

3.5 Optimization Constraints

Here we explain how we employ our statistical constraints in our optimiza-

tion scenario. As explained in Section 3.3 we rotate 2D LBP distributions

PS,M(s,m) by certain angular step θ = 1, project it onto marginal histogram

and finally compute statistical constraint. After computing the statistical

constraint over entire rotation space we seek for θ which makes maximum

or minimum value of statistical constraint. Finally we construct the final

feature vector by concatenating the marginal histograms of rotated 2D LBP

distribution by θopt.

� Maximum Variance Constraint: look for projections based on fol-

lowing criteria:

argmax{θ ∣0≤θ≤π
2
} var(Pc(θ)) (3.18)

find θ where we obtain maximum variance of Pc(θ) where Pc(θ) is

concatenation of marginal histograms at rotation angle θ.

� Maximum Correlation Constraint: look for projections based on

following criteria:

argmax{θ ∣0≤θ≤π
2
} corr(PLBP S(θ), PLBP M(θ)) (3.19)

finding out θ where we obtain maximum correlation between marginal
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histograms PLBP S(θ) and PLBP M(θ).

� Maximum Entropy Constraint: We look for projections based on

following criteria:

argmax{θ ∣0≤θ≤π
2
} H(Pc(θ)) (3.20)

find θ where we obtain maximum entropy of Pc(θ) where Pc(θ) is con-

catenation of marginal histograms at rotation angle θ.

� Maximum Joint Entropy Constraint: We look for projections

based on following criteria:

argmax{θ ∣0≤θ≤π
2
} H(PS,M(s,m), θ) (3.21)

find out θ where we obtain maximum joint entropy of 2-D Histogram.

� Maximum Mutual Information Constraint: We look for projec-

tions based on following criteria:

argmax{θ ∣0≤θ≤π
2
} I(PLBP S(θ), PLBP M(θ)) (3.22)

find out θ where we obtain maximum mutual information between

marginal histograms PLBP S and PLBP M at rotation angle θ.
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4. Experimental Results

This section gives quantitative results on the performance of the proposed

method. We explain briefly classifiers employed in 4.1. Next, experimental

setup and comparative results are explained in sections 4.2 and 4.3 respec-

tively. Finally the discussion about performance analysis of proposed method

and execution time analysis are given in sections 4.4 and 4.5.

4.1 Classifiers

In this thesis we use two different classifiers, nearest neighbour and support

vector machine.

Nearest neighbour classifier is an example non-parametric models. At

the test phase, a test input is assigned to the label of training feature vector

which has minimum distance. The most common distance metric to use is

Euclidean distance. In this thesis instead of Euclidean distance we use Chi-

Square distance metric given in Eq. 4.1. This method is often called as

memory based learning.

dχ2(h, k) =
N

∑
i=1

(hi − ki)2
(hi + ki)

(4.1)

The main drawback with Nearest Neighbour Classifier is that they do

not work high dimensional feature vectors [50].

Another well-known classifier is support vector machine (SVM). Since

SVMs are more complicated and the aim of thesis is not focusing in details

of classifiers no further explanation will be given (for more detail see [51])

We use Dlib machine learning C++ library for implementation of SVM [52].

4.2 Experimental Setup

We perform experiments on five popular texture datasets, i.e. KTH-TIPS2b

[22], UIUC [12], UMD [23], Brodatz [24], and Outex TC 00010 [17]. More

detail on attributes of each dataset is provided in Table 4.1. In datasets where

test/train scenario is not predefined, we apply 10-fold cross validation.
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Table 4.1: List and properties of the employed datasets in the experiments. The
table presents the properties of each dataset including number of
classes, image resolutions, and variety of samples in view point,

scale and illumination changes.

Dataset
#

Class

#Samples

∖Class
Total

Samples
Sample

Size

Test/Train

Split?
View-
point Scale

Illumi-
nation

UIUC 25 40 1000 320 × 240 No Yes Yes No

UMD 25 40 1000 320 × 240 No Yes Yes No

KTH-TIPS2b 11 432 4.752 200 × 200 Yes No Yes Yes

Brodatz 111 9 999 215 × 215 No No Yes No

Outex TC10 24 180 4.320 128 × 128 Yes No No No

Outex TC 00010 dataset contains 24 different texture categories. Each

category includes 20 samples for each ten rotation angles (0○, 5○, 10○, 15○,

30○, 45○, 60○, 75○, and 90○). Texture samples with 0○ rotation angle are

utilized for train phase and other for test phase.

Texture samples in UMD and UIUC datasets share common properties

like significant scale and view point changes, arbitrary rotations, and uncon-

trolled illumination conditions. Additionally, textures in UMD dataset has

resolution four times of textures in UIUC dataset. KTH-TIPS2b dataset is

propsoed in extension of CURet dataset. Textures consist of four physical

samples, three different viewing angles, four illumination condition and nine

different scales.

Note that we need to do zero padding to 2D histograms in advance to

rotation to prevent them exceeding the range (see Table 4.2). Thus rotated

2D distributions will be larger than original ones. The implementation of

algorithm is carried out in C++ Language, Intel i5 3.5 GHz CPU, 16GB

RAM.

Table 4.2: 2D histogram dimensions for original and rotated versions

Parameters Histograms

(P,R)
Original

2D Histogram
Rotated

2D Histogram

(8, 1) 10 × 10 16 × 16

(16, 2) 18 × 18 26 × 26

(24, 3) 26 × 26 40 × 40
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4.3 Methods in Comparison

The naive methods build LBP feature vectors by either concatenating marginal

histogram S M or flattening the histogram in one vector S∖M . We optimize

naive 2D LBP feature vectors with respect to the proposed optimization

methods and take both flattened and concatenated forms of them into con-

sideration. Although it cannot help to improve the accuracy, we also provide

results based on axes obtained from PCA denoted by S MPCA. In order to

keep notations concise, we will use abbreviations in Table 3.1 in the rest of

the paper.

In the experiments, we examine the performances of all the methods

in three main comparisons. In the first experiment, we compare methods

which obtain the eventual feature histogram by concatenating two marginal

histograms and present the results in Table 4.4. In the second experiment,

we assess the flattening approach for the same 2D LBP methods and present

the results in Table 4.5. In Table 4.6 we combine best results from Table 4.4

and Table 4.5 in order to observe the overall results. For each dataset and

parameter, considering both classifiers, the highest score is shadowed, and

those scores which are within 1% of the highest are boldfaced. We evaluate

the methods with respect to the number of bold and highlighted scores across

all datasets for all parameters. In addition, we provided number of bold

results for each classifier and sort the entire list with respect to the total

number of bolds in order to demonstrate the eventual performance of each

method.

4.4 Performance Analysis

Table 4.4 and Table 4.5 provide the experimental results carried out in afore-

mentioned datasets for proposed methods and corresponding naive approach,

S M and S∖M , respectively.

In Table 4.4 we see that the optimized feature vectors with mutual in-

formation S MMI and variance S MV takes the first and the second places,

respectively, both with SVM classifier. The naive approaches without op-

timization follow them in the next two rows. S MPCA gives the lowest

scores for all metrics and in most cases performs even worse than S M

for all datasets. Other methods, i.e. S ME, S MJE, S MC , S MV pro-
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Figure 4.1: Confusion matrices for experimental results obtained in UIUC
dataset with näıve (left) and optimized (right) feature vectors of

(P,R) = (24,3).

vided a mediocre performance in the experiments. In terms of accuracy

rates, S MMI shows higher results for both classifiers in UIUC, UMD and

KTHTIPS2b datasets. For Brodatz dataset, S MMI is within 1% range for

all parameters in both classifiers while S M could provided the best result.

S MMI performed relatively worse in Outex TC10 dataset compare to its

performance in other dataset. Briefly, S MMI could provide the best or

within 1% accuracy results when combined with SVM classifier.

In Table 4.5 we present experimental results that we obtain via flatten-

ing 2D LBP distributions. According to the experiments, accuracy results

of S∖M and S∖MMI were very close. In the recognition tasks that we run

on five datasets and three different parameters for each; S∖M and S∖MMI

could perform within the 1% range to the best results for 9 and 8 times, re-

spectively. Similar to its performance in marginal feature vector generation

approach, S MPCA could not provide a promising recognition accuracy via

flattening. To summarize, S∖M and S∖MMI provided comparable results

where S∖M performed slightly better for the experiments that we construct

a higher dimensional feature vector compare to concatenating marginal his-

tograms.

We compare the results obtained from both feature vector construction

methods in Table 4.6 which is composed with the best results of Table 4.4

and Table 4.5. In addition, since dimensions of the feature vectors in this

table vary, we also provide them for all parameter settings to ease the com-

parison. In overall results, S MMI and S M performed the same, i.e. with

three #Best and nine #Bold scores both with SVM classifier. However,
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S MMI takes the first place due to the fact that it achieved the same result

with a significantly lower dimensional feature vector. When we investigate

the breakdown of the algorithms into datasets, we see that S MMI performs

better in UIUC, UMD and KTHTIPS2b datasets which have more challeng-

ing samples due to strong rotation and illumination changes.

In Fig. 4.1 and Fig. 4.2 we present confusion matrices of näıve and op-

timized feature vectors of S MMI for UIUC and UMD datasets, respectively.

Note that the confusion matrices obtained by the optimization method using

mutual information constraint look more tidy with a more stable diagonal

values compare to the näıve ones. In Table 4.7 several samples of textures are

shown with corresponding näıve and optimized 2D histograms, respectively.

4.5 Execution Time Analysis

Here we aim to give some information regarding the analysis of execution time

of the proposed method. For this purpose, we use textures from Brodatz [24]

dataset with dimension of 215 × 215.

In Table 4.3 there are shown average execution times in millisecond

for proposed methods including all immediate steps. As shown in table

LBP Sign have lower time cost that LBP Magn. This is from the fact that

LBP Magn needs one more step to calculate threshold than LBP Sign which

use central pixel as threshold value. As expected, the accumulation of his-

togram has the lowest time cost.
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Figure 4.2: Confusion matrices for experimental results obtained in UMD
dataset with näıve (left) and optimized (right) feature vectors of

(P,R) = (16,2).
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Table 4.3: Average execution times of the proposed method including all
intermediate steps. Time is given in milliseconds.

Method P R LBP Sign LBP Magn Histogram Optimization Total

S M 8 1 35.38 ms 39.08 ms 0.18 ms – 74.64 ms

S M 16 2 67.57 ms 74.34 ms 0.18 ms – 141.67 ms

S M 24 3 98.44 ms 107.98 ms 0.21 ms – 206.63 ms

S MMI 8 1 35.15 ms 39.04 ms 0.17 ms 0.99 ms 75.45 ms

S MMI 16 2 67.39 ms 73.94 ms 0.21 ms 2.07 ms 143.61 ms

S MMI 24 3 99.46 ms 108.73 ms 0.18 ms 3.32 ms 211.69 ms

S MV 8 1 36.60 ms 39.72 ms 0.18 ms 0.58 ms 77.08 ms

S MV 16 2 67.22 ms 74.32 ms 0.17 ms 1.31 ms 143.02 ms

S MV 24 3 98.03 ms 106.62 ms 0.25 ms 2.42 ms 207.32 ms

S ME 8 1 35.48 ms 39.43 ms 0.19 ms 0.71 ms 75.81 ms

S ME 16 2 67.75 ms 74.25 ms 0.18 ms 1.56 ms 143.74 ms

S ME 24 3 98.10 ms 106.72 ms 0.18 ms 2.70 ms 207.70 ms

S MJE 8 1 35.42 ms 39.08 ms 0.18 ms 0.96 ms 75.64 ms

S MJE 16 2 67.45 ms 73.96 ms 0.18 ms 1.99 ms 143.58 ms

S MJE 24 3 100.19 ms 108.64 ms 0.18 ms 3.29 ms 212.30 ms

S MC 8 1 35.34 ms 38.80 ms 0.17 ms 0.59 ms 74.90 ms

S MC 16 2 67.49 ms 73.96 ms 0.18 ms 1.32 ms 142.95 ms

S MC 24 3 98.37 ms 107.63 ms 0.20 ms 2.43 ms 208.63 ms

On the other hand S MV and S MC tend to have the lowest execution

time. This is expected since the calculation of variance and correlation re-

quire less operations than other statistical constraints. Mutual information

S MMI constraint despite its efficient performance tends to have slowest

computation speed among other constraints. This is due to fact that mu-

tual information requires to compute the entropy of marginal histograms

separately and compute the joint entropy. Nevertheless, taking in consider-

ation the computation time of other steps, mutual information constitutes

approximately 1.5% of total computation time. Generally, we conclude that

proposed optimization step has not a significant effect in total computation

time.
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Table 4.7: Several textures samples with corresponding näıve and optimized 2D
histograms, respectively.
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5. CONCLUSION

In this thesis we propose an improvement method for 2D LBP approaches to

extract more discriminative feature vectors. Our method suggests modifying

2D LBP distribution before constructing the feature vectors via either con-

catenation of marginal histograms or flattening the whole distribution. Prior

to the feature vector extraction, we seek for new projection axes by applying

a certain transformation and utilize several constraints i.e. variance, corre-

lation, entropy, joint entropy, and mutual information as stopping criteria.

We perform a comprehensive set of experiments including five well known

texture datasets in the literature and two classification methods.

According to the results, the proposed method outperforms näıve margi-

nal approach in almost all experiments and provides the best results for

mutual information as the optimization constraint. In addition, it provides

comparable results in flattening approach where the dimension of resulted

feature vectors are quadratically proportional to the size of 2D LBP his-

togram. In comparison of all marginal and flattening approaches, we see

that the optimized marginal features provide promising accuracy values even

with lower dimensional feature representations than higher dimensional vec-

tors obtained via flattening. In all experiments, we show that the proposed

optimization algorithm boosts the recognition accuracies regardless the num-

ber of neighbor and radius parameters of the employed LBP feature.
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� 2008-2011, Eqrem Çabej, Mathematics and Natural Sciences High School,

Vushtrri

Publications:

� Ll. Cerkezi, C. Topal. Gender recognition with uniform local binary

patterns. Signal Processing and Communications Applications Confer-

ence, 1-4, 2018.

� Ll. Cerkezi, G. Cetinel. RDWT and SVD based secure digital im-

age watermarking using ACM. Signal Processing and Communications

Applications Conference, 149-152,2016

� G. Cetinel, Ll. Cerkezi. Robust Chaotic Digital Image Watermarking

Scheme based on RDWT and SVD. Int. Journal of Image, Graphics

and Signal Processing, 8, 2016

� G. Cetinel, Ll. Cerkezi.Chaotic digital image watermarking scheme

based on DWT and SVD. Int. Conference on Electrical and Electronics

Engineering, 251-255, 2015


	ABSTRACT to.44em.
	ÖZET to.44em.
	TABLE OF CONTENTS 
	LIST OF TABLES
	LIST OF FIGURES to.44em.
	ABBREVIATIONS to.44em.
	INTRODUCTION
	Texture Recognition
	Thesis Organization

	RELATED WORK
	Naïve LBP
	Completed LBP
	Other Variants of LBP
	Applications of LBP

	Proposed Method
	Optimization with Principal Component Analysis
	Is Naïve 2D LBP Histogram The Most Efficient?
	Proposed Optimization Method
	Statistical Concepts
	Variance
	Covariance and correlation
	Entropy and joint entropy
	Mutual information

	Optimization Constraints

	Experimental Results
	Classifiers
	Experimental Setup
	Methods in Comparison
	Performance Analysis
	Execution Time Analysis

	CONCLUSION

