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ABSTRACT

AN OPTIMIZATION METHOD FOR
TWO-DIMENSIONAL LBP FEATURE VECTORS

Llukman CERKEZI

Department of Electrical and Electronics Engineering
Eskigehir Technical University, Institute of Graduate Programs, May 2019

Supervisor: Assist. Prof. Dr. Cihan TOPAL

Local binary patterns (LBP) is considered to be one of the most discrim-
inative and computationally efficient descriptor for many computer vision
applications. Among numerous variants of LBP, there are also approaches
that construct 2-dimensional (2D) histograms to provide a better represen-
tation of texture patterns. Those approaches obtain final feature vector by
either concatenating marginal histograms of 2D distribution; or flattening
the whole distribution in a higher dimensional vector. The resulted feature
vector is a more compact one in the former scenario, however, the vector in

the latter can provide better accuracy.

In this thesis, we propose a method to make LBP features more discrim-
inative by optimizing projections of joint LBP distribution onto the marginal
histograms. In order to find a more efficient representation of the feature
vector, we seek for the least redundant marginal histograms of a joint LBP
distribution via optimizing several constraints. In this way, we aim to have
a more compact feature vector in contrast to the methods which flatten the
joint distribution without sacrificing accuracy. Experiments we perform on
five popular texture datasets show that the proposed method provides higher
recognition rates with the same size feature vectors and comparable results

even with lower dimensional vectors.

Keywords: Local Binary Pattern, Texture Recognition, Optimization.
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OZET

IKI-BOYUTLU YIO OZNITELIK VEKTORLERI
ICIN BIR OPTIMIZASYON YONTEMI

Llukman CERKEZI

Elektrik-Elektronik Mithendisligi Anabilim Dah
Eskigehir Teknik Universitesi, Lisantiisti Egitim Enstitusi , Mayis 2019

Damgman: Dr. Ogr. Uyesi Cihan TOPAL

Yerel Ikili Oriintiiler (YIO) bir cok bilgisayarh gorii uygulamasinda en
ayirt edici ve hesaplama agisindan etkin tanimlayicilarindan biri olarak nite-
lendirilir. Alanyazinda bulunan ¢ok sayida YIO versiyonunun (bigimlerinin)
yani sira doku oriintiilerinin daha iyi bir gosterim saglamasi i¢in 2-boyutlu
(2B) histogram yaklagimlar1 mevcuttur. Bu yaklagimda final 6znitelik vek-
torii ya 2B dagiliminin marjinal histogramlarini birlestirerek ya da 2B dagili-
min1 diizlestirerek tek bir vektor olarak elde edilir. Birinci durumda elde
dilen oznitelik vektorii daha kompakt iken ikinci durumda elde edilen 6znite-

lik vektorii daha iyi performans gostermektedir.

Bu tezde birlesik YIO dagilhimindan elde edilen marjinal histogramlarin
optimize ederek (eniyilegtirerek) daha iyi simflandirma saglayan 6znitelikler
elde edilmesi icin bir eniyileme yéntemi gelistirilmistir. Oznitelik vektoriiniin
daha etkili bir gosterimini bulmak amaciyla, ¢esitli sinirlamalar optimize ed-
erek (eniyilegtirerek) birlegik YIO dagiliminin en az artiklik iceren marjinal
histogramlar1 aragtirilmigtir. Boylelikle, birlesik dagilhimi diizlegtirerek tek
bir vektore indirgeyen yontemlerin aksine dogruluk performansini diigiirmey-
erek daha kompakt bir oznitelik vektoriiniin elde edilmesi hedeflenmistir.
Beg farkli doku veri setlerinde yapilan deneylerde onerilen yontemin ayni
boyutta olan 6znitelik yaklagimindan daha yiiksek tanima performansi ve
hatta daha kiiciik boyutlu 6znitelik vektoriiyle kiyaslanabilir sonuclar elde

ettigi goriillmustiir.

Anahtar Sozciikler: Yerel Ikili Oriintiiler, Doku Tanma, Optimizasyon.
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1. INTRODUCTION

In this chapter, an introduction on texture recognition will be given in gen-

eral. Afterwards, the scope of the thesis will be explained.

1.1 Texture Recognition

Texture classification is an active research area in computer vision due to
numerous applications e.g. object recognition, medical image analysis, in-
dustrial inspection, face analysis and biometrics, remote sensing, etc. A
texture is a visual pattern which complies with various statistical properties
such as regularity and uniformity of a certain shape. Analogous to other pat-
tern analysis applications, texture classification also consists of two stages,
i.e. feature extraction and recognition. However, since a texture comprises
of a repeating pattern of a certain structure with different levels of modal
variation, there is an amount of redundancy that feature extraction methods
should avoid. For this reason, the former stage has substantial importance in
texture recognition due to the fact that poor feature representation will not
provide good accuracy results regardless the employed classifier. Therefore
extracted features should be able to embrace intraclass variations caused by
illumination, rotation and scale, as well as it should provide a distinctive

representation for sufficient discrimination of individual classes.

Early feature extraction methods consist of various approaches. One
of the most popular approach is to utilize statistical analysis of textures for
feature extraction purpose [10, [I1]. The Bag of Words method with its vari-
ants which represents the texture as histogram of discrete vocabulary local
features is also an efficient method [12]. Other important texture descriptors
include filter banks [13], random features [14], sparse descriptor like Scale In-
variant Feature Transform (SIFT) [I5] and dense descriptor like Histogram
of Oriented Gradients (HOG) [16].

Ojala et al. [I7] proposed Local Binary Pattern (LBP) as a texture
descriptor which is shown to be very efficient in variety of applications such
as face recognition, medical image analysis, texture classification and many

others [I8]. A LBP feature vector is constructed by pattern encoding and



histogram accumulation steps [I9]. In the naive version of LBP, the center
pixel is compared to its neighbor pixels in order to form a bit sequence. Later,
that bit sequence is interpreted as a binary number and used to increase the
corresponding bin in an histogram. This operation is repeated for all pixels

in the image and thus the feature vector is obtained.

Numerous methods are proposed for construction of LBP histograms
to improve the accuracy. Among many others, a popular approach is to
utilize LBP information to obtain a multi-dimensional (usually 2D) joint
histogram [20]. Joint LBP histograms can be built by considering various
encoding strategies for different LBP types. Final feature vector is obtained
by either concatenating marginal histograms; or flattening the whole joint

histogram in a higher dimensional vector by concatenating all rows.

In this thesis, we propose a method to obtain more discriminative LBP
features by optimizing projections of 2D joint distribution onto the marginal
histograms. For this purpose, we perform several recognition tasks by opti-
mizing several attributes of feature distributions such as entropy, joint en-
tropy, mutual information, correlation and variance. In this way, we seek for
the least redundant axes in which the 2D histogram accumulation will be pro-
jected in order to have a better feature representation, hence higher accuracy.
Experiments we perform on popular texture datasets show that the optimized
LBP features outperform the recognition rates obtained by the naive method
with the same vector size. In addition, the proposed method achieves compa-
rable accuracy results even with the concatenated lower-dimensional vectors

compare to the higher-dimensional vectors obtained by histogram flattening.

1.2 Thesis Organization

The rest of the thesis is organized as follows. Section [2| gives an overview of
related work including naive LBP with its extensions, variants of LBP and
applications of LBP. In Section |3| we explain the proposed method in detail.
In Section [4] we present our experimental results and discuss our findings.

And in Section 5| we provide concluding remarks for the thesis study.



2. RELATED WORK

In this Section, first we will provide detailed information about naive LBP
including some of basic extensions (Section. In the Sectionwe explain
in detail a Completed Binary Pattern since it provides important concepts
which will be used in this work. Finally, we briefly explain other variants
of LBP (Section and various applications (Section where LBP has

been successfully applied.

2.1 Naive LBP

A LBP code proposed by Ojala et al. [I7] of a given pixel in an image is

calculated as follows:

S 1, ifx>0
LBPpr= Yy, 5(gp~9c)2", s(x) = (2.1)
p=0 0, otherwise

where g. and gp are central pixel and corresponding neighbour pixel respec-
tively. Here P is the total number of involved neighbor pixels and R is the
radius from central pixel to neighbor pixels as it is shown in Fig. The
naive version LB Pp r has two main drawbacks, the dimension of feature vec-
tor is exponentially increased depending on neighbour pixel P which will lead
to sparse distributions and it is not robust against rotation. For this reason,

authors in [I7] introduced the next variant of naive LBP code called Uniform

Figure 2.1: LBP sampling scheme for P =8 and R=1.
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Figure 2.2: The 14 different uniform patterns for sampling rate P = 4.

LBP.

The uniformity measure (U) value of LBP patterns is defined as number

of bitwise 0 — 1 changes, as follows:
LBPp% =U(LBP-Spr) =s(gr-1 - gc) = (90 = g )|+

P (2.2)
| ; 5(gp - gc) - S(Qp—l _gc)l

If the value LBP];?R is lower or equal then 2, the corresponding pattern
is considered uniform, otherwise the pattern will be considered non-uniform.
In general for different number of neighborhood P, there are P x (P —-1) +2
different uniform patterns [21] (see Fig. . There are two main advantages
of uniform pattern over the naive LBP code. First, most of the uniform pat-
terns in natural images (textures) are uniform [I7]. In our experiments car-
ried out in Outex TC_00010 [17], KTH-TIPS2b [22], UIUC [12], UMD [23],
Brodatz [24] datasets, using (P, R) = (8,1) uniform patterns account approx-
imately 85% of all patterns.
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Figure 2.3: Texture Primitives detected by uniform LBP.

Second, uniform patterns are more statistically robust than naive ones,
i.e. more robust to noise. On the other hand, feature vector obtained using
uniform pattern is more compact since the number of possible of uniform
pattern labels is significantly lower [21] (see Table . Furthermore uniform
patterns can be regarded as micro-texton i.e., spots, flat areas, edges, edges

end, curves and so on (see Fig. [2.3]).

Nevertheless, uniform patterns are not robust to rotation. To achieve

the rotation invariance the following condition must be satisfied:

25;01 s(gp -gc), if U(LBP,SP’R) <2

LBPp = { (2.3)

P+1, otherwise

Notice that LBP} has range of [0, P+ 1]. After the particular LBP
is calculated for each pixel in an image, the final feature vector is obtained
by histogram of corresponding LBP values (see Fig. [2.4). For more details
[T7] and [21] provide comprehensive explanation about LBP.

The original version of LBP code has significant limitation since it cap-
tures small spatial support area. For (P, R) = (8, 1) naive LBP operator can
capture only local 3 x 3 neighbourhood, for this reason large scale structures

are not considered. On the other hand, adjacent LBP codes are not totally

Table 2.1: A comparison of featrure vector dimension for naive LBP (LBPP, R),
uniform LBP (LBP}?R) and rotation invariant LBP (LBP]TDT}‘%Q) for
different values of P.

P | LBPpy | LBPY, | LBPyY?

8 256 99 10
16 65536 243 18
24 | 16777216 955 26
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Figure 2.4: Ezample of an input texture (left), corresponding LBP image
(middle), and LBP histogram (right).

independent. Figure displays two adjacent LB P, patterns (the sub fig-
ure in the left). The second pixel is the centre pixel of first LBP pattern and
also the left neighbour pixel for the second LBP pattern. The third pixel also
is the right neighbour pixel for the first LBP Pattern and the centre pixel for
the second LBP pattern. Thus, these two pixels will be considered for two
different cases. Looking the Eq. we observe the second and third pixels
take both g, and g. values for both cases. Analysing sign function s(z) in
Eq. we conclude that the second and third pixels’ value can not be zero
at the same time. The example above shows that adjacent pixels’ of LBP

code have dependency on each other.

One solution to handle this problem is to use multiscale LBP, in other
words, combining N different LBP operators with varying P and R, so each
pixel will have N different LBP codes. In this way both micro and macro
pattern will be considered. The best way to obtain information is by taking
joint distribution of these codes. However the resulted distribution would be
in high dimension that results a sparse distribution even for small texture
size. For example, joint distribution of LBP{}, LBP}, and LBP;}; would
contain 59 x 243 x 555 ~ 7 x 106 bins, which is impractical. One solution is
to take in consideration only marginal histograms. In this case, the statis-

tical independence of the outputs of the different LBP operators can not be

=

Figure 2.5: Two adjacent LBPs 1 neighbourhoods and an impossible
combination of codes. A dark blue disk means the gray level of
sample is lower than that of the centre.



guaranteed. It is shown that using multi-scale analysis often increases the

discriminative power of the feature vector [17].

For the aforementioned facts, researchers have come up with different
strategies. Instead using only multi-scale LBPs they proposed also to use
different variants of LBPs within the same scale. The Completed Local
Binary Pattern [20] is the most well-known approach which will be explained

in following subsection.

2.2 Completed LBP

Guo et al. [20] created joint distribution of completed LBPs (CLBP), namely
three different type of LBP, i.e., LBP_Sign, LBP_Magnitude and LBP_Center.
Note that LBP _Sign is the same as naive LBP. CLBP_Magnitude is calculated

as follows:

P-1 1 P-1
LBP_M =" s(lgy - gc|, ¢)2P where c = 2 > 195 = 9l (2.4)
p=0

p=0

we can derive LBP_Mp'i? exactly the same way as LBPp/.

Note that the only difference between these two types of LBP is their
thresholds. They obtain the final feature vector in two different ways. In the
first one, they merge marginal histograms into one vector, and in the second
one, they flatten the entire multi-dimensional histogram into one higher-

dimensional vector.

Furthermore, they investigate why LBP_Sppr can extract texture fea-
tures reasonable well. For this reason, they define local difference vector
[do,dy, ...,dp_1] where d, = g, — g.. The components ¢. and g, are central
pixel and neighbors pixels respectively. The value d, can be formulated as

follows:

sy = sign(d sp=1,d, >0
p = sign(dy) where sp{p g (2.5)

dp =8, *my and
-1,d, <0

my =| dp |

It can be seen that LBP_Spr utilizes only s, vector, where —1 value
is changed to 0. They investigate which component s, or m, convey more

information to represent the local difference vector d,. This can be verified by



reconstructing d,, using only one component and checking the reconstruction

error. The difference vector d, can be well modelled by Laplace distribution
-9

Qr(g) = % depends on the image content. It is obvious that d, can not

be reconstructed using only one component. For this purpose there are used

some prior probability distribution of s, and m,,.

They reconstruct local difference d,, using only magnitude component
d, as follows:
(2.6)

mo_ .
dy," =my- s,

where s, is modelled by Bernoulli distribution. Similarly local difference d,,

using only sing component s, as follows:

!

dyy =m,, - 8p (2.7)

where m,, can be set as the mean value of the magnitude component m,,.

The local difference reconstruction errors for d; and dgl are defined as:
E, = E[(d,-d3)?*] . En=E[(d,-d))*] (2.8)

They showed both theoretically and experimentally that the reconstruction
error of £, is four times higher than F;. Thus, it is proven that s, namely,

LBP_Spp preserves more information than magnitude component m,,.

2.3 Other Variants of LBP

In the literature there are many variants of LBP proposed by researchers for

different applications. This section introduces most well-known variants of
LBP.

Extended Local Binary Patterns (ELBP). Liu et al. [25], pro-
posed to use intensity and difference based local features. They use four
descriptors central-pixel intensity (CI-LBP), neighbours intensity (NI-LBP),
radial difference (RD-LBP) and angular-difference (AD-LBP). Inspired by
Guo et al. [20], they combine these descriptors jointly or hybridly. However
high dimensional feature vector caused by flattening multi dimensional joint

distribution may not be suitable for real time purposes.

Local Ternary Pattern (LTP). Tan et al. [26], propose a new de-

scriptor called LTP a generalization of LBP which is more discriminant and



more robust to noise in uniform regions. Naive LBP forms its binary pattern
by looking the difference between central pixel with neighbours pixels, thus
it is sensitive in near-uniform image regions. In order to handle this problem
authors proposed 3-level ternary code. If the difference between the center
and neighbour pixels is in the range +t it is set to 0 value, and ones above
the value t assigned to —1 and finally ones below the threshold ¢ assigned to
—1. The threshold t is user-specified. Since the generated output may have
three different values, they propose a coding scheme that splits each ternary

pattern into its positive and negative groups.

Rotation Invariant Local Phase Quantization (RILPQ). Ojan-
sivu at at. [27], proposed a descriptor named Local Phase Quantization
(LPQ) for texture classification that is robust to image blur. The descriptor
operates in Fourier phase domain computed locally in a window for every
pixel in image. Since phase information is used, the descriptor is robust
against uniform illumination changes. Rotation invariant version of LPQ
named RILPQ is generalized in [28].

Covariance and Local Binary Pattern Difference (COV-LPBD).
Hong et al., address the problem of combining LBP(-like) features with other
discriminative descriptors, since LBP is an index of discrete patterns [29].
They proposed descriptor named Covariance and LBP Difference (COV-

LBPD) which is able to capture intrinsic features in a compact manner.

Local Binary Count (LBC). Zhao et al. proposed a novel descriptor
called Local Binary Count (LBC) [30] . On the contrary to LBP which aims
to extract the local binary structure; LBC extract local binary difference
information and abandon the structural information. They also proposed
completed LBC (CLBC) scenario to enhance the performance of texture

classification.

Dominant Local Binary Pattern. Liao et al. proposed to com-
bine two sets of features i.e., dominant LBP (DLBP) and features extracted
using circularly symmetric Gabor filter response [31]. DLBP captures most
dominant patterns while Gabor-based features aim to give global textural

information.

Bianconi et al. investigate the effectiveness of Dominant LBP (DLBP)
[32]. They conclude that DLBP provides a significant compression rate and
retaining information about the patterns’ labels improves the discrimination
capability of DLBP.



Fathi and Nillchi aimed to utilize more efficient both and non-uniform
patterns [33]. Their proposed LBP variant uses a circular majority voting
filter and convenient rotation-invariant labeling scheme to obtain regular
uniform and non-uniform patterns. Thus proposed LBP variant becomes

more discriminative and robust against the noise.

Zhou et al. addressed the problem of uniform patterns in LBP code [34].
Uniform patterns ignore important texture information and are sensitive to
noise. Their method combines and classifies “non-uniform” local patterns
based on their structure and probability of occurrence and then becomes

more robust against noise.

discriminative Completed Local Binary Pattern (disCLBP).
Guo et al. presented a new learning framework to obtain discriminative pat-
terns which is formulated into three-layered model [35]. Their framework can
be combined with LBP-based approaches. In the first layer, most robust and
dominant patterns are learnt while in second layer the most discriminative
patterns with respect to each class are estimated. Finally in the last layer,
representation capability of features is maximized using patterns obtained in

the second layer.

Median Robust Extended Local Binary Pattern (MRELBP).
Naive LBP is very sensitive to image noise and suffers to capture micros-
tucture information. Liu et al. [36], proposed MRELBP which compares
regional image filter responses (median filter) rather than raw image inten-
sities in order to overcome above problems. Proposed descriptor is able to
capture both micro-structure and macro-structure of texture and it is robust

against to noise.

Scale Selective Local Binary Pattern. Guo et al. addressed the
scale problem of LBP [37]. They build histogram of pre-learned dominant
patterns after image is derived by Gaussian filter. Eventually, the maximal
frequency among scale space is considered as the scale invariant feature for

each pattern.

Improved Local Binary Pattern (ILBP). Lu et al. proposed a new
descriptor named ILBP where they discover an important group of primitives
such as lines, T-junctions and cross-intersections which forms a non-uniform
patterns [38]. They show that these primitives are also robust against mono-

tonic gray-scale variation and rotation and show better performance than
LBP.
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Pixel Based Local Binary Pattern Descriptor. Cote et al. in-
stead of representing the whole texture image with one LBP histogram, they
proposed to increase the classification accuracy trough a novel pixel-based
classification mechanism [39]. They assigned label of an image bu aggregat-
ing pixels label through a voting process. The proposed method suffers in

terms computational complexity since it makes pixel-based classification.

Completed Discriminative Local Features (CDLF). Zhang et al.
proposed an adaptive histogram accumulation algorithm (AHA) [19]. AHA
assigns different weights for each local region by means of local contrast infor-
mation. The contribution is high around the edges while it is low at the flat
regions. AHA technique could be applied on any encoding strategy including

joint distribution approach, however the improvements are not dramatic.

A comprehensive taxonomy about recent developments about LBP can
be found in [I8] and [40]. There are also some recent studies about deep LBP
network inspired by well-known algorithm in deep learning named convolu-
tional neural network (CNN).

Local Binary Pattern Network. Xi et al. [41], proposed a novel
architecture named Local Binary Pattern Network (LBPNet). The architec-
ture is inspired by CNN topology whereas instead of constitutional kernels
LBP descriptor is replaced. One advantage of model is that avoids model
learning since LBP is off-the-shelf descriptor. Extensive experimental results
on FERET and LFW datasets show that proposed model achieve comparable

results to other unsupervised methods.

Local Binary Convolutional (LBC) Neural Networks. Juefei-Xu
et al. [42], motivated by LBP propose Local Binary Convolutional (LBC)
network. LBC layer is built up from set of fixed sparse pre-defined binary
convolutional filters. The LBP layer need to learn 9x to 169x less parameters
which make it more efficient in term of computation cost than standard
convolutional layers. They show both theoretically and experimentally that

LBC layers are good approximation of standard convolutional layers.

2.4 Applications of LBP

Texture analysis has a variety applications in computer vision. Since LBP
has shown efficient performance in texture classification, researches have pro-

posed different methods to use in other application domains. Thus LBP and
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Figure 2.6: An example of facial image divided into 7 x 7 blocks (left). The
weights set for x* dissimilarity measure (right). The black windows
indicate zero impact while the white block indicate high impact [4).

its variants play an important role in biometric recognition, segmentation,

detection and face analysis [21].

Ahonen et al. [4], utilize LBP for face recognition purposes. Since the
dataset contain no rotational changes they utilized uniform LBPs. In order
to represent better the face, they propose to divide face into several blocks
called facial regions and extract for each region local binary patterns. They
construct final feature vector by concatenating the local LBP histograms.
So both statistics of the facial micro-patterns and their spatial locations are
represented. They also find out that some facial regions have more discrim-

inative information than others. So they assign for each region a weighted

Figure 2.7: Visualization of LBP and LDP outputs. (a) Input face image. (b)
Corresponding LBP Image. (c¢) The second-order LDP. The
third-order and fourth-order LDP in (d) and (e) respectively [5]
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Figure 2.8: The pipeline of ELBP based face recognition algorithm [6].
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parameter, in order to take this advantage (see Fig. [2.6)). Authors in their an-

other study have proposed similar method and discussed possible extensions
[43].

Zhang et al. [5], propose a Local Derivative Pattern (LDP) for face
recognition purpose. LDP encodes directional pattern features based on local

derivative variations (see Fig. [2.7]). Proposed descriptor outperforms LBP for

both face identification and verification scenarios under various conditions.

Liu et al. [6], use descriptor proposed by Zhuo et al. [34] for face
recognition task. They calculate six different LBP-like descriptors from each
facial region. Due to the high dimensionality they used whitened PCA to
produce more compact and discriminative features (see Fig. [2.8). Extensive
experiments carried out in three datasets show that their method outperforms
other well known systems. A comprehensive survey about LBP based method

for face recognition can be found in [44].

In [7], Shan et al. propose a method for learning discriminative LBP
bins using AdaBoost algorithm with application to facial expression recog-
nition (see Fig. [2.9)). They validate experimentally that uniform LBP with

multiscale variations have explicit impact on performance.

Mu et al. [45], employ LBP as a region descriptor in the task of human
detection. They compare LBP descriptor with existing gradient based local
feature used in human detection and show that LBP is more discriminative.
Nevertheless, existing LBP method does not suit properly in the problem of
human detection due to its high complexity and lack of semantic consistency.
For this, they propose Semantic-LBP and Fourier-LBP and demonstrate the

effectiveness of these two variants over the traditional features for human
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Figure 2.9: The sub-regions selected by AdaBoost for each facial expression.
From left to right: Anger, Disgust, Fear, Joy, Sadness, and
Surprise [7].

detection in INRIA human dataset.

Roy et al. [46], propose Haar Local Binary Patterns which exploits the
concepts of Haar feature and LBP for face detection in unfavourable image
conditions. Their proposed descriptor is robust against strong illumination

conditions, pose and background.

Wang et al. [§], propose similar approach by combining trilinear inter-
polated Histogram of Oriented Gradients (HOG) with LBP in the scenario
of human detection (see Fig. [2.10). The proposed method shows better
performance than other state-of-the-art methods in INRIA dataset.

Nanni et al. [47], provide a good comparison of recent variants of
LBP-like features in the context of bio-imaging applications. They pro-
pose also a novel descriptor named elongated quinary pattern which use
elliptical neighbourhood and quinary encoding. Proposed descriptor out-
performs naive LBP in three widely-used datasets each comprising different

bio-imaging problems.

Yi and Eramian in [9], employ LBP as a sharpness metric for robust
segmentation algorithm to separate in and out of focus image regions. Pro-
posed sharpness metric is based on observation that in the blurry regions local

image patches have significantly fewer certain local binary pattern compared

Compute Convoluted

gradient at — trilinear in- — Irﬁ(eozggl
__—~ each pixel terpolation ~, HOG-LBP
Input image foreach =~ SVM clas-
T Compute SC{alnnng sification
LBP at Integral window
each pixel LBP

Figure 2.10: The framework of HOG-LBP detector proposed by [8].
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Figure 2.11: The visual results for defocus blur method proposed [9].

with those in sharp regions. Sharpness metric achieves comparative results
and is not computationally expensive (see Fig. [2.11)).

Li et al. [48], exploit LBP for the classification of hyperspectral im-
agery at high spatial resolution. LBP is used to extract edges, corners, spots
along with global Gabor features and original spectral features. Finally these
descriptors are fused in one vector for pattern classification process. Exten-
sive experimental results show that proposed method outperforms traditional
methods.

Satpathy et al. [49], propose two sets on novel edge-texture descriptor
for object recognition i.e. Discriminative Local Binary Pattern and Discrimi-
native Ternary Pattern. These two descriptors are proposed by analysing the
weakness of LBP, LTP and RLBP. Proposed descriptors can capture contrast
information in images which is necessary for good representation of object

counters.
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3. Proposed Method

The initial step towards obtaining feature vector is to create a joint 2D
LBP histogram denoted as Ps(s,m) from LBP_SP¥ and LBP_MpiZ,
respectively. Thus the final feature vector is created either by concatenating
marginal histograms Prpp_ s and Prgp_p as S_M or by flattening Pg (s, m)
into one vector S\M (see Table for abbreviations).

While the feature vector dimension of S_M is linearly proportional to
the number of neighbors in the employed LBP pattern S\M is quadratically
proportional to the number neighbors. In this thesis we aim to find whether
there is a more discriminative representation of the 2D LBP histogram which
both comprises of a lower dimensional vector and provides an enhanced ac-
curacy. For this purpose, we seek for a better pair of axes to project 2D

feature accumulation

3.1 Optimization with Principal Component Analysis

The most intuitive method for this is applying principal component analysis
(PCA) to the data and construct the final feature vector as the concatenation
of two axes which we obtain via PCA. PCA is a well-established machine
learning technique which compute new bases called principal components for

an input data and is often utilized for dimension reduction purposes.

On the contrary to many other applications, we do not use PCA for
dimension reduction. Instead, here we apply PCA to the 2D LBP distribution
to obtain least redundant marginal histograms and represent the new feature
by LBPpca.

For a given image, we compute two different LBP features for each pixel

) ) T
psp = [LBP_SH2(p) LBP_ME2(p)] (3.1)

where prgp is a 2D vector consisting of 2 LBP values. Then, we construct H

matrix where its columns represent p;gp vectors of each pixel in the image:

H = [PLBPl PLBp, - pLBPn] (3-2)
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where H is a 2 x n matrix and n is the number of pixels in the image.

Once we calculate the 2D LBP vector, we apply PCA to find principal
components in order to obtain a more discriminative representation for the

data. We apply transformation matrix P to H as the following:
PH=Q (3.3)

where () is the transformed 2D LBP histogram. Our aim is to find P such
that the covariance matrix of ) denoted by Sy is diagonal matrix. By
diagonalizing covariance matrix of (), each variable will co-vary as little as
possible with other variables. Thus the redundancy would be diminished.

Sy is easily computed as follows

Sy = QQ"
=(PH)(PH)" (3.4)
= P(HH")P"

here HHT is a symmetric matrix (HHT = (HH™')"). We know that symmet-
ric matrix can be diagonalized by an orthogonal matrix of its eigenvectors,

as follows
HHT = EDE™ (3.5)

Table 3.1: List of Symbols and Notations

Feature Name |Feature Type| Constraint| Symbol
LBP_S_My2 Marginal - S_M
LBP_S\My Flatten - S\M
LBPPOA S M2 | Marginal | Cov matrix | S MPCA
LBPPCA_S\ M2 Flatten Cov matrix | S\MPCA
LBPY_S_My'3 ’ Marginal Variance | S_MV
LBPV_S\ ]V[ﬁ:‘ﬁ Flatten Variance | S\MV
LBPP.§ Mg Marginal Entropy | S_ME
LBPE_S\M}2 Flatten Entropy S\ME
LBP/F.S My Marginal | Joint Entropy | S_M7E
LBP/E_S\Myu2 Flatten Joint Entropy | S\M7E
LBPMI_S ,Af]’\’[i:’“g Marginal Mutual Inf. | S_MMI
LBPMI_S\My2 Flatten Mutual Inf. | S\MMT
LBPC_S JWX,’?‘}? Marginal Correlation | S_M¢
LBPC_S \M]{?FR? Flatten Correlation | S\M¢
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Figure 3.1: Traditional 2D LBP histogram and optimized 2D LBP histogram
with PCA and corresponding marginal histograms.

where D is a diagonal matrix and FE is a matrix of its eigenvectors, i.e.
HHT. If we select P to be a matrix same as E7 and since P~! = PT holds

for orthogonal matrix, then

Sy = P(HHT)PT
= P(P"DP)P”
= (PP D(PP™)
=D

Thus we can conclude that eigenvectors of HH' are principal compo-
nents of H. The eigenvector with the highest eigenvalues becomes the most
informative one. After obtaining (), we built our new 2D histogram from it.
We obtain PCA based feature vectors S_MFP¢4 and S\MPCA by concate-
nating the marginal histograms of our new 2D histogram and by flattening
the 2D histogram, respectively. Note that the transformation matrix P, i.e.
eigenvector matrix, is actually a 2D rotation matrix. So the corresponding
2D histogram is formed by rotating the original 2D LBP histogram by the
rotation matrix R of the rotation angle 6 (see Eq. [3.7).

C?S@ —sinf (3.7)
sind cosf

R(6) = [

In this way, we compute principle axes via PCA and project 2D LBP accu-

mulation onto them instead of the original axes in an aim to obtain more
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discriminative feature vectors (see Fig. . Thus we intend to have higher
accuracy values without increasing the feature vector size. Although this
method intuitively seems reasonable to improve the accuracy, we could not
be able to verify this experimentally. When we investigate for a proper ex-
planation, we come up with a reason that PCA assumes the data is linearly
spread out in Euclidean space. In our experimental results we observe that
2D LBP distributions does not spread out linearly, hence we could not achieve

a higher accuracy.

3.2 Is Naive 2D LBP Histogram The Most Efficient?

Once we obtain the experimental results and see the disappointing accuracies
for S_MPCA and S\MPCA, we are confronted the question if there is still
room for improvement in the 2D LBP histogram or not? We investigate the
answer by a very simple experiment where we take the 2D LBP distribution
and transform it by small steps of rotations as in the Eq. . Here R(0) is
rotation matrix, P the original LBP pairs and P,,; rotated LBP pairs.

R(Q)PS,M(Sam) = Prot,S,M(Sam) (38)

For each 6 rotation angle, we obtain marginal histograms P.(6) of 2D distri-
bution via projection onto x and y axes. Finally, we attain final feature vector
as the concatenation of marginal histograms and run an entire texture recog-
nition task for each step. In Fig. experimental results are shown for the
experiment we performed Brodatz, UMD, and UIUC datasets. It is clearly
seen in the figure that different projections can achieve better results up to
2%. For a specific example, UMD dataset using nearest neighbour classifier,
results for P = 8 and R =1 gives 97.2% whereas it is only around 94.6%
for plain rotation at 0°. Therefore, we found that the answer for the above
question is yes, there is still potential to have a certain level of improvement
in 2D LBP distribution. In the next subsection, we explain the methods that

we investigate for exploiting the potential optimizations.

3.3 Proposed Optimization Method

After we experimentally validate that there is potential to optimize feature

vectors, we look for an alternative ways to transform the distributions so that
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Figure 3.2: Prospective optimization plot for LBP for three different datasets
using nearest neighbour (left) and support vector machines (right)
classifiers. The accuracy values indicate the success of recognition

task with respect to the corresponding rotation angle of 2D LBP
histogram. For this example we use LBP_Sign-LBP_Magnitude LBP
pair. LBP_Sign and LBP_Magnitude are defined as in equations

and [2.4] respectively.

we achieve better accuracies. Here is a very important detail to emphasize
that we rotate all 2D distributions obtained from different textures with the
same amount of rotation in advance of projection onto marginal histograms
in the experiment shown in Fig. [3.2l However, each texture distribution

might have a different amount of rotation and thus even higher classifica-
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tion accuracies could be achieved. Therefore, we optimize by minimizing
and maximizing several constraints, i.e. variance, correlation, entropy, joint

entropy and mutual information to perform simple specific transformations.

In the optimization process, on the contrary to the method that we ro-
tate 2D distributions by the angle obtained via PCA; we rotate 2D LBP dis-
tributions Pg (s, m) by a certain angular step and project it onto marginal
histograms. Then we compute aforementioned constraints at each rotation
step and seek for a global maximum or minimum along the entire rotation
space. In this way, we can obtain feature vectors in different rotations for in-
dividual textures. Once we find an extrema, we construct the feature vector
by simply concatenating the marginal histograms (see Fig. m for pipeline
of proposed method).

With this optimization scheme, we actually insert an extra step in
between constructing the LBP histogram and obtaining the feature vector.
In that step, we simply rotate the 2D histogram Pg (s, m) with a predefined
angular step until the concatenated marginal histogram hits a peak on the
selected constraint. This additional step of the feature extraction procedure
is symmetric, i.e. it is applied in both training and test stages. Thus the
algorithm would stop around the same rotation angle for identical textures

and obtain similar feature vectors.

In the rest of this section, firstly we explain the statistical concepts
employed in this thesis and then how we put in use them for optimization

purpose.
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3.4 Statistical Concepts

In order to proceed with optimization constraints we need first to revisit some
basic probabilistic and information theory concepts. First we will define a
random variable. Random variable is a function which assigns a real value
to each possible outcome of the experiment. In this thesis we will work only
with discrete random variable whose set of values is finite. Probability mass
function (PMF) of random variable X, denoted as py, is the probability of
the event X = x:

p(z) = P({X = x}) (3.9)

Note that the value of p(x) is always greater than or equal to 0 and
2op(z) =1

Besides knowing the PMF of X sometimes we want to summarize the
random variable X with a single representative number. The most common

one is expected value of random variable X defined as:
BIX] = to = Yap(a) (3.10)

E[X]1is the weighted average of the all possible values of X. For discrete ran-
dom variable X expected value is not necessary a value that can be expected

to turn up (for more properties on expected value see Table |3.2]).
3.4.1 Variance

The second most representative quantity is the variance of random variable
X defined as:
Var(X) = E[(x - pz)?] (3.11)

where 1, is mean of discrete random variable X. Variance is the measure of
how spread discrete random variable X is around its mean (see Figi3.4). The
expected value and the variance are most associated quantities with random

variable X (for more properties on variance see Table [3.2)).
3.4.2 Covariance and correlation

The expected value and variance are quantities which provide information

only about random variable itself. There are cases where we want to un-
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derstand the relation between two random variables X and Y. One of the
quantities utilized for this purpose is covariance. The covariance of two ran-

dom variables X and Y is defined as follows:

cou(X,Y) = E[(X - j1)(Y - 11,)] (3.12)

where yi, and p, are means of X and Y. For cov(X,Y) = 0 we say that
X and Y are uncorrelated. Positive covariance value indicates that random
variable X and Y have same trend, while negative covariance value indicates

an opposite trend as shown in Fig. (for more properties on covariance
see Table. |3.2)).

The correlation coefficient p of two random variables X and Y is defined

as:

XY
corr(X,Y)=p-= cov(X,Y)

= 3.13
VVar(X)Var(Y) (3.13)

Correlation may be seen as normalized covariance within range of [-1,1].
High positive or negative correlation indicates high dependence between X
and Y while zero correlation implies independence between discrete random
variable X and Y. Bertsekas and Tsitsiklis [I] provide more detailed expla-

nation of above concepts.

Two distirbutions, the distribution plotted with blue line has
higer variance than the distribution plotted with red line
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Figure 3.4: Two different distributions which have different variance values.
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Table 3.2: Some well known properties of statistical parameters. The proofs of
properties for expected value, variance and covariance can be found
in [1, 2], while for entropy and mutual information can be found in

3]

Statical . Lo

Properties Description
Parameter
Probability 1. p(z) >0 Non-negativity Propertiy
Mass Function 2. Y.p(x)=1 Normalization Property

1. E[laX +b)] =aE[X]+b X,Y- random variables
Expected Value
2. E[X+Y]=E[X]+E[Y] a, b - constant

1. Var(X) =0 X - random variable

Variance 2.Var(X +a) =Var(X) a - constant

2.Var(aX) = a?Var(X)
1. cov(X,X) =Var(X)

. 2.cov(X,Y) = cov(Y, X) X,Y - random variable
Covariance
3.cov(aX,bY) =ab-cov(Y, X) a,b - constant
4. cov(X +a,Y +b) =cov(X,Y))
1.H(X) >0 X,Y - random variable
Entropy and 2.Ho(X) = (log, b)Hp(X) Changing from one base to another
Joint Entropy 3.H(X,Y)=H(X)+ H(X|Y) Chain Rule
4. H(X|Y) + HY|X) Conditional Entropy
1.I(X;Y)=H(X)-H(X|Y) X,Y - random variable
2. I(X;Y)=H(Y)-H(Y|X) Rel. Mutual Information- Entropy
Mutual 3. I(X;Y) = H(X) + H(Y) - H(X,Y)
Information 4. I(X;Y)=I(Y; X) Symmetry Property
5 I(X;Y)=0 Non-negativity Property

6. I(X;X) = H(X) - H(X|X) = H(X)

3.4.3 Entropy and joint entropy

One of the most fundamental concept in information theory is entropy. En-
tropy of a discrete random variable X, denoted as H(X), is defined as fol-

lowing:

H(X) == px(x;)logy px (x;) (3.14)

i=1

v
v
v

Figure 3.5: Example of covariance values for three different random variables.
Positive (left), negative (middle) and, zero covariance (left).
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where px () is probability density function of random variable X. The log
is to base 2 and entropy is expressed in bits (for change of basis property
see Table . Entropy can be thought as functional of random variable
X. Thus its value does not depend on the values taken by random variable
X but only on the probability values. H(x) is interpreted as a measure of
uncertainty of random variable X. The higher entropy of a discrete random

variable X, the less predictable it becomes.

The joint entropy which calculates entropy of pair of random variables
X and Y is defined as follows:

N M
H(X,Y) ==Y > pxy(wi,y;)logy pxy(z:,y;) (3.15)

i=1j=1

where P(X,Y) is joint probability of random variables X and Y.
3.4.4 Mutual information

Another important concept in information theory which provides information
on how much one random variable tells about another random variable is
Mutual Information (MI). MI between two discrete random variables X and
Y is defined as follows:

I[(X,Y)=H(X)-H(X|Y)
- H(Y)-H(Y|X) (3.16)
-H(X)+H(Y)-H(X,Y)

where H(X) is entropy of random variable X. H(X]Y"), conditional entropy,
is the uncertainty of discrete random variable X, given the observation of
discrete random variable Y. MI, for 2D distributions can also be calculated

as follows:

HXY) = 2 Y po o) w%) (3.17)

where px () and py (y) are marginal distributions over discrete random
variable X and Y axes. MI is the reduction of discrete random variable X
after observing Y. High MI increases relevance between marginal histograms.
From Eq. we conclude that mutual information of random variable

with itself is equal to entropy of the random variable. This is why entropy
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Figure 3.6: Relation between entropy and mutual information.

sometimes is referred as self-information [3]. The relation between entropy,

joint entropy and mutual is expressed in Venn diagram in Fig. [3.6]

3.5 Optimization Constraints

Here we explain how we employ our statistical constraints in our optimiza-
tion scenario. As explained in Section we rotate 2D LBP distributions
Ps pr(s,m) by certain angular step 6 = 1, project it onto marginal histogram
and finally compute statistical constraint. After computing the statistical
constraint over entire rotation space we seek for § which makes maximum
or minimum value of statistical constraint. Finally we construct the final
feature vector by concatenating the marginal histograms of rotated 2D LBP

distribution by 0.

e Maximum Variance Constraint: look for projections based on fol-
lowing criteria:

argmaz g|osp<x) var(P.(0)) (3.18)

find @ where we obtain maximum variance of P.(f) where P.(0) is

concatenation of marginal histograms at rotation angle 6.

e Maximum Correlation Constraint: look for projections based on

following criteria:
arg maz g|ocp<z) corr(Prpp_s(0), PLepr.m(9)) (3.19)

finding out # where we obtain maximum correlation between marginal
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histograms Prpp_s(0) and Prgp_p(0).

Maximum Entropy Constraint: We look for projections based on

following criteria:
arg ma g pcp< ) H(P.(9)) (3.20)

find 6 where we obtain maximum entropy of P.(#) where P.(#) is con-

catenation of marginal histograms at rotation angle 6.

Maximum Joint Entropy Constraint: We look for projections

based on following criteria:
arg mai g ocp<zy H(Ps(s,m),0) (3.21)

find out  where we obtain maximum joint entropy of 2-D Histogram.

Maximum Mutual Information Constraint: We look for projec-

tions based on following criteria:

argmax{mogegg} I(PLBP,S(Q)aPLBP,M(H)) (322)

find out @ where we obtain maximum mutual information between

marginal histograms Prgp s and Prgp ) at rotation angle 6.
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4. Experimental Results

This section gives quantitative results on the performance of the proposed
method. We explain briefly classifiers employed in [£.1] Next, experimental
setup and comparative results are explained in sections and respec-
tively. Finally the discussion about performance analysis of proposed method
and execution time analysis are given in sections and [4.5

4.1 Classifiers

In this thesis we use two different classifiers, nearest neighbour and support

vector machine.

Nearest neighbour classifier is an example non-parametric models. At
the test phase, a test input is assigned to the label of training feature vector
which has minimum distance. The most common distance metric to use is
Euclidean distance. In this thesis instead of Euclidean distance we use Chi-
Square distance metric given in Eq. [£1 This method is often called as
memory based learning.

dy2(h, k) = ]EVZM (4.1)

= (hi+ ki)
The main drawback with Nearest Neighbour Classifier is that they do

not work high dimensional feature vectors [50].

Another well-known classifier is support vector machine (SVM). Since
SVMs are more complicated and the aim of thesis is not focusing in details
of classifiers no further explanation will be given (for more detail see [51])

We use Dlib machine learning C++ library for implementation of SVM [52].

4.2 Experimental Setup

We perform experiments on five popular texture datasets, i.e. KTH-TIPS2b
[22], UIUC [12], UMD [23], Brodatz [24], and Outex ' TC_00010 [I7]. More
detail on attributes of each dataset is provided in Table[d.1] In datasets where

test/train scenario is not predefined, we apply 10-fold cross validation.
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Table 4.1: List and properties of the employed datasets in the experiments. The
table presents the properties of each dataset including number of
classes, image resolutions, and variety of samples in view point,

scale and illumination changes.

# #Samples Total | Sample | Test/Train | View- Illumi-
Dataset Class \Class Samples | Size Split? point Scale | nation
UIuC 25 40 1000 320 x 240 No Yes Yes No
UMD 25 40 1000 320 x 240 No Yes Yes No
KTH-TIPS2b 11 432 4.752 200 x 200 Yes No Yes Yes
Brodatz 111 9 999 215 x 215 No No Yes No
Outex_TC10 24 180 4.320 128 x 128 Yes No No No

Outex_TC_00010 dataset contains 24 different texture categories. Each
category includes 20 samples for each ten rotation angles (0°, 5°, 10°, 15°,
30°, 45°, 60°, 75°, and 90°). Texture samples with 0° rotation angle are

utilized for train phase and other for test phase.

Texture samples in UMD and UIUC datasets share common properties
like significant scale and view point changes, arbitrary rotations, and uncon-
trolled illumination conditions. Additionally, textures in UMD dataset has
resolution four times of textures in UIUC dataset. KTH-TIPS2b dataset is
propsoed in extension of CURet dataset. Textures consist of four physical
samples, three different viewing angles, four illumination condition and nine

different scales.

Note that we need to do zero padding to 2D histograms in advance to
rotation to prevent them exceeding the range (see Table . Thus rotated
2D distributions will be larger than original ones. The implementation of
algorithm is carried out in C++ Language, Intel i5 3.5 GHz CPU, 16GB
RAM.

Table 4.2: 2D histogram dimensions for original and rotated versions

Parameters Histograms
Original Rotated
(P R) 2D Histogram | 2D Histogram
(8, 1) 10 x 10 16 x 16
(16, 2) 18 x 18 26 x 26
(24, 3) 26 x 26 40 x 40
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4.3 Methods in Comparison

The naive methods build LBP feature vectors by either concatenating marginal
histogram S_M or flattening the histogram in one vector S\M. We optimize
naive 2D LBP feature vectors with respect to the proposed optimization
methods and take both flattened and concatenated forms of them into con-
sideration. Although it cannot help to improve the accuracy, we also provide
results based on axes obtained from PCA denoted by S_MP¢A. In order to
keep notations concise, we will use abbreviations in Table in the rest of

the paper.

In the experiments, we examine the performances of all the methods
in three main comparisons. In the first experiment, we compare methods
which obtain the eventual feature histogram by concatenating two marginal
histograms and present the results in Table [4.4] In the second experiment,
we assess the flattening approach for the same 2D LBP methods and present
the results in Table L5l In Table 4.6 we combine best results from Table [£.4]
and Table [4.5] in order to observe the overall results. For each dataset and
parameter, considering both classifiers, the highest score is shadowed, and
those scores which are within 1% of the highest are boldfaced. We evaluate
the methods with respect to the number of bold and highlighted scores across
all datasets for all parameters. In addition, we provided number of bold
results for each classifier and sort the entire list with respect to the total
number of bolds in order to demonstrate the eventual performance of each
method.

4.4 Performance Analysis

Table[4.4] and Table [£.5 provide the experimental results carried out in afore-
mentioned datasets for proposed methods and corresponding naive approach,
S_M and S\M, respectively.

In Table [4.4] we see that the optimized feature vectors with mutual in-
formation S_MMI and variance S_MV takes the first and the second places,
respectively, both with SVM classifier. The naive approaches without op-
timization follow them in the next two rows. S_MPCA gives the lowest

scores for all metrics and in most cases performs even worse than S_M
for all datasets. Other methods, i.e. S_ME, S_M'E S _MC, S_MV pro-
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Confusion Matrix Confusion Matrix

True label
True label

5.0
'2.5
0.0
Figure 4.1: Confusion matrices for erperimental results obtained in UIUC

dataset with naive (left) and optimized (right) feature vectors of
(P.R) = (24.3).

Predicted label Predicted label

vided a mediocre performance in the experiments. In terms of accuracy
rates, S_MM! shows higher results for both classifiers in UIUC, UMD and
KTHTIPS2b datasets. For Brodatz dataset, S_M™MT is within 1% range for
all parameters in both classifiers while S_M could provided the best result.
S_MMTI performed relatively worse in Outex TC10 dataset compare to its
performance in other dataset. Briefly, S_M™M! could provide the best or

within 1% accuracy results when combined with SVM classifier.

In Table we present experimental results that we obtain via flatten-
ing 2D LBP distributions. According to the experiments, accuracy results
of S\M and S\MM! were very close. In the recognition tasks that we run
on five datasets and three different parameters for each; S\M and S\MM!
could perform within the 1% range to the best results for 9 and 8 times, re-
spectively. Similar to its performance in marginal feature vector generation
approach, S_MPC4 could not provide a promising recognition accuracy via
flattening. To summarize, S\M and S\MMT provided comparable results
where S\M performed slightly better for the experiments that we construct
a higher dimensional feature vector compare to concatenating marginal his-

tograms.

We compare the results obtained from both feature vector construction
methods in Table which is composed with the best results of Table
and Table In addition, since dimensions of the feature vectors in this
table vary, we also provide them for all parameter settings to ease the com-
parison. In overall results, S_MM! and S_M performed the same, i.e. with
three #Best and nine #Bold scores both with SVM classifier. However,
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S_MMI takes the first place due to the fact that it achieved the same result
with a significantly lower dimensional feature vector. When we investigate
the breakdown of the algorithms into datasets, we see that S_MM! performs
better in UTUC, UMD and KTHTIPS2b datasets which have more challeng-

ing samples due to strong rotation and illumination changes.

In Fig. and Fig. we present confusion matrices of naive and op-
timized feature vectors of S_MM! for UIUC and UMD datasets, respectively.
Note that the confusion matrices obtained by the optimization method using
mutual information constraint look more tidy with a more stable diagonal
values compare to the naive ones. In Table[£.7several samples of textures are

shown with corresponding naive and optimized 2D histograms, respectively.

4.5 Execution Time Analysis

Here we aim to give some information regarding the analysis of execution time
of the proposed method. For this purpose, we use textures from Brodatz [24]
dataset with dimension of 215 x 215.

In Table there are shown average execution times in millisecond
for proposed methods including all immediate steps. As shown in table
LBP Sign have lower time cost that LBP_Magn. This is from the fact that
LBP_Magn needs one more step to calculate threshold than LBP _Sign which

use central pixel as threshold value. As expected, the accumulation of his-

20.0
I 17.5

r15.0

togram has the lowest time cost.

Confusion Matrix Confusion Matrix

r12.5

r10.0

True label
True label

r7.5
r5.0
'2.5
0.0

Figure 4.2: Confusion matrices for experimental results obtained in UMD
dataset with naive (left) and optimized (right) feature vectors of
(P,R) = (16,2).

Predicted label ’ Predicted label

33



Table 4.3: Average execution times of the proposed method including all
intermediate steps. Time is given tn milliseconds.

Method P | R | LBP Sign | LBP Magn | Histogram | Optimization Total
S_M 8 1 35.38 ms 39.08 ms 0.18 ms - 74.64 ms
S_-M 16 | 2 67.57 ms 74.34 ms 0.18 ms - 141.67 ms
S_M 24 3 98.44 ms 107.98 ms 0.21 ms - 206.63 ms
S_MMI 8| 1 35.15 ms 39.04 ms 0.17 ms 0.99 ms 75.45 ms
S_.MMI | 16 | 2 67.39 ms 73.94 ms 0.21 ms 2.07 ms 143.61 ms
S_.MMI |24 | 3 99.46 ms 108.73 ms 0.18 ms 3.32 ms 211.69 ms
S_MV 8 1 36.60 ms 39.72 ms 0.18 ms 0.58 ms 77.08 ms
S_MV 16 2 67.22 ms 74.32 ms 0.17 ms 1.31 ms 143.02 ms
S_.MY 24 3 98.03 ms 106.62 ms 0.25 ms 2.42 ms 207.32 ms
S_MF 8 1 35.48 ms 39.43 ms 0.19 ms 0.71 ms 75.81 ms
S_ME 16 2 67.75 ms 74.25 ms 0.18 ms 1.56 ms 143.74 ms
S_M¥E 24 3 98.10 ms 106.72 ms 0.18 ms 2.70 ms 207.70 ms
S_MTE 8| 1 35.42 ms 39.08 ms 0.18 ms 0.96 ms 75.64 ms
S_-M7E 16 | 2 67.45 ms 73.96 ms 0.18 ms 1.99 ms 143.58 ms
S.ME | 24| 3 100.19 ms 108.64 ms 0.18 ms 3.29 ms 212.30 ms
S_M¢ 8 1 35.34 ms 38.80 ms 0.17 ms 0.59 ms 74.90 ms
S_MC¢ 16 2 67.49 ms 73.96 ms 0.18 ms 1.32 ms 142.95 ms
S_M¢ 24 | 3 98.37 ms 107.63 ms 0.20 ms 2.43 ms 208.63 ms

On the other hand S_M" and S_M¢ tend to have the lowest execution
time. This is expected since the calculation of variance and correlation re-
quire less operations than other statistical constraints. Mutual information
S_MMTI constraint despite its efficient performance tends to have slowest
computation speed among other constraints. This is due to fact that mu-
tual information requires to compute the entropy of marginal histograms
separately and compute the joint entropy. Nevertheless, taking in consider-
ation the computation time of other steps, mutual information constitutes
approximately 1.5% of total computation time. Generally, we conclude that
proposed optimization step has not a significant effect in total computation

time.
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Table 4.7: Several textures samples with corresponding naive and optimized 2D
histograms, respectively.

Naive Naive Optimized Optimized
Texture ) 2D Feature 2D Feature
Histogram  Vector Histogram  Vector
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5. CONCLUSION

In this thesis we propose an improvement method for 2D LBP approaches to
extract more discriminative feature vectors. Our method suggests modifying
2D LBP distribution before constructing the feature vectors via either con-
catenation of marginal histograms or flattening the whole distribution. Prior
to the feature vector extraction, we seek for new projection axes by applying
a certain transformation and utilize several constraints i.e. variance, corre-
lation, entropy, joint entropy, and mutual information as stopping criteria.
We perform a comprehensive set of experiments including five well known

texture datasets in the literature and two classification methods.

According to the results, the proposed method outperforms naive margi-
nal approach in almost all experiments and provides the best results for
mutual information as the optimization constraint. In addition, it provides
comparable results in flattening approach where the dimension of resulted
feature vectors are quadratically proportional to the size of 2D LBP his-
togram. In comparison of all marginal and flattening approaches, we see
that the optimized marginal features provide promising accuracy values even
with lower dimensional feature representations than higher dimensional vec-
tors obtained via flattening. In all experiments, we show that the proposed
optimization algorithm boosts the recognition accuracies regardless the num-

ber of neighbor and radius parameters of the employed LBP feature.
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