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ABSTRACT

COMPOSITE ASYMPTOTIC MODELS FOR A THIN ELASTIC PLATE

Melike PALSU

Department of Mathematics

Eskigehir Technical University, Institute of Graduate Programs, January, 2020

Supervisor: Prof. Dr. Barig ERBAS

This thesis is on the dynamic bending and plate extension problems of a thin
elastic plate under a given external load. The motivation in the choice of the subject
has been the modern industrial applications and particularly the desire to contribute
to the approximate analytical solutions, which is believed to be lacking. The exact
mathematical formulation as well as the solutions to these models for the problems
mentioned above may be quite costly. Therefore a composite asymptotic approach
used for the problems in the thesis. On using this method, we considered the dy-
namic response of the thin elastic plate, more specifically, the asymptotic of the first
asymmetric bending mode of the plate. The results/solutions, contrary to the ones
existing in literature, in terms of elementary functions and therefore considerably

simplified the physical and mathematical analysis of the problem.

Keywords: thin elastic plate, Rayleigh-Lamb equation, dynamic bending,

plate extension, antisymmetric modes, symmetric modes, asymptotic model.
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OZET

INCE ELASTIK BIR PLAKA ICIN KOMPOZIT ASIMPTOTIK MODELLER

Melike PALSU

Matematik Anabilim Dali
Eskisehir Teknik Universitesi, Lisansiistii Egitim Enstitiisii, Ocak, 2020

Danigman: Prof. Dr. Barig ERBAS

Bu tez, verilen bir dig yiik altinda ince elastik bir plakanin dinamik egilmesi
ve genislemesi problemleri {izerinedir. Konunun se¢imindeki motivasyon, modern
endiistriyel uygulamalar ve ozellikle eksik olduguna inanilan yaklagik analitik ¢oziim-
lere katkida bulunma istegi olmustur. Kesin matematiksel formiilasyonun yani
sira, pratikte belirtilen sorunlara yonelik ¢oziimler de oldukg¢a maliyetli olabilir.
Bu nedenle, tezde ele alinan problemler i¢in kompozit asimptotik yaklagim kul-
lanmilmigtir. Bu yontem kullanilirken, ince elastik plakanin, baglangicta plakanin
ilk antisimetrik biikme modunun dinamik tepkisi dikkate alinmigtir. Tezde elde
edilen sonuglar/¢oziimler, literatiirde mevcut olanlarin aksine elemanter fonksiyon-
lar cinsinden oldugundan, problemin fiziksel ve matematiksel analizini biiyiik olgiide

basitlegtirmigtir.

Anahtar Sozciikler: ince elastik plaka, Rayleigh-Lamb denklemi, dinamik
biikiilme, plaka genislemesi, antisimetrik modlar, simetrik modlar, asimptotik

model.
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1. INTRODUCTION

The classical theory of plates and shells, which include the relations of forces,
displacements, stresses and strains in an elastic structure, is one of the important
areas of mathematical theory of elasticity. The first mathematical approach to the
membrane theory of thin plates was formulated by L. Euler in 1766, dealing with free
vibration analysis of plate problems [1]. In 1890 Kirchhoff published an important
thesis on thin plate theory [2], in which he expressed two independent assumptions,
accepted in the theory of plate bending and known as “Kirchoff hypothesis”. Other
important contributions made by Kirchoff were the obtaining of the frequency equa-
tions of plate and introducing the virtual displacement methods in the solution of
plate problems. Russian scientists first made great contributions to the architecture
of marine vehicles, using solid mathematical theories instead of old trade traditions.
Especially Krylov [3] and his student Bubnov [4] made important contributions to
the theory of bending and bending-resistant thin plates. Also Timoshenko made
important contributions to the theory and practice of plate bending analysis. Timo-
shenko and Woinowsky-Krieger published a fundamental monograph which contains
profound analysis of various plate problems [5].

Scientists such as Hencky [6], Huber [7], von Karman [8]- [9], Nadai [10],
Foppl [11] undertook comprehensive studies in the field of plate bending theory of
thin plates. Hencky dealt with different types of singularities occurring on plates
under point loads, point support effects, etc.

The devolopment of modern aircraft industry has accelerated the analytical
analysis of plate problems. Plates under strain and plates which are subjected to
plane forces, their behaviour after bending and vibration problems have been anal-
ysed by many scientists and engineers. Detailed analyses of thin layers with different
geometries, linear and nonlinear bending under different loads and critical loads and
forces were considered by Timoshenko and Gere [12], Volmir [13] and Cox [14].

The exact solutions of aforementioned problems require a very special sym-
metry of correspoding equations and boundary conditions, and in case of real life
problems they are quite exceptional. Despite extensive and advanced numerical

methods, exact solutions are still the desired ones. Unlike numerical analyses, ap-



proximate asymptotic solutions predict weak or strong asymmetry in the system
and can be generalised universally. Asymptotical methods allow the decomposition
of equations and thus the geometry of the problem can be understood easily. The
construction of approximate theories of thin-walled structures has been the subject
of many publications (see [15], [16], [17], [18]). The majority of these publications
are related to the statics or dynamics of plates in the low-frequency band. The pub-
lications about high-frequency band, especially for dynamic problems, are limited.
For a long time, it seemed virtually impossible to incorporate short-wave
high-frequency motion into low-dimensional structural models using a mathemati-
cally rational reasoning. The main point was that typical longitudinal wavelength
is of the order of thickness for short-wave high-frequency motions. Thus, PDEs
governing this type of motion should necessarily contain the derivatives both along
the mid-plane and thickness. As a result, the dimension reduction was hardly pos-
sible. A new possibility for constructing hyperbolic lower-dimensional models arises
from the recently developed explicit asymptotic models for surface waves on an
elastic half-plane (see, [19]). In the framework of these models a 1D hyperbolic
equation on the surface may be extracted. For a linear elastic isotropic half-plane
(—o00 < x1 < 00,0 < x3) under the transverse load P, this equation has the form

00, 1 0%,
oxy 2 Ot?

—CP, (1.1)

where &, = ®(x1,0,1) is the value of the Lamé dilatation potential ® on the surface,
¢, the Raylegh velocity and C the function of material parameters. The boundary
condition for the shear potential ¥ is given by

ov 2 09

— = at z3 =0 1.2
011 2c3 — 2 O ’ (12)

whereas the interior field is governed by the elliptic equations

2 2 2 2 2 2
aCI)+(_C_R)8_(I) 0 8\If+(_C_R)8_(I) 0 (1.3)

2 2 2 — U 2 2 2 =
Oxs ci ) Oxi Oxs c5 ) Ox3

with ¢; and ¢y being the dilatation and distortion wave velocities, respectively.

In this thesis, we attempt to derive a composite plate model incorporating



both long-wave low—frequency and short-wave high-frequency limits corresponding
to flexural and surface waves, respectively. To this end, we adapt for a plate in the
limit (I < h) the technique developed for analysis surface waves on a half-space.
For our problem Rayleigh-Lamb dispersion relations will be obtained with the aid
of the composite method and the asymptotic behaviour of the plate for the first
antisymmetric bending mode will be found by transandantal first order roots of the
Rayleigh-Lamb dispersion equation. The bending behaviour of the plate will be
investigated in the near zone (near load) and in the far zone (at infinity). The ob-
tained results will be compared to a reliable exact solution to show the validity of the
model. This asymptotic method is based on the asymptotic integration of partial
differential equations developed by Goldenveizer [20]. Together with an asymptotic
approach introduced by Kaplunov and Kossovich [21]. This method also provided
alternative solutions to the 2D problems in literature by using the relations between
the potentials given on the surface introduced by Chadwick [22]. The sensitivity of
the results obtained in the works [23|, [24] and [25] indicates that it is quite possible
to achieve similar results for the problems proposed in this thesis.

The organisation of the thesis is described as follows. After the Introduction
given in Section 1, basic mathematical preliminaries and some definitions are given
by Section 2.

Section 3 starts with the statement of the antisymmetric deformation of an
elastic plate subjected to normal stress, antisymmetric plate modes are used for
this problem. The composite equation for described elastic body is established with
the help of asymptotic expansions given by [26] in terms of vertical displacement
uz. Then dispersion analysis done for both long—wave low—frequency and short—
wave high—frequency limits, also displacement amplitudes are obtained. In Section,
the composite equation for horizontal displacement is established with a similar ap-
proach with . Dispersion and displacement amplitudes are discussed as well. Section
concludes with the illustrations of numerical results of the obtained asymptotic for-
mulae and presents the accuracy of the asytpmtotic equations by comparison with
the exact solutions. In Appendix the exact solutions for both horizontal and vertical
displacement components.

In Section 4, our concern is the extension of an infinite elastic strip and es-



tablish a composite model for horizontal displacement component with symmetric
modes. We follow similar asymptotic process as we did previous problems, and
dispersion analysis done for this case, too. Composite equation and exact solution
compared with the help of numerical results.

Finally, In Chapter 5, conclusions are given and the main results of the thesis

are discussed.



2. MATHEMATICAL PRELIMINARIES

In this section we only mention some basic concepts and definitions of the

theory of elasticity that will be used in the sequel.

2.1. State of stress

Figure 2.1. Components of stress

Let us consider a body oriented by the unit normal n with a number of acting
on it. Taking an element with an area AA,, on the body and let the total force AF,,

acts on this small area. Then the stress vector is defined as

. AF, _dF,
ASS0AA,  dA,

~T,. (2.1)

In general, the stress vector can have any direction to the surface area AA,,. T, may
be regarded as the sum of normal and tangential components. It is possible to find
components of stress vector acting on a particular object by taking an infinitesimal

cubic element, see Figure (2.1). The traction T; acts on each face in following form

Ti = 0;¢€5, Z7.] = ]-7 27 3a (22)



where e; is unit vector and a summation is assumed a repeating indices. Here o;; is

coefficient of Cauchy stress tensor which is defined as

011 012 013
0= | 091 022 093 (2.3)

031 032 033

If the traction T, = (T;) acts on an arbitrary surface oriented by unit normal

n = (n;) then the traction components can be written as
ﬂ = 0jin;. (24)

2.2. State of strain

Definition 2.1. The relative change in the position of points in the body that has
undergone deformation due to external or internal forces is called strain and shown
as €. The strain, €, of a material linee element is expressed as the change in the

length Al per unit of the original length | of the line element;

Al
==

€

(2.5)

The strain is positive if the object is stretched and negative if the object is com-
pressed. As can be seen from the definition of the strain, unlike stress, strain is a

dimensionless expression.

Strain may also be classified as normal and shear strains. Normal strain measures
changes in length along a specific direction due to an applied force. It is also called
extensional strain or dimensional strain and shown as €;. So €;; is the relative
elongation or contraction of the length of the material along the x; axis. Shear
strain measures changes in angle with respect to two specific directions. It is shown
as €; (1 # j). As an example, €15 gives the angular change between the z; and z,
axes. The normal and the shear strains, in literature, are sometimes shown as o;;
and 7;; (i # j) respectively. However we will use o;; and o0;; (¢ # j) for the normal

and shear stress respectively.



Let the component of a vector field u(x) be denoted by w;(z1, x2, x3). If the func-
tions w;(z1, . .., x,) are differentiable then the partial derivatives of the displacement
may be denoted by the indicial notation as u; ; = du;/0x;. Hence the infinitesimal

strain-displacement relationships can be given with the indicial notation as
1
€ = 5 (Uij + ). (2.6)

2.3. Stress-strain relations

The most famous and elementary relation of the material behaviour is Hooke’s
law which states that deformation of the elastic material is proportional to applied

force. This can be expressed mathematically as
F = kx, (2.7)

where F'is the force applied to the material and x is the displacement. Since stress
is a force and strain is a displacement, the stresses and strains of the materials are
connected by a ltnearized relationship that is mathematically similar to Hooke’s law,
and is often referred to by the same name. Therefore in one dimension, the relation

between the stress and strain can be presented as
011 = EEH, (28)

where F is called modulus of elasticity or Young’s modulus. In general, Hooke’s
law, relating the stress tensor to the strain, is written in the form of a fourth-order
tensor as

055 = Eijklekla (2-9)

where the 81 coefficients Ejj,; are called elastic constants. Taking into account
certain material and geometric properties (symmetry, etc) of the elastic medium
as well as symmetry of the stress tensor, the number of elastic constants reduce
to 21. A material exhibiting different properties in different directions is called
anisotropic. In the anisotropic materials these coefficients cannot be reduced any

further. Therefore it will be first assumed that the material is independent from any



directions. In this case number of the elastic constants is reduced to 9 producing an
orthotropic material which has 3 mutually orthogonal planes of elastic symmetry.
Finally for an additional simplification, directional and rotational independence is
assumed. This assumption reduces the number of the constants to 2 producing an
isotropic material which has uniform physical properties in all orientations. Thus

the relation between the stress and strain can be written as
Oij = >\€kk5ij + 2,U/Ez'j7 (210)

where A\ and p are known as Lamé constants and d;; is Kronecker delta. If the
strain-displacement relations given by equation (2.5) are substituted into the above

equality, stress-displacement relations is written as
O35 = )\ukykéij &l ﬂ(ui,j + Ujﬂ'), (211)

see If these relations are written in an explicit form, we have for 1 = 1,2, j = 1,2

(1#7j),and k=1,2,3

ou; . Oug ou; ou; o
Uz‘j:M( =+ ”) 0i = (A + 2p1) = +A(ﬂ+ﬁ),

5l'j 61']' (S.CCZ 51’j (5.173

(2.12)

5ui 61,63 61,61 516]' 5U3
= gig — = — 20)—.
731 = s u(&xg * (5xi)’ 733 )\((5@- + (5@-) + (A +2p) dxs

It is also known from Hooke’s law that the relation between the stress and strain
in one dimension can be expressed by equation (2.8). Therefore if equation (2.8) is

substituted into equation (2.10), the following equality is obtained.

13X + 2p)

2.1
N_‘_)\ EZ] ( 3)

011 =

This equality gives us Young’s modulus, F, in terms of the Lamé constants as

2
5 MG+ 2)

2.14
P (2.14)

Another important elastic coefficient different from aforementioned coefficient is



Poisson’s ratio v. Poisson’s ratio is the negative ratio of transverse strain to the axial
strain in the direction of the applied load. When a load is applied to a material, the
material tends to expand or contract in the other two directions perpendicular to
the direction of the load. This transverse change will bear a fixed relationship to the
axial strain. The relationship, or ratio, of the transverse strain is called Poisson’s
ratio. If the subscript 1 corresponds to the axial direction and subscripts 2 and 3

correspond to the transverse directions then Poisson’s ratio can be written as

y=-2=_3B__ 2 (2.15)

Since A must remain finite, Poisson’s ratio lies between —1 < v < 0.5.

2.4. Governing equations of the theory of elastic plates

In this section, we present the fundamental equations of the theory of thin plates.
Let us consider a thin elastic plate of infinite length along the directions z; and x-
with thickness 2k, where 1, x5 and x3 denote Cartesian coordinates
(—o00 < x1,19 <00, —h<x3<+h). In the classical elastic thin plate theory,
there are certain assumptions that are necessary in order to derive the equations
of motion. For a thin plate described above, the following assumptions are made,

see [28],

1. A lineal element of the plate extending through the plate thickness, normal to
the midsurface, z1 — x5 plane, in the unstressed state, upon the application of

load:

a. undergoes at most a translation and a rotation with respect to the

original coordinate system,
b. remains normal to the deformed middle surface.
2. A plate resists lateral and in-plane loads by bending, transverse shear stresses,
and in-plane action, not through block like compression or tension in the plate

in the thickness direction. This assumption results from the fact that n = h/R

(R is a typical radius of curvature of the midsurface).

3. A lineal element through the thickness does not elongate or contract.



4. The lineal element remains straight upon load application.

Apart from the small parameter 7, thin elastic plates are also characterized by L, a

typical wavelength and 7', the time scale. The equation of motion is given by

E E 0*u
= A ivu — poo = 2.1
2T+ 7) u+2<1+y>(1_2y)grad divu P 0 (2.16)

where u = (uy, ug, u3) is displacement vector, A is Laplacian operator, E is Young’s
modulus, v is Poisson’s ratio, p is density and ¢ is time.

Poisson’s ratio, also called the Poisson coefficient, is the ratio of transverse con-
traction strain to longitudinal extension strain in stretched bar. Traditionally the
Poisson’s ratio was always assumed positive,0 < v < .5, since everyday materials get
thinner when stretched. Today it has been shown through numerous studies that ma-
terials with negative Poisson’s ratio also exist, extending the range to —1 < v < 0.5.

We always assume that the geometrical parameter n = h/R (R is a typical
radius of curvature of the midsurface) is small, i.e. in this thesis we consider only
thin walled bodies. Apart from the geometrical parameter 7, dynamic processes in
thin walled bodies are characterised by two physical parameters [, the ratio of the
wavelength to R and T the ratio of the time scale to Rc,', where ¢, is the shear
wave speed. It is convenient to express these two parameters in terms of the small
parameter 7

l=n% and T =n*,

where ¢ and a are called the variability and dynamicity indices, respectively. Let us
introduce the classification of the asymptotic approximations under consideration,

see Figure (2.2)

10



Asymptotic approximations of 3D dynamic equations of elasticity

0<q<1 0<a<1 ([zm, Tzn)

long-wave low-frequency approximations

q<l,a<1l (|»n.T»n)

Figure 2.2. Asymptotic approximations of 3D dynamic equations of elasticity

In order to write the equations of motion of plane elasticity we refer to equations

(1.1.1)-(1.1.5) in [26] and reduce them, in the setup above, to the following equations:

< FE Oouq i v Ous
' 4 214+ v)x2 \Ox1  1—voxs3)’
— Ev ouy n Ous
72790 — 1)\ \Oay | Ox3)

(2.17)

033 =

Ev v Oup n Ouz
20+ v)x2 \1—vdx; Oxz)’

by Ous n Ouq
731 = 2(1+v) \Oz;  Ox3)’

X:%:/%;% (2.18)

where c¢; and ¢y are respectively the longitudinal and shear wave speeds given by

a= \/( S C2 = —E (2.19)

where

14+v)(1—2v)p’ 21+v)p

According to the Helmholtz decomposition theorem, any vector field can be

represented by a combination of the gradient of a scalar potential and the curl of a

11



vector potential, see [30], that is

u = grad¢ + curl®, (2.20)

where ¢ is a scalar potential, W = (11,19,13) is a vector potential and u =
(u1,ug,ug) is the displacement vector. On employing equation (2.20) the compo-

nents of u, in terms of wave potentials, are given by

09 O3 Oty
tr= 8%1 + 61'2 8I37 (221)
09 O3 | O
v g 8@ 8x1 + 8ZE37 <222>
and
99y O
U= gt G (2.23)

Throughout the thesis, we shall only consider propagation in the x; — x3 plane, so

setting 8i =01in (2.21), (2.22) and (2.23) gives us
)

_ 06 Oy

_ OYs | O
up= =g g (2.25)
and
_ 9 O (2.26)

ug = .

3 81’3 8561
Substituting (2.24) and (2.26) into (2.16) we obtain a pair of wave equations in the
potentials ¢ and v given by

19%

2
1

Ag ~GTw - (2.27)

with the assumption ¥ = (0,0, —1). The derivation of the asymptotic equations
requires an appropriate scaling of the spatial and time variables. We choose scalings

of the variables as x; and x3 balanced with the half-thickness A and, the time variable

12



t with the ratio of h and shear wave ¢;. We thus introduce
r1=&h, x3=Ch and t=—. (2.28)

where ¢ and ¢ are dimensionless longitudinal and vertical coordinates, and 7 is the
dimensionless time variable. We may also scale the wavenumber k& and angular
frequency w as

_ wh

K=kh Q (2.29)

Cy '
Here K and ) are dimensionless wavenumber and angular frequency, respectively.

Let us now seek the plane travelling wave solution to equations (2.27) in the form

P = f(()e e (2.30)

¢ = g(¢)e'E

where i = +/—1. Inserting (2.30) into equations (2.27) we obtain the following

hyperbolic equations

o~ a’f =0, (2.31)
92
a—g - 529 =0
where
a=+/K? — x2Q2, 8 =VK2Z-Q2 (2.32)

There are two groups of vibration modes corresponding the equations given by
(2.31), namely antisymmetric and symmetric modes with respect to the midsurface.

These modes will be described in detail in the following sections.

13



2.5. Antisymmetric modes of an elastic plate

»
>
x
w
>
>
x
w
>
>

X3
A

. L4
P

n=1 n=3 n

Figure 2.3. First three antisymmetric modes of vertical displacement component
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Figure 2.4. First three antisymmetric modes of horizontal displacement component

In order to obtain the antisymmetric modes in case of plate bending we seek the

solution of (2.31) in the form
f = Asinh(a(), g = Bcosh(5(). (2.33)

In this case, the displacement u; and the stresses 011, 099, 033 are odd with respect
to ¢ while displacement us and the stress o3, are even.
Let us first write down the 2D equations governing the long-wave low-frequency

approximations, for which

L>h T> %h. (2.34)

It is well known that this approximation corresponds to the classical Kirchhoff theory

for plate bending resulting in the fourth-order parabolic equation

2

)
DA?w + 2pha—;u — Qn — 2hdivrQp = 0, (2.35)

where w is the vertical displacement of the mid plane (w = ug|,;—0), Qn is vertical

14



load, Q; = (Q1,Q2) is the vector of tangential loads, the bending stiffness D is

given by
2ER3
D= """ 2.
and the 2D operator divr is given by
0 0

2.6. Symmetric modes of an elastic plate

A P

waiy:

v

n=4

A X3 A X3 A X3
N -
:: X1 ? > X I X1
A = S A -
n=0 n=2 n=4

Figure 2.6. First three symmetric modes of horizontal displacement component

Similar to the previous case, assuming (2.31)

f = Acosh(a(), f = Bsinh(5¢) (2.38)

gives us symmetric modes for plate extension and transverse compression of a thin
plate. For symmetric modes the displacement u; and the stresses o1, 099, 033 are
even with respect to ¢ while displacement u3 and the stress o3; are odd.

For this case the governing equation is given by

1 1 0%u 2hv
Eh A ddi —2ph—— +2
(1+y ut —gra 1vu) p 8t2+ QT+1_;/

grad@s; = 0. (2.39)

Similarly, we may also write the refined equation by adding O(n?) and O(n*) terms

15



into (2.39)

1 1 , 0*u 2hv
Eh <1 n VAu + T Vgrad d1vu> — 2phw +2Qr + - Vgrang—i—
1 3+ 4v —v? , 2p O?

Eh? | —————A%u— Agrad d ——A

}L[60+u) U (L= v R(l+ o) B VI 3 Ep A

(2.40)

20+ v)p?dtu (2+v—1v?)p 02 , 1+ 202

— —grad divu — ————=Agrad
SE7 oi T a(l—wph apord divu s s g aeradls

(L+v)(1=3v+42)p 0*
3(1 — v)2E? ot?

grad@s| = 0.

2.7. Asymptotic model for Surface Waves

Since we are trying to establish a composite equation, we need to compare
the equation that we aim to obtain when L > h, with the plate limit . When L < h,
the plate behaves like a half-space and the waves generated in this case will behave
like surface waves, see Fig 2.7. That’s why we’re trying to obtain an asymptotic

model for Rayleig Surface Waves.

P

’ ‘ P P

Figure 2.7. Behaviour of plate waves

To this end, we follow the exposition given in [30]. Let us give the asymptotic

formulation for Rayleigh wave, which is valid at

L<h and T</Zh (2.41)

E

At leading order, this is given by a 2D hyperbolic equation along each of the faces

x3 = th, due to the symmetry, below we consider only the upper face x3 = h. In

16



terms of the boundary value of the scalar wave potential ¢(xy, z9, x3,t) we have

1 9?¢y, B 1+k§P
& o2 4uB

Aoy, (2.42)

where ¢, = ¢(x1, 22, h,t), u is Lamé elastic modulus, cg is the Rayleigh wave speed,
P is the normal load corresponding to @)y defined above, and

kq ko

B=—1—k)+—01—k)—(1—ky), (2.43)
ko kq
with
% ,

Over the interior |z3| < h, ¢(x1, x9, x3,t) satisfies the elliptic equation

0%¢

— + kAP =0 2.45

833% + 1 ¢ 9 ( )
whereas a pair of shear potentials W;(xy, zo,x3,t), i = 1,2, may be found from the

boundary value problem

0?0,
L KIAY, = 2.4
85(7?2) + 2 07 ( 6)
with
ov, 14 k309,

. 2.4
8m3 z3=h 2 (‘9@ ( 7)

Hyperbolic equation (2.42) may also be written through the displacements of the

upper face u;(z1, x2, x3,t), 7 = 1,2,3. To this end, we express the solutions of elliptic

equations (2.45) and (2.46) as
& = PV AR@mh) and W, = WyeV Ahal@ash) (2.48)

where v/ —A is a 2D pseudo-differential operator and V;;, = W, (x4, 29, h,t). Then,

taking into account the boundary condition (2.47) and also the relation

0%,
8953

(2.49)

B 1+ k‘g oy, n oV,
2 8%1 81’2 ’

xr3=h

17



we obtain

ov, 00, 1 — k309, .
i — — = — 5 — 1’ 27 250
Y 81’3 (9x1 z3=h 2 (9@ ! ( )
and
od OV, | OV, Eky(1—K3)
= _— = vV—=A Py 2.51
U3 8x3 z3=h 8%1 + 85(32 1+ k)g h ( )

With the help of these formulae, we may write the equation (2.42), which is written
in terms of potential ®;, in terms of displacement components as

Auj— — 2= =12 2.52
¢ cr? 0t? 8uB  0x; ’ ( )

or

Y Ak
& c% Ot? 4B

Thus, we have obtained the Rayleigh equation, that is given in terms of scalar wave

potential @, in terms of displacement components.
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3. COMPOSITE WAVE MODELS FOR ELASTIC PLATE

In this section, we attempt to establish 2D composite hyperbolic equations for
an elastic plate using Kirchhoff or refined asymptotic plate equations along with the
Rayleigh wave equation, regarding the idea of composite equations incorporating
both long and short-wave limiting forms, for which a typical wavelength is much
greater or smaller than the plate thickness. We restrict ourselves to surface loading,
when bending and Rayleigh waves are seemingly of the most importance. We do not
expect, from the very beginning, to arrive at uniformly valid composite equations.
The point is that over the intermediate range, for which a wavelength is of order of
thickness, a plate demonstrates essentially 3D behaviour, which does not allow any

asymptotic dimension reduction.

3.1. Statement of the Problem

3
i
e N2
/ﬂ’ﬂﬂ/// \\%\
> i Z
S E >
\KLLLLL\\ //W
\\\\-—///_/P
2

Figure 3.1. Antisymmetric deformation of an elastic layer under normal surface loading

We consider antisymmetric deformation of an elastic plate subjected to pre-
1
scribed normal stress iﬁP(xl, xo,t) at the faces x3 = £h, respectively, as given in
Figure 3.1. For long-wave low-frequency approximation the governing equation can
be written by taking Q7 = 0 in the Kirchoff plate equation (2.35)
0w

DA*w + 2ph—— = P.

7 = P. (3.1)

where we adopt the notation )y = P. In this case we have no tangential loading

but normal loading, so we may obtain the refined plate equation for this problem
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by taking Qr =0 and Qy = P in (3.20)

Tv — 17 0w 8 — 3v
DA? 2 1+ h? A —(1-h—A|P 2
Wt ph( th 15(1 - v) )&52 ( h 10(1 — v) ) (3.2)

To obtain the relation between w and the displacement components wuy, us, we
may use the following results from analysis of higher order plate bending theory in

Chapter7 in |26]

ug = Ruj (3.3)
u; = Rv}

. 1
Q3 = EUQS-

where n and R are given in Section 2.4, and the starred quantities are of the same

asymptotic order, and independent of the thickness variable (.

wh=w—+ nPCu?, (3.4)

up = Cul +PCu® i=1,2.

7

Employing a two—term asymptotic expansion in (, it is possible to obtain asymptotic

expansions for displacements and stresses given by
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ow
1 0
= Ot el
(1) oul!
m_ 1 du; u; s V)
[op» 1_1/2(@& +V3§j +77—1_V033,

(1) 1 Ouy” 8“5‘1)
K 2(1 + V) 3@ 8& ’

1 W 2, (1)
2 _ 1 do;; Tij 1 0y
03 ( + ) +1 41

2 861 85] +l/) or? ’
oy = —oy —n'oy,  (35)
0(1) r _80‘:(3?) r agég) " 1 0*w
=2 ¢, o6  2(1+v) 727
1 (90  00f) 1 9
(3) 34 37 2 3 . .
= [ =3 4 ~ 97 =1,2).
78 =73 ( ot tog ) Ve o UFI=LY

Constitutive equations as well as boundary conditions are given in the following

form

_5 JJj
(2)
(3) 1 @u3 2 (2)
= — —(1
7 3 agl 3( + V)UBZ )
(3) P (3)
(3) 1Oy u; Vo)
Oii 1_7/2<8€z _’_Vag])_’_l_ 0335
( ) 1 +
” 2(14+v) \ 0¢; o |’
(3) (3)
3i 4\ 0§ 0¢; ’
4 (4)
;o 1 doly 0oy
33 5\ 0¢ 0&;
On the surface ( =1 from (3.4), we have
Uy =w + 772u§2) (3.7)
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and employing the relevant identities of (3.4)—(3.6) in (3.7), we get

. v
uy =w— 7725 (az-(il) + CTJ(;)) +0(nY), (3.8)
(1) oulY gy 1
2 v du; Y Y du; 4
= w 772(1—1%)(85,- +V8£j +8£j +1/a§i>+0(77),

(1) (1)
2 v Ou; (9uj 4
R ( o afj>+0(”)’

v Pw  Pw A
i (o + as;) + O,

Since the problem is independent of the horizontal coordinate &, we may write

2
73
O(n') in equation 3.8 we arrive at

:w—|—772

= 0, and for ease of reference we set & = £. Ignoring the higher order terms

62

Returning back to the original variables we may express the vertical displacement

on the upper face x3 = h, in terms of the mid plane displacement as

_ v O
ug = <1+h 20— 1) ax%) w. (3.10)

Thus, we have obtained the differential operator that gives the relationship between

w and us

Uz = ng, (311)

with

o2
Ly=1 2L—. A2
K h 2(1 — v) 023 (312)

For u;,7 = 1,2, we have the following asymptotic relation
ul = ugl) + 772u§3). (3.13)

Following the same procedure as done for uz, employing the relevant identities of
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(3.4)—(3.6) and taking i = 1 in (3.4), we get

ow © ol ouy’ (2) 4
:_3& +n72(1 4+ v)oz’ —n ga—€+7l 5( +v)oy +0(n)

__Ow 2V 8072(721) aay(';) 241 +v) ao-i(in) 805;) 4
“‘a&*”E(a@ e )T e ey ) O

ow  L,A+50000  Ludel) 41 4v)d0y 4
o6 ee "Moo T 6 o PO

_ 8w+ , 4450 (02l N 82u§1) I &2ul N 2V

92

“og et =) oz TV agog; 1—2) \ogog;, " oe2

2 (o2u) 02t
2 7 J 4
- + +O(n*)
6 ( 06;  0&0¢;
dw v4+4 92 3 +2 Pul! 2 0%ul
_ 2 2 J 2- + 0(774)

“o6 Tei-v) o2 Te(l—v)ogog 6 oe
ow  , v+4d Pw  ,3v+2 Pw ,2 Pw
“os Tei-vog Tei-vogoe " 6ogre
ow  , v+4d Pw , S5v  w
“o6 Te—vy o " 60— ) dgoe

B o v+4 0? 5v 9%\ Ow Ny
—- (1 (e amog) ) g HOUN i#imie

If we return back to the original variables in equation (3.14), we get

+0(n"),

+0(n"),

2 2
v+4 0 v 0 )) dw i£i—12  (3.15)

* 2 o el
= (1 h <6(1 —v)ox; 6(1—-v)dz3)) O’

Thus, we obtain the relation between u; and w on the upper surface rs = h given

by

i=1,2, (3.16)
with

v+4 02 5v 02 . L,
7 J

Hence, with the help of asymptotic expansions of displacement components we found

the differential operators that make it possible to write displacement components
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in terms of mid-plane displacement on the upper surface. First, acting with (3.12)
and (3.17) on (3.1), the Kirchoff plate equation can be rewritten in terms of the

displacement components on the upper surface x3 = h as

0%u; v+4 0? 5 02 OP
2 i 2 _ o
DA+ 2ph 2t = —h <1+h (6(1 S0 B aﬁ)) G (319

and
82U3 .

) v 0%
57 = (1+h 507 aﬁ) P. (3.19)

We may also apply the differantial operators (3.12) and (3.17) to the 'refined plate

DA?us + 2ph

equations’ given by (see, [26])

4 2 _
DA%*w+2ph <1 + h? v 2 A) . (1 — h218—3”)A) QN—

15(1 —v) ot? 0l —v (3.20)
44 v '
_ AR 4 ~ _
2h <1 h 5001 = 1) A) divrQ, = 0.

On doing so, the refined plate bending equation can be rewritten in terms of the

displacement components on the upper surface x3 = h

Tv —17 0%u;
2, 2 i _
DA2u;+2ph (1+h o ) = (3.21)
L, vid O v P 8-3v oP
(Hh (6(1—1/)8:;:3 6(1 — v) 02 0a=0)">)) gz I = L2

and

Tv — 17 0%u 4
) ) 3 (4 524
DA%uy + 2ph <1+h B V)A) = (1 h 5A) P (322

Thus, asymptotic expansion applied to displacements and stresses, the refined plate

equation is obtained in terms of displacement components.

3.2. Dispersion Analysis

In this section, we will analyse dispersion relations as a preparation step for the
construction of an asymptotic model. Starting with the wave equations (2.27), and
substituting plane travelling solutions, in the form e!**=“Y we end up with

w2
—
%

k* = i=1,2. (3.23)

C

24



Equation (3.23) is known as the dispersion relation, which is a link between angular
frequency w and wave number k. This relation (3.23) means that waves with a given
frequency must have a certain wave number, so it is important to characterization
of waves. To analyse the natural vibration modes of a thin plate, we may take

homogenous boundary conditions on the faces
031 — 033 = 0 at T3 = +h. (324)

Expressing stress components in the given boundary conditions (3.24) in terms of the
functions f and g defined by (2.33), in case of plate bending, for which we consider

only antisymmetric modes, we obtain the following system of linear equations

AiKacosha + B (K* — 92)2 cosh 3 =0, (3.25)
A (K2 — Q2)Qsinhoz — BiKfcosh = 0.

In order for the solution of system of homogeneous equations (3.25), to exist, the
determinant of coefficients must be zero. Equating the determinant of coefficients

to zero in (3.25), we obtain the frequency equation

inh inh
(K2—§22)4 S @coshﬁ—BQKQCoshaSIH 5 =

0. (3.26)

The resulting equation (3.26) is the Rayleigh-Lamb frequency equation for the prop-
agating waves with the antisymmetric modes in plate. To obtain dispersion relations
for the problem that we introduce, we study the plane travelling wave solutions to
the homogeneous forms of plate equations given in the previous section. The typical
wavelength and time scale are defined as L ~ k~! and T' ~ w™!. First, we substitute
the travelling wave solution uz = Use!®*=“") into equations (3.1),(3.22) and (2.53)

for P = 0, having

3(1—v)
4 2
— = 2
k I w =0, (3.27)
3(1—v) Tv—17
E* — W <1 — hzka) w? = 0, (328)
2
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and

1

K — Fw® = 0. (3.29)
Cr

Thus, we obtain the dispersion relations for Kirchoff plate equation (3.1), refined
plate equation (3.22) and Rayleigh equation(2.53). Employing the scalings (2.29) in

equations (3.27), (3.28) and (3.29) we get the nondimensional dispersion relations

3(1 —

K4 - %QQ — 0, (3.30)
3(1—-v) Tv—17
K*— 1— K?)Q? = 31
2 ( 15(1 —v) ) 0 (3:31)
and

1
K> — Q0% =0, (3.32)

Ur

corresponding to Kirchhoff plate bending (3.1), refined plate bending (3.22), and
Rayleigh (2.53) equations, respectively. Here vg = Z—R is the dimensionless Rayleigh
wave speed. Having arrived at the required disperSion relations, we may suggest
a ’simple’ composite equation for dispersion relations based on (3.30) and (3.32),
which is

3(1 —v) Ot

0 —

4
K'— 2 o= 0. (3.33)

The aim of writing equation (3.33) is to combine long-wave low-frequency and short-
wave high-frequency one in a composite equation for different behaviors in different
asymptotic approaches. It may easily be shown that this dispersion relation (3.33)
contains both long—wave low—frequency and short—wave high—frequency limits. At

the long-wave low—frequency limit, in which Q ~ K? < 1, we have

. 8
A=) K2 (3.34)

K*—
2 vh

the last term on the left-hand side is order of O(n?) and may be ignored at leading
order, since n = K < 1. So, at leading order we arrive at the dispersion relation
(3.30) from (3.33).

On the other hand, at the short-wave high—frequency limit, in which 2 ~ K > 1,
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we have

1- Q!
B0V s — -0, (3.35)
2 (0

K* —
we may neglect the middle term, which is of order O(K?), and arrive at the other
shortened dispersion relation (3.32).

Next, by combining (3.31) and (3.32), we may propose a refined composite dispersion

relation in the form

3(1 — 02
g3 (1 —0K?) Q4+ yK*Q? (K2 - —2) =0, (3.36)
UR
with
v —17
0= ————. 3.37
15(1 —v) (3:37)
Here 7 is a constant parameter to be found. To this end, we express (3.36) in the
form
3(1— 0? 3(1 —
(1+70%) K* + (%5 r 7—2> DK — %92 —0 (3.38)
VR

Considering (3.38) as a quadratic equation with respect to the variable K2, we find

its root to be

21 (30 =v)s 2N

K= ) 0= ) (3.39)
1— 02\ >

\/(u(sz) Q4+ 6 (1 4 702) Q2
2 UE

By taking the square of both sides of (3.39), K* can be written as
1 3(1—v) 02\ ?
Kt= —— |2 =—Z5—v— 11— Q! 1—v)Q*—
0+ 02 [( ( 5 0 71)12%) + 6( v)y + 6( V)

(3.40)

(5,0 Qz¢(M5_79_;)294+6<1_mem)m

2 vp
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Equation (3.40) may be expanded at 2 < 1 as follows:

K4:3(12_V)Q2 <1+ wgg_k(W—y)ff—i—.”). (3.41)

Now, we require the last expansion (3.41) to coincide with the asymptotic expansion
of Rayleigh-Lamb dispersion equation for the antisymmetric mode (3.26). Taking

into account the analysis presented in | [26], section7.5, page 135.], we obtain

36%(1 —v)
- 4 (3.42)

_ —422 4 4240 4 3317
©1050(—1+v)

Y

3.3. Numerical Results

In this section numerical values of the solutions are illustrated. We may
obtain the numerical results for small and large values of {2 in dispersion rela-
tions (3.30), (3.31),(3.32), (3.33), (3.36) and (3.26), corresponding to low and high—
frequency limits. Table 1 shows the numerical results for the dispersion relations in
the case of Poisson’s ratio v = 0.25 for which the positive root of Rayleigh equation
(3.26) is given, approximately, by vg = 0.9194. The first two columns of Table 1
corresponds to the Kirchoff and refined plate limits and therefore only the results of
the smaller values of {2 are presented in these two columns. Likewise, third column
correspond the high frequency limit, that is the Rayleigh equation, and thus only

the numerics of large € is given.
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Kirchhoff plate Refined Plate Rayleigh wave Composite Refined composite | Rayleigh-Lamb
Q | dispersion relation | dispersion relation asymptote dispersion relation | dispersion relation | dispersion relation
(3.30) (3.31) (3.32) (3.33) (3.36) (3.26)
0.1 0.3256 0.3375 0.3348 0.3372 0.3372
0.2 0.4605 0.4947 0.4869 0.4929 0.4930
0.3 0.5640 0.6278 0.6130 0.6229 0.6233
0.4 0.6513 0.7506 0.7275 0.7409 0.7418
0.5 0.7282 0.8684 0.8357 0.8519 0.8537
1. 1.029 1.438 1.343 1.363 1.373
1.5 1.261 2.013 1.845 1.858 1.873
2 1.456 2.600 2.354 2.360 2.374
2.5 2.719 2.871 2.872 2.880
3 3.262 3.394 3.392 3.391
4 4.350 4.453 4.448 4.428
5 5.438 5.522 5.517 5.482
6 6.525 6.596 6.591 6.550
8 8.701 8.755 8.750 8.707
10 10.87 10.91 10.91 10.87
11 11.96 12.00 12.00 11.96
12 13.05 13.08 13.08 13.05

Table 1. Dispersion relations.

Visualizing the data shown in Table 1 obtained from dispersion equations (3.30),
(3.31), (3.32), (3.33), (3.36) and (3.26), it is easier to compare the behavior of the
composite equation in the limiting cases corresponding to the plate bending and

Rayleigh equations.
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4 | R 3 |
_ RANGE Il e =
8 8
K % | o | S | e Simple Composite Dispersion
o ,_/’/ ______________________ i |- Kirchhoff Dispersion
| P g | Rayleigh Dispersion
! | ,r.‘f':" - |
! |
ol !
| |
0 1 2 3 4 5
Q

Figure 3.2. Dispersion curves for Kirchhoff equation (3.30), composite equation (3.33), and
Rayleigh wave (3.32).
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Figure 3.2 displays dispersion curves for Kirchoff plate (3.30), simple compos-
ite equation(3.33) and Rayleigh wave (3.32) plotted by blue, red and green lines,
respectively. Graphic material is supported by the numerical data in columns 1, 3
and 4 in Table 1. As shown in the graph, the composite dispersion curve displays
the same behavior as the Rayleigh limit for large values of {2 and the plate limit for

the small values of the 2.
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Figure 3.3. Dispersion curves for refined plate equation (3.31), refined composite equation
(3.36), and Rayleigh wave (3.32).

The dispersion curves plotted in Figure 3.3 by blue-dashed, red—dashdotted lines,
correspond to the refined plate (3.31) and composite equation (3.36), respectively;
see also columns 2 and 5 in Table 1. As might be expected, the deviation between the
predictions of composite relation (3.33) and its refined form (3.36) is more substantial
at relatively low frequencies, while it is rather minor at the high-frequency limit.

The obvious reason is that both composite relations utilise the same Rayleigh wave
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asymptote.
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Figure 3.4. Relative error for composite equation (3.33) and refined composite equation (3.36).

The accuracy of composite relations (3.33) and (3.36) is tested in Figure 3.4 by
comparison with the numerical solution of the Rayleigh-Lamb equation, see (3.26).
Computations for the latter are also presented in the last column of the Table 1.

The relative error is plotted with the following expression

| Kp— K
KRL

€

x 100%, (3.43)

where Ky denotes the associated Rayleigh-Lamb root. It is depicted with dashed
and solid lines for K found from composite relations (3.33) and (3.36), respectively.
The curves corresponding to composite relations meet that for the Rayleigh-Lamb
equation at €} =~ 3. This reduces the approximation error over the intermediate
frequency range, which is of main concern from the very beginning. To the left
of = 3, the refined relation has a clear advantage, while to the right of it the
difference between (3.33) and (3.36) is not that considerable.

31



3.4. Construction of the Composite Equation For Vertical Displacement

Component

In this section our aim is establish 2D composite wave models containing plate
bending and Rayleigh wave equations as their asymptotic long—wave low—frequency
and short—wave high—frequency limits corresponding to (2.34) and (2.41), respec-
tively. At the same time, we do not expect an uniform asymptotic behaviour since

the intermediate domain

L~h and T~ %h (3.44)

is not addressed. However it should be emphasised that two incorporated limits
approximate the dominant part of the overall dynamic response related to the zone
of intensive flexural vibration and vicinities of Rayleigh wave front on plate faces,
in doing so, the rest of the response consists of low amplitude vibration.

Acting (3.12) on (3.1), we obtain Kirchoff plate bending equation in terms of uz at

leading order
82us

DA? 2ph
U3+ Y 8t2

=P, (3.45)

along the upper surface z3 = h. Starting with (3.45) and (2.53), we obtain a

composite asymptotic equation for vertical displacement u3 along the faces x3 = +h

D  d%*u 0%u k ( —k2)
DA?us C%A 5 + 2ph 8t2 (1 h 3B 1) — 22/ AA) (3.46)

This simplest composite equation (3.46) can easily be reduced the original shortened
equations at the long—wave low—frequency and short—wave high—frequency limits. In

order to show this, let us start by scaling the original variables as

v, =&L, i=1,2, and t=TT. (3.47)
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h
Then, for long—wave low—frequency limit assuming that n = T L land T = —

Tc2
(see (2.34)), we have
D[, 2 1 0*uz  3(1—v)dus e
L4 (A s = %A* oT2 + 2 o2 L4 Ael
(3. 48)
0? 82 L*
where A, = =3 52 5 §2 Dividing both side of (3.48) by ) and applying A,, we get

1 . Q%us 3(1 — v) %us k(1 — k2) pPL*

A, =P A—— ) A, —_— = (1+ P2V -AA, | —
( T 7') st T (+n3B(1—1/) D’
(3.49)

It is, now, clear that, at leading order, that is ignoring terms of order O(n?) ,
(3.49) coincides with Kirchoff plate equation (3.45) when written in nondimensional

variables.

h L
Now let n = T > 1 and T'= — (see (2.41)), resulting equation is
CR

D 2 82U3 _9 9 3(1 — V) 62U3 il 3k1<1 — ]ﬂ%)
I (A U= B W VR G | = \ 1 mv—“* d

(3. 50)

0? 3(1 —v) 0? PLY?
A, (A — A, “52 )u;ﬁ—n‘%%% 3:23 = (77_3+ \/ A*A*) 7 .
(3 51)

In (3.51) neglecting O(n~2) terms and cancelling out the operator A,, we obtain
short—wave high—frequency limit for simple composite model, which coincides with
(2.53).

Next, we implement the refined plate equation (3.20) and proceed in the same man-
ner as above. Then, a more sophisticated composite equation for vertical displace-
ment may be presented as

D (1 _p2L > 7 & ) Aug + 2ph (1 + h26A + h42—7A8—2) Fuy =
5 Ot? 3(1—wv)ck ot2) ot?

— _ K2z 2 —
= (1 WA+ S (1_V)C§\/ AA

(3.52)

Again, it may be shown that equation (3.52) is reduced to its original shortened

forms at the long-wave low-frequency and Rayleigh wave limits using proper scalings.
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In particular, at low-frequency limit, (3.52), written in terms of the dimensionless

variables (4.6), takes the form

2vc3 0? ) Ouz

(3.53)
This time let us keep O(n?) terms, neglecting all the smaller ones, to obtain
3(1—v) 0%us 4 PLA
A? = 2 (1+n%A, =(1-n*=A, . .54
ay+ == (L+ 7" )372 e 5 (3.54)

This equation is identical to refined plate equation (3.20) rewritten in dimensionless

variables. Now we get from (3.53) at the Rayleigh wave limit

2 42 2 3(1 _ 9 2 2
(772_7638_) AEUS—FCC—};?’( V) (774+772(5A*—|— T A 0 >8u3_

2 072 2 3(1—v) "or2) or
_ a4 vk (1 — k3) 0%\ PL'p?
= S TIA A+ 2 AN = :
<” T T 3B =) U or2) D
(3.55)
At leading order, the latter becomes
0? 0? L3 ki (1 — k3) 0?pP
Av— | Ay — — = — VAN —. 3.56
or? ( 872> = D 3B(1-v) or? (3:56)

2
Finally, cancelling out operator A*a— we have Rayleigh wave equation (2.53)

2 ?
-
presented in a dimensionless form.
As might be expected, the dispersion relation corresponding to refined composite

equation (3.52) is the same as (3.36).

3.5. An Illustrative Example

As an example, we consider the effect of the surface loads, see Figure.2.1,
in the form of plane time-harmonic travelling waves, for which P = Pye!(koz1—wt)

where kg = ko(w) is a given function of angular frequency w. Let us search for

34



the solution to the differential equations in Sections 3.1 and 2.7 also in the form
of a plane travelling wave, i.e. take ug = Auei(koxl_m), where A is normalized
amplitude. 8

First, insert uz and P into the composite equation (3.46) and its shortened limiting

forms (3.19) and (2.53). Then, we have, respectively,

31— v)B + k(1 — k2)K3

A = .
AB(K§ — F K302 — @Qz) (3.57)
R
A 3(1—v) 1
2
and
12

4B Kg—Q?/v%’

where, as before, 2 = w/cy and Ky = koh.

Next, insert usg and P into refined composite and plate equations (3.52) and (3.22)

to obtain
A 1 3(1 —v)(5+4K2)B + 5ki(1 — k3)yK3Q?
= — : 3.60
208 (1+~02) K3 — (3(12 ) _ 7u£)17Kg + %K&Q2) 02 ( )
and
3(1—v 54+ 4K2
A= (20 ) R 0 —, (3.61)
Koy — T(l_(sKo)Q
or, multiplying numerator and denominator by 5 — 4K, in (3.61),
3(1—v 25 — 16K}
a=30) : (3.62)

20 5K} - BU02 51 4 )K202 — 4K — 6(1 — v)KQ2

This formula, to within higher-order terms, coincides with (3.109), the long-wave
low-frequency expansion of exact solution (3.107) at K = K,. Also, expression

(3.59) is the same as Rayleigh wave limit (3.110) at K = K due to the identity
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4B = URR,(’UR).
Numerical data are given Figures 3.5-3.7 and Table 2 for v = 0.25, vg = 0.9194,
and ¢ = 0.02 .

Q Kirchhoff Refined Plate | Rayleigh wave Composite Refined Composite | Plane elasticity
equation (3.58) | equation (3.61) | equation (3.59) | equation (3.57) equation (3.60) equations (3.107)
0.1 -50.5804 -50.2571 -49.9961 -50.2571 -50.2027
0.2 -13.1013 -12.7541 -12.5158 -12.7544 -12.7031
0.3 -6.19535 -5.80486 -5.501 -5.80606 -5.75931
0.4 -3.82774 -3.36786 -3.17994 -3.37107 -3.32969
0.5 -2.8045 -2.23504 -2.07423 -2.2416 -2.20589
1 3.39117 -0.685338 -0.666011 -0.731965 -0.71589
1.5 0.140492 -0.35926 -0.468618 -0.476211 -0.454868
2 0.0348212 -0.225405 -0.437286 -0.42102 -0.381079
2.5 -1.66994 -0.442851 -0.421085 -0.365705
3 -1.39161 -0.454562 -0.434849 -0.375865
4 -1.04371 -0.467465 -0.456193 -0.426026
5 -0.834968 -0.46161 -0.456402 -0.474053
6 -0.695806 -0.443547 -0.441541 -0.492547
8 -0.521855 -0.394237 -0.394421 -0.450213
10 -0.417484 -0.345513 -0.346039 -0.379392
11 -0.379531 -0.323708 -0.324228 -0.34778
12 -0.347903 -0.303819 -0.304299 -0.320075

Table 2. Displacement amplitude for Kirchoff equation (3.58), Refined Plate equation (3.61),
Rayleigh wave equation (3.59), Composite equation (3.57), Refined composite equation (3.60),
Plane elasticity equation (3.107)

RANGE II

| RANGE I

Kirchoff Plate

----- - Composite

Rayleigh

Figure 3.5. Displacement amplitude for composite equation (3.57), Kirchhoff equation (3.58),
and Rayleigh wave equation (3.59).

In Figure 3.5 the solutions of composite equation (3.57) is plotted by the red dot-
ted and dashed line, along with those of Kirchoff plate equation (3.58) and Rayleigh
wave model (3.59) are plotted by the blue and green solid line, respectively. In
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Range I, the Kirchoff plate displacement curve (3.58) and the composite displace-
ment curves (3.57) are matching, as expected, for small values of 2. From Range
IT it can easily be said that the composite displacement curve (3.57) approaches the

Rayleigh wave model curve (3.59).

0.0F

RANGE | RANGE III

-05 D |
RANGE Il

Refined Plate
| IR Refined Composite
Rayleigh

Figure 3.6. Displacement amplitude for refined composite equation (3.60), refined plate
equation (3.61), and Rayleigh wave equation (3.59).

It is possible to make similar comparison between (3.60), (3.61) and (3.59). In
Figure 3.6 the solutions of refined composite equation (3.60), refined plate equation
(3.61) and Rayleigh equation (3.59) are plotted by red dotted and dashed line, blue
and green solid lines, respectively. In Range I, refined composite displacement curve
and refined plate curve are well matched. In Range III, Rayleigh curve approaches
refined composite displacement curve, as expected. It is interesting that behaviours
of the solutions of the Kirchhoff and refined plate equations appear to be quite

different over the intermediate frequency range in both Figure 3.5 and Figure 3.6.
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Figure 3.7. Displacement amplitude for composite equation (3.57), refined composite equation
(3.60), and plane elasticity (3.107).

In the last Figure 3.7, the solution of the composite equation is compared with
the exact solution of the associated problem in plane elasticity (3.107), see also
the last column of the Table 2. Figure 3.7 and the Table 2 indicate a reasonable
accuracy of the composite equations also over the intermediate frequency range.
As for the dispersion curves in Section 3.2, the main improvement brought by the

refined composite equation is observed at relatively low frequencies.
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3.6.

Section Summary

. . A
Refined plate equation Rayleigh-Lamb Dispersion Relation

K 3(12_ v) ( _ 175121—712) K2> 2—0 (K? + p*)?tanha — 4K?afBtanh f = 0

Refined composite equation

— 2
g 300 5 Y (1 - 517 9 + 02 (K2 - ?—2) =0
R
s 1T _ 4224 4240 4 332
S 15(1-v) T 1050(-1+v)
- J/

Figure 3.8. Dispersion Equations
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Displacement amplitudes

A\ d ¥
Plate Equation Rayleigh wave equation
Kirchhoff Equation
A= k1(1 — k2) Ky
A 3(1—-v) 311 4B KI-—Q2/v}
4 Ki— (1-v) 0
2
Refined Plate Equation > 4
4301 5+ 4K3
20 Kg_3(12;")(1_5](g)92
\ J
v R 4

Composite equation

Simple composite equation

3(1—v)B+ki(1— kDKE
4B(KG - L K32 - X500

A=

v

Refined composite equation

_ 1 3(1-v)(51 4KDB + Ski(l - K)vKIQ?
W8 (1902 i - (M2 - TRG + FHGE?) @2

Plane Elasticity Equation

Figure 3.9. Displacement Amplitudes
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3.7. Construction of the Composite Equation For Horizontal Displace-

ment Component

In this section our aim is establish a composite wave model containing plate
bending and Rayleigh wave equation in terms of horizontal displacement component
uy,. We will follow smilar procedure as we did for vertical displacement component
ug in previous section 3.4. From the equation(3.21) taking i = 1,7 = 2, we may

write refined plate equation in terms of horizontal displacement component u; as

v —17 0%u
DA?uy+2ph 1+ h? - = .
ui+ ph( +h15(1_y) ) 5 (3.63)
4 2 2 — P
L4 B2 v+ 82_ Sv 82_ 8 3VA 8_’
6(1—v)0dxy 6(1—v)ozs 10(1—v) Oy
2
with A = 9 Since the problem is independent of the horizontal coordinate xs,
|
we take % = 01in (3.63) to get
v — 17 0% 2—Tv 0%\ OP
DA%uy+2ph ( 1+ h? L= —h(1-n . (3.64
tep ( gl 15(1 = v) ) ot? 15(1 — v) 022 ) Oxy (3.64)
Taking i = 1 on (2.52), we get
1 02 1—k}opP
Au, o 2 (3.65)

& o2 8uB Ory

We may suggest a composite equation by adding terms into refined plate equation
(3.64) to balance Rayleigh terms from (3.65). Thus, we may write the following

composite equation with unknown coefficients 6 and ~y

*uy Tv—17 0%\ 0%y 0*uy
D——=+2oh |1+ h? 0 — .
ot P ( s 835%) o ' on (3.66)

a2t ® _#Yop
h <1 h 15(1 — v) 022 +78t2 Ory

Multiplying Rayleigh equation (3.65) by D and taking derivative with respect to x4

twice, we get
84161 D 641,61 . D C% 1+ ]{?g 83P
ox} % 02302 4 ¢ 2uB 0z}

(3.67)
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Now, it is possible to find the unknown coefficients # and v by comparing terms of
(3.66) and (3.67). At short—wave high—frequency limit since we have the Rayleigh
wave equation the following relation holds:

0? 1 0°

(3.68)

If we take the third and fourth terms of the left side of the composite equation
(3.66), they must be balanced with the second term of the left side of the Rayleigh
equation (3.67)

Tv— 17 84U1 84U1 . D 84u1

2ph’ 0 = 3.69
A —oser ' on | & onoR (369)
Using (3.68) in (3.69) at long-wave low—frequency limit, we get
Tv—17 841,61 84U1 D 8u1
2ph’ 0t = — = 55 3.70
PV Ts(—v)ooe " RoZor | & orion (3:70)
From (3.70) we obtain the unknown coefficient 6 as
D 2ph? —1
PP L (3.71)

A& 15(1 )

The remaining coefficient v may be found in similar manner. To this end, we balance
second and third terms of the right side of composite equation (3.66) and the term

in the right side of the Rayleigh equation (3.67) giving

2—-Tv 03P ?P 21+ k293P
n? A _pr- Tl (3.72)
15(1 — v) Oz Ox10t? s 8uB Ox
Using (3.68) in (3.72) at short—wave high—frequency limit, we get
2—-Tv 0P 0P A1+ k293P
W — hé’y—— = DL 27 3.73
15(1 — v) Ox3 “rY o3 3 8uB Ox3 (3.73)
From (3.73) we obtain v as
h? 2—Tv D 1+k3
v (3.74)

T2 15(1—v)  hek 8uB
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Now that we obtain the coefficients 6 and ~, using (3.71) and (3.74) we may rewrite

the composite equation(3.66)

84’&1

72 = (3.75)

D

Tv — 17 0%uy\ 0%y D 2ph® Tv —17 \ 0*uy
15(1 — v) 0% ) o2 <£ c% 15(1 — 1/)) ot
_h<1_h2i8_2+ (hjﬂ_ﬂl—i_@) 8_2> 8_P

15(1 — v) 022 A 15(1 —v)  hc3 8uB ) Ot?) Ox

+2ph (1 + h?

h4
Multiplying both sides of (3.75) by ) and writing in terms of dimensionless vari-

ables, we get

0ty 3(1—v) o, TV — 17 0%u1\ 0%u 1 Tv—17\ 'y
h — | — = )
et ( S TR T= > o7 (v;g. 1002 ) o7 (3.76)
_h 3(1—V)_2—7V8_2+ 2—71/_1%—/{:% 0? or
1 4 20 0¢&2 20v% 8B ) 0r2) 0&°

c
where Vi = 2 is the dimensionless Rayleigh wave speed.
Co

3.8. Dispersion analysis

In this section, we study plane travelling wave solutions to the homogenous
form of composite equation (3.75), refined plate equation (3.64) and Rayleigh equa-

tion (3.65)(P = 0) given, respectively by

0*uy Tv — 17 0%u\ 0*u D 2ph® Tv —17 \ 0*uy
D——+2ph | 1+ h? i =0, (3.77
oz} Tep ( * 15(1 —v) 835%) ot? (c% c% 15(1 —1/)) ot  (377)

0*uy Tv—17 0%\ 0%y
D=—— +2ph ( 1+ h? = .
or} +ep ( * 15(1 —v) 836%) ot? 0 (3.78)
2 1 2

O Tu (3.79)

912  cp? O

We are going to sought for the solutions of (3.77),(3.78) and (3.79) in the form

uy = PEA itk (3.80)

I
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Here, w is angular frequency and k is wavenumber.

Inserting (3.80) into (3.77), (3.78) and (3.79), we get

31—v) Tv—17 1 Tw-17
K* — — K?2)0?— (= — 0t =0 3.81
( 2 10 ) <s4 100%, ) ’ (3:81)
31—v) Tv—17
K — — K?) 0% = 82
( . - ) 0 (3.82)
QQ
where
h
K=kh and Q=-", (3.84)
Co

are dimensionless and wavenumber and angular frequency respectively.
From composite dispersion relation (3.81), refined plate dispersion relation (3.82)

and Rayleigh dispersion relation (3.83) we may express K as

Tv — 17 1 [(Tv —17)%Q4 1 Tw-17
K=, - Q2 -y [T U g1 )2 d [ — QO
20 +2\/ TR SR i oM T e ’
(3.85)
w17 . 1 [(Tv — 170"
K=1/- 02 —\/— 1— )02 .
\/ Rl g 61—, (3.86)
Q
K=" (3.87)
VR

Numerical results are presented in Figure 3.10 for the Poisson ratio v = 0.25 for
which the positive root of the Rayleigh equation is given, approximately, by vg =
0.9194. Figure 3.10 displays the dispersion curves for refined refined plate equation
(3.86), composite equation (3.85), and Rayleigh wave (3.87) plotted by dashed blue

line, red solid line, and dotted green line, respectively.
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Q

Figure 3.10. Dispersion curves for refined plate equation (3.86), composite equation (3.85), and
Rayleigh wave (3.87)

According to the Figure 3.10, the behavior of the plate in different asymptotic
approaches can easily be observed through dispersion curves. In the region defined
as Range I, the refined plate dispersion curve and the composite dispersion curve do
agree for the small values of the frequency 2. In Range III, the Rayleigh dispersion
curve and the composite dispersion curve coincide with each other, for large values
of ).

Figure 3.11 displays the comparison of the numerical solution of Rayleigh-Lamb

equation (3.111) and composite dispersion (3.85).

Composite Dispersion
————— Rayleigh Dispersion

Q

Figure 3.11. Dispersion curves for composite equation (3.85), and Rayleigh-Lamb equation
(3.111)
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3.9. Example

As an example, we consider the effect of the surface loads, in the form of plane

i(wt—kox

time-harmonic travelling waves, for which P = Fye ), where kg is a given by

ko(w) = eV + % (3.88)

where small parameter ¢ is arbitrary.

Let us seek the solution in the form of a plane travelling wave, i.e. take u; =
ihP,A

0
Inserting u; and P into composite equation (3.76), (3.64) and (3.65) and writing in

elkor1=wt) “where A is normalized amplitude.

terms of dimensionless variables (3.84), we have, respectively,

K<3(1—1/)+2—71/K2_(2—71/_1+k‘%)92)

4 20 2052 8B
A= , (3.89)
i 3(1—y)_71/—17K2 02 l+71/—17 i
2 10 s 10s2
A= , (3.90)
oA 31-v) 71/—17K2 02
2 10
1+k K

A= 2 : (3.91)

B

52

Numerical data are given Figures 3.12-3.15 for v = 0.25, vg = 0.9194, and ¢ = 0.1.
In Figure 3.12 displacement amplitudes for composite equation (3.89), refined plate
equation (3.90), and Rayleigh equation (3.91) are plotted by the red solid line,
dashed blue line, and dotted green line, respectively. It is observed from Figure 3.12,
the composite equation coincides with the plate limit for the small values of €2 and

the Rayleigh limit for the large values of €.
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RANGEIIl |

————— Refined Plate Displacement

Rayleigh Displacement

RANGE Il —— Composite Displacement

Figure 3.12. Displacement amplitude for composite equation (3.89), refined plate equation
(3.90), and Rayleigh wave equation (3.91)

Since composite displacement has a singularity in Range II, the displacement
curve appears in Figure 3.12 as two parts. In Range I, the refined plate displace-
ment curve and the composite displacement curve agree, as expected, for small values
of Q2. Rayleigh displacement curve and composite displacement curve matched the
expectations for large values of €2 in Range III. It is also possible to make similar
comparison by adding the exact solution to Figure 3.12. The exact solution is added
to Range I in Figure 3.12 and the graph in Figure 3.13 is obtained. Displacement
amplitudes for composite equation (3.89), exact solution (3.114), refined plate equa-
tion (3.90) and Rayleigh wave equation (3.91) are plotted by red solid, black solid,

dashed blue, and dotted green lines, respectively.
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Composite Displacement
Exact Displacement
————— Refined Plate Displacement

4t
0.0

Figure 3.13. Displacement amplitude for refined plate equation (3.90), composite equation
(3.89), and exact solution (3.114)

Figure 3.13 shows that the composite displacement curve is consistent not only
with the long-wave low-frequency limit, but also with the exact displacement curve
for small values of €2.

Similarly, the exact solution was added to Range III in Figure 3.12 to obtain the
graph in Figure 3.14. Displacement amplitudes for composite equation (3.89), exact
solution (3.114), refined plate equation (3.90) and Rayleigh wave equation (3.91)
are plotted by red solid, black solid, dashed blue, and dotted green lines, respec-
tively. It is clear that composite displacement curve does also match with the exact

displacement curve in short-wave high-frequency limit case.

Composite Displacement

Exact Displacement
Rayleigh Displacement

" N " N " L
10 20 30 40 50 60 70
Q

Figure 3.14. Displacement amplitude for Rayleigh wave (3.91),composite equation (3.89), and
exact solution (3.114)

It is also possible to compare exact solution and composite solution directly.
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In Figure 3.15 displacement amplitudes for composite equation (3.89) and exact
solution (3.114) are plotted by red solid line and black solid line, respectively. In
Range I and Range III the composite displacement curve and exact displacement
curve are matching as expected. With this graph, it is also shown that exact solution

has a singularity like exact solution in Range II.
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Figure 3.15. Displacement amplitude for composite equation (3.89), exact solution (3.114)
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3.10. Section Summary

Refined Plate Equation

_ _ 2
gio (30 TN ge K2_Q_=0
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Composite equation Rayleigh-Lamb Dispersion Relation
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Figure 3.16. Dispersion Equations
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3.11. APPENDIX

3.11.1. Exact solution of plane time-harmonic problem for vertical dis-

placement

The governing equations in plane elasticity are given by (2.27),in terms of
wave potentials p(z1,x3,t) and ¥(z1, x3,t). Consider a layer —oo < 1 < 00, —h <
x3 < h as given in Figure 3.1 with the boundary conditions on its faces x3 = +h

given by

031|z5=+n = 0 (3.92)
P

033]wy=th = ia- (3.93)

Using (2.4), (3.92), (3.93) and taking P = Pye"*1~“twe have

0*y 0% 02
S — 2 =0, 3.94
0-31‘ g=h a (8x% 8x§ * 8[E18[L‘3 ( )
p v Pp Py s 0% By ithar—wt)
£ = — 2 = f+—""\" et 3.95
O3lza=th X2 (1 — v 0z} d 0} X 0x10z3 2 (8.95)
where x = c¢3/c;. We may write boundary conditions given above in terms of

dimensionless variables (4.6)

02 02 02
osiless = ﬁ( v_0W O ) o, (3.96)

h\0& 0¢  060¢

_ M v Po Do 2 0%y
Tmlett = 732 (1 —vog T ae TP agac

P, .
i?()e’(Kfl_QT) (3.97)

The solution to the formulated problem for the vertical displacement at the faces,

given by
0 0
wy= 2 L0 (3.98)
81'3 8951 z3=4h
We may rewrite (3.98) in terms of dimensionless variables(4.6) as
1 (Op 52&) ’
us=— | == + =— : 3.99
’ h <a< 651 ¢==h ( )
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We seek the plane travelling wave solution in the form (2.30). In this case we study

antisymmetric modes, so we the take wave potentials in the form

W(&1,¢,7) = Csinh (af)eF8=97),
d(&1,¢, 1) = D cosh (B¢)elBa=97), (3.100)

Inserting (3.100) into (3.96) and taking ( = —1 we get

E . 2 2 (K& —Qr
O31lc=1 = S (—2iKacosh (@)C + (K? — %) cosh (B)D) e (K&-am) — ¢,
(3.101)
From (4.29) we get following equation with unknown parameters C' and D
(—2iKacosh (@) C + (K* + %) D = 0. (3.102)

Now we use boundary condition for o33 at ( = —1, inserting (3.100) into (3.97) and

taking ( = —1 we get

— 2v —1 ,
033¢=—1 = a (( v K? + oz2) sinhaC — i 1”_ » AfBsinh 5D) ci(K&1—Qr)

h?x? 1—v
(3.103)
_ _%ei(K&—QT)
From (3.103) we get
2 2v—1 , Poh?y?
- K*+o” | sinhaC —1 Kp@sinh D = — . (3.104)
1—v 1—v 2u
Solving (3.102) and (3.104) we get,
p— 0" ! (3.105)
= —1 :
21 (2K% — 0?%)? ,
——————tanhacosh f — 2K sinh 5
2aK
and
K? + 3%)Pyh? 1
¢=- (4 I:'_aﬁco)shoa (2K2 — Q)2 (3-106)
a T oak tanh a cosh f — 2K 3 sinh 8
!
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Substituting (3.106) and (3.105) into (3.100) and using (3.99), vertical displacement

hPy .
takes the form us = AL gilka—wt) with

A= ——— (3.107)
and the Rayleigh-Lamb denominator Dy written as
Dpr(K,Q) = (K* + %)*tanh a — 4K?af3 tanh 3, (3.108)

with 2 and K defined by (2.29).
The long-wave low-frequency expansion of formula (3.107) at Q < 1 and K < 1
reads as

3(1—v) 1

4 K4_4_1K6_3(1—y)92_1—|—u
) 2 2

A—

(3.109)

K2Q2_|_...

At leading order, we have for the Rayleigh wave contribution at K ~ €2 > 1, and
|Q / K — UR| < 1,

2 2902
L AV (3.110)

T AK R'(vg) (@ — 02

with ¢ = /K, and the Rayleigh denominator given by

R(c) = (2—*)? —4y/1 — x2c2V/1 — ¢2 (3.111)

and prime denoting a differentiation with respect to the argument of the Rayleigh

denominator.

3.11.2. Exact solution of plane time-harmonic problem for horizontal

displacement

The governing equations in plane elasticity are given by (2.27),in terms of
wave potentials ¢(x1, x3,t) and ¢(x1,x3,t). Consider a layer —oo < 1 < 00, —h <
x3 < h as given in Figure 3.1 with the boundary conditions on its faces r3 = +h

given by (3.92) and (3.93). The solution to the formulated problem for the horizontal
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displacement at the faces is given by

u = ((9_(,0 - 8—¢) . (3.112)
8:171 8373 T3=+h
We may write (4.26) in terms of dimensionless variables (4.6) as follows
1 /0p OY
== - = . 3.113
N7 (axl a:cg) _— (3.113)

Using equations (3.100)-(3.106) in (3.113), the horizontal displacement component
1thPyA

ellkz1—wt) with

takes the form u; =

A= (—(K?+ %) tanh @ 4 203 tanh j3) (3.114)
2Dpgr,

where «,  and Rayleigh-Lamb dispersion relation are given by (2.32) and (3.111),

respectively.
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4. A COMPOSITE HYPERBOLIC EQUATION FOR PLATE EXTEN-
SION

It is well known that the 2D hyperbolic theory of plane stress, e.g. see [1], may
be treated as the leading order long-wave, low- frequency approximation of the 3D
equations in linear elasticity for plate extension. A drawback of this theory is that it
distorts the longitudinal wave speed. As a result, a singularly perturbed hyperbolic
system arising at next order, cf. [2], supports a dispersive longitudinal wave front,
sometimes called quasi-front, corresponding to the wave-front predicted from the
degenerated problem. However, as might be expected, neither conventional nor re-
fined plane stress approximations are suited for modeling high-frequency, short-wave
behavior. The aforementioned quasi—fronts are also observed for thin elastic rods
and shells and have been tackled since long ago using both heuristic and asymptotic
arguments, e.g. see [1-10] and references therein. In this Section, we attempt to
develop a composite wave model for plate extension supporting not only the long—
wave, low—frequency limit associated with the quasi-front, but also the short-wave,
high-frequency limit involving surface waves. The latter is incorporated through
the specialized formulation for the Rayleigh wave, see [11] and references therein,
which includes, in particular, an explicit hyperbolic equation on the surface. There
are obvious similarities between proposed composite equation and governing equa-
tions established in previous sections. The proposed formulation, as a number of
composite models, e.g. see [12,13| for further detail, is not uniformly valid. How-
ever, we may expect only qualitative coincide over the intermediate range, where
a typical wave length is of order plate thickness. Analogous composite wave for-
mulations for plate bending have recently been established in [14]|. Earlier, known
composite dynamic theories for thin elastic structures, e.g. see [15], operated with
ad hoc short-wave limits. We also mention composite models for periodic media in
[16] demonstrating, again, similarity in asymptotic procedures for thin and periodic
wave guides previously noted in [17]. The geometric setup considered in this section
corresponds to a thin elastic strip loaded by shear stresses along its faces. A fourth-
order inhomogeneous hyperbolic equation is derived. It is worth mentioning that

its right-hand side contains a pseudo-differential operator acting on the prescribed
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load. The dispersion curve and also the displacement amplitude induced by surface
stresses in the form of a travelling harmonic wave predicted from this equation are

compared with those calculated from the related plane strain problem.

4.1. Statement of the Problem

Yy
Q/2
/4
~.
— o~
h ( T
h 0 )
— ——
——>
¥
Q/2

Figure 4.1. Geometrical setup of the problem.

Our concern in this section is the extension of an infinite elastic strip of thickness
2h (o0 < x < 00, —h <y < h)subjected to symmetric tangential loads of +¢)/2
at its faces y = +h, see Figure 4.1.

Let us first express the governing equation in the refined asymptotic 2D theory for

plate extension written as, see [26],

2Eh 0%uy 0%y V2 o'y
———— —2ph 2ph’ =— 4.1
1 —v2 922 T 3(1 —v)2ct ot © (4.1)
Multiplying (4.1) b L i
ultiplying (4.1) by —-— we ge
2 1 92 272 4 1 )2
8u1__28u1+ v2h 48u1:_( I/)Q (4.2)
0x?2 5 02 3(1 —wv)2c5 Ott Eh

containing the fourth order derivative in time, smoothing the discontinuity at the
E

p(1—1v?)

nal displacement, t is time, F is Young’s modulus, p is the density, v is the Poisson’s

quasi-front propagating with speed c3 = , where u(x,t) is the longitudi-

ratio. Equation (4.2) is the first order correction to the equation of motion in the
elementary theory of plate extension.

The latter is valid over long—wave low—frequency range and short—wave high—frequency
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range given by (2.34) and (2.41), respectively. We adapt the asymptotic formulation
for the surface Rayleigh wave given by, see [26],

Puy 102w p(l+ ) A+ k) k [ O

o2 & o EB T (4:3)

Our aim is to derive a composite equation having both singularly perturbed hy-
perbolic equation (4.3), and as local long—wave low frequency and short wave—high

frequency limits.

4.2. Construction of Composite Equation

First we differentiate (4.3) twice in time having

HMug 10w p(I+v)(L+ Kk | 0 0°Q (4.4)
Ox20t2 % Ot EB ox? ot~ ’

We now combine (4.2) and (4.4) in the following way to suggest a composite equation:

we keep the second order spatial derivative on the left hand side of both equations;
then qe write the fourth order time derivative in equation (4.2) in terms of second
order spatial and time derivatives. We then multiply the second term on the left
hand side of equation (4.4) as well as its right hand side by I' and combine the

obtained forms to get

82U1 _ i82u1 4 Fh28—2 82’21,1 _ i82u1 _
dx? A O o2 \ 0z & Ot?

_ pd+v) 1—V_Fh2(1+k‘§)k‘2 | 820_2 (4:5)
B E h B ox2 otz )

Next, we need rescale the spatial and time variables as

O

T=— (4.6)
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_E
p(L—v?)

1 [(0*uy 0%y b, 0 (1 0% 1 & 9?
— - +IG=— o — o= U =
L2\ 0&? or? or2 \ L2098 L2 c% Or?

(4.7)
e+ [, oL+ ke | 0?50
=" n l—v+n F—B (9526387'2 Q.

The left hand side of the last equation, within the same truncation error, can be

h
where c3 = and assuming that n = 7 < 1, we get from (4.5)

written as
Puy 0wy 9% [ 07 2 0?
_ Im2c2— [ — - 2~ =0. 4.8
o~ o TS (852 & 372) “ (48)
2 2
Since, at leading order, we have g—g = % we get
?uy 0%y 5 o 2\ 'y
o2~ o2 T c3< _£> ot~V (4.9)

Now we require (4.9) to coincide with thehomogenous part of (4.2) taking the di-

mensionless form

Puy Puy V2 Oy
— = 0. 4.10
oe2 ~ oz T30 —v)2 o (4.10)
Comparing equations (4.9) and (4.10) we arrive at
c2 V2
ré(1-= ) =-7+—3. 4.11
1(-3) s A
From (4.11), we find I" as
2.2
= Yk (4.12)

31 —v) (- ci

Thus, the sought for composite equation takes the form (4.5) with (4.12). In fact, it
is constructed such as long-wave low-frequency limit coincide with equation (4.2)
while at short—wave high—frequency limit for which n = h/L > 1 we obviously have
at leading order the scaled equation (4.3).
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4.3. Dispersion Analysis

Consider dispersion relations corresponding to the derived composite equation

(4.5) with (4.12) and its limiting forms (4.4) and (4.2). They are given by respec-

tively
w? v2h?
o T A=) 4.13
g 31— V)Qng ’ (4.13)
2
) (4.14)
c
R
2 2
k2 — 2 —Th%? <k2 - “’—2) =0, (4.15)
3 Cr

with wavenumber k£ and angular frequency w. Using dimensionless wave number

and angular frequency
_ wh

K =kh Q (4.16)
Co
in (4.13), (4.14) and (4.15) we get
2 2 4
K220 Y Sg1_ 417
@ 3(1—v)2cs 0 (4.17)
2
K? — 20* =0, (4.18)
c
R
2 C% 2 2072 2 C% 2
c c
3 R

4.4. Numerical Results

Numerical results are demonstrated at K(Q2) = (1 + ¢)Q2/vg with ¢ = 0.1 and
v = 0.25, for which vg = 0.9194 in Figures 4.2 and 4.3 . Figure 4.2 displays the
solutions of limiting equations (4.17) and (4.18) versus the solution of composite
equation (4.19). Figure 4.3 shows the comparison of solution of the Rayleigh-Lamb
equation (4.37) and composite equation (4.19).
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Figure 4.2. Dispersion curves for plate (4.17) (blue line), Rayleigh (4.18) (green line) and
composite equation(4.19) (red line).
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10
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Figure 4.3. Dispersion curves for exact dispersion (4.37) (black line) and composite
equation(4.19) (red line).

4.5. Exact Solution of plane time-harmonic problem

The governing equations in plane elasticity are given by (2.27), in terms of wave
potentials ¢(xy, z3,t) and ©(x1, x3,t). Consider a layer —oo < 27 < 0o, —h < 3 <

h as given in Figure 3.1 with the boundary conditions on its faces x5 = +h are given
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031 | zg=sh = i% (4.20)

033|x3:ih = 0. (421)

Using (4.20) in (2.4) we have

E (3% N ) Q
o31 = — +2 =+ (4.22)
2(1+v) \ 022  0y? 020y ) | s 2
E v 0% 0% , 0%
- 2 = 4.2
733 2(1 4+ v)x? (1 — v 0x2 + 0y? tex &Eﬁy)‘ i 0, (4.23)
. Co
where y is, as before, y = —
(&1
We may write boundary conditions (4.22) in terms of dimensionless variables as
w (0% 0*W 0% Q (Ker—m)
=1 = - 2 =Tl 4.24
031|c711 h (85% e + 92,00 5 e ( )
0 v 0% 0% , 0%
=£1 = 2 =0 4.25
033|(_:|:1 Iy (1—u8§%+8c2+ Xﬁfﬁ( ( )

The solution to the formulated problem for the horizontal displacement at the faces,

0P 0
u = (— - —w) (4.26)
or 0z )|, _yy,
We may write (4.26) in terms of dimensionless variables (4.6) as follows
1 /0P OV
U = -\ =+ = . 4.27
Lok (ac a&) ¢t 20

We seek the plane travelling wave solution in the form (2.30). In this case we study

symmetric modes, so we will take wave potentials as follows

®(&1,¢, 7) = E'sinh agei(QT*K£)7

W(&1,¢,7) = F cosh ale! ke (4.28)
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with a and /8 given by (2.32). Inserting (4.28) into (5.24) and (5.25), and taking

¢ = —1 we get
oal-r = 5 (2K = @) sinh 3F + 2iKasinhaE) = Q. (4.29)
2 2\ s . . Qh
(2K? — Q%) sinh BF + 2iKasinh oF = ———. (4.30)
I
Now we use boundary condition for o33 at ( = —1, inserting (4.28) into (5.25) and

taking ( = —1 we get

O33)¢c=c1 = th)@ ((— . z VKQ + oz2) cosh aF — 2% K (3 cosh BF) =0, (4.31)

(2K* — ©?) coshaE — 2iK B cosh BF = 0. (4.32)

Solving (4.30) and (4.32) we get,

Qh (2K?% — Q%) cosh «
E=-*" : : (4.33)
o (2K? — Q?)2sinh § cosh a« — 4K2a3 sinh «v cosh 3
and
2K h
F:—@ 1K afcosh g (4.34)

o (2K2 — Q2?)2sinh § cosh @ — 4K?a sinh a cosh
Substituting (4.33) and (4.34) into (4.28), horizontal displacement (4.27) takes the

form
AhQ
Uy = —Qez(kx’“’t) (4.35)
1
with
023
A=—————, 4.36
Dri(K,Q) (4.36)
where the Rayleigh-Lamb denominator for symmetric modes is written as
Dprr(K,Q) = (2K?* — Q?)? cotha — 4K*a3 coth 3, (4.37)
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with € and K defined in Section 3.2. The long-wave low-frequency expansion of

formula (4.36) at Q < 1 and K < 1 takes the form

1 1
A=——"1 _ . (4.38)
K2-Vgio % ey

127 1-v

At leading order, we have for the Rayleigh wave contribution at K ~ Q > 1, and

%—UR|<<1

1 vHV1 — 2

== 4.39
1K R(og) (@ — 03)’ (4.39)

where ¢ = Q/K, and the Rayleigh denominator is given by
R(o)=(2- )’ —4y/1-&2V1 - &, (4.40)

with prime denoting a differentiation with respect to the argument of the Rayleigh

denominator.

4.6. Example of Forced Problem

Consider harmonic surface load as Q = Qoe!**“"  where k and w are wavenum-
AhQO ei(k:c—wt)
)

1
where A is dimensionless amplitude and pu is Lamé constant. Inserting u and () into

(4.2), (4.3) and (4.7)

ber and frequency, respectively, taking the horizontal displacement as u =

1—v
A= 2 2 i (4.41)
K2 ) 02 — v 294
3 3(1—v)2ci
1+ K2k K
A:(zg)Q . (4.42)
K2 — 222
2
R
— k2 k
] u—m+r( BQQKW
A= 5 = = , (4.43)
KQ—-EQ2—F&Q2(K2—-2QQ
c2 3 c?
3 R

where I' = v¢3. In the following figures, numerical data are demonstrated at K(Q) =

(14e)Q2/vg with e = 0.1. As above, v = 0.25 and vg = 0.9194. Figure (4.4) displays
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the solutions of limiting equations (4.41) and (4.42) versus the solution of composite
equation (4.43). Since our main interest is to derive composite asymptotic equation
that is valid for long—wave low—frequency and short—wave high—frequency limits, we
only need to consider the coherence between displacement curves in the Range I and

Range III in following graphs.

0.25

0.20

RANGE Il

0.15
—— Composite Displacement
0.10 — Plate Displacement

T

|

!

|

| RANGE Il
|

| Rayleigh Displacement
|

0.05

0.00

Figure 4.4. The displacement amplitudes for plate displacement (4.41) (blue line), composite
displacement(4.43) (red line) and Rayleigh displacement (4.42) (green line).

In Figure (4.4) displacement curve (4.41), composite displacement curve (4.43)
and Rayleigh displacement curve (4.42) are plotted by blue, red and green lines,
respectively. Over long-wave low-frequency range, Range I, the graph shows that
plate displacement and composite displacement are in good agreement. According
to the graph it is also possible to say that composite displacement curve approaches

to Rayleigh limit over short-wave high—frequency range, Range III.
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—— Composite Displacement
— Exact Displacement

-0.1
0

Figure 4.5. Comparison of exact solution (4.38) (black line) and composite displacement(4.43)
(red line).

Figure (4.5) illustrates the exact solution (4.38) and composite displacement
curve (4.43) by black and red solid lines, respectively. It is clearly observed that the
exact and composite displacements coincide in Range I and Range III, as expected.
Thus, it is possible to say that composite equation works properly in both limit case,

but intermediate range.
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4.7. Section Summary

Dispersion equations

- R4
( Plate equation Rayleigh wave equation
2 2 4
@ 1% c
K222~ 201 2 G
2 — )2 K'—5Q°=0
€3 3(1-v)e %
\ J \ J
A\ 4 v
Composite equation Rayleigh-Lamb Dispersion Relation
K-S _rae (k- Sa?) =0 2 _ 22 2
a Cy & = (2K* — Q°)? cotha — 4K aBcoth 8. = 0
N J - J

Figure 4.6. Dispersion Equations

67



Displacement amplitudes

A4 v
_ 2
. 1-v _ A_(1+k2)lc2 K
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\ J - J
- R4

Composile equation

_ 12
T R L A 0%
A=3 2 z =TT o)
2}(2 _ %Qz — T2 (Kz_ %292) DRL(K: Q)
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3 R
\ J N J

Exact solution

Figure 4.7. Displacement Amplitudes
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5. Conclusion

This thesis is mainly concerned about the dynamics of thin elastic bodies
under given external load. To this end three different problem studied with different
loading, and different composite equations obtained from different cases. The main
idea is combine long—wave low—frequency limit terms and short—wave high—frequency
limit terms in one composite equation, and it must be valid at two limit cases. To
show the validity of obtained composite equations, we will often compare numerical
and asymptotic solutions throughout this thesis.

In Section 2, at first problem, aimed at deriving a composite model for hor-
izontal displacement that is satisfies plate and Rayleigh limit asymptotically. The
composite equation that obtained with the help of dispersion analysis. The deriving
of the asymptotically approximate equations requires appropriate rescaling of the
spatial and time variables as well as particle displacements and pressure increment,
so the first Section, with all its positive results, is a guide to the problems done in
latter sections. Second problem discussed is establish a composite wave equation,
for thin plate under symmetric loading, in terms of horizontal displacement. We
followed similar approach done for vertical, but this time worked with symmetric
modes for plate. Dispersion alaysis and comparison of displacement amplitudes also
done for this problem. Consistent results obtained from comparisons with numerical
results once again proved the accuracy of the chosen asymptotic approach.

In third problem discussed in this thesis, aimed to obtain composite equation
for plate extension. This time all equations used in terms of horizontal displacement
and studied symmetric modes of plate. A composite wave formulation obtained ,
having as its shortened forms the refined plate equation and the hyperbolic Rayleigh
wave operator is derived. It is shown that the associated dispersion curve approx-
imates the limiting behaviors of the fundamental symmetric Rayleigh-Lamb mode
at limit cases. The acquired composite equation also demonstrates a reasonable ac-
curacy in evaluating forced vibration amplitudes, as it follows from the comparison
with the exact solution of the related plane strain problem presented in Appendix.
The developed methodology may readily be extended to the 2D setup and to the

analysis of non-symmetric surface loading, when along with the considered in the
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paper extensional modes, bending modes, studied in [26], are also induced. Further
implementation of the composite equation that obtained, especially in transient
problems, appears to be of interest. Finally, we mention that various comments
on peculiarities and limitations of composite wave models for plate bending made
in [26], are seemingly relevant for the case of plate extension treated in the section.

It is thought that the asymptotic method used in the thesis will facilitate the
industrial applications related to the subject and will solve the analytical solution
deficiencies in the literature. It is also an advantage that the method can be easily
adapted to different loading types. It is believed that it will be expanded to differ-
ent problems and structures in the future and will find different application areas.
The results obtained, contrary to the ones existing in literature, in terms of elemen-
tary functions and therefore considerably simplified the physical and mathematical

analysis of the problems.
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