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ABSTRACT

COMPOSITE ASYMPTOTIC MODELS FOR A THIN ELASTIC PLATE

Melike PALSÜ

Department of Mathematics

Eskişehir Technical University, Institute of Graduate Programs, January, 2020

Supervisor: Prof. Dr. Barış ERBAŞ

This thesis is on the dynamic bending and plate extension problems of a thin

elastic plate under a given external load. The motivation in the choice of the subject

has been the modern industrial applications and particularly the desire to contribute

to the approximate analytical solutions, which is believed to be lacking. The exact

mathematical formulation as well as the solutions to these models for the problems

mentioned above may be quite costly. Therefore a composite asymptotic approach

used for the problems in the thesis. On using this method, we considered the dy-

namic response of the thin elastic plate, more specifically, the asymptotic of the first

asymmetric bending mode of the plate. The results/solutions, contrary to the ones

existing in literature, in terms of elementary functions and therefore considerably

simplified the physical and mathematical analysis of the problem.

Keywords: thin elastic plate, Rayleigh-Lamb equation, dynamic bending,

plate extension, antisymmetric modes, symmetric modes, asymptotic model.
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ÖZET

İNCE ELASTİK BİR PLAKA İÇİN KOMPOZİT ASİMPTOTİK MODELLER

Melike PALSÜ

Matematik Anabilim Dalı

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Ocak, 2020

Danışman: Prof. Dr. Barış ERBAŞ

Bu tez, verilen bir dış yük altında ince elastik bir plakanın dinamik eğilmesi

ve genişlemesi problemleri üzerinedir. Konunun seçimindeki motivasyon, modern

endüstriyel uygulamalar ve özellikle eksik olduğuna inanılan yaklaşık analitik çözüm-

lere katkıda bulunma isteği olmuştur. Kesin matematiksel formülasyonun yanı

sıra, pratikte belirtilen sorunlara yönelik çözümler de oldukça maliyetli olabilir.

Bu nedenle, tezde ele alınan problemler için kompozit asimptotik yaklaşım kul-

lanılmıştır. Bu yöntem kullanılırken, ince elastik plakanın, başlangıçta plakanın

ilk antisimetrik bükme modunun dinamik tepkisi dikkate alınmıştır. Tezde elde

edilen sonuçlar/çözümler, literatürde mevcut olanların aksine elemanter fonksiyon-

lar cinsinden olduğundan, problemin fiziksel ve matematiksel analizini büyük ölçüde

basitleştirmiştir.

Anahtar Sözcükler: ince elastik plaka, Rayleigh-Lamb denklemi, dinamik

bükülme, plaka genişlemesi, antisimetrik modlar, simetrik modlar, asimptotik

model.

iv



For my dad.

v



ACKNOWLEDGMENTS

I would like to express my eternal gratitude to my supervisor Prof. Dr. Barış

ERBAŞ for his guidance and support from my undergraduate to PhD study and

research. He has a hand in everything I learn about academic life. I would also like

to thank him for introducing me to these subjects when i was just an undergraduate

student and encouraging me to study them. In addition to my supervisor, I am

grateful to Prof. Dr. Nihal EGE for her support throughout my PhD.

I am also very glad and thankful for having met and worked with Prof. Dr.

Julius KAPLUNOV, for his constructive suggestions and his support in all stages

of my reseach.

I am very greateful for Prof. Dr. Levent ERASLAN and SODIGEM Team

for their support and understanding during my thesis writing process. I would like

to thank Cennet KARA for her artistic touches on my work and and also Göktuğ

ÖNER for his great last moment helps.

Finally, I would like to thank my mother and grandmother for their love and

every kind of support they provided throughout my life.

Melike PALSÜ

January, 2020

vi



13/01/2020

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me;

that I have behaved in accordance with the scientific ethical principles and rules

throughout the stages of preparation, data collection, analysis and presentation

of my work; that I have cited the sources of all the data and information that

could be obtained within the scope of this study, and included these sources in

the references section; and that this study has been scanned for plagiarism with

“scientific plagiarism detection program” used by Eskişehir Technical University,

and that “it does not have any plagiarism” whatsoever. I also declare that, if a case

contrary to my declaration is detected in my work at any time, I hereby express my

consent to all the ethical and legal consequences that are involved.

Melike PALSÜ

vii



TABLE OF CONTENTS

Page

TITLE PAGE ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

APPROVAL OF JURY AND INSTITUTE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ÖZET .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. MATHEMATICAL PRELIMINARIES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 State of stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 State of strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Stress-strain relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Governing equations of the theory of elastic plates . . . . . . . . . . . . 9

2.5 Antisymmetric modes of an elastic plate . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Symmetric modes of an elastic plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Asymptotic model for Surface Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. COMPOSITE WAVE MODELS FOR ELASTIC PLATE .. . . . . . . . . 19

3.1 Statement of the Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Dispersion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



Page

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Construction of the Composite Equation For Vertical Dis-

placement Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Section Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Construction of the Composite Equation For Horizontal Dis-

placement Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Dispersion analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Section Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 APPENDIX .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11.1 Exact solution of plane time-harmonic problem for

vertical displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11.2 Exact solution of plane time-harmonic problem for

horizontal displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. A COMPOSITE HYPERBOLIC EQUATION FOR PLATE EX-

TENSION ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Statement of the Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Construction of Composite Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Dispersion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Exact Solution of plane time-harmonic problem .. . . . . . . . . . . . . . 61

4.6 Example of Forced Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Section Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5. Conclusion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



LIST OF FIGURES

Page

Figure 2.1. Components of stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.2. Asymptotic approximations of 3D dynamic equations of elas-

ticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.3. First three antisymmetric modes of vertical displacement

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4. First three antisymmetric modes of horizontal displacement

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.5. First three symmetric modes of vertical displacement com-

ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.6. First three symmetric modes of horizontal displacement com-

ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.7. Behaviour of plate waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1. Antisymmetric deformation of an elastic layer under normal

surface loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.2. Dispersion curves for Kirchhoff equation (3.30), composite

equation (3.33), and Rayleigh wave (3.32). . . . . . . . . . . . . . . . . . . . . 29

Figure 3.3. Dispersion curves for refined plate equation (3.31), refined

composite equation (3.36), and Rayleigh wave (3.32). . . . . . . . . 30

Figure 3.4. Relative error for composite equation (3.33) and refined

composite equation (3.36).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.5. Displacement amplitude for composite equation (3.57), Kirch-

hoff equation (3.58), and Rayleigh wave equation (3.59). . . . . 36

Figure 3.6. Displacement amplitude for refined composite equation (3.60),

refined plate equation (3.61), and Rayleigh wave equation

(3.59). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.7. Displacement amplitude for composite equation (3.57), re-

fined composite equation (3.60), and plane elasticity (3.107). 38

Figure 3.8. Dispersion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



Page

Figure 3.9. Displacement Amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.10. Dispersion curves for refined plate equation (3.86), compos-

ite equation (3.85), and Rayleigh wave (3.87) . . . . . . . . . . . . . . . . . 45

Figure 3.11. Dispersion curves for composite equation (3.85), and Rayleigh-

Lamb equation (3.111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.12. Displacement amplitude for composite equation (3.89), re-

fined plate equation (3.90), and Rayleigh wave equation (3.91) 47

Figure 3.13. Displacement amplitude for refined plate equation (3.90),

composite equation (3.89), and exact solution (3.114) . . . . . . . 48

Figure 3.14. Displacement amplitude for Rayleigh wave (3.91),composite

equation (3.89), and exact solution (3.114) . . . . . . . . . . . . . . . . . . . 48

Figure 3.15. Displacement amplitude for composite equation (3.89), ex-

act solution (3.114) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.16. Dispersion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.17. Displacement Amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.1. Geometrical setup of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.2. Dispersion curves for plate (4.17) (blue line), Rayleigh (4.18)

(green line) and composite equation(4.19) (red line).. . . . . . . . . 61

Figure 4.3. Dispersion curves for exact dispersion (4.37) (black line) and

composite equation(4.19) (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.4. The displacement amplitudes for plate displacement (4.41)

(blue line), composite displacement(4.43) (red line) and Rayleigh

displacement (4.42) (green line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.5. Comparison of exact solution (4.38) (black line) and com-

posite displacement(4.43) (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.6. Dispersion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.7. Displacement Amplitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



LIST OF ABBREVIATIONS

∆ : Laplace’s Operator

∇ : Gradient vector field

σij : Components of stress

λ,µ : Lame constants

E : Young’s modulus

ν : Poisson’s ratio

c1 : Longitudinal wave speed

c2 : Transverse wave speed

cR : Rayleigh wave speed

ϕ, ψ : Wave potentials
√
−∆ : Pseuodo-differential operator

xii



1. INTRODUCTION

The classical theory of plates and shells, which include the relations of forces,

displacements, stresses and strains in an elastic structure, is one of the important

areas of mathematical theory of elasticity. The first mathematical approach to the

membrane theory of thin plates was formulated by L. Euler in 1766, dealing with free

vibration analysis of plate problems [1]. In 1890 Kirchhoff published an important

thesis on thin plate theory [2], in which he expressed two independent assumptions,

accepted in the theory of plate bending and known as “Kirchoff hypothesis”. Other

important contributions made by Kirchoff were the obtaining of the frequency equa-

tions of plate and introducing the virtual displacement methods in the solution of

plate problems. Russian scientists first made great contributions to the architecture

of marine vehicles, using solid mathematical theories instead of old trade traditions.

Especially Krylov [3] and his student Bubnov [4] made important contributions to

the theory of bending and bending-resistant thin plates. Also Timoshenko made

important contributions to the theory and practice of plate bending analysis. Timo-

shenko and Woinowsky-Krieger published a fundamental monograph which contains

profound analysis of various plate problems [5].

Scientists such as Hencky [6], Huber [7], von Karman [8]- [9], Nadai [10],

Föppl [11] undertook comprehensive studies in the field of plate bending theory of

thin plates. Hencky dealt with different types of singularities occurring on plates

under point loads, point support effects, etc.

The devolopment of modern aircraft industry has accelerated the analytical

analysis of plate problems. Plates under strain and plates which are subjected to

plane forces, their behaviour after bending and vibration problems have been anal-

ysed by many scientists and engineers. Detailed analyses of thin layers with different

geometries, linear and nonlinear bending under different loads and critical loads and

forces were considered by Timoshenko and Gere [12], Volmir [13] and Cox [14].

The exact solutions of aforementioned problems require a very special sym-

metry of correspoding equations and boundary conditions, and in case of real life

problems they are quite exceptional. Despite extensive and advanced numerical

methods, exact solutions are still the desired ones. Unlike numerical analyses, ap-
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proximate asymptotic solutions predict weak or strong asymmetry in the system

and can be generalised universally. Asymptotical methods allow the decomposition

of equations and thus the geometry of the problem can be understood easily. The

construction of approximate theories of thin-walled structures has been the subject

of many publications (see [15], [16], [17], [18]). The majority of these publications

are related to the statics or dynamics of plates in the low-frequency band. The pub-

lications about high-frequency band, especially for dynamic problems, are limited.

For a long time, it seemed virtually impossible to incorporate short-wave

high-frequency motion into low-dimensional structural models using a mathemati-

cally rational reasoning. The main point was that typical longitudinal wavelength

is of the order of thickness for short-wave high-frequency motions. Thus, PDEs

governing this type of motion should necessarily contain the derivatives both along

the mid-plane and thickness. As a result, the dimension reduction was hardly pos-

sible. A new possibility for constructing hyperbolic lower-dimensional models arises

from the recently developed explicit asymptotic models for surface waves on an

elastic half-plane (see, [19]). In the framework of these models a 1D hyperbolic

equation on the surface may be extracted. For a linear elastic isotropic half-plane

(−∞ < x1 <∞, 0 ≤ x3) under the transverse load P , this equation has the form

∂2Φs

∂x21
− 1

c2
R

∂2Φs

∂t2
= CP, (1.1)

where Φs = Φ(x1, 0, t) is the value of the Lamé dilatation potential Φ on the surface,

c
R

the Raylegh velocity and C the function of material parameters. The boundary

condition for the shear potential Ψ is given by

∂Ψ

∂x1
= − c22

2c22 − c2
R

∂Φ

∂x3
at x3 = 0 (1.2)

whereas the interior field is governed by the elliptic equations

∂2Φ

∂x23
+

(
1−

c2
R

c21

)
∂2Φ

∂x21
= 0,

∂2Ψ

∂x23
+

(
1−

c2
R

c22

)
∂2Φ

∂x21
= 0 (1.3)

with c1 and c2 being the dilatation and distortion wave velocities, respectively.

In this thesis, we attempt to derive a composite plate model incorporating

2



both long–wave low–frequency and short-wave high-frequency limits corresponding

to flexural and surface waves, respectively. To this end, we adapt for a plate in the

limit (l ≪ h) the technique developed for analysis surface waves on a half-space.

For our problem Rayleigh-Lamb dispersion relations will be obtained with the aid

of the composite method and the asymptotic behaviour of the plate for the first

antisymmetric bending mode will be found by transandantal first order roots of the

Rayleigh-Lamb dispersion equation. The bending behaviour of the plate will be

investigated in the near zone (near load) and in the far zone (at infinity). The ob-

tained results will be compared to a reliable exact solution to show the validity of the

model. This asymptotic method is based on the asymptotic integration of partial

differential equations developed by Goldenveizer [20]. Together with an asymptotic

approach introduced by Kaplunov and Kossovich [21]. This method also provided

alternative solutions to the 2D problems in literature by using the relations between

the potentials given on the surface introduced by Chadwick [22]. The sensitivity of

the results obtained in the works [23], [24] and [25] indicates that it is quite possible

to achieve similar results for the problems proposed in this thesis.

The organisation of the thesis is described as follows. After the Introduction

given in Section 1, basic mathematical preliminaries and some definitions are given

by Section 2.

Section 3 starts with the statement of the antisymmetric deformation of an

elastic plate subjected to normal stress, antisymmetric plate modes are used for

this problem. The composite equation for described elastic body is established with

the help of asymptotic expansions given by [26] in terms of vertical displacement

u3. Then dispersion analysis done for both long–wave low–frequency and short–

wave high–frequency limits, also displacement amplitudes are obtained. In Section,

the composite equation for horizontal displacement is established with a similar ap-

proach with . Dispersion and displacement amplitudes are discussed as well. Section

concludes with the illustrations of numerical results of the obtained asymptotic for-

mulae and presents the accuracy of the asytpmtotic equations by comparison with

the exact solutions. In Appendix the exact solutions for both horizontal and vertical

displacement components.

In Section 4, our concern is the extension of an infinite elastic strip and es-

3



tablish a composite model for horizontal displacement component with symmetric

modes. We follow similar asymptotic process as we did previous problems, and

dispersion analysis done for this case, too. Composite equation and exact solution

compared with the help of numerical results.

Finally, In Chapter 5, conclusions are given and the main results of the thesis

are discussed.
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2. MATHEMATICAL PRELIMINARIES

In this section we only mention some basic concepts and definitions of the

theory of elasticity that will be used in the sequel.

2.1. State of stress

Figure 2.1. Components of stress

Let us consider a body oriented by the unit normal n with a number of acting

on it. Taking an element with an area ∆An on the body and let the total force ∆Fn

acts on this small area. Then the stress vector is defined as

lim
∆An−>0

∆Fn

∆An

=
dFn

dAn

= Tn. (2.1)

In general, the stress vector can have any direction to the surface area ∆An. Tn may

be regarded as the sum of normal and tangential components. It is possible to find

components of stress vector acting on a particular object by taking an infinitesimal

cubic element, see Figure (2.1). The traction Ti acts on each face in following form

Ti = σijej, i, j = 1, 2, 3, (2.2)
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where ei is unit vector and a summation is assumed a repeating indices. Here σij is

coefficient of Cauchy stress tensor which is defined as

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.3)

If the traction Tn = (Ti) acts on an arbitrary surface oriented by unit normal

n = (ni) then the traction components can be written as

Ti = σjinj. (2.4)

2.2. State of strain

Definition 2.1. The relative change in the position of points in the body that has

undergone deformation due to external or internal forces is called strain and shown

as ϵ. The strain, ϵ, of a material linee element is expressed as the change in the

length ∆l per unit of the original length l of the line element;

ϵ =
∆l

l
. (2.5)

The strain is positive if the object is stretched and negative if the object is com-

pressed. As can be seen from the definition of the strain, unlike stress, strain is a

dimensionless expression.

Strain may also be classified as normal and shear strains. Normal strain measures

changes in length along a specific direction due to an applied force. It is also called

extensional strain or dimensional strain and shown as ϵii. So ϵ11 is the relative

elongation or contraction of the length of the material along the x1 axis. Shear

strain measures changes in angle with respect to two specific directions. It is shown

as ϵij (i ̸= j). As an example, ϵ12 gives the angular change between the x1 and x2

axes. The normal and the shear strains, in literature, are sometimes shown as σii

and γij (i ̸= j) respectively. However we will use σii and σij (i ̸= j) for the normal

and shear stress respectively.

6



Let the component of a vector field u(x) be denoted by ui(x1, x2, x3). If the func-

tions ui(x1, . . . , xn) are differentiable then the partial derivatives of the displacement

may be denoted by the indicial notation as ui,j = ∂ui/∂xj. Hence the infinitesimal

strain-displacement relationships can be given with the indicial notation as

ϵij =
1

2
(ui,j + uj,i). (2.6)

2.3. Stress-strain relations

The most famous and elementary relation of the material behaviour is Hooke’s

law which states that deformation of the elastic material is proportional to applied

force. This can be expressed mathematically as

F = kx, (2.7)

where F is the force applied to the material and x is the displacement. Since stress

is a force and strain is a displacement, the stresses and strains of the materials are

connected by a linearized relationship that is mathematically similar to Hooke’s law,

and is often referred to by the same name. Therefore in one dimension, the relation

between the stress and strain can be presented as

σ11 = Eϵ11, (2.8)

where E is called modulus of elasticity or Young’s modulus. In general, Hooke’s

law, relating the stress tensor to the strain, is written in the form of a fourth-order

tensor as

σij = Eijklϵkl, (2.9)

where the 81 coefficients Eijkl are called elastic constants. Taking into account

certain material and geometric properties (symmetry, etc) of the elastic medium

as well as symmetry of the stress tensor, the number of elastic constants reduce

to 21. A material exhibiting different properties in different directions is called

anisotropic. In the anisotropic materials these coefficients cannot be reduced any

further. Therefore it will be first assumed that the material is independent from any
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directions. In this case number of the elastic constants is reduced to 9 producing an

orthotropic material which has 3 mutually orthogonal planes of elastic symmetry.

Finally for an additional simplification, directional and rotational independence is

assumed. This assumption reduces the number of the constants to 2 producing an

isotropic material which has uniform physical properties in all orientations. Thus

the relation between the stress and strain can be written as

σij = λϵkkδij + 2µϵij, (2.10)

where λ and µ are known as Lamé constants and δij is Kronecker delta. If the

strain-displacement relations given by equation (2.5) are substituted into the above

equality, stress-displacement relations is written as

σij = λuk,kδij + µ(ui,j + uj,i), (2.11)

see If these relations are written in an explicit form, we have for i = 1, 2, j = 1, 2

(i ̸= j), and k = 1, 2, 3

σij = µ

(
δui
δxj

+
δui
δxj

)
, σii = (λ+ 2µ)

δui
δxi

+ λ

(
δuj
δxj

+
δu3
δx3

)
,

σ3i = σi3 = µ

(
δui
δx3

+
δu3
δxi

)
, σ33 = λ

(
δui
δxi

+
δuj
δxj

)
+ (λ+ 2µ)

δu3
δx3

.

(2.12)

It is also known from Hooke’s law that the relation between the stress and strain

in one dimension can be expressed by equation (2.8). Therefore if equation (2.8) is

substituted into equation (2.10), the following equality is obtained.

σ11 =
µ(3λ+ 2µ)

µ+ λ
ϵij. (2.13)

This equality gives us Young’s modulus, E, in terms of the Lamé constants as

E =
µ(3λ+ 2µ)

µ+ λ
. (2.14)

Another important elastic coefficient different from aforementioned coefficient is
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Poisson’s ratio ν. Poisson’s ratio is the negative ratio of transverse strain to the axial

strain in the direction of the applied load. When a load is applied to a material, the

material tends to expand or contract in the other two directions perpendicular to

the direction of the load. This transverse change will bear a fixed relationship to the

axial strain. The relationship, or ratio, of the transverse strain is called Poisson’s

ratio. If the subscript 1 corresponds to the axial direction and subscripts 2 and 3

correspond to the transverse directions then Poisson’s ratio can be written as

ν = −ϵ22
ϵ11

= −ϵ33
ϵ11

=
λ

2(µ+ λ)
. (2.15)

Since λ must remain finite, Poisson’s ratio lies between −1 < ν < 0.5.

2.4. Governing equations of the theory of elastic plates

In this section, we present the fundamental equations of the theory of thin plates.

Let us consider a thin elastic plate of infinite length along the directions x1 and x2

with thickness 2h, where x1, x2 and x3 denote Cartesian coordinates

(−∞ < x1, x2 <∞, −h < x3 < +h). In the classical elastic thin plate theory,

there are certain assumptions that are necessary in order to derive the equations

of motion. For a thin plate described above, the following assumptions are made,

see [28],

1. A lineal element of the plate extending through the plate thickness, normal to

the midsurface, x1 − x2 plane, in the unstressed state, upon the application of

load:

a. undergoes at most a translation and a rotation with respect to the

original coordinate system,

b. remains normal to the deformed middle surface.

2. A plate resists lateral and in-plane loads by bending, transverse shear stresses,

and in-plane action, not through block like compression or tension in the plate

in the thickness direction. This assumption results from the fact that η = h/R

(R is a typical radius of curvature of the midsurface).

3. A lineal element through the thickness does not elongate or contract.
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4. The lineal element remains straight upon load application.

Apart from the small parameter η, thin elastic plates are also characterized by L, a

typical wavelength and T , the time scale. The equation of motion is given by

E

2(1 + ν)
∆u +

E

2(1 + ν)(1− 2ν)
grad divu − ρ

∂2u
∂t2

= 0 (2.16)

where u = (u1, u2, u3) is displacement vector, ∆ is Laplacian operator, E is Young’s

modulus, ν is Poisson’s ratio, ρ is density and t is time.

Poisson’s ratio, also called the Poisson coefficient, is the ratio of transverse con-

traction strain to longitudinal extension strain in stretched bar. Traditionally the

Poisson’s ratio was always assumed positive,0 < ν < .5, since everyday materials get

thinner when stretched. Today it has been shown through numerous studies that ma-

terials with negative Poisson’s ratio also exist, extending the range to −1 < ν < 0.5.

We always assume that the geometrical parameter η = h/R (R is a typical

radius of curvature of the midsurface) is small, i.e. in this thesis we consider only

thin walled bodies. Apart from the geometrical parameter η, dynamic processes in

thin walled bodies are characterised by two physical parameters l, the ratio of the

wavelength to R and T the ratio of the time scale to Rc−1
2 , where c2 is the shear

wave speed. It is convenient to express these two parameters in terms of the small

parameter η

l = nq and T = ηa,

where q and a are called the variability and dynamicity indices, respectively. Let us

introduce the classification of the asymptotic approximations under consideration,

see Figure (2.2)
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Figure 2.2. Asymptotic approximations of 3D dynamic equations of elasticity

In order to write the equations of motion of plane elasticity we refer to equations

(1.1.1)-(1.1.5) in [26] and reduce them, in the setup above, to the following equations:

σ11 =
E

2(1 + ν)χ2

(
∂u1
∂x1

+
ν

1− ν

∂u3
∂x3

)
,

σ22 =
Eν

2(1− ν2)χ2

(
∂u1
∂x1

+
∂u3
∂x3

)
,

σ33 =
Eν

2(1 + ν)χ2

(
ν

1− ν

∂u1
∂x1

+
∂u3
∂x3

)
, (2.17)

σ31 =
Eν

2(1 + ν)

(
∂u3
∂x1

+
∂u1
∂x3

)
,

where

χ =
c2
c1

=

√
1− 2ν

2(1− ν)
(2.18)

where c1 and c2 are respectively the longitudinal and shear wave speeds given by

c1 =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
, c2 =

√
E

2(1 + ν)ρ
. (2.19)

According to the Helmholtz decomposition theorem, any vector field can be

represented by a combination of the gradient of a scalar potential and the curl of a
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vector potential, see [30], that is

u = gradϕ+ curlΨ, (2.20)

where ϕ is a scalar potential, Ψ = (ψ1, ψ2, ψ3) is a vector potential and u =

(u1, u2, u3) is the displacement vector. On employing equation (2.20) the compo-

nents of u, in terms of wave potentials, are given by

u1 =
∂ϕ

∂x1
+
∂ψ3

∂x2
− ∂ψ2

∂x3
, (2.21)

u2 =
∂ϕ

∂x2
− ∂ψ3

∂x1
+
∂ψ1

∂x3
, (2.22)

and

u3 =
∂ϕ

∂x3
+
∂ψ2

∂x1
− ∂ψ1

∂x2
. (2.23)

Throughout the thesis, we shall only consider propagation in the x1 − x3 plane, so

setting
∂

∂x2
= 0 in (2.21), (2.22) and (2.23) gives us

u1 =
∂ϕ

∂x1
− ∂ψ2

∂x3
, (2.24)

u2 = −∂ψ3

∂x1
+
∂ψ1

∂x3
, (2.25)

and

u3 =
∂ϕ

∂x3
+
∂ψ2

∂x1
. (2.26)

Substituting (2.24) and (2.26) into (2.16) we obtain a pair of wave equations in the

potentials ϕ and ψ given by

∆ϕ− 1

c21

∂2ϕ

∂t2
= 0, ∆ψ − 1

c22

∂2ψ

∂t2
= 0. (2.27)

with the assumption Ψ = (0, 0,−ψ). The derivation of the asymptotic equations

requires an appropriate scaling of the spatial and time variables. We choose scalings

of the variables as x1 and x3 balanced with the half-thickness h and, the time variable
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t with the ratio of h and shear wave c2. We thus introduce

x1 = ξh, x3 = ζh and t =
τh

c2
. (2.28)

where ξ and ζ are dimensionless longitudinal and vertical coordinates, and τ is the

dimensionless time variable. We may also scale the wavenumber k and angular

frequency ω as

K = kh Ω =
ωh

c2
. (2.29)

Here K and Ω are dimensionless wavenumber and angular frequency, respectively.

Let us now seek the plane travelling wave solution to equations (2.27) in the form

ψ = f(ζ)ei(Kξ−Ωτ) (2.30)

ϕ = g(ζ)ei(Kξ−Ωτ)

where i =
√
−1. Inserting (2.30) into equations (2.27) we obtain the following

hyperbolic equations

∂2f

∂ζ2
− α2f = 0, (2.31)

∂2g

∂ζ2
− β2g = 0

where

α =
√
K2 − χ2Ω2, β =

√
K2 − Ω2. (2.32)

There are two groups of vibration modes corresponding the equations given by

(2.31), namely antisymmetric and symmetric modes with respect to the midsurface.

These modes will be described in detail in the following sections.
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2.5. Antisymmetric modes of an elastic plate

Figure 2.3. First three antisymmetric modes of vertical displacement component

Figure 2.4. First three antisymmetric modes of horizontal displacement component

In order to obtain the antisymmetric modes in case of plate bending we seek the

solution of (2.31) in the form

f = A sinh(αζ), g = B cosh(βζ). (2.33)

In this case, the displacement u1 and the stresses σ11, σ22, σ33 are odd with respect

to ζ while displacement u3 and the stress σ31 are even.

Let us first write down the 2D equations governing the long-wave low-frequency

approximations, for which

L≫ h, T ≫
√
ρ

E
h. (2.34)

It is well known that this approximation corresponds to the classical Kirchhoff theory

for plate bending resulting in the fourth-order parabolic equation

D∆2w + 2ρh
∂2w

∂t2
−QN − 2hdivΓQT = 0, (2.35)

where w is the vertical displacement of the mid plane (w = u3|x3=0), QN is vertical
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load, QT = (Q1, Q2) is the vector of tangential loads, the bending stiffness D is

given by

D =
2Eh3

3(1− ν2)
, (2.36)

and the 2D operator divΓ is given by

divΓQT =
∂Q1

∂x1
+
∂Q2

∂x2
. (2.37)

2.6. Symmetric modes of an elastic plate

Figure 2.5. First three symmetric modes of vertical displacement component

Figure 2.6. First three symmetric modes of horizontal displacement component

Similar to the previous case, assuming (2.31)

f = A cosh(αζ), β = B sinh(βζ) (2.38)

gives us symmetric modes for plate extension and transverse compression of a thin

plate. For symmetric modes the displacement u1 and the stresses σ11, σ22, σ33 are

even with respect to ζ while displacement u3 and the stress σ31 are odd.

For this case the governing equation is given by

Eh

(
1

1 + ν
∆u+

1

1− ν
graddivu

)
− 2ρh

∂2u

∂t2
+ 2QT +

2hν

1− ν
gradQ3 = 0. (2.39)

Similarly, we may also write the refined equation by adding O(η2) and O(η4) terms
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into (2.39)

Eh

(
1

1 + ν
∆u+

1

1− ν
grad divu

)
− 2ρh

∂2u

∂t2
+ 2QT +

2hν

1− ν
gradQ3+

Eh3
[
− 1

6(1 + ν)
∆2u− 3 + 4ν − ν2

6(1− ν)2(1 + ν)
∆grad divu+

2ρ

3E

∂2

∂t2
∆u

−2(1 + ν)ρ2

3E2

∂4u

∂t4
+

(2 + ν − ν2)ρ

3(1− ν)2E

∂2

∂t2
grad divu− 1 + 2ν2

3(1− ν)2E
∆gradQ3

+
(1 + ν)(1− 3ν + 4ν2)ρ

3(1− ν)2E2

∂2

∂t2
gradQ3

]
= 0.

(2.40)

2.7. Asymptotic model for Surface Waves

Since we are trying to establish a composite equation, we need to compare

the equation that we aim to obtain when L≫ h, with the plate limit . When L≪ h,

the plate behaves like a half-space and the waves generated in this case will behave

like surface waves, see Fig 2.7. That’s why we’re trying to obtain an asymptotic

model for Rayleig Surface Waves.

2h

P

=

P

0+

P

∞

Figure 2.7. Behaviour of plate waves

To this end, we follow the exposition given in [30]. Let us give the asymptotic

formulation for Rayleigh wave, which is valid at

L≪ h and T ≪
√
ρ

E
h. (2.41)

At leading order, this is given by a 2D hyperbolic equation along each of the faces

x3 = ±h, due to the symmetry, below we consider only the upper face x3 = h. In
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terms of the boundary value of the scalar wave potential ϕ(x1, x2, x3, t) we have

∆ϕh −
1

c2R

∂2ϕh

∂t2
= −1 + k22

4µB
P, (2.42)

where ϕh = ϕ(x1, x2, h, t), µ is Lamé elastic modulus, cR is the Rayleigh wave speed,

P is the normal load corresponding to QN defined above, and

B =
k1
k2

(1− k21) +
k2
k1

(1− k22)− (1− k42), (2.43)

with

ki =

√
1− c2R

c2i
, i = 1, 2. (2.44)

Over the interior |x3| < h, ϕ(x1, x2, x3, t) satisfies the elliptic equation

∂2ϕ

∂x23
+ k21∆ϕ = 0, (2.45)

whereas a pair of shear potentials Ψi(x1, x2, x3, t), i = 1, 2, may be found from the

boundary value problem
∂2Ψi

∂x23
+ k22∆Ψi = 0, (2.46)

with
∂Ψi

∂x3

∣∣∣∣
x3=h

=
1 + k22

2

∂Φh

∂xi
. (2.47)

Hyperbolic equation (2.42) may also be written through the displacements of the

upper face ui(x1, x2, x3, t), i = 1, 2, 3. To this end, we express the solutions of elliptic

equations (2.45) and (2.46) as

Φ = Φhe
√
−∆k1(x3−h) and Ψi = Ψihe

√
−∆k2(x3−h), (2.48)

where
√
−∆ is a 2D pseudo-differential operator and Ψih = Ψi(x1, x2, h, t). Then,

taking into account the boundary condition (2.47) and also the relation

∂Φh

∂x3

∣∣∣∣
x3=h

= −1 + k22
2

(
∂Ψ1h

∂x1
+
∂Ψ2h

∂x2

)
, (2.49)
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we obtain

ui =
∂Ψi

∂x3
− ∂Φh

∂xi

∣∣∣∣
x3=h

= −1− k22
2

∂Φh

∂xi
, i = 1, 2, (2.50)

and

u3 =
∂Φ

∂x3

∣∣∣∣
x3=h

+
∂Ψ1h

∂x1
+
∂Ψ2h

∂x2
=
k1(1− k22)

1 + k22

√
−∆Φh. (2.51)

With the help of these formulae, we may write the equation (2.42), which is written

in terms of potential Φh, in terms of displacement components as

∆ui −
1

cR2

∂2ui
∂t2

= −(1− k42)

8µB

∂P

∂xi
, i = 1, 2 (2.52)

or

∆u3 −
1

c2R

∂2u3
∂t2

= −k1(1− k22)

4µB

√
−∆P. (2.53)

Thus, we have obtained the Rayleigh equation, that is given in terms of scalar wave

potential Φh, in terms of displacement components.
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3. COMPOSITE WAVE MODELS FOR ELASTIC PLATE

In this section, we attempt to establish 2D composite hyperbolic equations for

an elastic plate using Kirchhoff or refined asymptotic plate equations along with the

Rayleigh wave equation, regarding the idea of composite equations incorporating

both long and short-wave limiting forms, for which a typical wavelength is much

greater or smaller than the plate thickness. We restrict ourselves to surface loading,

when bending and Rayleigh waves are seemingly of the most importance. We do not

expect, from the very beginning, to arrive at uniformly valid composite equations.

The point is that over the intermediate range, for which a wavelength is of order of

thickness, a plate demonstrates essentially 3D behaviour, which does not allow any

asymptotic dimension reduction.

3.1. Statement of the Problem

P

2

−
P

2

x1

x3

x2

h

h

Figure 3.1. Antisymmetric deformation of an elastic layer under normal surface loading

We consider antisymmetric deformation of an elastic plate subjected to pre-

scribed normal stress ±1

2
P (x1, x2, t) at the faces x3 = ±h, respectively, as given in

Figure 3.1. For long-wave low-frequency approximation the governing equation can

be written by taking QT = 0 in the Kirchoff plate equation (2.35)

D∆2w + 2ρh
∂2w

∂t2
= P, (3.1)

where we adopt the notation QN = P . In this case we have no tangential loading

but normal loading, so we may obtain the refined plate equation for this problem
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by taking QT = 0 and QN = P in (3.20)

D∆2w + 2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2w

∂t2
=

(
1− h2

8− 3ν

10(1− ν)
∆

)
P. (3.2)

To obtain the relation between w and the displacement components u1, u2, we

may use the following results from analysis of higher order plate bending theory in

Chapter7 in [26]

u3 = Ru∗3 (3.3)

ui = Rv∗i

Q∗
3 =

1

E
ηQ3.

where η and R are given in Section 2.4, and the starred quantities are of the same

asymptotic order, and independent of the thickness variable ζ.

u∗3 = w + η2ζ2u
(2)
3 , (3.4)

u∗i = ζu
(1)
i + η2ζ3u

(3)
i i = 1, 2.

Employing a two–term asymptotic expansion in ζ, it is possible to obtain asymptotic

expansions for displacements and stresses given by
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u
(1)
i = −∂w

∂ξi
+ η22(1 + ν)σ

(0)
3i ,

σ
(1)
ii =

1

1− ν2

(
∂u

(1)
i

∂ξi
+ ν

∂u
(1)
j

∂ξj

)
+ η2

ν

1− ν
σ
(1)
33 ,

σ
(1)
ij =

1

2(1 + ν)

(
∂u

(1)
i

∂ξj
+
∂u

(1)
j

∂ξi

)
,

σ
(2)
3i = −1

2

(
∂σ

(11)
ii

∂ξi
+
∂σ

(1)
ij

∂ξj

)
+ η2

1

4(1 + ν)

∂2u
(1)
i

∂τ 2
,

σ
(0)
3i = −σ(2)

3i − η2σ
(4)
3i , (3.5)

σ
(1)
33 = −∂σ

(0)
3i

∂ξi
−
∂σ

(0)
3j

∂ξj
+

1

2(1 + ν)

∂2w

τ 2
,

σ
(3)
33 = −1

3

(
∂σ

(2)
3i

∂ξi
+
∂σ

(2)
3j

∂ξj

)
+ η2

1

6(1 + ν)

∂2u
(2)
3

∂τ 2
(i ̸= j = 1, 2).

Constitutive equations as well as boundary conditions are given in the following

form

u
(2)
3 = −1

2
ν
(
σ
(1)
ii + σ

(1)
jj

)
,

u
(3)
i = −1

3

∂u
(2)
3

∂ξi
+

2

3
(1 + ν)σ

(2)
3i ,

σ
(3)
ii =

1

1− ν2

(
∂u

(3)
i

∂ξi
+ ν

∂u
(3)
j

∂ξj

)
+

ν

1− ν
σ
(3)
33 ,

σ
(3)
ij =

1

2(1 + ν)

(
∂u

(3)
i

∂ξj
+
∂u

(3)
j

∂ξi

)
,

σ
(4)
3i = −1

4

(
∂σ

(3)
ii

∂ξi
+
∂σ

(3)
ij

∂ξj

)
, (3.6)

σ
(5)
33 = −1

5

(
∂σ

(4)
3i

∂ξi
+
∂σ

(4)
3j

∂ξj

)
.

On the surface ζ = 1 from (3.4), we have

u∗3 = w + η2u
(2)
3 (3.7)
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and employing the relevant identities of (3.4)–(3.6) in (3.7), we get

u∗3 = w − η2
ν

2

(
σ
(1)
ii + σ

(1)
jj

)
+O(η4), (3.8)

= w − η2
ν

2(1− ν2)

(
∂u

(1)
i

∂ξi
+ ν

∂u
(1)
j

∂ξj
+
∂u

(1)
j

∂ξj
+ ν

∂u
(1)
i

∂ξi

)
+O(η4),

= w − η2
ν

2(1− ν)

(
∂u

(1)
i

∂ξi
+
∂u

(1)
j

∂ξj

)
+O(η4),

= w + η2
ν

2(1− ν)

(
∂2w

∂ξ2i
+
∂2w

∂ξ2j

)
+O(η4).

Since the problem is independent of the horizontal coordinate ξ2, we may write
∂

∂ξ2
= 0, and for ease of reference we set ξ1 = ξ. Ignoring the higher order terms

O(η4) in equation 3.8 we arrive at

u∗3 =

(
1 + η2

ν

2(1− ν)

∂2

∂ξ2

)
w (3.9)

Returning back to the original variables we may express the vertical displacement

on the upper face x3 = h, in terms of the mid plane displacement as

u3 =

(
1 + h2

ν

2(1− ν)

∂2

∂x21

)
w. (3.10)

Thus, we have obtained the differential operator that gives the relationship between

w and u3

u3 = L3w, (3.11)

with

L3 = 1 + h2
ν

2(1− ν)

∂2

∂x21
. (3.12)

For ui, i = 1, 2, we have the following asymptotic relation

u∗i = u
(1)
1 + η2u

(3)
1 . (3.13)

Following the same procedure as done for u3, employing the relevant identities of
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(3.4)–(3.6) and taking i = 1 in (3.4), we get

u∗1 = u
(1)
i + η2u

(3)
i +O(η4), (3.14)

= −∂w
∂ξi

+ η22(1 + ν)σ
(0)
3i − η2

1

3

∂u
(2)
3

∂ξ
+ η2

2

3
(1 + ν)σ

(2)
3i +O(η4)

= −∂w
∂ξi

+ η2
ν

6

(
∂σ

(1)
ii

∂ξi
+
∂σ

(1)
jj

∂ξi

)
+ η2

4(1 + ν)

6

(
∂σ

(11)
ii

∂ξi
+
∂σ

(1)
ij

∂ξj

)
+O(η4)

= −∂w
∂ξi

+ η2
4 + 5ν

6

∂σ
(1)
ii

∂ξi
+ η2

ν

6

∂σ
(1)
jj

∂ξi
+ η2

4(1 + ν)

6

∂σ
(1)
ij

∂ξj
+O(η4)

= −∂w
∂ξi

+ η2
4 + 5ν

6(1− ν2)

(
∂2u

(1)
i

∂ξ2i
+ ν

∂2u
(1)
j

∂ξi∂ξj

)
+ η2

ν

6(1− ν2)

(
∂2u

(1)
2

∂ξi∂ξj
+ ν

∂2u
(1)
1

∂ξ2i

)

− η2
2

6

(
∂2u

(1)
i

∂ξ2i
+
∂2u

(1)
j

∂ξi∂ξj

)
+O(η4)

= −∂w
∂ξi

+ η2
ν + 4

6(1− ν)

∂2u
(1)
i

∂ξ2i
− η2

3ν + 2

6(1− ν)

∂2u
(1)
j

∂ξi∂ξj
+ η2

2

6

∂2u
(1)
i

∂ξ2i
+O(η4)

= −∂w
∂ξi

− η2
ν + 4

6(1− ν)

∂3w

∂ξ3i
+ η2

3ν + 2

6(1− ν)

∂3w

∂ξi∂2ξ2j
− η2

2

6

∂3w

∂ξi∂2ξ2j
+O(η4),

= −∂w
∂ξi

− η2
ν + 4

6(1− ν)

∂3w

∂ξ3i
+ η2

5ν

6(1− ν)

∂3w

∂ξi∂ξ2j
+O(η4),

= −
(
1 + η2

(
ν + 4

6(1− ν)

∂2

∂ξ2i
+

5ν

6(1− ν)

∂2

∂ξ2j

))
∂w

∂ξi
+O(η4), i ̸= j = 1, 2.

If we return back to the original variables in equation (3.14), we get

u∗i = −h
(
1 + h2

(
ν + 4

6(1− ν)

∂2

∂x2i
− 5ν

6(1− ν)

∂2

∂x2j

))
∂w

∂xi
, i ̸= j = 1, 2. (3.15)

Thus, we obtain the relation between ui and w on the upper surface x3 = h given

by

ui = Li
∂w

∂xi
, i = 1, 2, (3.16)

with

Li = −h
[
1 + h2

(
ν + 4

6(1− ν)

∂2

∂x2i
− 5ν

6(1− ν)

∂2

∂x2j

)]
, i, j = 1, 2, i ̸= j, (3.17)

Hence, with the help of asymptotic expansions of displacement components we found

the differential operators that make it possible to write displacement components
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in terms of mid-plane displacement on the upper surface. First, acting with (3.12)

and (3.17) on (3.1), the Kirchoff plate equation can be rewritten in terms of the

displacement components on the upper surface x3 = h as

D∆2ui + 2ρh
∂2ui
∂t2

= −h
(
1 + h2

(
ν + 4

6(1− ν)

∂2

∂x2i
− 5ν

6(1− ν)

∂2

∂x2j

))
∂P

∂xi
, (3.18)

and

D∆2u3 + 2ρh
∂2u3
∂t2

=

(
1 + h2

ν

2(1− ν)

∂2

∂x21

)
P. (3.19)

We may also apply the differantial operators (3.12) and (3.17) to the ’refined plate

equations’ given by (see, [26])

D∆2w+2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2w

∂t2
−
(
1− h2

8− 3ν

10(1− ν)
∆

)
QN−

− 2h

(
1− h2

4 + ν

30(1− ν)
∆

)
divΓQT = 0.

(3.20)

On doing so, the refined plate bending equation can be rewritten in terms of the

displacement components on the upper surface x3 = h

D∆2ui+2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2ui
∂t2

= (3.21)(
1 + h2

(
ν + 4

6(1− ν)

∂2

∂x2i
− 5ν

6(1− ν)

∂2

∂x2j
− 8− 3ν

10(1− ν)
∆

))
∂P

∂xi
, i, j = 1, 2, i ̸= j.

and

D∆2u3 + 2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2u3
∂t2

=

(
1− h2

4

5
∆

)
P. (3.22)

Thus, asymptotic expansion applied to displacements and stresses, the refined plate

equation is obtained in terms of displacement components.

3.2. Dispersion Analysis

In this section, we will analyse dispersion relations as a preparation step for the

construction of an asymptotic model. Starting with the wave equations (2.27), and

substituting plane travelling solutions, in the form ei(kx−ωt), we end up with

k2 =
ω2

c2i
, i = 1, 2. (3.23)

24



Equation (3.23) is known as the dispersion relation, which is a link between angular

frequency ω and wave number k. This relation (3.23) means that waves with a given

frequency must have a certain wave number, so it is important to characterization

of waves. To analyse the natural vibration modes of a thin plate, we may take

homogenous boundary conditions on the faces

σ31 = σ33 = 0 at x3 = ±h. (3.24)

Expressing stress components in the given boundary conditions (3.24) in terms of the

functions f and g defined by (2.33), in case of plate bending, for which we consider

only antisymmetric modes, we obtain the following system of linear equations

AiKα coshα +B
(
K2 − Ω2

)2
cosh β = 0, (3.25)

A
(
K2 − Ω2

)2
sinhα−BiKβ cosh β = 0.

In order for the solution of system of homogeneous equations (3.25), to exist, the

determinant of coefficients must be zero. Equating the determinant of coefficients

to zero in (3.25), we obtain the frequency equation

(
K2 − Ω2

)4 sinhα
α

cosh β − β2K2 coshα
sinh β

β
= 0. (3.26)

The resulting equation (3.26) is the Rayleigh-Lamb frequency equation for the prop-

agating waves with the antisymmetric modes in plate. To obtain dispersion relations

for the problem that we introduce, we study the plane travelling wave solutions to

the homogeneous forms of plate equations given in the previous section. The typical

wavelength and time scale are defined as L ∼ k−1 and T ∼ ω−1. First, we substitute

the travelling wave solution u3 = U3e
i(kx−ωt) into equations (3.1),(3.22) and (2.53)

for P = 0, having

k4 − 3(1− ν)

2c22h
2
ω2 = 0, (3.27)

k4 − 3(1− ν)

2c22h
2

(
1− h2

7ν − 17

15(1− ν)
k2
)
ω2 = 0, (3.28)
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and

k2 − 1

c2R
ω2 = 0. (3.29)

Thus, we obtain the dispersion relations for Kirchoff plate equation (3.1), refined

plate equation (3.22) and Rayleigh equation(2.53). Employing the scalings (2.29) in

equations (3.27), (3.28) and (3.29) we get the nondimensional dispersion relations

K4 − 3(1− ν)

2
Ω2 = 0, (3.30)

K4 − 3(1− ν)

2

(
1− 7ν − 17

15(1− ν)
K2

)
Ω2 = 0, (3.31)

and

K2 − 1

v2R
Ω2 = 0, (3.32)

corresponding to Kirchhoff plate bending (3.1), refined plate bending (3.22), and

Rayleigh (2.53) equations, respectively. Here vR =
cR
c2

is the dimensionless Rayleigh

wave speed. Having arrived at the required dispersion relations, we may suggest

a ’simple’ composite equation for dispersion relations based on (3.30) and (3.32),

which is

K4 − 3(1− ν)

2
Ω2 − Ω4

v4R
= 0. (3.33)

The aim of writing equation (3.33) is to combine long-wave low-frequency and short-

wave high-frequency one in a composite equation for different behaviors in different

asymptotic approaches. It may easily be shown that this dispersion relation (3.33)

contains both long–wave low–frequency and short–wave high–frequency limits. At

the long–wave low–frequency limit, in which Ω ∼ K2 ≪ 1, we have

K4 − 3(1− ν)

2
Ω2 − K8

v4R
= 0, (3.34)

the last term on the left-hand side is order of O(η2) and may be ignored at leading

order, since η = K ≪ 1. So, at leading order we arrive at the dispersion relation

(3.30) from (3.33).

On the other hand, at the short–wave high–frequency limit, in which Ω ∼ K ≫ 1,
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we have

K4 − 3(1− ν)

2
K2 − Ω4

v4R
= 0, (3.35)

we may neglect the middle term, which is of order O(K2), and arrive at the other

shortened dispersion relation (3.32).

Next, by combining (3.31) and (3.32), we may propose a refined composite dispersion

relation in the form

K4 − 3(1− ν)

2

(
1− δK2

)
Ω2 + γK2Ω2

(
K2 − Ω2

v2R

)
= 0, (3.36)

with

δ =
7ν − 17

15(1− ν)
. (3.37)

Here γ is a constant parameter to be found. To this end, we express (3.36) in the

form

(
1 + γΩ2

)
K4 +

(
3(1− ν)

2
δ − γ

Ω2

v2R

)
Ω2K2 − 3(1− ν)

2
Ω2 = 0 (3.38)

Considering (3.38) as a quadratic equation with respect to the variable K2, we find

its root to be

K2 =
1

2 (1 + γΩ2)

(
−
(
3(1− ν)

2
δ − γ

Ω2

v2R

)
Ω2+ (3.39)√(

3(1− ν)

2
δ − γ

Ω2

v2R

)2

Ω4 + 6 (1 + γΩ2) Ω2

 .

By taking the square of both sides of (3.39), K4 can be written as

K4 =
1

4(1 + γΩ2)2

[(
2

(
3(1− ν)

2
δ − γ

Ω2

v2R

)2

+ 6(1− ν)γ

)
Ω4 + 6(1− ν)Ω2−

(3.40)

−2

(
3(1− ν)

2
δ − γ

Ω2

v2R

)
Ω2

√(
3(1− ν)

2
δ − γ

Ω2

v2R

)2

Ω4 + 6(1− ν)(1 + γΩ2)Ω2

 .
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Equation (3.40) may be expanded at Ω ≪ 1 as follows:

K4 =
3(1− ν)

2
Ω2

(
1 +

√
3(1− ν)

2
δΩ +

(
3δ2(1− ν)

4
− γ

)
Ω2 + . . .

)
. (3.41)

Now, we require the last expansion (3.41) to coincide with the asymptotic expansion

of Rayleigh–Lamb dispersion equation for the antisymmetric mode (3.26). Taking

into account the analysis presented in [ [26], section7.5, page 135.], we obtain

γ =
3δ2(1− ν)

4
− A2 (3.42)

=
−422 + 424ν + 33ν2

1050(−1 + ν)
.

3.3. Numerical Results

In this section numerical values of the solutions are illustrated. We may

obtain the numerical results for small and large values of Ω in dispersion rela-

tions (3.30), (3.31),(3.32), (3.33), (3.36) and (3.26), corresponding to low and high–

frequency limits. Table 1 shows the numerical results for the dispersion relations in

the case of Poisson’s ratio ν = 0.25 for which the positive root of Rayleigh equation

(3.26) is given, approximately, by vR = 0.9194. The first two columns of Table 1

corresponds to the Kirchoff and refined plate limits and therefore only the results of

the smaller values of Ω are presented in these two columns. Likewise, third column

correspond the high frequency limit, that is the Rayleigh equation, and thus only

the numerics of large Ω is given.
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Kirchhoff plate Refined Plate Rayleigh wave Composite Refined composite Rayleigh–Lamb

Ω dispersion relation dispersion relation asymptote dispersion relation dispersion relation dispersion relation

(3.30) (3.31) (3.32) (3.33) (3.36) (3.26)

0.1 0.3256 0.3375 0.3348 0.3372 0.3372

0.2 0.4605 0.4947 0.4869 0.4929 0.4930

0.3 0.5640 0.6278 0.6130 0.6229 0.6233

0.4 0.6513 0.7506 0.7275 0.7409 0.7418

0.5 0.7282 0.8684 0.8357 0.8519 0.8537

1. 1.029 1.438 1.343 1.363 1.373

1.5 1.261 2.013 1.845 1.858 1.873

2 1.456 2.600 2.354 2.360 2.374

2.5 2.719 2.871 2.872 2.880

3 3.262 3.394 3.392 3.391

4 4.350 4.453 4.448 4.428

5 5.438 5.522 5.517 5.482

6 6.525 6.596 6.591 6.550

8 8.701 8.755 8.750 8.707

10 10.87 10.91 10.91 10.87

11 11.96 12.00 12.00 11.96

12 13.05 13.08 13.08 13.05

Table 1. Dispersion relations.

Visualizing the data shown in Table 1 obtained from dispersion equations (3.30),

(3.31), (3.32), (3.33), (3.36) and (3.26), it is easier to compare the behavior of the

composite equation in the limiting cases corresponding to the plate bending and

Rayleigh equations.

Figure 3.2. Dispersion curves for Kirchhoff equation (3.30), composite equation (3.33), and
Rayleigh wave (3.32).
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Figure 3.2 displays dispersion curves for Kirchoff plate (3.30), simple compos-

ite equation(3.33) and Rayleigh wave (3.32) plotted by blue, red and green lines,

respectively. Graphic material is supported by the numerical data in columns 1, 3

and 4 in Table 1. As shown in the graph, the composite dispersion curve displays

the same behavior as the Rayleigh limit for large values of Ω and the plate limit for

the small values of the Ω.

Figure 3.3. Dispersion curves for refined plate equation (3.31), refined composite equation
(3.36), and Rayleigh wave (3.32).

The dispersion curves plotted in Figure 3.3 by blue–dashed, red–dashdotted lines,

correspond to the refined plate (3.31) and composite equation (3.36), respectively;

see also columns 2 and 5 in Table 1. As might be expected, the deviation between the

predictions of composite relation (3.33) and its refined form (3.36) is more substantial

at relatively low frequencies, while it is rather minor at the high-frequency limit.

The obvious reason is that both composite relations utilise the same Rayleigh wave
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asymptote.

1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

Ω

��

Figure 3.4. Relative error for composite equation (3.33) and refined composite equation (3.36).

The accuracy of composite relations (3.33) and (3.36) is tested in Figure 3.4 by

comparison with the numerical solution of the Rayleigh–Lamb equation, see (3.26).

Computations for the latter are also presented in the last column of the Table 1.

The relative error is plotted with the following expression

er =

∣∣∣∣KRL −K

KRL

∣∣∣∣× 100%, (3.43)

where KRL denotes the associated Rayleigh–Lamb root. It is depicted with dashed

and solid lines for K found from composite relations (3.33) and (3.36), respectively.

The curves corresponding to composite relations meet that for the Rayleigh–Lamb

equation at Ω ≈ 3. This reduces the approximation error over the intermediate

frequency range, which is of main concern from the very beginning. To the left

of Ω = 3, the refined relation has a clear advantage, while to the right of it the

difference between (3.33) and (3.36) is not that considerable.

31



3.4. Construction of the Composite Equation For Vertical Displacement

Component

In this section our aim is establish 2D composite wave models containing plate

bending and Rayleigh wave equations as their asymptotic long–wave low–frequency

and short–wave high–frequency limits corresponding to (2.34) and (2.41), respec-

tively. At the same time, we do not expect an uniform asymptotic behaviour since

the intermediate domain

L ∼ h and T ∼
√
ρ

E
h (3.44)

is not addressed. However it should be emphasised that two incorporated limits

approximate the dominant part of the overall dynamic response related to the zone

of intensive flexural vibration and vicinities of Rayleigh wave front on plate faces,

in doing so, the rest of the response consists of low amplitude vibration.

Acting (3.12) on (3.1), we obtain Kirchoff plate bending equation in terms of u3 at

leading order

D∆2u3 + 2ρh
∂2u3
∂t2

= P, (3.45)

along the upper surface x3 = h. Starting with (3.45) and (2.53), we obtain a

composite asymptotic equation for vertical displacement u3 along the faces x3 = ±h

D∆2u3 −
D

c2R
∆
∂2u3
∂t2

+ 2ρh
∂2u3
∂t2

=

(
1− h3

k1 (1− k22)

3B(1− ν)

√
−∆∆

)
P. (3.46)

This simplest composite equation (3.46) can easily be reduced the original shortened

equations at the long–wave low–frequency and short–wave high–frequency limits. In

order to show this, let us start by scaling the original variables as

xi = ξiL, i = 1, 2, and t = Tτ. (3.47)
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Then, for long–wave low–frequency limit assuming that η =
h

L
≪ 1 and T =

L

ηc2
(see (2.34)), we have

D

L4

(
∆2

∗u3 − η2
1

v2R
∆∗

∂2u3
∂τ 2

+
3(1− ν)

2

∂2u3
∂τ 2

)
=

(
1 + η3

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)
P,

(3.48)

where ∆∗ =
∂2

∂ξ2i
+
∂2

∂ξ2j
. Dividing both side of (3.48) by

L4

D
and applying ∆∗, we get

(
∆∗ − η2

1

v2R
∆∗

∂2u3
∂τ 2

)
∆∗u3 +

3(1− ν)

2

∂2u3
∂τ 2

=

(
1 + η3

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)
PL4

D
,

(3.49)

It is, now, clear that, at leading order, that is ignoring terms of order O(η2) ,

(3.49) coincides with Kirchoff plate equation (3.45) when written in nondimensional

variables.

Now let η =
h

L
≫ 1 and T =

L

cR
(see (2.41)), resulting equation is

D

L4

(
∆2

∗u3 −∆∗
∂2u3
∂τ 2

+ η−2v2R
3(1− ν)

2

∂2u3
∂τ 2

)
=

(
1 + η3

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)
P,

(3.50)

∆∗

(
∆∗ −∆∗

∂2

∂τ 2

)
u3+η

−2v2R
3(1− ν)

2

∂2u3
∂τ 2

=

(
η−3 +

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)
PL4η3

D
.

(3.51)

In (3.51) neglecting O(η−2) terms and cancelling out the operator ∆∗, we obtain

short–wave high–frequency limit for simple composite model, which coincides with

(2.53).

Next, we implement the refined plate equation (3.20) and proceed in the same man-

ner as above. Then, a more sophisticated composite equation for vertical displace-

ment may be presented as

D

(
1− h2

γ

c22

∂2

∂t2

)
∆2u3 + 2ρh

(
1 + h2δ∆+ h4

2γ

3(1− ν)c2R
∆
∂2

∂t2

)
∂2u3
∂t2

=

=

(
1− h2

4

5
∆ +

h5

c22

γk1(1− k22)

3B(1− ν)c22

√
−∆∆

∂2

∂t2

)
P.

(3.52)

Again, it may be shown that equation (3.52) is reduced to its original shortened

forms at the long-wave low-frequency and Rayleigh wave limits using proper scalings.
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In particular, at low-frequency limit, (3.52), written in terms of the dimensionless

variables (4.6), takes the form

(
1− η4γ

∂2

∂τ 2

)
∆2

∗u3 +
3(1− ν)

2

(
1 + η2δ∆∗ + η6

2γc22
3(1− ν)c2R

∆∗
∂2

∂τ 2

)
∂2u3
∂τ 2

=

=

(
1− η2

4

5
∆∗ + η7

γk1(1− k22)

3B(1− ν)

√
−∆∗∆∗

∂2

∂τ 2

)
PL4

D
.

(3.53)

This time let us keep O(η2) terms, neglecting all the smaller ones, to obtain

∆2
∗u3 +

3(1− ν)

2

(
1 + η2δ∆∗

) ∂2u3
∂τ 2

=

(
1− η2

4

5
∆∗

)
PL4

D
. (3.54)

This equation is identical to refined plate equation (3.20) rewritten in dimensionless

variables. Now we get from (3.53) at the Rayleigh wave limit

(
η−2 − γ

c2R
c22

∂2

∂τ 2

)
∆2

∗u3 +
c2R
c22

3(1− ν)

2

(
η−4 + η−2δ∆∗ +

2γ

3(1− ν)
∆∗

∂2

∂τ 2

)
∂2u3
∂τ 2

=

=

(
η−5 − η−34

5
∆∗ +

γk1(1− k22)

3B(1− ν)
v2
R

√
−∆∗∆∗

∂2

∂τ 2

)
PL4η3

D
.

(3.55)

At leading order, the latter becomes

∆∗
∂2

∂τ 2

(
∆∗ −

∂2

∂τ 2

)
u3 = −L

4η3

D

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

∂2P

∂τ 2
. (3.56)

Finally, cancelling out operator ∆∗
∂2

∂τ 2
, we have Rayleigh wave equation (2.53)

presented in a dimensionless form.

As might be expected, the dispersion relation corresponding to refined composite

equation (3.52) is the same as (3.36).

3.5. An Illustrative Example

As an example, we consider the effect of the surface loads, see Figure.2.1,

in the form of plane time-harmonic travelling waves, for which P = P0e
i(k0x1−ωt),

where k0 = k0(ω) is a given function of angular frequency ω. Let us search for
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the solution to the differential equations in Sections 3.1 and 2.7 also in the form

of a plane travelling wave, i.e. take u3 = A
hP0

µ
ei(k0x1−ωt), where A is normalized

amplitude.

First, insert u3 and P into the composite equation (3.46) and its shortened limiting

forms (3.19) and (2.53). Then, we have, respectively,

A =
3(1− ν)B + k1(1− k22)K

3
0

4B(K4
0 − 1

v2R
K2

0Ω
2 − 3(1−ν)

2
Ω2)

. (3.57)

A =
3(1− ν)

4

1

K4
0 −

3(1− ν)

2
Ω2

, (3.58)

and

A =
k1(1− k22)

4B

K0

K2
0 − Ω2/v2R

, (3.59)

where, as before, Ω = ω/c2 and K0 = k0h.

Next, insert u3 and P into refined composite and plate equations (3.52) and (3.22)

to obtain

A =
1

20B

3(1− ν)(5 + 4K2
0)B + 5k1(1− k22)γK

3
0Ω

2

(1 + γΩ2)K4
0 −

(
3(1−ν)

2
− 7ν−17

10
K2

0 +
γ
v2R
K2

0Ω
2
)
Ω2
. (3.60)

and

A =
3(1− ν)

20

5 + 4K2
0

K4
0 −

3(1−ν)
2

(1− δK2
0) Ω

2
, (3.61)

or, multiplying numerator and denominator by 5− 4K0 in (3.61),

A =
3(1− ν)

20

25− 16K4
0

5K4
0 −

15(1−ν)
2

Ω2 − 5
2
(1 + ν)K2

0Ω
2 − 4K6

0 − 6(1− ν)δK4
0Ω

2
, (3.62)

This formula, to within higher-order terms, coincides with (3.109), the long-wave

low-frequency expansion of exact solution (3.107) at K = K0. Also, expression

(3.59) is the same as Rayleigh wave limit (3.110) at K = K0 due to the identity
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4B = vRR
′(vR).

Numerical data are given Figures 3.5–3.7 and Table 2 for ν = 0.25, vR = 0.9194,

and ε = 0.02 .

Ω Kirchhoff Refined Plate Rayleigh wave Composite Refined Composite Plane elasticity
equation (3.58) equation (3.61) equation (3.59) equation (3.57) equation (3.60) equations (3.107)

0.1 -50.5804 -50.2571 -49.9961 -50.2571 -50.2027
0.2 -13.1013 -12.7541 -12.5158 -12.7544 -12.7031
0.3 -6.19535 -5.80486 -5.591 -5.80606 -5.75931
0.4 -3.82774 -3.36786 -3.17994 -3.37107 -3.32969
0.5 -2.8045 -2.23504 -2.07423 -2.2416 -2.20589
1 3.39117 -0.685338 -0.666011 -0.731965 -0.71589

1.5 0.140492 -0.35926 -0.468618 -0.476211 -0.454868
2 0.0348212 -0.225405 -0.437286 -0.42102 -0.381079

2.5 -1.66994 -0.442851 -0.421085 -0.365705
3 -1.39161 -0.454562 -0.434849 -0.375865
4 -1.04371 -0.467465 -0.456193 -0.426026
5 -0.834968 -0.46161 -0.456402 -0.474053
6 -0.695806 -0.443547 -0.441541 -0.492547
8 -0.521855 -0.394237 -0.394421 -0.450213
10 -0.417484 -0.345513 -0.346039 -0.379392
11 -0.379531 -0.323708 -0.324228 -0.34778
12 -0.347903 -0.303819 -0.304299 -0.320075

Table 2. Displacement amplitude for Kirchoff equation (3.58), Refined Plate equation (3.61),
Rayleigh wave equation (3.59), Composite equation (3.57), Refined composite equation (3.60),

Plane elasticity equation (3.107)

Figure 3.5. Displacement amplitude for composite equation (3.57), Kirchhoff equation (3.58),
and Rayleigh wave equation (3.59).

In Figure 3.5 the solutions of composite equation (3.57) is plotted by the red dot-

ted and dashed line, along with those of Kirchoff plate equation (3.58) and Rayleigh

wave model (3.59) are plotted by the blue and green solid line, respectively. In
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Range I, the Kirchoff plate displacement curve (3.58) and the composite displace-

ment curves (3.57) are matching, as expected, for small values of Ω. From Range

II it can easily be said that the composite displacement curve (3.57) approaches the

Rayleigh wave model curve (3.59).

Figure 3.6. Displacement amplitude for refined composite equation (3.60), refined plate
equation (3.61), and Rayleigh wave equation (3.59).

It is possible to make similar comparison between (3.60), (3.61) and (3.59). In

Figure 3.6 the solutions of refined composite equation (3.60), refined plate equation

(3.61) and Rayleigh equation (3.59) are plotted by red dotted and dashed line, blue

and green solid lines, respectively. In Range I, refined composite displacement curve

and refined plate curve are well matched. In Range III, Rayleigh curve approaches

refined composite displacement curve, as expected. It is interesting that behaviours

of the solutions of the Kirchhoff and refined plate equations appear to be quite

different over the intermediate frequency range in both Figure 3.5 and Figure 3.6.
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Figure 3.7. Displacement amplitude for composite equation (3.57), refined composite equation
(3.60), and plane elasticity (3.107).

In the last Figure 3.7, the solution of the composite equation is compared with

the exact solution of the associated problem in plane elasticity (3.107), see also

the last column of the Table 2. Figure 3.7 and the Table 2 indicate a reasonable

accuracy of the composite equations also over the intermediate frequency range.

As for the dispersion curves in Section 3.2, the main improvement brought by the

refined composite equation is observed at relatively low frequencies.
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3.6. Section Summary

Figure 3.8. Dispersion Equations
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Figure 3.9. Displacement Amplitudes
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3.7. Construction of the Composite Equation For Horizontal Displace-

ment Component

In this section our aim is establish a composite wave model containing plate

bending and Rayleigh wave equation in terms of horizontal displacement component

u1. We will follow smilar procedure as we did for vertical displacement component

u3 in previous section 3.4. From the equation(3.21) taking i = 1, j = 2, we may

write refined plate equation in terms of horizontal displacement component u1 as

D∆2u1+2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2u1
∂t2

= (3.63)(
1 + h2

(
ν + 4

6(1− ν)

∂2

∂x21
− 5ν

6(1− ν)

∂2

∂x22
− 8− 3ν

10(1− ν)
∆

))
∂P

∂x1
,

with ∆ =
∂2

∂x21
. Since the problem is independent of the horizontal coordinate x2,

we take
∂

∂x2
= 0 in (3.63) to get

D∆2u1+2ρh

(
1 + h2

7ν − 17

15(1− ν)
∆

)
∂2u1
∂t2

= −h
(
1− h2

2− 7ν

15(1− ν)

∂2

∂x21

)
∂P

∂x1
. (3.64)

Taking i = 1 on (2.52), we get

∆u1 −
1

c2R

∂2u1
∂t2

= −1− k42
8µB

∂P

∂x1
. (3.65)

We may suggest a composite equation by adding terms into refined plate equation

(3.64) to balance Rayleigh terms from (3.65). Thus, we may write the following

composite equation with unknown coefficients θ and γ

D
∂4u1
∂x41

+ 2ρh

(
1 + h2

7ν − 17

15(1− ν)

∂2

∂x21

)
∂2u1
∂t2

+ θ
∂4u1
∂t4

= (3.66)

− h

(
1− h2

2− 7ν

15(1− ν)

∂2

∂x21
+ γ

∂2

∂t2

)
∂P

∂x1
.

Multiplying Rayleigh equation (3.65) by D and taking derivative with respect to x1

twice, we get

D
∂4u1
∂x41

− D

c2R

∂4u1
∂x21∂t

2
=
D

4

c2R
c22

1 + k22
2µB

∂3P

∂x31
. (3.67)
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Now, it is possible to find the unknown coefficients θ and γ by comparing terms of

(3.66) and (3.67). At short–wave high–frequency limit since we have the Rayleigh

wave equation the following relation holds:

∂2

∂x21
=

1

c2R

∂2

∂t2
. (3.68)

If we take the third and fourth terms of the left side of the composite equation

(3.66), they must be balanced with the second term of the left side of the Rayleigh

equation (3.67)

2ρh3
7ν − 17

15(1− ν)

∂4u1
∂x21∂t

2
+ θ

∂4u1
∂t4

= −D

c2R

∂4u1
∂x21∂t

2
. (3.69)

Using (3.68) in (3.69) at long–wave low–frequency limit, we get

2ρh3
7ν − 17

15(1− ν)

∂4u1
∂x21∂t

2
+ θc2R

∂4u1
∂x21∂t

2
= −D

c2R

∂u1
∂x21∂t

2
. (3.70)

From (3.70) we obtain the unknown coefficient θ as

θ = −D

c4R
− 2ρh3

c2R

7ν − 17

15(1− ν)
. (3.71)

The remaining coefficient γ may be found in similar manner. To this end, we balance

second and third terms of the right side of composite equation (3.66) and the term

in the right side of the Rayleigh equation (3.67) giving

h3
2− 7ν

15(1− ν)

∂3P

∂x31
− hγ

∂3P

∂x1∂t2
= D

c2R
c22

1 + k22
8µB

∂3P

∂x31
. (3.72)

Using (3.68) in (3.72) at short–wave high–frequency limit, we get

h3
2− 7ν

15(1− ν)

∂3P

∂x31
− hc2Rγ

∂3P

∂x31
= D

c2R
c22

1 + k22
8µB

∂3P

∂x31
. (3.73)

From (3.73) we obtain γ as

γ =
h2

c2R

2− 7ν

15(1− ν)
− D

hc2R

1 + k22
8µB

. (3.74)
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Now that we obtain the coefficients θ and γ, using (3.71) and (3.74) we may rewrite

the composite equation(3.66)

D
∂4u1
∂x41

+2ρh

(
1 + h2

7ν − 17

15(1− ν)

∂2u1
∂x21

)
∂2u1
∂t2

−
(
D

c4R

2ρh3

c2R

7ν − 17

15(1− ν)

)
∂4u1
∂t4

= (3.75)

− h

(
1− h2

2− 7ν

15(1− ν)

∂2

∂x21
+

(
h2

c2R

2− 7ν

15(1− ν)
− D

hc22

1 + k22
8µB

)
∂2

∂t2

)
∂P

∂x1
.

Multiplying both sides of (3.75) by
h4

D
and writing in terms of dimensionless vari-

ables, we get

∂4u1
∂ξ4

+

(
3(1− ν)

2
+ h2

7ν − 17

10

∂2u1
∂ξ2

)
∂2u

∂τ 2
−
(

1

v4R
+

7ν − 17

10v2R

)
∂4u1
∂τ 4

= (3.76)

− h

µ

(
3(1− ν)

4
− 2− 7ν

20

∂2

∂ξ2
+

(
2− 7ν

20v2R
− 1 + k22

8B

)
∂2

∂τ 2

)
∂P

∂ξ1
,

where VR =
cR
c2

is the dimensionless Rayleigh wave speed.

3.8. Dispersion analysis

In this section, we study plane travelling wave solutions to the homogenous

form of composite equation (3.75), refined plate equation (3.64) and Rayleigh equa-

tion (3.65)(P = 0) given, respectively by

D
∂4u1
∂x41

+2ρh

(
1 + h2

7ν − 17

15(1− ν)

∂2u

∂x21

)
∂2u

∂t2
−
(
D

c4R

2ρh3

c2R

7ν − 17

15(1− ν)

)
∂4u1
∂t4

= 0, (3.77)

D
∂4u1
∂x41

+ 2ρh

(
1 + h2

7ν − 17

15(1− ν)

∂2

∂x21

)
∂2u1
∂t2

= 0, (3.78)

∂2u1
∂x21

− 1

cR2

∂2u1
∂t2

= 0. (3.79)

We are going to sought for the solutions of (3.77),(3.78) and (3.79) in the form

u1 =
ihP0A

µ
ei(ωt−kx1). (3.80)

43



Here, ω is angular frequency and k is wavenumber.

Inserting (3.80) into (3.77), (3.78) and (3.79), we get

K4 −
(
3(1− ν)

2
− 7ν − 17

10
K2

)
Ω2 −

(
1

s4
− 7ν − 17

10v2R

)
Ω4 = 0, (3.81)

K4 −
(
3(1− ν)

2
− 7ν − 17

10
K2

)
Ω2 = 0, (3.82)

K2 − Ω2

s2
= 0, (3.83)

where

K = kh and Ω =
ωh

c2
, (3.84)

are dimensionless and wavenumber and angular frequency respectively.

From composite dispersion relation (3.81), refined plate dispersion relation (3.82)

and Rayleigh dispersion relation (3.83) we may express K as

K =

√√√√−7ν − 17

20
Ω2 +

1

2

√
(7ν − 17)2Ω4

100
+ 6(1− ν)Ω2 + 4

(
1

v4R
+

7ν − 17

10v2R

)
Ω4,

(3.85)

K =

√
−7ν − 17

20
Ω2 +

1

2

√
(7ν − 17)2Ω4

100
+ 6(1− ν)Ω2, (3.86)

K =
Ω

vR
(3.87)

Numerical results are presented in Figure 3.10 for the Poisson ratio ν = 0.25 for

which the positive root of the Rayleigh equation is given, approximately, by vR =

0.9194. Figure 3.10 displays the dispersion curves for refined refined plate equation

(3.86), composite equation (3.85), and Rayleigh wave (3.87) plotted by dashed blue

line, red solid line, and dotted green line, respectively.
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Figure 3.10. Dispersion curves for refined plate equation (3.86), composite equation (3.85), and
Rayleigh wave (3.87)

According to the Figure 3.10, the behavior of the plate in different asymptotic

approaches can easily be observed through dispersion curves. In the region defined

as Range I, the refined plate dispersion curve and the composite dispersion curve do

agree for the small values of the frequency Ω. In Range III, the Rayleigh dispersion

curve and the composite dispersion curve coincide with each other, for large values

of Ω.

Figure 3.11 displays the comparison of the numerical solution of Rayleigh-Lamb

equation (3.111) and composite dispersion (3.85).

��������

0 5 10 15
0

5

10

15

Ω

� Composite Dispersion

Rayleigh Dispersion

Figure 3.11. Dispersion curves for composite equation (3.85), and Rayleigh-Lamb equation
(3.111)
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3.9. Example

As an example, we consider the effect of the surface loads, in the form of plane

time-harmonic travelling waves, for which P = P0e
i(ωt−k0x), where k0 is a given by

k0(ω) = ε
√
ω +

ω

vR
, (3.88)

where small parameter ε is arbitrary.

Let us seek the solution in the form of a plane travelling wave, i.e. take u1 =
ihPoA

µ
ei(k0x1−ωt), where A is normalized amplitude.

Inserting u1 and P into composite equation (3.76), (3.64) and (3.65) and writing in

terms of dimensionless variables (3.84), we have, respectively,

A =

K

(
3(1− ν)

4
+

2− 7ν

20
K2 −

(
2− 7ν

20s2
− 1 + k22

8B

)
Ω2

)
K4 −

(
3(1− ν)

2
− 7ν − 17

10
K2

)
Ω2 −

(
1

s4
+

7ν − 17

10s2

)
Ω4

, (3.89)

A =

(
3(1− ν)

2
+

2− 7ν

10
K2

)
K

K4 −
(
3(1− ν)

2
− 7ν − 17

10
K2

)
Ω2

, (3.90)

A =
1 + k22
8B

K

K2 − Ω2

s2

. (3.91)

Numerical data are given Figures 3.12–3.15 for ν = 0.25, vR = 0.9194, and ε = 0.1.

In Figure 3.12 displacement amplitudes for composite equation (3.89), refined plate

equation (3.90), and Rayleigh equation (3.91) are plotted by the red solid line,

dashed blue line, and dotted green line, respectively. It is observed from Figure 3.12,

the composite equation coincides with the plate limit for the small values of Ω and

the Rayleigh limit for the large values of Ω.
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Figure 3.12. Displacement amplitude for composite equation (3.89), refined plate equation
(3.90), and Rayleigh wave equation (3.91)

Since composite displacement has a singularity in Range II, the displacement

curve appears in Figure 3.12 as two parts. In Range I, the refined plate displace-

ment curve and the composite displacement curve agree, as expected, for small values

of Ω. Rayleigh displacement curve and composite displacement curve matched the

expectations for large values of Ω in Range III. It is also possible to make similar

comparison by adding the exact solution to Figure 3.12. The exact solution is added

to Range I in Figure 3.12 and the graph in Figure 3.13 is obtained. Displacement

amplitudes for composite equation (3.89), exact solution (3.114), refined plate equa-

tion (3.90) and Rayleigh wave equation (3.91) are plotted by red solid, black solid,

dashed blue, and dotted green lines, respectively.
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Figure 3.13. Displacement amplitude for refined plate equation (3.90), composite equation
(3.89), and exact solution (3.114)

Figure 3.13 shows that the composite displacement curve is consistent not only

with the long-wave low-frequency limit, but also with the exact displacement curve

for small values of Ω.

Similarly, the exact solution was added to Range III in Figure 3.12 to obtain the

graph in Figure 3.14. Displacement amplitudes for composite equation (3.89), exact

solution (3.114), refined plate equation (3.90) and Rayleigh wave equation (3.91)

are plotted by red solid, black solid, dashed blue, and dotted green lines, respec-

tively. It is clear that composite displacement curve does also match with the exact

displacement curve in short-wave high-frequency limit case.

Figure 3.14. Displacement amplitude for Rayleigh wave (3.91),composite equation (3.89), and
exact solution (3.114)

It is also possible to compare exact solution and composite solution directly.
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In Figure 3.15 displacement amplitudes for composite equation (3.89) and exact

solution (3.114) are plotted by red solid line and black solid line, respectively. In

Range I and Range III the composite displacement curve and exact displacement

curve are matching as expected. With this graph, it is also shown that exact solution

has a singularity like exact solution in Range II.

Figure 3.15. Displacement amplitude for composite equation (3.89), exact solution (3.114)
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3.10. Section Summary

Figure 3.16. Dispersion Equations
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Figure 3.17. Displacement Amplitudes
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3.11. APPENDIX

3.11.1. Exact solution of plane time-harmonic problem for vertical dis-

placement

The governing equations in plane elasticity are given by (2.27),in terms of

wave potentials φ(x1, x3, t) and ψ(x1, x3, t). Consider a layer −∞ ≤ x1 ≤ ∞, −h ≤

x3 ≤ h as given in Figure 3.1 with the boundary conditions on its faces x3 = ±h

given by

σ31|x3=±h = 0 (3.92)

σ33|x3=±h = ±P
2
. (3.93)

Using (2.4), (3.92), (3.93) and taking P = P0e
kx1−ωtwe have

σ31|x3=±h = µ

(
∂2ψ

∂x21
− ∂2ψ

∂x23
+ 2

∂2φ

∂x1∂x3

)
= 0, (3.94)

σ33|x3=±h =
µ

χ2

(
ν

1− ν

∂2φ

∂x21
+
∂2φ

∂x23
+ 2χ2 ∂2ψ

∂x1∂x3

)
= ±P0

2
ei(kx1−ωt). (3.95)

where χ = c2/c1. We may write boundary conditions given above in terms of

dimensionless variables (4.6)

σ31|ζ=±1 =
µ

h

(
∂2ψ

∂ξ21
− ∂2ψ

∂ζ2
+ 2

∂2φ

∂ξ1∂ζ

)
= 0, (3.96)

σ33|ζ=±1 =
µ

hχ2

(
ν

1− ν

∂2φ

∂ξ21
+
∂2φ

∂ζ2
+ 2χ2 ∂2ψ

∂ξ1∂ζ

)
= ±P0

2
ei(Kξ1−Ωτ) (3.97)

The solution to the formulated problem for the vertical displacement at the faces,

given by

u3 =
∂φ

∂x3
+
∂ψ

∂x1

∣∣∣∣
x3=±h

. (3.98)

We may rewrite (3.98) in terms of dimensionless variables(4.6) as

u3 =
1

h

(
∂φ

∂ζ
+
∂ψ

∂ξ1

) ∣∣∣∣
ζ=±h

. (3.99)
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We seek the plane travelling wave solution in the form (2.30). In this case we study

antisymmetric modes, so we the take wave potentials in the form

ψ(ξ1, ζ, τ) = C sinh (αζ)ei(Kξ1−Ωτ),

ϕ(ξ1, ζ, τ) = D cosh (βζ)ei(Kξ1−Ωτ). (3.100)

Inserting (3.100) into (3.96) and taking ζ = −1 we get

σ31|ζ=−1 =
E

2(1 + ν)h2
(
−2iKα cosh (α)C +

(
K2 − β2

)
cosh (β)D

)
ei(Kξ1−Ωτ) = 0.

(3.101)

From (4.29) we get following equation with unknown parameters C and D

(−2iKα cosh (α))C +
(
K2 + β2

)
D = 0. (3.102)

Now we use boundary condition for σ33 at ζ = −1, inserting (3.100) into (3.97) and

taking ζ = −1 we get

σ33|ζ=−1 =
µ

h2χ2

((
−ν
1− ν

K2 + α2

)
sinhαC − i

2ν − 1

1− ν
Aβ sinh βD

)
ei(Kξ1−Ωτ)

(3.103)

= −P0

2
ei(Kξ1−Ωτ)

From (3.103) we get

(
− ν

1− ν
K2 + α2

)
sinhαC − i

2ν − 1

1− ν
Kβ sinh βD = −P0h

2χ2

2µ
. (3.104)

Solving (3.102) and (3.104) we get,

D = −iP0h
2

2µ

1

(2K2 − Ω2)2

2αK
tanhα cosh β − 2Kβ sinh β

(3.105)

and

C = −(K2 + β2)P0h
2

4µKα coshα

1

(2K2 − Ω2)2

2αK
tanhα cosh β − 2Kβ sinh β

(3.106)
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Substituting (3.106) and (3.105) into (3.100) and using (3.99), vertical displacement

takes the form u3 = A
hP0

µ
ei(kx−ωt) with

A = −αΩ2

DRL

, (3.107)

and the Rayleigh-Lamb denominator DRL written as

DRL(K,Ω) = (K2 + β2)2 tanhα− 4K2αβ tanh β, (3.108)

with Ω and K defined by (2.29).

The long-wave low-frequency expansion of formula (3.107) at Ω ≪ 1 and K ≪ 1

reads as

A =
3(1− ν)

4

1

K4 − 4

5
K6 − 3(1− ν)

2
Ω2 − 1 + ν

2
K2Ω2 + · · ·

. (3.109)

At leading order, we have for the Rayleigh wave contribution at K ∼ Ω ≫ 1, and

|Ω/K − vR| ≪ 1,

A =
1

4K

v2R
√

1− χ2v2R
R′(vR)(c2 − v2R)

. (3.110)

with c = Ω/K, and the Rayleigh denominator given by

R(c) = (2− c2)2 − 4
√

1− χ2c2
√
1− c2 (3.111)

and prime denoting a differentiation with respect to the argument of the Rayleigh

denominator.

3.11.2. Exact solution of plane time-harmonic problem for horizontal

displacement

The governing equations in plane elasticity are given by (2.27),in terms of

wave potentials φ(x1, x3, t) and ψ(x1, x3, t). Consider a layer −∞ ≤ x1 ≤ ∞, −h ≤

x3 ≤ h as given in Figure 3.1 with the boundary conditions on its faces x3 = ±h

given by (3.92) and (3.93). The solution to the formulated problem for the horizontal
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displacement at the faces is given by

u1 =

(
∂φ

∂x1
− ∂ψ

∂x3

)∣∣∣∣
x3=±h

. (3.112)

We may write (4.26) in terms of dimensionless variables (4.6) as follows

u1 =
1

h

(
∂φ

∂x1
− ∂ψ

∂x3

)∣∣∣∣
x3=±h

. (3.113)

Using equations (3.100)-(3.106) in (3.113), the horizontal displacement component

takes the form u1 =
ihP0A

µ
ei(kx1−ωt) with

A =
K

2DRL

(
−(K2 + β2) tanhα + 2αβ tanh β

)
(3.114)

where α, β and Rayleigh–Lamb dispersion relation are given by (2.32) and (3.111),

respectively.
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4. A COMPOSITE HYPERBOLIC EQUATION FOR PLATE EXTEN-

SION

It is well known that the 2D hyperbolic theory of plane stress, e.g. see [1], may

be treated as the leading order long-wave, low- frequency approximation of the 3D

equations in linear elasticity for plate extension. A drawback of this theory is that it

distorts the longitudinal wave speed. As a result, a singularly perturbed hyperbolic

system arising at next order, cf. [2], supports a dispersive longitudinal wave front,

sometimes called quasi-front, corresponding to the wave-front predicted from the

degenerated problem. However, as might be expected, neither conventional nor re-

fined plane stress approximations are suited for modeling high-frequency, short-wave

behavior. The aforementioned quasi–fronts are also observed for thin elastic rods

and shells and have been tackled since long ago using both heuristic and asymptotic

arguments, e.g. see [1–10] and references therein. In this Section, we attempt to

develop a composite wave model for plate extension supporting not only the long–

wave, low–frequency limit associated with the quasi-front, but also the short-wave,

high-frequency limit involving surface waves. The latter is incorporated through

the specialized formulation for the Rayleigh wave, see [11] and references therein,

which includes, in particular, an explicit hyperbolic equation on the surface. There

are obvious similarities between proposed composite equation and governing equa-

tions established in previous sections. The proposed formulation, as a number of

composite models, e.g. see [12,13] for further detail, is not uniformly valid. How-

ever, we may expect only qualitative coincide over the intermediate range, where

a typical wave length is of order plate thickness. Analogous composite wave for-

mulations for plate bending have recently been established in [14]. Earlier, known

composite dynamic theories for thin elastic structures, e.g. see [15], operated with

ad hoc short-wave limits. We also mention composite models for periodic media in

[16] demonstrating, again, similarity in asymptotic procedures for thin and periodic

wave guides previously noted in [17]. The geometric setup considered in this section

corresponds to a thin elastic strip loaded by shear stresses along its faces. A fourth-

order inhomogeneous hyperbolic equation is derived. It is worth mentioning that

its right-hand side contains a pseudo-differential operator acting on the prescribed
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load. The dispersion curve and also the displacement amplitude induced by surface

stresses in the form of a travelling harmonic wave predicted from this equation are

compared with those calculated from the related plane strain problem.

4.1. Statement of the Problem

Q/2

Q/2

x

y

0

h

h

Figure 4.1. Geometrical setup of the problem.

Our concern in this section is the extension of an infinite elastic strip of thickness

2h (−∞ < x <∞, −h ≤ y ≤ h) subjected to symmetric tangential loads of ±Q/2

at its faces y = ±h, see Figure 4.1.

Let us first express the governing equation in the refined asymptotic 2D theory for

plate extension written as, see [26],

2Eh

1− ν2
∂2u1
∂x2

− 2ρh
∂2u1
∂t2

+ 2ρh3
ν2

3(1− ν)2c23

∂4u1
∂t4

= −Q (4.1)

Multiplying (4.1) by
1− ν2

2Eh
we get

∂2u1
∂x2

− 1

c23

∂2u1
∂t2

+
ν2h2

3(1− ν)2c43

∂4u1
∂t4

= −(1− ν)2

Eh
Q (4.2)

containing the fourth order derivative in time, smoothing the discontinuity at the

quasi-front propagating with speed c3 =
√

E

ρ(1− ν2)
, where u(x, t) is the longitudi-

nal displacement, t is time, E is Young’s modulus, ρ is the density, ν is the Poisson’s

ratio. Equation (4.2) is the first order correction to the equation of motion in the

elementary theory of plate extension.

The latter is valid over long–wave low–frequency range and short–wave high–frequency
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range given by (2.34) and (2.41), respectively. We adapt the asymptotic formulation

for the surface Rayleigh wave given by, see [26],

∂2u1
∂x2

− 1

c2R

∂2u1
∂t2

= −ρ(1 + ν) (1 + k22) k2
EB

√
− ∂2

∂x2
Q. (4.3)

Our aim is to derive a composite equation having both singularly perturbed hy-

perbolic equation (4.3), and as local long–wave low frequency and short wave–high

frequency limits.

4.2. Construction of Composite Equation

First we differentiate (4.3) twice in time having

∂4u1
∂x2∂t2

− 1

c2R

∂4u1
∂t4

= −ρ(1 + ν) (1 + k22) k2
EB

√
− ∂2

∂x2
∂2Q

∂t2
. (4.4)

We now combine (4.2) and (4.4) in the following way to suggest a composite equation:

we keep the second order spatial derivative on the left hand side of both equations;

then qe write the fourth order time derivative in equation (4.2) in terms of second

order spatial and time derivatives. We then multiply the second term on the left

hand side of equation (4.4) as well as its right hand side by Γ and combine the

obtained forms to get

∂2u1
∂x2

− 1

c23

∂2u1
∂t2

+ Γh2
∂2

∂t2

(
∂2u1
∂x2

− 1

c2R

∂2u1
∂t2

)
=

= −ρ(1 + ν)

E

(
1− ν

h
− Γh2

(1 + k22) k2
B

√
− ∂2

∂x2
∂2

∂t2

)
Q.

(4.5)

Next, we need rescale the spatial and time variables as

ξ =
x

L
, τ =

c3t

L
, (4.6)
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where c3 =
√

E

ρ (1− ν2)
and assuming that η =

h

L
≪ 1, we get from (4.5)

1

L2

(
∂2u1
∂ξ2

− ∂2u1
∂τ 2

)
+ Γη2c23

∂2

∂τ 2

(
1

L2

∂2

∂ξ2
− 1

L2

c23
c2R

∂2

∂τ 2

)
u1 =

= −ρ(1 + ν)

Eh

1− ν + η2Γ
(1 + k22) k2

B

√
− ∂2

∂ξ2
c23
∂2

∂τ 2

Q.

(4.7)

The left hand side of the last equation, within the same truncation error, can be

written as
∂2u1
∂ξ2

− ∂2u1
∂τ 2

+ Γη2c23
∂2

∂τ 2

(
∂2

∂ξ2
− c23
c2R

∂2

∂τ 2

)
u1 = 0. (4.8)

Since, at leading order, we have
∂2u

∂ξ2
=
∂2u

∂τ 2
we get

∂2u1
∂ξ2

− ∂2u1
∂τ 2

+ Γη2c23

(
1− c23

c2R

)
∂4u1
∂τ 4

= 0. (4.9)

Now we require (4.9) to coincide with thehomogenous part of (4.2) taking the di-

mensionless form
∂2u1
∂ξ2

− ∂2u1
∂τ 2

+ η2
ν2

3(1− ν)2
∂4u1
∂τ 4

= 0. (4.10)

Comparing equations (4.9) and (4.10) we arrive at

Γc23

(
1− c23

c2R

)
=

ν2

3(1− ν)2
. (4.11)

From (4.11), we find Γ as

Γ =
ν2c2R

3(1− ν)2 (c2R − c23) c
2
3

. (4.12)

Thus, the sought for composite equation takes the form (4.5) with (4.12). In fact, it

is constructed such as long–wave low–frequency limit coincide with equation (4.2)

while at short–wave high–frequency limit for which η = h/L≫ 1 we obviously have

at leading order the scaled equation (4.3).
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4.3. Dispersion Analysis

Consider dispersion relations corresponding to the derived composite equation

(4.5) with (4.12) and its limiting forms (4.4) and (4.2). They are given by respec-

tively

k2 − ω2

c23
− ν2h2

3(1− ν)2c43
ω4 = 0, (4.13)

k2 − ω2

c2R
= 0, (4.14)

k2 − ω2

c23
− Γh2ω2

(
k2 − ω2

c2R

)
= 0, (4.15)

with wavenumber k and angular frequency ω. Using dimensionless wave number

and angular frequency

K = kh Ω =
ωh

c2
(4.16)

in (4.13), (4.14) and (4.15) we get

K2 − c22
c23
Ω2 − ν2

3(1− ν)2
c42
c43
Ω4 = 0, (4.17)

K2 − c22
c2R

Ω2 = 0, (4.18)

K2 − c22
c23
Ω2 − Γc22Ω

2

(
K2 − c22

c2R
Ω2

)
= 0. (4.19)

4.4. Numerical Results

Numerical results are demonstrated at K(Ω) = (1 + ε)Ω/vR with ε = 0.1 and

ν = 0.25, for which vR = 0.9194 in Figures 4.2 and 4.3 . Figure 4.2 displays the

solutions of limiting equations (4.17) and (4.18) versus the solution of composite

equation (4.19). Figure 4.3 shows the comparison of solution of the Rayleigh-Lamb

equation (4.37) and composite equation (4.19).
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Figure 4.2. Dispersion curves for plate (4.17) (blue line), Rayleigh (4.18) (green line) and
composite equation(4.19) (red line).

Figure 4.3. Dispersion curves for exact dispersion (4.37) (black line) and composite
equation(4.19) (red line).

4.5. Exact Solution of plane time-harmonic problem

The governing equations in plane elasticity are given by (2.27), in terms of wave

potentials φ(x1, x3, t) and ψ(x1, x3, t). Consider a layer −∞ ≤ x1 ≤ ∞, −h ≤ x3 ≤

h as given in Figure 3.1 with the boundary conditions on its faces x3 = ±h are given
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by

σ31|x3=±h = ±Q
2

(4.20)

σ33|x3=±h = 0. (4.21)

Using (4.20) in (2.4) we have

σ31 =
E

2(1 + ν)

(
∂2ψ

∂x2
− ∂2ψ

∂y2
+ 2

∂2φ

∂x∂y

)∣∣∣∣
y=±h

= ±Q
2
, (4.22)

σ33 =
E

2(1 + ν)χ2

(
ν

1− ν

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+ 2χ2 ∂

2ψ

∂x∂y

)∣∣∣∣
y=±h

= 0, (4.23)

where χ is, as before, χ =
c2
c1

We may write boundary conditions (4.22) in terms of dimensionless variables as

σ31|ζ=±1 =
µ

h

(
∂2ψ

∂ξ21
− ∂2Ψ

∂ζ2
+ 2

∂2φ

∂x1∂ζ

)
= ±Q

2
ei(Kξ1−Ωτ) (4.24)

σ33|ζ=±1 =
µ

hχ2

(
ν

1− ν

∂2φ

∂ξ21
+
∂2φ

∂ζ2
+ 2χ2 ∂2ψ

∂ξ1∂ζ

)
= 0. (4.25)

The solution to the formulated problem for the horizontal displacement at the faces,

u1 =

(
∂Φ

∂x
− ∂ψ

∂z

)∣∣∣∣
y=±h

(4.26)

We may write (4.26) in terms of dimensionless variables (4.6) as follows

u1 =
1

h

(
∂Φ

∂ζ
+
∂Ψ

∂ξ1

) ∣∣∣∣
ζ=±h

. (4.27)

We seek the plane travelling wave solution in the form (2.30). In this case we study

symmetric modes, so we will take wave potentials as follows

ϕ(ξ1, ζ, τ) = E sinhαζei(Ωτ−Kξ),

ψ(ξ1, ζ, τ) = F coshαζei(Ωτ−Kξ), (4.28)
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with α and β given by (2.32). Inserting (4.28) into (5.24) and (5.25), and taking

ζ = −1 we get

σ31|ζ=−1 =
µ

h

((
2K2 − Ω2

)
sinh βF + 2iKα sinhαE

)
= −Q. (4.29)

(
2K2 − Ω2

)
sinh βF + 2iKα sinhαF = −Qh

µ
. (4.30)

Now we use boundary condition for σ33 at ζ = −1, inserting (4.28) into (5.25) and

taking ζ = −1 we get

σ33|ζ=−1 =
µ

h2χ2

((
− ν

1− ν
K2 + α2

)
coshαE − 2χ2iKβ cosh βF

)
= 0, (4.31)

(
2K2 − Ω2

)
coshαE − 2iKβ cosh βF = 0. (4.32)

Solving (4.30) and (4.32) we get,

E = −Qh
µ

(2K2 − Ω2) coshα

(2K2 − Ω2)2 sinh β coshα− 4K2αβ sinhα cosh β
(4.33)

and

F = −Qh
µ

2iKαβ cosh β

(2K2 − Ω2)2 sinh β coshα− 4K2αβ sinhα cosh β
(4.34)

Substituting (4.33) and (4.34) into (4.28), horizontal displacement (4.27) takes the

form

u1 =
AhQ

µ
ei(kx−ωt) (4.35)

with

A = − Ω2β

DRL(K,Ω)
, (4.36)

where the Rayleigh–Lamb denominator for symmetric modes is written as

DRL(K,Ω) = (2K2 − Ω2)2 cothα− 4K2αβ coth β, (4.37)
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with Ω and K defined in Section 3.2. The long-wave low-frequency expansion of

formula (4.36) at Ω ≪ 1 and K ≪ 1 takes the form

A = −1− ν

2

1

K2 − ν2

12
Ω4 − 2

1− ν
Ω2 + . . .

. (4.38)

At leading order, we have for the Rayleigh wave contribution at K ∼ Ω ≫ 1, and

| Ω
K
− vR| ≪ 1

A =
1

4K

v2R
√
1− c2

R′(vR) (c2 − v2R)
, (4.39)

where c = Ω/K, and the Rayleigh denominator is given by

R(c) =
(
2− c2

)2 − 4
√

1− ξ2c2
√
1− c2, (4.40)

with prime denoting a differentiation with respect to the argument of the Rayleigh

denominator.

4.6. Example of Forced Problem

Consider harmonic surface load as Q = Q0e
i(kx−ωt), where k and ω are wavenum-

ber and frequency, respectively, taking the horizontal displacement as u =
AhQ0

µ
ei(kx−ωt),

where A is dimensionless amplitude and µ is Lamé constant. Inserting u and Q into

(4.2), (4.3) and (4.7)

A =
1− ν

K2 − c22
c23
Ω2 − ν2

3(1− ν)2
c42
c43
Ω4

, (4.41)

A =
(1 + k22) k2

2B

K

K2 − c22
c2R

Ω2

, (4.42)

A =
1

2

(1− ν) + Γ
(1− k22) k2

B
KΩ2

K2 − c22
c23
Ω2 − Γc23Ω

2

(
K2 − c22

c2R
Ω2

) , (4.43)

where Γ = γc22. In the following figures, numerical data are demonstrated at K(Ω) =

(1+ε)Ω/vR with ε = 0.1. As above, ν = 0.25 and vR = 0.9194. Figure (4.4) displays
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the solutions of limiting equations (4.41) and (4.42) versus the solution of composite

equation (4.43). Since our main interest is to derive composite asymptotic equation

that is valid for long–wave low–frequency and short–wave high–frequency limits, we

only need to consider the coherence between displacement curves in the Range I and

Range III in following graphs.

Figure 4.4. The displacement amplitudes for plate displacement (4.41) (blue line), composite
displacement(4.43) (red line) and Rayleigh displacement (4.42) (green line).

In Figure (4.4) displacement curve (4.41), composite displacement curve (4.43)

and Rayleigh displacement curve (4.42) are plotted by blue, red and green lines,

respectively. Over long–wave low-frequency range, Range I, the graph shows that

plate displacement and composite displacement are in good agreement. According

to the graph it is also possible to say that composite displacement curve approaches

to Rayleigh limit over short–wave high–frequency range, Range III.
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Figure 4.5. Comparison of exact solution (4.38) (black line) and composite displacement(4.43)
(red line).

Figure (4.5) illustrates the exact solution (4.38) and composite displacement

curve (4.43) by black and red solid lines, respectively. It is clearly observed that the

exact and composite displacements coincide in Range I and Range III, as expected.

Thus, it is possible to say that composite equation works properly in both limit case,

but intermediate range.
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4.7. Section Summary

Figure 4.6. Dispersion Equations
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Figure 4.7. Displacement Amplitudes
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5. Conclusion

This thesis is mainly concerned about the dynamics of thin elastic bodies

under given external load. To this end three different problem studied with different

loading, and different composite equations obtained from different cases. The main

idea is combine long–wave low–frequency limit terms and short–wave high–frequency

limit terms in one composite equation, and it must be valid at two limit cases. To

show the validity of obtained composite equations, we will often compare numerical

and asymptotic solutions throughout this thesis.

In Section 2, at first problem, aimed at deriving a composite model for hor-

izontal displacement that is satisfies plate and Rayleigh limit asymptotically. The

composite equation that obtained with the help of dispersion analysis. The deriving

of the asymptotically approximate equations requires appropriate rescaling of the

spatial and time variables as well as particle displacements and pressure increment,

so the first Section, with all its positive results, is a guide to the problems done in

latter sections. Second problem discussed is establish a composite wave equation,

for thin plate under symmetric loading, in terms of horizontal displacement. We

followed similar approach done for vertical, but this time worked with symmetric

modes for plate. Dispersion alaysis and comparison of displacement amplitudes also

done for this problem. Consistent results obtained from comparisons with numerical

results once again proved the accuracy of the chosen asymptotic approach.

In third problem discussed in this thesis, aimed to obtain composite equation

for plate extension. This time all equations used in terms of horizontal displacement

and studied symmetric modes of plate. A composite wave formulation obtained ,

having as its shortened forms the refined plate equation and the hyperbolic Rayleigh

wave operator is derived. It is shown that the associated dispersion curve approx-

imates the limiting behaviors of the fundamental symmetric Rayleigh–Lamb mode

at limit cases. The acquired composite equation also demonstrates a reasonable ac-

curacy in evaluating forced vibration amplitudes, as it follows from the comparison

with the exact solution of the related plane strain problem presented in Appendix.

The developed methodology may readily be extended to the 2D setup and to the

analysis of non-symmetric surface loading, when along with the considered in the
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paper extensional modes, bending modes, studied in [26], are also induced. Further

implementation of the composite equation that obtained, especially in transient

problems, appears to be of interest. Finally, we mention that various comments

on peculiarities and limitations of composite wave models for plate bending made

in [26], are seemingly relevant for the case of plate extension treated in the section.

It is thought that the asymptotic method used in the thesis will facilitate the

industrial applications related to the subject and will solve the analytical solution

deficiencies in the literature. It is also an advantage that the method can be easily

adapted to different loading types. It is believed that it will be expanded to differ-

ent problems and structures in the future and will find different application areas.

The results obtained, contrary to the ones existing in literature, in terms of elemen-

tary functions and therefore considerably simplified the physical and mathematical

analysis of the problems.
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