

N-(2-AMİNOBENZOİL)BENZOTRİAZOL ORTAMLI BAZI KİNOLİN TÜREVLERİNİN SENTEZİ VE KUANTUM KİMYASAL HESAPLAMALAR İLE İNCELENMESİ Yüksek Lisans Tezi GÜLÜMSER ORAL ESKİŞEHİR, 2020

N-(2-AMİNOBENZOİL)BENZOTRİAZOL ORTAMLI BAZI KİNOLİN TÜREVLERİNİN SENTEZİ VE KUANTUM KİMYASAL HESAPLAMALAR İLE İNCELENMESİ

Gülümser ORAL

YÜKSEK LİSANS TEZİ

Kimya Anabilim Dalı

Organik Kimya Bilim Dah

Danışman: Doç. Dr. Nevin KANIŞKAN

Eskişehir

Eskişehir Teknik Üniversitesi

Lisansüstü Eğitim Enstitüsü

Ocak 2020

JURİ VE ENSTİTÜ ONAYI

Gülümser ORAL'ın "N-(2-Aminobenzoil)benzotriazol Ortamlı Bazı Kinolin Türevlerinin Sentezi ve Kuantum Kimyasal Hesaplamalar İle İncelenmesi" başlıklı tezi 21/01/2020 tarihinde aşağıdaki jüri tarafından değerlendirilerek "Eskişehir Teknik Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği"nin ilgili maddeleri uyarınca, Kimya Anabilim dalında Yüksek Lisans tezi olarak kabul edilmiştir.

<u>UNVAN ADI SOYADI</u>	<u>İMZA</u>
: Doç. Dr. Nevin KANIŞKAN	
: Doç. Dr. İlhami ÇELİK	
: Doç. Dr. Müjgan YAMAN	
	 UNVAN ADI SOYADI Doç. Dr. Nevin KANIŞKAN Doç. Dr. İlhami ÇELİK Doç. Dr. Müjgan YAMAN

Prof. Dr. Murat TANIŞLI

Lisansüstü Eğitim Enstitüsü Müdürü

ÖZET

N-(2-AMİNOBENZOİL)BENZOTRİAZOL ORTAMLI BAZI KİNOLİN TÜREVLERİNİN SENTEZİ VE KUANTUM KİMYASAL HESAPLAMALAR İLE İNCELENMESİ

Gülümser ORAL

Kimya Anabilim Dalı

Organik Kimya Bilim Dalı

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Ocak 2020

Danışman: Doç. Dr. Nevin KANIŞKAN

Kinolin halkası ve türevlerinin sensör, boya, ilaç gibi birçok alanda kullanımları mevcuttur ve geniş bir biyolojik aktivite spektrumu sergileyen birçok doğal ve farmakolojik olarak aktif bileşiğin temel iskeletini oluşturur. Kinolin ve türevlerinin dikkate değer biyolojik aktiviteleri nedeniyle, sentezleri için kolay ve basit metodolojilerin geliştirilmesine artan bir ilgi söz konusudur ve bu alanda yerini hep koruyarak yeni çalışmalar için de ilgi odağı olmuştur.

Bu tez çalışması kapsamında, yeni bir yöntemle 3-siyano-4-hidroksi-2fenilkinolin türevlerinin sentezi ve kuantum kimyasal hesaplamalarla incelenmesi amaçlanmıştır. Tezin ilk aşamasında *N*-(2-aminobenzoil)benzotriazol bileşikleri ve 3okso-3-fenilpropannitril kullanılarak hedeflenen bazı yeni kinolin türevlerinin sentezi gerçekleştirilmiştir. Sentezlenen bileşiklerin karakterizasyonu UV-GB, FT-IR, ¹H-NMR ve ¹³C-NMR spektroskopik analiz yöntemleriyle yapılmıştır. Çalışmanın ikinci aşamasında ise sentezlenen bileşiklerin kuantum kimyasal hesaplamaları, Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP/6-31G(d,p)) metodu ile yapılarak, titreşim frekansları, ¹H-NMR ve ¹³C-NMR kimyasal kaymaları, UV-GB spektroskopik parametreleri, HOMO-LUMO enerjileri, moleküler elektrostatik potansiyel (MEP) harita sonuçları teorik olarak elde edilmiştir. Hesaplanan teorik sonuçların deneysel sonuçlar ile uyumlu olduğu görülmüştür.

Anahtar Sözcükler: 3-siyano-4-hidroksi-2-fenilkinolin türevleri, DFT/B3LYP Metodu, ¹H ve ¹³C-NMR kimyasal kayma, *N*-(2-Aminobenzoil)benzotriazol

ABSTRACT

SYNTHESIS OF SOME QUINOLINE DERIVATIVES WITH *N*-(2-AMINOBENZOYL)BENZOTRIAZOLE MEDIATED AND THEIR INVESTIGATION WITH QUANTUM CHEMICAL CALCULATIONS

Gülümser ORAL

Department of Chemistry

Programme in Organic Chemistry

Eskişehir Technical University, Institute of Graduate Programs, January 2020

Supervisor: Doç.Dr. Nevin KANIŞKAN

The quinoline ring and its derivatives are used in many fields, such as sensors, dyes, drugs, and form the basic skeleton of many natural and pharmacologically active compounds that exhibit a broad spectrum of biological activity. Due to the remarkable biological activities of quinoline and its derivatives, there is an increasing interest in the development of easy and simple methodologies for their synthesis, and has always been a focus of interest in new studies.

The aim of this thesis is to synthesize 3-cyano-4-hydroxy-2-phenylquinoline derivatives with a new method and to investigate them by quantum chemical calculations. In the first step of the thesis, some novel quinoline derivatives targeted were synthesized by using *N*-(2-aminobenzoyl)benzotriazole compounds and 3-oxo-3-phenylpropannitrile. Characterization of the synthesized compounds was performed by UV-Vis, FT-IR, ¹H-NMR and ¹³C-NMR spectroscopic analysis methods. In the second step of the study, the quantum chemical calculations of the synthesized compounds were performed by Density Functional Theory (DFT/B3LYP/6-31G(d, p)) method and theoretical results of vibration frequencies, ¹H-NMR and ¹³C-NMR chemical shifts, UV-Vis spectroscopic parameters, HOMO-LUMO energies, molecular electrostatic potential (MEP) map were obtained. The theoretical results were found to be consistent with the experimental results.

Keywords: 3-cyano-4-hydroxy-2-phenylquinoline derivatives, DFT/B3LYP Method, ¹H and ¹³C-NMR chemical shift, *N*-(2-Aminobenzoyl)benzotriazole

TEŞEKKÜR

Tez sürecim boyunca hem tecrübelerinden hem de bigi birikiminden yararlandığım, her konuda bana yardımcı olan, yol gösteren kıymetli tez danışmanım Doç. Dr. Nevin KANIŞKAN'a, tez deneylerimin her aşamasında göstermiş olduğu sabır ve hoşgörüsüyle bana her daim destek olan ve bu tezi bitirmemde büyük emeği olan değerli hocam Doç. Dr. İlhami ÇELİK'e sonsuz teşekkürlerimi sunuyorum.

Tez çalışmasında jüri olma nezaketini gösteren değerli hocam Doç. Dr. Müjgan YAMAN'a teşekkür ederim.

Maddelerimin teorik hesaplamaları kısmında fikir danıştığım ve her seferinde hoşgörü ile bana yardımcı olan sayın Dr. Öğr. Üy. S. Funda GÖRKEM'e, arkadaşım Uğur ÖNER'e ve Merve AKIŞ'a, laboratuvar çalışmalarımda bilgilerini benimle cömertçe paylaşan değerli hocam Dr. Şule KÖKTEN'e, arkadaşım İlbilge Merve ŞENOL'a ve İbrahim DEMİRCİ'ye teşekkür ederim.

Tüm eğitim-öğretim hayatımda her daim bana destek olan, maddi-manevi her anlamda hep yanımda varlığını hissettiğim ve varlığıyla güç bulduğum, üzerimdeki emeklerini asla ödeyemeyeceğim biricik annem Nebahat TOMBUL başta olmak üzere tüm aileme en derin teşekkürlerimi sunuyorum.

Tanığıdım günden bu yana her koşulda desteğini hissettiğim, hayatımın her aşamasında bana yardımcı olan zorlukları beraber atlattığımız, her türlü sıkıntımı ve sevincimi paylaştığım değerli eşim Önder Gürkan ORAL'a verdiği destek, gösterdiği sabır ve sevgi için sonsuz teşekkür ederim. Ayrıca tanıştığım günden itibaren beni kızları olarak gören, ikinci ailem olan ORAL ailesine tez sürecimde gösterdikleri anlayış ve verdikleri destek için en içten dileklerimle teşekkür ederim.

Son olarak tez sürecim boyunca bana gerekli izinleri vererek çalışmalarımı tamamlamamda yardımcı olan görev yaptığım idarecilerim başta olmak üzere, bana inanan, destek veren tüm meslektaşlarıma ve arkadaşlarıma teşekkür ederim.

Gülümser ORAL

Ocak 2020

ETİK İLKE VE KURALLAR UYGUNLUK BEYANNAMESİ

Bu tezin bana ait, özgün bir çalışma olduğunu; çalışmamın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarında bilimsel etik ve kurallara uygun davrandığımı; bu çalışma kapsamında elde edilen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; bu çalışmanın Eskişehir Teknik Üniversitesi tarafından kullanılan "bilimsel intihal tespit programı"yla tarandığını ve hiçbir şekilde "intihal içermediğini" beyan ederim. Herhangi bir zamanda, çalışmamla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçları kabul ettiğimi bildiririm.

Gülümser ORAL

BAŞLIK SAYFASIi
JURİ VE ENSTİTÜ ONAYIii
ÖZETiii
ABSTRACTiv
TEŞEKKÜRv
ETİK İLKE VE KURALLAR UYGUNLUK BEYANNAMESİ vi
İÇİNDEKİLERvii
TABLOLAR DİZİNİx
ŞEKİLLER DİZİNİxiii
SİMGE VE KISALTMALAR DİZİNİxv
1. GİRİŞ 1
2. KİNOLİN
3. BENZOTRİAZOL BİLEŞİĞİ5
4. N-AÇİLBENZOTRİAZOL6
5. 2-SÜBSTİTÜE-3-SİYANO-4-HİDROKSİKİNOLİNLERİN SENTEZ
YÖNTEMLERİ9
6. KUANTUM KİMYASAL HESAPLAMALAR11
6.1. Moleküler Mekanik Yöntemi12
6.2. Ab-initio yöntemler 12
6.3. Yarı deneysel (semi-empirical) yöntemler13
6.4. Yoğunluk fonksiyon teorisi (DFT)13
7. DENEYSEL-TEORİK ÇALIŞMALAR14
7.1. Genel Deneysel Çalışmalar14
7.2. Deneysel Çalışmalar14
7.2.1. 3-Okso-3-fenilpropannitril (GN2) bileşiğinin sentezi 14
7.2.2. 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiğinin sentezi 15
7.2.3. 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiğinin
sentezi15

İÇİNDEKİLER

7.2.4. 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiğinin sentezi
7.2.5. 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiğinin
sentezi
sentezi
sentezi
7.2.8. 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiğinin sentezi
7.2.9. 4- Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10)
7.2.10. 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11)
bileşiğinin sentezi
bileşiğinin sentezi
8. DENEYSEL - HESAPLANAN SONUÇLAR VE TARTIŞMA
8.1.1. GN2 bileşiğinin sentezi ve NMR sonuçlarının tartışılması
8.1.2. GN3-GN12 bileşiklerinin sentezi ve NMR sonuçlarının tartışılması 22 8 1 3 Bilesiklerin FTIR spektrum sonuçlarının incelenmesi
8.1.4. Bileşiklerin UV-GB spektrum sonuçlarının incelenmesi ve HOMO-
LUMO optik bant enerji aralıklarının belirlenmesi
8.2.1. Bileşiklerin molekül optimizasyonu
8.2.2. Bileşiklerin frekans hesaplamaları
aralıklarının deneysel ve teorik olarak karşılaştırılması
8.2.4. Bileşiklerin NMR hesaplamaları
7. SUNUY YE UNENILEN

KAYNAKCA	 	
5		
EKLER		

TABLOLAR DİZİNİ

Tablo 8.1. GN3-GN12 bileşiklerinin deneysel olarak bulunan dalgo buyu λ (nm) ve
optik bant aralığı Eg (eV)
Tablo 8.2. GN3- GN12 bileşiklerine ait keto ve enol formlarının enerjileri
Tablo 8.3. GN3 molekülüne ilişkin B3LYP 6-31g(d,p) optimizasyon hesaplamaları
sonucunda enol a ve enol b formlarının enerji değerleri
Tablo 8.4. GN3 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.5. GN4 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.6. GN5 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.7. GN6 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.8. GN7 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.9. GN8 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.10. GN9 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.11. GN10 bileșiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.12. GN11 bileșiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.13. GN12 bileşiğine ait deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-31g(d,p)
hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm ⁻¹)
Tablo 8.14. GN3-GN12 bileşiklerinin B3LYP/6-31g(d,p) yöntemi ile hesaplanan
dalga boyu (λ_{hsp}), uyarılma enerjileri (eV) ve osilatör kuvvetleri(f)40
Tablo 8.15. GN3-GN12 bileşiklerinin deneysel ve B3LYP/6-31g(d,p) hesaplamaları
sonucu bulunan optik bant aralığı41
Tablo 8.16. GN3 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR
sonuçları

Tablo 8.17. GN3 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	46
Tablo 8.18. GN4 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	47
Tablo 8.19. GN4 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	48
Tablo 8.20. GN5 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	49
Tablo 8.21. GN5 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	50
Tablo 8.22. GN6 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	51
Tablo 8.23. GN6 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	52
Tablo 8.24. GN7 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	53
Tablo 8.25. GN7 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	54
Tablo 8.26. GN8 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	55
Tablo 8.27. GN8 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	56
Tablo 8.28. GN9 bilesiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	57
Tablo 8.29. GN9 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	58
Tablo 8.30. GN10 bilesiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	59
Tablo 8.31. GN10 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	60
Tablo 8.32. GN11 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	61

Tablo 8.33. GN11 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	62
Tablo 8.34. GN12 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹ H-NMR	
sonuçları	63
Tablo 8.35. GN12 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³ C-NMR	
sonuçları	64

ŞEKİLLER DİZİNİ

Şekil 2.1. Kinolinin genel yapısı	3
Şekil 2.2. İzokinolinin genel yapısı	3
Şekil 2.3. Kinin ve Papaverin mollekülleri	3
Şekil 2.4. Kinolin halkası taşıyan bazı bileşikler	4
Şekil 3.1. Benzotriazol molekülü	5
Şekil 4.1. N-Açilbenzotriazol bileşiklerinin genel yapısı	6
Şekil 4.2. N-Açilbenzotriazollerin literatürdeki sentez yöntemleri	7
Şekil 4.3. N-(2-aminobenzoil)-benzotriazol türevlerinin sentez yöntemi	7
Şekil 4.4. N-(2-aminobenzoil)-benzotriazol türevleri kullanılarak yapılan sentezler.	8
Şekil 5.1. 2-Sübstitüe-3-siyano-4-hidroksikinolinler için literatürdeki sentez	
yöntemleri	9
Şekil 5.2. 3-Siyano-4-hidroksi-2-fenilkinolinler için önerilen sentez yöntemi	10
Şekil 7.1. 3-Okso-3-fenilpropannitril (GN2) bileşiği için önerilen sentez yöntemi	14
Şekil 7.2. 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiği	15
Şekil 7.3. 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiği	15
Şekil 7.4. 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiği	16
Şekil 7.5. 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiği	17
Şekil 7.6. 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7) bileşiği	17
Şekil 7.7. 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8) bileşiği	18
Şekil 7.8. 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiği	19
Şekil 7.9. 4- Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10) bileşiği	19
Şekil 7.10. 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11)bileşiği	20
Şekil 7.11. 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12) bileşiği	21
Şekil 8.1. GN2 bileşiğinin olası sentez mekanizması	22
Şekil 8.2. GN2 bileşiğinin molekül yapısı	22
Şekil 8.3. GN3-GN12 bileşikleri için önerilen olası reaksiyon mekanizması	23
Şekil 8.4. GN3 bileşiğinin molekül yapısı	24
Şekil 8.5. GN4 bileşiğinin molekül yapısı	24
Şekil 8.6. GN5 bileşiğinin molekül yapısı	25
Şekil 8.7. GN6 bileşiğinin molekül yapısı	25
Şekil 8.8. GN7 bileşiğinin molekül yapısı	26
Şekil 8.9. GN8 bileşiğinin molekül yapısı	26

Şekil 8.10. GN9 bileşiğinin molekül yapısı	. 27
Şekil 8.11. GN10 bileşiğinin molekül yapısı	. 27
Şekil 8.12. GN11 bileşiğinin molekül yapısı	. 28
Şekil 8.13. GN12 bileşiğinin molekül yapısı	. 28
Şekil 8.14. UV-GB spektrumundan yararlanarak HOMO-LUMO optik bant enerji	
aralığının bulunması	. 31
Şekil 8.15. GN3 molekülüne ilişkin keto ve enol formları	. 32
Şekil 8.16. GN3 molekülüne ait enol a ve enol b formları	. 33
Şekil 8.17. GN3 bileşiği için DMSO içerisinde DFT/B3LYP/6-31g(d, p) ile	
hesaplanan elektronik absorbsiyon geçişleri	. 42
Şekil 8.18. GN3-GN12 molleküllerinin DFT/B3LYP/6-31g(d, p) ile hesaplanan	
moleküler elektrostatik potansiyel (MEP) haritası	. 44
Şekil 9.1. GN4 bileşiğinin ¹ H- ¹⁵ N HSQC spektrumu	. 65
Şekil 9.2. GN4 bileşiğine ait deneysel ve teorik ¹ H-NMR kimyasal kayması için	
korelasyon grafiği	. 66
Şekil 9.3. GN10 bileşiğine ait deneysel ve teorik ¹ H-NMR kimyasal kayması için	
korelasyon grafiği	. 66
Şekil 9.4. GN12 bileşiğine ait deneysel ve teorik ¹ H-NMR kimyasal kayması için	
korelasyon grafiği	. 66
Şekil 9.5. GN4 bileşiğine ait deneysel ve teorik ¹³ C NMR kimyasal kayması için	
korelasyon grafiği	. 67
Şekil 9.6. GN10 bileşiğine ait deneysel ve teorik ¹³ C NMR kimyasal kayması için	
korelasyon grafiği	. 67
Şekil 9.7. GN12 bileşiğine ait deneysel ve teorik ¹³ C NMR kimyasal kayması için	
korelasyon grafiği	. 67
Şekil 9.10. GN3-GN12 moleküllerinin deneysel frekans (cm ⁻¹ , KBr) ve B3LYP/6-	
31g(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekans (cm ⁻¹)	
değerlerine ilişkin korelasyon grafikleri	. 69

SİMGE VE KISALTMALAR DİZİNİ

AlBN	: Azobisizobütironitril
AM1	: Austin model 1
B3LYP	: Becke-3-Lee-Yang-Parr
Bt	: Benzotriazolil
BtH	: 1 <i>H</i> -Benzotriazol
Bu	: Bütil
°C	: Celcius (santigrat derece)
¹³ C NMR	: Karbon-13 Nükleer Manyetik Rezonans Spektrospisi
d	: Dublet
DABCO	: 1,4- Diazabisiklo[2,2,2] oktan
DCC	: Disiklohegzilkarbodiimit
dd	: Dublet'in dublet'i
DFT	: Yoğunluk Fonksiyon Teorisi
DMF	: Dimetilformamit
DMSO	: Dimetilsülfoksit
Eg	: Deneysel optik bant aralığı (eV)
EN	: Erime Noktası
Et ₃ N	: Trietil amin
FTIR	: Fourirer Dönüşümlü Kızılötesi Spektroskopisi
HSQC	: Heteronuclear single-quantum correlation spectroscopy
HCl	: Hidroklorik asit
HOMO	: En yüksek dolu moleküler orbital
Hz	: Hertz
¹ H NMR	: Proton Nükleer Manyetik Rezonans Spektroskopisi
J	: Eşleşme Sabiti
KBr	: Potasyumbromür
LUMO	: En düşük boş moleküler orbital
m	: Multiplet
Me	: Metil
MHz	: Megahertz
Ph	: Fenil
PM3	: Parametrik yöntem 3
PM6	: Parametrik yöntem 6
ppm	: Milyonda bir birim
R	:Alkil grup
S	: Singlet
δ	: Kimyasal Kayma Değeri (ppm)

t	: Triplet
t-BuOK	: Potasyum tert-bütoksit
TD-DFT	: Zamana Bağlı Yoğunluk Fonksiyon Teorisi
THF	: Tetrahidrofuran
UV-GB	: Mor ötesi- Görünür Bölge
FT-IR	: Frourier Transform Kızılötesi
δ	: Düzlem dışı eğilme titreşimi
ν	: Gerilme titreșimi
λ	: Dalga boyu (nm)

1. GİRİŞ

Organik kimyada sentezlenen bileşiklerin büyük çoğunluğunu heterosiklik bileşikler oluşturmaktadır. Günümüzde tıp, eczacılık, tarım, boya gibi birçok endüstriye yönelik sentezlenen eski ve yeni bileşikler ile yine doğal bileşiklerden izole edilerek biyolojik aktivite gösteren moleküllerin yapısını da heterosiklik bileşikler oluşturmaktadır.

Literatürde yer alan çalışmalar azot içeren heterosiklik bileşiklerin, tıbbi uygulamalar için yeni sınıf yapısal moleküllerin tasarımında önemli bir rol oynadığını göstermiştir. Kinolin iskeleti, çok sayıda doğal ve sentetik heterosiklik bileşiklerin temel yapı elemanlarından biridir [1]. Biyolojik olarak aktif birçok bileşikte bulunan kinolin türevleri, karmaşık doğal ürünlerin sentezi için çok yönlü yapı taşları olarak önemli bir rol oynar. Uygun konumda sübstitüsyonlu kinolin bazlı bileşikler çok çeşitli aktiviteye sahiptir [2]. Bu nedenle sentezleri, sentetik ve tıbbi kimyacıların dikkatini çekmiş ve kinolin halka sisteminin sentezi için birçok reaksiyonun ortaya çıkmasına neden olmuştur [3]. Kinolinler, doğal oluşumları ve farmasötik alanlardaki uygulamaları nedeniyle tartışmasız en önemli heterosiklik bileşiklerden biridir. Kinolinlerin sentezi, sentetik organik kimyacıların ilgisini çekmeye devam etmiştir ve özellikle, halojen içeren kinolinler halojen atomunun yapısal işlem için ilave bir yol sağlayabildiği için halojen içeren kinolinler daha cazip hale gelmiştir [4]. Ayrıca 3-siyano kinolin bileşiklerinin büyüme faktörü reseptörü üzerinde etkili olduğu literatürde belirtilmiştir. Siyano gruplarına sahip ajanlar ayrıca biyolojik sistemlere bağlanan küçük molekül inhibitörleri bağlamda tez olarak işlev görürler [5]. Bu bu çalışmasında, N-(2aminobenzoil)benzotriazol türevleri ile 3-okso-3-fenilpropannitrilin reaksiyonundan bazı yeni 3-siyano-4-hidroksi-2-fenikinolin türevlerinin sentezlenmesi amaçlanmıştır. Bu amaçla kinolin türevlerinin sentezi literatürde yer almayan yeni bir yolla, benzotriazol metodolojisi kullanılarak gerçekleştirilmiştir.

Ayrıca son yıllarda teorik hesaplama yöntemleri, ilaç molekülleri gibi fonksiyonel malzemelerin teorik modellemesinde ve tasarımında yaygın olarak kullanılmaktadır. Kuantum kimyasal hesaplamaların gerçekleştirilmesi, biyolojik ve kimyasal sistemlerde fiziksel ve kimyasal özelliklerin tahmin edilmesine yol açmıştır. Ayrıca teorik hesaplamalar, deneysel olarak yapılan spektroskopik çalışmalarda büyük ölçüde katkıda bulunmaktadır [6], [7]. Yoğunluk Fonksiyon Teorisi (DFT) pek çok heterosiklik bileşiğin

UV-GB, FT-IR ve NMR spektrumları, HOMO-LUMO enerjieri, moleküler elektrostatik potansiyel harita gibi çeşitli özelliklerin hesaplanmasında yoğun bir şekilde kullanılmıştır ve deneysel verilerle tutarlı güvenilir sonuçlar elde edilmiştir [8], [9], [10]. Bu çalışmada da sentezlenen bileşiklerin kuantum kimyasal hesaplamalarıYoğunluk Fonksiyonel Teorisi (DFT/B3LYP/6-31G(d,p) metodu ile yapılarak, deneysel sonuçlarla karşılaştırılması amaçlanmıştır.

2. KİNOLİN

Kinolin molekülü, bir benzen (A) ve bir piridin (B) halkalarının kaynaşmış olduğu molekül formülü C₉H₇N olan heterosiklik bileşiktir. Bu nedenle benzopridinler olarak adlandırması yapılır. Kinolin yapısı naftaline benzemesinden dolayı azanaftalinler olarak da bilinmektedir.

Şekil 2.1. Kinolinin genel yapısı

Kinolin ilk olarak 1834 yılında Runge tarafından taş kömürü katranından doğal olarak izole edilmiş, renksiz, keskin kokulu, kaynama noktası 237°C olan organik bir maddedir. İzokinolin ise 1885 yılında izole edilmiş ve 24°C erime noktasına sahip heterosiklik, aromatik, organik katı bileşiktir. Her iki bileşik de bazik özellik göstermektedir.

Şekil 2.2. İzokinolinin genel yapısı

Kinolin ve izokinolin halkaları pek çok doğal bileşikte bulunur. En güzel örnekleri, kına ağacı kabuğunda bulunan ve sıtma hastalığının tedavisinde kullanılan kinin **3** ve kas gevşetici olarak kullanılan papaverindir **4** [11]. (Şekil 2.3).

Şekil 2.3. Kinin ve Papaverin mollekülleri

Kinolin yüksek kaynama noktası ve bir çok organik çözücüyle karışabilme özelliğiyle sentezlerde bazik çözücü olarak sıklıkla kullanılır. Kinolin ve türevlerinin geniş biyolojik aktiviteye sahip olmaları sebebiyle sentezleri araştırmalara konu olmaktadır.

1962 yılında klorokinin sentezi ve saflaştırması sırasında keşfedilmiş nalidiksik asit üriner sistem enfeksiyon tedavisinde kullanılmış bir antibiyotiktir [12]. Nalidiksik asit **5** klinik alanda kullanılmaya başlaması ile birlikte kinolinlerin antimikrobiyal aktiviteleri üzerine çalışmalar yoğunlaşmıştır. Kinolin halkası taşıyan yapıların biyolojik aktiviteleri üzerine çalışmalar yayınlanmıştır. Neratinib **6** göğüs kanseri tedavisinde [13], topotakan **7**, over kanserinin tedavisinde [14], pitavastatin **8** glikoz direnci veya şeker hastalıklarının tedavisinde [15] ve hidroksiklorokin **9** sistemik lupus eritematozus(SLE) hastalığının tedavisinde [16], Dibucaine **10** ise lokal anestezik [17] olarak halen kullanımda olan kinolin türevlerinin önemli örneklerindendir.

Şekil 2.4. Kinolin halkası taşıyan bazı bileşikler

3. BENZOTRİAZOL BİLEŞİĞİ

Benzotriazol molekülü bir benzen ve bir triazol halkasının bir araya gelmesi ile oluşmuş heterosiklik bir maddedir (Şekil 3.1.). Benzotriazol molekülü kokusuz, zehirli olmayan, kristal yapıda, ucuz ve kolay elde edilebilir bir maddedir. Benzotriazol molekülünün benzen, etanol, kloroform ve toluen gibi birçok çözücüde çözünürlüğü yüksektir. Bunun yanı sıra pKa değerinin 8,2 olmasından dolayı bazik çözücülerdeki çözünürlüğü daha yüksektir. Benzotriazol molekülünün reaksiyon süresince kararlı halde kalması, ortamdaki karbonil karbonunu aktive edici özelliği ve reaksiyon sonunda ortamdan kolaylıkla uzaklaştırılabilmesi özelliklerinden dolayı organik sentezlerde çok fazla tercih edilmektedir [18].

Şekil 3.1. Benzotriazol molekülü

Benzotriazol türevi moleküller kristal yapıda ve kararlı olduğundan laboratuvar koşullarında uzun süre muhafaza edilebilir [19]. Benzotriazol molekülü kolaylıkla yer değiştirme reaksiyonu verir ve reaksiyon sonunda ortamdan kolaylıkla uzaklaştırılır.

Benzotriazol **11**, bağlı olduğu gruba göre kimyasal reaksiyonlarda iyi çıkıcı grup gibi davranma, proton kaybını aktive etme, katyonu kararlı kılma, anyon oluşumunu sağlama ya da radikal başlatıcı olarak davranma özelliklerine sahiptir [20]. Benzotriazol **11**, bu özellikleri sebebiyle son yıllarda organik kimyada sıklıkla kullanılan yararlı bir bileşiktir.

4. N-AÇİLBENZOTRİAZOL

N-açilbenzotriazol **12** bileşikleri benzotriazol kimyası kullanılarak elde edilen aktif karbonil bileşikleridir (Şekil 4.1.).

Şekil 4.1. N-Açilbenzotriazol bileşiklerinin genel yapısı

N-açilbenzotriazollerin **12** açilleme için kullanılan diğer aktif karbonil türevlerinin aksine pekçok avantajı vardır. Bu bileşikler; karboksilik asitlerden direkt olarak elde edilebilen kristal yapılı katı bileşiklerdir ve organik çözücülerde çözünürler. Ayrıca nem çekmezler, hava ile temas ettiğinde kararlıdırlar, tartılabilir ve bozunmadan saklanabilirler. Kiral kararlılığa sahiptirler, seçicidirler ve benzotriazol reaksiyon sonunda geri kazanılıp tekrar kullanılabilir [21].

N-açilbenzotriazol **12** sentezine ilişkin literatürde yer alan yöntemler Şekil 4.2.'de verilmiştir. Bu yöntemler sırası ile, a) açil klorürlerin benzotriazol ya da türevleri ile reaksiyonundan [22], [23], b) metilsülfonil benzotriazol ile karboksilik asitlerin Et₃N varlığındaki reaksiyonundan reaksiyonundan [24], c) fazla miktarda kullanılan benzotriazol ve karboksilik asitlerin tiyonil klorür varlığındaki reaksiyonundan [21], d) çeşitli aldehitler ile *N*-klorobenzotriazol reaksiyondan [25] ve e) disiklohekzilkarbodiimit varlığında karboksilik asitlerin benzotriazol ile reaksiyonundan *N*-açilbenzotriazoller **12** elde edilirler.

Şekil 4.2. N-Açilbenzotriazollerin literatürdeki sentez yöntemleri

N-Açilbenzotriazoller **12** pek çok bileşiğin sentezinde ılımlı reaksiyon şartları sunması ve doğada yaygın olarak bulunan antranilik asitin türevlerinin sentetik organik kimyada giderek artan bir öneme sahip olmasından dolayı daha önceki çalışmalarımızda benzotriazol metodolojisi kullanılarak çeşitli *N*-(2-aminobenzoil)benzotriazol **19** türevleri sentezlenmiştir [26] (Şekil 4.3.).

Şekil 4.3. N-(2-aminobenzoil)-benzotriazol türevlerinin sentez yöntemi

Grubumuzun yapmış olduğu bu çalışmalar kapsamında *N*-(2-aminobenzoil)benzotriazol bileşikleri bir substrat olarak kullanılarak (i) antranilik asit esterleri [27], (ii) antranilik asit tiyoesterleri [27], (iii) antranilamitler [26], (iv) 2-Sübstitüe-4-kinolon-3-karboksilatlar [28], (v) 4-Hidroksikinolin-2,3-dikarboksilatların [29], ve (vi) 2,3-Disübstitüekinazolin-4(3H)-on ve 2,3-Dihidrokinazolin-4(1H)-on bileşiklerinin [30] sentezi gerçekleştirilmiştir (Şekil 4.4.).

Şekil 4.4. N-(2-aminobenzoil)-benzotriazol türevleri kullanılarak yapılan sentezler

5. 2-SÜBSTİTÜE-3-SİYANO-4-HİDROKSİKİNOLİNLERİN SENTEZ YÖNTEMLERİ

Kinolin molekülü ve türevlerinin pek çok organik sentezlerde kullanımı mevcuttur. Ana yapısında kinolin halkası bulunduran 2-sübstitüe-3-siyano-4-hidroksikinolinler ise pek çok hastalığın tedavisinde kullanılacak olan ilaçların sentezinde önemli yeri vardır. Özellikle, C-3 pozisyonunda sübstitüe edilmiş siyano kinolin bileşikleri, büyüme faktörü reseptörü protein tirozin kinazlarının etkisini etkisiz hale getirebilir. Siyano gruplarına sahip ajanlar ayrıca biyolojik sistemlere bağlanan küçük molekül inhibitörleri olarak işlev görürler [5]. İlaç sektörünün yanı sıra zirai ilaç yapımında da kullanım alanı vardır. Gösterdikleri geniş yelpazedeki biyolojik ve farmakolojik etkilerinden dolayı literatürde 2-sübstitüe-3-siyano-4-hidroksikinolinlerin sentezine ilişkin birçok yöntem bulunmaktadır. Bu yöntemlerin bazıları Şekil 5.1.'de verilmiştir.

Şekil 5.1. 2-Sübstitüe-3-siyano-4-hidroksikinolinler için literatürdeki sentez yöntemleri

Literatürdeki sentez yöntemlerinde; a) Metil antranilatlar ve dietoksi propan nitrilin etanol içerisindeki reaksiyonundan [31], b) 4*H*-benzo[d][1,3]oksazin-4-on ile malononitrilin sodyum etoksit varlığındaki reaksiyonundan [32], c) anilin ile etil-2siyano-3-etoksiakrilat difenileter içerisindeki reaksiyonuyla [33], d) benzonitril türevi bileşikler ile siyanometilen(trifenil)fosforanın geri soğutucu altında gerçekleştirilen reaksiyonundan [34], e) 2-Bromobenzoilasetonitril, trietoksimetan ve asetik anhidritin reaksiyonundan [31], f) etil-2-aminobenzoat, asetonitril ve amin türevi maddelerin THF varlığında ve n-BuLi katalizörü kullanılarak [35] elde edildiği gözlenmiştir. 2-sübstitüe-3-siyano-4-hidroksikinolinlerin sentezi için kullanılan yöntemlerin zorlu şartlar altında yapılmasından dolayı ve de literatürde az sayıda yöntemin olması sebebiyle yeni yöntemlerin geliştirilmesine ihtiyaç duyulmaktadır. Bu sebeple literatüre yeni bir yöntem kazandırmak amacıyla ve literatür yöntemlerinden farklı olarak tek basamakta ürün sentezi gerçekleştirilmek üzere bu tez çalışması yapılmıştır.

Bu çalışmada *N*-(2-aminobenzoil)benzotriazol **19** bileşikleri ile 3-okso-3fenilpropannitrilin **GN2** potasyum tersiyer bütoksit (*t*-BuOK) varlığında dioksan içerisinde reaksiyonu ile 3-siyano-4-hidroksi-2-fenilkinolinler için yeni bir yöntem ile elde edilmesi amaçlanmıştır (Şekil 5.2.).

Şekil 5.2. 3-Siyano-4-hidroksi-2-fenilkinolinler için önerilen sentez yöntemi

6. KUANTUM KİMYASAL HESAPLAMALAR

Kuantum kimyası, kuantum mekaniğini kimyadaki problemlere uygular. Kuantum kimyasının etkisi, kimyanın bütün dallarında belirgindir. Kuantum kimyası, maddelerin termodinamik özelliklerini (örneğin, entropi, ısı kapasitesi) hesaplamak; moleküler spektrumları yorumlamak, böylece moleküler özelliklerin (örneğin moleküler geometriler, dipol momentleri, iç dönme engelleri, konformasyonel izomerler arasındaki enerji farkları) belirlenmesini sağlamak; geçiş durumlarının kimyasal reaksiyonlardaki özelliklerini hesaplayarak hız sabitlerinin tahmin edilmesini sağlamak; moleküller arası kuvvetleri anlamak gibi önemli konularda bilimsel çalışmalara katkı sağlar. Bilhassa organik kimyada; moleküllerin bağıl kararlılıklarını tahmin etmek, reaksiyon ara maddelerinin özelliklerini hesaplamak, kimyasal reaksiyonların mekanizmalarını araştırmak ve nükleer manyetik rezonans spektrumlarını, IR spektrumlarını ve UV-GB spektrumlarını analiz etmek ve tahmin etmek için kuantum mekaniği kullanılır [36].

1926'da Avusturyalı fizikçi Erwin Schrödinger (1887-1961) tarafından öne sürülen kuantum mekaniği eşitliği, dalga fonksiyonu kavramı ve zaman içindeki değişimini düzenleyen denklem aşağıda verilmiştir.

$\hat{H}\Psi = E\Psi$

Schrödinger dalga denklemi olarak bilinen bu denklem sadece hidrojen atomunun belirli durumlarının çözümü için mümkündür. Poliatomik moleküller için elektronik dalga fonksiyonu; bağ mesafeleri, bağ açıları ve tekil bağlar etrafında dönme dihedral açıları (bu açılar moleküler konformasyonu tanımlar) gibi birkaç parametreye bağlıdır. Bir poliatomik molekülün tam bir teorik işlemi, bu parametrelerin her biri için bir elektronik dalga fonksiyonunun hesaplanmasını içerir. Denge bağ mesafeleri, bağ açıları ve dihedral açıları daha sonra nükleer itme de dahil olmak üzere elektronik enerjiyi en aza indiren değerler olarak bulunur. Moleküler özelliklerin hesaplanmasında dört ana yaklaşım mevcuttur. Bu yaklaşımlar,

- Moleküler-mekanik yöntem,
- Ab-initio yöntemler,
- Yarı deneysel (semi-empirical) yöntemler,
- Yoğunluk fonksiyon teorisi (DFT) dir.

6.1. Moleküler Mekanik Yöntemi

Moleküler mekanik (MM), elektronik bir Hamiltonian veya dalga fonksiyonu veya elektron yoğunluğu ile ilgilenmez. Bunun yerine yöntem, bağlarla bir arada tutulan atomlardan oluşan bir molekül modelini kullanır. Bağ gerilme ve bağ bükme kuvveti sabitleri gibi parametreler kullanarak ve bağlanmamış atomlar arasındaki etkileşimlere izin veren yöntem, atomik pozisyonların bir fonksiyonu olan potansiyel enerji ifadesini oluşturur. Çeşitli moleküler konformerler için bu ifadeyi en aza indirerek, MM metodu denge geometrilerini ve göreceli enerjileri tahmin eder. Moleküler mekanik, moleküllerin elektronik enerjisindeki bağ gerilmesi (V_{stretching}), bağ açılı bükülme (V_{bend}), düzlem dışı bükülme (V_{oop}), bağlarda iç dönme burulması (V_{torsion}), bağ yapmamış atomlar arasındaki van der Waals çekme ve itmeleri (V_{vdW}) ve atomlar arasındaki elektrostatik etkileşim (V_{es}) katkıların toplamı, moleküldeki atomların hareketi için sterik enerji olarak adlandırılan moleküler-mekanik potansiyel enerjiyi V_{total} verir [36].

Toplam enerjinin bileşenlerini gösteren denklemin genel bir formu aşağıdaki şekilde gösterilebilir (6.1).

$$V_{\text{total}} = \sum V_{\text{stretching}} + \sum V_{\text{bend}} + \sum V_{\text{oop}} + \sum V_{\text{torsion}} + \sum V_{\text{vdW}} + \sum V_{\text{es}}$$
(6.1)

6.2. Ab-initio yöntemler

Ab Initio hesaplamaları Schrödinger denklemine dayanmaktadır. Bu, modern fiziğin temel denklemlerinden biridir ve diğerlerinin yanı sıra, bir moleküldeki elektronların nasıl davrandığını açıklar. Ab initio yöntemi, bir molekül için Schrödinger denklemini çözer ve bize bir enerji ve dalga fonksiyonu verir. Dalga fonksiyonu, elektron dağılımını hesaplamak için kullanılabilecek matematiksel bir fonksiyondur. Elektron dağılımından molekülün ne kadar polar olduğu ve hangi kısımlarının nükleofiller veya elektrofiller tarafından saldırıya uğraması muhtemel olduğunu söyleyebiliriz [37].

En basit yaklaşım olan Hartree-Fock yönteminde, toplam moleküler dalga fonksiyonuna (Ψ), işgal edilmiş spin orbitallerinden oluşan bir Slater determinantı olarak yaklaşılmaktadır. Bunları pratik hesaplamalarda kullanmak için, uzaysal orbitaller, temel fonksiyonların doğrusal bir kombinasyonu olarak yaklaştırılır. Ab initio yönteminin ana kullanımları moleküler geometrileri, enerjileri, titreşim frekanslarını, spektrumları, iyonlaşma potansiyellerini ve elektron ilgilerini ve elektron dağılımına bağlı dipol momentleri gibi özellikleri hesaplamaktır [37].

6.3. Yarı deneysel (semi-empirical) yöntemler

Yarı deneysel hesaplamalar, ab initio gibi Schrödinger denklemine dayanır, ancak deneysel değerlerle parametreleştirilir. Bu yöntemi "yarı deneysel" yapan teori ve deney karışımıdır.

Yarı-deneysel hesaplamalarda moleküler sistemdeki tüm orbitaller küresel simetrik kabul edilir ve sadece değerlik elektronları göz önüne alındığından, hesaplama süresi Abinitio yöntemlere göre daha kısadır. Yarı-deneysel yöntemlere, MNDO (Modified Neglect of Differential Overlap), AM1 (Austin Model 1), PM3-5-6 (Parametric Model 3-5-6), SAM1 (Semiempirical Ab-initio Model 1) vb. yöntemler örnek verilebilir [38].

6.4. Yoğunluk fonksiyon teorisi (DFT)

Yoğunluk fonksiyonu teorisinin temeli, 1927 yılında Thomas ve Fermi tarafından yapılan çalışmaları temel alan Hohenberg-Kohn (1964) teoremleri ve onun devamı olan Kohn-Sham (1965) teoremlerine dayanmaktadır. Yoğunluk fonksiyonel teorisi (DFT), Schrödinger denklemine dayanan ab initio ve semiempirik hesaplamalar gibidir. Ancak, diğer iki yöntemden farklı olarak, DFT'de elektron yoğunluğu temel değişken olarak kabul edilir. Yoğunluk fonksiyonel hesaplamaları genellikle ab initio'dan daha hızlıdır.

Moleküllerin hareketi, kuantum mekaniksel olarak incelendiğinde, çekirdeğin hareketi ve elektronların hareketi olmak üzere iki kısma ayrılır. Çekirdeğin kütlesinin elektronun kütlesinden çok büyük olması nedeniyle bu iki hareket ayrı ayrı düşünülerek bu ayrım yapılabilir. Bu yaklaşıma Born-Oppenheimer yaklaşımı (BOA) denir [38].

Kuantum mekaniksel olarak bir molekülün enerjisi,

$$E_e = E^T + E^V + E^J + E^{XC}$$

Burada, E^{T} elektronların hareketinden kaynaklanan kinetik enerjiyi, E^{V} çekirdekelektron çekimi ve çekirdek çiftleri arasındaki itme potansiyel enerjidir. E^{J} elektronelektron itme terimi, $E^{XC}=E^{X} + E^{C}$ ise E^{X} değiş tokuş ve E^{C} korelasyon terimi olup elektron-elektron etkileşmelerinin geri kalan kısmını içerir. Değiş tokuş enerjisi zıt spinli elektronlar arasındaki etkileşme enerjisidir. Korelasyon enerjisi ise aynı spinli elektronlar arasındaki etkileşme enerjisidir [38].

7. DENEYSEL-TEORİK ÇALIŞMALAR

7.1. Genel Deneysel Çalışmalar

Deneysel çalışmaların ölçümlerinde Anadolu Üniversitesi Fen Fakültesi Kimya Bölümü cihazlarından faydalanılmıştır. UV-GB analizleri SHIMADZU UV-3150 UV-GB-NIR spketrofotometre cihazı ile yapıldı. IR spektrumları Perkin Elmer Spectrum 100 FTIR spektrometresinde alındı. NMR spektrumları DMSO-*d6* içinde Agilent Premium Compact+AR spektrometresi ile ¹H için 400 MHz ve ¹³C için 100 MHz'de kaydedildi. Sentezlenen bileşiklerin erime noktaları Mettler Toledo MP90 cihazı ile tayin edildi.

7.2. Deneysel Çalışmalar

7.2.1. 3-Okso-3-fenilpropannitril (GN2) bileşiğinin sentezi

Şekil 7.1. 3-Okso-3-fenilpropannitril (GN2) bileşiği için önerilen sentez yöntemi

NaH (3,5 g, 95 mmol) üzerine 5,6 mL asetonitril **50** ve Dimetil sülfoksit (DMSO) eklendi. Karışım üzerine etil benzoat **49** (73 mmol, 10 mL) ilave edilerek 1 gün oda sıcaklığında karıştırıldı. İnce tabaka yardımı ile reaksiyon takibi yapıldı ve akabinde pH=2 olacak şekilde HCl ilavesi yapıldı. Katı oluşumu gözlendi, bu katılar dietil eter ile yıkandı, süzüldü ve sonrasında vakuma takılarak kurutulması sağlandı. Kiremit renkli katı %70 verimle elde edildi.

Kiremit rengi katı (%70); EN: 174 °C'de bozundu; ¹H NMR (400 MHz, DMSOd6): δ 7.91 (d, J = 7.6 Hz, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.54 (t, J = 7.2 Hz, 2H), 4.75 (s, 2H).

7.2.2. 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiğinin sentezi

Şekil 7.2. 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 a** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 6-7 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:1 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 3N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %83 verimle elde edildi.

Açık kahverengi katı (% 83); EN: >350 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.79 (s, 1H), 8.15 (d, *J* = 8 Hz, 1H), 7.81 (d, *J* = 8 Hz, 3H), 7.75 (t, *J* = 8.8 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 3H), 7.5 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 175.5, 157.6, 139.6, 133.9, 132.6, 131.9, 129.3, 126.1, 126.0, 125.3, 124.3, 119.9, 117.3, 93.9.

7.2.3. 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiğinin sentezi

Şekil 7.3. 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 b** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 7-8 saat geri soğutucu altında kaynatıldı. Reaksiyon

takibi 1:3 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %26 verimle elde edildi.

Açık kahve renkli katı (% 26); EN: 250 °C'de bozundu; ¹H NMR (400 MHz, DMSO- d_6): δ 12.66 (s, 1H), 7.94 (s, 1H), 7.78 (d, J = 6.4 Hz, 2H), 7.63 (m, 5H) , 2.44 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 175.4, 157.0, 137.6, 135.7, 135.2, 132.6, 131.8, 129.3, 129.2, 124.5, 124.2, 119.8, 117.4, 93.6, 21.2.

7.2.4. 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiğinin sentezi

Şekil 7.4. 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 c** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 4-5 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:1 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %87 verimle elde edildi.

Koyu krem renkli katı (% 87); EN: 325-327°C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.81 (s, 1H), 8.40 (s, 1H), 8.09 (d, J = 8 Hz, 1H), 7.79 (d, J = 6.8 Hz, 2H), 7.66 (t, J = 8.4 Hz, 3H), 7.54 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ 174.1, 157.9, 142.0, 138.9, 133.6, 132.5, 132.0, 129.3, 129.3, 125.9, 122.2, 117.0, 94.4, 91.0.

7.2.5. 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiğinin sentezi

Şekil 7.5. 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 d** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına t-BuOK (0,25 mmol) ilave edilerek 9-10 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:1 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %72 verimle elde edildi.

Koyu krem renkli katı (%72); EN: >350°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.86 (s, 1H), 8.04 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 6.4 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.64 (t, *J* = 8.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.4, 157.8, 129.3, 130.6, 132.0, 132.3, 134.0, 138.3, 129.3, 125.4, 124., 122.3, 116.9, 94.2.

7.2.6. 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7) bileşiğinin sentezi

Şekil 7.6. 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 e** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 9-10 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:4 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda

uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %66 verimle elde edildi.

Krem renkli katı (% 66); EN: 290°C'de bozundu; ¹H NMR (400 MHz, DMSO- d_6): δ 12.84 (s, 1H), 8.19 (d, J = 2 Hz, 1H), 7.95 (dd, J = 8.6, 2 Hz, 1H), 7.78 (d, J = 7.2, 2H), 7.69 – 7.64 (m, 4H); ¹³C NMR (100 MHz, DMSO- d_6): δ 174.3, 157.9, 138.6, 136.6, 132.4, 132.0, 129.3, 129.3, 127.4, 125.8, 122.4, 118.6, 116.9, 94.4.

7.2.7. 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8) bileşiğinin sentezi

Şekil 7.7. 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 f** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 5-6 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:4 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %48 verimle elde edildi.

Açık kahverenkli katı (% 48); EN: 218-220°C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.08 (s, 1H), 8.14 (s, 1H), 8.05 (s, 1H), 7.72 (d, *J*=7.6 Hz, 2H), 7.66-7.57 (m,3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 173.8, 159.4, 135.8, 133.8, 132.6, 131.8, 130.3, 129.7, 128.9, 126.8, 125.2, 123.8, 116.4, 95.9.
7.2.8. 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiğinin sentezi

Şekil 7.8. 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 h** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına t-BuOK (0,25 mmol) ilave edilerek 7-8 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:3 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %71 verimle elde edildi.

Krem renkli katı (% 71); EN: 306-308°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.92 (s, 1H), 8.57 (s, 1H), 8.37 (s, 1H), 7.77 (d, *J* = 7.2 Hz, 2H), 7.62 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 173.5, 159.0, 154.1, 150.7, 134.3, 133.6, 131.9, 129.3, 129.2, 126.3, 116.5, 91.3, 91.6, 94.9.

7.2.9. 4- Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10) bileşiğinin sentezi

Şekil 7.9. 4- Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 i** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 5-6 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:3 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar

süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Daha sonra saflaştırma basamağı olarak maddeye etil asetat-hegzan karışımı içinde kolon kromatografisi uygulandı. Ürün %54 verimle elde edildi.

Açık sarı renkli katı (% 54); EN: 218-220°C; ¹H NMR (400 MHz, DMSO- d_6): δ 11.44 (s, 1H), 7.82 (s, 1H), 7.77 (d, J = 6.4 Hz, 2H), 7.67-7.59 (m, 3H), 7.48 (s, 1H), 2.55 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 175.5, 157.6, 136.5, 136.3, 135.4, 132.9, 131.6, 129.7, 129.0, 128.6, 124.8, 122.6, 122.5, 117.3, 21.0, 18.1.

7.2.10. 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11) bileşiğinin sentezi

Şekil 7.10. 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11)bileşiği

N-(2-Aminobenzoil)benzotriazol **19 j** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 5-6 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:1 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %83 verimle elde edildi.

Krem renkli katı (% 83); EN: 256-258°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.65 (s, 1H), 8.35 (s, 1H), 8.22 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.58 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C): δ 173.7, 159.5 , 139.5, 137.3, 133.0, 131.8, 129.6, 129.0, 127.4, 127.0, 118.5, 116.6, 115.0, 95.6.

7.2.11. 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12) bileşiğinin sentezi

Şekil 7.11. 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12) bileşiği

N-(2-Aminobenzoil)benzotriazol **19 k** (0,25 mmol) ve 3-okso-3-fenilpropannitril **GN2** (0,25 mmol) maddeleri dioksan içerisinde karıştırılıp akabinde reaksiyon karışımına *t*-BuOK (0,25 mmol) ilave edilerek 7-8 saat geri soğutucu altında kaynatıldı. Reaksiyon takibi 1:1 etilasetat-hekzanda ince tabaka ile yapıldı. Çözücü döner buharlaştırıcıda uçurulduktan sonra pH=2 olacak şekilde 4N HCl ilavesi yapıldı ve ardından katılar süzüldü. Ardından etanol ile kristallendirilmesi sağlandı. Ürün %22 verimle elde edildi.

Yavru ağzı renkli katı (% 22); EN: 190°C'de bozundu; ¹H NMR (400 MHz, DMSO*d*₆): δ 12.70 (s, 1H), 7.79 (s, 2H), 7.72 – 7.66 (m, 4H), 7.53 (s, 1H), 7.44 (d, *J* = 6.4 Hz, 1H), 3.32 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C): δ 175.0, 157.5, 156.1, 129.2, 129.3, 131.8, 132.7, 134.0, 125.6, 123.9, 121.8, 117.5, 104.9, 92.9, 56.1.

8. DENEYSEL - HESAPLANAN SONUÇLAR VE TARTIŞMA

8.1. Deneysel Sonuçlar

8.1.1. GN2 bileşiğinin sentezi ve NMR sonuçlarının tartışılması

Reaktif sentezi için, NaH üzerine asetonitril ve dimetil sülfoksit (DMSO) eklendi. Karışıma etil benzoat ilave edilerek 1 gün oda sıcaklığında karıştırıldı. İnce tabaka yardımı ile reaksiyon takibi yapıldı ve akabinde pH=2 olacak şekilde HCl ilavesi yapıldı. Kiremit renkli katı %70 verimle elde edildi.

Şekil 8.1. GN2 bileşiğinin olası sentez mekanizması

Şekil 8.2. GN2 bileşiğinin molekül yapısı

8.1.2. GN3-GN12 bileşiklerinin sentezi ve NMR sonuçlarının tartışılması

Başlangıç maddesinin sentezinden sonra 3-siyano-4-hidroksi-2-fenilkinolin (GN3) bileşiği ve sübstitüe türevlerinin (GN4-GN12) sentezine başlandı. Reaksiyon ortamında dioksan çözücü olarak kullanıldı. Bileşikler, *N*-(2-Aminobenzoil)benzotriazol türevleri ve başlangıç maddesinin *t*-BuOK varlığındaki reaksiyonu ile gerçekleştirildi. Reaksiyonlar 4-10 saat arasında değişen sürelerle geri soğutucu altında kaynatıldı. Reaksiyon takibi ince tabaka kromatografisi yardımıyla yapıldı. Başlangıç maddesi tükendiği gözlemlendikten sonra çözücü uçurularak HCl ile asitlendirme işlemi yapıldı. Gerekli saflaştırma işlemleri sonucunda maddeler % 22-87 arasında verimlerle elde edilmiştir.

3-Siyano-4-hidroksi-2-fenilkinolin (GN3) bileşiği ve sübstitüe türevleri (GN4-GN12) için önerilen reaksiyon mekanizması Şekil 8.3.'te verilmiştir. Mekanizma incelendiğinde, potasyum tersiyer bütoksit, β -ketonitrildeki asidik protonlardan birini kopartarak anyon oluşumunu sağlar. Oluşan anyon nükleofil gibi davranarak *N*-(2aminobenzoil)benzotriazol bileşiğindeki karbonil karbonuna saldırır ve yapıdan benzotriazol ayrılır ve 2-(2-aminobenzoil)- β -ketonitril bileşiği oluşur. Daha sonra 2 konumundaki amino grubu karbonil karbonuna saldırır. Yapıdan su molekülü uzaklaşarak ana ürün oluşumu gerçekleşir. Oluşan ürünün keto ve enol form olmak üzere iki tautomer formu bulunmaktadır. Enol formun sahip olduğu aromatik kararlılığın daha fazla olmasından dolayı enol formun daha baskın olduğu literatürde belirtilmektedir [39], [40].

R = -H, -Me, -I, -CI, -Br, -OMe

Şekil 8.3. GN3-GN12 bileşikleri için önerilen olası reaksiyon mekanizması

Şekil 8.4. GN3 bileşiğinin molekül yapısı

GN3 bileşiğinin ¹H-NMR spektrumuna (EK-2) bakıldığında spektrumdaki pikler ile proton sayıları uyuşmaktadır. 12.79 ppm'de gelen singlet pik GN3 bileşiğinin yapısında bulunan OH grubundaki protona ait (H24) piktir. 8.15 ppm'de gözlenen dublet piki H23 protonuna aittir. 7.81 ppm'de gözlenen dublet piki H25, H29 ve H22 protonuna, 7.75 ppm deki triplet pik ise H21 protonuna, 7.66 ppm'de gözlenen triplet pik H26, H28, H27 protonlarına ait olup 7.5 ppm'deki triplet piki ise H20 protonuna aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN3 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.5. GN4 bileşiğinin molekül yapısı

GN4 bileşiğine ait ¹H-NMR spektrumdaki (EK-3) pikler ile proton sayıları uyuşmaktadır. –OH grubuna ait H24 beklendiği gibi 12.66 ppm'de gözlenmiştir. 7.94 ppm'de singlet pik H23 protonuna aittir. 7.78 ppm'de dublet piki H25 ve H29 protonlarına ait ve 7.63 ppm'de bulunan 5H'lık multiplet piki H21, H22, H26, H28 ve H27 protonlarına aittir. GN4 bileşiğindeki C1 karbonuna bağlı metil grubuna ait protonlar (H30, H31 ve H32) yine alifatik bileşiklerde olduğu gibi yukarı alanda 2.44 ppm'de singlet pik olarak gözlenmiştir. Bu bileşiğin ¹³C-NMR'ında 15 adet pik beklenmekte olup GN4 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.6. GN5 bileşiğinin molekül yapısı

GN5 bileşiğine ait ¹H-NMR spektrumdaki (EK-4) pikler ile proton sayıları uyuşmaktadır. 12.81 ppm'de gelen singlet pik GN5 bileşiğinin yapısında bulunan OH grubundaki protona ait (H24) piktir. 8.40 ppm'de gelen singlet piki H23 protonuna, 8.09 ppm'de dublet pik ise H22 protonuna aittir. 7.79 ppm'de gelen dublet pik H25 ve H29 numaralı protonlara ait olup 7.66 ppm'de gelen triplet piki H26, H27, H28 protonlarına, 7.54 ppm'de gelen dublet pik ise H21 protonuna aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN5 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.7. GN6 bileşiğinin molekül yapısı

GN6 bileşiğinin ¹H-NMR spektrumuna (EK-5) bakıldığında 12.86 ppm'de gelen singlet pik hidroksil grubundaki H24 protonuna aittir. 8.04 ppm'de gelen singlet pik H23 protonuna aittir. 7.83 ppm'de gözlenen dublet pik H22 ve H21 protonlarına ait olup, 7.78 ppm ve 7.75 ppm'de gözlenen dublet pikler ise H25 ve H29 protonlarına aittir. 7.64 ppm'de gelen triplet pik ise H26, H27 ve H28 protonlarına ait piktir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN6 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.8. GN7 bileşiğinin molekül yapısı

GN7 bileşiğinin ¹H-NMR spektrumuna (EK-6) bakıldığında 12.84 ppm'de gelen singlet pik OH grubundaki H24 protonuna aittir. 8.19 ppm'de gözlenen dublet pik H23 protonuna, 7.95 ppm'de gelen dubletin dubleti piki H22 ye aittir. 7.78 ppm'deki dublet pik H25 ve H29 protonlarına, 7.69 – 7.64 ppm'deki multiplet pik ise H21, H26, H27 ve H28 protonlarına aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN7 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.9. GN8 bileşiğinin molekül yapısı

GN8 bileşiğinin ¹H-NMR spektrumuna (EK-7) bakıldığında 12.08 ppm'de gelen singlet pik OH grubundaki H24 protonuna aittir. 8.14 ppm'de gözlenen singlet pik H23 protonuna, 8.05 ppm'de gelen singlet piki H22 protonuna aittir. 7.72 ppm'deki dublet pik H25 ve H29 protonlarına, 7.66 – 7.57 ppm'deki multiplet pik ise H26, H27 ve H28 protonlarına aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN8 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.10. GN9 bileşiğinin molekül yapısı

GN9 bileşiğinin ¹H-NMR spektrumuna (EK-8) bakıldığında 10.92 ppm'de gelen singlet pik OH grubundaki H24 protonuna aittir. 8.57 ppm'de gözlenen singlet pik H23 protonuna, 8.37 ppm'de gelen singlet piki H22 ye aittir. 7.77 ppm'deki dublet pik H25 ve H29 protonlarına, 7.62 ppm'deki dublet pik ise H26, H27 ve H28 protonlarına aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN9 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.11. GN10 bileşiğinin molekül yapısı

GN10 bileşiğinin ¹H-NMR spektrumuna (EK-9) bakıldığında 11.44 ppm'de gelen singlet pik OH grubundaki H24 protonuna aittir. 7.82 ppm'de gözlenen singlet pik H23 protonuna, 7.77 ppm'deki dublet pik H25 ve H29 protonlarına, 7.67-7.59 ppm'deki multiplet pik ise H26, H27 ve H28 protonlarına aittir. 7.48 ppm'de gözlenen singlet piki H22 ye aittir. GN10 bileşiğindeki C1 ve C3 karbonlarına bağlı metil gruplarına ait protonlar yine alifatik bileşiklerde olduğu gibi yukarı alanda singlet pik olarak gözlenmiştir. Bunlar 2.55 ppm'de H30, H31, H32 ve 2.4 ppm'de H33, H34 ve H35 protonlarına ait piklerdir. Bu bileşiğin ¹³C-NMR'ında 16 adet pik beklenmekte olup GN10 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.12. GN11 bileşiğinin molekül yapısı

GN11 bileşiğinin ¹H-NMR spektrumuna (EK-10) bakıldığında 11.65 ppm'de gelen singlet pik OH grubundaki H24 protonuna aittir. 8.35 ppm'de gözlenen singlet pik H23 protonuna, 8.22 ppm'de gelen singlet piki H22 ye aittir. 7.73 ppm'deki dublet pik H25 ve H29 protonlarına, 7.66 – 7.58 ppm'de gelen multiplet pik ise H26, H27 ve H28 protonlarına aittir. Bu bileşiğin ¹³C-NMR'ında 14 adet pik beklenmekte olup GN11 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

Şekil 8.13. GN12 bileşiğinin molekül yapısı

GN12 bileşiğinin ¹H-NMR spektrumuna bakıldığında (EK-11) 12.70 ppm'de gelen singlet pik OH grubundaki H28 protonuna aittir. 7.79 ppm'de gözlenen iki protonluk singlet pik H29 ve H33 protonlarına, 7.72 – 7.66 ppm'deki multiplet pik H23, H30, H31 ve H32 protonlarına, 7.53 ppm'de gözlenen singlet piki H24 protonuna aittir. 7.44 ppm'de gözlenen dublet pik ise H22 protonuna aittir. GN12 bileşiğindeki C12 karbonuna ait protonlar (H25, H26 ve H27) alifatik bileşiklerde olduğu gibi yukarı alanda 3.32 ppm'de singlet pik olarak gözlenmiştir. Bu bileşiğin ¹³C-NMR'ında 15 adet pik beklenmekte olup GN12 bileşiğinin karbon sayısı ile spektrumdaki pikler uyuşmaktadır.

8.1.3. Bileşiklerin FTIR spektrum sonuçlarının incelenmesi

Sentezlenen kinolin türevi bileşiklerinin FTIR spektrum verileri 400-4000 cm⁻¹ bölgesinde, KBr disk ile alınmış ve spektrumlar EK 12-21'de verilmiştir

IR spektrumları incelendiğinde hidrojen bağı olmayan serbest hidroksil gruplarının 3700-3584 cm⁻¹ frekans aralığında absorblandığı, moleküller arası hidrojen bağı bulunan yapılarda ise daha düşük frekanslarda 3550-3200 cm⁻¹'de absorblandığı gözlenir [41]. Sentezlenen bileşiklerde ise kinolin halkası üzerinde bulunan –OH gerilme titreşim bandları 3435-3463 cm⁻¹ aralığında yayvan geldiği gözlenmiştir.

Aromatik C-H gerilme titreşim bandları 3040-3030 cm⁻¹ spektrum aralığında görülür [42]. Deneysel alınan IR spektrumlarında ise sentezlenen bileşikler için aromatik C-H gerilimleri 3055-3246 cm⁻¹'de düşük şiddette absorblandığı görülmektedir.

-C≡N gerilme titreşim bandları genellikle 2270-2210 cm⁻¹ civarında orta yoğunlukta, keskin absorbsiyon olarak ortaya çıkar. Çift bağ veya aromatik halkalarla birleşmesi, absorbsiyonu daha düşük bir frekansa kaydırır [43]. Sentezlenen bileşiklerde ise -C≡N gerilme titreşim bandları 2227-2217 cm⁻¹ aralığında orta şiddette keskin olarak absorblandığı gözlenmiştir.

1650 cm⁻¹ de zayıf bir pik C=C bağını, 1650-1450 cm⁻¹ de orta şiddette veya şiddetli pikler aromatik halkanın varlığını gösterir. Aynı zamanda 3000 cm⁻¹ den daha yüksek frekansta aromatik C-H pikleri gözlenmelidir [42]. Bileşiklerde bulunan aromatik -C=Cgerilme titreşim bandları konjuge sisteme bağlı olmasından dolayı 1655-1470 cm⁻¹ bölgesinde şiddetli pik olarak, C-H gerilmesi ise 3276-3055 cm⁻¹ de düşük siddette pikler gözlenmiştir.

Halojen bağlı olan bileşiklere ait gerilmeler şiddetli pikler halinde gözlenmektedir. C-Cl gerilmeleri 800-600 cm⁻¹'de, C-Br gerilmeleri 750-500 cm⁻¹'de, C-I gerilmeleri 500 cm⁻¹ civarında gözlenir [42]. Sentezlenen halojenli maddelerde ise C-Cl gerilmeleri 701-694 cm⁻¹'de, C-Br gerilmelerine ait pikler 694-610 cm⁻¹'de, C-I gerilmelerine ait pikler 613-558 cm⁻¹'de gözlenmiştir.

8.1.4. Bileşiklerin UV-GB spektrum sonuçlarının incelenmesi ve HOMO-LUMO optik bant enerji aralıklarının belirlenmesi

Moleküller arasındaki kimyasal reaksiyonların açıklanmasında daha çok molekülün sınır orbitalleri kullanılmaktadır. Burada sınır orbitalleri ile anlatılmak istenen en yüksek enerjili dolu orbitale HOMO (Highest Occupied Molecular Orbital) ve en düşük enerjili boş moleküler orbitaler, LUMO (Lowest Unoccupied Molecular Orbital) adını almaktadır. Kimyasal reaksiyonların birçoğu elektron alınarak ya da verilerek gerçekleşir ve bu davranışların açıklanmasında HOMO-LUMO sınır orbitalleri önemli rol oynar. Bir molekül elektron alıyorsa ilk olarak bu elektron LUMO'yu doldurur. En düşük enerjili boş molekül orbitali (LUMO)'nin enerjisi ne kadar düşükse elektronu alması o kadar kolaydır. Aynı şekilde elektron verilirken en yüksek enerjili dolu molekül orbitali (HOMO)'nden verileceğine göre, bu orbitalin enerjisi ne kadar yüksekse elektron verme yatkınlığı da o kadar fazladır [38], [44] .

Ayrıca biyolojik olarak aktif moleküllerin antimikrobiyal özelliklerinin incelendiği çalışmalarda da HOMO-LUMO sınır orbitalleri önemi yer tutar. Bileşiklerin antimikrobiyal özelliğinin, LUMO enerjisinin bir fonksiyonu olduğuna inanılmaktadır. LUMO, moleküllerin elektrofilikliğini ölçen elektronik bir parametredir. Bir molekül Lewis asidi gibi davrandığında, gelen elektronlar LUMO'suna alınır. Düşük enerjili LUMO'lu moleküller, elektronları yüksek enerjili LUMO'lu olanlardan daha fazla elektron kabul edebilir ve bu nedenle daha yüksek aktivite gösterir [45].

Literatürde bu konuda yapılan çalışmalar göz önünde bulundurularak, sentezlenen bileşiklerin hem deneysel hem de teorik olarak HOMO-LUMO değerleri ve optik bant enerji aralıkları hesaplanmıştır.

Sentezlenen her bir bileşik için DMSO çözücü içerisinde 10⁻³ M'lık çözeltiler hazırlanmış ve UV-GB spektrumları 190-800 nm aralığında kaydedilmiştir. Kaydedilen UV-GB spektrumlarından yararlanılarak bileşiklerin HOMO-LUMO optik bant enerji aralıkları deneysel olarak tespit edilmiştir.

Bileşiklerin optik bant aralığının tespit edilmesi için bu bileşiklere ait UV-GB spektrumlarından yararlanılmıştır. Buna göre; bileşiğin maksimum absorbans eğrisinde absorbansın artmaya başladığı kısmına teğet olacak şekilde bir çizgi çizilir. Ardından x-eksenindeki sıfır noktası boyunca bir çizgi çizilir ve bu iki çizgi kesiştirilir (Şekil 8.14.).

Kesişen noktanın nm değeri Eg (eV) = $1243,6/\lambda$ (nm) formülünde yerine konularak eV cinsinden optik bant aralığı bulunur [38], [46], [47], [48].

Şekil 8.14. UV-GB spektrumundan yararlanarak HOMO-LUMO optik bant enerji aralığının bulunması

Tablo 8.1. GN3-GN12 bileşiklerinin deneysel olarak bulunan dalgo buyu λ (nm) ve optik bant aralığı Eg (eV)

BİLEŞİK	λ (nm)	Eg (eV)
GN3	359	3.45
GN4	366	3.38
GN5	374	3.31
GN6	366	3.38
GN7	369	3.36
GN8	385	3.22
GN9	401	3.09
GN10	365	3.39
GN11	388	3.19
GN12	379	3.27

8.2. Teorik Sonuçlar

8.2.1. Bileşiklerin molekül optimizasyonu

Kinolon molekülünün keto ve enol olmak üzere iki tautomer formu bulunmaktadır. Bileşiklerin teorik hesaplamalarına başlamadan önce yapının keto formu(a) ve enol formunun (b) kararlılıklarını kıyaslamak üzere moleküller Chemoffice Professional 15.0 yazılım paketleri (ChemDraw) kullanılarak çizildi. MarvinSketch 19.1 (ChemAxon) MMFF94 kuvvet alanı ile en küçük enerjili geometrileri seçilerek Chem3D programı MM2 kuvvet alanı ile bileşikler minimize edildi. Minimizasyon sonucu elde edilen değerler Tablo 8.2.'de verilmiştir. Bu sonuçlara göre enol formlarınun daha az enerjili olduğu görüldü ve hesaplamalara enol formları üzerinden devam edilmesine karar verildi. Sonrasında takip eden hesaplamalar bu yapı üzerinden Gaussian09 (Gaussian, Inc.) paket programı kullanılarak gerçekleştirilmiştir.

a) Keto formu

b) Enol formu

Şekil 8.15. GN3 molekülüne ilişkin keto ve enol formları

BİLEŞİK	KETO FORM (kcal/mol)	ENOL FORM (kcal/mol)
GN3	24.2686	18.7893
GN4	24.0368	18.6382
GN5	25.1222	19.1810
GN6	25.7173	19.6456
GN7	25.8206	19.7791
GN8	29.3220	22.9256
GN9	27.3553	21.1064
GN10	25.1912	18.4837
GN11	29.4152	23.0604
GN12	31.8456	26.1870

Tablo 8.2. GN3- GN12 bileşiklerine ait keto ve enol formlarının enerjileri

Her bir molekül için enol formunun en düşük enerjili konformasyonu belirlendikten sonra gaz fazında optimizasyonu sırasıyla AM1, PM3, PM6 yarı deneysel method ve son olarak B3LYP/6-31G(d,p) DFT methodu uygulanmıştır. Optimizasyon hesaplamaları için B3LYP/6-31G(d,p) yöntemi kullanılarak oluşturulan giriş (input) komutu aşağıda verilmiştir.

opt rb3lyp/6-31g(d,p) guess=save geom=connectivity

Yapısında iyot içeren GN5 ve GN9 kodlu bileşik için diğerlerinden farklı olarak B3LYP/LanL2DZ DFT methodu izlendi. Bu iki bileşik için oluşturulan giriş (input) komutu ise aşağıda verilmiştir.

opt rb3lyp/lanl2dz guess=save geom=connectivity

Enol formuna ait farklı konformasyonlarının optimizasyon hesabı yapıldı. Enol a ve enol b olarak Şekil 8.16'de gösterilen konformasyonların optimizasyon sonucunda kcal/mol cinsinden enerji değerieri Tablo 8.3.'de görülmektedir. Bu sonuçlara göre enol a formu daha az enerjiye sahip olduğu görülmektedir.

Enol a

Enol b

Şekil 8.16. GN3 molekülüne ait enol a ve enol b formları

Tablo 8.3. GN3 molekülüne ilişkin B3LYP 6-31g(d,p) optimizasyon hesaplamaları sonucunda enol a ve enol b formlarının enerji değerleri

	Hartree	Kcal/mol
Enol a	-800.48343961	-502311.36
Enol b	-800.46561847	-502300.18

8.2.2. Bileşiklerin frekans hesaplamaları

Moleküllerin optimizasyon hesaplamaları tamamlandıktan sonra gaz fazında frekans hesaplamaları için B3LYP/6-31G(d,p) ve iyot içeren moleküller için B3LYP/LanL2DZ yöntemi kullanılarak oluşturulan giriş (input) komutu aşağıda verilmiştir.

freq rb3lyp/6-31g(d,p) guess=save pop=full geom=connectivity

freq rb3lyp/lanl2dz guess=save pop=full geom=connectivity

Tablo 8.4. *GN3 bileşiğine ait deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm⁻¹)*

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3436	3562
v _{sim} C-H (aromatik)	3217	3089
v _{asim} C-H (aromatik)	2922	3049
vC≡N	2223	2226
vC=N	1547	1579
vC=C (aromatik)	1474	1478
vC-O	1346	1376
vC-N	1189	1173
δС-Н	766	758

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3436	3563
v _{sim} C-H (aromatik)	3091	3088
v _{asim} C-H (aromatik)	2965	3048
vC-H (alifatik)	2925	2912
vC≡N	2217	2215
vC=C (aromatik)	1497	1481
vC=N	1575	1579
vC-0	1377	1391
vC-N	1218	1274
δС-Н	833	819

Tablo 8.5. *GN4 bileşiğine ait deneysel frekans* (cm^{-1} , *KBr*) ve *B3LYP/6-31g(d,p)* hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm^{-1})

Tablo 8.6. GN5 bileşiğine ait deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucuelde edilen karakteristik IR frekansları (cm⁻¹)

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3456	3491
v _{sim} C-H (aromatik)	3150	3107
v _{asim} C-H (aromatik)	2980	3087
vC≡N	2223	2142
vC=C (aromatik)	1617	1594
vC=N	1576	1540
vC-O	1372	1361
vC-N	1174	1152
vC-I	558	594
δС-Н	830	844

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3456	3562
v _{sim} C-H (aromatik)	3276	3103
v _{asim} C-H (aromatik)	3092	3079
vC≡N	2223	2218
vC=C (aromatik)	1607	1602
vC=N	1580	1578
vC-0	1345	1377
vC-N	1174	1150
vC-Cl	694	692
δС-Н	834	828

Tablo 8.7. *GN6 bileşiğine ait deneysel frekans* (cm^{-1} , *KBr*) ve *B3LYP/6-31g(d,p)* hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm^{-1})

Tablo 8.8. GN7 bileşiğine ait deneysel frekans (cm^{-1} , KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu
elde edilen karakteristik IR frekansları (cm^{-1})

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3463	3560
v _{sim} C-H (aromatik)	3092	3092
v _{asim} C-H (aromatik)	2983	3079
vC≡N	2227	2218
vC=C (aromatik)	1610	1600
vC=N	1583	1578
vC-0	1348	1382
vC-N	1171	1149
vC-Br	694	664
δС-Н	834	826

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3460	3562
v _{sim} C-H (aromatik)	3259	3110
v _{asim} C-H (aromatik)	3072	3051
vC≡N	2227	2219
vC=C (aromatik)	1607	1597
vC=N	1559	1558
vC-O	1396	1366
vC-N	1181	1262
vC-Cl	701	764
δС-Н	861	857

Tablo 8.9. GN8 bileşiğine ait deneysel frekans (cm^{-1} , KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu
elde edilen karakteristik IR frekansları (cm^{-1})

Tablo 8.10. GN9 bileşiğine ait deneysel frekans (cm^{-1} , KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucuelde edilen karakteristik IR frekansları (cm^{-1})

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3464	3490
v _{sim} C-H (aromatik)	3340	3108
v _{asim} C-H (aromatik)	3062	3074
vC≡N	2225	2143
vC=C (aromatik)	1629	1591
vC=N	1502	1535
νC-0	1385	1432
vC-N	1143	1140
vC-I	613	612
δС-Н	884	899

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3435	3564
v _{sim} C-H (aromatik)	3245	3088
v _{asim} C-H (aromatik)	3056	3048
v_{asim} C-H (alifatik)	2924	3002
vC≡N	2218	2215
vC=C (aromatik)	1614	1612
vC=N	1577	1579
vC-0	1358	1369
vC-N	1188	1210
δС-Н	872	887

Tablo 8.11. *GN10 bileşiğine ait deneysel frekans* (cm^{-1} , *KBr*) ve *B3LYP/6-31g(d,p)* hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm^{-1})

Tablo 8.12. *GN11 bileşiğine ait deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm⁻¹)*

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νΟ-Η	3453	3561
v _{sim} C-H (aromatik)	3362	3091
v _{asim} C-H (aromatik)	3073	3051
vC≡N	2225	2219
vC=C (aromatik)	1644	1597
vC=N	1600	1583
vC-0	1388	1363
vC-N	1158	1262
vC-Br	610	625
δС-Н	880	891

	Deneysel titreşim frekansları (cm ⁻¹)	Hesaplanan titreşim frekansları (cm ⁻¹)
νО-Н	3435	3564
v _{sim} C-H (aromatik)	3055	3088
v _{asim} C-H (aromatik)	2970	3048
v _{sim} Ar-OCH ₃ (alifatik)	2917	2895
vC≡N	2218	2215
vC=C (aromatik)	1585	1613
vC=N	1574	1579
νC-O	1259	1251
vC-N	1237	1143
δС-Н	830	835

Tablo 8.13. *GN12 bileşiğine ait deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekansları (cm⁻¹)*

Deneysel bulunan ve B3LYP/6-31G(d,p) yöntemi ile hesaplanan titreşim frekansları (cm⁻¹) Tablo 8.4-8.13'de verilmiştir. Bu çalışmadaki teorik değerlerin deneysel değerlere uyumunun sağlanabilmesi için, literatürde yer alan ölçeklendirme faktörleri kullanılmıştır. Teorik harmonik frekansları 1700 cm⁻¹'in üzerindeki frekanslar 0.958'lik bir ölçeklendirme faktörü kullanılarak, 1700 cm⁻¹'in altındaki frekanslar ise 0.9627'lik ölçeklendirme faktörü ile ölçeklendi [49].

8.2.3. Bileşiklerin UV-GB absorbansları ve HOMO-LUMO bant enerji aralıklarının deneysel ve teorik olarak karşılaştırılması

UV–GB absorpsiyon spektrumu TDDFT/B3LYP/6-31G(d, p) seviyesinde simüle edilmiştir. Bileşiklerin UV absorbanslarından yararlanarak bulunan ve teorik olarak hesaplanan optik bant enerji aralıkları Tablo 8.14.'te verilmiştir.

	B3LYP/6-31G(d,p)			
Bileşik	$\lambda_{hsp}(nm)$	Uyarılma enerjileri (eV)	Osilatör kuvvetleri (<i>f</i>)	
GN3	214.45	5.78	0.0231	
GN4	250.99	4.94	0.0338	
GN5	290.82	4.28	0.0208	
GN6	258.01	4.81	0.0204	
GN7	263.65	4.71	0.0196	
GN8	269.13	4.61	0.0681	
GN9	310.96	3.99	0.0642	
GN10	251.54	4.94	0.0492	
GN11	279.91	4.44	0.0328	
GN12	314.27	3.95	0.0429	

Tablo 8.14. *GN3-GN12 bileşiklerinin B3LYP/6-31g(d,p) yöntemi ile hesaplanan dalga boyu (* λ_{hsp} *), uyarılma enerjileri (eV) ve osilatör kuvvetleri(f)*

BİLEŞİK	Deneysel Eg (eV)	Hesaplanan Eg (eV)	Hesaplanan HOMO-LUMO (eV)
GN3	3.45	5.78	4.52
GN4	3.38	4.94	4.4
GN5	3.31	4.28	4.21
GN6	3.38	4.81	4.39
GN7	3.36	4.71	4.36
GN8	3.22	4.61	4.42
GN9	3.09	3.99	4.16
GN10	3.39	4.94	4.4
GN11	3.19	4.44	4.21
GN12	3.27	3.95	4.17

Tablo 8.15. GN3-GN12 bileşiklerinin deneysel ve B3LYP/6-31g(d,p) hesaplamaları sonucu bulunan optik bant aralığı

Tablo 8.15. incelendiğinde, hem deneysel hem de hesaplanan optik bant aralığı değerleri için en yüksek değer GN3 molekülüne ait olduğu görülmektedir. Moleküle bağlanan metil süstitüentleri optik bant aralığı değerini biraz azalttığı görülmektedir. Fakat halojen bağlı olan yapılarda ise ; disübstitüe halojenli yapıların optik bant aralığı değeri, monosübstitüe halojenli moleküllere göre çok daha düşük optik bant aralığı değerlerine sahip olduğu görülmektedir.

Hesaplamalar sonucu elde edilen verilerden yararlanarak molekülün çözücü içerisindeki uyarılma enerjileri hesaplanmıştır. Aşağıda çözücü fazında uyarılma enerji hesabı için verilen giriş komutu yer almaktadır.

#p td rb3lyp/6-31g(d,p) scrf=(cpcm,solvent=dmso) guess=save geom=connectivity
#p td rb3lyp/lanl2dz scrf=(cpcm,solvent=dmso) guess=save geom=connectivity

Uyarılma enerjisi hesaplamaları çıkış (out) dosyasından UV-GB spektrumları ve bant enerji aralıkları elde edilmiştir. Şekil 8.17.'de GN3 molekülüne ait elektronik absorbsiyon geçişleri yer almaktadır.

Şekil 8.17. GN3 bileşiği için DMSO içerisinde DFT/B3LYP/6-31g(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

GN3 bileşiğine ait DMSO içerisinde hesaplanarak bulunan elektronik absorbsiyon geçişlerinde (Şekil 8.17.) %10 üzerindeki geçişler dikkate alınarak bakıldığında üç farklı

dalga boyunda absorbsiyon olduğunu görmekteyiz. 316,16 nm dalga boyunda HOMO \rightarrow LUMO'ya (%68) geçişlerin yanısıra, HOMO \rightarrow LUMO+1'e (%15) geçişlerde bulunmaktadır. 296,34 nm dalga boyunda ise üç elektronik absorbsiyon geçişi gözlenmektedir. Bunlar HOMO \rightarrow LUMO'ya (%24) , HOMO \rightarrow LUMO+1'e (%53) , HOMO-1 \rightarrow LUMO'ya (%18) geçişleridir. 276,89 nm dalga boyunda da yine üç farklı elektronik absorbsiyon geçişiden bahsedebiliriz. Bunlar HOMO-1 \rightarrow LUMO'ya (%16) , HOMO-2 \rightarrow LUMO'ya (%31) ve HOMO-3 \rightarrow LUMO'ya (%39) geçişleridir.

Sentezlenen tüm maddeler için TDDFT/B3LYP/6-31G(d, p) yöntemiyle elektronik absorbsiyon geçişleri hesaplanmış ve tüm maddeleri için üç farklı dalga boyunda elektronik absorbsiyon geçişleri gözlemlenmiştir. GN4-GN12 bileşikleri için elektronik absorbsiyon geçişleri EK 22-30 arasında bulunmaktadır.

Moleküler Elektrostatik Potansiyel (MEP)

MEP birim pozitif yük ile moleküler sistemin yük dağılımı arasındaki etkileşim enerjisi olarak tanımlanabilir. MEP' i tanımlamada renk kodlama sistemi kullanılır. Örneğin, MEP haritası üzerinde kırmızıyla gösterilen kısımlar en negatif potansiyeli (elektron yoğunluğunun fazla olduğu bölge), mavi renk ile gösterilen kısımlar ise en pozitif potansiyeli (kısmi pozitif yüklerin bulunduğu bölge) gösterir [50]. Moleküller birbirine yaklaştığında her birinin MEP'i etkileşimlerinde anahtar rol oynar. Bir molekülün MEP' inin en negatif olduğu bölgeler elektrofilik atağa en yatkın bölgeleri temsil eder [36]. İncelenen molekül için elektrofilik ve nükleofilik atak için reaktif bölgeleri tahmin etmek amacıyla MEP hesaplandı.

GN3 MEP haritası

GN4 MEP haritası

Şekil 8.18. GN3-GN12 molleküllerinin DFT/B3LYP/6-31g(d, p) ile hesaplanan moleküler elektrostatik potansiyel (MEP) haritası

Moleküllerin MEP haritasına bakıldığında hidroksil gurubu hidrojeni civarının nükleofilik atak için en uygun bölge, siyano gurubu azotu civarının herhangi bir elektrofilik atağa en yatkın bölge olduğu söylenebilir.

8.2.4. Bileşiklerin NMR hesaplamaları

GN3-GN12 bileşiklerinin B3LYP/6-31G(d,p) yöntemiyle hesaplanan ¹H-NMR ve ¹³C-NMR sonuçları Tablo 8.16- 8.34 arasında verilmiştir. NMR hesabı için oluşturulan giriş komutu aşağıda yer almaktadır. NMR hesaplamaları tez bileşikleri için DMSO çözücüsü kullanılarak yapılmıştır.

nmr=(giao,spinspin) rb3lyp/6-31g(d,p) scrf=(cpcm,solvent=dmso) geom=connectivity
nmr=(giao,spinspin) rb3lyp/lanl2dz scrf=(cpcm,solvent=dmso) geom=connectivity

	GAZ			
			DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
20	23.8658	7.9563	23.8569	7.9652
21	23.5985	8.2236	23.5954	8.2267
22	23.6250	8.1971	23.6290	8.1931
23	23.1569	8.6652	23.1359	8.6862
24	24.6741	7.1480	24.8069	7.0152
25	23.3519	8.4702	23.5645	8.2576
26	24.0110	7.8111	23.9648	7.8573
27	24.0008	7.8213	23.9892	7.8329
28	23.9742	7.8479	24.0104	7.8117
29	23.3409	8.4812	23.5537	8.2684

Tablo 8.16. GN3 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	69.3967	113.0689	69.2679	113.1977
2	62.8548	119.6108	62.7003	119.7653
3	66.6051	115.8605	66.7138	115.7518
4	47.0985	135.3671	46.9922	135.4734
5	78.5526	103.9130	78.2330	104.2326
6	71.9282	110.5374	71.7808	110.6848
8	37.3195	145.1461	35.5178	146.9478
9	104.5912	77.8744	104.1653	78.3003
10	28.8307	153.6349	29.4865	152.9791
12	81.0242	101.4414	81.5502	100.9154
14	57.6396	124.8260	56.9504	125.5152
15	68.3761	114.0895	66.5126	115.9530
16	68.6258	113.8398	67.7318	114.7338
17	66.3039	116.1617	66.4195	116.0461
18	67.9046	114.5610	68.6565	113.8091
19	66.6725	115.7931	67.6245	114.8411

 Tablo 8.17. GN3 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
21	23.6936	8.1285	23.6933	8.9043
22	23.6991	8.1230	23.7055	8.8921
23	23.4642	8.3579	23.4439	9.1537
24	24.7497	7.0724	24.8871	7.7105
25	23.3706	8.4515	23.5924	9.0052
26	24.0248	7.7973	23.9768	8.6208
27	24.0189	7.8032	24.0054	8.5922
28	23.9873	7.8348	24.0230	8.5746
29	23.3581	8.4640	23.5821	9.0155
30	29.0181	2.8040	29.0144	3.5832
31	29.0113	2.8108	29.0096	3.5880
32	29.5295	2.2926	29.5282	3.0694

Tablo 8.18. GN4 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan 1 H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	57.0295	125.4361	56.8067	143.1786
2	61.0823	121.3833	60.9641	139.0212
3	66.7874	115.6782	66.9121	133.0732
4	48.3958	134.0698	48.3014	151.6839
5	78.7570	103.7086	78.4212	121.5641
6	72.8774	109.5882	72.7218	127.2635
8	38.1790	144.2866	36.3178	163.6675
9	104.6548	77.8108	104.1821	95.8032
10	29.4425	153.0231	30.0779	169.9074
12	80.8919	101.5737	81.4227	118.5626
14	57.5719	124.8937	56.8607	143.1246
15	68.5169	113.9487	66.6309	133.3544
16	68.6751	113.7905	67.7738	132.2115
17	66.5008	115.9648	66.6076	133.3777
18	67.9532	114.5124	68.6956	131.2897
19	66.7733	115.6923	67.6784	132.3069
20	169.4778	12.9878	169.5047	30.4806

 Tablo 8.19. GN4 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

				
	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
21	24.3112	7.5109	24.3033	8.2943
22	24.1146	7.7075	24.1253	8.4723
23	23.6405	8.1816	23.6234	8.9742
24	25.6246	6.1975	25.6277	6.9699
25	23.7198	8.1023	24.0835	8.5141
26	24.5033	7.3188	24.4899	8.1077
27	24.4994	7.3227	24.4768	8.1208
28	24.5553	7.2668	24.5415	8.0561
29	24.2488	7.5733	24.4818	8.1158

 Tablo 8.20. GN5 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	45.6913	136.7743	45.5682	154.4171
2	46.7427	135.7229	46.6892	153.2961
3	56.9882	125.4774	57.0233	142.9620
4	40.4496	142.0160	40.6338	159.3515
5	72.8494	109.6162	72.3712	127.6141
6	57.3182	125.1474	57.1302	142.8551
8	27.6505	154.8151	25.0831	174.9022
9	98.9266	83.5390	98.3634	101.6219
10	21.1514	161.3142	22.1721	177.8132
12	69.6032	112.8624	70.1114	129.8739
14	51.2193	131.2463	49.9525	150.0328
15	58.0531	124.4125	58.3349	141.6504
16	59.9654	122.5002	59.6944	140.2909
17	58.1709	124.2947	58.5391	141.4462
18	60.6436	121.8220	60.6119	139.3734
19	60.0779	122.3877	58.9455	141.0398

 Tablo 8.21. GN5 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan 13 C-NMR sonuçları

			-	
	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
21	23.8512	7.9709	23.8390	8.7586
22	23.6721	8.1500	23.6811	8.9165
23	23.3696	8.4525	23.3383	9.2593
24	24.6456	7.1765	24.7753	7.8223
25	23.3584	8.4637	23.5978	8.9998
26	24.0123	7.8098	23.9705	8.6271
27	23.9935	7.8286	23.9826	8.6150
28	23.9796	7.8425	24.0123	8.5853
29	23.3700	8.4521	23.5731	9.0245

Tablo 8.22. GN6 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	54.9630	127.5026	54.8234	145.1619
2	62.2623	120.2033	62.3603	137.6250
3	64.9493	117.5163	64.9374	135.0479
4	48.3833	134.0823	48.3547	151.6306
5	77.7451	104.7205	77.3415	122.6438
6	72.4244	110.0412	72.4043	127.5810
8	36.6515	145.8141	34.7893	165.1960
9	103.6316	78.8340	103.1802	96.8051
10	29.5093	152.9563	30.2300	169.7553
12	81.4632	101.0024	82.0331	117.9522
14	58.0532	124.4124	57.3313	142.6540
15	68.3144	114.1512	66.4887	133.4966
16	68.5554	113.9102	67.6664	132.3189
17	65.9699	116.4957	66.1326	133.8527
18	67.8283	114.6373	68.5835	131.4018
19	66.5786	115.8870	67.5402	132.4451

 Tablo 8.23. GN6 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
21	23.7869	8.0352	23.7771	8.8205
22	23.6906	8.1315	23.7006	8.8970
23	23.2862	8.5359	23.2580	9.3396
24	24.6429	7.1792	24.7788	7.8188
25	23.3532	8.4689	23.5942	9.0034
26	24.0103	7.8118	23.9687	8.6289
27	23.9913	7.8308	23.9808	8.6168
28	23.9776	7.8445	24.0107	8.5869
29	23.3646	8.4575	23.5711	9.0265

 Tablo 8.24. GN7 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	56.0653	126.4003	55.9720	144.0133
2	59.8124	122.6532	59.8757	140.1096
3	65.0543	117.4113	65.0406	134.9447
4	48.1321	134.3335	48.1029	151.8824
5	77.5588	104.9068	77.1864	122.7989
6	69.4340	113.0316	69.4044	130.5809
8	36.6394	145.8262	34.7307	165.2546
9	103.6463	78.8193	103.1787	96.8066
10	29.6528	152.8128	30.3631	169.6222
12	81.4829	100.9827	82.0401	117.9452
14	58.0552	124.4104	57.3196	142.6657
15	68.3062	114.1594	66.4841	133.5012
16	68.5465	113.9191	67.6661	132.3192
17	65.9589	116.5067	66.1221	133.8632
18	67.8218	114.6438	68.5827	131.4026
19	66.5619	115.9037	67.5345	132.4508

 Tablo 8.25. GN7 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları
	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
22	23.8753	7.9468	23.8341	8.7635
23	23.4535	8.3686	23.3682	9.2294
24	24.5656	7.2565	24.8619	7.7357
25	23.2878	8.5343	24.2163	8.3813
26	23.9941	7.8280	24.0200	8.5776
27	23.9603	7.8618	23.9764	8.6212
28	23.9466	7.8755	24.0201	8.5775
29	23.2351	8.5870	24.2163	8.3813

Tablo 8.26. GN8 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan 1 H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	55.9917	126.4739	55.3953	144.5900
2	61.9814	120.4842	62.3001	137.6852
3	52.9785	129.4871	52.7633	147.2220
4	51.6051	130.8605	52.4221	147.5632
5	76.5368	105.9288	75.4887	124.4966
6	72.9073	109.5583	72.9183	127.0670
8	36.3894	146.0762	30.5817	169.4036
9	102.8497	79.6159	99.2053	100.7800
10	29.0204	153.4452	31.7859	168.1994
12	81.8356	100.6300	84.2600	115.7253
14	58.5067	123.9589	55.8826	144.1027
15	68.2412	114.2244	68.9334	131.0519
16	68.3850	114.0806	68.6744	131.3109
17	65.3980	117.0676	67.4841	132.5012
18	67.6585	114.8071	68.6751	131.3102
19	66.1415	116.3241	68.9336	131.0517

 Tablo 8.27. GN8 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

r				
	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
22	24.0538	7.7683	24.0486	8.5490
23	23.7595	8.0626	23.6865	8.9111
24	25.5892	6.2329	25.6407	6.9569
25	23.4786	8.3435	24.8140	7.7836
26	24.4438	7.3783	24.4880	8.1096
27	24.4635	7.3586	24.4731	8.1245
28	24.5365	7.2856	24.4873	8.1103
29	24.1638	7.6583	24.8127	7.7849

Tablo 8.28. GN9 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan 1 H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	46.9030	135.5626	45.9474	154.0379
2	39.3518	143.1138	39.3659	160.6194
3	38.0021	144.4635	38.3597	161.6256
4	41.3584	141.1072	43.0382	156.9471
5	70.8813	111.5843	69.4607	130.5246
6	56.7372	125.7284	56.5206	143.4647
8	28.3076	154.1580	21.5769	178.4084
9	98.6558	83.8098	96.2343	103.7510
10	20.7649	161.7007	24.5267	175.4586
12	69.8685	112.5971	72.0941	127.8912
14	51.5917	130.8739	47.4294	152.5559
15	57.1632	125.3024	60.7228	139.2625
16	59.8035	122.6621	60.6405	139.3448
17	57.5904	124.8752	60.1376	139.8477
18	60.4635	122.0021	60.6358	139.3495
19	60.0558	122.4098	60.7343	139.2510

 Tablo 8.29. GN9 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
22	23.8942	7.9279	23.8932	8.7044
23	23.6184	8.2037	23.5944	9.0032
24	24.8008	7.0213	24.9377	7.6599
25	23.3764	8.4457	23.5829	9.0147
26	24.0212	7.8009	24.0182	8,5794
27	24.0170	7.8051	24.0025	8.5951
28	23.9765	7.8456	23.9662	8.6314
29	23.3291	8.4930	23.5562	9.0414
30	29.0631	2.7590	29.0606	3.5370
31	29.0652	2.7569	29.0623	3.5353
32	29.5935	2.2286	29.5912	3.0064
33	28.7813	3.0408	28.7945	3.8031
34	29.6161	2.2060	29.6334	2.9642
35	28.8047	3.0174	28.8637	3.7339

 Tablo 8.30. GN10 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	57.4065	125.0591	57.1938	142.7915
2	60.5042	121.9614	60.2960	139.6893
3	57.0086	125.4570	57.0815	142.9038
4	48.9098	133.5558	48.8057	151.1796
5	78.7588	103.7068	78.3786	121.6067
6	75.0850	107.3806	74.8765	125.1088
8	39.0696	143.3960	37.2829	162.7024
9	104.7736	77.6920	104.3192	95.6661
10	29.4023	153.0633	30.0104	169.9749
12	80.7719	101.6937	81.3015	118.6838
14	57.2802	125.1854	56.5877	143.3976
15	68.5289	113.9367	67.6774	132.3079
16	68.6873	113.7783	68.6958	131.2895
17	66.6087	115.8569	66.7047	133.2806
18	67.9347	114.5309	67.7611	132.2242
19	66.6392	115.8264	66.4989	133.4864
20	169.5065	12.9591	169.5297	30.4556
21	171.1346	11.3310	171.0937	28.8916

Tablo 8.31. GN10 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
22	23.7013	8.1208	23.6840	8.9136
23	23.3658	8.4563	23.3290	9.2686
24	24.5512	7.2709	24.6836	7.9140
25	23.1802	8.6419	23.4579	9.1397
26	23.9947	7.8274	23.9325	8.6651
27	23.9641	7.8580	23.9458	8.6518
28	23.9470	7.8751	23.9891	8.6085
29	23.0741	8.7480	23.5034	9.0942

 Tablo 8.32. GN11 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	57.0397	125.4259	56.9333	143.0520
2	57.0169	125.4487	57.1591	142.8262
3	52.2535	130.2121	52.2309	147.7544
4	50.3313	132.1343	50.2789	149.7064
5	76.2632	106.2024	75.7760	124.2093
6	69.5407	112.9249	69.5134	130.4719
8	36.9318	145.5338	34.3063	165.6790
9	103.2768	79.1888	102.5302	97.4551
10	28.9636	153.5020	29.8236	170.1617
12	81.6729	100.7927	82.4370	117.5483
14	58.7377	123.7279	57.8159	142.1694
15	68.4398	114.0258	66.0155	133.9698
16	68.3604	114.1052	67.5156	132.4697
17	65.2809	117.1847	65.5685	134.4168
18	67.6729	114.7927	68.4227	131.5626
19	65.9305	116.5351	67.5040	132.4813

 Tablo 8.33. GN11 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

	GAZ		DMSO	
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
22	24.0969	7.7252	24.1015	8.4961
23	23.7087	8.1134	23.7116	8.8860
24	24.0950	7.7271	24.0835	8.5141
25	27.5099	4.3122	27.5127	5.0849
26	27.8141	4.0080	27.8133	4.7843
27	27.8243	3.9978	27.8278	4.7698
28	24.7833	7.0388	24.9198	7.6778
29	23.3941	8.4280	23.5894	9.0082
30	24.0327	7.7894	24.0314	8.5662
31	24.0370	7.7851	24.0232	8.5744
32	23.9978	7.8243	23.9872	8.6104
33	23.3912	8.4309	23.6073	8.9903

 Tablo 8.34. GN12 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹H-NMR sonuçları

	GAZ DMSO			
Atom No	Mutlak Perdeleme	Kimyasal Kayma	Mutlak Perdeleme	Kimyasal Kayma
1	39.0807	143.3849	39.0084	160.9769
2	69.9484	112.5172	69.9911	129.9942
3	65.1404	117.3252	65.1927	134.7926
4	50.9342	131.5314	50.9480	149.0373
5	77.2610	105.2046	76.9044	123.0809
6	93.6854	88.7802	93.5312	106.4541
8	40.0082	142.4574	38.2965	161.6888
9	104.4538	78.0118	104.0747	95.9106
10	30.2763	152.1893	30.9285	169.0568
12	138.2758	44.1898	137.8248	62.1605
14	80.8201	101.6455	81.3356	118.6497
15	57.5372	124.9284	56.8681	143.1172
16	68.6884	113.7772	67.8233	132.1620
17	68.6895	113.7761	68.7144	131.2709
18	66.7828	115.6828	66.8533	133.1320
19	67.9783	114.4873	67.8000	132.1853
20	66.9344	115.5312	66.7186	133.2667

 Tablo 8.35. GN12 bileşiğinin DFT/B3LYP/6-31g(d, p) ile hesaplanan ¹³C-NMR sonuçları

9. SONUÇ VE ÖNERİLER

Sentezlediğimiz bileşiklerin yapı tayini NMR spektroskopisi yardımı ile gerçekleştirildi. Ekler kısmında verilen ¹H-NMR spektrumları incelendiğinde aşağı alanda karakteristik bir singlet pik gözlendi. 10.92-12.86 ppm aralığında gözlenen singlet pikin bileşiklerin OH protonuna ait olduğu düşünülmektedir. Elde edilen bileşiklerin yapısını daha iyi aydınlatabilmek ve gözlenen sinyalin NH veya OH protonuna ait olduğunu anlamak için GN4 bileşiğinin ¹H-¹⁵N HSQC deneyi gerçekleştirildi (Şekil 9.1.).

¹H-¹⁵N HSQC spektrumunda sinyal gözlenmemesi NH protonunun yapıda bulunmadığını ifade etmektedir. Sentezlenen bileşiklerin 4-hidroksikinolin yapısında olduğu ve spektrumda 12 ppm civarında gelen pikin OH protonuna ait olduğu anlaşıldı.

Şekil 9.1. GN4 bileşiğinin ¹H-¹⁵N HSQC spektrumu

Sentezlenen tüm bileşiklerin ¹H-NMR analizleri için deneysel ve teorik kimyasal kayma değerleri arasındaki korelasyon katsayısı hesaplanmıştır. GN3-GN12 bileşiklerinin korelasyon katsayıları sırasıyla 0.8334, 0.9953, 0.7717, 0.7863, 0.7678, 0.6376, 0.7378, 0.9908, 0.4117, 0.9959 olarak bulunmuştur. Bu sonuçlar arasından GN4, GN10 ve GN12 maddelerinin Şekil 9.2.- 9.3.- 9.4.'de ¹H-NMR analizleri için deneysel ve teorik kimyasal kayma değerleri arasındaki korelasyonu göstermektedir. Bu çalışmada, deneysel ve teorik kimyasal kaymalar arasında iyi bir uyum sağlanmıştır. Bununla birlikte, hidroksil grubuna ait protonun kimyasal kayma değeri deneysel olarak sırasıyla 12.6, 11.4 ve 12.7 ppm ve DFT/B3YLP/6-31G(d, p) ile hesaplanan değerleri ise bu üç bileşik için 7.7 ppm (DMSO'da) / 7.0 ppm (gaz fazı) olarak bulundu. Bu değerler

arasındaki fark, moleküller arası hidrojen bağının etkileşmesinden kaynaklanmaktadır. Bu nedenle, korelasyon analizi OH protonunun deneysel ve teorik kimyasal kayma değerleri kullanılmadan gerçekleştirilmiştir.

Şekil 9.2. GN4 bileşiğine ait deneysel ve teorik ¹H-NMR kimyasal kayması için korelasyon grafiği

Şekil 9.3. GN10 bileşiğine ait deneysel ve teorik ¹H-NMR kimyasal kayması için korelasyon grafiği

Şekil 9.4. GN12 bileşiğine ait deneysel ve teorik ¹H-NMR kimyasal kayması için korelasyon grafiği

Sentezlenen maddelerin ¹³C-NMR analizleri için deneysel ve teorik kimyasal kayma değerleri incelenmiş olup korelasyon sonuçları yüksek oranda uyum göstermektedir. GN3-GN12 maddeleri için korelasyon sonuçları sırasıyla, 0.9488, 0.9821, 0.9113, 0.9362, 0.9470, 0.9104, 0.8715, 0.9596, 0.9532, 0.9728'dir. Bu sonuçlardan GN4, GN10 ve GN12 bileşiklere ait korelasyon grafikleri Şekil 9.5.-9.7. arasında verilmiştir.

Şekil 9.5. GN4 bileşiğine ait deneysel ve teorik ¹³C NMR kimyasal kayması için korelasyon grafiği

Şekil 9.6. GN10 bileşiğine ait deneysel ve teorik ¹³C NMR kimyasal kayması için korelasyon grafiği

Şekil 9.7. GN12 bileşiğine ait deneysel ve teorik ¹³C NMR kimyasal kayması için korelasyon grafiği

Sentezlenen moleküllerin deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31G(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekans (cm⁻¹) değerlerinin korelasyonları Şekil 9.10.'da görülmektedir.

Deneysel frekans (cm⁻¹)

Deneysel frekans (cm⁻¹)

Şekil 9.10. GN3-GN12 moleküllerinin deneysel frekans (cm⁻¹, KBr) ve B3LYP/6-31g(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekans (cm⁻¹) değerlerine ilişkin korelasyon grafikleri

Sonuç:

- 1. Tez kapsamında hedeflenen çalışma doğrultusunda kinolin türevi bileşiklerin sentezi için literatürden farklı yeni bir yöntem denenmiş ve bu doğrultuda benzotriazol kimyası kullanılarak özgün maddeler sentezlenmiştir.
- 2. Geliştirdiğimiz bu yöntem, literatür yöntemlerine kıyasla, hazırlaması kolay başlangıç bileşiklerinin kullanımı, tek basamakta ürün sentezi ve reaksiyon sonrası saflaştırılma basamaklarının kolaylığı gibi önemli avantajlara sahiptir.

- Sentezlenen bileşiklerin yapılarının aydınlatılması için ¹H-¹⁵N HSQC deneyi gerçekleştirildi. Bu deney sonucu alınan spektrum sonuçlarında yapının 4hidroksi kinolin yapısında olduğu kanıtlandı.
- Sentezlenen maddelerin ¹H-NMR ve ¹³C-NMR'ı alınmış olup kimyasal kayma değerleri ve DFT/B3LYP/6-31G(d,p) hesaplamaları sonucu elde edilen kimyasal kayma değerleri ile genellikle uyumlu olduğu görülmüştür.
- 5. Deneysel UV-GB spekrumlarından yararlanarak optik bant aralığı Eg (eV) değerleri hesaplanmış. Bulunan değerler DFT/B3LYP/6-31G(d,p) yöntemi ile hesaplanan optik bant aralığı değerleri ile kıyaslanmıştır. Hem deneysel hem de hesaplanan optik bant aralığı değerlerinde en yüksek değer GN3 molekülüne aittir. Sübstitüent etkisiyle bu değerin azaldığı görülmektedir. En düşük optik bant aralığına sahip molekül dihalojenli yapıya sahip olan GN9 kodlu 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril bileşiğidir.
- Sentezlenen moleküllerin deneysel FT-IR frekans (cm⁻¹, KBr) ve B3LYP/6-31G(d,p) hesaplamaları sonucu elde edilen karakteristik IR frekans (cm⁻¹) değerlerinin korelasyonları incelenmiş ve yüksek korelasyon değerleri elde edilmiştir.

Öneriler:

Yapılan tez çalışmasında biyolojik aktivite gösterme potansiyeli yüksek, 3-Siyano-4-hidroksi-2-fenilkinolin türevlerinin sentezi gerçekleştirilmiştir. Bu bileşiklerin literatürde yer alması daha sonrasında kinolin iskeleti bulunduran molekül sentezlerinde ışık tutacağı düşünülmekte olup farklı sübstitüe türevleri sentezlenebilir. Ayrıca moleküllerin biyolojik aktivite ölçüm çalışmaları yapılarak aktif olmaları durumunda canlı sistemlerinde önemli kullanım alanları oluşturması beklenmektedir.

KAYNAKÇA

- S. G. Alegaon *et al.*, "Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines," *Bioorganic Med. Chem. Lett.*, vol. 27, no. 7, pp. 1566–1571, 2017.
- [2] P. Sambasiva Rao *et al.*, "Synthesis of novel 2-alkyl triazole-3-alkyl substituted quinoline derivatives and their cytotoxic activity," *Bioorganic Med. Chem. Lett.*, vol. 23, no. 5, pp. 1225–1227, 2013.
- [3] X. Wu *et al.*, "I2-Promoted Povarov-Type Reaction Using 1,4-Dithane-2,5-diol as an Ethylene Surrogate: Formal [4 + 2] Synthesis of Quinolines," *Org. Lett.*, vol. 19, no. 7, pp. 1550–1553, 2017.
- [4] L. Liu, D. Chen, J. Yao, Q. Zong, J. Wang, and H. Zhou, "CuX-Activated N-Halosuccinimide: Synthesis of 3-Haloquinolines via Electrophilic Cyclization of Alkynyl Imines," J. Org. Chem., vol. 82, no. 9, pp. 4625–4630, 2017.
- [5] S. Ökten and O. Çakmak, "Synthesis of novel cyano quinoline derivatives," *Tetrahedron Lett.*, vol. 56, no. 39, pp. 5337–5340, 2015.
- [6] H. Tanak, A. Ağar, and O. Büyükgüngör, "Experimental (XRD, FT-IR and UV-Vis) and theoretical modeling studies of Schiff base (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline," *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, vol. 118, pp. 672–682, 2014.
- [7] M. E. M. Zayed, R. M. El-Shishtawy, S. A. Elroby, A. Y. Obaid, and Z. M. Al-Amshany, "Experimental and theoretical study of O-substituent effect on the fluorescence of 8-hydroxyquinoline," *Int. J. Mol. Sci.*, vol. 16, no. 2, pp. 3804– 3819, 2015.
- [8] A. R. Krishnan, H. Saleem, S. Subashchandrabose, N. Sundaraganesan, and S. Sebastain, "Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV and NBO analysis of 2-chlorobenzonitrile by density functional method," *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, vol. 78, no. 2, pp. 582–589, 2011.
- [9] S. Sebastian and N. Sundaraganesan, "The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density

functional method," *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, vol. 75, no. 3. pp. 941–952, 2010.

- [10] D. Mageswari and G. Selvi, "Chemical Science Review and Letters Comparison of Theoretical & Experimental studies of 2-oxo-4-phenyl quinoline," *Chem Sci Rev Lett*, vol. 5, no. 19, pp. 1–12, 2016.
- [11] T. Uyar, Organik Kimya. Ankara: Palme Yayıncılık, 1998.
- [12] G. Y. Lesher, E. J. Froelich, M. D. Gruett, J. H. Bailey, and R. P. Brundage, "1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents," *J. Med. Pharm. Chem.*, 1962.
- [13] C. Saura *et al.*, "Safety and efficacy of neratinib in combination with capecitabine in patients with metastatic human epidermal growth factor receptor 2-positive breast cancer," *J. Clin. Oncol.*, vol. 32, no. 32, pp. 3626–3634, Nov. 2014.
- [14] L. N. et al., "Oral topotecan: Bioavailability, pharmacokinetics and impact of ABCG2 genotyping in Chinese patients with advanced cancers," *Biomedicine and Pharmacotherapy*. 2013.
- [15] Y. Kawai, R. Sato-Ishida, A. Motoyama, and K. Kajinami, "Place of Pitavastatin in the statin armamentarium: Promising evidence for a role in diabetes mellitus," *Drug Design, Development and Therapy.* 2011.
- [16] M. Gómez-Guzmán *et al.*, "Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus," *Hypertension*, 2014.
- [17] R. N. Naik, Shilpa C. Patil, and Sudha B. Satyanarayan, "Synthesis and Antioxidant, Antibacterial, Antihypertensive Activities of 8-Hydroxyquinoline Appended with Oxadiazole and Triazole Rings," *Indo American Journal of Pharmaceutical Research*, vol. 4, no. 9. pp. 3763–3772, 2014.
- [18] F. Ateşol, "4-Hidroksi-2,3-kinolindikarboksilatların ve Metil-4-hidroksi-2-(2metoksi-2-okzoetil)kinolin-3-karboksilatların Sentezi ve Karakterizasyonu," Anadolu Üniversitesi, 2018.
- [19] A. R. Katritzky, X. Lan, J. Z. Yang, and O. V. Denisko, "Properties and synthetic utility of N-substituted benzotriazoles," *Chem. Rev.*, vol. 98, no. 2, pp. 409–548, 1998.

- [20] A. R. Katritzky and S. Rachwal, "Synthesis of heterocycles mediated by benzotriazole. 2. Bicyclic systems," *Chem. Rev.*, vol. 111, no. 11, pp. 7063–7120, 2011.
- [21] A. Katritzky, N. Meher, C. Cai, and S. Singh, "Preparation of N-Acylbenzotriazole Derivatives of Dicarboxylic Acids," *Rev. la Soc. Química México*, vol. 48, no. 4, pp. 275–278, 2004.
- [22] J. P. Gasparini, R. Gassend, J. C. Maire, and J. Elguero, "Etude dans la serie des organosilylazoles. I. Action des halogenures d'alkyle, des chlorures d'acide et des cetones halogenees," *J. Organomet. Chem.*, vol. 188, no. 2, pp. 141–150, 1980.
- [23] R. Gassend, J. C. Maire, and J. C. Pommier, "Etude dans la serie des organostannylazoles. II. Reactions de substitution nucleophyles avec les halogenures d'alkyles," *J. Organomet. Chem.*, vol. 133, no. 2, pp. 169–176, 1977.
- [24] A. R. Katritzky, H. Y. He, and K. Suzuki, "N-acylbenzotriazoles: Neutral acylating reagents for the preparation of primary, secondary, and tertiary amides," *J. Org. Chem.*, 2000.
- [25] A. R. Katritzky, A. V. Vakulenko, and R. Jain, "The preparation of Nacylbenzotriazoles from aldehydes," *Arkivoc*, vol. 2003, no. 14, pp. 131–139, 2003.
- [26] N. Kanişkan, Ş. Kökten, and I. Çelik, "A new protocol for the synthesis of primary, secondary and tertiary anthranilamides utilizing N-(2aminoarylacyl)benzotriazoles," *Arkivoc*, vol. 2012, no. 8, pp. 198–213, 2012.
- [27] Ş. Kökten and I. Çelik, "A simple, mild, and practical method for the esterification and thioesterification of anthranilic acid utilizing N -(2-Aminobenzoyl) benzotriazole," *Synth.*, vol. 45, no. 18, pp. 2551–2556, 2013.
- [28] Ş. Kökten and I. Çelik, "N-(2-Aminobenzoyl)benzotriazole mediated and t-BuOK promoted synthesis of 2-substituted quinolone 3-carboxylates," *Tetrahedron Lett.*, vol. 56, no. 45, pp. 6254–6256, 2015.
- [29] İ. Çelik and F. Yıldız, "Synthesis of 4-hydroxyquinoline-2,3-dicarboxylates using N-(2-aminobenzoyl)benzotriazoles," *Tetrahedron*, vol. 73, no. 27–28, pp. 3878– 3882, 2017.
- [30] İ. M. Şenol, İ. Çelİk, and İ. Avan, "One-pot synthesis of quinazolin-4(3H)-ones

and 2,3-dihydroquinazolin-4(1H)-ones utilizing N-(2aminobenzoyl)benzotriazoles," *Turkish J. Chem.*, pp. 1580–1596, 2019.

- [31] G. Zhu, M. Sun, C. Zhu, H. Wang, and J. Xu, "New Synthesis of 7-(3-chloropropoxy)-4-hydroxy-6-methoxyquinoline-3-carbonitrile, a Key Intermediate to Bosutinib," *J. Heterocycl. Chem.*, vol. 54, no. 4, pp. 2237–2241, 2017.
- [32] H. M. F. Madkour, "Reactivity of 4H-3,1-benzoxazin-4-ones towards nitrogen and carbon nucleophilic reagents: Applications to the synthesis of new heterocycles," *Arkivoc*, vol. 2004, no. 1, pp. 36–54, 2004.
- [33] L. Lengyel *et al.*, "Highly efficient thermal cyclization reactions of alkylidene esters in continuous flow to give aromatic/heteroaromatic derivatives," *Tetrahedron Lett.*, vol. 53, no. 7, pp. 738–743, 2012.
- [34] W. M. Abdou, N. A. F. Ganoub, A. F. M. Fahmy, and A. A. M. Shaddy, "Regioselective condensation of alkylidenephosphoranes with bifunctionalized compounds: New approach to the synthesis of fused O- and N-heterocycles," *Phosphorus, Sulfur Silicon Relat. Elem.*, vol. 180, no. 10, pp. 2373–2390, 2005.
- [35] J. A. Heath *et al.*, "Identification of 4-piperazin-1-yl-quinazoline template based aryl and benzyl thioureas as potent, selective, and orally bioavailable inhibitors of platelet-derived growth factor (PDGF) receptor," *Bioorganic Med. Chem. Lett.*, vol. 14, no. 19, pp. 4867–4872, 2004.
- [36] I. N. Levine, *Quantum Chemistry*. Chemistry Department, Brooklyn College, City University of New York, 2014.
- [37] E. G. Lewars, Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. Canada: Springer Dordrecht Heidelberg London New York, 2010.
- [38] S. F. Ekti, "Oled Bileşiklerinin Sentezi Ve Bu Bileşiklerin Fiziksel Ve Kimyasal Özelliklerinin İncelenmesı," Anadolu Üniversitesi, 2016.
- [39] G. A. Elsayed, S. A. Omara, and R. M. Kamel, "Utility of N'-((2-chloroquinolin-3-yl)methylene)-2-cyanoacetohydrazide as a Source of Biologically Active Novel Heterocycles," *J. Heterocycl. Chem.*, vol. 54, no. 6, pp. 3427–3433, 2017.
- [40] P. Horta et al., "Quinolone-Hydroxyquinoline Tautomerism in Quinolone 3-

Esters. Preserving the 4-Oxoquinoline Structure To Retain Antimalarial Activity," *J. Org. Chem.*, vol. 80, no. 24, pp. 12244–12257, 2015.

- [41] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, "Spectrometric identification of organic compounds 7ed 2005 - Silverstein, Webster & Kiemle.pdf," *Microchemical Journal*, vol. 21. p. 496, 2005.
- [42] Ender Erdik, Organik Kimyada Spektroskopik Yöntemler, 6th ed. Ankara: Gazi Kitapevi, 2015.
- [43] D. L. Pavia, Introduction to Spectroscopy, 4th 584 edition; Brooks/Cole: Belmont, CA. 2010.
- [44] S. Sebastian, N. Sundaraganesan, B. Karthikeiyan, and V. Srinivasan, "Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), rst order hyperpolarizabilities, NBO and TD-DFT analysis of the 4methyl-2-cyanobiphenyl," *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, vol. 78, no. 2, pp. 590–600, 2011.
- [45] S. A. Khan *et al.*, "Synthesis and evaluation of Quinoline-3-carbonitrile derivatives as potential antibacterial agents," *Bioorg. Chem.*, vol. 88, no. March, p. 102968, 2019.
- [46] E.H.El-Mossalamy; S.A.Al-Thabati; F.M.Al-Nowaiser and Q.A.Al-Sulami, "Solvent effects on the electronic absorption spectra and dissociation constants of some sulfa drugs," vol. V.51(2), pp. 21–30, 2005.
- [47] A. Shafiee, M. M. Salleh, and M. Yahaya, "Determination of HOMO and LUMO of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2, 5-diyl) through voltametry characterization," *Sains Malaysiana*, vol. 40, no. 2, pp. 173–176, 2011.
- [48] J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, and L. M. N. B.
 F. Santos, "Optical band gaps of organic semiconductor materials," *Opt. Mater.* (*Amst*)., vol. 58, pp. 51–60, 2016.
- [49] N. Sundaraganesan, S. Ilakiamani, H. Saleem, P. M. Wojciechowski, and D. Michalska, "FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine," *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, vol. 61, no. 13–14, pp. 2995–3001, 2005.

[50] C. J. Cramer, *Essentials of Computational Chemistry*. Department of Chemistry and Supercomputing Institute, University of Minnesota, USA: J. Wiley and Sons, 2004.

EKLER

EK-1: 3-Okso-3-fenilpropannitril (GN2) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR Spektrumu

EK-2: 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

EK-3: 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4)

¹³C NMR: 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4)

EK-4: 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5)

¹³C NMR: 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5)

EK-5: 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6)

¹³C NMR: 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6)

EK-6: 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7)

¹³C NMR: 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7)

EK-7: 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8) bileşiğinin DMSOd6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8)

¹³C NMR: 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8)

EK-8: 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiğinin DMSOd6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9)

¹³C NMR: 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9)

EK-9: 4-Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 4-Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10)

¹³C NMR: 4-Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10)

EK-10: 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11)

¹³C NMR: 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11)

EK-11: 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12) bileşiğinin DMSO-d6 çözücüsü içerisinde alınan ¹H NMR ve ¹³C NMR Spektrumları

¹H NMR: 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12)

¹³C NMR: 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12)

EK-12: 4-Hidroksi-2-fenilkinolin-3-karbonitril (GN3) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-13: 4-Hidroksi-6-metil-2-fenilkinolin-3-karbonitril (GN4) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-14: 4-Hidroksi-6-iyodo-2-fenilkinolin-3-karbonitril (GN5) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-15: 6-Kloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN6) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-16: 6-Bromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN7) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-17: 6,8-Dikloro-4-hidroksi-2-fenilkinolin-3-karbonitril (GN8) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-18: 4-Hidroksi-6,8-diiyodo-2-fenilkinolin-3-karbonitril (GN9) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-19: 4-Hidroksi-6,8-dimetil-2-fenilkinolin-3-karbonitril (GN10) bileşiğinin KBr'de alınan FT-IR spektrumu

1%

EK-20: 6,8-Dibromo-4-hidroksi-2-fenilkinolin-3-karbonitril (GN11) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-21: 4-Hidroksi-6-metoksi-2-fenilkinolin-3-karbonitril (GN12) bileşiğinin KBr'de alınan FT-IR spektrumu

EK-22: GN4 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-23: GN5 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-24: GN6 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-25: GN7 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-26: GN8 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-27: GN9 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-28: GN10 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-29: GN11 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

EK-30: GN12 bileşiği için DMSO içerisinde DFT/B3LYP/6-31G(d, p) ile hesaplanan elektronik absorbsiyon geçişleri

ÖZGEÇMİŞ

Adı Soyadı: Gülümser ORAL Yabancı Dil : İngilizce Doğm Yeri ve Yılı: Eskişehir /1990 E-posta: gulumsernamli@gmail.com

Eğitim ve Mesleki Geçmişi:

- 2004-2008, Eskişehir Fatih Anadolu Lisesi
- 2008-2012, Eskişehir Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü
- 2012-2013, Eskişehir Osmangazi Üniversitesi, Eğitim Fakültesi, Pedagojik Formasyon Eğitimi
- 2017-2020, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Ana Bilim Dalı, Organik Kimya Bilim Dalı Tezli Yüksek Lisans
- 2015, Milli Eğitim Bakanlığı, Kimya Öğretmeni