
T.C.

Mersin Üniversitesi

Sosyal Bilimler Enstitüsü

Yabancı Diller Eğitimi Ana Bilim Dalı

DESIGN OF A FINITE-STATE TRANSDUCER

FOR PARTS OF SPEECH TAGGING OF TURKISH

Ümit MERSĐNLĐ

YÜKSEK LĐSANS TEZĐ

Mersin,2010

i

ACKNOWLEDGMENTS

First and foremost, I would like to thank to my advisor Prof. Dr. Mustafa

AKSAN for his patience during the great learning experience I had, and Prof. Dr. Yeşim

AKSAN for her encouragement and trust.

I’m also indebted to all colleagues at the Linguistics Department of Mersin

University for their invaluable support.

I’m also grateful to all other members of the Turkish National Corpus (TNC)

Team for their courage and enthusiasm in building TNC that this study would never be

possible without the data they provided.

It would be impossible to name all those who inspired, taught, and supported

me. In brief, my special thanks go to all my colleagues, friends, students and my family.

ii

ÖZET

Bu çalışma, Türkçe’de sözcük türü etiketleme amaçlı ve kural-tabanlı bir

Sonlu-Durum çeviricinin kökten-eke bir yaklaşımla tasarlanabileceğini önerir.

Çalışmanın ilk bölümü Doğal Dil Đşlemede Sonlu-Durum çeviricilerin

kullanımını içeren çalışmaları özetlemekte ve Türkçe’deki bazı uygulamalara

değinmektedir.

Yöntem bölümünde, çalışmanın yazılım değerlendirme, veri toplama ve sözlük

oluşturma aşamaları ayrıntılandırılmaktadır.

Sonlu-durum Çevirici Tasarımı başlıklı bölümde ise Türkçe’nin türetim ve

çekim süreçlerinin modellenmesinin aşamaları ve güçlüklere değinilmektedir.

Sonuç bölümü ise çalışmanın kısa değerlendirmesini ve önerileri sunar.

Anahtar sözcükler: Sözcük Türü Etiketleme, Türkçe’nin Biçimbilimi,

Biçimbirim Sıralaması, Nooj, Sonlu-Durum Çevirici Düzeneği

iii

ABSTRACT

This study proposes that a rule-based Finite-State Transducer for Turkish Part

of Speech Tagging can be designed in a root-to-affix approach.

The Introduction part of the study summarizes the studies on Finite-State

Transducers for Natural Language Processing and mentions some applications for Turkish.

In the Methodology section, details of the software evaluation, data collection

and dictionary compilation stages are given.

In the Components of the Transducer section, the stages of modeling the

inflectional and derivational processes and the challenges are mentioned.

Conclusion section presents the overview of the study and recommendations.

Keywords: Part of Speech Tagging, Turkish Morphology, Morpheme Order,

Nooj, Finite-State Transducer Automata

iv

CONTENTS

ACKNOWLEDGMENTS…………………………………………………...……. i

ABSTRACT.………………………………………………………………………. ii

CONTENTS….……………………………………………………………………. iv

TABLES AND FIGURES………………...……………………………………… vi

INTRODUCTION………………………………………………………………… 1

 Preliminaries ….…………………………………………………………. 1

 Morphotactics of Turkish…….……………………………………….….. 3

 Finite-State Morphology of Turkish ………….……………….…………. 4

 Statement of the Problem ………………………………………………… 5

 Purpose of the Study ……………………………………………………... 5

 Importance of the Problem ……..………………………..……..……….. 6

 Research Questions ………………………………..……………………. 6

 Hypotheses………………………………………………………………. 6

 Data Collection Techniques …………..………………..………………… 6

 Operational Definitions…………………………………………………… 7

 Limitations ……………………………………………………………….. 8

I. METHODOLOGY……………………………………………………..……….. 9

 I.1. Software Evaluation……………………………………..……..… 11

 I.2. Data Collection …...….……………………………………………… 12

 I.2.1. Corpus ...………………………………………………….. 12

 I.2.2. Tokenization ….…………………………………………... 13

 I.2.3. Lemmatization ..…………………………………………... 14

v

II. COMPONENTS OF THE TRANSDUCER…………………………………... 15

 II.1. Overview of Nooj Grammars ………………………………………. 15

 II.2. Architecture of Turkish Module ……………………………………. 16

 II.3. Dictionaries …………………………………………………...……. 16

 II.3.1. Lexical Categories ……………………..………………... 18

 II.3.2. Phonemic Alternations .….……………………..……….. 19

 II.4. Graphs ………………………………………………………...……. 22

 II.4.1. Derivation ………….…………………..……………....... 23

 II.4.2. Inflection (Nominal Paradigm) ……………..…………... 24

 II.4.3. Inflection (Verbal Paradigm)………………..………... 26

III. IMPLEMENTATION AND TESTING………..…...……………………….. . 27

CONCLUSION …………………………………………………...………………. 31

 Summary ………………………………………………...……………….. 31

 Results of the Study ………………………………………….…………... 31

 Recommendations ………………………….…………………………..… 31

REFERENCES ….………………………………………………………..………. 33

APPENDICES ………………………………………………………………. ……. 36

vi

TABLES AND FIGURES

Table 1. Statistics For The Affixation Of Turkish …………………………….…. 4

Table 2. Possible decompositions with left-to-right and right-to-left processing .. 10

Table 4. Rule specifications for in-root phonemic alternations in Turkish ……… 20

Table 5. Operators in Nooj grammar formalism ……………………...………….. 21

Figure 1. Corpus interface of Nooj………………………………………………. 12

Figure 2. Sample tokens ordered by frequency ………………………………….. 13

Figure 3. Nooj grammars ……………………………………………………….... 15

Figure 4. Dictionary compilation interface………………………………………. 17

Figure 5. Sample graph representing allomorphs of an affix…………………..… 22

Figure 6. Main graph with the nominal and verbal paradigms …………………... 23

Figure 7. Sample derivational graph …………………………………………….. 24

Figure 8. Sample derivational subgraph ………………………………………… 24

Figure 9. Main Graph for Nominal Inflection in Turkish………………………... 25

Figure 10. Stems for nominal inflection ……………………………………….... 25

Figure 11. Nominal Inflection in Turkish ……………………………………….. 26

Figure 12. Verbal Inflection in Turkish ………………………………………….. 26

Figure 13. Sample Annotation 1 ……………….………………………………... 27

Figure 14. Sample Annotation 2 ……………….………………………………... 27

1

INTRODUCTION

The persuasiveness of Syntactic Structures had the effect that, for many decades

to come, computational linguists directed their efforts towards more powerful

formalisms. Finite-state automata as well as statistical approaches disappeared

from the scene for a long time. Today the situation has changed in a fundamental

way: statistical language models are back and so are finite-state automata, in

particular, finite-state transducers (Karttunen, 2001).

Finite-State Transducers (FST) in Natural Language Processing (NLP) have a

rather suppressed history. This study will also begin with providing a brief outline of that

history.

Preliminaries

As stated in Joshi (1997), the use of finite-state automata for rule-based NLP

begins with Transformations and Discourse Analysis Project (TDAP) directed by Zellig S.

Harris at Pennsylvania University in 1958.

Another implementation was the DeComp module of MITalk system dating

back to the early 1960s. As the name implies, it was a decomposer, morphological analyzer

that used affix-stripping or right-to-left approach to analyze the morphemes of a given

word in English (Sproat, 1992: 185).

The keçi system designed by Hankamer for Turkish was also unique in that it

was implemented specifically for Turkish. As Sproat (1992) points out, it was designed

with a motivation “to check the typographical accuracy of a corpus of Turkish text that had

been typed into a computer” and thus originally checking the harmony rules of Turkish. Its

tags for each morpheme was like N0, N1, indicating only the ordering of them.

Then, the method two-level morphology is studied by Ronald M. Kaplan and

Martin Kay in the 1970s and implemented by Kimmo Koskenniemi in 1983 as KIMMO

2

(Roark, 2007). In a conference on parsing organized by Lauri Karttunen in 1981, “the four

Ks” discussed and then formed the basics of “the first general model in the history of

computational linguistics for the analysis and generation of morphologically complex

languages” (Karttunen, 2005).

As Karttunen (2005) states, the system was “a new way to describe

phonological alternations in finite-state terms”. The power of KIMMO-style programs was

that - especially for languages like Turkish, Finnish — they are able to simulate the

phoneme alternations of highly concatenative languages by parallel working rule

specifications. Thus, the system was used later widespreadly, especially for rule-based

processing of phonological phenomena of Turkish. In terms of morphological analysis or

morpheme tagging, multi-level transducers were regarded as more appropriate and

practical. As Karttunen points out, “it became evident that lexical transducers are easier to

construct with sequentially applied replace rules than with two-level rules”.

Among the mentioned approaches, Hankamer’s keçi is of special interest since

it shows the significance of Turkish as a language with “purely concatenative morphology”

even in the earliest phases of finite-state morphology (Sproat, 1992). However, it was,

“while certainly more powerful in what it can accomplish than was DeComp, is more

limited than KIMMO” (Sproat, 1992).

As the most successful of the approaches above, KIMMO-style programs went

on being improved for various languages such as Finnish, Turkish etc.

In the methodology section, theoretical considerations related to the early

software mentioned above will be discussed again in more detail.

3

Morphotactics of Turkish

Turkish is often cited as a representative example to highly concatenative or

agglutinative languages. It is almost a tradition to cite rather exaggerated samples from the

affixation process of Turkish as in (1-5);

(1) öl-üm-süz-leş-tir-t-tir-il-e-me-yebil-in-en-ler-de-ki-ler-den-mi-ymiş-ler-

ce-sin-e

Is it as if they are of those that belong to the ones which one may not be
able to get immortalized?

 (Sebüktekin, 1974)

(2) çöp + lük +ler +imiz +de +ki +ler +den +mi +y +di

 Was it from those that were in our garbage cans?

 (Hankamer, 1986)

 c.f. (Sproat, 1992: 20)

(3) osmanlı +laş +tır +ama +yabil +ecek +ler +imiz +den +miş +siniz

Behaving as if you were of those whom we might consider not
converting into an Ottoman.

 (Oflazer, 1994a)

(4) uygar +laş +tır +ama +dık +lar +ımız +dan +mış +sınız +casına

Behaving as if you are among those whom we could not civilize.

 (Oflazer, 1994b)

 c.f. (Jurafsky, 2006)

(5) masa +lar +ım +da +ki +ler +in +ki +nde

 At those (things) which belong to those (other things) at my tables.

 (Oflazer, 1994a)

Although the examples above are statistically rare, as the values in Table 1

presents, Turkish is extremely concatenative when compared to languages like English.

4

maximum number of suffixes
8

average number of suffixes for all words
0.94

average number of suffixes for affixed words
1.85

maximum suffix length
7

Table 1. Statistics for the affixation of Turkish. (Güngör, 2003)

As Sebüktekin (1974) states, “morphotactics, then, should have an important

place in any discussion of Turkish structure”. Work of linguists on the complex

morphology of Turkish provided insights especially into the modeling process of this

study.

Sebüktekin (1974), as an earlier study, demonstrates the morpheme order of the

verbal paradigm in Turkish in a linear manner. All possible combinations of verbal affixes

are presented in detail. Sebüktekin also argues that algebraic formulae is a more adequate

formalism than geometric graphs. Although relying upon graphical representations while

simulating the affixation of Turkish, this study also took benefit of the combination lists

provided by the mentioned study.

Other studies on the morphotactics of Turkish are mostly computational finite-

state models and discussed in the next chapter of the study.

Finite-State Morphology of Turkish

Turkish, has been an area of special interest even in the beginning phases of

finite-state morphology as seen in Hankamer (1989).

In terms of two-level morphology, studies on Turkish begin with the

publication of PC-KIMMO rule specifications (Oflazer, 1994a) and their implementation

5

(Oflazer, 1994b) for Turkish. Another similar application based on the same rule

specifications was implemented in Prolog programming language and argued to be “more

efficient than the PC-Kimmo system” (Çiçekli, 1997).

The affix-stripping or right-to-left approaches to the morphological analysis of

Turkish are the implementations of Sever (2003), Adalı (2002, 2004) and Çilden (2006).

Among the stochastic studies, we can mention the study of Sak (2009).

Another natural language processing application that we can mention among

the finite-state approaches to Turkish is the open-source Zemberek project which is

basically designed as a spell-checker (Akın, 2007).

Statement of the Problem

Although the previously mentioned studies provided various models on the

morphotactics of Turkish, a graph-based, open-source finite-state transducer with pre-

tagged, corpus-based dictionaries and adequate models of Turkish morphology is needed in

order to lead to further developments in Turkish NLP. Such an implementation will

provide graphical representations of Turkish morphotactics, easily adaptable to other

formalisms and together with its corpus-based, pre-tagged dictionaries, be completely

accessible to linguists and researchers for review, testing and modification.

Purpose of the Study

The aim of this study is to describe the processes and principles of constructing

an open-source, graph-based, root-driven, non-stochastic finite-state transducer and its

components for Parts of Speech Tagging of Turkish.

6

Importance of the Problem

The resulting graphical representations of Turkish morphology and the pre-

tagged dictionaries of the transducer will provide input for further studies. This study will

also make it easier to construct annotated user corpora in Turkish without requiring much

computational background and lead to improvements in parallel/bilingual corpora design

for ELT researchers as well as linguists.

Research questions

1. Can a finite-state transducer for parts of speech tagging of Turkish be

designed?

2. Can finite-state transducers be used for the morphological analysis and

tagging of Turkish language corpora with a left-to-right or root-to-affix approach?

Hypotheses

1. A finite-state transducer for parts of speech tagging of Turkish can be

designed.

2. Finite-state transducers can be used for the morphological analysis and

tagging of Turkish language corpora with a left-to-right or root-to-affix approach.

Data collection techniques

Data for this study are derived from the Turkish National Corpus (TNC)

project held by English Language and Literature Department at Mersin University and

funded by the Scientific and Technological Research Council of Turkey (TÜBĐTAK) for a

three-year period (2008-2011).

7

Operational Definitions

Morpheme: “The minimal distinctive unit of grammar”. “The smallest

functioning unit in the composition of words” (Crystal, 2003).

Parts-of-speech tagging: In Jurafsky’s (2000) terms, “parts-of-speech tagging

is the process of assigning a part-of-speech or other lexical class marker to each word in a

corpus”. However, when highly agglutinative languages like Turkish is considered, we

prefer using the term in a broad sense such as ‘the procedure for assigning pre-defined

linguistic information to the pre-defined set of morphemes in a corpus’. This definition is

also compatible with the standards of The European Commission's Expert Advisory Group

on Language Engineering Standards (EAGLES) as described in Kahrel (1997). According

to EAGLES guidelines, the most common two types of tagging are morphosyntactic

annotation and syntactic annotation (Treebanks). Semantic annotation as in WordNet

implimentations is another type or level of tagging. In this study, all the terms parts of

speech tagging, morphosyntactic annotation and grammatical tagging refer to the same

procedure defined above which does not include any sentential, function-denoting,

constituent or dependency tagging as done in Treebanks.

Finite-state transducer (FST): Formalism or method used for simulating,

computerizing finite processes, rules of natural languages. Like all Finite-State Automata

(FSA), a FST includes a limited number of states between an initial and a final state, and

the transitions between these states. Unlike other FSAs, a FST includes both an input

(words, morphemes) and an output (tags denoting linguistic information) within each state.

Token: Any sequence of letters followed and preceded by delimiters, such as

space characters, tabs, carriage returns, apostrophes, digits or any punctuation marks.

8

Lemma: “the item which occurs at the beginning of a dictionary entry; more

generally referred to as a headword” (Crystal, 2003). To be more specific, ‘dictionary

entries without any pre-defined inflected or derived forms’. The term is used to cover all

phonological alternates of a given root as in ‘akıl, akl’ in Turkish. Both roots belong to the

same lemma ‘akıl’. However, ‘akıllı’ is not considered as a lemma in this study since affix

+lI is a pre-defined derivational affix and recognized by the transducer being not regarded

as part of the lexicon. In this respect, the term is used more specifically than Crystal’s,

which refers to traditional dictionaries rather than electronic dictionaries.

Limitations

Diachronic or etymological analyses are beyond the scope of this study. It is

limited to the description of the design process of a finite-state transducer for Parts of

Speech (POS) tagging of Turkish. Syntactic and morphological disambiguation and

analysis of compound words or multi-word units are also beyond the scope of the study.

9

I. METHODOLOGY

In this study, methods of finite-state morphology are used. Theoretical

considerations underlying the strategic and technical details of the methodology are

discussed below.

Natural Language Processing studies including POS tagging can be regarded as

works of Artificial Intelligence and thus as attempts to simulate human mind.

Psycholinguistic arguments, in this respect, has an important role in the methodological

choices of such studies including ours. The following binary oppositions illustrate some

key concepts that shape the methodological details of the study.

a) Decomposition / Full-listing

Debate on whether our minds store and process the morphemes of a given

word as a whole -full listing- or uses the linguistic knowledge about each morpheme

separately -decomposition- was one of the key issues of both psycholinguistics and

computational morphology. As argued in Hankamer (1989) in detail, a full-listing

approach cannot be an adequate model of cognitive processes especially for agglutinative

languages like Turkish. Although experiments in Gürel (1999) present that “some

multimorphemic words that consist of frequent affixes are processed as fast as

monomorphemic words”, this study relies upon the decompositional point of view

methodologically since it is difficult to decide which affixations in Turkish let a whole-

word lexical access and to what extent processing time can be regarded as evidence for

whole-word processing. In this study, besides having a decompositional point of view, we

also share, for practical reasons mostly, the arguments on lexical organization in Şehitoğlu

& Bozşahin (1996), indicating that “bound morphemes are not” even “part of the lexicon”.

10

b) Affix-stripping / Root-driven

Another debate is on the direction of morphological parsing between root-

driven (left-to-right) and affix-stripping (right-to-left) strategies. As stated in Hankamer

(1989), “the set of suffixes determined by a stem is a finite set, whereas the set of stems

determined by a suffix is always very large, and not necessarily even finite”. Thus,

according to Hankamer, stripping an affix does not narrow the choices of stems and every

time an affix is stripped, the parser should look for almost an infinite set of allowed stems

which is actually a wasteful process. In addition, the ambiguities as the ones exemplified in

Table 2 will require additional operations which is again at least not practical.

 Left-to-right Right-to-left

Kayısı Kayısı Kayı + sı

Elması Elmas + ı Elma + sı

Elması Elma + sı Elma + sı

Table 2. Possible decompositions with left-to-right and right-to-left processing.

c) Rule-based / Probabilistic

The primary distinction among approaches to POS tagging are often figured

out as between unsupervised and supervised methods, according to the usage of

distributional, contextual, syntactic, morphological or lexical rules or, in supervised

methods, the tagging probabilities taken from a training corpus and computed by a variety

of formulae. Through this dichotomy, we generalize all stochastic methods using

probabilities, frequencies or statistics and the ones using only distributional, contextual or

lexical rule specifications. This study, presupposing that there isn’t evidence for the use of

probabilities or other statistical information in human lexical processing, is based on rule-

based methods not involving any training data or statistical techniques.

11

This study uses methods of finite-state morphology with an unsupervised, non-

stochastic, decompositional, rule-based, root-driven approach.

I.1. Software Evaluation

Based on the methodological considerations discussed in the previous section,

we have evaluated the finite-state compilers listed in Laitinen (2008).

Bearing in mind that “with existing taggers, automatic perfect tagging is not

possible”, as Mihalcea (2003) showed in his performance analysis of mostly stochastic

POS taggers, our primary criterion was the opportunities of rule declaring and semi-

automatic or manual tagging that are provided. Besides, the capacity of processing large

amount of textual corpora was another criterion.

In this respect, a graph-based corpus processor, Nooj, presented in Silberztein

(2003) is chosen since it has both graphical tools for modeling, simulating the affixation of

Turkish and the power to process large amount of texts simultaneously. In addition, the

architecture of Nooj is pre-determined to be based on dictionaries as inputs to FSTs

included, so again suitable for the root-driven approach of this study.

“Nooj is a development environment used to construct large-coverage

formalized descriptions of natural languages, and apply them to large corpora, in real

time.” It uses basically two resources for the annotation of textual input: “electronic

dictionaries” and “grammars represented by organized sets of graphs” (Silberztein, 2005).

In brief, the dictionaries of Nooj allow assigning unlimited linguistic

information to the entries and it can also handle multi-word units. The graphs allow the

user construct a FST visually in a cascaded manner. Each graph can contain or refer to

other graphs and this makes the modeling task simpler. The features and advantages of

Nooj dictionaries and graphs will be discussed again in detail.

12

I.2. Data Collection

Data of the study are derived from the Turkish National Corpus (TNC) project

held by the Linguistics Department at Mersin University and funded by the Scientific and

Technological Research Council of Turkey.

I.2.1. Corpus

Sub-corpus for tokenization are extracted randomly from TNC. It included 100

text files including both fictional and non-fictional books. Number of word forms is

computed as 3,323,853 by Nooj.

Figure 1. Corpus interface of Nooj

13

I.2.2. Tokenization

As presented in Figure 2, Nooj has a built-in tokenization tool that is accessible

through the corpus interface in Figure 1 (see page 12). It also provides frequencies of each

token.

Figure 2. Sample tokens ordered by frequency

As seen in the first and last lines of the tokenization pane in Figure 2, Nooj’s

tokenization is case-sensitive. This feature makes the given frequencies of tokens

problematic but it helps extracting proper nouns, acronyms and abbreviations since they

are all assumed to begin with upper-case letters. The exceptions were tokens like ‘ntv, atv’

that are acronyms in Turkish with lower-case initials. Another problem was homophonous

tokens such as ‘Deniz, Ümit’ etc. being both proper nouns and common nouns. These

tokens, as all other homophonous root forms with different POS, added to both noun and

proper noun dictionaries. Finally, the task of filtering proper nouns, acronyms and

abbreviations are done semi-automatically with the help of case-sensitive tokenization and

Unicode sorting.

14

I.2.3. Lemmatization

Lemmatization, by definition, depends on which word forms are considered as

lemmas. Since each analyzer has its own set of recognized affixes, the lemmas included in

the dictionaries may differ. In this study, both inflectional and derivational affixes of

Turkish are in the scope of analysis and, if not an archaic derivation or include a non-

productive affix, only non-derived word forms or roots are considered as lemmas. In this

respect, the dictionaries formed are root-dictionaries rather than stem-dictionaries.

Forming a stem dictionary of Turkish is problematic since some homophonous

affixes such as +mA (negative & nominalizer), +(I)r, +AcAk (tense & nominalizer) etc.

serve both in inflectional and derivational processes, and some derivational affixes such as

+lA, +lI, +lIk, +CI are very productive that they can easily be overused in forming lemmas.

After elicitation of mostly inflectional, non-homophonous, non-problematic

affixations in a reverse ordered token list, lemmatization is done manually with the above

stated considerations.

15

II. COMPONENTS OF THE TRANSDUCER

II.1. Overview of Nooj grammars

Nooj system includes three types of grammars that accept both graphical and

textual rule specifications as presented in Figure 3. In M. Silberztein (p.c., September 20,

2009) terms, the difference between an “Inflection/Derivation” and “Productive

Morphology” grammar is that the former is used to compile a dictionary with all inflected

and derived forms of a root and thus adds the output to the dictionary with its annotations

whereas the latter only annotates the given input text from the corpus by matching it with

the corresponding lemma and category in the compiled dictionary and assigning them the

linguistic information specified in the graphs.

Figure 3. Nooj grammars

16

II.2. Architecture of Turkish Module

Our strategy, based on a similar approach to Bisazza (2009), is to use;

i. Dictionaries (.nod files) for assigning a POS or Lexical Category tag to

each lemma with all its morphophonemic alternations.

ii. Infection/Derivation grammars (.nof files) for specifying in-root

phonemic alternation rules, in other words to compile the dictionaries

including all possible alternations of the lemmas.

iii. Productive morphology grammars (.nom files) for modeling both

derivational and inflectional affixations of Turkish, namely for

morphological tagging.

iv. Syntactic grammars (.nog files) for contextual disambiguation of the

annotated corpora.

Although M. Silberztein (p.c., September 20, 2009) notes that from a

Hungarian dictionary of over 50,000 entries, researchers generated a .nod file that

recognizes over 150 million word forms, the affix combinations of Turkish, considering

the recursive nature of some affixes, are theoretically almost infinite. Hence, at least for the

present version of the module, we have preferred .nom files for morphological tagging. In

the following sections, the design process of each component of the module and the

difficulties encountered will be presented.

II.3. Dictionaries

In Nooj formalism, dictionaries are formed in two formats. The Raw-

Dictionaries consist of lemmas, related lexical categories and rule tags. Then, in our case,

the Raw-Dictionaries are compiled through Nooj interface in Figure 4 with the triggered

phonemic alternation rules specified in the Inflection/Derivation Grammar files.

17

Figure 4. Dictionary compilation interface

During the compilation process, the operations declared in (.nof grammars) are

implemented and, the Raw-Dictionaries (.dic files) and the variant lemmas formed by

Inflection/Derivation grammars (.nof files) are combined as Dictionaries (.nod files).

The entries in (9-11) exemplify the formalism of Nooj raw-dictionaries.

(9) akıl,NN+FLX=drop+abstract

(10) güneş tutulması,NN+FLX=compound1

(11) abi, ağbi, ağabey, NN

The keyword “ +FLX= ” triggers the rules specified in .nof files. Although out

the scope of the present study, Nooj can also handle multi-word units within a single

dictionary format as in (10). As Silberztein (2005) notes, this is the major superiority of

Nooj over its predecessor Intex. Users can add extra properties to the lemmas or subclasses

to the Lexical Categories as in (9) and refer to them as constraints in the graphs. This

feature is not used in this version since a tag set for subclasses of lexical categories is

subject to further studies. Nooj also lets the user associate more than one word form to the

same lemma that, in (11), the variant “abi” and “ağbi” both belong to the lemma “ağabey”.

We have also reserved this feature for future releases of the module. Also, regular Optical

Character Reading errors or character encoding problems may be handled by including the

erroneous form of the lemma in the dictionary if not homophonous with another entry.

18

II.3.1. Lexical Categories

While forming the raw dictionaries, lemmas are tagged with the following POS

Tags listed in Table 3.

TAG POS EXAMPLE
<VB> Verb git, gel, dur, bak, kal, sus, gör, dök
<NN> Noun gece, hava, renk, fark, dost, oyun
<PN> Pronoun bu, kendi, hepsi, herkes, kim, öteki
<NB> Number iki,üç, beş, sekiz
<AJ> Adjective mavi, yeni, düz, dürüst, zeki
<AV> Adverb acaba, asla, bazen
<DET> Determiner bu, şu, o
<PP> Postposition gibi, göre, için, kadar, karşı, rağmen
<ITJ> Interjection aferin, sağol, haydi, hoşçakal, lütfen
<CJ> Conjunction ama, çünkü, meğer, üstelik
<ON> Onomatopoeia takır, vızıl, gürül
<NP> Proper Noun Atatürk, Mersin, Ümit

<AB>
Abbreviation

Acronym

TBMM, TDK

<MI> Affirmative particle mi, mı, mu, mü

Table 3. Part-of-Speech Tags

As Trask (1999) notes, “over centuries, at least four different types of criteria

have been proposed for identifying parts of speech” namely meaning, distribution,

inflection and derivation and, as Haspelmath (2001) suggests, “there is universal

agreement among linguists that language-particular word classes need to be defined on

morphosyntactic grounds for each individual language”. With a similar point of view, we

also relied upon distributional, inflectional and derivational features of a given lemma

while assigning the appropriate lexical categories. Schachter & Shopen (2007) also

proposes that “the primary criteria for parts-of-speech classification are grammatical, not

semantic”.

In terms of lexical tagging, especially the Adjective/Noun, Conjunction/Adverb

distinctions were challenging and required collaborative work with linguists.

19

The tags ‘ON’ for Onomatopoeic words and ‘MI’ for ‘Affirmative Particle’ are

also used although not common in other languages. Onomatopoeic words have unique

derivational features and the affirmative particle is also considered as a lexical category

since it has its own affixation and must have a Category tag, for practical reasons in terms

of computational analysis.

II.3.2. Phonemic Alternations

After the pre-tagging stage, lemmas are also annotated with the following tags

which denote the in-root phonemic alternations listed in Table 4. As stated in (Göksel &

Kerslake, 2005: 14), “certain of these changes are confined to specific lexical items,

whereas others occur as part of a general phonological process in the language”. The

changes confined to specific lexical items are subject to the pre-tagging stage of this study

whereas others, being mostly “part of a general phonological process”, are handled through

the graphs. The phonemic alternations highly irregular with a computational point of view

are discussed below;

Aorist +(A)r and +(I)r

As Lewis (1967: 116) stated, for all monosyllabic verbs ending with a

consonant -with 13 exceptions - , the aorist affix is “+(A)r”, whereas for all others it is

“+(I)r”. The verbs requiring +(A)r affixation for the Aorist are tagged with rules “add_er”

or “add_ar”.

Imperfective +(I)yor

When +(I)yor combines with stems ending with a vowel, the final –e, -a of the

verb stems changes to -ı,-i,-u,-ü (Lewis, 1967) (Göksel & Kerslake, 2005).

The in-root phonemic alternation caused by the affix ‘+(I)yor’ causes

ambiguities as shown in (5-8).

20

(5) biliyor > bil+(I)yor / bile+(I)yor

(6) yıkıyor > yık+(I)yor / yıka+(I)yor

(7) atıyor > at+(I)yor / ata+(I)yor

(8) uyuyor > uy+(I)yor / uyu+(I)yor

Although the ambiguities in (5-8) are acceptable for native speakers of Turkish,

formulating this operation as substitution of a phoneme causes some artificial ambiguities

since the resulting word form with substituted final vowel can also be homophonous as in

(9).

(9) bıçakla > bıçaklı

To avoid false-processing of the non-affixed forms of those homophones as

Verbs, we preferred to declare the rule as deletion and include the buffer vowel (I) in the

graphs, in order to reduce the number of artificial ambiguities. Underhill (1976: 112) also

suggests this option in his note “If you prefer, you may simply learn that the suffix –Iyor

causes a preceding vowel to drop”.

Other alternations such as the addition of buffer phoneme ‘(n)’ to pronominals

“bu, şu, o” before case markers and the plural, as mentioned in Underhill (1976:90) as an

in-stem variation, are all included in the graphs and not considered as in-root variations.

As Kornfilt (1997: 214) states “Turkish does not have internal

morphophonemic alternations that … are not conditioned by suffixation”. Thus, our

tendency was to use the deletion operator where applicable and include the

alternations in the graphs rather than the lexicon.

21

tag rule example
double <D> af > affı, zam > zamma

drop <L><R> akıl > aklını, fikir > fikrimin

dropsoften <B2>b kayıp > kaybına, kutup > kutbuna

compound1 anaokulu > anaokulları

compound2 <B2> elyazısı > elyazıları, başağrısı > başağrıları

compound3 <B2>ç ipucu > ipuçları

compound4 <B2>k ayçiçeği > ayçiçekleri

soften_ch c ağaç > ağacı, süreç > süreci

soften_k ğ emek > emeği, diyalog > diyaloğu

soften_p b kitap > kitabı, mektup > mektubu

soften_t d cilt > cilde, dört > dördünü

soften_t_er d + de et > eder, git > gider

soften_t_ar d + da tat > tadar

softendouble b<D> tıp > tıbbın, muhip > muhibbi

change_an <B2>an ben > bana, sen > sana

change_i iste > istiyor

change_ı kapa > kapıyor

change_ü özle > özlüyor

change_u boşa > boşuyor

add_er e üz > üzer

add_ar a yap > yapar

Table 4. Rule specifications for in-root phonemic alternations in Turkish.

The rules in Table 4 follows the formalism of Nooj as in Table 5.

 delete last character, backspace <L> go left

<B2> delete last two characters <R> go right

<D> duplicate last character + OR

Table 5. Operators in Nooj grammar formalism (Silberztein, 2003: 92).

Any character following the mentioned operators is added to the resulting or

existing form of the lemma.

The final format of the dictionary entries before compilation is shown in (2):

(10) akıl,NN+FLX=drop

 af,NN+FLX=double

 kitap,NN+FLX=soften_p

22

The “ +FLX= ” operator declares that the following tag should lead to the

predefined operation in the Nooj Inflection file (.nof). Finally, Nooj compiles the Raw-

Dictionary and adds the variations of the lemma into the Nooj Dictionary file (.nod).

II.4. Graphs

After compiling the Dictionaries with Infection/Derivation grammars, Nooj

needs Productive Grammars that will accept tokens as inputs and match them with the

corresponding lemmas in the dictionary.

Since the transducer will not be used as a spell-checker or generator, all

allomorphs are included in the same input of each state as the GENITIVE in Figure 5

represents. This strategy, although causing some false-annotations as in “altı >

al_VB+DI”, is preferred in the present version of the module since including allomorphs in

separate graphs would require pre-tagging of lemmas according to the phonological

paradigm they belong to.

Figure 5. Sample graph representing allomorphs of an affix.

In Figure 5, the <INFO> stands for all previous annotations. All tags declared

between the “ < ” and “ > ” characters form the output for the processed token. So the input

“okulunki” returns an annotation as “okul,NN+In[GEN]+ki[PN]”.

23

Homonymy was again a challenge in forming the graphs because Turkish also

includes homophonous suffixes like “ In[GEN] ” and “ I+n[POSS] ”. So, an input such as

“okulun” returns two annotations as “okul,NN+In[GEN]” and “okul,NN+I+n[POSS]”.

First one with a context such as “okulun kapısı” and the second “okulun nerede?”. As

stated in the introduction, ambiguity resolution at the syntactic level is out the scope of this

study.

All the subgraphs described in the following sections are designed in a single

.nom file as presented in Figure 6.

Figure 6. Main graph with the nominal and verbal paradigms.

The subgraphs VB, NN and AJ includes all derivational affixations forming

stems of the given lexical category. Together with the deverbals in DeVB subgraph, they

form inputs for the verbal and nominal inflectional paradigms, namely FLX_VB and

FLX_NN.

II.4.1. Derivation

A detailed discussion of constraints governing derivation in Turkish can be

found in Uzun (1992, 1993, 2008). However, the scope of this study is limited to the

lexical categories of the derivational input and output word forms. Lexical subcategories

related to derivational constraints are subject to further studies. We have organized the

derivational graphs in Appendix D as exemplified in Figure 7. and Figure 8.

24

Figure 7. Sample derivational graph

Figure 8. Sample derivational subgraph

The affixes in the derivational graphs and their distributional properties are

listed in Uzun (1992).

II.4.2. Inflection (Nominal Paradigm)

Various finite-state models for Turkish nominal paradigm are provided by

Oflazer, Göçmen & Bozşahin (1994a), Külekçi & Özkan (2001), Adalı & Eryiğit (2004),

Makedonski (2005). Our strategy for Nominal Inflection is to form two subgraphs for

stems ending in a vowel and in a consonant. By separating the graph into two, we have

25

reduced the number of homophonous affixes or buffer phonemes occurring in the same

graph and thus causing artificial ambiguities. We have also included a RARE subgraph for

irregular or archaic affixations in TNC.

Figure 9. Main Graph for Nominal Inflection in Turkish.

Both graphs NOUNc and NOUNv in Figure 9. are the same except for some

affixes such as buffer phoneme “(s)” for 3rd Person Possessive are included in NOUNv as

in “gece+si” but not in NOUNc as in “asker+I”.

The STEM subgraph in Figure 10. includes the deverbals to avoid transition

between verbal and nominal paradigms. Also the special case of pronominal “bu, şu, o”

requiring a buffer phoneme “n’ is included in this subgraph.

Figure 10. Stems for nominal inflection

The NOUNc graph in Figure 11. presents the classification and transitions of

nominal inflectional affixes.

26

Figure 11. Nominal Inflection in Turkish

II.4.2. Inflection (Verbal Paradigm)

The morphotactics of verbal inflection in Turkish is modeled as in Figure 12.

adopting the combinational features explained in Sebüktekin (1974) and arguments for

Turkish Tense 1 and Tense 2 slots in Sezer (2001). As mentioned in that study, Tense 2

slot is only for;

i. i-DI - indicating only witnessed past but not present perfect.

ii. i-mIş - with an only inferential function but not present perfect.

iii. i-sE - conditional with an indicative function but not subjunctive.

iv. i-ken - adverbializer ‘while’.

27

Figure 12. Verbal Inflection in Turkish

We haven’t reserved a Tense 3 subgraph since it can be represented with a

recursive transition from and to Tense 2 and can analyze the sequences as in (11);

(11) bil + ir + se + ymiş

III. IMPLEMENTATION AND TESTING

Nooj has a built-in analyzer and a concordancer for the implementation and

testing of the modules. We have implemented the module, first on a test file as in Figure

13. and 14. and then the subcorpora of fiction and journalism from Turkish National

Corpus Project.

Figure 13. Sample Annotation 1.

28

Figure 14. Sample Annotation 2.

Implementation and testing procedure involved the following steps;

i. annotating text or corpora – in Nooj terminology Linguistic Analysis

ii. checking the lists of Unknowns and Ambiguities to review the dictionaries

and graphs.

iii. concordancing in test-corpora – the Locate tool in Nooj terminology

Below are some concordances provided by the preceding queries. The

operators ‘<’ and ‘>’ returns all affixed and bare forms of the given word. Without them,

as in Figure 16., the results are only the bare forms. Space character is the ‘then’ operator

in NooJ formalism and denotes sequential ordering of the given queries as in Figures 17,

18 and 19. Each affix is preceded with a ‘+’ operator and an affix search as in Figures 18

and 19 is also possible through the NooJ ‘Locate’ menu (Silberztein, 2003).

29

<oku,VB>

Figure 15. Sample Concordance 1.

oku

Figure 16. Sample Concordance 2.

<NN> <oku,VB>

Figure 17. Sample Concordance 3.

30

<VB+r[Aor]> <VB+mA+z[Aor]>

Figure 18. Sample Concordance 4.

<VB+Ip[AV]> <dur>

Figure 19. Sample Concordance 5

31

CONCLUSION

Summary

In this study, the nominal and verbal inflectional paradigms and derivational

affixation of Turkish is modeled through finite-state transducers with an unsupervised,

decompositional, root-driven, graph-based approach. A corpus-driven electronic dictionary

of Turkish including lexical categories is formed.

Results of the Study

This study showed that a finite-state transducer automaton for parts of speech

tagging of Turkish can be designed in a root-to-affix approach and discussed the

difficulties specific to Turkish in the lexicon and transducer design.

It is also shown that Turkish morphology can be simulated with the approach

of the study. However, this study also showed the need for further studies, like the

constraints on the derivational processes of Turkish and common ambiguities with their

context dependent solutions.

Recommendations

The challenges in the design procedure of the FST for Turkish POS tagging

showed that further studies concerned with the architecture of electronic dictionaries for

Turkish are needed. The linguistic information that should be involved in the dictionary of

Turkish for each specific lexical category is subject to those studies. With the adequate

features added to each lemma, the analysis will return less ambiguities and be more

accurate.

Ambiguity in Turkish needs more detailed documentation. Homophonous

roots, affixes and root-affix combinations need to be listed and classified. Their contextual

information is also needed for disambiguation.

32

Disambiguation in Turkish will be possible upon the findings of studies

focused on the Natural Language Processing of Turkish like the one here. Rule-based

disambiguation can be done through the NooJ Syntactic Grammars and the exported

annotated corpora may then again be disambiguated stochastically.

Compound words and reduplications in Turkish are topics that are studied by

various researchers. A corpus-driven database for those multi-word units will form the

necessary dictionaries and add new findings to the available data sets.

The transducer developed in this study may be improved and be used as a

generator to identify constraints governing the affixation of Turkish.

Parallel or bilingual corpora, especially including English and Turkish texts,

will lead to new findings on the problematic areas specific to Turkish learners of English.

Syllabus design and material development for Turkish learners will be more specific by the

help of mentioned studies.

Parallel corpora will also lead to improvements in material development for

Turkish as a Foreign Language.

33

REFERENCES

Adalı, E., & Cebiroğlu, G. (2002). Sözlüksüz köke ulaşma yöntemi. In Proceedings of the

19th TBD Bilişim Kurultayı (pp. 155-160). Đstanbul.

Adalı, E., & Eryiğit, G. (2004). An affix stripping morphological analyzer for Turkish. In

Proceedings of the IASTED International Conference ARTIFICIAL

INTELLIGENCE AND APPLICATIONS. Innsbruck, Austria.

Akın, M. D., & Akın, A. A. (2007). Türk dilleri için açık kaynaklı doğal dil işleme

kütüphanesi: ZEMBEREK. Elektrik Mühendisliği, 431, 38.

Bisazza, A. (2009). Designing a Nooj module for Turkish. Paper presented at the Nooj

Conference 2009.

Crystal, D. (2003). A dictionary of linguistics & phonetics. Malden, MA: Blackwell Pub.

Çiçekli, Đ., & Temizsoy, M. (1997). Automatic creation of a morphological processor in

logic programming environment. In Proceedings of the 5th International

Conference on the Practical Application of Prolog (PAP'97). London, UK.

Çilden, E. K. (2006). Stemming Turkish words using Snowball. Retrieved 12 March

2010, from http://snowball.tartarus.org/algorithms/turkish/stemmer.html

Göksel, A., & Kerslake, C. (2005). Turkish: A comprehensive grammar. London & New

York: Routledge.

Güngör, T. (2003). Lexical and morphological statistics for Turkish. Paper presented at the

International Twelfth Turkish Symposium on Artificial Intelligence and Neural

Networks.

Gürel, A. (1999). Decomposition: to what extent? The case of Turkish. Brain and

language, 68(1-2), 1-15.

34

Hankamer, J. (1989). Morphological parsing and the lexicon. In W. Marslen-Wilson (Ed.),

Lexical representation and process (pp. 392-408): MIT Press.

Haspelmath, M. (2001). Word classes and parts of speech. In P. B. Baltes & N. J. Smelser

(Eds.), International encyclopedia of the social and behavioral sciences (pp.

16538–16545). Amsterdam, The Netherlands: Pergamon.

Joshi, A., & Hopely, P. (1997). A parser from antiquity. Natural language engineering,

2(4).

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: an introduction to

natural language processing, computational linguistics, and speech

recognition: Prentice Hall.

Kahrel, P., Barnett, R., & Leech, G. N. (1997). Towards cross-linguistic standards or

guidelines for the annotation of corpora. In R. Garside, G. N. Leech & T.

McEnery (Eds.), Corpus annotation : linguistic information from computer text

corpora. London; New York: Longman.

Karttunen, L. (2001). Applications of finite-state transducers in natural-language

processing. In A. P. Sheng Yu (Ed.), Implementation and application of

automata. Berlin: Springer.

Karttunen, L., & Beesley, K. R. (2005). Twenty-five years of finite-state morphology. In

Inquiries Into Words, a Festschrift for Kimmo Koskenniemi on his 60th

Birthday, CSLI Studies in Computational Linguistics. Stanford CA: CSLI.

Kornfilt, J. (1997). Turkish. London; New York: Routledge.

Külekçi, M. O., & Özkan, M. (2001). Turkish word segmentation using morphological

analyzer. In Proceedings of EuroSpeech. Aalborg, Denmark.

35

Laitinen, H.-R. (2008). FsmReg: A registry of finite-state technology. Retrieved 10

March 2010, from https://kitwiki.csc.fi/twiki/bin/view/KitWiki/FsmReg

Lewis, G. L. (1967). Turkish grammar. Oxford: Oxford University Press.

Makedonski, P. (2005). Finite state morphology: the Turkish nominal paradigm.

Universitat Tübingen, Tübingen.

Mihalcea, R. (2003). Performance analysis of a part of speech tagging task. In A. Gelbukh

(Ed.), Computational linguistics and intelligent text processing Proceedings of

4th International Conference, CICLing 2003, Mexico City, Mexico, February

16-22, 2003. Berlin [etc.]: SpringerLink.

Oflazer, K., Göçmen, E., & Bozşahin, C. (1994a). An outline of Turkish morphology:

Technical Report, Middle East Technical University.

Oflazer, K. (1994b). Two-level description of Turkish morphology. Literary and linguistic

computing, 9(2), 137-148.

Roark, B., & Sproat, R. W. (2007). Computational approaches to morphology and syntax.

Oxford; New York: Oxford University Press.

Sak, H., Güngör, T., & Saraçlar, M. (2008). Turkish language resources: morphological

parser, morphological disambiguator and web corpus. In Advances in natural

language processing (Vol. 5221/2008, pp. 417-427): Springer Berlin /

Heidelberg.

Sak, H., Güngör, T., & Saraçlar, M. (2009). A stochastic finite-state morphological parser

for Turkish. In Proceedings of the ACL-IJCNLP 2009 Conference short

papers. Suntec, Singapore: Association for computational linguistics.

Schachter, P., & Shopen, T. (2007). Parts-of-speech systems. In T. Shopen (Ed.),

Language typology and syntactic description : Clause structure. Leiden: CUP.

36

Sebüktekin, H. I. (1974). Morphotactics of Turkish verb suffixation. Boğaziçi Üniversitesi

Dergisi, 2, 87-116.

Sever, H., & Bitirim, Y. (2003). FindStem: Analysis and evaluation of a turkish stemming

algorithm. In 10th International Symposium on string processing and

ınformation retrieval (SPIRE’03), Manaus, Brazil, October 8-10, 2003.

Lecture notes in computer science (LNCS) (pp. 238-251): Springer.

Sezer, E. (2001). Finite inflection in Turkish. In E. E. Taylan (Ed.), The verb in Turkish

(pp. 1-47). Amsterdam: John Benjamins Publishing.

Silberztein, M. (2003). Nooj manual. Retrieved 10 March 2010, from

http://www.nooj4nlp.net

Silberztein, M. (2005). Nooj’s dictionaries. In Proceedings of the 2nd language and

technology conference: Poznan University.

Sproat, R. (1992). Morphology and computation. London: MIT.

Şehitoğlu, O., & Bozşahin, C. (1996). Morphological productivity in the lexicon. In

Proceedings of the ACL SIGLEX workshop at Santa Cruz.

Trask, R. L. (1999). Parts of speech. In K. Brown & J. Miller (Eds.), Concise encyclopedia

of grammatical categories (pp. 278-284). Oxford: Elsevier.

Underhill, R. (1976). Turkish grammar. Cambridge, Mass.: MIT Press.

Uzun, E., Uzun, L., Aksan, M., & Aksan, Y. (1992). Türkiye Türkçesinin türetim ekleri:

Bir döküm denemesi [Derivational suffixes of Turkish: A morpheme inventory].

Ankara: Şirin.

Uzun, E. (1993). Türkiye Türkçesinde sözlüksel yapı: Bir eleştirel çözümleme. Ankara

Üniversitesi, Ankara.

37

Uzun, E. (2008). Türetim eklerinin türetkenliğini ölçme önerileri üzerine. In Y.

Çotuksöken & N. Yalçın (Eds.), XX. Dilbilim kurultayı bildirileri 12-13 Mayıs

2006. Đstanbul: Maltepe Üniversitesi.

36

APPENDIX A

Affix tagset (derivational)

1 mA_NN VB_NN

2 AlgA_NN VB_NN

3 KA_NN VB_NN

4 (A)ç_NN VB_NN

5 mAç_NN VB_NN

6 gIç_NN VB_NN

7 (I)nç_NN VB_NN

8 KAç_NN VB_NN

9 sI_NN VB_NN

10 (y)+IcI_NN VB_NN

11 KI_NN VB_NN

12 (I)ntI_NN VB_NN

13 tI_NN VB_NN

14 (A)nAk_NN VB_NN

15 (ş)+Ak_NN VB_NN

16 Am_NN VB_NN

17 (y)+(I)m_NN VB_NN

18 mAn_NN VB_NN

19 KAn_NN VB_NN

20 KIn_NN VB_NN

21 (I)t_NN VB_NN

22 (A)y_NN VB_NN

23 tay_NN VB_NN

24 iye_NN NN_NN

25 Ar_NN NN_NN

26 GAr_NN NN_NN

27 at_NN NN_NN

28 keş_NN NN_NN

29 mAn_NN NN_NN

30 baz_NN NN_NN

31 lak_NN NN_NN

32 ist_NN NN_NN

33 DAş_NN NN_NN

34 DAr_NN NN_NN

35 dIz_NN NN_NN

36 CAk_NN NN_NN

37 dIrIk_NN NN_NN

38 cAğIz_NN NN_NN

39 tay_NN NN_NN

40 CIk_NN NN_NN

41 CI_NN NN_NN

42 lIk_NN NN_NN

43 zade_NN AJ_NN

44 yet_NN AJ_NN

45 CI_NN AJ_NN

46 lIk_NN AJ_NN

47 AğAn_AJ VB_AJ

48 KAn_AJ VB_AJ

49 AcAn_AJ VB_AJ

50 IlI_AJ VB_AJ

51 KIn_AJ VB_AJ

52 Il_AJ VB_AJ

53 Al_AJ VB_AJ

54 (I)mtrak_AJ AJ_AJ

55 kar_AJ AJ_AJ

56 CA_AJ AJ_AJ

57 (ş)Ar_AJ AJ_AJ

58 lAk_AJ AJ_AJ

59 (I)ncI_AJ AJ_AJ

60 Acık_AJ AJ_AJ

61 rAk_AJ AJ_AJ

62 lArcA_AJ AJ_AJ

63 (I)msI_AJ AJ_AJ

64 Al_AJ NN_AJ

65 sIl_AJ NN_AJ

66 lI_AJ NN_AJ

67 sIz_AJ NN_AJ

68 sAl_AJ NN_AJ

69 (I)msI_AJ NN_AJ

70 cAl_AJ NN_AJ

71 CIl_AJ NN_AJ

72 sI_AJ NN_AJ

73 DAş_AJ NN_AJ

74 lAş_VB NN_VB

75 lAn_VB NN_VB

76 lA_VB NN_VB

77 sA_VB AJ_VB

78 lAş_VB AJ_VB

79 (A)l_VB AJ_VB

80 t_VB VB_VB

81 (I)r_VB VB_VB

82 DIr_VB VB_VB

83 (I)l_VB VB_VB

84 (I)n_VB VB_VB

85 (I)ş_VB VB_VB

86 AlA_VB VB_VB

37

APPENDIX B

Affix tagset (inflectional / nominal paradigm)

1 lAr number/person

2 I buffer phoneme

3 n buffer phoneme

4 (y) buffer phoneme

5 (s) buffer phoneme

6 I case

7 In[GEN] case

8 A[DAT] case

9 DA[LOC] case

10 DAn[ABL] case

11 ile case

12 Im[1Psn] person_copula

13 Iz[1Ppl] person_copula

14 sIn[2Psn] person_copula

15 sInIz[2Ppl] person_copula

16 m[Poss] possessive

17 mIz[Poss] possessive

18 n possessive

19 nIz[Poss] possessive

20 I possessive

35 mAk_NN nominal

36 AcAk_NN nominal

37 mA_NN nominal

38 sI_NN nominal

39 DIk_NN nominal

40 An_AJ adjectival

41 ki_AJ adjectival

42 ki_PN pronominal

43 cA_AV adverbial

44 cAsInA_AV adverbial

45 ken_AV adverbial

46 sA_AV adverbial

21 i verb

22 DIr copula

23 DI[Past] copula

24 mIş[Perf] copula

25 m[1Psn] person

26 n[2Psn] person

27 k[1Ppl] person

28 nIz[2Ppl] person

29 [3Psn] person

30 lAr[3Ppl] person

31 sInIz[2Ppl] person

32 sIn[2Psn] person

33 Iz[1Ppl] person

34 Im[1Psn] person

38

APPENDIX C

Affix tagset (inflectional / verbal paradigm)

1 (y) buffer phoneme

2 (I) buffer phoneme

3 A buffer phoneme

4 yor imperfective

5 bil ability

6 dur auxiliary verb

7 gel auxiliary verb

8 gör auxiliary verb

9 yaz auxiliary verb

10 kal auxiliary verb

11 ver auxiliary verb

12 koy auxiliary verb

13 AyIm[IMP] imperative

14 sIn[IMP] imperative

15 AlIm[IMP] imperative

16 In(Iz)[IMP] imperative

17 sInlAr[IMP] imperative

18 mA negative

19 ik[1Ppl] person

20 k[1Ppl] person

21 (I)z[1Ppl] person

22 (I)m[1Psn] person

23 nIz[2Ppl] person

24 sInIz[2Ppl] person

25 sIn[2Psn] person

26 n[2Psn] person

27 lAr[3Ppl] person

28 r[Aor] aorist

29 z[Aor] aorist

30 mAktA[Cont] imperfective

31 AcAk[Futr] future

32 mAlI[Necc] necessity

33 DI[Pas] past / perfective

34 mIş[Per] referential / perfective

35 i verb

36 DIr(P) possibility

37 AlI_AV adverbial

38 ArAk_AV adverbial

39 ArAktAn_AV adverbial

40 AsIyA_AV adverbial

41 DIkçA_AV adverbial

42 IncA_AV adverbial

43 Ip_AV adverbial

44 mAdAn_AV adverbial

45 mAksIzIn_AV adverbial

46 ken_AV adverbial

47 sA_AV adverbial

48 cAsInA_AV adverbial

39

APPENDIX D

Turkish Derivational Affixation.

40

41

42

43

44

45

46

47

48

49

50

51

52

53

APPENDIX E
Turkish Inflectional Affixation. Nominal Paradigm.

54

55

56

57

58

59

60

61

APPENDIX F

Turkish Inflectional Affixation – Verbal Paradigm

62

63

64

65

	01-coverA
	02-onay
	03-acknowledgments
	05-thesis
	06-appendix-A
	07-appendix-B
	08-appendix-C
	09-appendix-D
	10-appendix-E
	11-appendix-F

