
T.C.
Mersin Üniversitesi

Sosyal Bilimler Enstitüsü
!ngiliz Dili ve Edebiyatı Ana Bilim Dalı

CORPUS LINGUISTICS THEORY AND
DESIGN AND APPLICATION OF A TURKISH CORPUS

Taner SEZER

YÜKSEK L!SANS TEZ!

Mersin, 2010

T.C.
Mersin Üniversitesi

Sosyal Bilimler Enstitüsü
!ngiliz Dili ve Edebiyatı Ana Bilim Dalı

CORPUS LINGUISTICS THEORY AND
DESIGN AND APPLICATION OF A TURKISH CORPUS

Taner SEZER

Danı"man
Prof. Dr. Mustafa #. AKSAN

YÜKSEK L!SANS TEZ!

Mersin, 2010

i

ÖZET

Derlemdibilim, dilbilimin son yıllarda öne çıkan bir dalıdır. Bu çalı!mada

derlemdilbilim kuramı ve derlemdilbilimin temel kavramlarına kısaca de"inilmi!tir.

Bu çalı!manın temel amacı, internet üzerinden eri!ilebilen, yetkili kullanıcılarca

veritabanına yeni metinler eklenebilen ve çıkartılabilen, ba"lam içinde anahtar kelime

gösterebilen, platform ba"ımsız ve Türkçe karakterleri sorunsuz gösterebilen bir derlem

olu!turmaktır.

Geli!tirilen örnek derlemin kodları çalı!ma içinde verilerek, belirtilen bu temel

özelliklere sahip bir derlemi olu!turmak isteyenlere yardımcı olunmaya çalı!ılmak

istenmi!tir.

Anahtar Sözcükler: derlem, derlem dilbilim, bilgisayar tabanlı dilbilim, kodlama

ii

ABSTRACT

Corpus linguistics is a rapidly developing field in linguistics. In this paper, we

aimed to explain the basic concepts of corpus linguistics.

The study aims to build a corpus which can be reached via internet which is in-

depended of OS, that authenticated users can add or delete data to the corpus database, that

can display hit sets in keyword in context (KWIC) view and can serve Turkish characters,

which are not exist in English alphabet, without any problems.

The code of the sample corpus developed for this study is given in this paper so

that researchers can use it freely.

Keywords: corpus, corpus linguistics, computational linguistics, coding

iii

CONTENTS

ÖZET ...i

ABSTRACT ...ii

CONTENTS ..iii

LIST OF ABBREVATIONS …...vi

LIST OF FIGURES ..vii

INTRODUCTION ...1

CHAPTER I: An Introduction to Corpus Linguistics …...3

I.1 What is Corpus and Corpus Linguistics ...3

I.2 Corpus Related Works in Turkish ..4

I.3 POSTag and Parsing Related Works in Turkish ..5

I.4 A POSTagger Model …..10

CHAPTER II: Concepts of Corpus Linguistics ..12

II.1 Character Encoding and Encoding ...12

II.2 Genre and Domain ..13

II.3 Synchronic and Diachronic ..14

II.4 Balance and Sampling ..14

II.5 Representativeness of Corpus Design ..15

II.6 Parsing and Part of Speech Tagging ...16

II.7 Tokenization and Lemmatization ...18

II.8 Frequency ...18

CHAPTER III: Corpus Design ..20

III.1 Planning ..20

 III.1.1 Specifications and Design ..21

iv

 III.1.2 Selection of Sources ...21

 III.1.3 Obtaining Copyright Permissions ..22

 III.1.4 Data Capture ...23

 III.1.5 Annotation ..24

 III.1.6 Encoding ...26

 III.1.7 POS-Tagging ..29

 III.1.8 Tokenization ...29

 III.1.9 Initial Assignment of Tags ...30

 III.1.10 Tag Selection (Disambiguation) …...30

 III.1.11 Idiomtagging ...32

 III.1.12 Post Claws Period-Template Tagger ..32

III.2. Corpus Processing - Corpus Workbench (CWB) ...33

 III.2.1.Caching ...34

 III.2.2 Collocations ..35

 III.2.3. Distribution ..35

 III.2.4. Sub-corpora ...36

 III.2.5 Regular Expressions ...36

CHAPTER IV: A Simple Sample …..38

IV.1 What's in The Box ...39

 IV.1.1 MySQL Database ...39

 IV.1.2 Php Code ..41

CONCLUSION ..48

REFERENCES ...50

APPENDIX ...53

v

A. Genre Classification for Spoken Texts of BNC..52

B. Genre classification for written texts of BNC ..53

C. Genre and Domain of BNC …..54

D. The BNC Basic Tagset (C5) ..55

E. BNC Ambiguity Tagset ..57

F. List of Tags in BNC Enriched Tagset (Claws 7) ..58

vi

LIST OF ABBREVATIONS

ANC American National Corpus

AFL Academic Free License

BNC British National Corpus

CQP Corpus Query Processor

CWB Corpus Workbench

METU Middle East Technical University

TNC Turkish National Corpus

UTF-8 Unicode Transformation Format

W3C World Wide Web Consortium

IETF Internet Engineering Task Force

IMC Internet Mail Consortium

TEI Text Encoding Initiative

GPL General Public License

EULA End User License Agreement

OCR Optical Character Recognition

XML Extensible Mark-up Language

SGML Standardized Generalized Mark-up Language

SQL Structured Query Language

PHP Personal Home Page

vii

LIST OF FIGURES

Figure 1. Zemberek Online Demo …..6

Figure 2. Zemberek Parsing Example ..7

Figure 3. Zemberek Bash Interface ..7

Figure 4. Zemberek Parsing ...8

Figure 5. TNC POSTagger Flowchart …..10

Figure 6. BNC Annotation ..25

Figure 7. BNC Search Page ..26

Figure 8. Finite State Machine Parsing of Word Taner ..31

Figure 9. BNC Interface ..33

Figure 10. BNC Collocation ...35

Figure 11. BNC Distribution ..36

Figure 12. BNC Regular Expression ..37

Figure 13. TsC Data upload ..39

Figure 14. TsC MySQL Database ...40

Figure 15. TsC Main Screen ...45

Figure 16. TsC No Result Screen ...46

Figure 17. TsC Result Screen ...46

Figure 18. TsC KWIC Screen ...47

1

INTRODUCTION

This study aims at peeking the corpus linguistics theory and the design and the

development processes of a Turkish Corpus.

Corpus is a Latin word that means “body”. In linguistics, corpus (plural

corpora) refers to collected and combined data from written or spoken language, which is

served to obtain linguistic data or used to verify hypothesis about a language. There are

many other definitions for corpus.

The rise of the corpus linguistics has a parallel line with the development of

computer technology. As computer technology made it possible to store and process larger

amount of data, corpora also get larger. The features of corpora are now more detailed and

can supply more information to linguists. The numbers of corpora are increasing rapidly in

the last decades.

Though seems only related with linguistics, corpus linguistics also serves for

computational linguistics, cryptologist, educational linguists, etc.

When we talk about corpus today, we mention digitalized (computerized)

collection of texts and the tools that supply the usage of the corpus. However, even not

called as “corpus linguistics”, the text collection and studying of language via this

collection has deeper roots. In 1897 Kading collected an enormous number of words for

his age. In 1912 J.B. Estoup formed a French corpus for his studies on frequency

graphemes. In 1913 Markov and in 1936 Zipf compiled English corpora as well.

Another linguist Boas studying American-Indian language collected texts in

1940.

2

In this study, we will concern with the existing corpora, especially BNC and

how it came to life. More than all, the main concept is to build an online sample corpus of

Turkish which has never built before.

Today there are many well-known corpora accepted as representative and

reliable. Some of them are; British National Corpus (BNC), American National Corpus

(ANC), Bank of English. Brown Corpus, etc. In this paper the well-known British National

Corpus (BNC) will be the base both in design and criteria. The corpus that we build is

TsCorpus (will called as TsC) and will try to sample a simple corpus building with basic

features.

3

CHAPTER I: An Introduction to Corpus Linguistics

I.1 What is Corpus and Corpus Linguistics

The definition for corpus in Longman Dictionary is “a large collection of

written or spoken language, that is used for studying the language”. Actually, this

definition is clear enough for users of the dictionary. But from the viewpoint of linguists,

there is much more to add on.

Below there are descriptions of “corpus” by important scholars. One of the

early definitions of corpus comes from Francis:

“corpus as a collection of texts assumed to be representative of a given

language, or other subset of language, to be used for linguistic analysis”.

Similarly Sinclair (1991) define corpus as:

“corpus is a collection of some pieces of language that are selected and ordered

according to explicit linguistic criteria in order to be used as a sample the language”.

McEnery, Hardie and Baker puts a slightly different definition that underlines

the digital side of corpora.

Corpora are usually large bodies of machine-readable text containing thousands

or millions of words. A corpus is different from an archive in that often (but not always)

the texts have been selected so that they can be said to be representative of a particular

language variety or genre, therefore acting as a standard reference.

 (McEnery, Hardie and Baker 2006)

Like many other definitions given by the scholars above, all these definitions

are related not only with “a simple” collection of texts, but also the criteria and some

specific properties. The main concepts of corpus linguistics will be argued in the next

chapter.

4

In our era, in linguistics, corpus stands for a large collection of texts, that are

combined according to rules of corpus linguistics, digitalized according to standards of

corpus linguistics and served to users with useful interface and tools.

Corpus linguistics aims to pull of examples of language from a large scale of

texts, including spoken and/or written language. Chomsky underlines that, the daily

language may have many mistakes, so the examples that are going to be used in linguistic

studies should be driven from carefully created samples.

Despite to Chomsky, corpus linguistics defend that the authentic texts represent

the language in use better and can carry out better samples which can drive investigators to

the solution that they investigate.

I.2. Corpus Related Works in Turkish

The Brown Corpus had been build in 1960's, and there are number of former

corpus linguistics studies in English as well; the very first corpus related works in Turkish

traces back to late 1980's. One of the first computational linguistics study belongs to

Aydın1. His thesis was related to forming a morphological parser for Turkish. In the

following years, interest on the topic increased.

The Turkish Treebank (Oflazer et al. 2006), created by the Middle East

Technical University and Sabancı University. This Turkish Treebank is based on a small

subset of the METU Turkish Corpus.

METU Turkish Corpus is a balanced collection of 2 million words from 10

genres. The collected texts. METU includes

1 “Türkçenin Özdevimli Biçimbilgisi Çözümlemesine !lk Yakla"ım” Aydın, K., Hacettepe University.

1975.

5

There are two on going corpus at the time this study is being held. The first is

METU spoken Turkish Project.2 The project aims to build a spoken corpus of Turkish

consisting of one million word that all linguistically analyzed.

The other project, Turkish National Corpus (TNC) is founded by TUB!TAK3

and studies are going on at Mersin University.

TNC aims to build a Turkish corpus that will include both spoken and written

language samples, consist of 50 million-POSTagged words.

Compared to METU Corpus, both these projects could be available via

internet.

I.3. POSTag and Parsing Related Works in Turkish

In Turkish, the pioneer POSTagging and morphological parser studies came

from Oflazer (1994). Oflazer worked with PC-KIMMO environment to test a tagger. In

1994 he implement Tomita's parser which had developed in Carnegie Mellon University

during machine translation studies.

The very recent natural language processing project of Turkish is Zemberek4.

Zemberek started as a built-in spell checker plug-in for the open sourced operating system

Pardus, developed by TUBITAK, then became an independent project. Zemberek is now a

platform independed, general purpose Natural Language Processing library and tool set

that can handle Turkish and Turkic languages.

2 http://std.metu.edu.tr/
3 Scientific and Technological Research Council of Turkey
4 http://code.google.com/p/zemberek

6

Figure 1. Zemberek online demo

This figure above represents the result for parsing the word gelebilmek. In this

case Zemberek solves only one parsing for the input word. On some cases, Zemberek

parses more than one solution for the input word. Figure 2 shows how more than one

solution is represent by Zemberek.

7

Figure 2. Zemberek parsing example

Figure 3. Zemberek Bash Interface

8

Figure 3 is the screenshot from Pardus 2009.2 bash. Zemberek bash command

zpspell is used for spell checking for the sentence Bugün güzel bir gün olecak. The verb

olacak had misspelled on purpose. Zemberek offered olecik and olacak as the correct form.

Using source code of Zemberek, the input text can be processed to form a text file

with the suggestions of POSTagged forms. If the all suggestions are the same word classes

for a word, as seen on figure 2, then the correct POStag could be attached to the word. In

some cases Zemberek offers more than one solution that are also different word-classes.

Figure 4 shows the suggestions for the word gelecek parsed by Zemberek. The

solution set contains both the NOUN and VERB classes for the input.

Figure 4. Zemberek parsing

9

In this case, where Zemberek outputs more than one solution, the solution set

should be checked statistically and/or manually to found out the correct POSTag.

As Zemberek is not designed as a morphological parser, it has a very limited

functionality on morphological processes. Therefore the rule sets for Zemberek should be

developed in order to use it a morpholocial tools. Below is an example of Zemberek code:

 ekle(uretici(SESSIZ_YUMUSAMASI, new Yumusama()).
 sesliEkIleOlusur(true).
 yapiBozucu(true));

 ekle(uretici(SESSIZ_YUMUSAMASI_NK, new YumusamaNk(alfabe)).
 sesliEkIleOlusur(true).
 yapiBozucu(true));

 ekle(uretici(ISIM_SESLI_DUSMESI, new AraSesliDusmesi()).yapiBozucu(true));
 ekle(uretici(CIFTLEME, new Ciftleme()).

 sesliEkIleOlusur(true).
 yapiBozucu(true));

 ekle(uretici(FIIL_ARA_SESLI_DUSMESI, new AraSesliDusmesi()).yapiBozucu(true));
 ekle(uretici(KUCULTME, new SonHarfDusmesi()).yapiBozucu(true));
 Map<String, String> benSenDonusum = new HashMap<String, String>();
 benSenDonusum.put("ben", "ban");
 benSenDonusum.put("sen", "san");

 ekle(uretici(TEKIL_KISI_BOZULMASI, new YeniIcerikAta(alfabe, benSenDonusum)).yapiBozucu(true));
 Map<String, String> deYeDonusum = new HashMap<String, String>();
 deYeDonusum.put("de", "di");
 deYeDonusum.put("ye", "yi");
 ekle(uretici(FIIL_KOK_BOZULMASI, new YeniIcerikAta(alfabe, deYeDonusum)).yapiBozucu(true));

KIMMO uses rule sets. Below is an example from Kimmo rule set:

; devoicing
RULE " {b, d}:{p, t} <=> _# | _ +:0 (X:0) [CONS | c:C]" 7 10

 b d b d # + X CONS c @
 p t @ @ # 0 0 CONS C @
 1: 2 2 3 3 1 1 1 1 1 1
 2. 0 0 0 0 1 4 0 0 0 0
 3: 2 2 3 3 0 6 1 1 1 1
 4. 0 0 3 3 0 0 5 1 1 0
 5. 0 0 3 3 0 0 0 1 1 0
 6: 2 2 0 0 1 1 7 0 0 1
 7: 2 2 0 0 1 1 1 0 0 1

10

I.4. A Posttagger Model

The ongoing TNC project aims a POSTagged corpus. Therefore, a PosTagger

should be coded. Below is the flowchart of TNC POStagger model.

Figure 5. TNC POSTagger Flowchart

11

It's no need to say that the input text is already processed to form processable data.

These pre-processes (tokenization, lemmatization, etc.) argued on the next chapter. One

other pre-process is processing the input text by matching the lexicon. If the input word is

a match of lexicon then the probable tag is added directly.

As the first step, input text is sent to a morphological analyzer. This analyzer has a

rule set, and a list of roots and fixes. The probable tag is added to the word and the output

is sent to statistical testing which uses a statistical database.

Statistical dependency parsers first compute the probabilities of the unit-to-unit

dependencies, and then find the most probable dependency tree T among the set of

possible dependency trees (Oflazer:2006). If the word is correctly tagged than it is sent to

corpus database.

TNC POSTagger will also use a manually tagged corpus in order to increase the

success ratio.

12

CHAPTER II: Concepts of Corpus Linguistics

It’s not surprising that corpus linguistics has been built up it’s own lexicon. In

this chapter we will focus on these concepts which are the keywords for corpus linguistics.

Some of the titles that are going to be mentioned below would be familiar for the people

with the knowledge of computer literacy. The titles below are not deeply discussed but

handled with their most basic properties. Further information will be given in following

chapters.

II.1. Character Encoding and Encoding

The character is the smallest unit in language processing. For computers, every

text is formed by characters. Every stored text has more complicated signatures included in

the file header. This header contains different information about the file that depends on

the file type. For text files, one of the vital information stored in the header is the encoding

of the file.

On the computational side, this encoding is called as “character encoding” or

“character set”. Basically, the character encoding is a map of characters that are used and

allowed to use in a file. There are many different character encodings. Some encodings are

operation system depended. “Mac Turkish” encoding or “Windows 1254” are Turkish

encodings for these operating systems. Some others like “ISO 8859-1 (Western Europe)”,

“ISO 8859-9” (Western Europe with amended Turkish character set) are most commonly

used for web.

For international perfection of displaying characters, “UTF-8” (Unicode

Transformation Format) character encoding is advised. UTF represents a general set with

subsets UTF-7, UTF-8, UTF-16, UTF-32. What makes UTF different than other character

13

sets is the variable byte length of each character. In UTF-8, each character is represented

by 1 to 4 bytes. By this byte order and length, the first 128 character is fitted into one byte

and the following 1920 is fitted into two and more bytes.

World Wide Web Consortium (W3C), The Internet Engineering Task Force

(IETF) and Internet Mail Consortium (IMC) requires UTF-8 encoding for related tasks.

In corpus linguistics, as text files are the fundamental of all, corpora that are

aimed to be use internationally have to build using UTF-8 character encoding.

The encoding is totally different from character encoding. Encoding is one of

the major steps in corpus design. McEnery (2006) says that encoding “rules the way of

representing elements in texts such as paragraph breaks, utterance boundaries etc.” We

can say that an encoded text has a manual for user.

There is a consortium named Text Encoding Initiative (TEI) works on

developing and maintain standards for the representation of texts in digital form. Some

corpora including BNC used TEI standards.

Basically, encoding a text is compiling a list of markups in order to keep every

data in an order. The specified labels are attached to the specified parts of the text. In most

cases the whole text, paragraphs, sentences and words are marked.

II.2. Genre and Domain

The word genre comes from French word class which is originated from Latin.

In corpus linguistics genre refers to distinctive type of text. Each text that is added to

corpus database is marked for it’s genre. Religion, fiction, academic writing etc. are

examples of genres of BNC. The complete list of codes and genre distribution of BNC is

shown in appendix A and B.

14

II.3. Synchronic and Diachronic

As we mentioned before, a corpus is a collection of texts and these texts are

collected in order to make linguistic researches. Therefore the texts must be collected in an

order.

One of the important criteria about the texts is the time period of the them. A

synchronic corpus consists of texts that have been collected from the same time period of

corpus building. Synchronic corpus allows users to make researches from the particular

period of time of the target language in which it is constructed.

Opposite to synchronic corpus, diachronic corpus contains texts from a larger

period of time. Diachronic corpus give an option to researchers to track back in time about

the target language, and figure out linguistic changes.

II.4. Balance and Sampling

In corpus design, one of the major problem is making the corpus balanced and

representative. Balance, sampling and representativeness are closely related. A balanced

corpus is known as containing texts from a large scale of genres. McEnery (2006) explains

balanced corpus as a corpus that contains texts from a wide range of different language

genres and text domains. For example, it may include both spoken&written, and

public&private texts. Scholars agreed that there is no scientific measure for a balanced

corpus.

The most widely followed approach on balancing corpus is that corpus-

builders adopt an existing corpus model when building their own corpus (Aksan&Aksan

2009).

15

Collecting maximum types of different genres can represent language more

effectively. The genres are shown in the corpus interface as a search criteria. Most corpora

allow users to make sub-corpus depending on genres.

Sampling is an other important issue about corpus design. Sampling means

deciding which part of the chosen text will be used in the corpus database. BNC for

example, composed of text samples generally no longer than 45,000 words. The sampling

of texts may be from the beginning, end or middle of the text. Besides, by the sampling

procedure, repeating words or word phrases are not allowed to be included in corpus

database.

II.5. Representativeness in Corpus Design

A corpus could be called representative if it has enough number of words

(generally more than 10 or 20 million) that are collected from a wide range of genres. In

other words, the more data a corpus has the more representative it is. A representative

corpus can be a source to make hypothesis about the target language. McEnery et. al

explains representativeness as follows.

For a general corpus, it is understandable that it should cover, proportionally, as

many text types as possible so that the corpus is maximally representative of the

language or language variety it is supposed to represent

(McEnery, Xino and Tono, 2006).

Biber (1993) defines representativeness from another point. According to him

“representativeness refers to the extent to which a sample includes the full range of

variability in a population.” (Here, Biber refers to language variety as population.)

Biber (1993) emphasizes that “the limits of the population that is being studied

must be defined as clearly as possible before sampling procedures are designed”.

16

McEnery also says that there is no reliable criteria for measuring the balance and

representation of a corpus.

The general idea about the balance and representativeness of a corpus is that,

as more genres are added to corpus database, the corpus gets more close to be

representative. BNC is commonly accepted as a representative corpus. The genres in BNC

is shown in Appendix C. BNC has 24 spoken and 47 written genres in total 71 genres,

ranging from emails to personal letters, classroom spoken samples to public debates.

II.6. Parsing and Part of Speech Tagging

Parsing, basically, is assigning labels to sentences and words and their

constituents. McEnery(2006) says that when a text is parsed, tags are added to it in order to

indicate its syntactic structure. He also exemplifies a parsed text as the start and end points

of units such as noun phrases, verb phrases, and clauses would be indicated by parsing

tags.

Atkins (1993) define parsing as “to assign a fully labeled syntactic tree or

bracketing of constituents to sentences of the corpus.”

In corpus linguistics, parsing is associated with morphological analysis. A

morphological parser (analyzer) is a computer software that determines the word structure

in terms of the root, affixes and other morphological features.

Parsing involves the procedure of bringing basic morphosyntactic categories

into high-level syntactic relationships with one another. This is probably the most

commonly encountered form of corpus annotation after part-of-speech tagging. Parsed

corpora are sometimes known as tree-banks. McEnery (2006) defines part of speech

17

tagging (POSTag) as “POSTAG is a type of annotation or tagging whereby grammatical

categories are assigned to words.”.

After a text had been processed by a POS tagger, each word is marked up with

the appropriate tag. There are many different tag sets. CLAWS is one of the major tagset.

The CLAWS1 tagset has 132 basic word tags. CLAWS2, which is developed between

1983-1986 has a revised 166 word tags.

During the tagging process, some words can not be defined to have only one

word class. These words are called ambiguous. Ambiguity is a great problem in POS

tagging. The words which are not clear belong to one specific word class are tagged as

ambiguous.

Below is a sample POS tagging representation of the sentence “I will certainly

keep you informed about the corpus project.” from BNC.

I <PNP> will <VM0> certainly <AV0> keep <VVI> you <PNP> informed

<VVD> about <PRP> the <AT0> corpus <NN1> project <NN1> . <PUN>

The whole tagset of BNC which is also known as BNC basic tags set is shown

in appendix D. The ambiguity tag list has shown in appendix E, and CLAWS75 which is

also known as BNC enriched tag set is shown in appendix F. This enriched set used

tagging of the core corpus of BNC which is including 2 million words both from written

and spoken data.

5 See Appendix F

18

II.7. Tokenization and Lemmatization

In order to POS tag a text, the text must be tokenized. Tokenization is the

segmentation of a text into individual word-tokens. A token is the word level unit in the

text. In linguistics a lemma is the different sightings of the same lexeme in the language.

For example, occurrences of words such as “dogs”, “dogged” and “dogging” are lemmas

of “dog”; “does”, “did” and “done” are lemmas for “do”.

McEnery and Wilson (2001) and Leech (1997) states that “lemmatization is

important in vocabulary studies and lexicography, e.g. in studying distribution pattern of

lexemes and improving dictionaries and computer lexicons”.

During tokenization process, each unit of the text is separated into one-word-

per-line format. \n stands for the new line character in computational world. With a simple

piece of code, a text file can be tokenized. Below is the sample python6 code for

tokenization. This code reads the input file and replaces each space with the new line

character.

print [l.split(“ ”) for l in file(“<filename>”).read().split(“\n”)]

Christ (1996) defines four main steps for efficient encoding where the

transformation of the text file in one-word-per-line format is the first step.

II.8. Freqency

Frequency, in corpus linguistics, represents the ratio of a word (token)

compared to the total number of words in corpus. This is called raw frequency and

6 Python is very powerful programming language.

19

calculated by dividing the total number of words in corpus to the number of the found

result. However this number is useless since there is no other criteria to compare with.

For example the word “eternity” (searched both singular and plural form by

using a regular expression) is found 426 times in BNC. The raw frequency of this token is

98.313.429/426 and this gives us the raw frequency as 230.7. As we searched the same

token limited to written part of BNC, the total hit is 379 and in spoken part of BNC, the

number of the hits is 47.

We should notice that, we still have not enough clue to make a hypothesis

about our token as the total number of written and spoken part is BNC is 90% to 10%.

Thus, the difference of the ratios should be equalized to a common base. This common

base is mostly used as per million words.

In our example, the token eternity seems as used 8 times in written language

but when we carry the numbers to a common base, the ratio of total hits become 421 in

written and 470 in spoken which leads us to find out that the token eternity has more

frequency in spoken language.

20

CHAPTER III: Corpus Design

Corpus design is a heavy job; planning of a corpus is a detailed work. Atkins

et.al. (1991) defines five major steps for corpus design. These steps are planning,

permissions, data capture, text handling and user feedback and corpus development.

Most of the corpora are designed by following the steps of a previously build

corpus. The BNC model has been followed in the construction of the American National

Corpus, the Korean National Corpus, the Polish National Corpus, and the Russian

Reference Corpus (McEnery et.al: 2006).

The ongoing Turkish National Corpus (TNC) project is also modeling BNC as

Aksan&Aksan (2009) say. They underline that only the necessary replacements will be

done which are driven by the differences of the target language.

III.1 Planning

The planning stage of corpus building is the first and the most important part of

the process. During planning, corpus developers should strictly decide what they aim.

Following procedures of corpus design depends strictly on planning.

The linguistic design of the corpus, the type of corpus, how the data will be

collected, how the data will be handled and how it is going to be served to users are all the

inner steps of planning. Another point is planning the costs of the corpus. According to

Atkins et. al. (1991) the primary stages of a well planned corpus are:

specifications and design

selection of sources

obtaining copyright permissions

data capture and encoding/markup

corpus processing.

21

III.1.1. Specifications and Design

As we mentioned above there are different types of corpora. Designers should

choose one of these corpus types. Are they going to built a reference corpus or a monitor

corpus, a synchronic corpus or a diachronic corpus? Will it be a tagged corpus or not? If

the corpus is going to be a tagged corpus, how the corpus will be tagged? Which tagset is

going to use? Will corpus consist of written or spoken language or both of them? How

many words will the corpus consist?

If we focus on the well-known corpus BNC, the designers decided to built a

reference corpus. BNC consists of 100 million words of written and spoken language

which are collected in a period of thirty years (1960-1993), and marked up POS tagging

using variations of CLAWS tag set.

Also the interface of the corpus is a problem that should be considered

carefully. The interface should be simple enough to serve each user and should be reach by

most of the common operating systems.

III.1.2. Selection of Sources

The selection of sources of the corpus database is very important as it will

effect the genres and domains in the corpus. As mentioned above, as a chain reaction, the

range of the genres affects the representativeness of the corpus.

BNC has a various sources including catalogs of books published yearly,

bestseller lists, prize winners, library lending statistics, list of current magazines and

periodicals, etc. Texts were classified into three selection features: domain (subject field),

time and medium.

22

During the design of BNC each selection feature was separated into classes.

Medium for example, separated into books, periodicals, unpublished texts etc., domain into

imaginative, informative, etc.

For a Turkish corpus, unfortunately it is not that much easy to reach this kind

of lists. Most of the publishing houses do not keep statistics, library lending statistics. This

is an important problem to deal with. Even the most of the magazines and periodicals

which are being published currently are not digitalized or hard copies of the previous

issues are not archived by the publishers.

III.1.3. Obtaining Copyright Permissions

A major problem that the corpus designers have to deal with is obtaining

copyright permissions. As a corpus will be open for a large group of users, and may

became a commercial item, the data sources should be obtained with copyright

permissions.

Atkins, et. al. (1991) underlines the importance of copyrights:

The effect for the corpus builder is that it is quite likely that any text, (or sample

of text) which is to be computerized and included in a corpus, will be under copyright

protection and that permission will have to be obtained for its use.

They also state that if the corpus is to be used for commercial purposes all

these copyright licenses should be clearly stated with the copyright holder.

Moreover, it is not only the texts but also the software used during corpus

building and the usage of corpus should be licensed. If these software has different

copyrights, then according to the license type, the necessary notifications should be added

to the distributed or served corpus.

23

There are many different types of licenses; GPL (GNU-General Public

License), AFL (Academic Free License), EULA (End User License Agreement), etc. Each

license type has specific issues related to usage and distribution of the software.

III.1.4. Data Capture

As corpus is a collection of texts in a digitalized database, each source should

be carried into digital platform. This process is called data capturing. Data can be carried

into digital platform in three main ways.

The first source of data is the texts that are already stored on computers. These

texts can be found from publishing houses and/or from web sites. Most of the major

national newspapers and magazines have their issues on their web sites (For Turkish

newspapers most of them are dating back to no more than mid 90’s). These data could be

collected easily in order to use in corpus database.

The older sources that are not already digitalized could be computerized by

scanning. The scanning process consists of three steps. First of all each page should be

scanned and renamed. During the renaming, a key point is adding leading numbers to the

scanned pages. This protects computers to mix up the order of the pages. After renaming

each page could be sent to OCR software (Optical Character Recognition). These software

convert images to texts. Then the achieved text file should be saved in the format desired

by corpus designers.

Finally, if the source is not suitable for scanning, it should be typed. Poor

quality books or magazines, newspapers that are large in size of pages or hand writings are

not suitable for OCR. These materials should be typed.

24

Each captured data needs one more checking. This checking process involves

checking the file type and character encoding of the file, discovering any mistake carried

from OCR software and spelling mistakes that could be made during typing.

Also during this checking process, operators control the text file to fit perfectly

to the pre-defined standards. For the encoding and markup step, each text file should have

the same properties. For example, if the encoding software has set up for handling the text

according to number of the new line or end of line marks, each text should have the same

property.

III.1.5. Annotation

Each text file added to corpus database should have been annotated. This

annotation information enables users to create sub-corpus and make sub-searches. The

genre, domain, author related, and similar information form the annotation of the file.

Leech (1997) underlines the importance of annotation: “it (annotation)

enriches the corpus as a source of linguistic information for the future research and

development”.

This figure below samples the annotation information for a written text in BNC.

Each piece of information seen on the left side column is also a key for search criteria.

25

Figure 6. BNC Annotation

26

Figure 7. BNC Search Page

III.1.6. Encoding

As mentioned in the first chapter, encoding identifies how the texts will be

represented by means of paragraph breaks or utterance boundaries, etc.

Most of the modern corpora use XML (Extensible Markup Language) for

encoding texts. An XML encoded text can represent any division that is needed by corpus

builders.

Formerly SGML (Standardized Generalized Markup Language) was used for

encoding of the documents in electronic format. As internet evolves and the needs of

dynamic content rises, SGML and similarly HTML needed to be updated for serving

dynamic content. Therefore, the need of a new and more flexible markup language arise.

The Extensible Markup Language (XML), in this mean, fits the needs of marking up the

electronic documents.

27

XML is a general-purpose markup language. It is classified as an extensible

language because it allows users to define their own tags.

The main differences between SGML and XML are:

1. XML is simpler compared to SGML.

2. XML documents should be readable with SGML parsers while some SGML

might produce errors in XML parsers.

XML’s primary purpose is to create an easier way for the sharing of structured

data across different systems, especially over internet. It is used to encode documents.

A simple XML marked up data looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="sample.xsl"?>
<LIST>
<COMP>
<MODEL>PPC G4</MODEL>
<CPU>DP 1.0 GHZ</CPU>
<RAM>1 GB</RAM>
</COMP>
<COMP>
<MODEL>iMac</MODEL>
<CPU>400 MHZ</CPU>
<RAM>512 Mb</RAM>
</COMP>
<COMP>
<MODEL>iBook</MODEL>
<CPU>1.2 GHZ</CPU>
<RAM>512 MB</RAM>
</COMP>
</LIST>

Piece of XML marked up data

This XML sample contains data including computer models and their features.

The tag names (MODEL, CPU, RAM) are defined by coder.

As mentioned above, XML is for sharing structured data. The corpus texts

created using XML can be carried to any other software that can parse XML. This means

that the data of the corpus is not needed to be processed each time that corpus designers

want to use it with another software or in different ways.

28

The example below represents the XML usage from BNCWeb.

<wtext type="FICTION">
<s n="1">
<w c5="NN1" hw="chapter" pos="SUBST">CHAPTER </w>
<w c5="CRD" hw="1" pos="ADJ">1</w>
</s>
<p>
<s n="2">
<c c5="PUQ">‘</c>
<w c5="CJC" hw="but" pos="CONJ">But</w>
<c c5="PUN">,</c>
<w c5="VVD" hw="say" pos="VERB">said </w>
<w c5="NP0" hw="owen" pos="SUBST">Owen</w>
<c c5="PUN">,</c>
<c c5="PUQ">'</c>
<w c5="AVQ" hw="where" pos="ADV">where </w>
<w c5="VBZ" hw="be" pos="VERB">is </w>
<w c5="AT0" hw="the" pos="ART">the </w>
<w c5="NN1" hw="body" pos="SUBST">body</w>
<c c5="PUN">?</c>
<c c5="PUQ">'</c>
</s>
</p>
</div>
</wtext>

As we observe the tags, we can simply identify the tags and their

correspondents. <wtext type="FICTION"> is for written texts and also this tag includes

the genre that the text is belong to. <s n="1"> represents the beginning of the sentence and

also includes the sentence number in the text. The tag <p> refers to the beginning of a new

paragraph. Each c5 mark represents the tag set the text belongs to, in this case which is

CLAWS5.

Notice that some tags began by <w c5> and some began <c c5>. Here “w”

represents that the content of this tag is a word and “c” represents that the content of this

tag is a punctuation mark.

As noticed, each tag should be closed, which means if the tag is opened as <p>

then it should be closed with the losing mark</p> to inform the computer what is included

in the tag and where it begins and ends.

29

III.1.7. POS-Tagging

POS-Tagging of a corpus is a very detailed compilation of some processes. We

will now take a peek how BNC had been POStagged. BNC had been POSTagged by using

CLAWS4 automatic tagger and Template tagger.

The software used to tag BNC was CLAWS4 automatic tagger, which had been

developed by Roger Garside at Lancaster, and a second program, known as Template

Tagger, developed by Mike Pacey and Steve Fligelstone.

The tagging process consists of six steps, which are tokenization, initial tag

assignment, tag selection, idiom tagging, template tagger and post-processing. Now we

will focus on each of these steps.

III.1.8. Tokenization

For automatic tagging of the corpus data, texts should be divided into sentences

and individual words. Word boundaries are mostly spaces, and are not hard to split each

word from the other automatically. In III.1.7, we have sampled how to tokenize texts using

a python code.

The difficult part of this process is handling sentence boundaries and separated

texts into sentences. Full stops, at first, are thought to be sentence breakers but they are

ambiguous as they can also be used as abbreviation marks (English B.C. or Turkish M.Ö.),

between dates (24.06.1983) and to represent ordinal numbers (the representing of 1st (first)

is “1.” in Turkish).

30

III.1.9. Initial Assignment of Tags

This process is assigning one or more tags to each word. For unambiguous

words one tag is added to word. During this process, for ambiguous words, every possible

tag is added to word. The number of the maximum possible tag is seven.

Let's observe the possible tags for the token book as an example. It could be

both NN1(singular common noun) and VVB (the finite base form of lexical verbs).

Leech and Smith (2000) explain this procedure of CLAWS POS-tagging

within two steps. In the first step software tries to match the input token with the pre-

prepared lexicon. If the software succeeds POSTag the word, it attaches the tag to the

word. If there are more than one possible tag for the word then software initialize a new

process. Leech and Smith (2000) list this process as:

• Look for the ending of a word: e.g. words in -ness will normally be nouns.

• Look for an initial capital letter (especially when the word is not sentence-

initial). Rare names which are not in the lexicon and do not match other procedures will

normally be recognized as proper nouns on the basis of the initial capital.

• Look for a final -(e)s. This is stripped off, to see if the word otherwise

matches a noun or verb; if it does, the word in -s is tagged as a plural noun or a singular

present-tense verb.

• Numbers and formulae (e.g. 271, *K9, ß+) are tagged by special rules.

• If all else fails, a word is tagged ambiguously as either a noun, an adjective or

a lexical verb.

III.1.10. Tag Selection (Disambiguation)

On the previous stage, every possible tag had added for the ambiguous words.

Now, in this stage, the software elects the most possible tag among the ones carried before.

It's important to notify that the tags are not deleted but ordered by means of being the most

probable tag for the given word.

31

In this process the software uses an algorithm known as Viterbi algorithm. This

algorithm depends on Hidden Markov Model (HMM) and aims to find the most probable

ordering of the input possibilities.

Here we should explain HMM. HMM is a set of finite states of the possible

distribution of probable situations. The figure below represents how a finite state machine

handles the word taner.

Figure 8. Finite state machine parsing of word taner

The algorithm starts processing the input data by the initial unit and goes on

one by one. Each unit is processed as the result returns as correct. As the algorithm reaches

the target, the process is terminated. In the diagram above, the algorithm began processing

the word taner by the first unit “t”. If step 1does not return as “t”, the algorithm then tries

the second unit. This process keeps on working until the target unit is reached. For each

unit in the input data, algorithm runs the same process and tries to reach the target unit.

After this stage is completed 95-96% percent of the input text will be tagged

correctly.

32

III.1.11. Idiomtagging

During this process, words and tags are matched with a previously prepared

list. Leech and Smith (2000) call this list as a template. A sample of the content of this

template is as following:

• a list of multi-words (of course, because of, etc.)

• a list of place name expressions (e.g. Mount X , where X is some word

beginning with a capital)

• a list of personal name expressions (e.g. Dr., Mr. etc.)

• a list of foreign or classical language expressions used in English (e.g. de jure,

hoi polloi)

• a list of grammatical sequences where there are typically 'slots' in the

sequence which may or may not be filled: e.g. Modal + (adverb/negative) +

(adverb/negative) + Infinitive.

Leech and Smith (2000) states the importance of idiomtagging.

The correct tag can only be selected if CLAWS looks at a word+tag sequence as a whole. In

other words, idiomtagging is more powerful than the Viterbi disambiguation algorithm because it is able to

operate on a “window” of several word tokens at once.

III.1.12. Post Claws -Template Tagger

CLAWS has a success rate of 97%. The left 3% percent of POStagging is

completed in this stage. Template Tagger is an other software which is capable of

processing the output of CLAWS as input data.

Rather than developing/working on CLAWS4 software, builders of BNC

decided to focus on the rule-side of tagging process.

"For the BNC Tagging Enhancement project, we decided to concentrate our

efforts on the rule-based part of the system, where most of the inroads in error reduction

had been made. This involved (a) developing software with more powerful pattern-

matching capabilities than the CLAWS Idiomlist, and (b) carrying out a more systematic

analysis of errors, to identify appropriate error-correcting rules." (Leech:2000)

33

III.2 Corpus Processing - Corpus Workbench (CWB)

As all the stages stated above are done, the chosen texts are ready to use. The

usage of this data needs another bunch of software including background applications that

are not seen by users and others that supply an interface for users.

Here, we will investigate the BNCweb XML edition and the software that

processes it.

CWB is the combination of open sourced software that can handle and process

large amounts of data up to two billion words with linguistic annotation.

The main part of CWB is corpus query processor (CQP) and CQPWeb.

CQPweb serves the web interface of the corpus.

Figure 9. BNC Interface

34

CQP also administrate other jobs including caching of the pre-searched data,

query-sorting, collocations, distribution, creating sub-corpora, usage of regular

expressions, etc.

III.2.1. Caching

Each query is cached by CQP. This is a very useful solution as researcher

works with the same token. Caching helps the software for not making the same query

each time it is called, but also calling the results from the cached base. By this way,

processor usage is reduced and the results can reach faster.

III.2.2. Collocations

One of the main features of CQP is representing the collocations of the

searched token. Collocations represent the environment of the token searched for. CQP can

handle a range of different collocation statistics. Below are the collocation results from

BNCWeb for the token eternity.

35

Figure 10. BNC Collocation

III.2.3. Distribution

CQP can serve the results for the searched token by means of its distribution

compared to the other categories in the corpus. The figure below shows how BNCWeb

serves the distribution for the token eternity.

36

Figure 11. BNC Distribution

III.2.4. Sub-corpora

Sub-corpus is a part of the corpus created by using a limited part of the main

corpus. If the user makes queries only from the data taken from newspapers in whole BNC,

we can say that the user is using a sub-corpus.

CQP enable users to create sub-corpora from the main corpus.

III.2.5. Regular Expressions

CQP has a built-in tool called CEQL that can serve powerful tools for making

queries using regular expressions.

A regular expression is string that represents a specific pattern. CQP can

handle both universal regular expressions and the ones associated to the corpus.

The asterisk (*) for instance represents any character. It is universally in use

ranging operating systems to web, programming languages to console emulators. In a

37

terminal emulator window, the regular expression “*.txt” represent any file that has the

extension “.txt”.

The command below samples how we can count the total number of the words

in all the text files in a directory.

 wc -w *.txt

The command wc (word count) with the parameter -w (word) counts the words

in the files that we limited to as to have any name but the extension “.txt”.

The characters “? * + [] () | _ { } < >” are all used to describe patterns for

regular expressions.

BNCWeb has also its own marks for queries with regular expressions. The

query below shows the results for token “etern*” that derives all the results for every hit

that begins with “etern”.

Figure 12. BNC Regular Expression

38

CHAPTER IV: A Simple Sample

In this chapter we will form our own corpus with the features that we will

explain below. The corpus will be called TsC. The corpus can be reached from

http://derlem.tanersezer.com. The features of TsC are:

• TsC allows users to make queries within 15.000 words chosen from free

licensed texts from Turkish

• TsC allows administrators to add and delete data using web interface

• TsC uses UTF-8 character encoding for database, queries and results

• TsC shows results as in list and Keyword in Context (KWIC)

• The data list that formed TsC could be seen by title, genre, author and date

IV.1. What's in The Box?

TsC build using PHP, HTML and SQL database connection. Why we choose

this two? Although, programming languages like Python and Perl are much capable of

processing language, in TsC, we just in need of making searches and displaying hits on

screen. Almost every host provides their users php-mysql based services. Also using php

and mysql locally on a computer is an easy task even for amateur users on most popular

operating systems like Mac OS Classic, Mac OS X, Windows and Linux distributions.

Therefore, we preferred these two in our sample work. By this choose, we

aimed our code to be applicable by other users.

Below we will focus on how the code works.

39

IV.1.1. SQL Database

TsC keeps its data on a SQL server. All the data is stored in UTF-8 character

encoding. Each data has a unique ID number that is assigned to data during uploading to

database.

Administrators can upload the data using a web interface. This web interface is granted by

user authentication. Below is the figure of TsC data upload screen.

Figure 13. TsC Data upload

Authorized users can use TsC Data upload screen to add new texts to the

corpus data list. 5 main text filed, including the text itself, should be filled. As the user fills

all the text fields, by clicking “Upload Record” button, the new data is sent to the TsC

database. Each new data automatically gets a unique id on the server side.

40

Figure 14. TsC MySQL Database

The database of TsC is so simple. It has a table with five rows keeping data of

“author”, “title”, “genre”, “date”, “metin (text)” and “id”. The “id” is a unique data and

given to the data during upload.

41

IV.1.2. PHP Code

Both the search and serving the results processes are built by using PHP. The

code is compiled of 9 php different files where 1 file supplies the connection to SQL

database, 1 supplies user authentication, 2 supplies the query actions and the rest serves the

results.

The query action code is given below. The code is given by line numbers in

order to point which action is done by which part of the code easily.

1. <?php

2. require_once("db.php");

3. if (strlen(trim($_GET["q"])) > 1) {

4. $aranan = mysql_real_escape_string($_GET["q"]);

5. } else {

6. header("Location: query.php?$aranan");

7. }

8. $sorgu = "SELECT id, metin FROM corpus WHERE metin like '% $aranan %'";

9. $query = mysql_query($sorgu);

10. print "<html><head><meta http-equiv='Content-type' content='text/html; charset=utf-

8'></head><body>";

11. print "<p>";

12. print ($_GET["t"] == 2) ? "Liste Görünümü":"KWIC Görünümü";

13. print " | Yeni Arama</p>";

14. if (@mysql_num_rows($query) > 0) {

15. if ($_GET["t"] == 2) {

16. while ($result = mysql_fetch_assoc($query)) {

17. $kelimeler = explode(" ", $result["metin"]);

18. $index = 0;

19. foreach ($kelimeler as $kelime){

20. $punc = substr($kelime, -1);

21. if ($punc == "." or $punc == "!" or $punc == ":" or $punc == "?"){

22. $yeni_cumle[] = $kelime;

23. if ($found){

24. foreach ($found_index as $i) {

25. $start = (($i - 5) >= 0) ? $start = ($i - 5):0;

42
26. for ($start; $start < $i; $start++){

27. $before[] = $yeni_cumle[$start];

28. }

29. $word = $yeni_cumle[$i];

30. $start = $i + 1;

31. $end = (($start + 6) > count($yeni_cumle)) ? count($yeni_cumle):$i + 5;

32. for ($start; $start <= $end; $start++){

33. $after[] = $yeni_cumle[$start];

34. }

35. $sentences[] = array("id" => $result["id"],"before" => @implode(" ",

$before), "word" => $word, "after" => @implode(" ", $after));

36. $before = array();

37. unset($word);

38. $after = array();

39. }

40. $found = 0;

41. $index = 0;

42. unset($found_index);

43. $yeni_cumle = array();

44. } else {

45. $found = 0;

46. $index = 0;

47. unset($found_index);

48. $yeni_cumle = array();

49. }

50. } else {

51. if (preg_match("/$aranan/i", $kelime)){

52. $found = 1;

53. $found_index[] = $index;

54. }

55. $yeni_cumle[] = $kelime;

56. $index += 1;

57. }

58. }

59. }

60. } else {

61. while ($result = mysql_fetch_assoc($query)) {

62. $kelimeler = explode(" ", $result["metin"]);

63. foreach ($kelimeler as $kelime){

43
64. $punc = substr($kelime, -1);

65. if ($punc == "." or $punc == "!" or $punc == ":" or $punc == "?"){

66. $yeni_cumle[] = $kelime;

67. if ($found){

68. $sentences[] = array("id" => $result["id"], "cumle" => implode(" ",

$yeni_cumle));

69. $yeni_cumle = array();

70. $found = 0;

71. } else {

72. $found = 0;

73. $yeni_cumle = array();

74. }

75. } else {

76. if (preg_match("/$aranan/i", $kelime)){

77. $found = 1;

78. }

79. $yeni_cumle[] = $kelime;

80. }

81. }

82. }

83. }

84. } else { echo "<p>Sonuç bulunamadı!</p>"; exit(0);}

85. if ($_GET["t"] == 2) {

86. $farklı = (count($sentences) > 1) ? "farklı":"";

87. print "<p>'$aranan' araması sonucunda ".mysql_num_rows($query)." ".$farkli." metin

içinde ".count($sentences)." sonuç bulundu.</p>";

88. } else {

89. $farklı = (count($sentences) > 1) ? "farklı":"";

90. print "<p>'$aranan' araması sonucunda ".mysql_num_rows($query)." ".$farkli." metin

içinde ".count($sentences)." cümle bulundu.</p>";

91. }

92. if ($_GET["t"] == 2) {

93. print "<table align='center' width='100%'>

94. <tr><td style='border-width: 0 0 2px 0; border-style: solid'>ID</td><td colspan='3'

style='border-width: 0 0 2px 0; border-style: solid'> </td></tr>";

95. foreach($sentences as $cumle){

96. print"<tr><td>".$cumle["id"]."</td><td align='right'>".$cumle["before"]."</td><td

align='center'>".$cumle["word"]."</td><td>".$cumle["after"]."</td></tr>";

97. }

44
98. } else {

99. print "<table align='center' width='100%'>

100. <tr><td style='border-width: 0 0 2px 0; border-style: solid'>ID</td><td

style='border-width: 0 0 2px 0; border-style: solid'> </td></tr>";

101. $ci = 0;

102. foreach($sentences as $cumle){

103. $color = (($ci % 2) == 0) ? "FFF":"FFC";

104. print "<tr style='background-color:

$color'><td>".$cumle["id"]."</td><td>".$cumle["cumle"]."</td></tr>";

105. $ci += 1;

106. }

107. }

108. print "</table>";

109. ?>

Lines 1 to 9 deal with connection to the database. Lines 10 to 14 draws the

HTML visuals that is served to user including tables and buttons. Note that all between the

tags “<>” and “</>” are shown on screen and are HTML codes which parsed by the web

browser.

45

Figure 15. TsC Main Screen

The lines 17 to 22 defines the classes kelimeler, kelime, punc and yeni_cumle.

The sentence boundaries are determined by using only four punctuation marks

which are “., !, : and ?”. Every sentence tokenized by using the built-in PHP command

explode.

Line 25 defines the proximity of the searched token. The default for TsC is five

words before and after token.

The lines 26 to 83 makes the query action.

The line 84 serves the “Sonuç bulunamadı!” warning in case no result has been

found on TsC database.

46

Figure 16. TsC No Result Screen

Figure 17. TsC Result Screen

Line 86 to 88 writes the result of the search to the screen. The result is given

as: “[searched token]” araması sonucunda [the number of texts] metin içinde [the number of results] sonuç

bulundu.

And finally lines 92 to 109 writes the KWIC form of the query on the screen.

47

Figure 18. TsC KWIC Screen

48

CONCLUSION

At the time of this study is being held, the only Turkish corpus is METU

corpus, consisting of 2 million words, from 14 genres. Most of the words are collected

from newspapers. METU corpus is platform free as its build by using Java7. However

METU Corpus strangely just can handle Turkish characters on Windows OS and only

while the system language is set to English. Also it has a static database, which can not be

modified. It runs locally as software.

The TsC tries to handle Turkish characters platform free by using UTF-8

character encoding. Both the database and user interface are capable enough to serve these

characters with no problem.

The ongoing project “Building Turkish National Corpus (TNC)” aims to build

a general reference corpus consisting of 50 million words. TNC will be POSTagged and

will be served via internet.

TsC that we build within this study could not be a measure of building a

Turkish corpus, but it may humbly show that it is not an extremely difficult job to

construct a corpus by means of computational work. TsC is not a tagged corpus because a

free or available postagger for Turkish is not available yet.

The main problem of constructing a general reference corpus of Turkish is the

difficulty in bringing the two disciplines together. If the scholars and researches of

computer engineers, software developers and linguists can work together a well-built

corpus can be achieved.

We also try to make a work, which had never done before. The whole code,

which runs the TsC, is given in this paper as open source software.

7 Java is a programming language aiming to create executable software for every platform.

49

The corpus linguistic studies in our country will reach a better point if the

results are shared and the software developed are licensed as open-source software.

50

REFERENCES

Atkins, S., Jeremy, C. and Nicholas, O. (1992) “Corpus design criteria”, Literary and

Linguistic Computing 7:1-16.

Biber, D. 1993. Representativeness in Corpus Design. Literary and Linguistic Computing

8/4:243-57

Biber, Douglas, Susan Conrad and Randi Reppen. (1998) Corpus Linguistics, Cambridge

University Press.

Brill, E. (1992) 'A simple rule-based part-of-speech tagger'. Proceedings of the 3rd

conference on Applied Natural Language Processing. Italy: Trento.

McEnery, T., Xiao, R. and Tono, Y. 2006. Corpus-based language studies : an advanced

resource book London: Routledge.

McEnery, T. and Wilson, A. 2001. Corpus Linguistics. (2nd Ed.) Edinburgh: Edinburgh

University Press

McEnery, T. and A. Wilson. Corpus Linguistics. Edinburgh University Press, 2001

McEnery, T, R. Xiao, and Y. Tono. Corpus-Based Language Studies: An Advanced

Resource Book, 2006

McEnery, T., Baker, P. and Hardie, A. (2006) A Glossary of Corpus Linguistics.

Edinburgh: Edinburgh University Press

Fligelstone S., Pacey M., and Rayson P. (1997) 'How to Generalize the Task of

Annotation'. In Garside et al.

Garside, R., G. Leech and T. McEnery (eds.). Corpus Annotation: Linguistic Information

from Computer Text Corpora, Longman, 1997.

Garside R., Leech G. and McEnery A. (eds.) (1997) Corpus Annotation. London:

Longman.

51

Garside R., and Smith N. (1997) 'A hybrid grammatical tagger: CLAWS4'. In Garside et

al. (1997)

Leech, G., Garside, R., and Bryant, M. (1994). CLAWS4: The tagging of the British

National Corpus. In Proceedings of the 15th International Conference on

Computational Linguistics (COLING 94). Japan: Kyoto. (pp.622-628.)

Marshall, I. (1983). 'Choice of Grammatical Word-class without Global Syntactic

Analysis: Tagging Words in the LOB Corpus'. Computers and the Humanities

17, 139-50.

Sinclair, J. (1991). Corpus, concordance, collocation. Oxford: Oxford University Press.

Oflazer, K. (1994). Two-level Description of Turkish Morphology. Literary and Linguistic

Computing, 9(2).

Oflazer, K., Eryi#it, G. (2006) Statistical Dependency Parsing for Turkish. EACL 2006

Oflazer, K., Eryi#it, G., and, Nivre, J. (2008). Dependency Parsing of Turkish.

Computational Linguistics 34(3): (pp.357-389.)

Smith, N. (1997) 'Improving a Tagger'. In Garside et al.

http://info.ox.ac.uk/bnc

http://www.bncweb.info

52

A. Genre classification for spoken texts of BNC

Code Text
S_brdcast_discussn 54
S_brdcast_documentary 10
S_brdcast_news 12
S_classroom 59
S_consult 128
S_conv 153
S_courtroom 13
S_demonstratn 6
S_interview 13
S_interview_oral_history 119
S_lect_commerce 3
S_lect_humanities_arts 4
S_lect_nat_science 4
S_lect_polit_law_edu 7
S_lect_soc_science 13
S_meeting 132
S_parliament 6
S_pub_debate 16
S_sermon 16
S_speech_scripted 26
S_speech_unscripted 51
S_sportslive 4
S_tutorial 18
S_unclassified 44

53

B. Genre classification for written texts of BNC

Code Text
W_ac_humanities_arts 87
W_ac_medicine 24
W_ac_nat_science 43
W_ac_polit_law_edu 187
W_ac_soc_science 142
W_ac_tech_engin 23
W_admin 12
W_advert 60
W_biography 100
W_commerce 112
W_email 7
W_essay_school 7
W_essay_univ 4
W_fict_drama 2
W_fict_poetry 31
W_fict_prose 485
W_hansard 4
W_institut_doc 43
W_instructional 15
W_letters_personal 6
W_letters_prof 11
W_misc 501
W_news_script 32
W_newsp_brdsht_nat_arts 51
W_newsp_brdsht_nat_commerce 44
W_newsp_brdsht_nat_editorial 12
W_newsp_brdsht_nat_misc 95
W_newsp_brdsht_nat_report 49
W_newsp_brdsht_nat_science 29
W_newsp_brdsht_nat_social 36
W_newsp_brdsht_nat_sports 24
W_newsp_other_arts 15
W_newsp_other_commerce 17
W_newsp_other_report 27
W_newsp_other_reportage 12
W_newsp_other_science 23
W_newsp_other_social 37
W_newsp_other_sports 9
W_newsp_tabloid 6
W_non_ac_humanities_arts 116
W_non_ac_medicine 17
W_non_ac_nat_science 62
W_non_ac_polit_law_edu 93
W_non_ac_soc_science 128
W_non_ac_tech_engin 123
W_pop_lore 211
W_religion 35

C. Genre and Domain of BNC

54

Written Domain of BNC

 texts w-units % s-units %
Imaginative 476 16496420 18.75 1352150 27.10
Informative:
natural &
pure science

146 3821902 4.34 183384 3.67

Informative:
applied
science

370 7174152 8.15 356662 7.15

Informative:
social science

526 14025537 15.94 698218 13.99

Informative:
world affairs

483 17244534 19.60 798503 16.00

Informative:
commerce &
finance

295 7341163 8.34 382374 7.66

Informative:
arts

261 6574857 7.47 321140 6.43

Informative:
belief &
thought

146 3037533 3.45 151283 3.03

Informative:
leisure

438 12237834 13.91 744490 14.92

Written Medium of BNC

 texts w-units % s-units %
Book 1411 50293803 57.18 2887523 57.88
Periodical 1208 28609494 32.52 1487644 29.82
Miscellaneous published 238 4233135 4.81 287700 5.76
Miscellaneous
unpublished

249 3538882 4.02 220672 4.42

To-be-spoken 35 1278618 1.45 104665 2.09

55

D. THE BNC BASIC TAGSET (also known as the "C5" tagset)

Tag Description
AJ0 Adjective (general or positive) (e.g. good, old, beautiful)

AJC Comparative adjective (e.g. better, older)

AJS Superlative adjective (e.g. best, oldest)

AT0 Article (e.g. the, a, an, no)

AV0 General adverb: an adverb not subclassified as AVP or AVQ (see below) (e.g. often,
well, longer (adv.), furthest.

AVP Adverb particle (e.g. up, off, out)

AVQ Wh-adverb (e.g. when, where, how, why, wherever)

CJC Coordinating conjunction (e.g. and, or, but)

CJS Subordinating conjunction (e.g. although, when)

CJT The subordinating conjunction that

CRD Cardinal number (e.g. one, 3, fifty-five, 3609)

DPS Possessive determiner-pronoun (e.g. your, their, his)

DT0 General determiner-pronoun: i.e. a determiner-pronoun which is not a DTQ or an
AT0.

DTQ Wh-determiner-pronoun (e.g. which, what, whose, whichever)

EX0 Existential there, i.e. there occurring in the there is ... or there are ... construction

ITJ Interjection or other isolate (e.g. oh, yes, mhm, wow)

NN0 Common noun, neutral for number (e.g. aircraft, data, committee)

NN1 Singular common noun (e.g. pencil, goose, time, revelation)

NN2 Plural common noun (e.g. pencils, geese, times, revelations)

NP0 Proper noun (e.g. London, Michael, Mars, IBM)

ORD Ordinal numeral (e.g. first, sixth, 77th, last) .

PNI Indefinite pronoun (e.g. none, everything, one [as pronoun], nobody)

PNP Personal pronoun (e.g. I, you, them, ours)

PNQ Wh-pronoun (e.g. who, whoever, whom)

PNX Reflexive pronoun (e.g. myself, yourself, itself, ourselves)

POS The possessive or genitive marker 's or '

PRF The preposition of

PRP Preposition (except for of) (e.g. about, at, in, on, on behalf of, with)

PUL Punctuation: left bracket - i.e. (or [

PUN Punctuation: general separating mark - i.e. . , ! , : ; - or ?

PUQ Punctuation: quotation mark - i.e. ' or "

PUR Punctuation: right bracket - i.e.) or]

TO0 Infinitive marker to

UNC Unclassified items which are not appropriately considered as items of the English
lexicon.

VBB The present tense forms of the verb BE, except for is, 's: i.e. am, are, 'm, 're and be
[subjunctive or imperative]

VBD The past tense forms of the verb BE: was and were

VBG The -ing form of the verb BE: being

VBI The infinitive form of the verb BE: be

VBN The past participle form of the verb BE: been

VBZ The -s form of the verb BE: is, 's

VDB The finite base form of the verb BE: do

VDD The past tense form of the verb DO: did

56

VDG The -ing form of the verb DO: doing

VDI The infinitive form of the verb DO: do

VDN The past participle form of the verb DO: done

VDZ The -s form of the verb DO: does, 's

VHB The finite base form of the verb HAVE: have, 've

VHD The past tense form of the verb HAVE: had, 'd

VHG The -ing form of the verb HAVE: having

VHI The infinitive form of the verb HAVE: have

VHN The past participle form of the verb HAVE: had

VHZ The -s form of the verb HAVE: has, 's

VM0 Modal auxiliary verb (e.g. will, would, can, could, 'll, 'd)

VVB The finite base form of lexical verbs (e.g. forget, send, live, return) [Including the
imperative and present subjunctive]

VVD The past tense form of lexical verbs (e.g. forgot, sent, lived, returned)

VVG The -ing form of lexical verbs (e.g. forgetting, sending, living, returning)

VVI The infinitive form of lexical verbs (e.g. forget, send, live, return)

VVN The past participle form of lexical verbs (e.g. forgotten, sent, lived, returned)

VVZ The -s form of lexical verbs (e.g. forgets, sends, lives, returns)

XX0 The negative particle not or n't

ZZ0 Alphabetical symbols (e.g. A, a, B, b, c, d)

Total number of word class tags in the BNC basic tagset = 57, plus 4 punctuation tags.

57

E. BNC ambiguity tagset

Ambiguity tag Ambiguous between More probable tag
AJ0-NN1 AJ0 or NN1 AJ0
AJ0-VVD AJ0 or VVD AJ0
AJ0-VVG AJ0 or VVG AJ0
AJ0-VVN AJ0 or VVN AJ0
AV0-AJ0 AV0 or AJ0 AV0
AVP-PRP AVP or PRP AVP
AVQ-CJS AVQ or CJS AVQ
CJS-AVQ CJS or AVQ CJS
CJS-PRP CJS or PRP CJS
CJT-DT0 CJT or DT0 CJT
CRD-PNI CRD or PNI CRD
DT0-CJT DT0 or CJT DT0
NN1-AJ0 NN1 or AJ0 NN1
NN1-NP0 NN1 or NP0 NN1
NN1-VVB NN1 or VVB NN1
NN1-VVG NN1 or VVG NN1
NN2-VVZ NN2 or VVZ NN2
NP0-NN1 NP0 or NN1 NP0
PNI-CRD PNI or CRD PNI
PRP-AVP PRP or AVP PRP
PRP-CJS PRP or CJS PRP
VVB-NN1 VVB or NN1 VVB
VVD-AJ0 VVD or AJ0 VVD
VVD-VVN VVD or VVN VVD
VVG-AJ0 VVG or AJ0 VVG
VVG-NN1 VVG or NN1 VVG
VVN-AJ0 VVN or AJ0 VVN
VVN-VVD VVN or VVD VVN
VVZ-NN2 VVZ or NN2 VVZ

58

F. List of Tags in BNC Enriched Tagset (Claws7)

! punctuation tag - exclamation mark

“ punctuation tag - quotation marks

(punctuation tag - left bracket

) punctuation tag - right bracket

, punctuation tag - comma

- punctuation tag - dash

----- new sentence marker

. punctuation tag - full-stop

... punctuation tag - ellipsis

: punctuation tag - colon

; punctuation tag - semi-colon

? punctuation tag - question-mark

APPGE possessive pronoun, prenominal (my, your, our etc.)

AT article (the, no)

AT1 singular article (a, an, every)

BCS before-conjunction (in order (that), even (if etc.))

BTO before-infinitive marker (in order, so as (to))

59

CC coordinating conjunction (and, or)

CCB coordinating conjunction (but)

CS subordinating conjunction (if, because, unless)

CSA as as a conjunction

CSN than as a conjunction

CST that as a conjunction

CSW whether as a conjunction

DA after-determiner, capable of pronominal function (such, former, same)

DA1 singular after-determiner (little, much)

DA2 plural after-determiner (few, several, many)

DAR comparative after-determiner (more, less)

DAT superlative after-determiner (most, least)

DB before-determiner, capable of pronominal function (all, half)

DB2 plural before-determiner, capable of pronominal function (both)

DD determiner, capable of pronominal function (any, some)

DD1 singular determiner (this, that, another)

DD2 plural determiner (these, those)

60

DDQ wh-determiner (which, what)

DDQGE wh-determiner, genitive (whose)

DDQV wh-ever determiner (whichever, whatever)

EX existential there

FO formula

FU unclassified

FW foreign word

GE germanic genitive marker - (' or 's)

IF for as a preposition

II preposition

IO of as a preposition

IW with; without as preposition

JJ general adjective

JJR Rgeneral comparative adjective (older, better, bigger)

JJT general superlative adjective (oldest, best, biggest)

JK adjective catenative (able in be able to; willing in be willing to)

MC cardinal number neutral for number (two, three...)

61

MCGE genitive cardinal number, neutral for number (twos, 100's)

MCMC hyphenated number (40-50, 1770-1827)

MC1 singular cardinal number (one)

MC2 plural cardinal number (tens, twenties)

MD ordinal number (first, 2nd, next, last)

MF fraction (quarters, two-thirds)

ND1 singular noun of direction (north, southeast)

NN common noun, neutral for number (sheep, cod)

NNA following noun of title (M.A.)

NNB preceding noun of title (Mr, Prof)

NN1 singular common noun (book, girl)

NN2 plural common noun (books, girls)

NNL1 singular locative noun (street, Bay)

NNL2 plural locative noun (islands, roads)

NNO numeral noun, neutral for number (dozen, thousand)

NNO2 plural numeral noun (hundreds, thousands)

NNT temporal noun, neutral for number (no known examples)

62

NNT1 singular temporal noun (day, week, year)

NNT2 plural temporal noun (days, weeks, years)

NNU unit of measurement, neutral for number (in., cc.)

NNU1 singular unit of measurement (inch, centimetre)

NNU2 plural unit of measurement (inches, centimetres)

NP proper noun, neutral for number (Phillipines, Mercedes)

NP1 singular proper noun (London, Jane, Frederick)

NP2 plural proper noun (Browns, Reagans, Koreas)

NPD1 singular weekday noun (Sunday)

NPD2 plural weekday noun (Sundays)

NPM1 singular month noun (October)

NPM2 plural month noun (Octobers)

PN indefinite pronoun, neutral for number (none)

PN1 singular indefinite pronoun (one, everything, nobody)

PNQO whom

PNQS who

PNQV whoever, whomever, whomsoever, whosoever

63

PNX1 reflexive indefinite pronoun (oneself)

PP nominal possessive personal pronoun (mine, yours)

PPH1 it

PPHO1 him, her

PPHO2 them

PPHS1 She, she

PPHS2 they

PPIO1 me

PPIO2 us

PPIS1 I

PPIS2 we

PPX1 singular reflexive personal pronoun (yourself, itself)

PPX2 plural reflexive personal pronoun (yourselves, ourselves)

PPY you

RA adverb, after nominal head (else, galore)

REX adverb introducing appositional constructions (namely, viz, eg.)

RG degree adverb (very, so, too)

64

RGA post-nominal/adverbial/adjectival degree adverb (indeed, enough)

RGQ wh- degree adverb (how)

RGQV wh-ever degree adverb (however)

RGR comparative degree adverb (more, less)

RGT superlative degree adverb (most, least)

RL locative adverb (alongside, forward)

RP prep. adverb; particle (in, up, about)

RPK prep. adv., catenative (about in be about to)

RR general adverb (actually)

RRQ wh- general adverb (where, when, why, how)

RRQV wh-ever general adverb (wherever, whenever)

RRR comparative general adverb (better, longer)

RRT superlative general adverb (best, longest)

RT nominal adverb of time (now, tommorow)

TO infinitive marker (to)

UH interjection (oh, yes, um)

VB0 be

65

VBDR were

VBDZ was

VBG being

VBM am

VBN been

VBR are

VBZ is

VD0 do

VDD did

VDG doing

VDN done

VDZ does

VH0 have

VHD had (past tense)

VHG having

VHN had (past participle)

VHZ has

66

VM modal auxiliary (can, will, would etc.)

VMK modal catenative (ought, used)

VV0 base form of lexical verb (give, work etc.)

VVD past tense form of lexical verb (gave, worked etc.)

VVG -ing form of lexical verb (giving, working etc.)

VVN past participle form of lexical verb (given, worked etc.)

VVZ -s form of lexical verb (gives, works etc.)

VVGK -ing form in a catenative verb (going in be going to)

VVNK past part. in a catenative verb (bound in be bound to)

XX not, n't

ZZ1 singular letter of the alphabet (A, a, B, etc.)

ZZ2 plural letter of the alphabet (As, b's, etc.)

