H.264 INTRA FRAME CODER SYSTEM DESIGN

OZGUR TASDIZEN

SABANCI UNIVERSITY
SPRING 2005

H.264 INTRA FRAME CODER SYSTEM DESIGN

by
OZGUR TASDIZEN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

Sabanci University

Spring 2005

H.264 INTRA FRAME CODER SYSTEM DESIGN

APPROVED BY:

Assist. Prof. Dr. flker Hamzaoglu ~ccocooiiiiiiiiin,

(Thesis Supervisor)

Assist. Prof. Dr. Ayhan Bozkurt ...

Assist. Prof. Dr. Hasan Ates ...

DATE OF APPROVAL: ...,

© Ozgiir Tasdizen 2005

All Rights Reserved

ABSTRACT

Recently, a new international standard for video compression named H.264 /
MPEG4 Part 10 is developed. This new standard offers significantly better video
compression efficiency than previous International standards. However, this coding
gain comes with an increase in encoding complexity. This makes it impossible to
implement a real-time H.264 video coder using a state-of-the-art embedded processor
alone. Therefore, in this thesis, we developed an FPGA-based H.264 intra frame coder
system for portable applications targeting level 2.0 of baseline profile.

As part of the system, we first designed a high performance and low cost hardware
architecture for real-time implementation of forward transform and quantization and
inverse transform and quantization algorithms used in H.264 / MPEG4 Part 10 video
coding standard in Verilog HDL. The design is first verified with RTL simulations
using Mentor Graphics Modelsim. It is then verified to work on a Xilinx Virtex II
FPGA on an ARM Versatile Platform development board.

We then designed the top-level H.264 Intra Frame Coder System targeting 30 fps
CIF encoding. The system consists of search, mode decision and coding parts. The
mode decision part implements a Hadamard Transform based mode decision algorithm.
The coding part is implemented by integrating Transform-Quant module with CAVLC
and Intra Prediction modules. The top-level design is verified with RTL simulations
using Mentor Graphics Modelsim.

The complete H.264 Intra Frame Coder System is verified to work on an ARM
Versatile Platform development board. The verification includes first capturing an RGB
image, converting it into YCbCr format, partitioning the image into macroblocks, and
writing it into an SRAM using the software running on ARM9EJ-S processor. Then, the
intra frame coder hardware mapped to the Xilinx Virtex II FPGA using Lenoardo
Spectrum and Xilinx ISE is used to encode the image and reconstruct it. The conversion
of reconstructed image into raster scan order and RGB color domain is then performed
by software running on ARMOIEJ-S processor. The reconstructed image is then
displayed on a color LCD panel for visual verification.

il

OZET

Yakin tarihte H.264 / MPEG4 Part 10 isimli yeni bir uluslararasi standart
gelistirilmistir. Bu yeni standart, kendinden onceki standartlara gore belirgin sekilde
daha iyi sikistirma verimi sunmaktadir. Fakat bu kodlama verimi beraberinde kodlama
karmasikligin1 da getirmistir. Bu karmasiklik H.264 video kodlayicisinin son teknoloji
gomiilii islemcilerle gercek zamanli uygulanmasini imkansiz kilmaktadir. Bu yiizden,
bu tez c¢alismasinda, tasmabilir uygulamalar igin taban profilinin 2.0 diizeyini
hedefleyen FPGA tabanli H.264 intra gerceve kodlayici sistemi gelistirilmistir.

Oncelikle, sistemin bir pargasi olarak H.264 / MPEG4 Part 10 standardinda
kullanilan doniisiim ve nicemleme ile ters doniisiim ve ters nicemleme algoritmalar1 igin
yiiksek performansl ve diisiik maliyetli bir donanim mimarisi Verilog HDL kullanilarak
tasarlanmigtir. Tasarimin dogrulama islemi ilk olarak Mentor Graphics Modelsim
benzetim programinda “RTL” benzetimleri ile, daha sonra da “Xilinx Virtex II”
FPGA’sinin bulundugu “ARM Versalite Platform” isimli gelistirme ortaminda
gergeklestirilmistir.

Saniyede 30 tane CIF resmini kodlamay1 hedefleyen H.264 intra ¢ergeve kodlayici
sistemi gerekli diger bloklariyla birlikte tasarlanmigstir. Sistem arastirma, moda karar
verme ve kodlama boliimlerinden olusmaktadir. Moda karar verme tinitesi “Hadamard”
dontistimii tabanli moda karar verme algoritmasini ger¢eklestirmektedir. Kodlama kismi
doniigiim - nicemleme modiiliiyle birlikte CAVLC ve intra tahmin etme modiilleri ile
birlikte entegre edilmistir. Sistem Mentor Graphics Modelsim benzetim programinda
“RTL” benzetimleri ile dogrulanmistir.

Biitiin H.264 intra gerceve kodlayic1 sisteminin c¢alismast “ARM Versalite
Platform” gelistirme ortaminda dogrulanmistir. Dogrulama islemi, ARMOEJ-S
islemcisinde ¢alisan yazilimlarin bir resmi RGB bi¢iminde elde etmesini, bunu YCbCr
bigimine doniistiirmesini, resmi makro bloklara bdlmesini ve SRAM hafizasina
yazmasini kapsamaktadir. Daha sonra “Lenoardo Spectrum” ve “Xilinx ISE”
programlar1 kullanilarak “Xilinx Virtex II” FPGA’sina yiiklenen H.264 intra cergeve
kodlayict donanimi ile resim kodlanmis ve yeniden olusturulmustur. Yeniden
olusturulan resmin televizyon taramasi sekline ve RGB renklerine donistiiriilmesi
ARMOYEJ-S islemcisinde c¢alisan yazilim araciligiyla olmustur. Yeniden olusturulan
resim renkli LCD ekranda gosterilerek gorsel anlamda dogrulanmistir

iv

To my Family
to Grandmoms
and to Sedef...

ACKNOWLEDGEMENTS

First of all I would like to thank Dr. Ilker Hamzaoglu who gave me the chance to
do this interesting work. I appreciate very much for his constant guidance, suggestions,
and help during this project.

I also want to thank Dr. Yucel Altunbasak, who played an important role in
initiating H.264 research project at Sabanci University; Dr. Hasan Ates, who assisted us
with H.264 algorithm design and Dr. Ayhan Bozkurt, who participiated in my thesis
jury.

I also want to thank my partners in H.264 research project for valuable
discussions and feedback throughout the project; Esra Sahin, Sinan Yalcin, Mehmet
Guney, Mustafa Parlak. In addition to these friends during my two years study at
Sabanci University, I am grateful for the company of my friends Akin Unal, A. Ozgur
Cakmak, Can Sumer.

I am of course indebted to my whole family, without them I would not be in
such a position and special thanks to Sedef Cakir for her friendship.

Lastly, my acknowledgements go to Sabanci University for supporting our

project.

vi

TABLE OF CONTENTS

ABSTRACT ... ettt ettt 111

OZET ettt ettt et b ettt b et ettt st naeenees v

ACKNOWLEDGEMENTS......oiiiitiieteeee et s vi

TABLE OF CONTENTS.....coei ettt sttt vii

LIST OF FIGURES. ... e X

LIST OF TABLES. ...ttt s Xi

ABBREVIATIONSttt s xii
CHAPTER 1

INTRODUCTION.. .. .ottt e 1

1.1 MOtIVALION. ...ttt sttt st s 1

1.1.1 The Need for Video Compression...........ovvvevrieeiieenneannnnnn. 2

1.1.2 Reasons for Implementing H.264 Standard......................... 2

1.1.3 Reasons for FPGA-based Implementation 3

1.2 Thesis Organization...........c.eeueereentenneeeeieeaeerteneeaeeneenneanns 5
CHAPTER 2

OVERVIEW OF H.264 VIDEO CODING.......coiiiiiiiiiiiieieieieeeeeeeeenn 6

2.1 MPEG Standardscouiuiniiniii e 6

22 ITU-T Standardsooveniiniiniii e 8

2.3 Joint ITU-T /MPEG Standardsccoiiiiiiiiiiiiiiii e, 9

2.4 H.264 Video Coding Standard...............cccoiiiiiiiiiiii i, 9

2.5 H.264 Encoder FIOW........ooiiiiiiiiii e 13

2.6 Comparison of H.264 with Previous Standards............................. 15

vii

CHAPTER 3
HARDWARE ARCHITECTURES FOR H.264 INTRA FRAME CODER

MODULES. ... 18
3.1 Transform - Quant and Inverse Quant — Inverse Transform.............. 18
3.1.1 Transform Algorithm Overview..............coooveiiiiiiiiniann.. 19
3.1.2 Quantization Algorithm OVerview................cooevvviieiinnnnn. 21
3.1.3 Proposed Hardware Architecture...............ccoovviiiiiiinninnnn. 24
3.1.4 Implementation Results................cooiiiiiiiiiiiii i, 30
3.2 CAV L . 31
3.3 Intra Prediction.oo.oeiii i 34
CHAPTER 4
TOP LEVEL H.264 INTRA FRAME CODER HARDWARE..................... 37
4.1 Search Hardware.cooviiiiii i 38
4.1.1 High Speed Hadamard Transform Hardware..................... 42
4.1.2 Mode Decision Hardware................oooooiiiiiiiiii. 43
4.2 Coder Hardware.o.oueiuiieiei e 44
CHAPTER 5
H.264 INTRA FRAME CODER SYSTEM ..ot 47
5.1 SyStemM OVEIVIEW. ...ttt et et et et ae e eeaens 47
5.1.1 Development Chip.........cccviviiiiiiiiiiiiieieeee e, 50
5.2 MeMOTY ...ttt et e e e 51
5.1.3 Bus Architecture.ooeiiuiiiiiiii e 52
STALOCICTIlE .o 53
5.2 Software Implementation..............covviiiiiiiiiiiiiii i, 55
5.3 Hardware Implementation..............ccooeiiiiiiiiiiiiiiiiiiiaienennnnn, 56
CHAPTER 6
CONCLUSIONS AND FUTURE WORKottt 60
0.1 CONCIUSIONS ...ttt e e 60
0.2 Future WOork ... 61
REFERENCES. 62

viii

LIST OF FIGURES

Figure 2.1 Development Years of Video Coding Standards....................coooiiinn. 7
Figure 2.2 Block Diagram of H.264 Encoder.............ccooviiiiiiiiiiiiiiiiieene, 14
Figure 2.3 Performance Comparisons for 90-Minute DVD Quality Movie............... 16
Figure 3.1 Block Diagram of Transform and Quant Algorithms........................... 18
Figure 3.2 Processing Order of Blocks in a Macroblock..................oooiiiiin, 19
Figure 3.3 Matrices Used in H.264 Transform Algorithm................................. 20
Figure 3.4 Transform — Quant Hardware ... 25
Figure 3.5 Forward Integer Matrix Operationscoeviiiiiiiiiiininiiaieaanns 27
Figure 3.6 Inverse Integer Matrix Operationscc.ooveeiieiriirieiieniinneenneaneennns 27
Figure 3.7 Forward and Inverse Hadamard Matrix Operations....c.ceeen. 28
Figure 3.8 Block Diagram of CAVLC Hardware.................ocoooiiiiiiiiiiii i, 33
Figure 3.9 4x4 Intra Prediction Modes.ccoiiiiiiiiii e, 34
Figure 3.10 16x16 and 8x8 Intra Prediction Modes..............cccovviiiiiiiiiiinninn.... 34
Figure 3.11 DC Mode EQUAtiONS........cccceeiierieeiiienieeitesite ettt esieeeveesieessveenneene e 35
Figure 3.12 Intra Prediction Hardware. ... 36
Figure 4.1 Top Level Block Diagram.................oooiiiiiiiie 37
Figure 4.2 Top Level Scheduling...............ooiiiiiiiiii e, 37
Figure 4.3 Block Diagram of Search Hardware.......................oooiiiiiinnn, 39
Figure 4.4 Block Diagram of High Speed Hadamard Transform Hardware............. 42
Figure 4.5 Block Diagram of Mode Decision Hardware.......................c.ooon 43
Figure 4.6 Block Diagram of Coder Hardware....................oooiiiiiiiiiine 44
Figure 4.7 Coder Hardware Scheduling for 4x4 Intra Modes.................covveiennne. 46
Figure 4.8 Coder Hardware Scheduling for 16x16 Intra Modes....................o.nee. 46
Figure 5.1 Development Environment..............oooiiiiii e 48
Figure 5.2 Versatile/PB926EJ-S Development Board.....................cooiiiiin. 49
Figure 5.3 Block Diagram of Development Chip.............ccooviiiiiiiiiiiiiiniinn, 51
Figure 5.4 System Memory Map.........coouiiiiiiiiiii e, 52
Figure 5.5 Bus ArchiteCture..........oouiiii e, 53
Figure 5.6 Logic Tile.... ..o 54
Figure 5.7 Operations Done by Software.............c.cooiiiiiiiiiiiiiii e, 55

X

Figure 5.8 Color Domain Conversions (a) RGB to YcbCer, (b) YcbCr to RGB..........56

Figure 5.9 FPGA Design Flow: (a) Generic, (b) Specific..............coooiiiiiiinn.. 57
Figure 5.10 Integration of Designed Hardware into ARM Versatile Board.............. 57
Figure 5.11 Picture of the Development Environment.......................oooiiiinnn 59

LIST OF TABLES

Table 2.1 Performances of H.264 Profiles...............oooiii . 10
Table 2.2 Average Bit Rate Savings of H264............cccooiiiiiiiiiee 16
Table 3.1 Quantization Parameters and Step Sizes..........cccoovviiiiiiiiiiiiiiniiinn, 21
Table 3.2 Positions of @ 4x4 BIOCK.........oooiiiiiii 22
Table 3.3 Multiplication Factors............cooiiiiiiii e, 23
Table 3.4 Rescaling Factors..........cooiiiiiiiii e 23
Table 3.5 ASIC Implementation Results............ccooiiiiiiiiiiiiiiiiiiiiieeeen, 31
Table 3.6 Prediction Samples for 4x4 Modescovviiiiiiiiiiiiiiiiiiiiiiee e, 35
Table 4.1 Available Clock Cycles for Different Clock Frequencies....................... 38
Table 4.2 Mode Decision Hardware Register Content..................coovvviiiiinnninnn... 43
Table 5.1 Device Utilization for XC2V8000 FPGA.........cccoiiiiiiiiiiiiii, 58

Xi

AHB
AMBA
ARM
ASIC
ASP
AVC
BOPS
CABAC
CAVLC
CIF
CISC
CLB
CODEC
CPU
DCT
Dff
DLL
DMA
DSP
DVD
ETM
FCC
FPGA
GPIO
HDL
HDTV
HHR
HLP
ISDN

ABBREVIATIONS

Advanced High-speed Bus

Advanced Microcontroller Bus Architecture
Advanced RISC Machines

Application Specific Integrated Circuit
Advanced Simple Profile (MPEG24)
Advanced Video Coding

Billion Operations Per Second
Context-Adaptive Binary Arithmetic Coding
Context Adaptive Variable Length Coding
Common Intermediate Format

Complex Instruction Set Computer
Configurable Logic Block

Coder, Decoder Pair

Central Processing Unit

Discrete Cosine Transform

D Flip Flop

Delay Locked Loop

Direct Memory Access

Digital Signal Processor

Digital Versatile Disc

Embedded Trace Macrocell

U.S. Federal Communications Commission
Field Programmable Gate Array

General Purpose Input Output

Hardware Description Language

High Definition Television

Horizontal High Definition

High Latency Profile (H.263++)

Integrated Services Digital Network

Xii

ISO/IEC

ITU-T

JTAG
IVT
LAN
LCD
LED
MB
MP@ML
MPEG
MPMC
NAL
PCI
PLD
PLL
PSNR
PVT

RISC
RTC
RTP
QCIF
QP
QVGA
SAD
SATD
SCI
SDRAM
SDTV
SHDTV
SI
SRAM

International Standards Organization, International Electrotechnical
Commission

International Telecommunications Union, Telecommunications
Standardization Sector

Joint Test Access Group

Joint Video Team

Local Area Network

Liquid Crystal Display

Light Emitting Diode

Macroblock

Main Profile at Main Level

Motion Picture Experts Group

Multi-Port Memory Controller

Network Abstraction Layer

Peripheral Component Interconnect
Programmable Logic Device

Phase Locked Loop

Peak Signal Noise Ratio

Process Voltage Temperature

Random Access Memory

Reduced Instruction Set Computer

Real Time Clock

Real-Time Protocol

Quadrature Common Intermediate Format
Quantization Parameter

Quarter Video Graphics Array

Sum of Absolute Difference

Sum of Absolute Transformed Difference
Smart Card Interface

Dynamic Random Access Memory
Standard Definition Television

Super High Definition Television
Switching Intra

Static Random Access Memory

xiii

SP
SSMC
SSP
SVGA
UART
UMC
USB
VCEG
VCD
VCL
VGA
VIC
VLC

Switching Prediction

Synchronous Static Memory Controller
Synchronous Serial Port

Super Video Graphics Array

Universal Asynchronous Receive Transmit
United Microelectronic Corporation
Universal Serial Bus

Video Coding Experts Group

Video Compact Disc

Video Coding Layer

Video Graphics Array

Vectored Interrupt Controller

Variable-Length Coder

Xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Video compression systems are used in many commercial products, from consumer
electronic devices such as digital camcorders, cellular phones to video teleconferencing and
video broadcasting systems. These applications make the video compression hardware
devices an inevitable part of our lives. To improve the performance of the existing
applications and to enable the applicability of video compression to new applications a new
international standard for video compression is developed. This latest video compression
standard H.264 / MPEG4 Part 10 is standardized by both ISO and ITU. H.264 offers
significantly better video compression efficiency than previous international standards.
Compared to other video compression standards, H.264 performs nearly 50% better than
the next best video compression standard.

The H.264 standard includes a Video Coding Layer (VCL), which efficiently
represents the video content, and a Network Abstraction Layer (NAL), which formats the
VCL representation of the video and provides header information in a manner suitable for
transportation by particular transport layers or storage media [1]. This thesis is concerned
with the Video Coding Layer of the standard. In this thesis, we studied this block based
video coding layer and developed an efficient H.264 Intra Frame Coder System.

The following sub sections explain why video compression is required, why H.264

standard is implemented and why FPGA-based implementation is chosen.

1.1.1 The Need for Video Compression

Digital video contains huge amount of data and in order to be represented with fewer
number of bits it needs to be compressed. The emergence of video compression techniques
addresses this problem and makes it feasible to store high quality video on a limited-storage
space or transmit it within the limited-bandwidth that networks can provide.

The continuous development in technology makes production of image sensors
having up to 16M pixels possible. 16M pixels create an image with a resolution of 4096 x
4096 pixels. Considering even a CIF sized image, 352 x 288 pixels, is enough to
understand why compression is absolutely required. In full color depth (true color format)
24 bits per pixel are used to carry the color information and in reduced format, for example
in 4:2:0 format, 12 bits per pixel are needed to carry the color information. That means in
4:2:0 format, 1188 bytes, which is equal to 1,16 MB, are required to represent a CIF image.
For 30 frames per second CIF sized video, 35640 bytes, which is equal to 34,8 MB, are
required to represent one second video. This clearly shows that, to save storage space or to

reduce required transmission bandwidth (or time) video compression is a must.

1.1.2 Reasons for Implementing H.264 Standard

H.264 is the latest and most complex video coding standard and as mentioned before,
compared to the previous next best standard it typically uses half of the bit rate to encode
the same video stream or if it uses the same bit rate to code a video stream, the quality of
the decoded video almost doubles.

Video conferencing on Internet, image telephony, digital TV (video broadcasting)
digital storage (DVD), set-top-boxes and video-on-demand are the targeted applications of
H.264 standard. To emphasize the significance of H.264 standard, digital video

broadcasting and DVD storage can be examined. Current digital TV channels support

SDTV format with a resolution of 640x480, which requires 4.3 Mbps per channel when
coded with MPEG-2. HDTV has a resolution of 1920x1080 pixels and it requires 19 Mbps
per channel when coded with MPEG-2. H.264 saves bandwidth and makes HDTV
economically feasible; SDTV format will require 1.5-2 Mbps when coded with H.264 and
HDTYV format will require 6-9 Mbps when coded with H.264. A single sided, single layer
DVD has a storage capability of 4.7 GB and maximum bit rate for DVD playback is 10
Mbps. DVD movies are coded with MPEG-2 for standard definition format. If movies are
coded with H.264 then even high definition movies will fit in a 4.7 GB DVD.

1.1.3 Reasons for FPGA-based Implementation

In order to perform 50% better than previous best video compression standard, H.264
encoder requires very high computational power which makes its real time implementation
very challenging. There are four possible H.264 encoder implementations; general purpose
processor, Digital Signal Processor (DSP), ASIC or FPGA implementations. The goal of
this thesis is the implementation of real time coding of 30 CIF sized frames per second
corresponding to baseline profile of H.264 standard. Since this implementation targets
portable applications, its area and power consumption should also be small. In the
following paragraphs, we analyze the suitability of the four alternative implementations for
our target application.

The first alternative is using general purpose processors without any hardware
acceleration. Because of their architecture, requiring more than one cycle to execute an
application-specific operation, general purpose processors may not be capable of real time
encoding of a video stream using H.264 standard. As an example, “Using Intel™ VTune™
software running on an Intel Pentium™ III 1.0 GHz general-purpose CPU with 512 MB of
memory, achieving H.264/AVC SD with a main profile encoding solution would require
approximately 1,600 billion operations per second (BOPS)” [2]. Another example is to
implement the full search algorithm for H.264 intra prediction a RISC processor has to

work at least at 522 MHz clock frequency [3]. In addition, general purpose processors have
large area and power consumption which makes them unsuitable for implementing an
H.264 baseline encoder for portable applications.

The second alternative is using a DSP core. In general, DSP cores offer better
performance than general purpose processors for signal processing applications. However,
a single DSP core may not be enough for implementing an H.264 encoder. In addition,
DSPs also have larger area and power consumption in comparison to ASICs and FPGAs.
The power dissipation of a well-executed FPGA design is typically about 20% of the power
consumption of a software based DSP system operating at the same sample rate [4].
Therefore, DPSs are not suitable for our goal of implementing an H.264 baseline encoder
for portable applications.

The third alternative is an ASIC implementation. ASICs offer high performance with
low area and power consumption. They are suitable for real-time implementation of an
H.264 encoder and they can satisfy our goal of implementing an H.264 baseline encoder for
portable applications. However, ASIC design requires significant human resources and
time to market for an ASIC design is long. In addition, after the design is finished, it takes
several weeks for the fabrication which can be an iterative process before the silicon works.
Finally, unless a mass production of thousands of units is targeted an ASIC solution may
not be cost effective.

The last alternative is an FPGA based implementation. The maximum clock
frequency that can be achieved on an FPGA for a design is lower compared to the same
design implemented as an ASIC with the same process technology. However, the recent
FPGAs with full-custom embedded multipliers and block RAMs are suitable for real-time
implementation of an H.264 encoder. Even though FPGAs have higher area and power
consumption than ASICs, they can still satisfy our goal of implementing an H.264 baseline
encoder for portable applications. In addition, FPGA design requires less human resources
than ASIC design and time to market for an FPGA design is short. Once the RTL design is
finished, the design can be verified on the FPGA immediately. FPGAs are also cost
effective unless mass production of thousands of units is targeted. Therefore, in this thesis,

we preferred an FPGA based implementation.

1.2 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 starts with a brief overview of video coding and presents the history of
video coding standards. After introducing basic terminology of video coding, it explains
main features of H.264 baseline profile. Finally, it compares H.264 with previous
standards.

Chapter 3 explains Transform - Quant and Inverse Quant - Inverse Transform design
in detail. First, it introduces transform and quantization algorithms of H.264. Then it
describes the designed hardware in detail and the implementation results are given.
CAVLC Hardware and Intra Prediction Hardware are also discussed in this chapter.

Chapter 4 explains the top-level Intra Frame Coder Hardware. The modules used in
the Intra Frame Coder Hardware and their scheduling are explained.

Chapter 5 gives general information about ARM Versatile/PB926EJ-S platform and
Xilinx Virtex IT 8000 FPGA. It then describes the Intra Frame Coder System and its design
process.

Chapter 6 presents the conclusions and the future work.

CHAPTER 2

OVERVIEW OF H.264 VIDEO CODING

The latest video compression standard, known as H.264 or MPEG-4 Part 10, is
developed with the collaboration of MPEG and VCEG groups. Aiming to develop a better
video coding standard, MPEG and VCEG groups join together and form Joint Video Team
(JVT). Hence this new video coding standard is called with two different names. H.264 /
MPEG-4 Part 10 is not the only standard established by the collaboration of MPEG and
VCEG groups. Between 1990 and 1994, JVT worked to develop a standard for DTV and
SDTV applications and created H.262 / MPEG-2 standard [1,5]. Figure 2.1 shows the

development of video coding standards and their designer groups in chronological order

[5].

2.1 MPEG Standards

Motion Picture Experts Group (MPEG) is an ISO/IEC working group, established in
1988 to develop standards for digital audio and video formats. The interests of this group
are the applications requiring higher bit rates like coding for moving pictures and digital

storage. Examples for these application areas are VCD, DVD, SDTV and HDTV.

Standard

A
ITU-T H.261 H.263| H.263+ [H.263++
MPEG MPEG-1 MPEG-4
Joint ITU-T / H.262 / H.264 / MPEG-4
MPEG MPEG-2 AVC
| | l | | | | >
T T 1 T T T T >

1984 1985 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Year

Figure 2.1 Development Years of Video Coding Standards

MPEG group has developed three video compression standards. The first MPEG
standard, MPEG-1, is finalized in 1992. MPEG-1 is used for storing audiovisual data on
CD-ROM (VCD). It is optimized for video quality at bit rates of 1.1Mbps to 1.5Mbps and
has a video quality of nearly the same as VHS cassettes. Three years after the finalization
of MPEG-1, MPEG-2 standard is developed. Because MPEG 2 is a standard developed by
the collaboration of MPEG and VCEG groups, it is explained in section 2.3. MPEG group
then worked on a standard targeting the application field of interactive video. This effort
resulted in finalizing MPEG-4 in October 1998 and in the first months of 1999 MPEG-4
became an International Standard. The completely backward compatible extensions under
the title of MPEG-4 Version 2 were frozen at the end of 1999, and it received the formal
International Standard Status in early 2000. MPEG-4 is successful on three fields: digital

television, interactive graphics applications and interactive media [1].

2.2 ITU-T Standards

Video Coding Experts Group (VCEG) is an ITU-T working group. The interests of
VCEG are the applications requiring low bit rates, e.g. audiovisual applications such as
video conferencing, wireless video, and image telephony.

The first standard by VCEG, H.261, is developed between 1984 and 1990. This video
compression standard has been specifically designed for video telecommunication
applications like videoconferencing and video telephony over ISDN telephone lines. Since
the second standard by VCEG, H.262, is developed in collaboration with MPEG group, it is
explained in section 2.3.

The next standard by VCEG, H.263, requires half the bandwidth to achieve the same
video quality as H.261. H.263 video compression standard is now widely used in
videoconferencing systems and it has largely replaced H.261. It can be applied for a wide
range of bit rates up to 20Mbps and it supports five resolutions. In addition to QCIF and
CIF that were supported by H.261, the SQCIF, 4CIF, and 16CIF resolutions are also
supported. H.263 uses half pixel precision for motion compensation as opposed to integer
pixel precision used in H.261. Real Time Transport Protocol (RTP) is used for packing the
H.263 video streams for transportation over packet networks. H.263+ is the second version
of H.263. It has several additional features and negotiable additional modes. It supplies
SNR scalability as well as spatial and temporal scalability. It has custom source formats. It
uses advanced intra coding to improve the compression efficiency by using spatial
prediction of DCT coefficient values. H.263++ is the third version of H.263. It is completed
in 2001 and it includes three new modes to boost the coding efficiency, reduce delay and

improve error resilience [6].

2.3 Joint ITU-T / MPEG Standards

The first outcome of the MPEG and VCEG collaboration is H.262 / MPEG-2. 1t is
similar to MPEG-1, but it also supports interlaced video. It is designed for bit rates between
1.5 and 15 Mbps. It is not optimized for bit-rates less than 1 Mbps. It outperforms MPEG-1
at 3 Mbps and above. All decoders in compliance with H.262 / MPEG-2 standard are
capable of playing back MPEG-1 video streams. MPEG-2 has a wider usage because it
supports a wide range of resolutions and bit rates. MPEG-2 standard made the DTV,
SDTV, HDTV, and DVD applications possible.

After finalizing the H.263 standard for video telephony in 1995, VCEG started to
work on two further development areas: a short-term effort to add extra features to H.263,
which resulted in the new versions of H.263 standard, and a long-term effort to develop a
new standard for low bit rate visual communications. The long-term effort led to the draft
H.26L standard, providing significantly better video compression efficiency than previous
ITU-T standards. In 2001, MPEG recognized the possible benefits of H.26L and a Joint
Video Team (JVT) was established with experts from MPEG and VCEG. JVT developed
the draft H.26L model into a full International Standard called Advanced Video Coding
(AVC). The new standard is also called ISO MPEG4 Part 10 and ITU-T H.264 [1].

2.4 H.264 Video Coding Standard

The first draft of H.264 / MPEG-4 Part 10 standard is completed in May of 2003.
This thesis refers to the algorithms specified in this version of the standard [8,9,10]. Same
as the previous video compression standards, the H.264 standard does not specify all the
algorithms that will be used in an encoder. Instead, it defines the syntax of the encoded bit
stream and functionality of the decoder that can decode this bit stream. H.264 has currently
three different profiles; baseline, main and extended, and each profile has 14 levels. A

profile is a set of algorithmic features and a level shows encoding capability such as picture

size and frame rate. Baseline profile has lower latency and it is used for wireless video
applications and video conferencing. Main profile introduces additional algorithms to
increase the compression efficiency and it is used for video broadcasting. Extended profile
is used for video streaming applications. Table 2.1 shows the performances of all levels in

(1344
1

H.264 standard [10]. In this table “p” stands for progressive and stands for interlaced
frames. The complexity of an encoder increases with the increasing level. Since, in this
thesis, an H.264 Intra Frame Coder System implementing level 2.0 of baseline profile is

designed, the features of H.264 baseline profile are explained below.

Table 2.1 Performances of H.264 Levels

Level Performance

1.0 QCIF @ 15 fps

L1 QCIF @ 30 fps

1.2 CIF @ 15 fps

2.0 CIF @ 30 fps

2.1 HHR @ 15 or 30 fps

22 SDTV @ 15 fps

3.0 SDTV 720x480x20i. ,

720x576x251 10Mbps (max)
31 1280x720x30p. ,
SVGA (800x600) 50+p.

32 1280x720x60p.
HDTV: 1920x1080x30i. ,

4.0 1280x720x60p. ,
2kx1x30p. 20 Mbps (max)
HDTV: 1920x1080x30i. ,

4.1 1280x720x60p. ,
2kx1x30p. 50 Mbps (max)

50 SHDTV / D-Cinema:
1920x1080x60p. ,2,5kx2k..

5.1 SHDTV / D-Cinema:4kx2k..

10

YCbCr Color Space and 4:2:0 Sampling:

The human visual system appears to distinguish scene content in terms of brightness and
color information individually, and with greater sensitivity to the details of brightness than
color. Video transmission methods are designed to take advantage of this by using YCbCr
color space. YCbCr format divides the 24 bit long pixel data into three 8 bit long
components called Y, Cb, and Cr. Luma components, Y, represents brightness and chroma
components, Cb and Cr, represent the extent to which the color differs from gray toward
blue and red, respectively. Since the human visual system is more sensitive to luma than
chroma, H.264 standard uses 4:2:0 sampling. In 4:2:0 sampling, for every four luma (Y)

samples, there are two chroma samples; one Cb and one Cr [8].

Progressive Video:
In progressive video, video signal is sampled as a sequence of whole frames.

Frames are not divided into fields [8].

I and P Pictures:
I pictures can only contain intra coded macroblocks. P pictures can contain both intra
and inter coded macroblocks. In addition, there can also be skipped macroblocks in P

pictures [8,9].

Integer Transform:

Transform algorithm is based on a 4x4 integer transform. It is guaranteed by the
standard that 16-bit arithmetic is enough to implement the transform algorithm. The
algorithm does not include any floating point operations; it only needs integer addition and
binary shift operations. In this way, a possible drift between encoder and decoder is
avoided. H.264 is the first standard to attain exact equality of decoded video content from

all decoders [8,9,10]. Detailed information about transform algorithm is given in chapter 3.
Non-uniform Quantization:

H.264 standard uses a non-uniform quantizer. Quantization parameter can take a

value between 0-51. The quantization step size doubles for an increment of 6 in

11

quantization parameter. That means an increment of 1 in quantization parameter results in
12.2% increment in quantization step size. The quantization algorithm requires an integer
multiplication [8,9,10]. Detailed information about quantization algorithm is given in

chapter 3.

CAVLC:

Context Adaptive Variable Length Coding (CAVLC) algorithm encodes transformed
and quantized residual luminance and chrominance data. CAVLC uses multiple tables for a
syntax element. It adapts to the current context by selecting one of these tables for a given
syntax element based on the already transmitted syntax elements. Information other than
the residual data is coded using Exp-Golomb code words [8,9,10]. Additional information

about CAVLC is given in chapter 3.

Loop Filter:

A loop filter, called deblocking filter, is used to enhance the video quality by
reducing the blocking artifacts in decoded frames. Deblocking filter flattens the blocking
artifacts around each 4x4 block and macroblock boundary without disturbing the sharpness

of the picture [8,9,10].

Intra Prediction:

H.264 has two intra coding types for luma samples, intra 4x4 and intra 16x16, and
one for chroma samples, intra 8x8. 4x4, 8x8 and 16x16 indicate the size of the intra-
predicted block. There are 9 prediction modes for intra 4x4, and 4 prediction modes for
intra 16x16 and intra 8x8 prediction types. Using a large number of prediction modes
improves the prediction accuracy and reduces bit rate by 10-15% [8,9,10]. Additional

information about intra prediction is given in chapter 3.
Variable Block Size Motion Estimation:

H.264 standard supports using different block sizes for motion estimation and

compensation. A macroblock can be partitioned into 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 or

12

4x4 blocks. This improves the performance of motion estimation and contributes to

reducing the required bit rate for coding the video signal [8,9,10].

Sub-pel Accurate Motion Estimation:
In addition to integer-pel accurate motion estimation, H.264 standard allows using
half-pel and quarter-pel accurate motion estimations to improve the performance of motion

estimation algorithm at the expense of additional computational complexity [8,9,10].

Multiple Reference Frames:

H.264 allows using multiple reference frames by motion estimation. This enables
the encoder to search the best match for the current macroblock in a wider set of pictures
than just using the last encoded picture. This improves the performance of motion

estimation algorithm [9].

2.5 H.264 Encoder Flow

As shown in Figure 2.2, an H.264 encoder has a forward path and a reconstruction path.
The reconstruction path consists of the modules in the dashed rectangle. The forward path
is used to encode a video frame by using intra and inter predictions and to create the bit
stream. The reconstruction path is used to decode the encoded frame and to reconstruct the
decoded frame. Since a decoder never gets original images, but rather works on the
decoded frames, reconstruction path in the encoder ensures that both encoder and decoder
use identical reference frames for intra and inter prediction. This avoids possible encoder —

decoder mismatches [1,8,10].

13

Frime l
Referance | g Ectimatimn

Frm = +
4O—blmm'm—l-l:ﬂmt I Reordr

_k ¢
L] Mok ﬂ'ﬂl‘ﬂp};"
I—.. Decidan s
i ¢
™| Inedictim
HAL
I=====-=" ___I __

i
¥
"
:

4

]

Figure 2.2 Block Diagram of H.264 Encoder

Forward path starts with partitioning the input frame into macroblocks. Each
macroblock is encoded in intra or inter mode depending on the mode decision. In both intra
and inter modes, the current macroblock is predicted from the reconstructed frame. Intra
mode generates the predicted macroblock based on spatial redundancy, whereas inter mode,
generates the predicted macroblock based on temporal redundancy. Mode decision
compares the required amount of bits to encode a macroblock and the quality of the
decoded macroblock for both of these modes and chooses the mode with better quality and
bit-rate performance. In either case, intra or inter mode, the predicted macroblock is
subtracted from the current macroblock to generate the residual macroblock. Residual
macroblock is transformed using 4x4 and 2x2 integer transforms. Transformed residual
data is quantized and quantized transform coefficients are re-ordered in a zig-zag scan
order. The reordered quantized transform coefficients are entropy encoded. The entropy-
encoded coefficients together with header information, such as macroblock prediction
mode and quantization step size, form the compressed bit stream. The compressed bit
stream is passed to network abstraction layer (NAL) for storage or transmission [1,8,10].

Reconstruction path begins with inverse quantization and inverse transform

14

operations. The quantized transform coefficients are inverse quantized and inverse
transformed to generate the reconstructed residual data. Since quantization is a lossy
process, inverse quantized and inverse transformed coefficients are not identical to the
original residual data. The reconstructed residual data are added to the predicted pixels in
order to create the reconstructed frame. A deblocking filter is applied to reduce the effects

of blocking artifacts in the reconstructed frame [1,8,10].

2.6 Comparison of H.264 with Previous Standards

A comparison of the coding efficiency of H.264 standard with the coding efficiency
of MPEG-4, MPEG-2 and H.263 standards based on several video sequences is given in
[1]. The video sequences used in this study have distinct spatial and temporal
characteristics. The video encoders used in this study are optimized for best performance
gain with regards to their rate-distortion efficiency using Lagrangian techniques. In order to
make a fair comparison between the encoders, a unique and efficient coder control is used.
The H.264 encoder implemented the main profile. The H.263 encoder implemented the
High Latency Profile (HLP). For both these encoders, five reference frames are used. The
H.263 encoder is used quarter-pel-accurate motion compensation with global motion
compensation enabled. In addition, the recommended deblocking filter is applied as a post-
processing step. The MPEG-4 Visual encoder implemented the Advanced Simple Profile
(ASP). The MPEG-2 Visual encoder is generated bit streams at the MP@ML conformance
point.

The average bit-rate savings provided by each encoder, relative to all the other tested
encoders over the entire set of video sequences are given in Table 2-2. It can clearly be seen

that H.264 significantly outperforms all the other standards.

15

Table 2.2 Average Bit Rate Savings of H.264

Coder MPEG-4 ASP | H.263 HLP MPEG-2
H.264 38.62% 48.80% 64.46%
MPEG-4 ASP - 16.65% 42.95%
H.263 HLP - - 30.61%

Another performance comparison of H.264 against MPEG-4 and MPEG-2 is given in
Figure 2.3 [7]. Bandwidth requirement, storage space and download time of a 90 minute
long DVD quality movie is calculated for all these standards. Download time is calculated
with respect to a download speed of 700 Kbps. Once again, the performance advantage of

H.264 encoder over the other encoders can clearly be seen.

045

E : MFEG-4 (45F)

- WMFEG-4 (H.264)

1234
1.1
B 787
BN A 366
BN AV 139
Bandwidth Storage Utilization Dowrdoad Time
Fewired (Tdbpsh (VI (Tulirnrtes

Figure 2.3 Performance Comparisons for 90-Minute DVD Quality Movie

In addition to having a significant performance advantage over previous standards,
H.264 standard has two other advantages; error resilience and network friendliness. Unlike
previous standards, each transmission packet coded by H.264 can be decoded without

depending on the information on the other packets. This makes H.264 a more error resilient

16

video coding standard [8]. Previous standards targeted transport protocols usually in a
circuit switched, bit stream oriented environment. However, H.264 is designed by realizing
the importance of packet-based data over fixed and wireless networks and this resulted in a

more network friendly video coding structure [8].

17

CHAPTER 3

HARDWARE ARCHITECURES FOR H.264 INTRA FRAME CODER MODULES

3.1 Transform - Quant and Inverse Quant — Inverse Transform

The basic transform coding process in H.264 is similar to that of previous standards.
The process includes a forward transform and quantization followed by zig-zag ordering
and entropy coding. The transform coded residual data is also reconstructed. The
reconstruction process includes an inverse quantization and inverse transform followed by
motion compensation. The reconstructed data before deblocking filter is used for intra
prediction in current frame, and the reconstructed data after deblocking filter is used for

motion estimation in future frames.

MD ——y Forward Quantizer » CAVLC
__Transform | 1
+ |
Hadamard

Transform

Inverse 5
Hadamard
Transform F----—----- +

MC | Inverse | luverse
Transform Quantizer

Figure 3.1 Block Diagram of Transform and Quant Algorithms

18

A detailed flow of the transform and quantization algorithms is presented in Figure
3.1. The input to the forward transform algorithm is a 4x4 block of residual data obtained
by subtracting the prediction from the original image data. The transform and quantization
algorithms process the blocks in a macroblock as explained in the following sections, and

send the resulting data to entropy coder and reconstruction process in the order shown in

Figure 3.2.
-1 (16x16 Intra) 16 17
1o 1 H4 Hs | L1 19 L 10 23

1> I3 e 7 120 1 21 124 |25

s o |12 i3 Chroma Chroma
Cb Cr

10 i g His

Luma

Figure 3.2 Processing Order of Blocks in a Macroblock

3.1.1 Transform Algorithm Overview

H.264 transform algorithm uses four different transform matrices shown in Figure
3.3; 4x4 forward integer, 4x4 Hadamard, 2x2 Hadamard, and 4x4 inverse integer [8,9, 10].
Since 4x4 and 2x2 Hadamard transform matrices are symmetric, inverse Hadamard
transform matrices are same as forward Hadamard transform matrices.

In the transform coding process, 4x4 integer transform is applied to all the blocks

independent of their prediction type and mode. As shown in Figure 3.2, 4x4 block -1 is

19

formed by the transformed DC coefficients of 4x4 luminance blocks for the macroblocks
that are coded in 16x16 Intra mode, and 2x2 blocks 16 and 17 are formed by the
transformed DC coefficients of 4x4 chrominance blocks for all the macroblocks. After the
4x4 integer transform, 4x4 Hadamard transform is applied to block -1 and 2x2 Hadamard
transform is applied to blocks 16 and 17.

In the reconstruction process, 4x4 inverse Hadamard transform is applied to block -1,
and 2x2 inverse Hadamard transform is applied to blocks 16 and 17. After the inverse
Hadamard transforms, 4x4 inverse integer transform is applied to all the blocks

independent of their prediction type and mode.

1 1 1] [x0 x1 x2 x3[[1 2 1 1
1 -1 -2 x4 x5 x6 x7 (|1 1 -1 =2
-1 -1 1 x8 x9 10 «xI1||{l -1 -1 2
-2 2 ~1]|x12 x13 x14 xI5||1 -2 1 -1
(@)

1 1 1 z0 z1 z2 z3
-1 -1 z4 z5 z6 zZ7
-1 -1 1 z8 z9 z10 zI1
-1 1 -—-1|1|zl2 z13 =z14 zI5

—_ = N =

-1 -1 1

—_— =
—

T

—_ =

(b)
1 1 z0 z1||1 1
1 —-1(|z2 z3||1 -1
(©)
11 1 2]y y1oy2 y3][1 1 1 1
1 1/2 -1 -1 |y4 35 y6 7|l 1 12 -1/2 -1
1 -1/2 -1 1 ¥ y9 0 yiI|| 1 -1 -1 1
1 -1 1 —1/2] |y12 y13 y14 y15||1/2 -1 1 -1/2
(d)

Figure 3.3 Matrices Used in H.264 Transform Algorithm:
(a) 4x4 Forward Integer Transform,
(b) 4x4 Hadamard Transform,
(¢) 2x2 Hadamard Transform,

(d) 4x4 Inverse Integer Transform

20

Matrices used for H.264 transform algorithm do not require floating point operations.
It can clearly be seen that only binary shift and integer addition / subtraction operations are
needed to realize the transform and inverse transform operations of H.264 standard.
Consequently, encoder and decoder mismatches are avoided. . As mentioned in chapter 2,
there is no drift between the encoded video and the decoded video. In addition, there is no

need for a multiplier for implementing these transform and inverse transform operations.

3.1.2 Quantization Algorithm Overview

A quantization parameter (QP), calculated by a rate control algorithm, is used for
determining the quantization step size of transform coefficients in H.264 [10,12,13]. There
are 52 quantization parameter values. These values are arranged so that an increase of 1 in
quantization parameter means an increase of quantization step size by approximately 12%.
An increase of quantization step size by approximately 12% means a reduction of bit rate
by approximately 12%. Quantization parameters and corresponding quantization step sizes
are given in table 3.1. The quality of images reduces with the increase in the quantization

parameter, which also results in lower bit consumption.

Table 3.1 Quantization Parameters and Step Sizes

QP 0 1 2 3 4 5 6
Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.250
QP 18 24 30 36 42 48 51
Qstep 5 10 20 40 80 160 224

quantization of DC coefficients is done by using the equation (3.2).

21

1Zij| = (IWij|.MF + f) >> gbits, sign(Zij) = sign(Wij)

Quantization of AC coefficients is done by using the equation (3.1) and the

3.1)

1Zij| = (|Yii|.MF + 2£) >> (qbits + 1), sign(Zij) = sign(Yij) 3.2)

Wij is the result of 4x4 forward integer transformation and Yij is the result of 4x4
Hadamard transform. Prior to quantization, the result of 4x4 Hadamard transform is divided
by 2 and rounded. MF is multiplication factor and depends on QP and positions of pixels of
a 4x4 block. Table 3.2 shows the positions of a 4x4 block and table 3.3 lists the
corresponding multiplication factors. Floor (QP/6) indicates that quantization parameter is
divided by six and then the result is truncated. In equations (3.1) and (3.2), f is a parameter
used to avoid rounding errors and it depends on prediction type of the block and QP, gbits

is a variable depending on QP.

Table 3.2 Positions of a 4x4 Block

(0,0) (0,1) 0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Inverse quantization of AC coefficients is done by using the equation (3.3).) If QP is
greater than or equal tol2, inverse quantization of DC coefficients after the 4x4 inverse
Hadamard Transform is done by using the equation (3.4). Otherwise, if QP is less than 12,
inverse quantization of DC coefficients after the 4x4 inverse Hadamard Transform is done

by using the equation (3.5).

W’l_] _ Zij.V.zﬂoor(QP/6) (33)
Wij = Wqjj. V. 21o0r@P/6) -2 (3.4
Wij = [Wqij.V + 2" 1979 15> (2_floor (QP/6)) (3.5)

22

Table 3.3 Multiplication Factors

Positions Positions
Other
Floor (QP/6) | (0,0), (2,0), | (1,1), (1,3), .
Positions
(2,2),(0,2) | (3,1),3,3)
0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559
Table 3.4 Rescaling Factors
Positions Positions
Other
Floor (QP/6) | (0,0), (2,0), | (1,1),(1,3), N
Positions
(2,2),(0,2) | (3,1),3,3)
0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

Zij is the result of forward quantization and Wqjj is the result of inverse Hadamard
transformation. V is the rescaling factor, which depends on QP and positions of pixels of a

4x4 block. Table 3.4 shows the rescaling factors.

23

3.1.3 Proposed Hardware Architecture

It is stated in the standard that 16-bit arithmetic is enough to realize the transform
algorithm and proposed hardware is designed based on this. The proposed hardware
architecture includes an input register file, a reconfigurable datapath and its control unit,
internal register files and an output register file. The reconfigurable datapath and the
register files are shown in Figure 3.4 [11]. The reconfigurable datapath is designed for
implementing forward and inverse 4x4 and hadamard transform, and quant algorithms.
Even though only one multiplier is used in the reconfigurable datapath, the proposed
hardware performs transform, quant, inverse quant and inverse transform operations for a
macroblock, in the worst case, in 2500 clock cycles. The worst-case occurs for the
macroblocks that are coded in 16x16 Intra mode. Therefore, the proposed high performance
and low cost hardware can process 30 VGA frames per second at 90 MHz. 384x9 bit input
register file stores residual data for a macroblock that will be transform coded including
both luminance and chrominance blocks.

The part of the datapath above the dashed line performs transform and inverse
transform operations. The registers, adders and shifters in this part of the datapath are
shared by forward and inverse transform operations. When the hardware is used to perform
forward transform, the control unit configures the datapath to perform the forward
transform operations. When it is used to perform inverse transform, the control unit
configures the datapath to perform the inverse transform operations. The first row of
multiplexers is used for selecting the proper inputs for transform operations. They select the
data from input register file for forward transform operations and the data from IQIT
register file for inverse transform operations. The second row of multiplexers is used for
selecting the proper input data for the first and the second matrix multiplications. They
select the data from the first row of multiplexers for the first matrix multiplication
operations and the data from register 0, register 1, register 2, register 3 for the second

matrix multiplication operations.

24

L
ﬂ
Iz
e
g
2
izl
I
b5
o
L

Input Regl‘;tel Flle

384x9 bits
P
A 11 i’m 16
16 ¥ + b 2
Mux oS sel Mux /g sel QIO ot Mux Sle(I)_b Mux
16
) v
Mux fy gl Mux /4 sal —_— Mux sl Mux
sluft 0 16 shift3 16

2 2
Shifter Shifter shift1 shiftZAv»I Shifter |'r—>{ Shifter |

: R

/

Add .\ Add/Sub 1

Sub 1
load 0 = = load 3
¥ [P-Register | [P.Register | +
o
7 v .
a |y T U - B
16 g ; Add 2 is
o 1 é Add/Sub 2 ﬁh 2 -3 e
oad 1 16 __r oad
o~
o i
[@
= e Register 4 [4-load 4 »
6 § 5,’ 16
[Divide by 2| 4 » \
5
Reg. for Mux Mux Reg. for
0 LuUT 10 LUT
2s complememer 6'h 100000 —
| P.Register | | P Regls‘ter|
14 1-1
T Registel shift
IF(;!II?I- Multiplier
16x16 bits

23_

¥

Register
File
TO
384x16 bits

Figure 3.4 Transform — Quant Hardware

25

Shifters are one bit shifters used for shifting left (multiply by 2) for forward transform
operations and for shifting right (divide by 2) for inverse transform operations.

For transform operations, three adder/subtractors are used to achieve high
performance with low hardware cost. The forward integer matrix multiplications, inverse
integer matrix multiplications and Hadamard Matrix Multiplications are shown in Figure
3.5, Figure 3.6 and Figure 3.7, respectively. The matrix multiplication operations for
forward and inverse hadamard transform, which are exactly the same, are given in Figure
3.7.

In Figure 3.5, the four values (x0+x4+x8+x12), (x 1+x5+x9+x13), (x2+x6+x10+x14)
and (x3+x7+x11+x15) are the results of first forward integer matrix multiplication and they
are used for calculating the first row of the result matrix containing the transform
coefficients. Similarly, the equations for calculating the transform coefficients in each
remaining row of the result matrix have four common values that are used to calculate the
corresponding transform coefficients. Therefore, 16-bit registers register 0, register 1,
register 2, and register3 are used to store these four common values, i.e. the results of first
matrix multiplications. This reduces both the number of cycles and the power consumption
of both forward and inverse transform operations. The same method is used to implement
the matrix multiplication operations shown in Figure 3.6 and Figure 3.7 as well.

Since the order of the equations used to perform the matrix multiplications for 4x4
and 2x2 Hadamard transforms are not important for functional correctness, we have used
the order that gives the lowest power consumption. When the equations are calculated in
the order given in Figure 3.7, both the operations (addition or subtraction) performed by
adder/subtractor 0 and adder/subtractor 1 and their inputs stay the same between first and
second cycles and between third and fourth cycles while calculating each row. Since their
inputs and the operations they perform stay the same for two consecutive clock cycles, their
outputs stay the same as well. This avoids unnecessary switching activity resulting in lower
power consumption for both forward and inverse Hadamard transforms.

P. Registers are pipelining registers used to achieve 80 MHz clock frequency in a
2V8000ff1152 Xilinx Virtex II FPGA with speed grade 5. Register 4 stores the results of

forward or inverse transform operations.

26

[(x0+x4+x8+x12) + (x1+x5+x9+x13) + (x2+x6+x10+x14) + (x3+x7+x11+x15)]
[2*(x0+x4+x8+x12) + (x 1+x5+x9+x13) - ((x2+x6+x10+x14) + 2*(x3+x7+x11+x15))]
[(x0+x4+x8+x12) - (x14+x5+x9+x13) - ((x2+x6+x10+x14) - (x3+x7+x11+x15))]
[(x0+x4+x8+x12) - 2*(x1+x5+x9+x13) + 2*(x2+x6+x10+x14) - (x3+x7+x11+x15)]

[(2*x0+x4-x8-2*x12) + (2*x1+x5-x9-2*x13) + (2*x2+x6-x10-2*x14) + (2*x3+x7-x11-2*x15)]
[2*(2*x0+x4-x8-2*x12) + (2*x1+x5-x9-2*x13) — ((2*x2+x6-x10-2*x14) + 2*(2*x3+x7-x11-2*x15))]
[(2*x0+x4-x8-2%x12) - (2*x14+x5-x9-2*x13) — ((2*x2+x6-x10-2*x14) - (2*x3+x7-x11-2*x15))]
[(2*x0+x4-x8-2*x12) - 2*(2*x1+x5-x9-2*x13) + 2*(2*x2+x6-x10-2*x14) - (2*x3+x7-x11-2*x15)]

[(x0-x4-x8+x12) + (x1-x5-x9+x13) + (x2-x6-x10+x14) + (x3-x7-x11+x15)]
[2*(x0-x4-x8+x12) + (x1-x5-x9+x13) — ((x2-x6-x10+x14) + 2*(x3-x7-x11+x15))]
[(x0-x4-x8+x12) - (x1-x5-x9+x13) — ((x2-x6-x10+x14) - (x3-x7-x11+x15))]

[(x0-x4-x8+x12) - 2*(x1-x5-x9+x13) + 2*(x2-x6-x10+x14) - (x3-x7-x11+x15)]

(x0-2*x4+2*x8-x12) + (x1-2*x5+2*x9-x13) + (x2-2*x6+2*x10-x14) + (x3-2*x7+2*x11-x15)]
2*(x0-2*%x4+2*x8-x12) + (x1-2*x5+2*x9-x13) — ((x2-2*x6+2*x10-x14) + 2*(x3-2*x7+2*x11-x15))]
(x0-2*x4+2*x8-x12) - (x1-2*x5+2*x9-x13) — ((x2-2*x6+2*x10-x14) - (x3-2*x7+2*x11-x15))]
(x0-2*x4+2*x8-x12) - 2*(x1-2*x5+2%x9-x13) + 2*(x2-2*x6+2*x10-x14) - (x3-2*x7+2*x11-x15)]

Figure 3.5 Forward Integer Matrix Operations

[(yO+y4+y8+yl2/2) +(yl +y5+y9+yl3/2)+(y2+y6+yl0+yld/2)+1/2 * (y3+y7+yll+yl5/2)]
[(yO+yd+y8+yl2/2) +1/2* (yl +y5+y9+yl3/2)—((y2 +y6 +yl0+yl4/2)+ (y3 +y7 +yll +yl5/2))]
[(yO+yd+y8+yl2/2) -12*(yl +y5+y9+yl3/2)- (y2+y6+yl0+yld/2)-(y3+y7+yll +yl5/2))]
[(yO+y4+y8+yl2/2) -(yl +y5+y9+yl3/2)+(y2 +y6+yl0+yld/2)-1/2 *(y3 +y7+yll +yl5/2)]

[(yO+y4/2-y8-y12)+ (yl +y5/2-y9 -y13)+ (y2 +y6/2-y10-yl4)+ 1/2 * (y3 +y7/2-yl1 -y15)]

[(yO+y4/2-y8-y12)+1/2* (yl +y5/2-y9 -y13)- ((y2+y6/2-yl0-yl4)+ (y3 +y7/2-yll-yl5))]
[(yO+y4/2-y8-y12)-1/2* (yl +y5/2-y9-y13)- ((y2 +y6/2-y10-yl4)-(y3+y7/2-yll-ylS))]
[(yO+y4/2 -y8-y12)- (y1 +y5/2-y9-yl13)+ (y2+y6/2-y10-yl14)-1/2* (y3 +y7/2-yll-yl5)]

[(yO-y4/2 -y8+yl2)+ (yl -y5/2-y9 +yl13)+ (y2-y6/2-yl0+yld)+1/2*(y3-y7/2-yll+yl5)]

[(yO-y4/2-y8+yl2)+1/2* (yl -y5/2-y9+yl13)—((y2-y6/2-yl0+yl4)+ (y3-y7/2-yll +yl5))]

[(yO-y4/2 -y8+yl12)-1/2 *(yl -y5/2-y9+yl3)- ((y2-y6/2-yl0+yld)-(y3-y7/2-yll+yl5))]
[(yO-y4/2 -y8+yl12)-(yl-y5/2-y9+yl3)+ (y2-y6/2-yl0+yld)-1/2*(y3-y7/2-yll+yl5)]

[(yO-y4+y8-y12/2)+(yl -y5+y9-yl13/2)+(y2 -y6 +yl0-yl14/2) +1/2 * (y3 -y7 +yll -yl15/2)]
[(YO -y4+y8-yl12/2)+1/2 % (yl - y5+y9 - y13/2) — ((y2 - y6 + y10 - y14/2) + (y3 - y7 +y11 - y15/2))]
[(yO-y4+y8-yl2/2)- 1/2 % (yl -y5+y9-y13/2) - ((y2-y6+yl0-y14/2) - (y3-y7 +yll-yl15/72))]
[(y0-y4+y8-yl12/2)-(yl -y5+y9-yl3/2)+ (y2 -y6 +yl0-yl4/2) - 1/2 * (y3 - y7 + yl1 - y15/2)]
Figure 3.6 Inverse Integer Matrix Operations

27

[(z0+z4+2z8+212) + (z1+25+29+213) + (22+26+210+2z14) + (z3+27+z11+z15)]
[(z0+24+28+212) + (z1+z5+29+z13) — ((z22+26+210+z14) + (z3+z7+z11+z15)) |
[(z0+z4+28+212) - (z1+25+29+213) — ((22+26+210+2z14) - (z3+z7+z11+z15)) |
[(z0+z4+2z8+212) - (z1+25+29+213) + (z2+26+210+z14) - (z3+27+z11+z15)]

[(z0+z4-z8-212) + (z1+25-29-213) + (z2+26-210-z14) + (z3+27-211-z15) |
[(z0+z4-z8-212) + (z1+25-29-213) — ((z2+26-210-z14) + (z3+2z7-z11-z15))]
[(z0+z4-z8-212) - (z1+25-29-213) — ((22+26-210-z14) - (z3+27-z11-z15)) |

[(z0+z4-z8-212) - (z1+25-29-213) + (22+26-210-z14) - (z3+2z7-z11-z15) |

[(z0-z4-z8+2z12) + (z1-25-29+213) + (22-26-z10+z14) + (z3-27-z11+z15) |
[(z0-z4-28+z12) + (z1-25-29+213) — ((z2-26-z10+z14) + (z3-27-z11+2z15))]
[(z0-z4-28+212) - (z1-25-29+7z13) — ((22-26-210+z14) - (z3-z7-z11+z15))]

[(z0-z4-z8+212) - (z1-25-29+213) + (22-26-210+2z14) - (z3-27-z11+z15)]

[(z0-z4+z8-212) + (z1-25+29-213) + (22-26+210-z14) + (z3-27+z11-z15) |
[(z0-z4+28-212) + (z1-25+29-213) — ((z2-26+210-z14) + (z3-z7+z11-z15)) |
[(z0-z4+28-212) - (z1-25+29-213) — ((22-26+210-z14) - (z3-z7+z11-z15))]

[(z0-z4+z8-212) - (z1-25+29-213) + (22-z6+210-z14) - (z3-27+z11-z15)]

Figure 3.7 Forward and Inverse Hadamard Matrix Operations

The part of the datapath below the dashed line performs forward and inverse
quantization operations. The registers, adders, shifters and the multiplier in this part of the
datapath are shared by forward and inverse quant operations. When the hardware is used to
perform forward quantization, the control unit configures the datapath to perform the
forward quant operations. When it is used to perform inverse quantization, the control unit
configures the datapath to perform the inverse quant operations.

Register 4 contains the input data for the quantization and inverse quantization
operations. P. Registers are pipelining registers used to achieve 80 MHz clock frequency in

a 2V80001f1152 Xilinx Virtex II FPGA with speed grade 5.

28

The multiplier used in the datapath is a 14x14 unsigned multiplier. Two
multiplexers are used for selecting the proper inputs for the multiplier. One of the
multiplexers is used to select either a transformed or inverse transformed value coming
from register 4 or a quantized value coming from the output register file TQ. The other
multiplexer is used to select either a value from quant lookup table or a value from inverse
quant lookup table.

The adder at the output of the multiplier and the shifter at one of the inputs of the
adder are used to avoid rounding errors that can happen during scaling and rescaling
operations.

The 3-bit shifter at the output of the multiplier is used to perform scaling and
rescaling operations depending on the value of gbits parameter. The result of the shift
operation is converted into two’s complement form and stored in the output register file
TQ.

The transform and quant operations are executed in a pipelined manner. After a
transform coefficient is computed, in the next cycle, this coefficient is quantized in the
quant part of the datapath and a new transform coefficient is computed in the transform part
of the datapath. Transform and quant operations for a 4x4 block takes 44 clock cycles.
Since only one multiplier is used in the datapath, quant and inverse quant operations cannot
be pipelined. Inverse transform and inverse quant operations for a 4x4 block take 59 cycles.
After all the transform coefficients in a block are quantized, inverse quantization starts
followed by inverse transform. Inverse transform operations start when the inverse
quantization operations of a 4x4 block are completed. Therefore, inverse quant and
transform operations for a 4x4 block take more clock cycles than the forward transform and

quant operations for a 4x4 block.

29

3.1.4 Implementation Results

A high performance and low cost hardware architecture for real-time implementation of
H.264 forward transform and quantization and inverse transform and quantization
algorithms is developed. The proposed architecture is implemented in Verilog HDL. The
implementation is verified with RTL simulations using Mentor Graphics ModelSim SE.
The Verilog RTL is then synthesized to a 2V8000ff1157 Xilinx Virtex II FPGA with speed
grade 5 using Mentor Graphics Leonardo Spectrum [14]. The resulting netlist is placed and
routed to the same FPGA using Xilinx ISE Series 5.2i. The FPGA implementation
including input and output register files as well is placed and routed at 81 MHz under
worst-case PVT conditions. Since, in the worst-case, it takes 2500 clock cycles to process a
MB, the FPGA implementation can code 27 VGA frames (640x480) per second. The
FPGA implementation is verified to work in a Xilinx Virtex Il FPGA on an Arm Versatile
Platform development board.

The FPGA implementation including input and output register files as well used the
following FPGA resources; 4054 Function Generators, 2027 CLB Slices, 1 Block
Multiplier, and 583 Dffs /Latches, i.e. 4.35% of Function Generators, 4.35% of CLB Slices,
0.60% of Block Multipliers, and 0.61% of Dffs /Latches. The FPGA implementation
excluding input and output register files used the following FPGA resources; 2497
Function Generators, 1249 CLB Slices, 1 Block Multiplier, and 581 Dffs /Latches, i.e.
2.68% of Function Generators, 2.68% of CLB Slices, 0.60% of Block Multipliers, and
0.61% of Dffs /Latches [11]. The Verilog RTL is also synthesized to Virtual Silicon UMC
0.18u standard-cell library using Synopsys Design Compiler. The synthesis results are
presented in Table 1 [11]. The netlist excluding input and output register files has an area of
23K gates. The netlist is verified to work at 210 MHz under worst-case PVT conditions
with post synthesis simulations. This 0.18 ASIC implementation can code 70 VGA frames
(640x480) per second.

A hardware architecture only for real-time implementation of H.264 forward and
inverse transform algorithms is presented in [15]. This hardware achieves higher

performance than our hardware design at the expense of a much higher hardware cost. Our

30

hardware design is a more cost-effective solution for portable applications. They use 16
adders and 16 internal register files in their datapath as opposed to 3 adders and 6 internal
register files in the transform part of our datapath. Their datapath has an area of 6538 gates
in TSMC 0.35p technology. Our datapath, on the other hand, has an area of 2904 gates in
AMS 0.35u technology.

Table 3.5 ASIC Implementation Results

Critical Path Area
Delay [ns] [Gate Count]

Transform part of the Datapath 2.77 1978

Datapath 4.78 12773

Datapath + Control Unit 4.8 23162

Datapath + Control Unit +
Input Register File + 4.8 130505
Output Register File TQ
3.2 CAVLC

We have taken CAVLC implementation from Esra Sahin’s work [16] and integrated
it into our design. A brief explanation about the CAVLC hardware is given below.

CAVLC algorithm is used to encode transformed and quantized residual luminance
and chrominance blocks in a macroblock in the order shown in Figure 3.2 Block -1 is
formed by the DC coefficients of 4x4 luminance blocks only for the macroblocks that are
coded in 16x16 Intra Mode. Blocks 16 and 17 are formed by the DC coefficients of 4x4
chrominance blocks for all the macroblocks. All the transformed and quantized 4x4 and
2x2 blocks for a macroblock are given as inputs to CAVLC algorithm in the order shown in
Figure 3.2. CAVLC algorithm processes each 4x4 block in zig-zag scan order and each 2x2
block in raster scan order. It encodes each block in the following five steps [9, 10, 12].

Step 1: It generates coeff token, the variable length code that encodes both the

number of non-zero coefficients (TotalCoeff) and the number of trailing +1 values

31

(TrailingOnes) in a block. Since the highest non-zero coefficients after the zig-zag scan are
often sequences of +1, CAVLC algorithm encodes the number of high-frequency +1
coefficients (TrailingOnes) in coeff token. Since the number of non-zero coefficients in
neighbouring blocks is correlated, CAVLC algorithm generates coeff token for a block
context adaptively. It uses one of the four different VLC tables for generating the
coeff token for a block based on the number of non-zero coefficients in the neighbouring
blocks as follows. It first calculates a parameter nC based on the number of non-zero coefti-
cients in the left-hand and upper previously coded blocks, nA and nB respectively. If upper
and left blocks nB and nA are both available (i.e. in the same coded slice), nC = round ((nA
+ nB) /2). If only the upper is available, nC = nB; if only the left block is available, nC =
nA; if neither is available, nC = 0. As a special case, for 2x2 dc chroma blocks, nC is
always set to -1. It, then, selects the VLC table that will be used for generating the
coeff token based on the value of nC.

Step 2: It encodes the sign of each TrailingOne with a single bit in reverse order
starting with the highest-frequency TrailingOne.

Step 3: It encodes the level (sign and magnitude) of each remaining non-zero
coefficient in the block in reverse order starting with the highest frequency coefficient and
working back towards the DC coefficient. The codeword for a level consists of a prefix and
a suffix. Since the magnitude of non-zero coefficients tends to be larger near the DC
coefficient and smaller towards the higher frequencies, CAVLC algorithm adapts the suffix
length for the level parameter depending on recently coded level magnitudes. It sets the
suffix length for the first level, except in some special cases, to 0. It then increments the
current suffix length, if the magnitude of the current level is larger than a predefined
threshold for this suffix length. CAVLC algorithm generates the code length and the
codeword for the current level based on its suffix length. When the suffix length for a level
is 0, its codeword does not include a suffix. Otherwise, the codeword for the level includes
a suffix. The codeword for a level always includes a prefix, but the prefix for a level is
generated using different equations in the two cases; when the suffix length for the level is
0 versus when the suffix length for the level is greater than 0 [12].

Step 4: It encodes the total number of zeros before the last non-zero coefficient

(Total Zeros) using a VLC table.

32

Step 5: It encodes the number of zeros preceding each non-zero coefficient
(Run_Before) in reverse order starting with the highest-frequency coefficient. Since after
transformation and quantization, blocks typically contain mostly zeros, CAVLC algorithm

uses run-length coding to represent strings of zeros compactly.

Cactf_Taken
Table &election LTas

Eovarse Fig Fag —Il-l TrailingUne ©ourser I—' WLE Tabdes for |
AW 258 OF eReTRiieT Cofj'fr?km i . VLG
[c L =
T VELC T able For 1
T ol Zero Coumnter t 1 32
= - i
INPUT —-I Lewel £ onnrvter é‘:ﬂj;:.::f
REGISTER LT P
FILE o !
(MEdxldy RunB cfore TrnilingOnes O TRPUT
Reafile S Flas = REGISTER
. FILE
—~| Traitina I 102x32
‘:..E-“”"o % " Prefu _Suffs . ¢ anin'd
M & croh lo el 5 3™ Control LIt
—..l Level Reghl H B + r
B——— 5 S Frefiz -5 uil Bl renm
i Dratapath

Figure 3.8 Block Diagram of CAVLC Hardware

The proposed hardware architecture for H.264 CAVLC algorithm is shown in Figure
3.8. The proposed hardware performs context-adaptive variable length coding for a
macroblock, in the worst case, in 2880 clock cycles. The worst-case occurs for the
macroblocks that have no zero coefficients and trailing +1 coefficients [16].

The CAVLC design is synthesized to a 2v8000ff1157 Xilinx Virtex II FPGA with
speed grade 5 using Mentor Graphics Leonardo Spectrum. The resulting netlist is placed
and routed to the same FPGA using Xilinx ISE Series 5.2i. The FPGA implementation
including input and output register files as well is placed and routed at 76 MHz. Since, in
the worst-case, it takes 2880 clock cycles to process a MB, the FPGA implementation can

code 22 VGA frames (640x480) per second [16].

33

3.3 Intra Prediction

Intra predictor hardware used in this thesis is taken from Esra Sahin’s work [17].

The intra predictor hardware predicts the values of pixels in the current block from the

values of neighboring pixels. For the luma samples, prediction may be formed for each 4x4

sub block or for a 16x16 macroblock. There are 9 prediction modes for each 4x4 luma

block and 4 prediction modes for a 16x16 luma block. For chroma samples, the same

modes used for 16x16 luma blocks are applied to the 8x8 chroma blocks. 4x4 intra

prediction modes are shown in Figure 3.9 and16x16 and 8x8 prediction modes are shown in

Figure 3.10 [8,9]. The arrows in Figure 3.9 and 3.10 indicate the direction of prediction in

each mode.
Vertical Horizontal nc Diagonal Down-Left Diagonal Down-Right
VEECOEFEH [FMAECOEFGE WAS[CIOE[FIEH] WA E[CTOTEFIEH] DEEENEEELE
! || === T P L ! \..
]) [TjmE B | \
K A—— K|NGEE K 4
€] Cj==== | CImmE [C] [T

Vertical-Right

Honzontal-Down

Vertical-Left

Honzontal-Up

P

A S CICTE[FI A

Vertical

-'l\' AIBICI D E[FISTH 'l g'|=‘|_~;|‘2|E|"'i':'l"'l ’: A BICIOIETF]G[H] e
AN HENS ;i 4
Z\ '-\-.\\\. C} E/

Figure 3.9 4x4 Intra Prediction Modes

Horzontal

DC

Flane

H |

H

H

W

F'yY ¥

"

Figure 3.10 16x16 and 8x8 Intra Prediction Modes

Y

W

[

v Mean(H+V)

/}/l

p
7

Only one intra prediction mode, 4x4 DC mode, is explained in this thesis; all intra

modes are explained in [8,9]. In DC mode, as shown in Table 3.6 and Figure 3.11, the

34

average value of the neighboring pixels are found out. In Figure 3.11, 3-bit shift left
operation is symbolized with “ << 3 “, which is identical to dividing with 8 and truncating
the result. 16x16 and 8x8 DC modes are implemented in the same way; the only difference

is the block size.

Table 3.6 Prediction Samples for 4x4 Modes

M| A | B|C|D|E|F |G| H
I a b c d
J e f g h
K 1] k 1
L |m| n 0 p

a=(A+B+C+D+I1+J+K+L)<<3
b=(A+B+C+D+I1+J+K+L)<<3
c=(A+B+C+D+I+J+K+L)<<3
d=(A+B+C+D+I+J+K+L)<<3
e=(A+B+C+D+I+J+K+L)<<3
f=(A+B+C+D+I+J+K+L)<<3
g=(A+B+C+D+I1+J+K+L)<<3
h=(A+B+C+D+I1+J+K+L)<<3
i=(A+B+C+D+I+J+K+L)<<3
j=(A+B+C+D+I1+J+K+L)<<3
k=(A+B+C+D+I1+J+K+L)<<3
I=(A+B+C+D+I+J+K+L)<<3
m=(A+B+C+D+I1+J+K+L)<<3
n=(A+B+C+D+I1+J+K+L)<<3
0=(A+B+C+D+I1+J+K+L)<<3
p=(A+B+C+D+I1+J+K+L)<<3
Figure 3.11 DC Mode Equations

The intra predictor hardware is shown in Figure 3.12 [17]. It has three different

datapaths and control units for 16x16 luma, 8x8 chroma and 4x4 luma modes. Datapaths

consist of adders and shifters. Since intra predictor predicts the pixels in the current block

35

from neighboring pixels of this block, neighboring buffers are used to store the neighboring
pixels.

Intra predictor can only use a prediction mode if the neighboring pixels used for
predicting the pixels in the current block based on this mode are available for prediction.
For example, for the macroblocks in the first row of an image, vertical mode and plane
mode cannot be used, because upper neighbors of these macoroblocks are not available. For
the macroblocks in the first column of an image left neighbors are not available, this means
these macroblocks horizontal and plane modes cannot be used. The availability information
for neighboring pixels is provided to the intra predictor hardware as an input, and it

performs the prediction based on this availability information.

Reconstructed
Inputs from Pixcls
Mode Decizion i

Address Gencration

Neigbouring Buffers Hardwares

I .

_ Top Level Mode
- Controller

| Internal Buffers |.<_R¢¢'ﬂ:_=hil.lci¢d
ixels

Datapath for 4x4

Controller for dx4
Luma Prediction

vy

Luma Prediction
Mod ez Modes _I—.
Contreller for 16x16 Lt Datapath for 1éxlé Prediction
Luma Prediction - Luma Prediction p—ipd Output Buffer
Modes Modes MUY (384x8)
Controller for 8x8 Datapath for 8x8 I
- Chroma Prediction Chroma Prediction
Mod ez Modes

Figure 3.12 Intra Prediction Hardware

36

CHAPTER 4

TOP LEVEL H.264 INTRA FRAME CODER HARDWARE

H.264 Intra Frame Coder Hardware consists of a search hardware and a coder
hardware, and they work in a pipelined manner. Figure 4.1 shows the top-level block
diagram of H.264 Intra Frame Coder Hardware and Figure 4.2 shows the top-level

scheduling.

[rput SEARCH Pipelining CODER Ctpuat
Fegister Filg HARDWARE Fegster Filg HARDWAFRE Femder Flg

Figure 4.1 Top Level Block Diagram

1th MB
Functional B mdMB
unis EE srdMB
4th MB

Search

Hardware b e e

Coder
Hardware

4000 E000 12000 1a0ao Time {cycles)

Figure 4.2 Top Level Scheduling

37

H.264 Intra Frame Coder Hardware works as follows. The first macroblock (MB) of
the input frame is loaded to the system and search hardware works on this MB. After the
search hardware determines the best mode for the first MB, the first MB is loaded to the
current macroblock register file in the coder hardware. As soon as this loading operation
finishes, the coder hardware starts to code the first MB based on the selected mode and
search hardware starts to work on the second MB. The entire image is processed
macroblock by macroblock in this order.

In this thesis, we want to design an H.264 Intra Frame Coder Hardware for portable
applications targeting level 2.0 of baseline profile. This requires encoding 30 CIF frames
per second (fps). Since a CIF size image has 352x288 pixels, corresponding to 22x18=396
MBs, this requires processing 11800 MBs per second. In Table 4.1, maximum number of
clock cycles in which a MB must be coded for different clock frequencies are given. Since
search and coder hardware finish their work in 4000 clock cycles, running the H.264 Intra

Frame Coder Hardware at 50 MHz is enough for satisfying our target.

Table 4.1 Available Clock Cycles for Different Clock Frequencies

Level pﬁ?fsggflfd @30Mhz | @40Mhz | @50Mhz | @55Mhz | @60Mhz | @65Mhz | @70Mhz
20 | 11880 | 2525 | 3367 | 4208 | 4629 | 5050 | 5471 | 5892

4.1 Search Hardware

The block diagram of the search hardware is shown in Figure 4.3. Search Hardware
includes the intra prediction, residue, high-speed Hadamard transform and mode decision
functional units. Register files used in the search part of the H.264 Intra Frame Coder

Hardware are current macroblock and intra predicted macroblock register files.

38

84 x8

Charvent NE b x 16 DO [
[Begisters

Livtia 16Gx16
Clroimn 83

Inutea Pred.

Neaghbours 104 x 8
Predicted ME x
IWlnde
OF Drecison hlode
286 x 8§ !
Current WE
Tuvtras 44 . Hladard
@ @D Teareformn
f/_, '3
Metzhibours =
256 8
Predicted MB

Figure 4.3 Block Diagram of Search Hardware

Mode decision algorithm implemented in the search hardware is same as the
algorithm implemented in JM Software when there is no R-D optimization [12,18]. The

algorithm is explained below.

Intra 4x4 Mode Decision:

1. For each 4x4 block, apply Hadamard, compute SATD.

2. For each 4x4 block, compute Costsxs = SATD + 4AR, where R=0 for most probable
mode and R=1 for other modes.

3. Choose the mode with minimum cost

4. Repeat this procedure for all 4x4 subblocks

5. Compute total cost for the MB: X Costaxa

39

Lambda:

img->qp : QP parameter (12 <= QP <=151)

A =lambda mode = lambda_motion = QP2QUANT[max(0,img->qp-SHIFT QP)];
where SHIFT QP is equal to 12 and QP2QUANT table is given below:
QP2QUANTI[40]={1,1,1,1,2,2,2,2,3,3,3,4,4,4,5,6,6,7,8,9,10,11,13,14,
16,18,20,23,25,29,32,36, 40,45,51,57,64,72,81,91 };

Intra 16x16 Mode Decision:

1. Perform 4x4 Hadamard for each 4x4 subblock

2. Extract all DC coefficients from each transformed block, divide these values by
2, form a 4x4 block and apply Hadamard to this DC block.

3. Sum up the absolute values of all the AC coefficients and Hadamard
transformed (and scaled) DC coefficients, and take this sum as total cost
Costigxis-

4. Repeat this procedure for all modes and choose the 16x16 mode with smallest

cost.
Intra 8x8 Mode Decision:
1. Perform 4x4 Hadamard for each 4x4 subblock
2. Sum up the absolute values of all the Hadamard transformed coefficients and
take this sum as total cost Costgys.
3. Repeat this procedure for all modes and choose the 8x8 mode with smallest cost.

Intra 4x4 vs Intra 16x16 Mode Decision:

Compare Costex16 With (£ Costuxa+24)), and choose the one with smaller cost.

40

In the search hardware, there are two parts operating in parallel in order to complete
the mode decision process faster. The upper part shown in Figure 4.3 is used for finding the
cost of 16x16 luma and 8x8 chroma modes. The size of register files used in this part is 384
x 8, because they are used for storing both luma and chroma samples of a MB. The lower
part shown in the same figure is used for finding the cost of all 4x4 modes for each 4x4
luma block of a MB. The size of register files used in this part is 256 x 8, because they are
used for storing only luma samples of a MB. Mode decision module uses the results
produced by these two parts to determine the mode with lowest cost and sends this mode
information to the coder hardware.

Before the intra prediction module is used to predict the pixels of a MB, the
neighboring buffers in the intra prediction module are filled with original image data
available in the current MB register file. The top-level control of the search hardware then
sends the block number and type information to the intra prediction module and starts it for
each available mode.

The upper part of the search hardware starts working by computing the cost of the
16x16 DC mode for luma samples. When intra prediction completes the prediction based
on 16x16 DC mode, the result of this prediction is used by residue and Hadamard transform
modules. Intra 16x16 mode decision requires storing DC coefficients in a register, because
Hadamard transform has to be applied to these coefficients again. The multiplexer before
the Hadamard transform hardware selects between DC coefficients and coefficients from
the residue block. As the residue and Hadamard transform hardware are working on the
predicted MB based on 16x16 DC mode, the top-level control of the search hardware starts
the intra prediction module for the 8x8 DC mode for chroma samples. When the intra
prediction completes the prediction based on 8x8 DC mode for chroma samples, the result
of this prediction is used by residue and Hadamard transform modules and the top-level
control of the search hardware starts the intra prediction module for the next available
16x16 mode for luma samples. This process continues for all the available modes for 16x16
luma and 8x8 chroma samples. In this way, computing the costs of 16x16 and 8x8 modes

of a MB are overlapped.

41

4.1.1 High Speed Hadamard Transform Hardware

In order to complete the Sum of Absolute Transformed Difference (SATD)
operations faster, a high speed Hadamard transform hardware is designed. The designed
hardware is shown in Figure 4.4. This hardware implements the same algorithm shown in
Figure 3.7. The difference is that 15 adder / subtractor units are used in this hardware as
opposed to 3 adder /subtractor units used in the hardware shown in Figure 3.4. The adder /
subtractors used in this hardware are 13-bit adder / subtractors. The hardware includes two
pipelining registers to improve the maximum clock frequency. A register is used in the
hardware to store the result of accumulating the transformed difference data. The proposed

hardware finishes SATD operations of a 4x4 block in 18 clock cycles.

addisik

mafiay o

Fegister

L]
Figure 4.4 Block Diagram of High Speed Hadamard Transform Hardware

42

4.1.2 Mode Decision Hardware

The hardware shown in Figure 4.5 is designed for comparing the cost of selected intra
16x16 mode with the total cost of selected 4x4 modes. In order to avoid using a multiplier,
A is shifted to left by 3 bits and A is added to this shifted value three times to obtain 24xA.
Then, the total cost of selected 4x4 modes is added to 24xX\ and the result of this addition is
subtracted from the cost of selected 16x16 mode. If the result is positive, mode decision

hardware selects 16x16 mode, otherwise it selects 4x4 modes.

ZCost,
Costyg.m o A<

13
1z Q

12 I

¥

Add_sub s_"
Add/iSub

1|
=

¥

Feqgister

19

-1

L~

Fesult

1

Figure 4.5 Block Diagram of Mode Decision Hardware

Table 4.2 Mode Decision Hardware Register Content

Cycle Number Register Content
1 8x A
2 16 x A
3 24 x A
4 2CoStgs T 24 X A
5 Costigxis — (ZCoStayg + 24 X 1)

43

4.2 Coder Hardware

The block diagram of the Coder Hardware is shown in Figure 4.6. The transform,
quant, inverse transform, inverse quant, Hadamard transform, inverse Hadamard transform,
CAVLC and intra prediction modules in the coder hardware are explained in chapter 3.
Residue block creates the residual data by taking the difference between current
macroblock and intra predicted macroblock, and it loads the residual data to the input
register file of the Transform — Quant Hardware. Reconstruction block reads the result of
inverse quantization and inverse transform Hardware and the intra predicted macroblock as
inputs. It adds them and clips the result to the [0-255] range, and loads the result to the
neighboring pixel buffers in the intra prediction hardware and to the reconstructed

macroblock register file.

384x8
Current VB
b
C 384x9 384x16
Fesidue o Cuant
, Reg. file X Reg. file
384x8 @.
Predicted B
Tiverse
Quant z
v Nx 32
Intra Pred.), /R:c-o’@d— 1616 Reg. File
__ Reg. File i
¥ Bitstream
384x8
Feconstructed
LB

Figure 4.6 Block Diagram of Coder Hardware

44

Since there are 256 luminance pixels and 128 chrominance pixels in a MB, and each
pixel value is in the range [0-255], 384x8 register files are used for storing the current MB,
the intra predicted MB and the reconstructed MB. A 384x9 register file is used for storing
the 9-bit signed residual data. A 384x16 register file is used for storing the 16-bit signed
quantized transform coefficients of a MB. A 16x16 register file is used for storing the 16-
bit signed inverse transformed coefficients of a 4x4 block. A 192x32 register file is used for
storing the generated bitstream.

The scheduling of the Coder Hardware for a MB that will be coded with 4x4 intra
modes is shown in Figure 4.7. For a MB that will be coded with 4x4 intra modes, first the
intra predictor hardware fills the predicted macroblock register file with the predicted pixels
based on the 4x4 prediction modes. Then, the residue block subtracts the predicted MB
from the current MB. When the first 4x4 block of residual data is available, Transform —
Quant module starts to work. The results of Transform - Quant module, i.e. quantized
transform coefficients, are loaded to the input register file of CAVLC hardware. As soon as
the quantized transform coefficients of the first 4x4 block are ready, CAVLC and
Transform — Quant modules start to work. The output of CAVLC module, i.e. the generated
bit stream, is stored in the output register file of CAVLC hardware. As soon as Transform —
Quant module finishes inverse quant and inverse transform operations for the first 4x4
block, i.e. when the inverse transformed coefficients of first 4x4 block are ready,
reconstruction block starts to work. After the first 4x4 block of a MB is coded and
reconstructed, the coder hardware starts to work on the second 4x4 block. In this way, all
4x4 blocks in a MB are coded and reconstructed.

The scheduling of the Coder Hardware for a MB that will be coded with a 16x16 intra
mode is shown in Figure 4.8. For a MB that will be coded with a 16x16 intra mode,
Hadamard Transform has to be applied to DC coefficients after 4x4 integer transforms.
Therefore, inverse quant and inverse transform, CAVLC and reconstruction operations for

the MB can only start after the Hadamard transform finishes.

45

Modules &

Intra
Prediction

%]
!
5254
[

Eesidue

0 QT “1g 10T

TCIQIT

CAVLC

i

F.econstruction @

1st Block

] 2nd Block

0 4442 &6 142 160 202 244

T T
302 320

B
L

Time (cycles)

Figure 4.7 Coder Hardware Scheduling for 4x4 Intra Modes

Modules

Intra
Prediction

Fesidue

1st Block
T : woE m hm (2% 2nd Block
ot | EERR
16th Block
CANLC
Eeconstruction
43 75 :
T I| I| T T v T T T T -
24 43 g6 130 384 402
1] Ha 800 860 380 920 Time (cycles)

Figure 4.8 Coder Hardware Scheduling for 16x16 Intra Modes

46

CHAPTERSS

H.264 INTRA FRAME CODER SYSTEM

5.1 System Overview

The development environment consists of a PC connected to ARM
Versatile/PB926EJ-S board through ARM Multi-ICE debugger, a logic tile mounted on the
Versatile/PB926EJ-S board and a color LCD panel. PC is used to create the bit stream,
which is loaded to the FPGA on the logic tile. Design methodology to create the resulting
bit stream is explained in section 5.3. The software running on this PC to debug the system
is AXD Debugger from ARM Developer Suite 1.2 and ARM Multi ICE Server V.2.2.6 is
used to communicate with the development board. A Color LCD panel is used to display
the original and reconstructed images for visual verification. The development environment
is shown in Figure 5.1 [19].

The Versatile/PB926EJ-S board contains a development chip including an ARM 9
processor, a bus matrix and a number of peripheral interfaces. There are volatile and non-
volatile memories on the board. The board also has a two million gate Xilinx Virtex II
FPGA, XC2V2000, which implements more peripheral interfaces. Figure 5.2 shows the
peripherals of Versatile/PB926EJ-S development board [19]. The controllers for some of
these interfaces are implemented in the development chip such as color LCD and GPIO
controllers. The controllers for the other interfaces are implemented in the XC2V2000
Xilinx Virtex II FPGA such as PCI interface, smart card interface, multimedia card
interface, keyboard interface, mouse interface, universal asynchronous receiver-transmitter

(UART) interface and character LCD interface. In addition, XC2V2000 FPGA controls

47

registers for status, ID, onboard switches, LEDs, and clock control [19]. A bit file
implementing these controllers is loaded to the XC2V2000 FPGA at the start up by default.

= lulti ICE
Server & AXD
1 -~ Software
pao
Mulil ICE el
D&h“ﬁuﬁ"iifﬁijﬁ""“
&-—.< __EE

Development
Boand

A

Color LCD
Panel

e Sl

Figure 5.1 Development Environment

The board has a connector for Joint Test Access Group (JTAG) port which is used
for configuring the FPGAs and PLDs on the board and for debugging the system. The
board also has logic analyzer connectors for AHB monitor and Trace port. The signal
activity of the system buses can be seen with a logic analyzer connected to the AHB
monitor. The contents of the internal registers can be seen with a logic analyzer connected
to the Trace port without stopping the system.

Versatile board offers the possibility of using one or more Real View logic tiles
which can be configured to implement custom-designed logic. HDRX, HDRY and HDRZ,
shown as logic tile expansion in Figure 5.2, form together the logic tile connection. Logic
tiles can be added to the system by mounting them on top of these connectors. The logic

tiles include Xilinx Virtex Il FPGAs to implement additional hardware in the system [19].

48

51 UsE UART UART CLCD expansion

configuration ~ Mouse ng 0 (top) 0 (top) & (top) cognector ?ﬂ'ﬁeﬂrr
switches 1 (bgtam) 1 (botiam) 3 {hatham) : e
T LCD
N AN i e | ,
o e L y
{logp) i i
Line in GP PUSH
{battom) " [green LED)
Mic in = RESET
. | [orange LED)
7
Froh DEV CHIP
debug e COMF|G
c BB BRI = .E {blue LED}
MM L
Iil E:mll o FPGEA
aiftam) ™ CONFIG
[yallow LED)
Smart 1
cang ™ JTAG
0 {top) L~
1 (Boitam) Trace
Laogie Tile " port
eXpAnsion noci
ﬂl n CFGEM LED
56 GP H [oranga)
{user] .- — COMFIG
gwitchas E . lirk

. | standoy
Ay A — - oot
w } (=] Hoooog
LEDs oooooo ..-Pm-.quED

- [red)
El,hl,':rnrtl,---..._|1 —
Heyboard 7/1' o T~ ChipScope
e ¥ —

" GPlO A
».U».ﬂ?:m - | — GPl0 23
Mmisertary - ARMAZGE -5
EXPANSI0ON Development =~ USE debug
AHB Chip 3VE R
monltor Hl FFGA . (green LED)
o = 5 OK
VR /15 _F,,,—’—"" B (green LED)
Statis ~— | i Hl EE = "f : Power
Mamory E Im._jL-— Fuse
expansion

. ——— Fo
Battery Eapansion

Figure 5.2 Versatile/PB926EJ-S Development Board

There are also programmable clock generators on the Versatile/PB926EJ-S board and
the board contains clock multiplexers, so that different clock signals can be used. The clock
multiplexers can be configured so that the clocks are driven either by the baseboard or the
logic tile [20]. There are three major clock signals, which drive the ARM processor core,
modules connected to the buses in the development chip and modules connected to the
buses outside the development chip. Default frequencies for these clocks are 210 MHz for
ARM CPU, 70 MHz for internal buses and 35 MHz for external buses and the maximum
working frequencies for these clocks are 216 MHz, 75 MHz and 43 MHz, respectively.

System buses can be clocked with the same clock signal or with different clock signals.

49

Synchronous mode means using the same clock signal for the buses. Asynchronous mode
means using different clock signals for the buses. This mode is ideal for implementing

modules on these buses which have different maximum working clock frequencies [19].

5.1.1 Development Chip

ARMO926EJ-S Development Chip, the block diagram of which is shown in Figure 5.3,
is equipped with ARM926EJ-S processor that supports 32-bit ARM and 16-bit Thumb
instructions sets, tightly coupled memories for code (32KB) and data (32KB), cache
memory for code (32KB) and data (32KB), memory management unit, multi-layer bus
matrix that provides simultaneous transfers, MOVE video encoding coprocessor, MBX
graphics accelerator, Multi-Port Memory Controller (MPMC) for accessing dynamic
memory, Synchronous Static Memory Controller (SSMC) for accessing static (SRAM or
flash) memory, VFP9 Vector Floating Point coprocessor, two external AHB master
bridges and one external AHB slave bridge, AHB monitor for detailed analysis of bus
activity, DMA controller, Vectored Interrupt Controller (VIC), Color LCD controller, three
UARTS, Synchronous Serial Port (SSP), Smart Card Interface (SCI), four eight-bit GPIOs,
Real Time Clock (RTC), two programmable timers, watchdog timer, Embedded Trace
Macrocell (ETM9), Embedded-ICE logic for JTAG debugging, Phase-Locked Loop (PLL)
[19].

50

ARMozEE)-3 Dev. Chip
ARMazZEE)-S PXP MOVE [ARMazeESS [ETMS
Subsystam
yste WFPD — M M 5
WEMG S MBX interface port M.ﬁ m
BXA7E) g ARM Data AHE S=
= ARM Instruction AHE o
= CLCOGC AHE
= DMA1 AHE ;
s EXIS AN M3 T Sletw AHES
corifig 5 |4 DMAD AHB ‘E [Versatile
Lasgiz Tile
cLoDc M o or PG
(FLA40) - 85T mastar)
config 5 [—§ } T g
DMAC M -
(FLOBDY g 5 E Ml AHE M2
oorfig S |4 at (FPGA
Bus matrix = & peripherals)
VIC rultiplexcrs [
(PLAGO) L) ard decoders ch -E " *Tﬁmé
config § I I - £ Lagic Tile
. . : peripherals)
samca 8 —
(PLOZ3) 5 1
|
Core g DMA 5
APE) . , .
AHEVAFE bridge APB | AHBVAPE bridge
M 7]
ATC
Dual Tirmer |] (PLO3) S5P1 |
FSF’SIMJ w2 Watchdag (PLOZZ) =
(5PE0S) UART %3 [] (PL134)
GPIO x4 (1 System IPLO11)
(PLOB) Cortroller =
] (SPE40)
Figure 5.3 Block Diagram of Development Chip
5.1.2 Memory

Versatile board contains 128 MB of 32-bit wide SDRAM, 2 MB of 32-bit wide static
RAM, 64 MB of 32-bit wide NOR flash, 64 MB of 16-bit wide NAND flash memories.
There are memory expansion ports for static and dynamic expansion memories. Using these
ports, if required, up to 320 MB of static memory in a static memory expansion board and
up to 256 MB of SDRAM in a dynamic memory expansion board can be added to system

memory. Figure 5.4 shows system memories with their connections and mapping [19].

51

Memary or memory-mapped
peripherals on customized

Mearmaory or mamory-mapped
peripherals on PCI cards

RealView Logic Tiles 128MB Drymamic
0xB0000000- Oxl4000000- 0x44000000- SDRAM expansion
OXEFFFFFFF 0x1FFFFFEF 0xEFFFEFFE e socket

t CE
%ﬁ%ﬂ%g%g%' 0x80000000-
AHB M1 AHB M2 00 FFFFFFF
Dynamic memory address, data, and
MPMC control signals, MPMCx
(GXATE)
SSMC Static memary address, data and control signals, Shx
(PL093) ! | i 1
Static
ARMAZEEJ-S B4MB B4MB NOR 2ME 9’;%1':(5;?”
Dev. Chi DiskOnChip flash SRAM)
- CS0 csi cs2 CS[7:3]
0x30000000- 0x34000000- || 0x38000000- g:i;g;;ggi
Bootselact 0x33FFFFFF 0x37FFFFFF 0x3EFFFFFF ST LTI
switches Ox2FFEFFFFF

| Chip select, multiplex, and decode logic in PLC |

Figure 5.4 System Memory Map

5.1.3 Bus Architecture

As shown in Figure 5.5, the development chip on the Versatile/PB926EJ-S interfaces
external peripherals using three external buses; AHB M1, AHB M2 and AHB S [19, 20,
221 AHB M1 is an external master bus, so the development chip behaves as a bus master.
The AHB M1 is connected to the baseboard FPGA and logic tiles, but the default
baseboard FPGA configuration does not connect any slaves to this bus. AHB M2 is an
external master bus, so the development chip behaves as a bus master. The AHB M2 is
connected to the baseboard FPGA and logic tiles. The default baseboard FPGA
configuration has its slaves connected to this bus. AHB S is an external slave bus, so the
development chip behaves as a slave on this bus. The AHB S bus is connected to the
baseboard FPGA and logic tiles. The default baseboard FPGA configuration has the PCI
master connected to this bus. An internal bus matrix is used in the development chip. The

AHB M1 and AHB M2 bridges inside the development chip are slaves of the bus matrix,

52

matrix, and has its own bus layer.

mapped to fixed addresses in the memory map. The AHB S bridge is a master of the bus

Logic tile
M1 o M1 Slave M2 Slave 1
Bus Matrix
M1 Master 0 -—Qq— M2 Master 0
HORZ HORX
AHE M1 AHE M2
VPBEZEEL-S
FPGA
M2 Slave 1
AHE M1 AHB M2
b LY
. SN M2 Slava 0
w Bus Matrix L
- \
\‘. A
"_\ \\
\\ ‘
\\\ \‘
AHE 3
» qf PCI Master
Development chip

Figure 5.5 Bus Architecture

5.1.4 Logic Tile

As shown in Figure 5.6, an eight million gate Xilinx Virtex II FPGA, XC2V8000,
exists on the logic tile [21]. Other than the FPGA, the logic tile includes two 1IMB SRAM
memories, LEDs, switches and a pushbutton.

The XC2V8000 Xilinx Virtex I FPGA uses a flip chip technology based 40x40 mm
package. The package has 1108 user I/Os. In the FPGA, there are 168 18-bit x 18-bit
embedded multipliers, 168 block RAMs, providing a total of 3024Kbits RAM, 1456Kbits
of distributed RAM and 12 digital clock management blocks based on DLL technology.

53

Battary
Usar \‘i

switchas

FPGA T

imaga
selection
switches

FPGA IMAGE
LED

oo

FROA O™ Xilinx Virtex IT
8000

External FPGA
oscillatar
connactor
(ot fittac)

ooog

—

Llsar

Temp Saense EI
LED=

Push

button "

Figure 5.6 Logic Tile

The embedded multipliers take two 18-bit 2°s complement inputs and produce a 36-
bit result. Block RAMs are a dual-port RAMs with two independently clocked and
controlled synchronous read/write ports that access a common storage area. The size of
each block RAM is 18Kbits with configurable port widths from 1 bit to 36 bits. Distributed
RAMs use look-up tables as memory and they have two ports; one for read operations and
one for read and write operations. Distributed RAM is an efficient way of building small,

fast, localized memory structures within FPGA.

54

5.2 Software Implementation

Software implementation includes Matlab and C codes. The flow of the operations
done by software is shown in Figure 5.7. First, the input image is captured with Matlab in
RGB format and the captured image is loaded to the SRAM on the logic tile using ARM
AXD debugger software. This image is then converted from RGB format to YCbCr
format, partitioned into MBs, and converted to 4:2:0 sampling format by the software
running on ARM processor. The equations used for RGB to YcbCr and YCbCr to RGB
color domain conversions are shown in Figure 5.8. At this point, designed hardware,
implemented in the Xilinx Virtex II FPGA on the logic tile, starts to process the image MB
by MB. Throughout this operation, processed MBs are read from reconstructed MB register
file and stored in the SRAM. When coding of the image finishes, the output image is
reconstructed in raster-scan order from processed MBs, the resulting image is converted
from YCbCr format to RGB format and loaded to a location in the SRAM by the software
running on ARM processor. The color LCD controller points to this location, and it reads

the image from this location and displays it on the color LCD panel.

¥ ChCr fonmat tmacroblocks
¥
Dezsigned Hardware SRAN
¥
et S e M i

reconstructed image EGBE fommat order

Figure 5.7 Operations Done by Software

55

Y 0.299 0587 0.114 | R R 1 0 1.402 (Y

Cb|=|-0.169 -0.331 05 |G G|=|1 -0.344 -0.714 || Ch

Cr 0.5 -0.419 -0.081| B B 1 1.772 0 Cr
(@ (b)

Figure 5.8 Color Domain Conversions (a) RGB to YcbCr, (b) YCbCr to RGB

5.3 Hardware Implementation

As shown in Figure 5.9 (a), hardware description languages are commonly used to
define the behavior of an FPGA. The design is then compiled to generate a netlist and this
netlist is then mapped to the actual FPGA. In this thesis, as shown in Figure 5.9 (b), Verilog
HDL, Mentor Graphics Leonardo Spectrum and Xilinx ISE tools are used.

Intra Frame Coder Hardware modules are implemented in Verilog HDL. In order to
achieve the targeted speed with low area usage, resource allocation, pipelining and critical
path optimization techniques are used. Power consumption is also tried to be reduced
during the design process. After completing the Verilog modules, they are compiled with
Leonardo Spectrum Level 3 from Mentor Graphics with high effort for speed constraint. In
this thesis, optimization for speed is preferred rather than optimization for area. The netlist
is then placed and routed using Xilinx ISE Series 5.21 with high effort for speed constraint.
The Xilinx ISE tool is also used for generating the bit file from this netlist.

FPGA design is an iterative process. If the synthesis and place & route tools cannot
meet the user constraints, than the Verilog RTL code may need to be modified to meet
these constraints. In our design, when the tools could not meet the target clock frequency,
we have used the critical path optimization and pipelining techniques to speed up the

design.

56

Verilog
modules

Synthesis
Tonl

Leonatdo
Spectnrn

Compiler

Loge
Optitnizer

Placeand
Eoute
Tool

FPGA
hitsreatm

(@)

XC2vasooo

(b)

High E ffort
for Speed

igh Effort
for Speed

Bitstrearm
Options

Figure 5.9 FPGA Design Flow: (a) Generic, (b) Specific

The H.264 Intra Frame Coder Hardware is synthesized at 61.4 MHz. The FPGA

resource utilization of the synthesized design is given in Table 5.1. Total equivalent gate

count of the design is 1,051,458 and an additional number of 20,211 JTAG gates are added

to the design due to I/O blocks. The design is placed & routed at 53.8 MHz which satisfies

our target speed.

57

Table 5.1 Device Utilization for XC2V8000 FPGA

Resources Used Available Utilization
los 418 1108 37.73%
Global Buffers 2 16 12.50%
Function Generators 21404 93184 22.97%
CLB Slices 10702 46592 22.97%
Dffs/Latches 3881 96508 4.02%
Block RAMs 1 168 0.60%
Block Multipliers 1 168 0.60%

As shown in Figure 5.10, H.264 Intra Frame Coder Hardware is integrated into the
Xilinx Virtex Il FPGA on the logic tile of the ARM Versatile/PB926EJ-S board as a master
of the AHB S bus. We used synchronous bus clocking, because our design utilizes only one
AHB bus. The bit file including the H.264 Intra Frame Coder Hardware is loaded to the
Xilinx Virtex II FPGA using the Progcards utility which in turn uses Multi-ICE Server
Software and Multi-ICE Debugger Hardware.

A picture of the development environment is given in Figure 5.11. H.264 Intra Frame
Coder Hardware, implemented in the Xilinx Virtex II FPGA, is started by pressing the
pushbutton on the logic tile after the system reset. The switches on the logic tile are used to
input the quant parameter to the hardware. Intra Frame Coder Hardware reads the input
image from the SRAM memory using AHB bus protocol, performs compression and
reconstruction, and writes the reconstructed image to the SRAM memory again using the
AHB bus protocol [22]. The reconstructed image is then displayed on the color LCD panel
for visual verification. H.264 Intra Frame Coder System is tested with different quant
parameters and the result is as expected; the quality of the image displayed on the color

LCD panel reduces with the increasing quant parameter value.

58

LLesgio bike

3 M Slave 0 4.| M2 Slave ﬂi H.264 Intra Frame
Coder (Master)

HODRZ HORX HORY
AHE M1 AHE M2 AHE 2
WPBO2EELS
FPGA
M2 Slave 1
AHB M1 AHE M2
i x\ M2 Slave O
Ve
T Bus Matrix y
~ 1-‘
"\\ A
- '
~,
~. \t
M osnes 47 cor
Developrnent chip

Figure 5.10 Integration of Designed Hardware into ARM Versatile Board

Figure 5.11 Picture of the Development Environment

59

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we developed an FPGA-based H.264 intra frame coder system for
portable applications targeting level 2.0 of baseline profile. As part of the system, we first
designed a high performance and low cost hardware architecture for real-time
implementation of forward transform and quantization and inverse transform and
quantization algorithms used in H.264 / MPEG4 Part 10 video coding standard in Verilog
HDL. The architecture is based on a reconfigurable datapath with only one multiplier. The
design is first verified with RTL simulations using Mentor Graphics Modelsim. It is then
verified to work at 81 MHz on a Xilinx Virtex II FPGA and at 210 MHz in a 0.18u ASIC
implementation. The FPGA and ASIC implementations can code 28 and 74 VGA frames
(640x480) per second respectively.

We then designed the top-level H.264 Intra Frame Coder System targeting 30 fps CIF
encoding. The system consists of search, mode decision and coding parts. The mode
decision part implements a Hadamard Transform based mode decision algorithm. The
coding part is implemented by integrating Transform-Quant module with CAVLC and Intra
Prediction modules. The top-level design is verified with RTL simulations using Mentor
Graphics Modelsim. The top-level design is synthesized for 61.4MHz and placed & routed
for 53.8MHz. The total equivalent gate count of the design is 1,051,458. Device utilization
for XC2V8000 FPGA is as follows; 37.73% of 10s, 12.50% of global buffers, 22.97% of
function generators, 22.97% of CLB slices, 4.02% Dffs or latches, 0.60% of block RAMs
and 0.60% of block multipliers are used.

60

The complete H.264 Intra Frame Coder System is verified to work on an ARM
Versatile Platform development board. The verification includes first capturing an RGB
image, converting it into YCbCr format, partitioning the image into macroblocks, and
writing it into an SRAM using the software running on ARMO9EJ-S processor. Then, the
intra frame coder hardware mapped to the Xilinx Virtex Il FPGA using Lenoardo Spectrum
and Xilinx ISE is used to encode the image and reconstruct it. The conversion of
reconstructed image into raster scan order and RGB color domain is then performed by
software running on ARM9EJ-S processor. The reconstructed image is then displayed on a

color LCD panel for visual verification.

6.2 Future Work

In order to guarantee that our design exactly matches the H.264 standard, further
verification must be done. The best method for this is decoding the bit stream generated by
the intra frame coder using an H.264 compliant decoder, e.g. Joint Model (JM) Software. In
order to do this, header generation functionality should be added to the intra frame coder
system. Low-power techniques such as clock gating can be used in the design to lower the
power consumption of the system. The FPGA-based implementation can be easily modified
as an ASIC implementation and prototypes can be fabricated. A camera can be integrated
to the current system for real-time video capture and coding. The intra frame coder system
can be extended to a complete H.264 video coding system by integrating motion
estimation, motion compensation, deblocking filter, intra vs. inter mode decision and rate

control units.

61

[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9]
[10]

[11]

[12]

REFERENCES

R. Schifer, T. Wiegand and H. Schwarz, “The Emerging H.264/AVC Standard”,
EBU Technical Review, January 2003

C. Chung, “Implementing the H.264/AVC Video Coding Standard on FPGAs”,
Xcell Journal, Winter 2004

Y. W. Huang, B. Y. Hsieh, T. C. Chen and L. G. Chen “Hardware Architecture
Design for H.264/AVC Intra Frame Coder ", Proc. of IEEE ISCAS, 2004

Brian Dipert, “FPGAs “DiSP”’lay Their Processing Prowess”, EDN Articles,
October 2002

A. Jerbi, H.264 MPEG-4 AVC Video Coding Standard, ubvideo, November 2003
Y. Zhao, Complexity Management for Video Encoders, PhD Thesis, Robert Gordon
University, March 2004

http://www.envivio.cn/images/products/h264FactSheet.pdf

T. Wiegand, G. J. Sullivan, G. Bjentegaard, and A. Luthra “Overview of the
H.264/AVC Video Coding Standard”, IEEE Trans. on Circuits and Systems for
Video Technology vol. 13, no. 7, pp. 560-576, July 2003

I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003

Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T
Recommendation and Final Draft International Standard of Joint Video
Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003
O.Tasdizen, I. Hamzaoglu, “A High Performance And Low Cost Hardware
Architecture for H.264 Transform And Quantization Algorithms", /3th European
Signal Processing Conference, September 2005

Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Joint Model (JM)
Reference Software Version 9.2, http://bs.hhi.de/suehring/

62

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]
[22]

H. Malvar, A. Hallapuro, M. Karczewicz. and L. Kerofsky, "Low-Complexity
Transform and Quantization in H.264 / AVC", IEEE Trans. on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 598—603, July 2003.

Xilinx Inc., Virtex-II™ Platform FPGAs: Complete Data Sheet DS031,
http://www.xilinx.com, March 2004

T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Parallel 4x4 2D
Transform and Inverse Transform Architecture for MPEG-4 AVC / H.264”, Proc.
of IEEE ISCAS, 2003

E. Sahin, I. Hamzaoglu, “A High Performance and Low Power Hardware
Architecture for H.264 CAVLC Algorithm", /3th European Signal Processing
Conference, September 2005

Personal Communication with Esra Sahin

Personal Communication with Hasan Ates

Versatile Platform Baseboard for ARM926EJ-S User Guide, http://www.arm.com,
May 2004

Application Note 119: Implementing AHB Peripherals in Logic Tiles,
http://www.arm.com, September 2004

Versatile / LT-XC2V4000+ User Guide, http://www.arm.com, May 2004

AMBA 2.0 Specification, http://www.arm.com, 1999

63

