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JOINT INVENTORY AND PRICING DECISIONS IN RETAIL INDUSTRY

Abstract

In various industries, managers face the problem of setting prices dynamically

over time and determining the replenishment quantities by a fixed deadline so as

to maximize the expected profit over a finite and short selling horizon. This prob-

lem is especially significant for the retail industries which sell products with short

life cycles and price dependent demand. In this thesis, it is assumed that a firm

sells a single product over a selling season that is divided into a finite number of

discrete time periods. At the beginning of each period, the firm has the option of

replenishing the inventory and determining a new price for the product. The re-

plenishment lead time is zero and unmet demand is lost where demand is sensitive

to price. There is no fixed charge for ordering, and the total variable ordering cost

is proportional to the ordering quantity. Similarly, the inventory holding cost in-

curred in each period is proportional to the end-of-period inventory. Unsold items

at the end of the last period have a salvage value per unit. In this study, this

joint inventory-pricing problem is analyzed, and solution methods are presented.

In particular, we propose an efficient solution method that is very fast and yields

solutions very close to optimality.

Keywords: Pricing, inventory, base-stock policy, fixed point iteration.



PERAKENDE SEKTÖRÜNDE ORTAK STOK VE FİYAT BELİRLEME

KARARLARI

Özet

Birçok endüstride, yöneticiler kısa bir satış sezonu içinde karlarını enbüyütmek

amacıyla fiyatları dinamik olarak değiştirme ve tedarik miktarlarını belirleme

problemiyle karşı karşıyadırlar. Bu problem kısa raf ömrüne sahip ve talebi fiyata

duyarlı mallar satan perakende sektörü için daha da önemlidir. Bu tezde, firmanın

malı satacak sonlu sayıda ve eşit uzunlukta periyodunun olduğu varsayılmaktadır.

Her periyodun başında firmanın stok yenileme seçeneği ve fiyatı değiştirme imkanı

bulunmaktadır. Tedarik süresi sıfırdır ve karşılanmayan talep kaybedilmektedir.

Talep fiyata duyarlıdır. Tedariğin sabit maliyeti yoktur, değişken maliyeti ise

tedarik miktarıyla doğru orantılıdır. Benzer biçimde, stok tutma maliyeti de

periyot sonunda elde kalan stok miktarıyla doğru orantılıdır. Sezon sonunda

satılamayan ürünlerin satılamayan ürün miktarıyla doğru orantılı bir hurda

değeri vardır. Bu çalışmada, bu sayılan varsayımlara sahip ortak stok ve fiyat

belirleme problemi analiz edilmekte ve çözüm yöntemleri gösterilmektedir. Ayrıca,

çok hızlı ve eniyiye çok yakın sonuçlar veren bir çözüm yöntemi de önerilmektedir.

Anahtar kelimeler: Fiyatlandırma, envanter yönetimi, baz stok politikası,

değişmez nokta algoritması.
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Chapter 1

Introduction

In various industries, managers face the problem of setting prices dynamically

over time and determining the replenishment quantities by a fixed deadline so as to

maximize the expected profit over a finite and short selling horizon. This problem

is especially significant for the retail industries which sell products with short life

cycles and price dependent demand.

In recent years, the way firms operate changed dramatically. Nowadays, firms

can do many of their tasks online, with high speed, low cost and high accuracy.

Especially, e-commerce decreased the costs of firms considerably. For instance,

changing the prices of the products online has virtually no cost. Similarly, avail-

ability of electronic price tags decreased the cost of changing prices at brick-and-

mortar companies. Besides, the success of revenue management in the airline and

hospital industries shows that dynamic pricing is a very profitable tool in addition

to having a low cost. Therefore, dynamic pricing is now a more viable option for

firms than it was 20 years ago. According to Chan et al (2004), most of the in-

dustry giants, like Amazon and Dell, now utilize dynamic pricing tools and profit

from them.

Despite the success of dynamic pricing, integration of inventory management

and pricing is still new to many companies. However, this integration is not

only useful but also crucial for profitability. When these decisions are not linked

but kept separately, the benefits of global optimization is lost. These benefits

are especially important for sellers of fashion products and retailers because the

season is short in fashion industry. Moreover, the demand is sensitive to price,
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products become obsolete rapidly, and the cost of the loss of customer goodwill

is very significant. In such an environment, incorrect decisions about pricing and

replenishment have much deeper impacts. Thus, especially these industries need

successful pricing and inventory management policies, leading not only to increased

profits but also to higher customer satisfaction.

In this thesis, this problem of joint determination of replenishment quantities

and prices problem is considered when the firm has a finite number of periods in

the season. It is assumed that a firm sells a single product over a selling season that

is divided into a finite number of discrete time periods. At the beginning of each

period, the firm has the option of replenishing the inventory and determining a new

price for the product. The replenishment lead time is zero and unmet demand is

lost where demand is sensitive to price. There is no fixed charge for ordering, and

the total variable ordering cost is proportional to the ordering quantity. Similarly,

the inventory holding cost incurred in each period is proportional to the end-

of-period inventory. Unsold items at the end of the last period have a salvage

value per unit. In this study, this joint inventory-pricing problem is analyzed, and

solution methods are presented. In particular, we propose an efficient solution

method that is very fast and yields solutions very close to optimality.
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Chapter 2

Literature Review

Many researchers in marketing science, operations management and economics

consider the dynamic pricing problem from different points of views. For a broad

overview of the research conducted in marketing science, the reader should refer

to the review by Eliashberg and Steinberg (1991). We are particularly interested

in the operations management literature noting that we also incorporate inventory

decisions. In order to put the work done in this area into a perspective, we must

consider three streams of research: dynamic pricing, inventory management and

the research that combines both of them. For a detailed discussion on the inventory

management, the reader is referred to Porteus (1990). Moreover, the reviews

by Yano and Gilbert (2003), Elmagraby and Keskinocak (2003) and Chan et al.

(2004) span the work that combines both fields.

There is a huge amount of work done in the inventory management area when

there is a single product reviewed periodically and prices are not considered, i.e.

when the prices are fixed and given. The most relevant ones are mentioned here.

Veinott (1965) is the first to show that myopic order-up-to policies are optimal for

the periodic review policies under certain conditions which will be described later

in this thesis. A myopic policy is a policy that maximizes only current profit and

ignores future profit. The author also demonstrates that myopic order-up-to levels

constitute upper bound on the optimal order-up-to levels. Lau and Lau (1998)

examine a special case of this model where demand is normally distributed, the

only relevant cost is the variable ordering cost and there are only two periods.

The authors show how to find the optimal ordering quantities. They also consider

3



the effect of reordering time and draw managerial insights. They find that the

second order opportunity is more important if the product has a low profit c/p

ratio and/or a great demand uncertainty. Morton and Pentico (1995) review the

heuristics and bounds proposed in the literature for the general multi-period case,

offer a new heuristic and test this heuristic along with the existing heuristics in

the literature computationally.

Gallego and van Ryzin (1994) consider the problem of determining the optimal

price path when inventory replenishment is not allowed, and provide the optimal

solution to the continuous time formulation in which the price may change at any

time. Because implementing this policy is impractical, they demonstrate that a

single fixed price heuristic gives good results and is asymptotically optimal as in-

ventory and/or time approaches infinity. Bitran and Mondschein (1997) and Zhao

and Zheng (2000) generalize this model by treating the demand as a nonhomoge-

neous Poisson process. Bitran and Mondschein (1997) assume that the distribution

of the maximum price that customers are willing to pay, also called reservation

price, for the product is constant over time. First, they solve the model in con-

tinuous time, and then they consider the case where the number of price changes

is limited. In the second case, when inventory goes to infinity and the reservation

price distribution is invariant over time, a constant pricing strategy is optimal.

They show that periodic review policies yield results very close to the optimal.

Zhao and Zheng (2000) generalize this model by allowing the reservation price dis-

tribution to vary over time. They show that the optimal price is decreasing both

in the inventory level and in time when a certain sufficient condition holds. They

also verify that when the set of allowable prices is discrete, the optimal policy is

defined by a set of threshold points of inventory level. Smith and Achabal (1998)

incorporate the effect of inventory in the demand function. They focus on finding

the optimal initial inventory and the optimal price trajectory of a single product.

They assume a deterministic demand function that depends on the inventory level,

as well as price and time. They formulate the optimal policy as one of six possible

forms.

The papers discussed up to now assume that either prices are fixed or there

is no replenishment option during the season. Nevertheless, there are some re-
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searchers who combine inventory replenishment with dynamic pricing. Whitin

(1955) conducts the first study that incorporates pricing decisions into the in-

ventory replenishment problem. He examines both deterministic and stochastic

demand cases in a single period environment. Mills (1959) is the first researcher

to use the additive form of demand uncertainty, that is, demand is a sum of two

terms: a deterministic function of price and a stochastic error term. He shows

that the single period optimal price is bounded from above by a price called risk-

less price which is equal to µ+βc+α

2β
, where α and β are the parameters of the

deterministic part of the demand, µ is the mean of the error term and finally c is

the variable cost of ordering. Alternatively, Karlin and Carr (1960) are the first

researchers that use the multiplicative form of demand, in which demand is the

product of the error term and the deterministic function of price. They show that

the riskless price is a lower bound to the optimal price when demand uncertainty

is multiplicative. However, in this case, the riskless price is equal to βc

β−1
. Thowsen

(1975) considers the additive form of demand uncertainty and proves that when

holding and stockout costs are convex, the optimal policy is a base stock policy,

also called an order-up-to policy. That is, when the starting inventory is below a

base stock, it is optimal to order up to the base stock and set a price that depends

on the base stock rather than ordering quantity. When the starting inventory

is above the base stock, it is optimal not to order and set a price that depends

on the inventory level. Since there is no fixed cost of ordering, when the excess

demand is lost, the problem reduces to a multi-period newsboy problem which

is reviewed by Petruzzi and Dada (1999). Petruzzi and Dada (1999) investigate

combining pricing effects with the newsboy problem in single period and multi-

period settings in their paper, providing a general framework. They consider both

additive and multiplicative forms of demand uncertainty and indicate how to solve

the problem to optimality. They indicate that when the demand distribution is

general, a search is needed to find the optimal point. However, when the demand

distribution satisfies some conditions, it is easier to find the optimal point.

Thomas (1974) and Chen and Simchi-Levi (2004) incorporate a fixed ordering

cost in the previous model that allowed backordering of the demand. Thomas

(1974) considers a periodic review model with a fixed ordering cost component to

5



maximize the expected profits over a finite selling horizon. He proposes a policy

which he calls an (s, S, p) policy: if inventory level is below st at the beginning of

the period t, order up to St; otherwise, do not order. Price depends only on the

initial inventory and t. He gives a counter example for which this policy fails to

be optimal. Chen and Simchi-Levi (2004) take the same model and prove that the

policy proposed by Thomas is indeed optimal when the random component of the

demand is additive. For the general form of demand, they suggest another policy

that is not as simple as the order-up-to policy and prove its optimality.

In this thesis, the problem of determining replenishment quantities and prices

at the beginning of each period in a finite season is considered. There is a single

product, the unmet demand is assumed to be lost, there is no fixed charge for

ordering, the variable ordering cost is proportional to ordering quantity, and the

unsold items at the end of the last period have a salvage value per unit. That is,

the problem analyzed in Petruzzi and Dada (1999) is extended to include salvage

value explicitly. In addition to the ones proposed in Petruzzi and Dada (1999), an

efficient and fast solution method is proposed. The other important assumptions

are that the lead time is zero as in all the other papers reviewed here, and that

the inventory holding cost is proportional to the amount of inventory left at the

end of the period.

This thesis is organized as follows: in Chapter 3, the model with fixed prices

is analyzed as it lays the groundwork for the pricing problem and contains key

insights. In addition to the exact solution of the single-period model, the form of

the optimal solution, heuristics and bounds for multi-period model are presented

in this chapter. Also, the solution to a special case of the multi-period model is

analyzed. The next chapter, Chapter 4, extends the model in Chapter 3 to include

the pricing decision. In this chapter, the problem is analyzed in one-period and

multi-period settings as well as for different forms of price-demand relationships.

A heuristic is proposed and this heuristic is tested in Chapter 5. Finally, Chapter

6 concludes this work and gives future research directions.
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Chapter 3

Replenishment Problem with

Fixed Prices

In this chapter, we assume that the decision maker has the option to replenish

the inventory at the beginning of each period. However, the prices cannot be

changed: they are given and fixed. This problem provides important insights

about the replenishment problem with pricing that will be discussed in Chapter 4.

3.1 One-Period Model

When the number of periods is one, this problem reduces to the well-known

newsboy problem. The notation used in this section is as follows:

c : Ordering cost

s : Salvage value

h : Inventory holding cost

b : Cost of loss of goodwill

µ : Mean of the demand

σ : Standard deviation of the demand

p : Price

y : Inventory level after ordering

f : Probability density function of the demand

F : Cumulative distribution function of the demand

π(y) : Maximum expected profit for an inventory level after ordering y

7



It is assumed that p > c and c > s. For a fixed inventory level after ordering,

y, the expected profit is given as (3.1) when the initial inventory is zero.

π(y) = p

y∫

0

xf(x)dx + p

∞∫

y

yf(x)dx − cy + s

y∫

0

(y − x)f(x)dx

−h

y∫

0

(y − x)f(x)dx − b

∞∫

y

(y − x)f(x)dx (3.1)

When the demand is less than the initial inventory, the amount of sales is equal

to the demand and when the demand is greater than initial inventory, the amount

of sales is equal to the initial inventory. Thus, the expression
y∫

0

xf(x)dx+
∞∫

y

yf(x)dx

is the expected sales and p
y∫

0

xf(x)dx + p
∞∫

y

yf(x)dx is the expected revenue from

the sales. The term cy is the total ordering cost. When an item is not sold at

the end of the season, it is sold at a price s, but firm incurs a holding cost per

leftover item. The fourth and fifth terms in the equation, s
y∫

0

(y − x)f(x)dx −

h
y∫

0

(y − x)f(x)dx reflect this expected revenue from salvage of the items and the

expected holding cost. Finally, the last term b
∞∫

y

(y − x)f(x)dx is the expected

cost of the loss of goodwill.

The second derivative of π(y) with respect to y is:

∂2π(y)

∂y2
= −(p − s + h + b)f(y) (3.2)

This term is strictly negative since p is greater than c, which is in turn greater

than s, and f(y) is positive. As a result, π(y) is concave and there is a unique

y that maximizes π(y). The optimal inventory level y can be found by equating

the first derivative to zero and solving the resulting equation for y. It satisfies the

following equation:

y = F−1

(
p − c + b

p − s + h + b

)

(3.3)

The ratio p−c+b

p−s+h+b
is also called the critical ratio of the underage cost to the

sum of underage and overage costs, where p − c + b is the underage cost, and

c − s + h is the overage cost. For detailed information on the newsboy problem,

please see Nahmias (2001).

Since the cost function π(y) is concave with respect to y, order-up-to policies

are optimal for this problem. For a given initial inventory x, the order-up-to policy

8



can be described as: if x is smaller than the order-up-to level y, order y − x to

bring the inventory level after ordering to y; otherwise, do not order. Therefore,

maximum expected profit when the inventory level before ordering is x, which is

denoted by π′(x), becomes:

π′(x) =







π(x) if x ≥ y

π(y) if x < y
(3.4)

3.1.1 Special Case: Normal Demand

When the demand distribution is assumed to be normal, the integrals in (3.1)

are easily calculated. When X is normal with a mean µ and standard deviation

σ, Winkler et al. (1972) show that

y∫

−∞

xf(x)dx = µΘ

(
y − µ

σ

)

− σφ

(
y − µ

σ

)

(3.5)

In equation (3.5), φ and Φ denotes the probability density function and cumu-

lative distribution function of standard normal distribution, respectively. When

the lower bound on x is zero, equation (3.5) becomes:

y∫

0

xf(x)dx =

y∫

−∞

xf(x)dx −

0∫

−∞

xf(x)dx

= µΘ

(
y − µ

σ

)

− σφ

(
y − µ

σ

)

− µΘ

(
−µ

σ

)

+ σφ

(
−µ

σ

)

(3.6)

As a result, π(y) becomes:

π(y) = (p − s + h + b)

y∫

0

xf(x)dx

+(p − c + b)y − (p − s + h + b)yF (y) − bµ

= (p − s + h + b)

(

µΘ

(
y − µ

σ

)

− σφ

(
y − µ

σ

)

− µΘ

(
−µ

σ

)

+ σφ

(
−µ

σ

))

+(p − c + b)y − (p − s + b + h)yF (y) − bµ (3.7)

In this form, π(y) is very easy to calculate.
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3.2 Two-Period Model

In the two-period model, the decision maker has the opportunity to replenish

the item at the beginning of the first and second periods. For the simplicity of

calculations, we assume that the initial inventory at the beginning of the first

period is zero, without loss of generality. In the next section, the effect of initial

inventory will be studied and this assumption will be relaxed. The parameters

can differ from period to period; thus, the parameters and the variables take a

subscript denoting the period number, t. The total number of periods is denoted

by T , which is equal to two in this section. The following assumptions are made

about the parameters of the problem:

1. pt > ct ∀t

2. ct +
T∑

k=t+1

hk > s ∀t

3. ct+1 < ct + ht ∀t

The first assumption is made for not making loss. If this assumption does not

hold, there is no motive for the firm to make business. If the second assumption

does not hold, it may be optimal to buy the product in period t, in order not

to sell to the customers but to the salvage market only; as a result, the decision

maker buys as many of the product as he/she can in period t, and then sells to

the salvage market to make profit. If the third assumption does not hold, the firm

tends to buy its requirements in advance and keeps them in inventory until they

are sold. Thus, for the replenishment opportunity to be a valuable option to the

firm, this assumption must hold. Also, it should be noted that the second and the

third assumptions avoid the speculative motive for holding inventory.

Based on the analysis of the single period model, it is known that an order-up-

to policy, with an order-up-to level of y∗
2, is optimal for the second period. Table

3.2 summarizes possible values of profit in period 2 according to the values of the

demand in period 1, y1 and y∗
2. The demand in period t is denoted by dt.
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Table 3.2: Period 1 Demand vs Period 2 Profit

Relationship Demand Order Quantity Inventory Expected

between in Period 1 in Period 2 after Ordering Profit

y1 and y∗
2 (d1) in Period 2 in Period 2

y1 < y∗
2

d1 < y1 y∗
2 − (y1 − d1) y∗

2 π(y∗
2) + c2(y1 − d1)

d1 ≥ y1 y∗
2 y∗

2 π(y∗
2)

y1 ≥ y∗
2

d1 < y1

0 y1 − d1 π(y1 − d1)and

y1 − d1 ≥ y∗
2

d1 < y1

y∗
2 − (y1 − d1) y∗

2 π(y∗
2) + c2(y1 − d1)and

y1 − d1 < y∗
2

d1 ≥ y1 y∗
2 y∗

2 π(y∗
2)

As a result, when demand in period 1 exceeds the order-up-to level in period

1, y1, it is optimal to start the second period with y∗
2, and since there is no leftover

item from the first period, ordering quantity is y∗
2. If y∗

2 is greater than y1, the

second period inventory after ordering is y∗
2 anyway, so the ordering quantity is

the difference between the leftover items from the first period and y∗
2. However, if

y∗
2 is smaller than y1, the second period inventory after ordering changes with the

amount of leftover inventory. If the inventory from the first period exceeds y∗
2, it

is optimal not to buy anything. Thus, expected profit is:

π1(y1) = π1(y1|s = 0) +

max{0,y1−y∗

2}∫

0

(π(y1 − x) + c2(y1 − x))f1(x)dx

+

y1∫

max{0,y1−y∗

2}

(π(y∗
2) + c2(y1 − x))f1(x)dx +

∞∫

y1

π(y∗
2)f1(x)dx (3.8)

The first term is the expected profit of the first period. This term can be

calculated using (3.1); however, since leftover items are salvaged only at the end

of the season, s must be taken as zero. The second and the third terms represent

the expected profit of the second period when there are leftover items from first

period. When y∗
2 is greater than y1, the second term vanishes. The last term

represents the expected profit when there is no leftover item at the end of period

1.
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Lau and Lau (1998) solve a special case of the model above. In their paper, the

demand is normally distributed. The price and the ordering cost are stationary,

and the costs of inventory holding, loss of goodwill, as well as the salvage value

are taken as zero. The authors also study the effect of the reordering time: it

is assumed that the time of the second replenishment option can change from

immediately after the first period to the end of the season while the length of the

season is kept fixed. For each problem, the time of the second replenishment time

is found by exhaustive search.

3.3 Multi-Period Model

The general multi-period problem can be formulated as a stochastic dynamic

programming model. The term π′
t(x) represents the sum of expected profit of

periods t to T when the inventory before ordering at the beginning of period t is

x and optimal policy is followed in the following periods. The recursive equations

are given as:

π′
t(xt) = max

yt≥xt







π(yt|s = 0) + ctxt + E(π′
t+1(max{yt − dt, 0})) if 1 ≤ t < T

π(yt) + ctxt if t = T
(3.9)

The terms π(yt|s = 0) + ctxt and π(yt) + ctxt above represent the expected

revenue in period t. The term E(π′
t+1(max{yt − dt, 0}) represents the maximum

expected profit of periods t + 1 to period T .

Theorem 3.3.1 The term π(yt|s = 0)+ctxt+E(π′
t+1(max{yt−dt, 0})) is concave

with respect to yt.

Proof The proof is done by induction on t. For t = T , the expression π(yt)+ ctxt

is the one-period profit which is shown to be concave in Section 3.1. Assume that

for t=k + 1, π′
k+1(xk+1) is concave. As a result, the term E(π′

k+1(.)) is concave.

π(yk|s = 0) is also concave and ckxk is constant. The sum of the concave functions

and scalars is also concave, so π(yk|s = 0) + ckxk + E(π′
k+1(max{yk − dk, 0})) is

concave. Thus, max
yk≥xk

{π(yk|s = 0) + ckxk + E(π′
k+1(max{yk − dk, 0}))} is concave.
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As a result, order-up-to policies are optimal for this general case as well. The

optimal solution to this problem, i.e. the order-up-to levels for each period, can be

found by stochastic dynamic programming when the demand and the inventory

levels are discrete. However, when the demand has a continuous distribution, e.g.

normal distribution, and the inventory levels can have fractional parts, there is

currently no way, to the best of the author’s knowledge, of finding the optimal

solution exactly, since states come from a continuous set. However, there are some

heuristics and bounds which give very good results. Some of these bounds and a

heuristic are presented in the following sections. For a more detailed discussion of

these bounds and heuristics, please see Morton and Pentico (1995).

3.4 Bounds

3.4.1 Upper Bounds

1. Karlin (1960) proposes the concept of myopic policy in his paper. Myopic

policy assumes that any leftover items at the end of a period are salvaged at

a cost of ct+1. As a result, optimal order-up-to levels become independent of

each other, and the problem reduces to T independent single period prob-

lems. The myopic order-up-to level y
(1)
t for period t is an upper bound to

the optimal order-up-to level y∗
t . That is:

y∗
t ≤ y

(1)
t = F−1

t

(
pt − ct + bt

pt − ct+1 + ht + bt

)

(3.10)

When t = T , ct+1 is taken as s. The proof can be found in Morton and

Pentico (1995).

Veinott (1965) specifies the condition in which myopic order-up-to levels are

indeed optimal. If the relation Ft(x) ≥ Ft+1(x) holds for all x ≥ 0 and

t = 1, . . . , T − 1, then myopic order-up-to policy is optimal for the problem.

For example, these conditions hold when demand is stationary, i.e. mean

and standard deviations are the same for all periods.

2. Consider the case where the demands in periods t+1 to T are convoluted to

period t, i.e. all demands in these periods occur in period t. The order-up-to
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level of period t, y
(2)
t , for this case increases and becomes an upper bound

to y∗
t . Suppose Ft,N is the cumulative distribution of demands from periods

t + 1 to T . Then the following relation holds:

y∗
t ≤ y

(2)
t = F−1

t,N







pt − ct + bt

pt − s +
T∑

i=t

ht + bt







(3.11)

where pt − ct + bt is the underage cost and ct − s +
T∑

i=t

ht is the overage cost.

Proof can be found in Morton and Pentico (1995).

The smallest of these two upper bounds are taken as yu
t , the tightest upper

bound on y∗
t .

3.4.2 Lower Bound

Let us define the probability Pt,j as the probability that no order would be

placed from period t + 1 to j + 1, conditional on xt ≤ yt. Pt,j is equal to:

Pt,j =






yt−yj+1∫

0

ft(dt)






yt−dt−yj+1∫

0

ft+1(dt+1)...






yt−dt−dt+1−···−dj−1−yj+1∫

0

fj(x)dx














 (3.12)

To find the lower bound on y∗
t , we also need to find the expectation of time

from t + 1 until the first order RT
t , which is given as:

RT
t =

T−1∑

j=1

Pt,j (3.13)

The lower bound on y∗
t , yl

t, is equal to F−1
t

(
p−c+b−hRT

t −(c−s)P T
t

p−c+b+h

)

when the pa-

rameters are stationary. Proof can be found in Morton and Pentico (1995).

The heuristic proposed by Morton and Pentico linearly interpolates between

stockout probabilities implied by yl
t and yu

t so as to find the stockout probability

of the order-up-to level, i.e:

yt = F−1
t (AFt(y

l
t) + (1 − A)Ft(y

u
t )) (3.14)

In this equation, A is a scalar between 0 and 1. The best value of A is found

by experimental study. For detailed information, please see Morton and Pentico

(1995).
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3.5 Summary

In this chapter, the replenishment problem with fixed prices is analyzed. The

optimal solution to the one-period problem is given. Next, the optimal solution to

the two period problem is stated. The dynamic programming formulations of the

general multi-period problem are stated. Considering the difficulty of finding the

optimal solution in this general case, some heuristic methods are presented that

solves this problem efficiently. The main ideas in this chapter will be used in the

next two chapters.
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Chapter 4

Replenishment Problem with

Pricing

In this chapter, we deal with the case in which the decision maker has the option

to decide on the price to be charged in a period in addition to the replenishment

quantities. This problem is richer than that of the previous section, but more

difficult to explore. The problems in this chapter can be separated into two parts

according to the way uncertainty is modeled. Each of the models will be analyzed

in detail.

4.1 The Additive Demand Model

In the additive model of demand, stochastic and deterministic parts of the

demand are added to each other, that is to say, the demand is modeled as dt(p)+εt

where, dt(p) is a deterministic and decreasing function of the price p and εt is

the stochastic error term. Mills (1959) is the first paper that studies this form

of demand uncertainty, and it is widely used since then. The function dt(p) is

taken as αt − βtp in this study, where αt and βt are positive constants. εt is the

stochastic part of the demand and independent of the price. It has a mean µt

and a standard deviation σt, with probability density function ft and cumulative

distribution function Ft. For demand to be nonnegative, εt must be greater than

βtc − αt, the lower bound on βtp − αt, which is in turn the lower bound on εt.

For analytical tractability, inventory level after ordering, yt, is expressed as
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dt(p) + zt where zt is called the stocking factor by Petruzzi and Dada (1999).

4.1.1 One-Period Model

In this section, the special case of additive model is investigated: there is only

one period. This problem is the same as the newsboy problem with pricing decision.

At the beginning of the period, the decision maker has to decide on how much to

stock and the price to be charged in that period. For simplicity, initial inventory

is assumed to be zero. This assumption will be relaxed later. The expected profit

of this model, π(z, p), for a given stocking factor z and price p is given as:

π(z, p) = p



α − βp +

z∫

βc−α

εf(ε)dε +

∞∫

z

zf(ε)dε





−c(α − βp + z) + (s − h)





z∫

βc−α

(z − ε)f(ε)dε





−b





∞∫

z

(ε − z)f(ε)dε



 (4.1)

The first part, p

[

α − βp +
z∫

βc−α

εf(ε)dε +
∞∫

z

zf(ε)dε

]

, is the expected revenue,

equal to the product of price and expected sales. The second part, c(α−βp+z), is

the ordering cost. The term s
z∫

βc−α

(z − ε)f(ε)dε is the expected revenue from the

salvage of the items leftover at the end of the period, whereas h
z∫

βc−α

(z − ε)f(ε)dε is

the holding cost incurred. Finally, b
∞∫

z

(ε − z)f(ε)dε is the expected loss of goodwill

cost.

Upon simplification, expected profit equals:

π(z, p) = p



α − βp +

z∫

βc−α

εf(ε)dε +

∞∫

z

zf(ε)dε





−c(α − βp + z) + (s − h)





z∫

βc−α

(z − ε)f(ε)dε





−b





∞∫

z

(ε − z)f(ε)dε




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= p(α − βp) + p





z∫

βc−α

εf(ε)dε



 + p [z(1 − F (z))] − c(α − βp) − cz

+(s − h)zF (z) − (s − h)





z∫

βc−α

εf(ε)dε





−b



µ −

z∫

βc−α

εf(ε)dε



 + b [z(1 − F (z))]

= (p − s + h + b)





z∫

βc−α

εf(ε)dε − z(F (z))





+(p − c + b)z + (α − βp)(p − c) − bµ (4.2)

The following two theorems, Theorem 4.1.1 and Theorem 4.1.2, provides the

properties of the optimal solution.

Theorem 4.1.1 The expected profit π(z, p) is concave with respect to z when p is

fixed. The reverse is also true: π(z, p) is concave with respect to p when z is fixed.

Proof The first derivative of π(z, p) with respect to p is given as:

∂π(z, p)

∂p
=

∂

[

(p − s + h + b)

[
z∫

βc−α

εf(ε)dε − z(F (z))

]]

∂p

+
∂ ((p − c + b)z)

∂p
+

∂ ((α − βp)(p − c) − bµ)

∂p

=

z∫

βc−α

εf(ε)dε − z(F (z)) + z − β(p − c) + α − βp

= −2βp +

z∫

βc−α

εf(ε)dε + z(1 − F (z)) + βc + α (4.3)

The second derivative of π(z, p) with respect to p is given as:

∂π2(z, p)

∂p2
=

∂

[

−2βp +
z∫

βc−α

εf(ε)dε + z(1 − F (z)) + βc + α

]

∂p
= −2β (4.4)

Similarly, the first derivative of π(z, p) with respect to z is given as:

∂π(z, p)

∂z
=

∂

[

(p − s + h + b)

[
z∫

βc−α

εf(ε)dε − z(F (z))

]]

∂z
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+
∂ ((p − c + b)z)

∂z
+

∂ ((α − βp)(p − c) − bµ)

∂z

= (p + h − s + b) [zf(z) − zf(z) − F (z)] + (p − c + b)

= −(p + h − s + b)F (z) + (p − c + b) (4.5)

The second derivative of π(z, p) with respect to z is given as:

∂π2(z, p)

∂z2
=

∂ [−(p + h − s + b)F (z) + (p − c + b)]

∂z

= −(p + h − s + b)f(z) (4.6)

Leibniz’ Rule is used to take the derivative of the term
z∫

βc−α

εf(ε)dε with respect

to z. For detailed information on Leibniz’ Rule, please see Nahmias (2001).

Both ∂π2(z,p)
∂p2 and ∂π2(z,p)

∂z2 are negative since β and f(y) are positive, and p is

greater than c, which is in turn greater than s. Consequently, π(z, p) is concave

with respect to z when p is fixed, and vice versa.

Theorem 4.1.2 The optimal p and z make the first derivatives zero; thus, they

satisfy the following two equations:

z = F−1

(
p − c + b

p − s + h + b

)

(4.7)

p =
µ − Θ(z) + βc + α

2β
(4.8)

In this equation, Θ(z) is equal to
∞∫

z

(ε − z)f(ε)dε and denotes the expected

amount of shortages when the stocking factor is z.

Proof This proof is a direct result of the previous theorem.

The expression for p, (4.8), can be substituted for p in the equation for π(z, p)

and the resulting term can be solved to find optimal z, as stated by Whitin (1955).

The reverse is also true: the expression for z, (4.7), can be substituted for z in the

equation for π(z, p) and the resulting term can be solved for optimal p.

The following theorem is a slight modification of the theorem stated by Petruzzi

and Dada (1999). The difference is that salvage value is considered explicitly, and

the possibility of the existence of optimal solutions at the boundaries of feasible

region is considered.
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Theorem 4.1.3 In the single period problem, when the demand is additive, opti-

mal policy is to select the price p according to (4.8) and to stock α− βp + z where

z is determined according to the one of the following three cases:

1. If the hazard rate of demand distribution, r(z) which is defined as f(z)
1−F (z)

,

satisfies
(

2r2(z) + ∂r(z)
∂z

)

> 0, then z is either the largest solution of the

equation ∂π(z,p(z))
∂z

= 0 or one of the boundary points.

2. If the conditions
(

2r2(z) + ∂r(z)
∂z

)

> 0 and α−βc+2βb > 0 hold at the same

time, then z is either the unique solution of the equation ∂π(z,p(z))
∂z

= 0 or one

of the boundary points.

3. If
(

2r2(z) + ∂r(z)
∂z

)

> 0 does not hold, a search is needed to find the optimal

z over the feasible region.

Proof When the expression for p, (4.8), is substituted for p in the equation for

expected profit, (4.2), expected profit becomes solely a function of z and can be

written as π(z). π(z) is:

π(z) =

(
µ − Θ(z) + βc + α

2β
− s + h + b

)

[−Θ(z) + µ − z]

+

(
µ − Θ(z) + βc + α

2β
− c + b

)

z

−bµ +

(

α − β(
µ − Θ(z) + βc + α

2β
)

) (
µ − Θ(z) + βc + α

2β
− c

)

(4.9)

The point(s) that maximize π(z) are needed. These points are indeed the ones

that make the first derivative with respect to z zero. Let us take the derivative of

π(z) and analyze it. The first derivative of π(z) with respect to z is:

∂π(z)

∂z
=

∂
(

(µ−Θ(z)+βc+α
2β

− s + h + b) [−Θ(z) + µ − z]
)

∂z

+
∂

(

(µ−Θ(z)+βc+α
2β

− c + b)z
)

∂z

+
∂

(

(α − β(µ−Θ(z)+βc+α
2β

))(µ−Θ(z)+βc+α
2β

− c) − bµ
)

∂z

=
∂

(
µ−Θ(z)+βc+α

2β
− s + h + b

)

∂z
[−Θ(z) + µ − z]

+

(
µ − Θ(z) + βc + α

2β
− s + h + b

)
∂ [−Θ(z) + µ − z]

∂z
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+
∂

(
µ−Θ(z)+βc+α

2β
− c + b

)

∂z
z +

µ − Θ(z) + βc + α

2β
− c + b

+
∂

(

α − β(µ−Θ(z)+βc+α
2β

)
)

∂z
(
µ − Θ(z) + βc + α

2β
− c)

+

(

α − β(
µ − Θ(z) + βc + α

2β
)

) ∂
(

µ−Θ(z)+βc+α
2β

− c
)

∂z

= −
1

2β

∂Θ(z)

∂z
[−Θ(z) + µ − z]

+

(
µ − Θ(z) + βc + α

2β
− s + h + b

)
∂ [−Θ(z) + µ − z]

∂z

−
1

2β

∂Θ(z)

∂z
z +

µ − Θ(z) + βc + α

2β
− c + b

+
1

2

∂Θ(z)

∂z

(
µ − Θ(z) + βc + α

2β
− c

)

−

(

α − β(
µ − Θ(z) + βc + α

2β
)

)
1

2β

∂Θ(z)

∂z

= −
1

2β
(F (z) − 1) [−Θ(z) + µ − z]

−

(
µ − Θ(z) + βc + α

2β
− s + h + b

)

F (z)

−
1

2β
(F (z) − 1)z +

µ − Θ(z) + βc + α

2β
− c + b

+
1

2
(F (z) − 1)

(
µ − Θ(z) + βc + α

2β
− c

)

−

(

α − β(
µ − Θ(z) + βc + α

2β
)

)
1

2β
(F (z) − 1)

= (1 − F (z))





1
2β

(−Θ(z) + µ − z) + 1
2β

z − 1
2

(
µ−Θ(z)+βc+α

2β
− c

)

+
(

α − β(µ−Θ(z)+βc+α
2β

)
)

1
2β





−

(
µ − Θ(z) + βc + α

2β
− s + h + b

)

F (z)

+
µ − Θ(z) + βc + α

2β
− c + b − s + h + s − h

= (1 − F (z))





1
2β

(−Θ(z) + µ − z) + 1
2β

z − 1
2

(
µ−Θ(z)+βc+α

2β
− c

)

+
(

α − β(µ−Θ(z)+βc+α
2β

)
)

1
2β

+ µ−Θ(z)+βc+α
2β

− s + h + b





−c + s − h

= (1 − F (z))




1

2β




−Θ(z) + µ − z + z − µ−Θ(z)+βc+α−2βc

2

α − β(µ−Θ(z)+βc+α
2β

) + µ − Θ(z) + βc + α



 − s + h + b





−c + s − h

= (1 − F (z))

(
1

2β
(−Θ(z) + µ + βc + α) − s + h + b

)

− c + s − h
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The second derivative of π(z) with respect to z is:

∂2π(z)

∂z2
=

∂




(1 − F (z))

(
1
2β

(−Θ(z) + µ + βc + α) − s + h + b
)

−c + s − h





∂z

=
∂ (1 − F (z))

∂z

(
1

2β
(−Θ(z) + µ + βc + α) − s + h + b

)

+ (1 − F (z))
∂

(
1
2β

(−Θ(z) + µ + βc + α) − s + h + b
)

∂z

= −f(z)

(
1

2β
(−Θ(z) + µ + βc + α) − s + h + b

)

+ (1 − F (z))
1

2β
(1 − F (z))

= −
f(z)

2β




−Θ(z) + µ + α + β (c − 2s + 2h + 2b)

− (1−F (z))2

f(z)





= −
f(z)

2β




−Θ(z) + µ + α + β (c − 2s + 2h + 2b)

−1−F (z)
r(z)



 (4.10)

In the equation above, r(z) is the hazard rate of the distribution function and

defined as f(z)
1−F (z)

.

The third derivative of π(z) with respect to z is:

∂3π(z)

∂z3
= −

1

2β

∂
(

f(z)
(

−Θ(z) + µ + α + β (c − 2s + 2h + 2b) − 1−F (z)
r(z)

))

∂z

= −
1

2β





∂f(z)
∂z

(

−Θ(z) + µ + α + β (c − 2s + 2h + 2b) − 1−F (z)
r(z)

)

+f(z)
∂(−Θ(z)+µ+α+β(c−2s+2h+2b)−

1−F (z)
r(z) )

∂z





= −
1

2β





∂f(z)
∂z

(

−Θ(z) + µ + α + β (c − 2s + 2h + 2b) − 1−F (z)
r(z)

)

+f(z)
(

−∂Θ(z)
∂z

− ∂(1−F (z))
∂z

1
r(z) + (1 − F (z)) 1

r2(z)
∂r(z)

∂z

)



 (4.11)

The value of ∂3π(z)
∂z3 at the point where ∂2π(z)

∂z2 is equal to 0 is:

∂3π(z)

∂z3

∣
∣
∣
∣
∣

∂2π(z)

∂z2 =0

= −
f(z)(1 − F (z))

2β

(

1 +
f(z)

(1 − F (z))r(z)
+

1

r2(z)

∂r(z)

∂z

)

= −
f(z)(1 − F (z))

2βr2(z)

(

2r2(z) +
∂r(z)

∂z

)

(4.12)

This term is negative if the condition
(

2r2(z) + ∂r(z)
∂z

)

> 0 holds. In other

words, if this point exists, it is a local maximum point for ∂π(z)
∂z

. It can also be

proved by contradiction that there cannot be more than one point that satisfies
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the condition ∂2π(z)
∂z2 = 0 if

(

2r2(z) + ∂r(z)
∂z

)

< 0 holds. Then, there are two cases

according to the existence of a point that satisfies the condition ∂2π(z)
∂z2 = 0:

1. ∂π(z)
∂z

is monotone if there is no z that satisfies ∂2π(z)
∂z2 = 0. Then, if ∂π(z)

∂z
crosses

zero, it has one root. If not, ∂π(z)
∂z

has no root. Additionally, ∂π(z)
∂z

∣
∣
∣
z=zu

=

−c+s−h is negative since c+h is greater than s by assumption. Furthermore,

the value of ∂π(z)
∂z

∣
∣
∣
z=zl

is 1
2β

(−µ + µ + βc + α) − c + s − h = α−βc+2βb

2β
. This

value is positive when α − βc + 2βb is positive. If this condition holds,

then ∂π(z)
∂z

has exactly one root where ∂π2(z)
∂z2 changes sign from positive to

negative. Otherwise, ∂π(z)
∂z

has no roots, maximum of π(z) occurs at one of

the boundaries of the feasible region.

2. ∂π(z)
∂z

is unimodal if there is at least one z that satisfies ∂2π(z)
∂z2 = 0. Since

∂3π(z)
∂z3

∣
∣
∣

∂2π(z)

∂z2 =0
< 0, there is at most one z that satisfies ∂2π(z)

∂z2 = 0, on the left

of which ∂π(z)
∂z

is increasing and on the right, ∂π(z)
∂z

is decreasing. ∂π(z)
∂z

∣
∣
∣
z=zu

is still negative and ∂π(z)
∂z

∣
∣
∣
z=zl

is positive if α − βc + 2βb is positive. If

∂π(z)
∂z

∣
∣
∣

∂2π(z)

∂z2 =0
= (1−F (z))2

2βr(z)
− c + s − h is negative, ∂π(z)

∂z
has no zeros, thus

maximum of π(z) occurs at one of the boundaries of the feasible region. If

∂π(z)
∂z

∣
∣
∣

∂2π(z)

∂z2 =0
is positive and α− βc + 2βb is positive, then ∂π(z)

∂z
has only one

zero at which ∂π(z)
∂z

goes from positive to negative, thus this point corresponds

to a global maximum. If ∂π(z)
∂z

∣
∣
∣

∂2π(z)

∂z2 =0
is positive and α−βc+2βb is negative,

then ∂π(z)
∂z

has two zeros. On the smaller one, ∂π(z)
∂z

goes from negative to

positive, representing the global minimum. The larger one is the global

maximum since there, ∂π(z)
∂z

goes from positive to negative.

In brief, if
(

2r2(z) + ∂r(z)
∂z

)

is positive, then there exist at most two roots,

larger of which corresponds to the global maximum. If there is no root, the global

maximum is a boundary point. If, in addition to
(

2r2(z) + ∂r(z)
∂z

)

being positive,

α−βc+2βb > 0 holds, then the solution to ∂π(z)
∂z

= 0 is unique and corresponds to

the global optimum. If
(

2r2(z) + ∂r(z)
∂z

)

is not positive for all values of z, optimal

z cannot be found by the equation ∂π(z)
∂z

= 0, and a search is needed.

The failure rate of normal distribution is increasing, so
(

2r2(z) + ∂r(z)
∂z

)

> 0

holds for normal distribution. Thus, the optimality occurs at the largest point
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that make the first derivative zero.

4.1.2 The Case of Initial Inventory

Thowsen (1975) shows that order-up-to policies are optimal for the general

multi-period problem, and obviously also for the single period case. For the single

period case, if the optimal solution is (y, p), then when initial inventory is below

y, it is optimal to order up to y and charge the price p. When initial inventory x

is above y, it is optimal not to order and charge a price that depends on x.

4.1.3 Multi-Period Model

Similar to the replenishment case, the multi-period replenishment with pricing

model can be modeled as a stochastic dynamic programming model. In this case,

recursive equations take the form:

πt(xt) = max
p;z≥xt−(αt−βtp)







π(z, p|s = 0) + ctxt + E(πt+1(max{z − dt, 0})) if t 6= T

π(z, p) + ctxt if t = T

(4.13)

However, as states come from a continuous set, it is very hard to find the

optimal policy simply by solving these equations. Therefore, properties of the

optimal solution must be investigated. Fortunately, Thowsen (1975) shows that

order-up-to policies are optimal for the general multi-period problem, as mentioned

in the previous section.

4.2 The Multiplicative Demand Model

When the demand, dt, is assumed to be multiplicative, it is expressed as dt(p)εt,

where dt(p) is the deterministic and decreasing function of price and εt is the

stochastic error term. Karlin and Carr (1960) is the first paper that studies mul-

tiplicative from of demand uncertainty, and it has been widely used since then in

the dynamic pricing literature. The function dt(p) is taken as αtp
−βt in this thesis

where the term p is the price, αt is a positive constant, and βt is a real number

strictly greater than one. Also, the error term must be strictly positive for demand

to be positive. For analytical tractability, order-up-to level is expressed as dt(p)z,
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where z is called the stocking factor as in the additive demand case. The lower

bound on z is the lower bound on error term, which is zero.

4.2.1 One-Period Model

In this section, a special case of the multiplicative model is investigated: there

is only one period. As in the additive one-period problem, this problem is the

same as the newsboy problem with pricing decision. The initial inventory is again

assumed to be zero, but this assumption will be relaxed later. For a given stocking

factor z and price p, the expected profit of this model, π(z, p), is given as:

π(z, p) = p





z∫

0

αp−βεf(ε)dε +

∞∫

z

αp−βzf(ε)dε





−c(αp−βz) + (s − h)





z∫

0

αp−β(z − ε)f(ε)dε





−b





∞∫

z

αp−β(ε − z)f(ε)dε



 (4.14)

The first part, p

[
z∫

0

αp−βεf(ε)dε +
∞∫

z

αp−βzf(ε)dε

]

, is the expected revenue,

equal to the product of price and expected sales. The second part, c(αp−βz),

is the ordering cost. The expression s
z∫

0

αp−βz(z − ε)f(ε)dε is the expected rev-

enue from the salvage of the items leftover at the end of the period, whereas

h
z∫

0

αp−βz(z − ε)f(ε)dε is the holding cost incurred. Finally, b
∞∫

z

αp−βz(ε − z)f(ε)dε

is the expected cost of the loss of the goodwill cost.

Upon simplification, the expected profit equals:

π(z, p) = αp−β











p

[
z∫

0

εf(ε)dε

]

+ p

[

z
∞∫

z

f(ε)dε

]

− cz

+(s − h)

[
z∫

0

zf(ε)dε

]

− (s − h)

[
z∫

0

ε(ε)dε

]

−b

[

µ −
z∫

0

εf(ε)dε

]

+ b

[
∞∫

z

zf(ε)dε

]











= αp−β






(p − s + h + b)

[
z∫

0

εf(ε)dε

]

+ p [z(1 − F (z))] − cz

+(s − h)zF (z) − bµ + b [z(1 − F (z))]






= αp−β






(p − s + h + b)

[
z∫

0

εf(ε)dε

]

− (p − s + h + b)zF (z)

+(p − c + b)z − bµ





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= αp−β



(p − s + h + b)





z∫

0

(ε − z)f(ε)dε



 + (p − c + b)z − bµ





= αp−β (−(p − s + h + b)Λ(z) + (p − c + b)z − bµ) (4.15)

In this formula, Λ(z) is the expected amount of leftovers which is equal to
z∫

0

(z − ε)f(ε)dε. The relationship between the expected amount of lost sales, θ(z),

and Λ(z) is Λ(z) = Θ(z)− µ + z which is used in the expected profit calculations.

Rearranging (4.15), we obtain:

π(z, p) = αp−β (−(p − s + h + b)Λ(z) + (p − c + b)(Λ(z) − Θ(z) + µ) − bµ)

= αp−β (−(c − s + h)Λ(z) − (p − c + b)Θ(z) + (p − c)µ) (4.16)

Theorem 4.2.1 The optimal p and z satisfy the following two equations:

z = F−1

(
p − c + b

p − s + h + b

)

(4.17)

p =
β

β − 1

(c − s + h)Λ(z) + (b − c)Θ(z) + cµ

µ − Θ(z)
(4.18)

Proof The first derivative of π(z, p) with respect to z is:

∂π(z, p)

∂z
=

∂
(
αp−β (−(p − s + h + b)Λ(z) + (p − c + b)z − bµ)

)

∂z

= αp−β

(

−(p − s + h + b)
∂Λ(z)

∂z
+

∂ ((p − c + b)z − bµ)

∂z

)

= αp−β (−(p − s + h + b)F (z) + (p − c + b)) (4.19)

The second derivative of π(z, p) with respect to z is:

∂π2(z, p)

∂z2
=

∂
(
αp−β (−(p − s + h + b)F (z) + (p − c + b))

)

∂z

= αp−β (−(p − s + h + b)f(z)) (4.20)

The expression ∂π2(z,p)
∂z2 is negative. As a result, π(z, p) is concave with respect

to z for a given p. Therefore, at optimality, the first derivative of π(z, p) with

respect to z must be zero. As αp−β cannot be zero, the expression −(p − s +

h + b)F (z) + (p − c + b) is zero; and the following relationship exists between the

optimal z and p pair:
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z = F−1

(
p − c + b

p − s + h + b

)

(4.21)

Using the relation Θ(z) = Λ(z) + µ − z, the first derivative of π(z, p) with

respect to p becomes:

∂π(z, p)

∂p
=

∂
(
αp−β ((p − s + h + b)(−Λ(z)) + (p − c + b)z − bµ)

)

∂p

= −βαp−β−1 ((p − s + h + b)(−Λ(z)) + (p − c + b)z − bµ)

+αp−β (−Λ(z) + z)

= αp−β−1




pβΛ(z) − βpz + β(−s + h + b)Λ(z)

+β(c − b)z + βbµ − pΛ(z) + pz + z





= αp−β−1(β − 1)




p(Λ(z) − z)

− β
β−1 [(−s + h + b)Λ(z) + (c − b)z + bµ]





= αp−β−1(β − 1)




p(Θ(z) − µ)

− β
β−1 [(−s + h + b)Λ(z) + (b − c)Θ(z) + cµ]





= αp−β−1(β − 1)(µ − Θ(z))














−p

+ β
β−1











(−s + h + b)Λ(z)

+(b − c)Θ(z) + cµ
µ−Θ(z)
























(4.22)

The first expression αp−β−1(β − 1)(µ − Θ(z)) > 0 since α is strictly posi-

tive, β is strictly greater than 1 and µ is strictly greater than Θ(z) . When p

is smaller than β

β−1

[
(−s+h+b)Λ(z)+(b−c)Θ(z)+cµ

µ−Θ(z)

]

, ∂π(z,p)
∂p

is positive, so π(z, p) is in-

creasing. When p is greater than β

β−1

[
(−s+h+b)Λ(z)+(b−c)Θ(z)+cµ

µ−Θ(z)

]

, ∂π(z,p)
∂p

is negative,

so π(z, p) is decreasing. As a result, π(z, p) is maximized when p is equal to

β

β−1

[
(−s+h+b)Λ(z)+(b−c)Θ(z)+cµ

µ−Θ(z)

]

.

The following theorem is a slight modification of the theorem stated by Petruzzi

and Dada (1999). The difference is, as in the additive case, that salvage value is

considered explicitly, and the possibility of the existence of optimal solutions at

the boundaries of feasible region is considered.

Theorem 4.2.2 In the single period problem, when the demand is multiplicative,

optimal policy is to select the price p according to (4.18) and to stock αtp
−βtz where

z is determined according to the following two cases:
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1. If hazard rate of demand distribution, r(z) which is defined as f(z)
1−F (z)

, satisfies
(

2r2(z) + ∂r(z)
∂z

)

> 0 and additionally b > 2, then the optimal z is either the

unique solution of the equation ∂π(z,p)
∂p

= 0 or one of the boundary points.

2. If either
(

2r2(z) + ∂r(z)
∂z

)

> 0 or b > 2 does not hold, a search is needed to

find the optimal z over the feasible region.

Proof When the expression for p, (4.8), can be substituted for p in the equation

for expected profit, expected profit becomes solely a function of z and can be

written as π(z). The first derivative of π(z) with respect to z is:

∂π(z)

∂z
=

∂αp(z)−β (−(c − s + h)Λ(z) − (p(z) − c + b)Θ(z) + (p(z) − c)µ)

∂z

=
∂

(
αp(z)−β

)

∂z
(−(c − s + h)Λ(z) − (p(z) − c + b)Θ(z) + (p(z) − c)µ)

+αp(z)−β ∂ (−(c − s + h)Λ(z) − (p(z) − c + b)Θ(z) + (p(z) − c)µ)

∂z

= −βαp(z)−β−1 ∂p(z)

∂z




−(c − s + h)(Θ(z) − µ + z)

−(p(z) − c + b)Θ(z) + (p(z) − c)µ





+αp(z)−β




−(c − s + h)F (z) − ∂p(z)

∂z
Θ(z)

−(p(z) − c + b)(F (z) − 1) + µ∂p(z)
∂z





= αp(z)−β−1














∂p(z)
∂z

−β
p(z)








−(c − s + h)(Θ(z) − µ)

−(c − s + h)z − (p(z) − c + b)Θ(z)

+(p(z) − c)µ








−(c − s + h)F (z) − ∂p(z)
∂z

Θ(z)

−(p(z) − c + b)(F (z) − 1) + ∂p(z)
∂z

µ














= αp(z)−β−1














∂p(z)
∂z

−β
p(z)








−(b − s + h)Θ(z) + µ(−s + h)

−(c − s + h)z − p(z)(Θ(z) − µ)

+(p(z) − c)µ








−(c − s + h)F (z) − ∂p(z)
∂z

Θ(z)

−(p(z) − c + b)(F (z) − 1) + ∂p(z)
∂z

µ














= αp(z)−β−1











∂p(z)
∂z




β (β−1)(µ−Θ(z))

β

+β(Θ(z) − µ)





−(c − s + h)F (z) − ∂p(z)
∂z

Θ(z)

−(p(z) − c + b)(F (z) − 1) + ∂p(z)
∂z

µ











= αp(z)−β−1





∂p(z)
∂z

((β − 1)(µ − Θ(z)) + β(Θ(z) − µ) − (Θ(z) − µ))

−(c − s + h)F (z) − (p(z) − c + b)(F (z) − 1)




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= αp(z)−β−1 (−(−s + h + p(z) + b)F (z) + p(z) − c + b)

= αp(z)−β−1(1 − F (z))

(

p(z) − s + h + b +
−c + s − h

1 − F (z)

)

(4.23)

We need to calculate the roots of ∂π(z)
∂z

. The term αp(z)−β−1(1 − F (z)) is

strictly positive inside the feasible region, so
(

p(z) − s + h + b + −c+s−h
1−F (z)

)

should

be investigated. Let us denote this function by R(z). The value of R(z) when z is

at its lower bound is:

R(zl) =
β

β − 1

bµ − (b − c)zl

zl
− s + h + b − c =

1

β − 1

(

b
βµ − zl

zl
+ c

)

(4.24)

This term is positive since βµ − zl is positive and β − 1 is positive. Likewise,

the value of R(z) when z is at its upper bound is:

lim
z→zu

(

p(z) − s + h + b +
−c + s − h

1 − F (z)

)

= p(zu) − s + h + b +
−c + s − h

1 − F (zu)
︸ ︷︷ ︸

0

→ −∞

(4.25)

The first derivative of R(z) with respect to z is:

∂R(z)

∂z
=

∂
(

p(z) − s + h + b + −c+s−h
1−F (z)

)

∂z

=
∂p(z)

∂z
− (c − s + h)

∂
(

1
1−F (z)

)

∂z

=
∂p(z)

∂z
− (c − s + h)

1

(1 − F (z))2
f(z)

=

(
β

β − 1

bµ(F (z) − 1) + (c − s + h)(µ − Θ(z)) + (F (z) − 1)(c − s + h)z

(µ − Θ(z))2

−(c − s + h)
r(z)

1 − F (z)

)

(4.26)

The second derivative of R(z) with respect to z is:

∂R2(z)

∂z2
=

∂
(

∂p(z)
∂z

− (c − s + h) r(z)
1−F (z)

)

∂z

=
∂p2(z)

∂z2
− (c − s + h)

(
∂r(z)

∂z

1

1 − F (z)
+ r(z)

r(z)

1 − F (z)

)

=
∂

(
β

β−1
bµ(F (z)−1)+(c−s+h)(µ−Θ(z))+(F (z)−1)(c−s+h)z

(µ−Θ(z))2

)

∂z

−
(c − s + h)

1 − F (z)

(
∂r(z)

∂z
+ r2(z)

)
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=
β

β − 1














bµ(F (z) − 1) + (c − s + h)(µ − Θ(z))

+(F (z) − 1)(c − s + h)z





(

−2 1
(µ−Θ(z))3 (1 − F (z))

)




bµf(z) + (c − s + h)(1 − F (z))

+f(z)(c − s + h)z + (F (z) − 1)(c − s + h)



 1
(µ−Θ(z))2











−
(c − s + h)

1 − F (z)

(
∂r(z)

∂z
+ r2(z)

)

= −
∂p(z)

∂z

(
2

µ − Θ(z)
(1 − F (z))

)

+
β

β − 1
f(z)

(

(bµ + (c − s + h)z)
1

(µ − Θ(z))2

)

−
(c − s + h)

1 − F (z)

(
∂r(z)

∂z
+ r2(z)

)

= −
∂p(z)

∂z

(
2

µ − Θ(z)
(1 − F (z)) + r(z)

)

+
β

β − 1
f(z)

1

(µ − Θ(z))2

(
(c − s + h)(µ − Θ(z))

1 − F (z)

)

−
(c − s + h)

1 − F (z)

(
∂r(z)

∂z
+ r2(z)

)

= −

(
∂R(z)

∂z
+ (c − s + h)

r(z)

1 − F (z)

)(
2

µ − Θ(z)
(1 − F (z)) + r(z)

)

+
β

β − 1
f(z)

1

(µ − Θ(z))2

(
(c − s + h)(µ − Θ(z))

1 − F (z)

)

−
(c − s + h)

1 − F (z)

(
∂r(z)

∂z
+ r2(z)

)

= −
∂R(z)

∂z

(
2

µ − Θ(z)
(1 − F (z)) + r(z)

)

−(c − s + h)








r(z)
1−F (z)

(
2

µ−Θ(z) (1 − F (z)) + r(z)
)

− β
β−1r(z) 1

µ−Θ(z)

+ 1
1−F (z)

(
∂r(z)

∂z
+ r2(z)

)








= −
∂R(z)

∂z

(
2

µ − Θ(z)
(1 − F (z)) + r(z)

)

−(c − s + h)





(

2 − β
β−1

)

r(z) 1
µ−Θ(z)

+ 1
1−F (z)

(
∂r(z)

∂z
+ r2(z)

)





= −
∂R(z)

∂z

(
2(1 − F (z))

µ − Θ(z)
+ r(z)

)

− (c − s + h)





β−2
β−1

r(z)
µ−Θ(z)

+
( ∂r(z)

∂z
+r2(z))

1−F (z)





Finally, the value of the second derivative of R(z) at the point(s) where its first

derivative is zero is:

∂R2(z)

∂z2

∣
∣
∣
∣
∣

∂R(z)
∂z

=0

= −(c − s + h)




β − 2

β − 1

r(z)

µ − Θ(z)
+

(
∂r(z)

∂z
+ r2(z)

)

1 − F (z)



 (4.27)

This value is negative if b > 2 and
(

∂r(z)
∂z

+ r2(z)
)

> 0. If this holds, ∂π(z)
∂z
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crosses zero once. To the left of that point, π(z) is increasing and to the right of

that point π(z) is decreasing since the value of ∂π(z)
∂z

at the lower and upper bound

of the feasible region is positive and negative, respectively.

4.2.2 Multi-Period Model

Like the additive model, the general multi-period problem when the demand is

multiplicative can be modeled as a stochastic dynamic programming model. The

recursion formula is given as:

π′
t(xt) = max

p;z≥xt−(αt−βtp)







π(z, p|s = 0) + ctxt + E(πt+1(αtp
−βtmax{z − dt, 0})) if t 6= T

π(z, p) + ctxt if t = T

(4.28)

However, as states come from a continuous set, it is very hard to find the

optimal policy simply by solving these equations. This is an extremely difficult

problem. So far, there is no work on this problem that shows the form of the

optimal policy or attempts to calculate it.

4.3 Fixed Point Iteration Method

Since finding the optimal order quantities by dynamic programming recursions

is hard, we need to resort to another technique. In this thesis, we propose fixed-

point search as an effective search method.

4.3.1 Fixed Point Iteration Theory

The fixed point iteration method considers finding the roots of the following n

equations:

x1 = f1(x1, x2, . . . , xn)

x2 = f2(x1, x2, . . . , xn)

...

xn = fn(x1, x2, . . . , xn)
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In matrix notation:

x =











x1

x2

...

xn











and f(x) =











f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)











Let us denote the solution of these equations by x∗. The fixed point iteration

method updates the estimate x by substituting f(x) for x. Specifically, in iteration

n + 1, we calculate iteration is (x)n+1=f((x)n) where (x)n is the nth guess for x∗

and (x)0 is the initial guess.

4.3.2 Fixed Point Iteration for Single-Period Problem

For our problem, in both forms of demand uncertainty, there are two equations

that optimal p and z satisfy. Thus, the fixed point iteration can be used to find

the optimal point. In the additive case, the steps of the search are:

1. Start from z0 = F−1
(

p0−c+b

p0+h−s+b

)

and p0 = α+βc+µ

2β
which is shown to be

an upper bound on optimal price by Petruzzi and Dada (1999). The vari-

able z0 is also an upper bound on optimal z since the derivative of Θ(z) is

nonnegative.

2. Using pn and zn, solve pn+1 = α−Θ(zn)+βc+µ

2β
and zn+1 = F−1

(
pn−c+b

pn+h−s+b

)

for

pn+1 and zn+1.

3. Stop the iterations if the difference between values in the consecutive itera-

tions is less than a pre-specified percentage. Check the boundary points in

case of the existence of optimality at boundary points. Otherwise go to Step

2.

Similarly, for the multiplicative case, the steps are:

1. Start from z0 = F−1
(

p0−c+b

p0+h−s+b

)

and p0 = βc

β−1
which is shown to be a lower

bound on optimal price.

2. Solve zn+1 = F−1
(

pn−c+b

pn+h−s+b

)

and pn+1 = β(c−s+h)Λ(zn)+(b−c)Θ(zn)+cµ

(β−1)(Θ(zn)−µ)
consecu-

tively for pn+1 and zn+1, using pn and zn.
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3. Stop the iterations if the difference between values in the consecutive itera-

tions is less than a pre-specified percentage. Check the boundary points in

case of the existence of optimality at boundary points. Otherwise go to Step

2.

The following theorem gives the conditions on the convergence of the fixed-

point iteration method.

Theorem 4.3.1 Let x∗ be a fixed point of f(x), i.e., the solution to x = f(x)

and assume that the components of f(x) are continuously differentiable in some

neighborhood around x∗. Let J(x) be the Jacobian matrix for the functions f1 and

f2, that is:

J(x) =





∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2





Further assume that:

‖ J(x∗) ‖∞= max
1≤i≤2

n∑

j=1

∣
∣
∣
∣

∂fi(x)

∂xj

∣
∣
∣
∣
< 1

Then, for (x)0 chosen sufficiently close to x∗, the iteration (x)n+1=f((x)n) will

converge to x∗.

Proof See Atkinson (1988).

This theorem proves the convergence if the stated condition is satisfied. How-

ever, there is no mention of the rate of the convergence.

In our problem in the additive case, J(x) is given as:

J(x) =





∂(α−Θ(z)+βc+µ

2β )
∂p

∂(α−Θ(z)+βc+µ

2β )
∂z

∂F−1( p−c+b
p+h−s+b)
∂p

∂F−1( p−c+b
p+h−s+b)
∂z





=




0 1−F (z)

2β

∂F−1( p−c+b
p+h−s+b)
∂p

0



 (4.29)

To prove the convergence for our problem for the additive case, we need to

show that
∣
∣
∣
∂F−1( p−c+b

p+h−s+b)
∂p

∣
∣
∣< 1 at the optimality.

In the multiplicative case, J(x) is given as:

J(x) =





∂(β(c−s+h)Λ(z)+(b−c)Θ(z)+cµ

(β−1)(Θ(z)−µ) )
∂p

∂(β(c−s+h)Λ(z)+(b−c)Θ(z)+cµ

(β−1)(Θ(z)−µ) )
∂z

∂F−1( p−c+b
p+h−s+b)
∂p

∂F−1( p−c+b
p+h−s+b)
∂z




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=




0 (bµ(F (z)−1)+(c−s+h)(Θ(z)−µ)+(F (z)−1)(c−s+h)z)

(β−1)(Θ(z)−µ)2

∂F−1( p−c+b
p+h−s+b)
∂p

0



(4.30)

To prove the convergence for the multiplicative case, we need to show that
∣
∣
∣
∂F−1( p−c+b

p+h−s+b)
∂p

∣
∣
∣< 1 and (bµ(F (z)−1)+(c−s+h)(Θ(z)−µ)+(F (z)−1)(c−s+h)z)

(β−1)(Θ(z)−µ)2
< 1 at the opti-

mality.

4.3.3 Fixed Point Iteration for Multi-Period Replenish-

ment Problem with Pricing

To find the order-up-to levels for the multi-period case, the fixed point iteration

method can be mixed with the ideas of myopic policies explained in Section 3.4.1.

To be precise, for the periods other than the last period, next period’s ordering cost

is inserted for the salvage value in the single period model. Then, the fixed point

iteration method is applied to the periods separately as if they are independent

from each other to find the order-up-levels and prices.

4.4 Summary

In this chapter, the problem introduced in the previous chapter is extended

to include the prices. However, the problem is harder in this case. To find the

optimal solution even for the single period case requires a search. Moreover, in the

multi-period case, no method is proposed that finds the optimal point. The fixed

point iteration method is proposed to find the optimal point in both one-period

and multi-period case. Nevertheless, its performance is not proved theoretically.

In the next chapter, this search method is tested to see its performance for some

test problems.
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Chapter 5

Experimental Tests

The demand distribution is taken as normal distribution for the experimental

tests. The reason for this choice is the fact that normal distribution is a well ap-

proximation of most processes in the nature. The algorithms are coded in C++

language. For the approximations of cumulative distribution, probability distri-

bution and inverse cumulative functions of standard normal distribution, the ones

given by Abramowitz and Stegun (1965) are used.

As emphasized in the previous sections, an efficient search method is not pro-

posed in the literature for the replenishment with pricing problem in the multi-

period case. As a result, the only way to obtain a benchmark against which fixed

point iteration algorithm (FPIS) will be compared is doing exhaustive search (ES)

by discretizing the inventory levels and demand process. In the multi-period case,

since the number of computations in exhaustive search explodes with the number

of periods and it becomes difficult to make an exhaustive search to benchmark,

the number of periods is chosen as two.

All statistical tests are done with Microsoft Office Excel 2003. The maximum

number of iterations of FPIS is selected as 25.

5.1 Values of the Parameters

The values of the parameters that are used in the calculation of reorder times

when the prices are fixed are presented in Table 5.1.
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Table 5.1: Values of the Parameters for Fixed Prices Case

Parameter Value

µ 10, 60, 110

σ 1, 5

p1 10

p2 10

c1 1, 2, . . . , 9

c2 1, 2, . . . , 9

h1 1, 3

h2 1, 3

b1, b2 2

s 1

The parameter value combinations that violate the assumptions mentioned in

Section 3.2 are discarded. For example; the cases in which c1 = 1, h1 = 3 and c2 =

5 is not considered in the analysis since c2 < c1 + h1 must hold. After eliminating

the combinations which violate assumptions, a total of 1260 combinations are

tested, instead of 1944 combinations.

For the pricing model, the values of the parameters for the one-period demand

case are presented in Table 5.2.

Table 5.2: Values of the Parameters for One-Period Case

Parameter Additive Case Multiplicative Case

µ 0, 50, 100 10, 50, 100

σ 1, 5 1, 5

c 1, 5, 9 1, 5, 9

h 1, 5 1, 5

b 1, 5 1, 5

s 1, 5, 9 1, 5, 9

α 20, 60 20, 60

β 1, 5 1.5, 5
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There are 432 possible combinations of the parameters. However, again the

combinations that conflict with the assumptions are eliminated from the analysis.

For both additive and multiplicative forms of demand uncertainty, this makes 288

feasible combinations of values of the parameters.

For the multi-period pricing model, the values of the parameters are provided

in Table 5.3.

Table 5.3: Values of the Parameters for Multi-Period

Case

Parameter Additive Case Multiplicative Case

µ1, µ2 30, 60 30, 60

σ1, σ2, 1, 5 1, 5

c1, c2 1, 5, 9 1, 5, 9

h1, h2 1, 5 1, 5

b1, b2 2 2

s 1 1

α1, α2 20, 60 20, 60

β1, β2 1, 5 1.5, 3

The number of feasible combinations is 4096 out of 9216.

5.2 Efficiency Tests for Replenishment Problem

with Fixed Prices

There is no proposed algorithm for this problem, and the reorder time is found

by exhaustive search. Thus, efficiency tests are not applicable here.

5.3 Efficiency Tests for Replenishment Problem

with Pricing

First of all, the CPU time of the FPIS is compared with the CPU time of the

ES procedure so as to find the computational performance of FPIS. The CPU time
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is measured by the number of clocks ticks of elapsed processor time, using clock

function of Visual C++ Library. Approximately 1000 clock ticks is equal to 1

second, so 1 clock tick can be taken as 1 millisecond. Secondly, the solution found

by FPIS is compared against the optimal solution found by the ES procedure. The

performance measure selected is the percentage error (PE), which is the ratio of

absolute difference of the solution of the fixed point iteration and the solution of

the exhaustive search to the solution of the exhaustive search. PE is calculated

for every period, t, and for the profits (PEPr
t ), the stocking factors (PEz

t ) and

the prices (PEp
t ). ES searches by discretizing the inventory and demand levels

whereas FPIS searches over all points in the feasible region. Therefore, in some

cases, solution of FPIS turns out to be better than that of ES. Hence, the absolute

difference is preferred in the analysis.

5.3.1 Additive Demand One-Period Model

The total CPU time of FPIS is 90 clocks for 288 combinations. However,

average CPU time of ES is 27 clocks and maximum CPU time of ES is 90 clocks.

The percentage errors are presented in Table 5.4.

Table 5.4: Results for One-Period Additive Demand

FPIS

Max PEPr 0.000003694

Average PEPr 0.000000111

Max PEz 0.000063625

Average PEz 0.000006492

Max PEp 0.028837320

Average PEp 0.000713173

The average and the maximum percentage errors for all decision variables and

profits are very small.
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5.3.2 Additive Demand Multi-Period Model

The total CPU time of FPIS is 450 clocks for 4096 combinations. The average

and maximum CPU time of ES is 1484 and 6179, respectively. The CPU time of

FPIS in multi-period case is 5 times the CPU time of FPIS of one-period case. On

the other hand, the CPU time of ES is 50 times that of one-period case. Roughly

speaking, the rate of CPU time increase of ES is 10 times that of FPIS. This shows

that even if the CPU time of ES seems very reasonable in this situation, it will

explode as the number of periods increase.

For the last period, it is known that the formulae used by the FPIS is indeed the

formulae that the optimal point satisfies. Thus, for the second period, we expect

FPIS to yield similar results as the one-period case in terms of all performance

measures. In fact, this is the case. The CPU time, PEz
2 and PEp

2 are presented

in Table 5.5. PEPr
2 is not recorded for this case since second period profit is

irrelevant.

Table 5.5: Results for Multi-Period Additive Demand

FPIS

Max PEz
2 0.0009775

Average PEz
2 0.006342177

Max PEp
2 0.0181

Average PEp
2 0.004192741

The results are similar to the one-period model. Period 1’s results are presented

in Table 5.6.

Table 5.6: Results for Multi-Period Additive Demand

FPIS

Max PEPr
1 0.290765013

Average PEPr
1 0.001569642

Max PEz
1 0.022328125

Average PEz
1 0.005812635

Max PEp
1 0.098656

Average PEp
1 0.025596184
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Although the average value PEPr
1 is reasonable, the maximum value of PEPr

1

is not. However, only 139 of 4096 combinations is greater than 1%. In order to

determine the effect of parameter values on the error profit, independent sample

t-tests are conducted. First we checked whether β1 + β2 has a negative impact on

PEp
1 . In sample 1, β1 + β2 is taken as 10 and in sample 2 as 2. The variables

tested are the optimal profit, z and p. With 1-3.81389E-07 significance level, the

hypotheses that means are equal are rejected in favor of the hypothesis that PEp
1 is

higher when β1 +β2 = 10. A similar test is conducted so as to determine the effect

of α1+α2. We can say that as α1+α2 increases, PEp
1 decreases with 1-4,01886E-11

significance level. In fact, as α decreases and β increases, deterministic part of the

demand decreases. Also, when the price is high, stochastic part of the demand

may not offset the negativity of the deterministic part so total demand becomes

negative. However, there cannot be negative demand in reality. If this is the case,

firms prefer not to do business. Thus, most of the bad results in PEp
1 is a result

of these combinations that test procedure automatically creates but do not exist

in reality.

It should be noted that the performance measures of FPIS algorithm in the

multi-period case is an indicator of the performance of not only the fixed point

iteration search algorithm but also the applying the results of fixed pricing problem

to pricing problem.

5.3.3 Multiplicative Demand One-Period Model

The total duration of fixed point iteration is 60 clocks for 288 combinations.

However, the average CPU time of ES is 43 clocks and the maximum CPU time

of ES is 101 clocks.

The percentage errors are presented in Table 5.7.
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Table 5.7: Results for One-Period Multiplicative Demand

FPIS

Max PEPr 0.000005653

Average PEPr 0.000000167

Max PEz 0.748285692

Average PEz 0.256781447

Max PEp 0.000773488

Average PEp 0.000116242

The average and the maximum percentage errors for the expected optimal profit

and prices are fairly good. However, the percentage errors for optimal stocking

factors are very large. This shows that for the optimal profits of test problems are

very insensitive to the changes in stocking factor. These differences in percentage

errors may also be the result of the properties of the model.

5.3.4 Multiplicative Demand Multi-Period Model

The total CPU time of FPIS is 230 clocks for 4096 combinations in the mul-

tiplicative case. The average and maximum CPU time of ES is 2286 and 15993,

respectively.

The performance measures of the second period, PEz
2 and PEp

2 , are similar to

the one-period case because the procedure used is the same as one-period case.

The average and maximum values of these quantities of PEPr
1 , PEz

1 and PEp
1 are

presented in Table 5.8.

Table 5.8: Results for Multi-Period Mult. Demand

FPIS

Max PEPr
1 1.510564950

Average PEPr
1 0.045335466

Max PEz
1 0.019117241

Average PEz
1 0.006923497

Max PEp
1 0.363565000

Average PEp
1 0.046984073
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To see the effect of values of variables in PEPr
1 , paired t-tests are conducted.

The effect of β1 on PEPr
1 , all combinations are separated into two samples, in the

first sample, β1 is 5 and the average value of PEPr
1 is 0.090021857. In the second

sample, β1 is 1 and the average value of PEPr
1 is 0.000649075. The result of the

t-test is that we can say that the average value of PEPr
1 is higher when β1 is 5

with 1-2.90098E-42 significance level. As β increases, the deterministic part of the

demand gets closer to 0, thus the overall demand. In real cases, β must be smaller

than 5.

5.4 Managerial Insights

5.4.1 Replenishment Problem with Fixed Prices

The replenishment problem with fixed prices is a wide-known problem. There

is an extensive literature that deals with it. Lau and Lau (1998) solves this prob-

lem when the cost parameters except c is taken as zero and all parameters are

stationary. They assume that the demand is normally distributed and there are

two periods in the season. Besides observing the behavior of the order variables

and profit, they study variable reorder time. The variable reorder time means

that time of the second replenishment can be anytime between the start and the

end of the season. They assume that the mean and the variance of demand is

linearly proportional to the length of the periods, that is the demand uncertainty

is uniform over the season. They make the following observations:

1. The optimal reorder time decreases as the ratio (c/p) increases.

2. The optimal reorder time decreases as σ increases.

These observations are not repeated here. As our model incorporates nonsta-

tionary parameters, salvage value and costs of the loss of goodwill and holding

inventory into the model of Lau and Lau, the effect of these added variables is

observed.

In this section, k will represent the ratio of the length of the first period to the

length of the season. For example, when k is 0.1 and the length of the season is
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10 weeks, the length of the first period is 1 week and the second season is 9 weeks.

It is assumed that 0.1 ≤ k ≤ 0.9. Just for this section, µ and σ represent the

mean and standard deviation of the season’s total demand rather than those of

the individual periods.

As the first case, the effect of relative values of c1 and c2 is tested. To see the

effect of the ratio c1/c2 on the optimal value of k, an independent samples t-test is

done. The results are separated into two samples: in the first sample c1/c2 ratio is

less than 1, whereas in the second sample c1/c2 ratio is greater than 1. The mean

of the first and the second sample are 0.102430556 and 0.895722222. With 100%

significance level, the hypothesis that the optimal reorder levels in two samples

are equal in favor of the hypothesis that the optimal reorder level in the second

sample is higher. So, as the value of c1 increases relative to c2, it is becomes more

attractive to reorder earlier in the season. The decision maker prefers to give the

order as early as he/she can.

A t-test is conducted so as to see the effect of standard deviation on the reorder

time. With 1-0.102113663 significance level, we can say that the optimal reorder

time decreases with standard deviation. Also, with 1-3.2585E-07 significance level,

we can say that the optimal reorder time increases with µ.

These results are consistent with the results of Lau and Lau.

5.4.2 Replenishment Problem with Pricing

In this section, the FPIS method proposed in the previous chapter is tested for

both single and multi-period settings.

Tests for One-Period Model

The following observations are made about the optimal expected profit:

• It is evident that as µ, α and s increases, and as c, h and b decreases, the

expected profit increases. Also, as µ increases, z increases.

• To observe the effect of uncertainty of the demand on the optimal profit of

the model, paired t-tests are conducted. The population of combinations are

separated into two samples. In the first one, σ is 1, whereas in the second
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sample, σ is 5. We can reject the hypothesis that expected profits in two

samples are equal with 1-1,25611E-23 and 1-9,33936E-16 significance level in

favor of the hypothesis that the expected profit in the first sample is higher,

in additive and multiplicative cases, respectively.

The following observations are made about the optimal p and z:

• Another paired t-test is conducted so as to verify the effect of σ on the

optimal z. In the first sample σ is 1 whereas in the second sample, σ is

5. With 1-1.25611E-23 and 1-9.00213E-08 significance level, we reject the

hypothesis that expected profits in two samples are equal in favor of the

hypothesis that the optimal z in the first sample is higher, in additive and

multiplicative cases, respectively. So, as the uncertainty increases, firm reacts

with buying less.

• No significance relation is found between α and the optimal z.

• With 1-9.82797E-39 significance level, we conclude that as the optimal p

increases as α increases in the additive case. There is no observable effect of

α on optimal price in multiplicative case.

Tests for Multi-Period Model

The following observations are made about the optimal expected profit:

• As α1, α2, µ1 and µ2 increases the optimal expected profit increases in both

additive and multiplicative forms of demand uncertainty. Similarly, as the

costs increase, the expected profits decrease.

• As σ1 increases in the additive model, the expected profit decreases with

a significance level of 1-0.151140507 which is not so high. However, as σ2

increases, we are more confident about the decrease in the optimal profit:

the significance level is 1-8,35036E-08. The effect of σ on the multiplicative

demand: the significance levels for rejection are 0.217137782 and 0.09178996

for σ1 and σ2, respectively. Yet, the effect of the uncertainty in the second

period is still higher.
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• As β increases in multi-period case, with the same price level, firm has a

lower level of demand. Thus expected profit decreases as β increases. This

fact is also verified by the results with significance levels of rejection as high

as 1.

The following observations are made about the optimal z1 and p1:

• The most evident result is that as µ increases, z increases as z is a substitute

for µ in the additive demand model. Also, we are 1-0.000525195 sure that

p decreases as µ increases for additive demand. This is logical since as the

inventory level increases, average level of demand must increase, the only

way to increase the average demand is to decrease price. This relationship

is not observed for the multiplicative demand case.

• With a 1-0.001705295 significance level for the additive model, we can say

that the ratio z1/z2 increases as the ratio c1/c2 decreases. This means that

as it becomes more expensive to buy in period 1, optimal order-up-to levels

decrease relatively. For the multiplicative case, we are less confident about

this relationship (1-0.098793367), however, it still exists.

5.5 Summary

In this chapter, the solution method proposed in the previous chapter (FPIS)

is tested for all single and multi-period, additive and multiplicative problems. The

optimal solution is found by exhaustive search (ES) and used as a benchmark. The

CPU time of the FPIS outweighs the CPU time of ES. When the solutions are

compared, we can say that in most of the cases, the solutions found by FPIS and

ES are very close. As a general remark, the results of the additive demand model

is better than the results of the multiplicative demand model. In the multi-period

case, the results of the first period is worse than the results of the last period. So

even if the convergence is not proved for FPIS, it works well for the test problems

proposed in this chapter.
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Chapter 6

Conclusion and Future Research

Directions

In this thesis, the problem of joint pricing and replenishment decisions is an-

alyzed. Even if the properties of the optimal solution is explored by various re-

searchers, no one proposes an efficient method to find it for the general case. This

thesis proposes a search method to find the optimal solution as a contribution to

this problem. Some test problems are created and this search method is tested for

these problems. The results are satisfactory; however, there is still some work to

be done.

First of all, the test problems generated in this study may need to be improved.

The expected profit seems fairly insensitive to the changes in price and stocking

factor in these test problems: large changes in price and stocking factor leads to

small changes in expected profit. Therefore, the method may be unsuccessful to

find the optimal price and stocking factor even though it seems to find a very

close solution to the optimal in terms of the expected profit. However, it should

be noted that this insensitivity of the expected profit may also be an inherent

property of the model and may be unrelated to the test problems.

Secondly, the proposed heuristic should be tested in more than two periods.

Only one reorder during the season is not an uncommon case and has more inter-

esting properties than the general multi-period problem. However, as this method

can be used in problems with more than two periods, it should be tested for prob-

lems with more than two periods. The limitation is the lack of a benchmark for
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comparison. The CPU time of exhaustive search method explodes with the num-

ber of periods, thus, we could not get any benchmark to compare the performances

as there is no other known method of obtaining the optimal solution.

The stochastic parts of the demand are assumed to normally distributed in

this study. The convergence of the method is not proved for this distribution,

thus the method may fail in some environments. Various researchers in the litera-

ture assumed other distributions, like the exponential distribution. An inevitable

future research direction is analyzing and testing the problem for other demand

distributions.

The method to find the order-up-to levels and prices for the periods other than

the last period in multi-period problem uses the idea of myopic policies. However,

myopic policies give only an upper bound when the prices are fixed. Another idea

is to incorporate the lower bound and use the heuristic proposed in section 3.4.2.

Both heuristics can be solved and the best one can be selected as the CPU time

of both methods will be similar and negligible. Additionally, the performance of

the proposed method should be proved theoretically.

The method that is used to compute the results of the proposed method with

the optimal point should also be criticized. When the proposed method finds a

better solution than the optimal because of the resolution of the exhaustive search

method, the error is still taken as the absolute difference rather than zero. If the

error was taken as zero, the performance of the method would look better.
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Appendix A

Tables of t Test

The tables below are the tables generated by Microsoft Excel 2003. In the

tables, df means degrees of freedom. The numbers in parenthesis next to the

independent parameters are the values of the independent variables in the first

and second sample, respectively. Other terms are self explanatory.

Table A.1: (β1 + β2) (10-2) vs PEp
1 . Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 0.004985961 0.000128384
Variance 0.000980503 1.73987E-08

Number of Observations 1024 1024

Pearson Correlation 0.546517962
Hypothesized Mean Difference 0

df 1023
t Stat 4.975577255

P(T≤t) one-tail 3.81389E-07
t Critical one-tail 1.646344496
P(T≤t) two-tail 7.62779E-07
t Critical two-tail 1.962285575

Table A.2: (α1 + α2) (40-120) vs PEp
1 . Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 0.007020486 0.000847007
Variance 0.000937452 1.69563E-06

Number of Observations 1024 1024

Pearson Correlation 0.436495733
Hypothesized Mean Difference 0

df 1023
t Stat 6.569216019

P(T≤t) one-tail 4.01886E-11
t Critical one-tail 1.646344496
P(T≤t) two-tail 8.03773E-11
t Critical two-tail 1.962285575
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Table A.3: c1/c2 (<1 - >1) vs k. Two-Period Fixed Pricing

t-Test: Two-Sample Assuming Unequal Variances
Variable 1 Variable 2

Mean 0.895722222 0.102430556
Variance 0.000270425 9.55919E-05

Number of Observations 180 864

Hypothesized Mean Difference 0
df 206

t Stat 624.6195439
P(T≤t) one-tail 0
t Critical one-tail 1.652284145
P(T≤t) two-tail 0
t Critical two-tail 1.971546622

Table A.4: σ (1-5) vs k. Two-Period Fixed Pricing

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 0.333079365 0.307857143
Variance 0.123961886 0.115784749

Number of Observations 630 630

Pearson Correlation 0.929979587
Hypothesized Mean Difference 0

df 629
t Stat 4.867359904

P(T≤t) one-tail 7.15889E-07
t Critical one-tail 1.647279747
P(T≤t) two-tail 1.43178E-06
t Critical two-tail 1.963742534

Table A.5: µ (110-10) vs k.Two-Period Fixed Pricing

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 0.330714286 0.28797619
Variance 0.127626696 0.100842434

Number of Observations 420 420

Pearson Correlation 0.87450683
Hypothesized Mean Difference 0

df 419
t Stat 5.052710873

P(T≤t) one-tail 3.2585E-07
t Critical one-tail 1.648498411
P(T≤t) two-tail 6.517E-07
t Critical two-tail 1.965641764
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Table A.6: σ (1-5) vs Optimal Profit, One-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 1220.336494 1194.782956
Variance 2893739.387 2836472.021

Number of Observations 144 144

Pearson Correlation 0.999935533
Hypothesized Mean Difference 0

df 143
t Stat 11.97638358

P(T≤t) one-tail 1.25611E-23
t Critical one-tail 1.655579144
P(T≤t) two-tail 2.51222E-23
t Critical two-tail 1.976692167

Table A.7: σ (1-5) vs Optimal Profit, One-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 150.7214447 144.3420212
Variance 63890.45485 60501.33196

Number of Observations 144 144

Pearson Correlation 0.999780795
Hypothesized Mean Difference 0

df 143
t Stat 8.933282872

P(T≤t) one-tail 9.33936E-16
t Critical one-tail 1.655579144
P(T≤t) two-tail 1.86787E-15
t Critical two-tail 1.976692167

Table A.8: σ (5-1) vs z, One-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 52,51479167 50,50625
Variance 1773,624599 1696,410775

Number of Observations 144 144

Pearson Correlation 0,998803179
Hypothesized Mean Difference 0

df 143
t Stat 10,76696162

P(T≤t) one-tail 1,80988E-20
t Critical one-tail 1,655579144
P(T≤t) two-tail 3,61976E-20
t Critical two-tail 1,976692167
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Table A.9: σ (5-1) vs z, One-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 54.39041667 53.43583333
Variance 1329.80966 1363.659454

Number of Observations 144 144

Pearson Correlation 0.998461243
Hypothesized Mean Difference 0

df 143
t Stat 5.487853475

P(T≤t) one-tail 9.00213E-08
t Critical one-tail 1.655579144
P(T≤t) two-tail 1.80043E-07
t Critical two-tail 1.976692167

Table A.10: α (60-20) vs p, One-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 36.84470417 24.7648884
Variance 705.4032403 415.1079901

Number of Observations 144 144

Pearson Correlation 0.975030125
Hypothesized Mean Difference 0

df 143
t Stat 17.94108803

P(T≤t) one-tail 9.82797E-39
t Critical one-tail 1.655579144
P(T≤t) two-tail 1.96559E-38
t Critical two-tail 1.976692167

Table A.11: σ1 (1-5) vs Optimal Profit, Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 1841.45633 1823.997088
Variance 2161427.731 2152427.357

Number of Observations 2048 2048

Pearson Correlation 0.864072901
Hypothesized Mean Difference 0

df 2047
t Stat 1.031814292

P(T≤t) one-tail 0.151140507
t Critical one-tail 1.645598358
P(T≤t) two-tail 0.302281013
t Critical two-tail 1.96112351
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Table A.12: σ2 (1-5) vs Optimal Profit, Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 1850.570593 1814.882825
Variance 2168527.095 2144843.36

Number of Observations 2048 2048

Pearson Correlation 0.978082781
Hypothesized Mean Difference 0

df 2047
t Stat 5.250941997

P(T≤t) one-tail 8.35036E-08
t Critical one-tail 1.645598358
P(T≤t) two-tail 1.67007E-07
t Critical two-tail 1.96112351

Table A.13: σ1 (1-5) vs Optimal Profit, Multi-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 294.8920415 288.7153362
Variance 91918.17078 87330.78562

Number of Observations 2048 2048

Pearson Correlation 0.287375849
Hypothesized Mean Difference 0

df 2047
t Stat 0.782050127

P(T≤t) one-tail 0.217137782
t Critical one-tail 1.645598358
P(T≤t) two-tail 0.434275564
t Critical two-tail 1.96112351

Table A.14: σ2 (1-5) vs Optimal Profit, Multi-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 295.7454455 287.8619321
Variance 91312.8158 87924.13568

Number of Observations 2048 2048

Pearson Correlation 0.598808835
Hypothesized Mean Difference 0

df 2047
t Stat 1.330262685

P(T≤t) one-tail 0.09178996
t Critical one-tail 1.645598358
P(T≤t) two-tail 0.18357992
t Critical two-tail 1.96112351
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Table A.15: β1 (2-5) vs Optimal Profit, Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 2588.939862 1076.513556
Variance 2071540.553 1098191.626

Number of Observations 2048 2048

Pearson Correlation 0.74260429
Hypothesized Mean Difference 0

df 2047
t Stat 70.98893253

P(T≤t) one-tail 0
t Critical one-tail 1.645598358
P(T≤t) two-tail 0
t Critical two-tail 1.96112351

Table A.16: β2 (2-5) vs Optimal Profit, Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 2584.882244 1080.571174
Variance 2074766.584 1107212.344

Number of Observations 2048 2048

Pearson Correlation 0.783951975
Hypothesized Mean Difference 0

df 2047
t Stat 75.84877443

P(T≤t) one-tail 0
t Critical one-tail 1.645598358
P(T≤t) two-tail 0
t Critical two-tail 1.96112351

Table A.17: β1 (2-5) vs Optimal Profit, Multi-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 443.0998401 140.5075375
Variance 99569.16507 33895.46074

Number of Observations 2048 2048

Pearson Correlation 0.031756153
Hypothesized Mean Difference 0

df 2047
t Stat 38.01258971

P(T≤t) one-tail 5.4289E-240
t Critical one-tail 1.645598358
P(T≤t) two-tail 1.0858E-239
t Critical two-tail 1.96112351
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Table A.18: β2 (2-5) vs Optimal Profit, Multi-Period Multiplicative

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 425.6713498 157.9360279
Variance 87929.47386 55479.95732

Number of Observations 2048 2048

Pearson Correlation 0.422345655
Hypothesized Mean Difference 0

df 2047
t Stat 41.70312778

P(T≤t) one-tail 5.7217E-276
t Critical one-tail 1.645598358
P(T≤t) two-tail 1.1443E-275
t Critical two-tail 1.96112351

Table A.19: µ1 (30-60) vs p1, Multi-Period Additive

t-Test: Paired Two Sample for Means
Variable 1 Variable 2

Mean 14.59375 14.0625
Variance 83.34440645 76.7210552

Number of Observations 2048 2048

Pearson Correlation 0.665203767
Hypothesized Mean Difference 0

df 2047
t Stat 3.281373077

P(T≤t) one-tail 0.000525195
t Critical one-tail 1.645598358
P(T≤t) two-tail 0.00105039
t Critical two-tail 1.96112351

Table A.20: c1/c2 (1.8-0.2) vs z1/z2, Multi-Period Additive

t-Test: Two-Sample Assuming Unequal Variances
Variable 1 Variable 2

Mean 1.199571491 1.110881369
Variance 0.319444109 0.296038138

Number of Observations 512 1024

Hypothesized Mean Difference 0
df 988

t Stat 2.935192123
P(T≤t) one-tail 0.001705295
t Critical one-tail 1.64639736
P(T≤t) two-tail 0.00341059
t Critical two-tail 1.962367918
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Table A.21: c1/c2 (1.8-0.2) vs z1/z2, Multi-Period Multiplicative

t-Test: Two-Sample Assuming Unequal Variances
Variable 1 Variable 2

Mean 1.184125437 1.145071168
Variance 0.315925632 0.307708982

Number of Observations 512 1024

Hypothesized Mean Difference 0
df 1010

t Stat 1.289306511
P(T≤t) one-tail 0.098793367
t Critical one-tail 1.646363703
P(T≤t) two-tail 0.197586733
t Critical two-tail 1.962315493
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