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A Sliding Mode Approach to Visual Motion Estimation

by Burak Yılmaz

Abstract

The problem of estimating motion and structure from a sequence of images has

been a major research theme in machine vision for many years and remains one

of the most challenging ones. In this work, a new approach to this problem is

presented; using sliding mode observers to estimate the motion and structure of

a moving body with the aid of a CCD camera. A variety of dynamical systems

which may arise in machine vision applications is considered and a novel identifi-

cation procedure is developed for the estimation of both constant and time varying

parameters. The basic procedure introduced for parameter estimation is to recast

image feature dynamics linearly in terms of unknown parameters and construct a

sliding mode observer to produce asymptotically correct estimates of the observed

image features, and then use ’equivalent control’ to explicitly compute paramters.

Much of the procedure presented in this work has been substantiated by computer

simulations and real experiments.



Kayma Kipli Gözlemciler Kullanılarak Görsel Hareket Kestirimi

Burak Yılmaz

Özet

Bir dizi görüntü bilgisi kullanılarak hareket ve yapı tahmini, uzun yıllar boyunca

önemli bir araştırma konusu olmuştur ve olmaya devam etmektedir. Bu çalışmada,

hareket kestirimi problemine yeni bir yaklaşım sunulmaktadır: bir CCD kamera

yardımıyla hareket kestiriminin, kayma kipli gözlemciler kullanılarak gerçekleştirilmesi.

Görüntülü makineler alanında karşılaşılabilecek çeşitli dinamik sistemler göz önüne

alınmakta ve hareketli nesnelerin sabit ya da zamanla değişen hareket parame-

trelerinin bulunması/tanımlanması için yeni bir yöntem geliştirilmektedir. Bu yeni

yöntemin uygulanışındaki temel yaklaşım, görüntü hareket denklemlerinin bilin-

meyen parametreler cinsinden doğrusal olacak şekilde yeniden yazılması, alınan

görüntülerdeki ayıklanabilir nokta koordinatlarını asimptotik olarak doğru takip

edecek bir kayma kipli gözlemcinin oluşturulması, ve bu gözlemciden elde edile-

cek eşdeğer kontrol sinyali ile parametrelerin gerçek değerlerinin bulunması şeklinde

özetlenebilir. Çalışmada bahsedilen yöntemler, bilgisayar simülasyonları ve gerçek

deneylerle denenmiş, yöntemin başarısı incelenmiştir.
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Chapter 1

Introduction

Inferring models from observations and studying their properties is really what sci-

ence is about. The models may be of more or less formal character, but they have

the basic feature that they attempt to link observations together into some pattern.

System identification deals with the problem of building mathematical models of

dynamical systems based on observed data from the system. The subject is thus

part of basic scientific methodology, and since dynamical systems are abundant in

our environment, the techniques of system identification have a wide application

area [1].

1.1 Parameter Estimation in General

For any control analysis and synthesis, it is desirable to be able to obtain a model

of the plant to allow complete off-line analysis with minimum interference to the

process [2]. Many engineering systems of interest to the control engineer are partially

known in the sense that the system structure, together with some system parameters

are known, but some system parameters are unknown. This gives rise to a problem of

parameter estimation when values for the unknown parameters are to be determined

from experimental data comprising measurements of system inputs and outputs.

There is considerable literature in the area. Parameter estimation and identification

are usually described within probabilistic and statistical frameworks. It is possible

to identify the steps in a typical system identification procedure as [1]:

• The data record. To record or generate the input-output data so that the data

become maximally informative for system identification
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• The model structure. A model with some unknown parameters is constructed

from basic physical laws and other well-establihed relationships. This is no

doubt the most important and the most difficult choice of the system identifi-

cation procedure. It is here that a priori knowledge and engineering intuition

and insight have to be combined. Generally speaking, a model structure is

a parameterized mapping from past inputs and outputs to the space of the

model outputs [1].

• Determining the ”best” model in the set, guided by the data. This is the

identification method. The assessment of model quality is typically based on

how the models perform when they attempt to reproduce the measured data.

This system identification procedure can be summarized by the following flow chart:

Figure 1.1: The system identification loop
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1.2 Estimation of Motion Parameters

The interest in motion estimation using image sequences has been growing rapidly

in many fields. Motion estimation using image data has many application areas

such as mobile robotics, vision guided navigation, automatic target detection and

recognition systems. Let us consider the following sample problem and example

aplications:

Problem : Suppose that an object undergoes some kind of rigid and/or affine

motion with possibly time varying parameters in a plane perpendicular to the optical

axis of a CCD camera, as depicted in the following figure. Estimate the shape and

Figure 1.2: A possible vision scenario

motion parameters of the object from the observed time varying images produced

by the camera. We can cite several examples which fall into this problem category:

a mobile robot maneuvering on a flat horizontal surface and being viewed from a

camera whose optical axis is down to the surface; a robot arm which picks a free-form

moving part on a conveyor belt using images taken from a camera mounted to the

ceiling; tracking the motion of a microorganism whose shape deforms during its route
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under a composite vision system which consists of an optical microscope plus a CCD

camera, and lip tracking or lip reading for speech recognition in noisy environments.

The first two examples are related to the identifcation of rigid motion parameters

whereas the last two examples are related to the affine motion estimation. However,

in all these examples, the perspective projection of the CCD camera reduces to a

scaled ortographic projection due to a constant depth.

Several solutions for estimating rigid scene structure and the relative 3D motion

of a camera from image sequences have been proposed, based on different measure-

ments and different estimation algorithms. These solutions can be classifed into

two categories depending upon what is measured from the scene. If the brightness

pattern is the data observed from images, a well known approach is based on an-

alyzing the optical flow (see [3],[4],[5],[6]). On the other hand if the data observed

are the discontinuity-curves in the image brightness pattern, a possible approach is

to identify the correspondence of various features such as points, lines and curves

between consecutive frames (see [7],[8],[9]). The former approach assumes that the

image intensity is a smooth function and considers only the smooth part of the im-

age. The latter approach assumes that the image intensity is a piecewise smooth

function and concentrates onto the image discontinuity curves.

In this work, a variety of dynamical systems which arise in machine vision ap-

plications will be considered and a novel identifcation procedure for the estimation

of both constant and time varying parameters will be developed. As the main ap-

proach, ‘feature based analysis’ will be used. The basic procedure introduced for

parameter estimation is to recast image feature dynamics linearly in terms of un-

known parameters and construct a sliding mode observer to produce asymptotically

correct estimates of the observed image features, and then use equivalent control to

explicitly compute parameters.
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Chapter 2

A Survey on Parameter Estimation Methods

The problem of parameter estimation can be summarized as follows: Suppose a set

of candidate models has been selected, and it is parameterized as a model structure,

using a parameter vector Θ. The search for the best model within the set then

becomes a problem of determining or estimating Θ. There are many different ways

of organizing such a search and some example methods will be discussed in the

sequel [1].

2.1 Predictors Based on Output Error

Suppose that a batch of data from the system is collected as:

ZN = [y(1), u(1), y(2), u(2), . . . , y(N), u(N)] (2.1)

A test by which the different models’ ability to describe the observed data can be

evaluated is sought. Since a model’s essence is its prediction aspect, this can be

used to judge its performance in this respect. Define the prediction error given by

a certain model M(Θ∗) as:

ε(t, Θ∗) = y(t) − ŷ(t|Θ∗) (2.2)

When the data set is ZN is known, these errors can be computed for t = 1, 2, . . . , N .

Thus guiding principle for parameter estimation using output error becomes: Based

on Zt, prediction error ε(t, Θ) can be computed using (2.2). At time t = N , select Θ̂N

so that the prediction errors ε(t, Θ̂N), t = 1, 2, . . . , N , become as small as possible.

The prediction-error sequence in (2.2) can be seen as a vector in RN so the size

of this vector can be measured using any norm in RN . Let the prediction-error

5



sequence be filtered through a stable linear filter L(q):

εF (t, Θ) = L(q)ε(t, Θ) (2.3)

Typically the following norm can be used:

VN(Θ, ZN) =
1

N

N∑

t=1

l(εF (t, Θ)) (2.4)

where l(·) is a scalar-valued (typically positive) function. The estimate Θ̂ is then de-

fined by minimization of (2.4). There are several methods at this point to minimize

the sequence of model prediction error:

• The prediction-error identification approach (PEM) defined above contains

well-known procedures, such as the least-squares (LS) method and the maximum-

likelihood (ML) method.

• The subspace approach to identify state-space models consists of three steps:

(1) estimating the k-step ahead predictors using an LS-algorithm, and (2)

selecting the state vector from these, and finally (3) estimating the state-space

matrices using these stated and the LS-method.

• There is also another approach named correlation approach, which contains the

instrumental-variable (IV) technique, as well as several methods for rational

transfer function models.

Having obtained a proper cost function, any optimization method can be applied to

update the estimates of Θ. Abundant literature is available on various techniques

of optimization, i.e [10];

1. Unconstrained Gauss-Newton

2. Bounded-Variable Gauss-Newton

3. Levenberg-Marquardt

4. Simplex Method of Nelder and Mead

5. Subspace Simplex method of Rowan

6. Powell’s method, conjugate directions

6



7. Jacob’s method of heuristic search

Although these procedures are explained for time domain parameter estimation,

it is also possible to extend the search for parameters to the frequency domain,

mainly by using Fourier Transforms. In actual practice, most data are collected as

samples of the input and output time signals. There are occasions when it is natural

and fruitful to consider the Fourier transforms of the inputs and the outputs to be

the primary data (e.g data are collected by a frequency analyzer). This view has

been less common in the traditional system identification literature, but has been

of great importance in the Mechanical Engineering community, vibrational analysis,

and so on. There is a very close relationship between time domain methods and

frequency domain methods for estimating linear models [1].

2.2 Methods for Estimating Motion and Structure

2.2.1 Optical Flow Based Methods

The motion of objects in 3D induces the 2D motion in the image plane. That mo-

tion is called optical flow. There are several methods to compute optical flow. The

optical flow can be used to compute 3D motion, i.e. translation and rotation, and

3D shape. Previous approaches in this class have dealt with the simplified problems

involving some assumptions related to the motion of the object, e.g., the assup-

tion of translation motion only, rotation motion only, known depth of objects, and

planar surfaces. Recently, Heeger and Jepson have proposed a general method for

computing 3D motion and depth from optical flow. The method can be summarized

as follows: Optical flow (u, v) is given by some dynamics under the assumption of

perspective projection of the camera where in this dynamics system matrices are

consisting of known image coordinates and there are unknown motion parameters

to be estimated. For each point in the image, a seperate equation can be written

and can be combined into a matrix equation. When large number of flow vectors are

used in this manner, resulting system of equations can be solved using least squares

estimates. Their method first computes translation, followed by rotation, and then

depth. The optical flow computation is illustrated in the following figure [11]:

7



(a) (b)

(c) (d)

Figure 2.1: Optical Flow (a)Frame 1 (b)Frame 2 (c) 1 iteration (d) 10 iterations

2.2.2 Feature Point Based Methods

The other general approach to the problem of motion and shape estimation considers

the discontinuity curves in the brightness pattern of the image; a possible approach

is to identify the correspondance of various features such as points, lines and curves

between consecutive frames.

This class of methods for estimating the motion field is also known as matching

techniques, which estimate the motion field at feature points only. The class can

8



be subdivided into two main categories as two-frame methods: feature matching

and multiple-frame methods: feature tracking. Both methods use Kalman filtering

techniques extensively [12].

By identifying feature points in the sequence of images, it is possible to develop

a model of the motion using various techniques, e.g. using the approaches described

at the beginning of the chapter. The approach that will be developed in this work

also falls in this category where as features, enough number of easy-to-extract points

are selected on the object.

9



Chapter 3

Sliding Mode Variable Structure Control

3.1 Introduction

Sliding mode control is a particular type of Variable structure control. Variable

structure control systems (VSCS) are characterised by a suite of feedback control

laws and a decision rule. The decision rule, termed the switching function, has as

input some measure of the the current system behaviour and produces as an output

the particular feedback controller which should be used at that instant in time. The

result is a variable structure system (VSS), which may be regarded as a combination

of subsystems where each subsystem has a fixed control structure and is valid for

specified regions of system behaviour.

Variable structure systems first appeared in the late fifties in Russia, as a special

class of nonlinear systems. At the very beginning, VSS were studied for solving

several specific control tasks in second-order liner and nonlinear systems. The most

distinguishing property of VSS is that the closed loop system is completely insen-

sitive to system uncertainties and external disturbances. However, VSS did not

receive wide acceptance among engineering professionals until the first survey paper

was published by Utkin, [13]. Since then, and especially during later 80s, the control

research community has shown significant interest in VSS. This increased interest

is explained by the fact that robustness has become a major requirement in mod-

ern control applications. Due to its excellent invariance and robustness properties,

variable structure control has been developed into a general design method and ex-

tended to a wide range of system types including multivariable, large-scale, infinite-

dimensional and stochastic systems. The applications include control of aircraft and

spacecraft flight, control of flexible structures, robot manipulators, electrical drives,

10



electrical power converters and chemical engineering systems.

3.2 Sliding-Mode in Variable Structure Systems

Sliding mode control (SMC), which is sometimes known as variable structure control

(VSC), is characterized by a discontinuous control action which changes structure

upon reaching a set of predetermined switching surfaces. This kind of control may

result in a very robust system and thus provides a possibility for achieving the goals

of high-precision and fast response. Some promising features of SMC are listed

below:

• The order of the motion can be reduced

• The motion equation of the sliding mode can be designed linear and homoge-

nous, despite that the original system may be governed by non-linear equa-

tions.

• The sliding mode does not depend on the process dynamics, but is determined

by parameters selected by the designer.

• Once the sliding motion occurs, the system has invariant properties which

make the motion independent of certain system parameter variations and dis-

turbances. Thus the system performance can be completely determined by

the dynamics of the sliding manifold.

Consider the system defined below:

ẋ = f(x, t) + B(x, t)u(x, t) (3.1)

here x ∈ <n, u ∈ <m,f(x, t) and B(x, t) are assumed continuous and bounded and

the rank of B(x, t) is m. The discontinuous control is given by:

ui =







u+
i for σi(x) > 0

u−

i for σi(x) < 0
(3.2)

for i = 1, 2, . . . ,m, σ(x) = Gx, σ ∈ <m whose components are m smooth functions

and G ∈ <m×n, yielding

σ(x) =
[

σ1(x) σ2(x) · · · σm(x)
]T

(3.3)
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here u+
i , u−

i , and σi(x) are continuous functions with u+
i 6= u−

i . Sliding mode may

appear on the manifold σ(x) = 0, which is the intersection of m hyperplanes defined

by the m components of σ(x) as σi(x) = 0, i = 1, 2, . . . ,m. Note that σ(x) is

called the “switching function” and if sliding mode exists, σ(x) = 0 is called the

“sliding manifold” or “sliding hyperplane” of m dimensions, since ith control ui

faces discontinuities on the ith surface σi(x) in terms of switching according to

(3.2), i = 1, 2, . . . ,m. If, for any initial condition x0, there exists a time t0 such

that x(t) is on the manifold σ(x) = 0 for t ≥ t0, then x(t) is a “sliding mode” of

the system, in which the motion is determined by the manifold equation only and

therefore, note that motion order is reduced to the order of control inputs, namely

m. The order reduction means that system model of the nth order is decomposed

into two modes, one is the so-called “reaching mode” which is defined by a motion

Figure 3.1: Two intersecting switching surfaces

of (n − m)th order and the other is the sliding mode defined by the motion on the

sliding manifold of mth order. Decoupled motion equations of the system could be

written as

ẋ1 = f1(x1, σ(x)) (3.4)

x2 = σ(x) (3.5)

for x1, f1 ∈ <n−m and x2 ∈ <m. If σ(x) = 0 is appropriately designed in such a way

that it satisfies the control objectives (e.g. x follows xref ), then SMC is realized.

12



In real implementations, the trajectories are confined to some vicinity of the

switching line. The deviation from the ideal model may be caused by imperfections

of switching devices such as small delays, dead zones and hysterisis, which may lead

to high-frequency oscillations. The same phenomenon may appear due to small time

constants of sensors and actuators having been neglected in the ideal model. This

phenomenon, called chattering, was a serious obstacle to the use of sliding modes in

control systems [14].

3.3 The Idea of Equivalent Control

The notion of equivalent control, which will be used extensively in this work, will

be explained on a simple example sysem in this section [15]. For the purpose of

illustration consider the double integrator given by

ÿ(t) = u(t) (3.6)

with the control law

u(t) =







−1 if s(y, ẏ) > 0

1 if s(y, ẏ) < 0
(3.7)

where the switching function is defined by

s(y, ẏ) = my + ẏ (3.8)

where m is a positive design scalar. For values ẏ satisfying the inequality m |ẏ| < 1,

then

sṡ = s(mẏ + ÿ) = s(mẏ − sgn(s)) < |s| (m |ẏ| − 1) < 0

Consequently the system trajectories on either side of the line

Ls = {(y, ẏ) : s(y, ẏ) = 0} (3.9)

point toward the line. The system described by (3.6) is simulated for m = 1, and
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Figure 3.2: Phase portrait of a sliding motion

the initial conditions are given by y = 1 and ẏ = 0. The two stage nature of the

dynamics is readily observed in Figure 3.2 : the initial (parabolic) motion towards

the sliding surface, followed by a motion along the line ẏ = −y towards the origin.

The control action associated with this simulation is given in Figure 3.3. It can be

seen that sliding takes place after about 0.7 seconds when high frequency switching

takes place. Now suppose that at time ts the switching surface is reached and an
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Figure 3.3: Discontinuous control action

ideal sliding motion takes place. It follows that the switching function satisfies

s(t) = 0 for all t > ts, which in turn implies that ṡ(t) = 0 for all t ≥ ts. From
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equations (3.6) and (3.8)

ṡ(t) = mẏ(t) + u(t) (3.10)

and thus since ṡ(t) = 0 for all t ≥ ts, it follows from (3.10) that a control law which

maintains the motion on Ls is

u(t) = −mẏ(t) (3.11)

This control law is referred as the equivalent control. This is not the control signal

which is actually applied to the plant but may be thought of as the control signal

which is applied on average. This can be demonstrated by passing the discontinuous

control signal (in Figure 3.3) through a low pass filter to obtain the low frequency

component of the control, ulow. Figure 3.4 shows ulow(t), together with the associ-
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Figure 3.4: Equivalent Control

ated equivalent control. It can be seen that the filtered control signal agrees with

the equivalent control action defined in (3.11) once sliding is establihed - in this case

after about 0.7 seconds.
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3.4 Remarks

The ideas presented in this chapter will be used extensively in the sequel. In the

context of parameter estimation, we will use basic concepts of sliding mode control,

without actually controlling any plant physically (Sliding Mode Observers). This

will reveal us from considering the practical issues related to the application of

sliding mode control, i.e. chattering. Also most of the time, having a finite bound

on state velocities will be enough to ensure the reachability condition, thus existing

of sliding modes. This is simply because our control signals will run on computers

rather than being actual currents, meaning that they can attain any finite value.
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Chapter 4

Using Sliding Mode to Estimate Motion Parameters

4.1 Motion Models

If a rigid body is moving with instantaneous translational velocity, T , and rotational

velocity, Ω, then 3D instantaneous velocity of points on the surface is given by

d

dt








X

Y

Z








= Ω×








X

Y

Z








⇒
d

dt








X

Y

Z








=








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0















X

Y

Z








+








t1

t2

t3








(4.1)

where Ω = (ω1, ω2, ω3)
T and T = (t1, t2, t3)

T

An affine motion in 2D, on the other hand, can be described as

d

dt




x

y



 =




a1 a2

a3 a4








x

y



 +




b1

b2



 (4.2)

In case the 2 × 2 matrix

M =




a1 a2

a3 a4



 (4.3)

happens to be a skew-symmetric matrix, i.e. M + MT = 0 ⇔ M =




0 ω

−ω 0



,

the motion will be termed as a rigid motion.

4.2 Estimation of Rigid Motion

The problem definition for rigid motion estimation is as follows; If the motion of

the object is assumed to be rigid in the setup above, how can one determine the

parameters of the assumed motion model using visual information? An algorithm
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Figure 4.1: Vision Setup

that will provide a fast estimation for these parameters, thus providing an online

identification of the rigid motion of the object is searched. These parameters are

not restricted to be constant, they can also be time varying. The main approach

is different from collecting visual data for some time interval and then trying to

fit a motion model to the gathered data; instead, proposed algorithm tries to pro-

duce a running estimation of the unknown parameters, hence the meaning of online

identification.

4.3 Problem Formulation

Suppose a moving object is performing a rigid motion with unknown parameters.

The dynamics of the motion, as mentioned before, will be given by :

d

dt








X

Y

Z








=








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0















X

Y

Z








+








t1

t2

t3








(4.4)
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If the motion of the object is confined to a plane, then the above dynamics reduces

to:

d

dt








X

Y

Z








=








0 −ω 0

ω 0 0

0 0 0















X

Y

Z








+








b1

b2

0








(4.5)

where ω is the rotational velocity along optical axis, b1 = t1/Z0 and b2 = t2/Z0, with

Z0 being the distance between camera and the object plane. So in this setting of

the problem, there are three unknown parameters to determine, namely ω, b1 and

b2.

4.4 Parameter Estimation Problem; Redefined

To use sliding mode idea in this framework, we redefine the problem of rigid motion

estimation as a usual parameter estimation problem of a linear time-varying system

(LTV), a hot topic among control community. Consider a LTV system of the fol-

lowing form :

d

dt
(x) = A(t) x + b(t), y = x (4.6)

Here, x ∈ Rn is the state vector, A(t) ∈ Rn×n is the system matrix, b(t) ∈ Rn is an

unknown vector field, y ∈ Rn is the measurement vector. Note that full state infor-

mation is assumed here. Let us first consider the very general case. Suppose that

the number of unknown parameters in matrix A is k, and the number of unknown

parameters in vector b is p with 0 ≤ k ≤ n2 , 0 ≤ p ≤ n and k + p > 0. Note that

totally we are looking for k + p parameters. (4.6) can be recast linearly in terms of

the unknown parameters as follows:

d

dt
(x) = (B(x) | C)

(
q1

q2

)

+ m(x), y = x (4.7)

where

q1 ∈ Rk : column vector consisting of unknown parameters in A

q2 ∈ Rp : column vector consisting of unknown parameters in vector b
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B ∈ Rn×k : a matrix which is a funciton of the states to be constructed appropri-

ately

C ∈ Rn×p : a matrix consisting of 1’s and 0’s to be constructed appropriately

m ∈ Rn : a vector which is a function of the states and known parameters

The following example is given to illustrate this procedure:

Dynamic System :

d

dt











x1

x2

x3

x4











=











1 3 a1 a2

0 a3 5 0

a4 1 a5 2

0 0 0 1





















x1

x2

x3

x4











+











4

b1

b2

0











(4.8)

Here in this example, we have both known and unknown parameters in A(t) and b(t)

of the system given in (4.6). Since q1 and q2 of (4.7) consist of unknown parameters

in matrix A and b, following is the case for this example system :

q1 = [ a1 a2 a3 a4 a5 ], q2 = [ b1 b2 ]

So when all the unknown parameters are combined in a vector, the system (4.6) is

represented by the following set of differential equations:

d

dt











x1

x2

x3

x4











=











x3 x4 0 0 0 0 0

0 0 x2 0 0 1 0

0 0 0 x1 x3 0 1

0 0 0 0 0 0 1






























a1

a2

a3

a4

a5

b1

b2




















+











x1 + 3x2 + 4

5x3

x2 + 2x1

0











(4.9)

Note here that n = 4, k = 5 and p = 2, so B(x) ∈ R4×5, C ∈ R4×2 and m ∈ R4. The

system can also be rewritten in a more compact way, by expanding the unknown

parameter vector as:

Ξ = [ a1 a2 a3 a4 a5 b1 b2 1 ]T
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The equation describing the system (4.8) becomes:

d

dt











x1

x2

x3

x4











=











x3 x4 0 0 0 0 0 x1 + 3x2 + 4

0 0 x2 0 0 1 0 5x3

0 0 0 x1 x3 0 1 x2 + 2x4

0 0 0 0 0 0 1 0











× Ξ (4.10)

Thus, by this procedure, we can rewrite the equations of the system in such a

way that all the unknown parameters are put together in a vector. This format

can always be achieved as long as the system equations are linear with respect to

parameters, whether the system equations are linear or non-linear with respect to

states.

Next section will present the motivation behind this redefinition of the system

equations.

4.5 Sliding Mode Based Solution for Rigid Motion

As depicted in previous sections, motion estimation problem can be considered as

a parameter estimation problem of a LTV system. This section will present how

previously explained equivalent control idea in SMC can be used to estimate the

motion parameters of an object, when the motion is of rigid type and confined to a

plane.

More precisely, suppose Fig. 4.1 is the system in consideration, thus equations de-

scribing the motion of the object will be given as in (4.5). The moving object is

being viewed by a stationary CCD camera on the top, so that a sequence of images

is available. By processing the gathered images, the image coordinates of a easy-

to-track feature point on the object will be computed at every frame. So when the

image plane dynamics is considered, these image coordinates of the feature point,

namely x and y will be the states, and the following equations will be the description

of the rigid motion dynamics projected on image plane:

d

dt




x

y



 =




0 −ω

ω 0








x

y



 +




b1

b2



 (4.11)

Suppose all three parameters (ω, b1, b2) are possibly time-varying unknown param-
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eters. As explained in previous section, one can rewrite this system as follows:

d

dt




x

y





︸ ︷︷ ︸

X

=




−x 1 0

y 0 1





︸ ︷︷ ︸

Ω








ω

b1

b2








︸ ︷︷ ︸

T

⇒ Ẋ = ΩT (4.12)

Though the state values are obtained through CCD camera and are known at every

frame, an observer, X̂, whose state follows the state of the composite image feature

dynamics given in (4.11) as closely as possible will be constructed. In doing so,

sliding mode control will be employed to stabilize the state estimation error around

zero. Basically image feature dynamics will be copied and then this copied version

will be controlled by SMC. More precisely, let our observer be

˙̂
X = u (4.13)

where u will be designed using SMC so that X̃ = X̂ − X → 0 as t → ∞. Let us

define the sliding mode manifold as

σ = X − X̂

which, in light of (4.12), then implies that

σ̇ = Ẋ −
˙̂

X = ΩT − u (4.14)

To guarantee global asymptotic stabilty, Lyapunov theory can be employed, by

selecting an appropriate Lyapunov function candidate as

V =
1

2
σT σ (4.15)

whose time derivative is

V̇ = σT σ̇ (4.16)

which can be made negative definite by setting σ̇ to either −MSgn(σ), where M > 0

and Sgn(.) is the signum function, or −Dσ, where D is a positive definite matrix.

If −MSgn(σ) is selected, all components of the control are switching between lower

and upper bound of control. This may cause unnecessary chattering in the system

especially in the discrete-time implementations of the control algorithm. Combina-

tion of the σ̇ = −MSgn(σ) and σ̇ = −Dσ by selecting σ̇ = −Dσ − ρ(x, t)Sgn(σ)
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yields a solution that may combine good properties of both solutions and allows

selecting ρ(x, t) small enough to minimize chattering and at the same time to guar-

antee the existance of sliding mode.

So by selecting σ̇ = −Dσ − ρ(x, t)Sgn(σ), V̇ then becomes

V̇ = −σT Dσ − ρ(x, t)σT Sgn(σ) = −σT Dσ − ρ(x, t) ‖σ‖,

which is clearly negative difnite since D > 0 and ρ > 0. Therefore for stability,

σ̇ = −Dσ − ρSgn(σ) ⇒ σ̇ + Dσ + ρSgn(σ) = 0 (4.17)

must be satisfied.

When the sliding manifold is reached, the system will be governed by σ = 0 and

σ̇ = 0 = ΩT − u, from which the equivalent contol that keeps the system on the

manifold can be computed as

ueq = ΩT (4.18)

There are different methods to compute equivalent control. If σ̇ = −Dσ−ρ(x, t)Sgn(σ)

is selected, u goes to ueq as soon as the sliding manifold is reached. If σ̇ = −MSgn(σ)

is selected, ueq can be obtained by passing the control signal u through a low pass

filter. Both approaches has its own advantages that will be discussed later. In any

case, when equivalent control is obtained and the system is moving on the manifold,

(4.18) will be valid in which the only unknown is parameter vector T . The solution

will yield unknown parameters as

T = Ω−1 ueq (4.19)

4.6 Expanding the System

An important problem to be addressed here is the existance of a solution for (4.19),

or in other words following is a crucial question: ”Is matrix Ω(x) invertible?” Not

considering any singularities that Ω(x) may have, at least for the time being, there

is an immediate conclusion here; Ω(x) should be at least a square matrix, which can

be translated as number of states measured should be at least equal to the number

of unknown parameters. As far as the vision system given in (4.11) is concerned (or

similar vision systems), this restriction is not a vital one. Remember that for system
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given in (4.11), states are the coordinates of the feature points on the object. So by

choosing appropriate number of feature points, it possible to make sure that Ω(x)

is at least a square matrix (or even better; an overdetermined system).

In the case of estimation of rigid motion, 3 parameters are unknown, meaning

that 2 feature points selected on the object, (x1, y1) and (x2, y2) will be more than

enough, creating an overdetermined system. Overall expanded system dynamics

will be given as:

d

dt











x1

y1

x2

y2











=











0 −ω 0 0

ω 0 0 0

0 0 0 −ω

0 0 ω 0





















x1

y1

x2

y2











+











b1

b2

b1

b2











(4.20)

which can be rewritten as:

d

dt











x1

y1

x2

y2











=











y1 1 0

−x1 0 1

y2 1 0

−x2 0 1


















ω

b1

b2








(4.21)

Now with this expanded system, Ω(x) ∈ <4×3, (4.19) becomes an overdetermined

set of equations, where the solution can be obtained using pseudo-inverse.

Generally speaking, if the number of unknown parameters is k, and the number

of feature points that is being extracted from the image is m, then 2m ≥ k should

be satisfied.

4.7 Singularity in the Solution for Rigid Motion

Since the number of parameters to be estimated is 3 for rigid motion, it is enough to

measure 3 states, resulting in a square Ω(x) matrix so that a solution can be sought

as in (4.19). Suppose we expand the system as follows:

d

dt








x1

y1

y2








=








y1 1 0

−x1 0 1

−x2 0 1















ω

b1

b2








(4.22)
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where x1, y1 are image coordinates of one feature point and y2 is one of the coordi-

nates of a second feature point. To analyze the existance of the solution, one must

look at the determinant of the Ω matrix:

det(Ω) = x1 − x2 (4.23)

This result shows that whenever the line that connects the two feature points be-

comes parallel to the y-axis, the above determinant will assume the value 0 and the

solutions will jump to infinity. The matrix gets ill-conditioned as x1 and x2 assume

close values. This is indeed verified via simulations.

To overcome this difficulty, creating an overdetermined system using 4 state

values for 3 parameters is considered. Consider again Ω(x) in (4.21). To solve this

overdetermined system, following steps are taken:

ueq = Ω(x)T

ΩT (x)ueq = ΩT (x)Ω(x)T

(ΩT (x)Ω(x))−1ΩT (x)ueq = T

So to analyze the solutions, one must check the determinant of ΩT (x)Ω(x):

det(ΩT (x)Ω(x)) = 2((x1 − x2)
2 + (y1 − y2)

2) (4.24)

This quadratic equation assumes 0 value only when x1 = x2 and y1 = y2 are satisfied

simultaneously. But this contradicts the fact that two feature points are distinct

points taken on the object. So by using 4 states and pseudo-inversion, it is guaran-

teed that a solution will always exist.

4.8 Simulation Results for Rigid Motion

The approach presented in this chapter is simulated using Matlab 7.0 and Simulink

6.0. The following simulink model is created:

• Block 1 : Experimental data is generated for simulation purposes. The image

data is generated with 50 frames per second.

• Block 2 : Control input u is computed, using state values and and observer

error σ
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• Block 3 : Takes as input ueq and state values, and computes the unknown

parameter vector T using (4.19)

• Block 4 : Low pass filter block to generate ueq from u

• Block 5 : Filter the results

The simulation data is as follows:

• Run Time : 10 s

• Simulation Sample Time: 0.0001 s

• Time constant of filter in Block 4, τc=0.001 s

• Time constant of filter in Block 5, τp=0.01 s

Figure 4.2: Simulink Model
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Case 1: Pure Rotational Motion, Constant Parameters :

The motion of the object is generated with the following parameters:

ω = 2

b1 = 0

b2 = 0

The resulting motion of the object in the image plane is depicted in the follow-

ing figure:

Figure 4.3: Trajectory of the object
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Results for estimation of ω is as follows:

Figure 4.4: ω and ω-estimate

Figure 4.5: ω and ω-estimate, zoomed

28



As it is seen in the figures, the estimate value of ω catches the true value as soon as

the sliding manifold is reached. Fig. 4.5 gives a more detailed view of the estimation

performance. As seen in the figure, estimation is oscillatory. This oscillation is due to

the well known problem in sliding mode control, so called chattering problem, which

is the result of the high frequency switching between different control structures as

the system trajectories repeatedly cross the sliding surfaces. A possible remedy

could be implementing higher order sliding modes, or different control structures so

that a continuous control signal is employed instead of a discontinuous one.

Results for estimation of b1 and b2 is as follows:

Figure 4.6: b1 and b1-estimate

As seen in the figure, the estimate value of b1 catches the true value after the

reaching phase to the sliding manifold. The next figure illustrates the estimation

performance for b2.

Figures 4.4 to 4.20 show that SMO algorithm works fine, and fast estimation of

the parameters with acceptable accuracy is achieved for constant parameters.
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Figure 4.7: b2 and b2-estimate

Case 2: Rigid Motion with Time Varying Parameters

Figure 4.8: Object Trajectory
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Figure 4.9: ω(t) and ω(t)-estimate

Figure 4.10: ω(t) and ω(t)-estimate, zoomed
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Figure 4.11: Reaching to manifold

Figure 4.12: b1(t) and b1(t)-estimate

As seen in Figures 4.9 to 4.13, SMO algorithm works fine for time varying pa-

rameters also. There is a computational problem to be addressed here, which is

32



Figure 4.13: b2(t) and b2(t)-estimate

visualized in Fig. 4.10. As seen in the figure, estimation has a lag with respect to

the original parameter. This may cause a problem when the parameters are time

varying. Since image data is available in every 1/fps seconds (which is 0.02 seconds,

and bigger than the simulation sample time), a linear interpolation block inside

Block 1 of Fig 4.2 is constructed, that interpolates the state values between two

consecutive frames. The lag problem is introduced by this interpolator. To imple-

ment such an interpolator, the estimator should be started no earlier than the time

the second frame is captured, which means that the estimator will follow the time

varying parameters with a lag equal to 1/fps (Note in Figure 10 that lag between

signals is approximately 0.02 seconds, and the simulation is run with 50fps). So in-

terpolation comes with its price, but this price is worth to pay, especially when low

frame rates are considered. The convergence of the estimates to their true values is

depicted in more detail in Fig 4.11.
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4.9 Estimation of Affine Motion

One of the motivations for studying affine dynamics in 2D image plane is that it is

the projection of 3D rigid dynamics under the weak perspective camera model. An

almost planar object performing rigid motion in 3D space has the dynamics given

in (4.4). The weak perspective equations are

x = f X
Z̄

= αX and y = f Y
Z̄

= αY

where Z̄ is the average scene depth. Thus the resulting image dynamics in terms of

(x, y) are obtained from the dynamics of (X,Y ), by using weak perspective equa-

tions and scene depth substitutions, Z = pX + qY + r where required as:

d

dt




x

y



 =




ω2p −ω3 + ω2q

ω3 − ω1p −ω1q








x

y



 +




(b1 + ω2r)α

(b2 − ω2r)α



 (4.25)

which are clearly in the form of affine dynamics in 2D space, verifying the practical

importance of 2D affine motion and related work.

Thus the practical categorization of a motion into rigid or affine groups is mainly

determined by the position and the orientation of the camera viewing the moving

object. Suppose that an affine motion in 2D of the form is given:

d

dt




x

y



 =




a1 a2

a3 a4








x

y



 +




b1

b2



 (4.26)

Suppose all six parameters are possibly time-varying unknown parameters. As ex-

plained in previous sections, one can rewrite this system as follows:

d

dt




x

y



 =




x y 0 0 1 0

0 0 x y 0 1



 Φ (4.27)

where Φ = [a1, a2, a3, a4, b1, b2]
T

A Note on Existence

It is readily seen at this point that the matrix Ω(x) is in <2×6, so that the sys-

tem should be expanded before a solution can be obtained as in (4.19). Obviously,

number of feature points needed is 3, and the resulting expanded system for affine
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motion will be as follows:

d

dt

















x1

y1

x2

y2

x3

y3

















=

















x1 y1 0 0 1 0

0 0 x1 y1 0 1

x2 y2 0 0 1 0

0 0 x2 y2 0 1

x3 y3 0 0 1 0

0 0 x3 y3 0 1

































a1

a2

a3

a4

b1

b2

















(4.28)

4.10 Simulation Results for Affine Motion

The procedure taken for estimating the affine motion of the object is the same as

done for rigid motion. With the same controllers and simulation data, the following

results are obtained for time varying parameters case:

Figure 4.14: Trajectory of the Points on the Object
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Figure 4.15: a1 and a1 estimated

Figure 4.16: a2 and a2 estimated
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Figure 4.17: a3 and a3 estimated

Figure 4.18: a4 and a4 estimated
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Figure 4.19: b1 and b1 estimated

Figure 4.20: b2 and b2 estimated
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The problem considered in this section is the affine motion of feature points in

the image plane (which may the projection of rigid motion in 3D onto the image

plane). Fig 4.14 demonstrates what is meant by affine motion of points in 2D. As

seen in the figure, the distances between point pairs do not stay constant, as would

be the case in a rigid motion. The figures 4.15 to 4.20 prove that fast and accurate

estimation of affine motion parameters is also achived, with the same problems and

possible reasons discussed for rigid motion also being valid for this case.
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Chapter 5

Experimental Results

5.1 Experimental Setup - Vision System

Figure 5.1: Experimental Setup
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The algorithms proposed in this work are tested in the setup above. The setup

is composed of four main parts:

• The object in motion → A NanoCube

• The microscope

• CCD Camera

• A PC where image processing and calculations are done

The Nikon SMZ 1500 Stereo Optical Microscope and a firewire CCD camera is used

to acquire fast and high quality images of the NanoCube. The CCD camera is

capable of getting 30 frames per second.

The object in motion is the PI (Physik Instrumente) NanoCube shown in Fig. 5.2,

which is a multi-axis (XY Z) Piezo-NanoPositioning system.

Figure 5.2: PI NanoCube

The closed loop NanoCube provides high accuracy 100 × 100 × 100µm XY Z

positioning. To drive the nanocube with desired velocities, dSPACE 1103 board on

a seperate PC is used.

The image processing part is done using OpenCV library under Visual C++. The

OpenCV implements a wide variety of tools for image interpretation. It is mostly

a high level library implementing algorithms for calibration techniques, feature de-

tection and tracking, shape analysis, motion analysis, 3D reconstruction, object
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segmentation and recognition. The essential feature of the library is performance.

More than that, the OpenCV Library is a way of establishing an open source vision

community to apply computer vision in the PC environment.

To conduct the experiments, various motion profiles are applied to the NanoCube,

and gathered images are processed to extract a feature point which will be used in

identifying the motion parameters. As the feature point, a micrometer is placed on

top of the NanoCube, and the tip of the markings on the micrometer is traced. The

code consists of three major parts:

• Image capture and enhancement

• Extraction of feature points

• Sliding Mode Observers algorithm

Following figures illustrate the motion that is traced in this experiment:

Figure 5.3: Micrometer

Figure 5.4: Rotational motion of micrometer
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5.1.1 The Code Briefly

void get_image()

{

image_timer = GetCPUCount( lo, hi );

theCamera1.CaptureImage();

theCamera1.getDIB(buf1);

cvSetImageData(img1, buf1, img1->widthStep);

cvFlip(img1,img1,0);

cvCvtColor(img1, gray1, CV_RGB2GRAY);

cvSmooth( gray1, gray1, CV_GAUSSIAN, 31, 31, 0 );

black_counter=0;

x_1=0;

y_1=0;

for (int i2=0;i2<image_height*0.95;i2++)

{ for(int j2=0;j2<image_width*0.95;j2++)

{ colorGray1 = (unsigned char)gray1->imageData[i2*gray1->widthStep + j2];

if (colorGray1<200)

{

x_1=x_1+j2; y_1=y_1+i2; black_counter++ ;

}}}

x_1=(x_1/black_counter)-center_x;

y_1=(y_1/black_counter)-center_y;

Counter1++;

while (GetCPUCount( lo, hi )<image_timer+0.03333*SLK)

{}}

Above is the part where image gathering, enhancment and processing is carried out.

The frame which is taken is smoothed by a Gaussian Filter and then the tip point of

the micrometer is extracted by comparing pixel’s gray level to a treshold value. The

end of the code fragment is responisble for synchronizing the image processing time

with the desired 30 frames per second camera speed, by suspending the program

until the desired time for one frame is consumed when necessary.

The following is the part responsible for sliding mode observer:

void controller()

{

sigma1=x_1_int-x1_est;

sigma2=y_1_int-y1_est;

u1_prev=u1;
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u2_prev=u2;

u1=(reach_time+v_max)*((sigma1>0)-0.5)*2;

u2=(reach_time+v_max)*((sigma2>0)-0.5)*2;

x1_est=x1_est+step_time*(u1+u1_prev)/2;

y1_est=y1_est+step_time*(u2+u2_prev)/2;

u_eq_1=(step_time*a_c*(u1+u1_prev)+u_eq_1

*(2-step_time*a_c))/(2+step_time*a_c);

u_eq_2=(step_time*a_c*(u2+u2_prev)+u_eq_2

*(2-step_time*a_c))/(2+step_time*a_c);}

First σ values for both x1 and y1 (states) are computed. Then the controller given in

... is employed digitally, and estimated state values are computed. Finally a low pass

filter is implemented to get equivalent control from the discontinuous control signal

u. Between two consecutive frames, the well known interpolater G(s) = w2
n

s2+2ζwns+w2
n

with wn = 50 and ζ = 1 is used, which creates smooth values of states.

The solver used for pure rotational motion is given as an example:

void solver()

{

w_prev=w;

w=(u_eq_1*y_1_int-u_eq_2*x_1_int)/(pow(x_1_int,2)+pow(y_1_int,2));

w_filt = (step_time*a_p*(w+w_prev)+w_filt*

(2-step_time*a_p))/(2+step_time*a_p);

}

Here ω value is computed using (4.19). The matrix inversion is carried out using

pseudoinverse. The results are filtered.

So the overall code can be summarrized as follows:

int main(int argc, char** argv)

{

get_image();

for(Counter3=0;Counter3<NumOfInterpolations;Counter3++)

{

interpolater();

controller();

solver();

}

return 0;

}
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5.1.2 Results for Translational Motion

In this experiment the NanoCube moves along x-axis with 6 µm/s for a while and

stops, and then turns back to opposite direction again with a 6 µm/s. Since there

is no motion along y-axis, the estimated linear velocity along y-axis is around zero.

Furthermore, since there is no rotational motion, the estimated angular velocity is

again around zero. The following figures indicate above results.
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Figure 5.5: Linear Motion along x-axis

As seen in the Figures 5.5-5.7, the preliminary experimental results agree with

the simulation results. The motion parameters are computed fast and accurately.

As noted in Fig. 5.5, the estimated parameter value catches the true value as soon

as the sliding manifold is reached. The experimental results seem less smooth then

the simulation results, which is due to both noise in the images taken and low frame

rates compared to the simulated camera.
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Figure 5.6: Linear Motion along y-axis

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Time (sec)

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

Angular Velocity for Linear Motion

Figure 5.7: Rotational Velocity
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5.1.3 Results for Rotational Motion

In this case NanoCube undergoes a pure rotational motion with a constant angular

velocity, π rad/s in counterclockwise. The radius of the circular motion is 10 µm.

Actual and estimated angular velocities are superimposed in the following figure.

Although, the reference motion is pure rotation, the angular velocity becomes very

large for small time interval at very beginning. Then it converges to reference value

very quickly. At the same time, the estimated trajectory seems to undergo linear

motion (See Fig. 5.9). The reason is that the initial points, which are given as initial

conditions for estimation, are different from the actual points on the circle. Therefore

estimated points show some linear behavior until the dynamic of the system reaches

the sliding manifold. When the system is on the sliding manifold, estimated values

converge to the actual values and hence the motion becomes circular. The following

figures indicate above results.

Fig. 5.10 shows another rotational motion with constant angular velocity, π/5

rad/s in counterclockwise.
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Figure 5.8: Rotational Velocity
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5.2 Conclusions

The problem of estimating motion from a sequence of images has been investigated

and a novel identification procedure for the estimation of both constant and time

varying motion parameters is developed in this work. The proposed algorithm is

substantiated by computer simulations and real experiments.

It is shown that most of the dynamics encountered in machine vision applica-

tions can be recast as dynamical systems which are linear in terms of parameters

to be estimated. Then an appropriate sliding observer whose output follows the

output of the original dynamics asymptotically is constructed. As the given results

suggest, the SMO algorithm is a promising method that provides fast and accurate

estimaation of motion parameters. The ideas developed in this work are proven to

be useful in both rigid and affine type of motion identification where the parameters

can be constant or time-varying.

The convergence rate of the parameters to their true values is a key issue in

system identification, where a fast convergence rate implies better performance when

the parameters are time varying. Regarding this property, SMO algorithm seems to

be more reliable when compared to other statistical based methods in the literature,

where convergence for time varying cases is usually a hard issue.

The work carried out in this thesis can be thought of as a preliminary step in

computer vision applications to merge ideas from control theory with image analysis.
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Appendix A

C++ Codes For the Experiment

#ifdef _CH_

#pragma package <opencv>

#endif

#ifndef _EiC

#include "cv.h"

#include "highgui.h"

#endif

#include <windows.h>

#include <1394Camera.h>

#include <iostream>

#include <fstream>

#include <math.h>

#include <time.h>

#include <stdlib.h>

using namespace std;

int image_width = 320;

int image_height = 240;

char wndname1[] = "Actual Image";

int black_counter=0;

double SLK=2260000000;

int Counter1=0;

int Counter2=0;

int Counter3=0;

int Counter5=0;

int Counter4=0;

double R=45/2.0;

float image_timer=0;
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float frame_counter=0;

IplImage *img1 = 0, *gray1 = 0, *edge = 0;

IplImage * eigImage = cvCreateImage( cvSize(image_width,image_height), IPL_DEPTH_32F,

IplImage * tempImage = cvCreateImage( cvSize(image_width,image_height), IPL_DEPTH_32F,

int cornerCount=1;

CvPoint2D32f corners[1];

int edge_tresh = 20;

int temp=0;

float w_filt_old_old=0;

float w_filt_old=w_filt_old_old;

int colorGray1=0;

int minGray1=255;

ofstream file;

ofstream file1;

ofstream file2;

ofstream file3;

ofstream file4;

ofstream file_time;

const int NumOfInt =200;

const int NumOfFrames=1;

float step_time=0.03333/NumOfInt;

float mokkar=0;

C1394Camera theCamera1;

unsigned char buf1[320*240*3];

float xpoints[1000];

float ypoints[1000];

float w_fil[NumOfInt*NumOfFrames*500];

float dummy1[NumOfInt*NumOfFrames*500];

float dummy2[NumOfInt*NumOfFrames*500];

float dummy3[NumOfInt*NumOfFrames*500];

float dummy4[NumOfInt*NumOfFrames*500];

float wf=50;

float zeta=1;

float delta_x=0;

float delta_y=0;
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float delta_x1=0;

float delta_y1=0;

float delta_x1_old=0;

float delta_y1_old=0;

double bias=0.001;

double center_x = 208;

double center_y = 105;

float u1,u2,u3,u4=0;

float u1_prev,u2_prev,u3_prev,u4_prev=0;

float x1_est_filt,y1_est_filt,x1_est_prev,y1_est_prev=0;

float u_eq_1,u_eq_2,u_eq_3,u_eq_4=0;

float u_eq_1_prev,u_eq_2_prev=0;

float x_1=0;

float y_1=0;

float x1temp=0;

float x_1_old=0;

float y_1_old=0;

float x_1_old_old=0;

float y_1_old_old=0;

float x_1_int=0;

float y_1_int=0;

float x_1_int_old=0;

float y_1_int_old=0;

float x_1_int_old_old=0;

float y_1_int_old_old=0;

float x1_est=0;

float y1_est=0;

static v_max=10;

static reach_time=0;

double tao_p=0.1;

double tao_c=0.001;

double a_p=1/tao_p;

double a_c=1/tao_c;

float sigma1,sigma2,sigma3,sigma4=0;

float sigma1_old,sigma2_old,sigma3_old,sigma4_old=0;

float w,b_1,b_2=0;

float w_prev,b_1_prev,b_2_prev=0;

float w_filt,b_1_filt,b_2_filt;

float der1=0;

float der2=0;

float der3=0;

float der4=0;

float K=0.005;
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float D=150;

double t=0;

unsigned int hi = 0, lo = 0;

__int64 GetCPUCount ( unsigned int loword, unsigned int hiword )

{

_asm

{

_emit 0x0f // insert rtdsc opcode

_emit 0x31

mov hiword , edx

mov loword , eax

}

return ( (__int64) hiword << 32 ) + loword;

}

void controller()

{

sigma1=x_1_int-x1_est;

sigma2=y_1_int-y1_est;

der1=(sigma1-sigma1_old)/step_time;

der2=(sigma2-sigma2_old)/step_time;

u1=(reach_time+v_max)*((sigma1>0)-0.5)*2;

u2=(reach_time+v_max)*((sigma2>0)-0.5)*2;

x1_est=x1_est+step_time*(u1+u1_prev)/2;

y1_est=y1_est+step_time*(u2+u2_prev)/2;

u_eq_1=u1;

u_eq_2=u2;

u1_prev=u1;

u2_prev=u2;

u_eq_1=(step_time*a_c*(u1+u1_prev)+u_eq_1

*(2-step_time*a_c))/(2+step_time*a_c);

u_eq_2=(step_time*a_c*(u2+u2_prev)+u_eq_2

*(2-step_time*a_c))/(2+step_time*a_c);

sigma1_old=sigma1;

sigma2_old=sigma2;
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}

void solver()

{

w_prev=w;

w=(u_eq_1*y_1_int-u_eq_2*x_1_int)/(pow(x_1_int,2)+pow(y_1_int,2));

w_filt = (step_time*a_p*(w+w_prev)+w_filt*

(2-step_time*a_p))/(2+step_time*a_p);

}

void cam_init()

{

if (theCamera1.CheckLink())

printf("No cams found");

theCamera1.SelectCamera(2);

theCamera1.InitCamera();

theCamera1.SetVideoFormat(0);

theCamera1.SetVideoMode(1);

theCamera1.SetVideoFrameRate(4);

theCamera1.SetWhiteBalance(100,200);

theCamera1.SetSharpness(10);

theCamera1.StartImageAcquisition();

}

void get_image()

{

image_timer = GetCPUCount( lo, hi );

theCamera1.CaptureImage();

theCamera1.getDIB(buf1);

cvSetImageData(img1, buf1, img1->widthStep);

cvFlip(img1,img1,0);

cvCvtColor(img1, gray1, CV_RGB2GRAY);

cvSmooth( gray1, gray1, CV_GAUSSIAN, 31, 31, 0 );

black_counter=0;

x_1=0;

y_1=0;

for (int i2=0;i2<image_height*0.95;i2++)

{
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for(int j2=0;j2<image_width*0.95;j2++)

{

colorGray1 = (unsigned char)gray1->imageData[i2*gray1->widthStep + j2];

if (colorGray1<200)

{

x_1=x_1+j2;

y_1=y_1+i2;

black_counter++ ;

}

}

}

x_1=(x_1/black_counter)-center_x;

y_1=(y_1/black_counter)-center_y;

cvCircle(img1, cvPoint(x_1+center_x, y_1+center_y), 5, CV_RGB(255,0,0), 1);

cvShowImage(wndname1, img1);

Counter1++;

}

void interpolater()

{

x_1_int=(step_time*step_time*wf*wf*x_1+x_1_int_old*(2*step_time*zeta*wf+2)-x_1_in

y_1_int=(step_time*step_time*wf*wf*y_1+y_1_int_old*(2*step_time*zeta*wf+2)-y_1_in

x_1_int_old_old=x_1_int_old;

x_1_int_old=x_1_int;

y_1_int_old_old=y_1_int_old;

y_1_int_old=y_1_int;//*/

controller();

solver();

}

void initialize()

{

theCamera1.CaptureImage();

theCamera1.getDIB(buf1);

cvSetImageData(img1, buf1, img1->widthStep);

cvCvtColor(img1, gray1, CV_RGB2GRAY);
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cvSmooth( gray1, gray1, CV_GAUSSIAN, 45, 45, 0 );

black_counter=0;

for (int i2=0;i2<image_height*0.95;i2++)

{

for(int j2=0;j2<image_width*0.95;j2++)

{

colorGray1 = (unsigned char)gray1->imageData[i2*gray1->widthStep + j2];

if (colorGray1>190)

{

xpoints[Counter1]=xpoints[Counter1]+j2;

ypoints[Counter1]=ypoints[Counter1]+i2;

black_counter++ ;

}

}

}

xpoints[Counter1]=(xpoints[Counter1]/black_counter)-center_x;

ypoints[Counter1]=(ypoints[Counter1]/black_counter)-center_y;

cvCircle(img1, cvPoint(xpoints[Counter1], ypoints[Counter1]), 5, CV_RGB(255,0,0),

x1_est=xpoints[Counter1]+bias;

y1_est=ypoints[Counter1]+bias;

x_1_int_old_old=xpoints[Counter1];

y_1_int_old_old=ypoints[Counter1];

x_1_int_old=xpoints[Counter1];

y_1_int_old=ypoints[Counter1];

x_1_int=xpoints[Counter1];

y_1_int=ypoints[Counter1];

interpolater();

Counter1++;

}

int main(int argc, char** argv)

{

cvNamedWindow(wndname1, 1);

theCamera1.AcquireImage();

cam_init();

img1 = cvCreateImage(cvSize(image_width,image_height),IPL_DEPTH_8U, 3);

gray1 = cvCreateImage(cvSize(image_width,image_height), IPL_DEPTH_8U, 1);
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edge = cvCreateImage(cvSize(image_width,image_height), IPL_DEPTH_8U, 1);

initialize();

initialize();

t = GetCPUCount( lo, hi );

while (GetCPUCount( lo, hi )<t+10*SLK)

{

get_image();

if (temp<2)

{

x1_est=x_1+bias;

y1_est=y_1+bias;

x_1_int=x_1;

y_1_int=y_1;

temp++;

}

for(Counter3=0;Counter3<NumOfInt;Counter3++)

{

interpolater();

}

step_time=(GetCPUCount(lo,hi)-image_timer)/(SLK*NumOfInt);

}

return 0;

}
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