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ABSTRACT 
 
 

SUPERRESOLUTION TECHNIQUES 

 FOR FACE RECOGNITION FROM VIDEO  
 
Performance of current face recognition algorithms reduces significantly when they are 

applied to low-resolution face images. To handle this problem, superresolution 

techniques can be applied either in the pixel domain or in the face subspace. Since face 

images are high dimensional data which are mostly redundant for the face recognition 

task, feature extraction methods that reduce the dimension of the data are becoming 

standard for face analysis. Hence, applying super-resolution in this feature domain, in 

other words in face subspace, rather than in pixel domain, brings many advantages in 

computation together with robustness against noise and motion estimation errors. 

Therefore, we propose new super-resolution algorithms using Bayesian estimation and 

projection onto convex sets methods in feature domain and present a comparative 

analysis of the proposed algorithms and those already in the literature. 
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ÖZET 
 

ÇÖZÜNÜRLÜLÜK ARTIRICI YÖNTEMLERLE 
VİDEODAN YÜZ TANIMA 

 

Mevcut yüz tanıma algoritmalarinin başarımı düşük çözünürlüklü yüz imgelerine 

uygulandıklarında önemli ölçüde azaltmaktadır. Bu problemin çözmek için çözürlülük 

arttırma yöntemleri piksel alanında yahut yüz alt-uzayında uygulanabilmektedir.  Yüz 

imgeleri coğu yüz tanıma işlevi açısından gereksiz yüksek boyutlu verilerden oluşur, bu 

da boyut düşüren öznitelik çıkarma yöntemlerini yüz analizinde standart uygulama 

haline getirmiştir. Dolayısıyla çözünürlülük artırma yöntemlerini piksel alani yerine 

öznitelik alanında, bir başka deyişle yüz alt-uzayında, uygulamanın hesaplamalar 

açısından yararları olduğu gibi gürültüye ve hareket kestirimi hatalarına karşı 

gürbüzlüğü de sağlamıştır. Bu nedenle, biz Bayesçi kestirim ve dışbükey kümelere 

izdüşüm yöntemleriyle öznitelik tabanlı çözünürlülük arttırıcı yeni algoritmalar 

önermekte ve önerilen yöntemleri literatürde mevcut olanlar ile karşılaştırmalı analizini 

sunmaktayız. 
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1. INTRODUCTION 

 Face recognition has received significant attention during the last decade and 

many researchers study various aspects of it and still face recognition studies dominate 

computer vision and pattern recognition conferences. There are at least two reasons for 

this trend; the first one is wide range of commercial and law enforcement applications 

and the second is the availability of feasible computer technology to develop and 

implement applications that demand strong computational power. Today, automatic 

recognition of human faces became a field that gathers many researchers from different 

disciplines such as image processing, pattern recognition, computer vision and graphics, 

and psychology. 

1.1 Applications of Face Recognition 

 Every day, we are facing new products of technology, prompting us to enter our 

PIN code or passwords such as money transactions in the internet or to get cash from 

ATM, even to use our cell phone SIM card, a dozen of others to access internet and so 

on. Therefore, the need for reliable methods of biometric personal identification is 

obvious. In fact, there are such reliable methods like fingerprint analysis, retinal or iris 

scans, however these methods rely on the cooperation of the participant. Face 

recognition systems, on the other hand, can perform person identification without the 

cooperation or knowledge of participant which is advantageous in some applications 

such as surveillance, suspect tracking and investigation. Typical application of face 

recognition systems can be listed in four main categories:[1] 

(i) Entertainment: Video Game, Virtual Reality, Training Programs, Human-

Robot-Interaction, Human-Computer-Interaction. 

(ii) Smart Cards: Driver’s Licenses, Entitlement Programs, Immigration, 

National ID, Passports, Voter Registration, Welfare Fraud 

(iii) Information Security:  TV Parent Control, Personal Device Logon, Desktop 

Logon, Application Security, Database Security, File Encryption, Intranet 

Security, Internet Access, Medical Records, Secure trading Terminals 

(iv) Law Enforcement and Surveillance: Advance Video Surveillance, CCTV 

Control, Portal Control, Post-Event Analysis, Shoplifting, Suspect Tracking 

and Investigation. 
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Figure 1.1. General Configuration of Face Recognition Systems [1] 

 
 These commercial and law enforcement applications of face recognition systems 

vary according to the format of the imagery such as static images, controlled-format 

face images to uncontrolled video sequences. 

 
  We can classify these face recognition systems into two categories; those using 

(i) static images and (ii) video frames. Independent of this categorization, we can give 

the general configuration of face recognition systems, as depicted in Fig 1.1. 

 

 There are advantages and disadvantages of using a static image or video frames 

depending on the specific application and the availability of the data. Moreover, 

challenges posed by the face detection, extraction and recognition algorithms differ for 

static images and video frames. For applications such as recognizing one from his/her 

driver’s license ID photograph, a system using static face image would be enough due 

to controlled nature of the image acquisition process. However for recognizing a face 

from a scene image of an airport where there are many faces using video information 

for detecting faces can be more helpful than a single static image.[1] 

1.2 Face Recognition 

 Research on automatic face recognition started in the 1970’s after the seminal 

work of Kanade [2,3] and Kelly [4], till then more than thirty years extensive research 

has been conducted in this field by people coming from different backgrounds from 
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engineers to neuroscientists.  Feature-based methods appear in these first efforts to build 

automatic face recognition systems. In this approach, different geometric parameters are 

used to describe facial properties such as eyebrow thickness, eyebrow’s arches and 

width of nose. Later in 1990’s, template matching-based methods were accepted and 

investigated by the research community. In template-matching methods general practice 

was to compare intensity values of the whole or part of the faces with those faces in the 

database, refer to [5] for comparison of these first popular methods. In these 

comparisons, template-matching algorithms were found to attain higher correct 

recognition rates than feature-based methods, with the expense of high computational 

demand due to dimensionality of lexicographically ordered face image data. This 

problem was later eliminated by making use of intrinsic dimensionality of the face 

space which is known to be much smaller due to similar topology they have. The 

appearance-based face recognition methods that capture or approximate these face 

manifolds are later developed such as principal component analysis (PCA) [6,7], 

Fisherface [8], and independent component analysis [9] and successfully applied to face 

recognition problem. 

1.3 Scope of the Thesis 

 
 Due to many challenges such as pose difference, illumination and expression 

changes, accessories, aging and distance from the image acquisition device which 

brings about low resolution images, face recognition is still an unsolved problem. 

Compared with other challenges, face recognition from low resolution data (video or 

image) reduces the performance of the existing systems significantly. Various 

techniques have been proposed to obtain a single high resolution image from many low 

resolution images to enhance the face recognition performance [10-13]. These pixel 

domain techniques can be divided into two main categories as: those methods using face 

specific constraints [11, 12, 13] and without any face specific constraints [10]. Different 

from applying superresolution to any arbitrary image, face images have a fixed 

configuration (i.e, relative location of the mouth, nose or eyes are fixed) which can be 

utilized to obtain a better super-resolution performance. Therefore, using holistic 

methods, such as principle component analysis (PCA), which incorporates configuration 

information of face into a reduced dimensional subspace model, enables faster 

computation and robustness against noise and motion estimation errors [14].  

 3



 

 

 Face recognition performance of independent component analysis (ICA) and 

comparative analysis of it with different recognition algorithms have been studied 

exhaustively in many research papers [9,15]. In these researches, it is demonstrated that 

although ICA gives more discriminative features than PCA, face recognition 

performances of these two methods are found to be close to each other. However, it is 

argued in [16] that the metric induced by ICA is superior to PCA by providing a 

representation that is more robust to the effects of noise. In addition to this, it is shown 

in [9] that linear reconstruction based on ICA gives better SNR than reconstruction 

based on PCA in noisy or limited precision environments.  For our case, similar to the 

effect of the variation in the expressions and illumination, reduced resolution can be 

viewed as noisy version of the canonical representation of the reference (or high 

resolution) face image in the face-subspace. Therefore, representing face images in the 

independent component face-subspace may facilitate robustness against noise compared 

to eigenface-subspace representations. Hence, it is reasonable to expect better face 

recognition performance when the super-resolution algorithm is applied in the 

independent component face-subspace to recover the features of the high resolution 

image. In this thesis, we present the fusion of independent component analysis with 

superresolution techniques using Maximum A Posteriori (MAP) estimate. We observed 

that modeling noise processes in low dimensional subspace and then extraction of 

statistics of these processes from face images for estimating canonical representation of 

high resolution face provide robustness against noise and motion estimation errors when 

it is judged against pixel domain estimation algorithms.  Besides, the independent 

component face-subspace based superresolution is found to be superior to eigenface-

based super-resolution for robustness against noise. Two different experimental setups 

are used for evaluating recognition performance of the proposed algorithm. In the first 

setup real video sequences with different blur kernels are used to compare the 

independent and principal component based superresolution techniques.  Second 

experimental setup is employed to verify that the proposed algorithm works in a real 

scenario. We have created a new database (VPA Superresolution Face Database) to test 

the effect of the developed superresolution technique and those techniques that are 

already available in the literature to the face recognition problem. 
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1.4 Outline of the Thesis 
 

 The organization of the thesis is as follows: In Chapter 2, mathematical 

overview of subspace methods (principal and independent component analysis) used in 

the proposed algorithms is explained. Superresolution techniques both in pixel and 

subspace domain is provided with details in Chapter 3. In Chapter 4, experimental 

procedure and results are presented and conclusions are given. 
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2. SUBSPACE METHODS 

2.1  Principle Component Analysis 

 PCA technique, also known as Karhunen-Loeve transform (KLT), finds 

dimensionality reducing linear projections that maximizes the scatter of all projected 

samples. If the total scatter is defined by ST ; 

                                                       
1
( )(

N
T

T k k
k

S x x )µ µ
=

= − −∑                                      (2.1) 

where  are face images ordered lexicographically,  N is the total number of 

sample images and 

∈kx 2N

µ  is the mean image of all sample images. After applying a linear 

transformation, we will obtain transformed features (or PCA coefficients) ∈kx  in 

the reduced dimensional subspace; 

n

                                                                T
k n kx E x=                                                     (2.2) 

where En  is a n matrix with orthonormal columns containing corresponding 

eigenvectors of the scatter matrix having  the largest n eigenvalues [6,7].  

2N ×

2.2  Independent Component Analysis  

 ICA is a method that can perform blind source separation. Since both the source 

signals and how these signals are mixed are unknown, separation is named as blind. 

ICA algorithm finds a linear coordinate system such that resulting signals will be 

statistically independent. ICA not only makes signals uncorrelated like PCA does, but 

also reduces higher order dependencies between the signals. 

 

 Compared with the classical methods, ICA is a powerful method for finding the 

factors that are mutually independent with the non-Gaussian distributions. In the ICA 

model, linear or nonlinear mixtures of the hidden factors or independent components 

constitute the observed data. Basic linear mixture model of ICA can be expressed 

mathematically as [17]: 

                                                                 x As=                                                          (2.3) 

where x is the 2N 1×  observation vector containing the lexicographically ordered 

observed data, s is the  source vector and A is the  mixing matrix ( ). 

The aim is to estimate the unknown A and s from the observation vector x. Our only 

assumption is non-Gaussianity and statistical independence of the sources. 

1n× 2N n× 2N n
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The goal of ICA is to find an orthogonal 2Nn×  transformation matrix W such that 

statistical dependencies between the estimated sources are minimized.   

                                                   (2.4)                        

where the  vector ŷ denotes the whitened data,  D

1/ 2ˆ T
x x n ns W x Wy WD E−= = = x

i

1n× n denotes the diagonal matrix 

containing the n largest eigenvalues of the covariance matrix of x and En denotes the 

corresponding matrix whose columns are the eigenvectors corresponding to the n largest 

eigenvalues as described before. In the estimation process, sphering is generally an 

optional stage which enables faster converges. However, sphering makes estimation 

vulnerable against noise since the trailing eigenvalues which tend to capture noise in the 

data appear as denominator, observe relative magnitude of eigenvalues extracted from 

CMU PIE Database [18] in Fig. 2.1. When the eigenvalue index is greater than 10, the 

corresponding eigenvalues have relatively small magnitudes, and if they were included 

in the whitening transformation these small eigenvalues will lead to decreased ICA face 

recognition performance by amplifying the effects of noise, hence we exclude sphering 

in our experiments. But for the sake of completeness, we stick to the convention used in 

the literature through out the estimation of mixing matrix. The next step, therefore, is to 

apply one of the ICA algorithms available in the literature. We have used symmetric 

fixed point algorithm with f(x)=tanh(x) nonlinearity in order to obtain a fast solution 

using a simple algorithm.  

 

 The algorithm starts from a random orthogonal matrix W and in each iteration 

rows of it, (wT), is updated by;                                 

           (2.5)      ˆ ˆ ˆ: { ( )} { '( )}T
i i iw E yf w y E f w y w= −

 

Figure 2.1.  Relative magnitude of eigenvalues ( )i kk
λ λ∑  
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followed by orthonormalization of the matrix through 

                                                                                                       (2.6) 1/ 2: ( ) .TW WW W−=

Finally, after convergence is achieved, the estimated basis is constructed as                                             

                                                         1/ 2 T
x n nA E D W=                                                     (2.7) 

where Ax is the  mixing matrix in the ICA model and each column of A2N n× x 

corresponds to a basis image (or vector). 

 

 Since ICA is an orthogonal projection into a reduced dimensional space, we 

expect to have error when we want to reconstruct the original image. This 

reconstruction error arises due to dimension reduction in the whitening process. As we 

have shown in eq.(2.4), PCA is widely used in the whitening process of ICA which 

enables reduction of dimensionality. Dimension reduction and sphering are two 

consecutive stages in the whitening process. Projecting the observed data x onto 

eigenvectors of the n largest eigenvalues has been written in eq.(2.2) as; 

                                                              T
nx E x=                                                          (2.8)  

The projection of the observed data to the reduced dimensional subspace causes loss of 

information, which in return brings about reconstruction error when we want to retrieve 

the original observed data x.  

                                                            n xx E x e= +                                                       (2.9) 

In the above equation, ex corresponds to the reconstruction error of x. Using eq. (2.4) we 

can write following equations: 

                                                            

1/ 2

1/ 2 1

1/ 2

( )
x n

n

T
n x

s WD x

xx WD s
and
x D W s

−

− −

=

=

=

                                           (2.10) 

Substitution of eq.(2.10) into eq.(2.9) will give, 

                                                      1/ 2 T
n n x xx E D W s e= +                                             (2.11) 

Finally using equality in eq.(2.7), we will get, 

                                                            x x xx A s e= +                                                    (2.12) 

The above model in eq.(2.12) looks like the noisy ICA model. However, together with 

the general assumption of Gaussian reconstruction error, estimation of the mixing 
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matrix, Ax , and sources, sx turns into estimation of noise-free ICA model’s mixing 

matrix. Note that if we denote noise-free data as: 

                                                               x xv A s=                                                        (2.13) 

We can write the observed data as x=v+ex. In ICA, our aim is to find projections that 

maximize non-Gaussianity, and such a projection wT will give us wTx=wTv+wTex. Since 

we assume ex to be a Gaussian noise, wTex will be zero (e.g., kurtosis of a Gaussian 

random variable will be zero). Thus, the measure of non-Gaussianity for wTx (noisy 

data) will be equal to the measure of non-Gaussianity for wTv (noise-free data). Beside 

that, since the noise term comes from the whitening process, we do not need bias 

removal techniques for estimation of the mixing matrix [17].  

 

 After estimation of the mixing matrix, the de-mixing matrix is found by pseudo-

matrix inversion.  

                                                                                (2.14) 1 1( )T T
x x x x nW A A A WD E− −= = / 2 T

n

x

Hence, sources sx are estimated by multiplying both sides of eq.(2.12) with the de-

mixing matrix Wx, 

                                                              x xs W=                                                        (2.15) 

where,                   

                                         1/ 2 0   0T T
x x n n x n xW e WD E e E e−= = ⇔ =                            (2.16) 
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3. SUPERRESOLUTION 

3.1  Overview 
 

 Superresolution algorithm is formulated as a signal restoration problem where 

the original form of the signal is assumed to be the high-resolution image and is 

estimated from degraded and noise corrupted versions of this high-resolution image, in 

other words, from its low-resolution versions. The signal restoration problem is a 

common problem of various fields in signal processing including image processing (as 

in our case), speech processing, and system identification. Therefore there are various 

techniques in the literature to solve the restoration problem under different degradation 

models. The most common model can be written as: 

                                                               [ ]y O x=                                                         (3.1) 

where x in and y in are high-resolution and low-resolution image, respectively, 

in lexicographical order, and O[.] is an operator. The M and N are related by the 

following equation 

2N 2M

                                                      M= .N and  0< 1<                                                (3.2) 

 The straightforward solution to this problem is to apply inverse filtering to 

recover x by finding O-1[.] which is the least square inverse. However, since M<N the 

inverse filtering is ill-conditioned [19,20], it amplifies the noise present in the 

observations. Information about the degradation operator, O[.], is just used to obtain the 

inverse filter. Nevertheless, priori information about the original high resolution image 

and the distortion mechanism should somehow be incorporated into the model so as to 

obtain better restoration methods. The estimate of the high resolution image, , can be 

written as: 

x̂

                                                              ˆ [ ]x R y=                                                          (3.3) 

where R[.] is the operator derived from the degradation model and a priori knowledge 

employed and y is the low-resolution image. Due to the dimensionality of the data the 

amount of a priori knowledge is very high and it is not possible to obtain R[.] in one 

step. Therefore, iterative techniques which are very flexible for employing various types 

of a priori information are needed to find reasonable high-resolution image estimates. 

Projection onto Convex Sets (POCS), which will be described shortly, is such an 

iterative technique where a priori information is defined as convex constraint sets. 
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3.2  Pixel-domain Imaging Model 

 To have better analysis of the distortion mechanism, degradation operator and 

noise process are separated in the imaging model which can be given as: 

                                                                                      (3.4) ( ) ( ) ( ) ,  for i=1...Ki i iy x nH= +

where superscript (i) denotes the observation number, H(i) is a linear degradation 

operator which incorporates motion, blurring, and downsampling processes, and n(i) is 

the noise process where both are for the i'th observation, and there are K such 

observations. Dimensions of H(i) and n(i) are 2N2xN2 and 2N2x1, respectively.  

 

 The degradation matrix H(i), integrates effects of motion, blur, and distance from 

the camera into the imaging model while the noise vector n(i) represents the observation 

noise that incorporates the quality of the camera into model. The degradation matrix 

H(i) can be written as: 

                                                         ( ) ( )i iH DBW=                                                      (3.5) 

where  D is the 2N2xN2 decimation matrix, B is the N2xN2  blur matrix, and W(i) is 

N2xN2 motion warping matrix. Here we assume that decimation and blurring matrices 

are the same for every observation (cf. a practical blur computation method can be 

found in the Appendix of [21]), hence only the motion warping matrix changes 

depending on the observed low-resolution image. Further information about the imaging 

model can be found in [21, 22, 23]. In the section 4.2.1, the registration algorithm used 

in the pixel-domain superresolution is given in detail. Moreover, the motion warping 

matrix, W(i), is obtained by using motion vectors coming from this registration phase of 

the algorithm.  

 

 In eq. (3.4)  what we observe is a set of linear equations where, due to ill-posed 

nature of the problem, inverse filtering does not help recovering the high-resolution 

image . Hence, regularization methods are needed which refer to finding an 

“acceptable” estimate of the ideal solution to this ill-posed problem. Two significant 

aspects of regularization are (i) quantitatively defining what is an “acceptable” estimate, 

and (ii) making use of a priori information and constraints about the degradation 

operator H

x̂

(i), the high-resolution image x, and the low-resolution image y in determining 

the estimate [24]. 
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X1

X2

X1 X2
 

Figure 3.1. Examples of convex and non-convex sets (left and right diagrams) 
 
 According to how an estimate of the actual image is defined, image recovery 

methods can be categorized into three groups. An estimate can be defined on the basis 

of (i) optimality criterion (minimum mean square error and Bayesian methods); (ii) an 

optimality criterion subject to constraints (as in the case of constrained least square and 

maximum entropy methods); (iii) a priori information and constraints (as in the case of 

set-theoretic methods such as projection onto convex sets (POCS) method, method of 

generalized projections)[25]. There are papers in the literature which investigates the 

relation between different regularization methods such as [26] and [27]. In this thesis, 

for pixel domain superresolution our focus will be on the method of POCS. 

3.3  Projection onto Convex Sets (POCS) 

 POCS is an iterative method which enables to employ a priori information about 

the degradation operator, the noise statistics and the actual high-resolution image 

distribution together with measured data to find a feasible solution consistent with the 

number of constraints. For each constraint, a closed convex constraint set (refer to Fig. 

3.1) is defined such that the members of the set satisfy the given constraint and the 

actual high-resolution image is also a member of the set. Moreover, if appropriate 

constraint sets are defined, high-resolution image will be a member of intersection set, 

i.e., a member of feasible region. A feasible solution, on the other hand, can be found by 

successive projection of an initial estimate onto the constraint sets. The fundamental 

mathematical concepts for POCS are given in [25, 28], here we will give short 

definitions necessary for understanding the method of POCS. 

 

   The theorem of POCS is limited to Hilbert spaces, such as N-dimensional 

Euclidean space  with usual inner product and norm definitions. If we denote XN
1 and 

X2 as two vectors in Hilbert space (i.e., in ), we can give a formal definition of 

convexity for the set S as: The set S in the  is said to be convex if and only if for any 

N

N
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two members of the set X1 and X2, the vector X = δX1+(1-δ)X2 is a member of the set S 

for 0<δ<1 (refer to Fig. 3.1, left diagram). In addition to that, in order to have a closed 

set S in the Hilbert space, every convergent sequence {Xn}in S should converge to a 

vector in S. Let C be a closed convex set and x be a vector outside the set C both in a 

Hilbert space H , then these definitions ensure the existence of a unique element x* in C 

as the closest point to the vector x.  

                                            *min P
y C

x y x x x x
∈

− = − −                                     (3.6) 

where P: C is the projection operator which projects onto the set C. H →

 

 There are three essential features that play a key role in the convergence theory 

of POCS; the projection operator has to be (i) nonexpansive, (ii) asymptotically regular, 

and (iii) the projection operator has to have a fixed point. First, an operator O:  

 is said to be nonexpansive if for any X

H →

H 1 and X2 in , the following inequality is 

satisfied; 

H

                                                  1 2 1O O 2 .X X X X− ≤ −                                            (3.7) 

Similarly, the operator O is said to be asymptotically regular if and only if for any 

X∈ , we have, H

                                                 n n+1lim O O 0. n X X→∞ − =                                         (3.8) 

Finally, the operator O has a fixed point if successive applications of the operator O on 

an arbitrary vector X0 converge to the same point. Hence, a fixed point Xfp should satisfy 

the equation, 

                                                             O . fp fpX X=                                                    (3.9) 

 These features are used by Youla in [29] to prove the convergence criteria of the 

method of POCS for the first time to the engineering literature. Therefore, on the basis 

of these essential features the POCS algorithm converges to a feasible point in the 

intersection of the constraint sets 0 i iC C= ∩  where C0 is a nonempty and Ci is a closed 

convex set in the Hilbert space. 

 

 Let Pi be the projection operator which projects a vector onto the close convex 

set Ci which satisfies the essential features described above. Then, the iteration given by 

                                                        1 1 2...k M kX PP P X+ =                                              (3.10) 
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X

 
Figure 3.2. Illustration of the mechanism of POCS in case of two constraint sets. Initial 

point X0 converges to the member of the intersection set X. 

 

converges strongly to a point in C0, if Xk’s are finite dimensional vectors. Points in the 

intersection set are called feasible solutions. Thus, by this sequential projection method, 

a feasible solution can be reached. However, due to selection of the initial estimate and 

the order of projection at the beginning of the iterative process, uniqueness of the 

solution is not guarantied [25]. 

 

 In this thesis, we have used the POCS algorithm for both pixel-domain and face 

subspace superresolutions, i.e., for 2-D and 1-D signal restoration with different 

constraint sets. In both cases, a priori information about the degradation operator and 

noise statistics are used to employ constraints on the residual, defined by 

                                                                                                           (3.11) ( ) ( ) ˆi ir y H x= −

where x̂ is an estimate of the high-resolution image (i.e., original signal) in the model 

given in eq. (3.4). A priori information about the degradation operator H(i) can be 

estimated from low-resolution images. Since B and D are assumed to be known only the 

motion warping matrix W(i) should be computed. Referring to eq.’s (3.4) and (3.5), we 

observe that in order to calculate the motion warping matrix W(i) by using registration 

algorithms we need to have high-resolution images that are unknown to us. So, it is 

practically impossible to have actual W(i), however, we can still estimate the motion 

warping matrix W(i) by using low-resolution images or frames. If the motion vector of a 

pixel found by application of registration algorithm to low-resolution images is 

multiplied by a constant  and mapped to the motion vector of the corresponding ×  

block of pixels in the high-resolution image where  is the downsampling factor set in 

the imaging model (eq.(3.4)), we will have a reasonable estimate of W(i). A priori 

information about the noise statistics, on the other hand, can be estimated from training 
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images (signals) or simply by trial-and-error method till satisfactory results are obtained 

as the output of the POCS algorithm. 

 

 In theory, if statistics of noise and residual are approximately equal, then we can 

say that the true solution is achieved. So, our aim is to constrain the residual in order to 

have the same statistical characteristics as noise n(i) given in imaging model. Therefore, 

using confidence limits derived from sample statistics will enable us to determine the 

limits of approximation. In the Trussell and Civanlar’s paper [30] such constraints on 

the statistics of the residual are defined thoroughly. In this thesis, for pixel-domain 

super-resolution we have used constraints defined for outliers of residual and amplitude 

of the high-resolution image estimate. 

3.4 POCS based superresolution in the pixel-domain 
 
 The constraints on the outliers of the residual are performed by projecting the 

outlier values of the residual which deviate an unlikely amount from the mean. For the 

most of the time Gaussian noise is assumed, hence the appropriate confidence limits are 

easily found from the tables. The convex set will simply be defined as, 

                                                { }( ) ( )
0 | i i

j j
C x y H x 0δ⎡ ⎤= − ≤⎣ ⎦                                    (3.12) 

where C0, here represents the intersection of many single convex sets which are defined 

for each pixel in the image (or point in the signal). In order to achieve the point x (high-

resolution image) which is a member of C0, the projection is made by again applying 

the sequential projection method outlined before. Therefore, we project any point in the 

image whose residual lies outside the specified limit, hence be forced to lie within the 

limit. The residual of each point (or pixel) in the low-resolution image can be defined 

as, 

                                                         ( ) ( )i i
i j j

r y H x⎡ ⎤= − ⎣ ⎦                                              (3.13) 

The projection formulation for correcting the residual at this pixel in the low-resolution 

image is 

                                 

0
02

0 0

0
02

( ) , if  

  , if < <  
( ) , if  

i
i i

i

i

i
i i

i

rx h r
h

P x x r
rx h r

h

δ δ

δ δ
δ δ

−⎧ + >⎪
⎪
⎪= −⎨
⎪ +⎪ + <
⎪⎩

0

−

                           (3.14) 
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where hi is the column vector containing the i'th row of the matrix H(i). After sequential 

application of projection for every pixel locations in the low-resolution image, 

additional constraints can be applied. As an additional constraint, we have employed 

amplitude constraint defined as, 

                                                   { }|A jC x xα β= ≤ ≤                                               (3.15) 

to ensure appropriate gray-level images with amplitude bounds 0 and =255α β= .  The 

projection operator of constraint CA, PA, will be simply a clipping algorithm.  

 

 Finally we will get an estimate of the high-resolution image by successive 

projection onto C0 and CA which can be written as: 

                                            0ˆ ˆ      for  =0,1,2.. Ax P P x=l+1 l l                                 (3.16) 

The initial estimate of the high-resolution image for iterative projections is obtained by 

bilinearly interpolating one of the low-resolution image which is selected as the 

reference image. Please refer to [21] and [30] for further details. In the Fig. 3.3, 

application of pixel-domain POCS for increasing the resolution of a dollar image is 

illustrated. As a side note, like in the most of the application, where there are more than 

two constraints, pure projection operator with unity relaxation parameters is used in the 

superresolution applications in this thesis. 

 
 

 
 

Figure 3.3. Result of bilinearly interpolating a LR dollar image by a factor of two (left), 

and result of superresolution algorithm with pixel-domain POCS method using 4 LR 

images (right). 
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3.5 POCS based superresolution using subspace methods 

 It is also possible to apply superresolution in the feature domain (i.e., face 

subspace domain) rather than implementing a pixel domain superresolution algorithm 

and then extracting features of the high resolution face image for face recognition. It is 

discussed in [14] that this approach not only brings computational advantages but also 

robustness against noise and motion estimation error. Hence in this section we will 

derive the necessary tools for enabling superresolution in the feature or subspace 

domain by making use of POCS algorithm. 

 Together with the outlier of residual constraints defined before, we have also 

used the variance of residual constraints for face subspace superresolution. For this 

case, variance of the residual is forced to be limited by the variance of the noise. The 

convex constraint set for the variance of the residual is defined as, 

                                               { }2( ) ( )| Hi i
VC x y x .Vδ= − ≤                                       (3.17) 

The projection operator of CV, PV can be formulated as, 

                      
T 1 T ( ) (i)1(H H ) H ( H ) , if 

, if 

i
V

V

V

x I y x x C
P x

x x
λ

−⎧ + + − ∉⎪= ⎨
⎪ ∈⎩ C

           (3.18) 

where λ  is the Lagrange multiplier coming from the optimization formulation which 

gives an idea about the modification done on the signal (in face-subspace). Derivation 

of the projection operators can be found in [30]. As we have mentioned earlier, 

Gaussian noise is assumed for residual of each point (or pixel) given in eq.(3.13) 

therefore the sample variance has a chi square distribution. Nevertheless, since the 

number of points in the signal is likely to be large, the Gaussian approximation to the 

chi square is valid and the confidence limit, Vδ , can be calculated by the following 

formulation: 

                                         
22

0.95lim 2( 1) / 2V Nδ σ ⎡= ± + −⎣ N⎤
⎦                                (3.19) 

where N is the number of points in the signal, lim0.95 is the 95 percent confidence limit 

for the standard normal distribution, and 2σ  is the mean sample variance of the residual 

which has chi square distribution. 
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3.5.1 Principal Component Subspace 
 
 As it is mentioned before, the PCA algorithm extracts orthonormal linear 

projections, called eigenvectors that maximize the scatter of all projected samples. In 

the face recognition problem; first Sirovich and Kirby [7] showed that KLT-based (or 

PCA-based) dimensionality reduction can be used efficiently to represent face images 

by projecting face images onto low-dimensional linear subspace that is computed using 

the KLT. Later, Turk and Pentland utilized this idea and implemented a very successful 

face recognition system using PCA [6]. After these pioneering works, PCA is widely 

accepted in face recognition studies and became a standard procedure for 

dimensionality reduction. 

 

 The PCA algorithm enables one to represent a face image as linear combination 

of orthonormal vectors, called eigenfaces. These eigenfaces are actually eigenvectors of 

the scatter matrix given in eq. (2.1) that corresponds to the largest n eigenvalues. Hence, 

using the eigenfaces one can represent a face image with minimum reconstruction error 

in the least square sense which can be written as: 

                                                            xx a eφ= +                                                       (3.20) 

where φ  is  linear  transformation matrix containing eigenfaces in its column,  

is  coefficient vector of eigenfaces, and  is  reconstruction error which is 

orthogonal to the linear space defined by eigenfaces.  

2N ×L a

1L× xe 2 1N ×

  

 Using these definitions, in order to derive an efficient superresolution algorithm 

in this subspace, we need to obtain an observation model for the reconstruction of the 

eigenface coefficients of the high-resolution face images. The observation model will 

not neglect the spatial-domain observation noise given in eq.(3.4) and the subspace 

representation error (or the reconstruction error). Since we have two different 

resolutions, we need two principal component subspaces, one for high-resolution face 

images and the other for low-resolution face images. We will stick to the notion given 

in [14]. 

                                              ( ) ( ) ( )   for  i=1...K
x

i i i
y

x a e

y a e

φ

ψ

= +

= +
                                      (3.21) 
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where x is   lexicographically ordered high-resolution face image, 2 1N × φ  and are 

 eigenface matrix and  reconstruction error, respectively, for high-

resolution face-subspace. Similarly,  is the i'th observation of the low-resolution 

face image which is , 

xe

2N L× 2 1N ×

( )iy

2 2 1N × ( )and i
yeψ  are  eigenface matrix and  

reconstruction error, respectively, for low-resolution face-subspace. The coefficients of 

eigenfaces  are for high and low dimension face-subspaces which have same 

dimensionalities, . 

2 2N ×L

i

2 2 1N ×

( ) and ia a

1L×

 

 Substituting the subspace representation of low and high resolution face images 

given in eq. (3.21) into imaging model, we will obtain 

                                              
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )i i i i
y x

i i i i
y x

a e H a e n

a e H a H e n

ψ φ

ψ φ

+ = + +

+ = + +
                                (3.22) 

We know that if we project eq. (3.22) into lower-dimensional face subspace, we will 

eliminate the reconstruction error  using the fact that it is orthogonal to ( )i
ye ψ . 

                                                  ( ) 0,     for  i=1,....,KT i
yeψ =                                       (3.23) 

and since the eigenface matrix is orthonormal we have 

                                                               T Iψ ψ = .                                                     (3.24) 

and by multiplying both sides of eq. (3.22) with Tψ we will get, 

                                                                           (3.25) ( ) ( ) ( ) ( )i T i T i T
xa H a H eψ φ ψ ψ= + + in

a

Observe that the model in eq. (3.25) resembles the imaging model in the pixel-domain 

given in eq. (3.4). Both equations explain degraded or “inaccurate” vector in terms of 

the unknown original or “true” vector plus a noise term. Moreover, quite similar to the 

pixel domain formulation given in eq. (3.11) we can write the residual in principal 

component subspace as 

                                                     ( ) ( ) ( ) ˆi i T ir a Hψ φ= −                                             (3.26) 

where  is the estimate of the eigenface coefficients of the high-resolution face image. 

Furthermore, we will incorporate a priori information about the noise process into the 

algorithm by means of defining constraints on the residual in eq. (3.26) so as to find the 

POCS estimate for this ill-posed problem. We have used outliers of residual and 

variance of the residual constraints defined in section 3.4. First, the convex set for 

outliers of the residuals are defined as, 

â
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                                             { }( ) T ( )
0 | Hi i

j j
C a a a 0ψ φ δ⎡ ⎤= − ≤⎣ ⎦                                 (3.27) 

where subscript j denotes the j’th element of the vector and 0δ  is the a priori bound 

reflecting the statistical confidence with which the “true” feature vector a  is a member 

of the set . The bound, 0C 0δ , is determined from noise statistics where we can write the 

noise in subspace observation as, 

                                                                                        (3.28) ( ) ( )T i T i
subspace xn H eψ ψ= + n

The general assumption for the reconstruction error ex and the pixel-domain 

representation error n(i) is that they have a Gaussian IID distribution. Hence, since  ψ  

and H(i) are linear operators, we will expect that the subspace representation error 

nsubspace to have a Gaussian distribution too. Therefore, if we select our bound as, 

                                                           0 3 subspaceδ σ=                                                    (3.29) 

where subspaceσ  is the mean standard deviation of the components of the noise vector  

nsubspace , we will get a 99% confidence. The projection operator therefore will be, 

                    

( )
0 ( ) ( )

02
( )

( ) ( )
0 0 0

( )
0 ( ) ( )

02
( )

( )
, if  

, if < <  
( )

, if  

i
j T i i

jjT i

j

i i
j j

i
j T i i

jjT i

j

r
a H r

H

P a a r
r

a H r
H

δ
ψ φ δ

ψ φ

δ δ

δ
ψ φ δ

ψ φ

⎧ −
⎡ ⎤+ >⎪ ⎣ ⎦

⎪ ⎡ ⎤⎣ ⎦⎪
⎪= −⎨
⎪ +⎪ ⎡ ⎤+ <⎣ ⎦⎪ ⎡ ⎤⎪ ⎣ ⎦⎩

−

      

(3.30) 
where ( )T i

j
Hψ φ⎡⎣ ⎤⎦  is the column vector containing the  j’th row of ( )T iHψ φ⎡⎣ ⎤⎦  matrix 

and  is the j’th component of the residual of the i'th observation. ( )i
jr

  

 As mentioned before, in our experiments we have also employed variance 

constraints with following convex sets, 

                                           { }2( ) T ( )| i i
V vC a a H aψ φ δ⎡ ⎤= − ≤⎣ ⎦                                  (3.31) 

where Vδ is the priori bound reflecting statistical confidence and can be determined by 

using the formulation defined in eq. (3.19). The projection operator onto this constraint 

set will be 
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T 1 T ( )

( )
1(M M ) M ( M ) , if 

, if 

i
Vi

V

V

a I a a a C
P a

a a
λ

−⎧ + + − ∉⎪= ⎨
⎪ ∈⎩ C

        (3.32) 

where M is equal to ( )T iHψ φ⎡ ⎤⎣ ⎦ , and λ  is the Lagrange multiplier coming from the 

optimization formulation.  

3.5.2 Independent Component Subspace 
 

Same principles delineated in section 3.5.1 hold for independent component subspace 

too, but with different subspace notations. Independent component face subspace 

representation of high-resolution images and the low-resolution image can be written as:  

                                                           x x xx A s e= +                                                     (3.33) 

                                                                                (3.34) ( ) ( ) ( ) for i=1,....,Ki i i
y y yy A s e= +

where Ax is an  and A2N ×L L

i

i

y is an  matrix containing independent component 

faces in their columns for high-resolution and low-resolution images, respectively. If we 

substitute face space representation equations (eq.(3.33) and eq.(3.34)) into our pixel-

domain imaging model given in eq.(3.4), we will get a observation model in the face 

space as follows, 

2 2N ×

                                                                        (3.35) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )i i i i
y y y x x x

i i i i
y y y x x x

A s e H A s e n

A s e H A s H e n

+ = + +

+ = + +

In order to make our new imaging model for face space similar to the pixel domain 

model, we multiply both sides of eq.(3.35) with Wy which enables us to represent the 

low-resolution image in the face space as a linear mapping of the high-resolution image 

in the face subspace plus a noise term (refer to eq.(3.39)). 

                                                  (3.36) ( ) ( ) ( ) ( ) ( )i i i i
y y y y y y x x y x yW A s W e W H A s W H e W n+ = + +

 

Since, 

                                                               y yW A I=                                                      (3.37) 

and from eq.(2.16) we know that 

                                                               0y yW e =                                                       (3.38) 

Then eq. (3.36) turns into 

                                                                       (3.39) ( ) ( ) ( ) ( )i i i
y y x x y x ys W H A s W H e W n= + + i
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Using this observation model, we can form our constraint set similar to those given in 

section 3.5.1. The convex constraint sets for outliers of the residual for this case will be 

                                          { }( ) ( )
0 0|  i i

x y y x x j
C s s W H A s δ⎡ ⎤= − ≤⎣ ⎦                               (3.40) 

where j subscript denotes the j’th component of the residual vector. We can calculate 

the statistical confidence bound, 0δ , as given in eq. (3.29) using the noise process 

                                                 .                                       (3.41) ( ) ( )i
subspace y x yn W H e W= + in

The projection operator for independent component subspace then becomes 

                 

( )
0 ( ) ( )

02
( )

( ) ( )
0 0 0

( )
0 ( ) ( )

02
( )

( )
, if  

, if < <  
( )

, if  

i
j i i

x y x jji
y x j

i i
j x x j

i
j i i

x y x jji
y x j

r
s W H A r

W H A

P s s r
r

s W H A r
W H A

δ
δ

δ δ

δ
δ

⎧ −
⎡ ⎤+ >⎪ ⎣ ⎦

⎪ ⎡ ⎤⎣ ⎦⎪
⎪= −⎨
⎪ +⎪ ⎡ ⎤+ <⎣ ⎦⎪ ⎡ ⎤⎪ ⎣ ⎦⎩

 

−

⎤⎦ x

  

(3.42) 
where  is the column vector containing the  j’th row of  matrix 

and  is the j’th component of the residual of i'th observation. 

( )i
y x j

W H A⎡⎣
( )i

yW H A⎡ ⎤⎣ ⎦

( )i
jr

  

 Finally, the convex constraint sets for the variance of the residual defined in 

independent component subspace can be given as 

                                         { }2( ) ( )|  i i
V x y y x x vC s s W H A s δ⎡ ⎤= − ≤⎣ ⎦                               (3.43) 

where a priori bound for statistical confidence, Vδ , can be calculated from eq. (3.19). 

The corresponding projection operator onto these convex constraint sets is found as 

                    
T 1 T ( )

( )
1(M M ) M ( M ) , if 

, if 

i
x y x xi

V x

x x

s I s s s C
P s

s s
λ

−⎧ + + − ∉⎪= ⎨
⎪ ∈⎩

V

VC

⎤⎦

       (3.44) 

where M is equal to . In the chapter 4, we have given experimental results 

using the derived methods for POCS based subspace superresolution. In the Appendix, 

we have shown that the necessary condition for convergences of the projections, P

( )i
y xW H A⎡⎣

V’s, is 

to have a positive λ . Hence, rather than calculating λ  for each constraint set, it is also 

possible to assign a fixed λ  which can be determined by trial-and-error to achieve the 

fastest convergence. 
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3.6 Subspace-based Superresolution Using Bayesian Estimation 

 Different methods have been suggested in the literature to solve the 

superresolution problem. In [14] rather than the POCS based reconstruction algorithm 

which is delineated in section 3.5, a Bayesian estimation method is suggested for 

reconstruction of the high-resolution face images in principal component subspace. In 

this thesis, we extended this approach to independent component subspace, aiming to 

have a better representation that is more robust to noise and motion estimation errors. 

Details of principal component subspace reconstruction can be found in [14]; here we 

just present our proposed methodology in the independent component subspace. 

3.6.1 Independent Component Subspace 
  

 It is logical to expect a similar performance on robustness and computational 

advantages for independent component model face subspace when compared with pixel 

domain super-resolution, besides, the independent component feature vectors are found 

to be more robust to noise than eigenface feature vectors (refer to [9]). Hence estimating 

true feature vectors of ICA directly from feature vectors of low-resolution images 

should enable better recognition performance together with advantages obtained in 

robustness and computation due to face subspace representation. 

 

 Bayesian estimation will be used for estimating the true feature vector. Here, we 

will try to maximize posterior probability of the true feature vector sx by using prior 

probability of sx and conditional probability of feature vectors of low-resolution images 

p(sy
(1),…,sy

(M)|sx). Hence, the MAP estimator will become 

                                                                 (3.45) (1) ( )arg max( ( ,..., | ) ( )) 
x

M
x y y x

s
s p s s s p= xs

x

In order to construct our MAP estimator we need to model the prior probability p(sx) 

and the conditional probability p(sy
(1),…,sy

(M)|sx). Since we have used the second 

architecture of ICA which was defined in [9], modeling prior probability with a super-

Gaussian density function is reasonable. Here we assume that the prior probability is 

Laplacian: 

                                                 ( ) exp( ( ))x xp s sλ λ µ= − −                                        (3.46) 

where µ x is the mean of  the feature vector  sx, and λ  is the density parameter which 

can be computed by its relation to the covariance of  sx , Λ , as :   
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                                                             1/ 22λ −= Λ  

in

)

                                                 (3.47) 

It is important to note that, since components of the sx vector are independent, the 

covariance matrix is diagonal. In order to model the joint conditional probability of 

feature vectors of low-resolution images p(sy
(1),…,sy

(M)|sx), we will use eq.(3.39). The 

first step is to divide eq.(3.39) into two parts as signal and noise. Thus, the noise part 

will be; 

                                                                                         (3.48) ( ) ( )i
subspace y x yn W H e W= +

The noise model contains terms coming from the reconstruction error and the image 

modeling error in the pixel domain which are generally assumed to be IID Gaussian 

[23]. Therefore, our noise model is also IDD Gaussian since H is simply a linear 

operator and WyWy
T is nonsingular. Hence, we have: 

                                                    ( )( ) ( ,i
subspace np n µ=N K                                         (3.49) 

where µ v
(i) is the mean vector and K is the covariance matrix of the noise. Since the 

noise is IID Gaussian we can express the joint conditional probability as multiplication 

of marginals, 

                               (1) ( ) (1) ( )( ,..., | ) ( | ) ... ( | ) M M
y y x y x y xp s s s p s s p s s= × ×                    (3.50) 

Using eq.(3.39) we can write marginal conditional probabilities, note that since sx is 

given, marginal probabilities will have the same statistical properties as noise, except 

for the mean.  

 

Hence we have: 

                                      ( ) ( ) ( )( | ) ( ,i i
y x y x x n )ip s s W H A s Kµ= +N                                 (3.51) 

Since we can write the joint probability as the product of marginal probabilities, by 

defining z(i)=sy
(i)-WyH(i)Axsx  - µ n

(i) we obtain: 

                                 (1) ( ) ( ) 1 ( )

1

1( ,..., | ) exp( )  
M

M i T
y y x

i
p s s s z K z

L
−

=

= −∑ i                         (3.52) 

where L is a normalization constant. Substituting eq.(3.52) and eq.(3.46) into eq.(3.45) 

will give us the MAP estimator for ICA feature vector of the high-resolution image. 

                            ( ) 1 ( ) 1/ 2

1
arg min( 2 | |)

M
i T i

x x
i

s z K z s xµ− −

=

⎡ ⎤= + Λ⎣ ⎦∑ −                         (3.53) 

The solution can be obtained by an iterative steepest descent algorithm. The (k+1)’th 

step of this iteration can be written as: 
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                                                                                                   (3.54) 1 ( )k k
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where α  is the step size parameter and is the gradient of the cost function 

calculated at . We have selected the original MAP estimator as our cost function. 
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Taking the derivative of cost function with respect to sx, will give us the gradient of the 

cost function as: 
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∑
                  (3.56) 

As the step size of the iteration, we selected α  to be inversely proportional to the 

Hessian of the cost function C(sx) rather than choosing a fixed constant. The 

formulation used for updating the step size α  is given as: 

 

                                         ( ( )) ( ( )) ,
( ( )) ( )( ( ))

k T k
x x

k T k
x x

C s C s
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α ∇ ∇
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∇ ∇
                                 (3.57) 

where Hessian is the Hessian matrix found by 
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4. EXPERIMENTS 

4.1   Face Video Databases 

 We have tested the proposed methods using two different video databases. The 

first database is M2VTS database, created by UCL Laboratoire de telecommunications 

et télédétection [31]. The other one is a new database that is especially designed to test 

the performance of superresolution algorithms for face recognition problem and created 

by VPA group at Sabancı University. 

4.1.1   M2VTS Face Video Database 

 We have used 36 face videos of different subjects obtained from the M2VTS 

database. Each frontal face video was shot when the subject was counting from zero to 

nine. Since the videos in the M2VTS database are high-resolutional, we need to create 

low-resolution video sequences synthetically. In order to simulate the effects of the 

quality of the camera, and its distance to the face, the original videos are convolved by 

15x15 pixel Gaussian blur kernels with varying variances and downsampled by a factor 

of two.  

 Theoretically, 4 or more images are needed to double the resolution of a 

reference image. In this experiment, we have used five consecutive images where the 

center frame, shown in the Fig. 4.1, is the reference one. In the same way, we have 

extracted five consecutive frames from each face video of different subjects. Later, we 

manually aligned these face images according to the locations of eyes, cropped and 

scaled them in order to fit into 68 x 84 pixel reference high resolution face image model 

so as to enable the application of the principal and independent component analysis. 

After obtaining these face frame sequences, we have created their low-resolution 

counterparts by first convolving with a Gaussian kernel and downsampling them by a 

factor of two as described before. 

 

Figure 4.1. Five consecutive frames extracted from a face video of M2VTS database 
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Figure 4.2. Low-resolution face video frames obtained by convolving with Gaussian 

kernels having variances: 1, 10, 20, 30, 40, and 50 pixels and by downsampling. 

 

In the Fig. 4.2, five low-resolution frames of the same reference frame obtained by 

Gaussian kernels with differing variances is illustrated. 

4.1.2   VPA Superresolution Face Database: 
 

 The second face database that we have used in our experiments is VPA 

Superresolution Face Database which consists of frontal face images and videos of 32 

people to test our proposed super-resolution techniques. VPA SR Face Database 

contains low-resolution and blurry face video data together with the corresponding high 

resolution face image of each person. Face videos contain just translational movement 

of each face shot by SONY DVR camera from a distance in ambient light while high 

resolution face images are taken by SONY DCS F707 Digital Still Camera with closer 

distance again in ambient light so as to acquire face images having higher-resolution 

(double) than those faces in the video frames (refer to Fig. 4.3). The high-resolution 

images are manually aligned according to the locations of eyes, cropped and scales to fit 

into 68 x 84 pixel reference face model. For low resolution face videos, a reference 

frame is selected for each one and these reference frames are manually aligned 

according to eye locations and cropped and scales to fit into 34 x 42 pixel reference 

model for low-resolution face images, as described before.  

   

   
 

Figure 4.3. Low-resolution face video frames (at the top) , corresponding high-

resolution face images (at the bottom) 
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  Frame #:           1            2            3             4             5 

Figure 4.4. Five consecutive face video frames from VPA SR Face Database, third 

frame is the reference one. Note: Head is moving to right side of the page. 

 
 Again, since our aim is to increase the resolution by a factor of two, using four 

or more frames from the face videos is theoretically enough. Hence, we have used five 

frames, two previous and two next consecutive frames together with the reference one. 

Other face video frames are scaled and cropped according to the aligned reference 

frame shown in Fig. 4.4. 

4.2  Pixel-domain Superresolution 

 The pixel-domain superresolution algorithm can be decomposed into three sub-

problems: (i) Registration, (ii) calculating blur, and (iii) employing a priori information 

for reconstruction. Previously, we have explained how a priori information is 

incorporated into the reconstruction problem and we have also noted that a fixed blur is 

assumed in the derivations. Therefore, we have to clarify the registration algorithm that 

is used to estimate displacements of the pixels between consecutive frames. 

4.2.1 Registration Algorithm 
 
 It is quite a difficult task to make an accurate displacement estimation for face 

videos where there are multiple rigid motions, which we call as the pose of the head, as 

well as non-rigid ones (e.g., motion of lips and cheeks). Hence, one straightforward 

strategy is to use an appropriate mesh model and divide face frames into triangles where 

each one captures single rigid motion. Later, using motion vector of the nodes of the 

triangles, the motion vector of each pixel inside each triangle can be approximated 

using bilinear interpolation.  Hexagonal matching algorithm [32] (HMA) seems to be a 

possible solution for this problem, however a uniform mesh model with very small 

triangle size is needed for this algorithm in order to decompose a non-rigid motion into 

rigid ones in each triangle. Therefore, we need to use a very dense mesh which is 

computationally inefficient. Another choice for displacement estimation will be 

polygonal matching algorithms (PMA). 
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Figure 4.5. Frame distance image obtained by subtracting two consecutive video frames 

to detect motion fields (left), non-uniform content-based mesh is laid onto reference 

video frame (right) 

 
  PMA has the same principle as HMA but the mesh model is non-uniform and is 

designed according to the content based mesh model described in [33], so as to have 

dense triangular mesh around the motion fields and coarse triangles in motionless 

regions (illustrated in Fig. 4.5). Although this algorithm reduces the computational cost 

compared to the HMA, we observed that it is vulnerable to motion estimation errors. In 

other words, if one of the nodes of the triangular mesh is estimated with error, nonlinear 

deformations are created in the reconstructed face image which may affect the face 

recognition performance in return.  

 

 For our application two-level hierarchical block matching algorithm (HBMA) 

appeared to be an appropriate method for displacement estimation due to its 

computational advantages and ease of use. Even though theoretically it is not possible to 

capture non-rigid motion by using block matching algorithm, if appropriate block size 

and search region are chosen, satisfactory displacement estimation performance will be 

achieved.

 

MxM block of 
reference frame 

M

Figure 4.6. Geometry of MxM block and search region 

M M+2d

M+2d

(x=i, 

dm

dmSearch area in 
the previous or 
next frames 
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 The HBMA that we have applied for displacement estimation is devised to 

detect subpixel motion information and it is different than HBMA described in [34]. 

Moreover, we first applied full search BMA to face frames that are bilinearly 

interpolated by a factor of two with the geometry shown in Fig.4.6 where we selected M 

as seven and dm as one. Hence, we assume that there are no large displacements (since 

the databases we have used in our experiments have enough time resolution this 

assumption is reasonable) and make displacement estimation sufficiently locally 

adaptive. Afterwards, the magnitude of the motion vector which is found for the block 

in the interpolated frame is divided by two and assigned as the motion vector for a NxN 

block (N is selected as three in our experiments) in the original frame which shares the 

same center pixel with the search block in the interpolated frame (refer to Fig. 4.7). 

 

 Super-resolution algorithm with POCS in pixel domain needs very accurate 

displacement information to work successfully without degrading the quality of the 

image; otherwise it is common practice to disable POCS algorithm according to a 

validity map proposed in [35]. The validity map is a type of indicator which is formed 

by finding motion estimation errors and determining places where estimation error 

exceeds some pre-determined threshold value or values. Subsequently, inaccurate 

motion estimates during the reconstruction process are discarded. This is easily 

achieved within the POCS framework by defining the data consistency constraint sets 

and performing associated projections only for those pixel locations for which the 

motion vectors are accurate.  

         
Figure 4.7. Illustration of the displacement estimation algorithm. Motion vector found 

in bilinearly interpolated face frame (right), and motion vector of the corresponding 

block in the original frame (left). 
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 Validity maps and similar methods that disable POCS when motion is estimated 

inaccurately (which occurs mostly around the object boundaries and occluded parts in 

the image) have previously been applied to videos when there is single or multiple 

objects having rigid motions in [21, 35, 36]. However, for our case we have to deal with 

non-rigid motion in face frames where the application of segmentation or validity maps 

degrades the quality of the reconstructed face image. Observe Fig. 4.8, where POCS is 

applied to pixel locations determined by validity maps, an example of validity map is 

given in Fig. 4.8-(b). Since motion is non-rigid, superresolution with POCS method 

causes artificial speckles which clearly reduce the quality of the face image (refer to 

Fig. 4.8-(c)). Moreover, when we use a validity map since we disable POCS according 

to the validity map, we do not perform the projection operation to all the pixel locations 

in each frame, which in return increases the number of frames required to achieve 

higher resolution face images. 

 

 Due to disadvantages like increase in the number of required frames and 

artificial speckles, we did not use validity maps to disable POCS in some pixel locations 

with the expense of having motion estimation errors in and around the occluded regions 

or the boundaries of the face. Nevertheless, we achieved perceptually convincing and 

satisfactory results, with very negligible motion estimation error around the occluded 

regions. As we have proposed before, since we have used holistic face recognition 

techniques such as principal and independent component analysis, we observed that, in 

fact, these errors do not affect the canonical representation of the face (hence face 

recognition performance) significantly. 

 

(b)(a) (c) 

Figure 4.8. The application of validity maps. Bilinearly interpolated reference frame (a), 

validity map obtained from next video frame (motion est. done accurately in the black 

region) (b), SR in pixel-domain applied to the reference frame using validity maps (c). 
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4.2.2 Pixel-domain Superresolution Results 

 It is common practice to use imaging charts to analyze the performance of the 

superresolution algorithms. Since we have used face databases in our experiments, we 

don’t have such opportunity to evaluate the resolution increment the algorithm provides. 

However, we expect better perceptual results from the superresolution algorithm which 

exploits information coming from many frames than the result of a sharpening filter. In 

the Fig. 4.10, we have given results when the sharpening filter is applied to the 

bilinearly interpolated face image in (c) and when superresolution algorithm based on 

pixel-domain POCS is applied in (d). Observe that edges are emphasized in (c) 

compared to (b), nevertheless, blockiness appeared around the edges of the face (e.g. 

around mouth, eyes and chin) due to sharpening. Superresolution, on the other hand, 

gives better perceptual performance around the edges and obviously increases 

resolution by incorporating subpixel information coming from different frames into the 

reference frame.  

  

 The result obtained using M2VTS data base given in Fig 4.10-(d) appears to be 

very encouraging, however if we list the reasons for such a good performance, we 

should note that the data has very low noise level and quite high time resolution which 

enables accurate displacement estimation. In a more realistic case, where noise level is 

high and time resolution hinders accurate displacement estimation, we have observed 

that pixel-domain superresolution does not improve the quality of the video and even 

degrades the initial estimate since distorting effects of inaccurate motion estimation 

coming from each frame cumulates onto the reference face image. We have employed 

the same pixel-domain superresolution algorithm to VPA SR Face Database (refer to 

Fig. 4.9 for sample results).  

 

Figure 4.9. Samples of the results of pixel domain superresolution for VPA SR Face 
Database 

  
               Interpolated            SR 

(1) 

  
               Interpolated            SR 

(2) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

                              

Figure 4.10. Original reference face image (a) , reference image bilinearly interpolated 

by a factor of two (b), sharpening filter is applied to the bilinearly interpolated face 

image (c), pixel-domain superresolution with HBMA described above applied to 

reference image (d). 
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Some resolution improvement can be seen in Fig. 4.9-(1), but due to accumulation of 

the effects of inaccurate motion estimation in Fig. 4.9-(2) we observe highly degraded 

and distorted face image which can disable proper face recognition. 

4.3 Subspace-domain Superresolution 

 The cure for the problem in Fig 4.9-(2) resides in either increasing the time 

resolution of the video to have more accurate motion estimation (which is not possible 

if you do not have control over the acquisition device) or developing a more robust 

method that handles this problem in a different way. The proposed subspace methods in 

this thesis suggest new approaches to this problem which can be thought of as an 

extension of Gunturk et. al.’s work [14]. 

4.3.1 Obtaining Face Subspaces 

 In our experiments, we have used CMU Illumination and Expression [18] 

databases for constructing face subspaces both for principal and independent component 

domain. CMU Illumination and Expression databases encompass frontal face images of 

68 people. In the CMU Illumination databases face images are taken in four different 

illumination conditions while faces are in fixed position, so as to enable investigating 

just the effects of illumination over face recognition systems. On the other hand, CMU 

Expression database contains face images of these 68 people in similar illumination 

conditions with four different facial expressions. In the estimation of independent 

components and extraction of principal components, we have used both illumination 

and expression databases where each one contains 68x4=272 face images that totally 

sum up to 544 face images. We manually aligned these face images according to the 

locations of the eyes, cropped and scaled them in order to fit into a 68 x 84 pixel 

reference high resolution face image model (same procedure applied to both M2VTS 

and VPA databases). Later, we downsampled these images into 34 x 42 pixel, so as to 

have low resolution face images that we have used to construct principal and 

independent component subspaces. We have reduced the dimensionality to 100 in both 

principal and independent component analysis while constructing subspaces of high-

resolution and low-resolution face images (refer to Fig. 4.11 for basis vectors that span 

the subspaces). 
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(a) 

 

 
(b) 

Figure 4.11. Independent component basis images estimated by using CMU 

Illumination and Expression databases (a), and eigenfaces extracted from CMU 

Illumination and Expression databases (b). 

 
In the estimation of mixing and de-mixing matrices of ICA, we have used the so called 

second architecture defined in [9]. This architecture uses ICA to find a representation, in 

which the coefficients used to code images are statistically independent, i.e., a factorial 

face code. For encoding objects that are characterized by high-order combinations of 

features, Barlow and Attick have discussed advantages of factorial codes [37, 38]. 

 

 To achieve such a factorial coding of face images, we organize data matrix X so 

that each column of X represents a different face image where each one is normalized to 

zero mean and unit variance. This corresponds to treating the columns of the mixing 

matrix Ax as the set of basis images. The ICA coefficients for a single face image, sx, are 

obtained by, 

                                                            x xS W X=                                                          (4.1) 

where Wx  and X are de-mixing and data matrices, respectively, and each column of Sx 

contains the ICA coefficients of the basis images (i.e., sx vector). 
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Figure 4.12. Factorial code representation attained by second architecture of ICA,  sx’s  

are statistically independent coefficients and basis images are columns of mixing matrix 

Ax. 

 

As given in eq. (2.14) the de-mixing matrix can be written as  

                                                                                                      (4.2) 1/ 2
100 100

T
xW WD E−=

 
where  reduces the dimensionality of the input data to 100 by projecting it onto the  

PC subspace and the  matrix spheres the input projected data. We know that 

sphering is an optional stage which just fastens the convergence speed of the algorithm. 

However, it makes ICA estimation vulnerable to noise because the trailing eigenvalues 

which tend to capture noise in the data appear as denominator, hence we exclude 

sphering in our experiments, as we have mentioned before. The W matrix in eq. (4.2) 

projects the data onto the independent component face subspace and we obtain the ICA 

representation of the face images. 

100
TE

1/ 2
100D −

4.3.2 Estimating Statistics of Noise and Feature Vectors of PC Subspaces: 
 

 In order to estimate a priori information that we need to have for application of 

subspace superresolution methods described in sections 3.5 and 3.6, we have divided 

both databases into two equal groups as training and testing. We have used the training 

group to estimate the statistics of noise and feature vectors of principal component 

analysis. From high resolution face images 1,..., KI I  (K=16 for VPA K=18 for M2VTS 

databases) in the training set, we estimated the statistics of principal component feature 

vectors  and together with low resolution face video frames of the corresponding high 

resolution images we estimated statistics of noise given in eq.(3.28). The unbiased 

estimate for mean and covariance of  can be obtained by using sample mean and 

variances:  

a

a
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The off-diagonal elements of the matrix Λa are set to zero, in order to make more 

reliable estimate of the covariance by using limited number of training images. 

 

 Similarly, we estimated the mean and covariance matrices of noise in pixel 

domain for each face as follows; 
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where yj
(i) is the i'th observation of the j’th face obtained from low resolution face video. 

M is the number of low resolution observations used in estimating the statistics of the 

noise. As mentioned before for our case M is five. Again, diagonal elements of Z are set 

to zero. The mean, η , and the covariance matrix, Q ,  for the noise in principal 

component subspace (given in eq. (3.28)) are found using the following formulations, 

                                                             T a
vη ψ µ=                                                        (4.7) 

 
and,  

                                                          .T a
vQ Zψ ψ=                                                        (4.8) 

 

4.3.3 Estimating Statistics of Noise and Feature Vectors of IC Subspace: 
 

 Once more, in order to capture a priori information for IC subspace 

reconstructions, we have used the same training scheme described for principal 

component analysis. However, in this case independent component feature vectors are 

denoted by  and (de-mixing) and  (mixing) subspace matrices are used. The 

mean and covariance matrices of independent component feature vectors are 

xs xW xA

 37



 

                                                      
1

1 (
K

x
j

W I
K

µ
=

∑ )x j                                                    (4.9) 

and 

                                        
1

1 ( )(
K

T
x x j x x j

j

W I W I
K

µ µ
=

Λ −∑ ) .x−                                   (4.10) 

Similarly, the off-diagonal elements of the matrix Λx are set to zero. 

 Again, we estimated the mean and covariance matrices of noise in pixel domain 

for each face as follows; 
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The mean, η , and the covariance matrix, , for noise given in eq. (3.41) are found 

using the following formulations, 

Q

                                                            x
y vWη µ=                                                         (4.13) 

 

and,  

                                                                                                              (4.14) x T
y v yQ W Z W=

 where  is the de-mixing matrix of the subspace of the low resolution face video 

frames. 

yW

4.3.4 Reconstruction of Feature Vectors: 
 
For each LR face video, one frame is selected as the reference frame then bilinearly 

interpolated by a factor of two and projected onto the principal component subspace φ  

or the independent component subspace  as an initial estimate of high resolution 

feature vectors. Two previous and two next consecutive frames are projected onto the 

principle component subspace 

xW

ψ  or the independent component subspace  together 

with the low resolution reference frame to extract independent and principal component 

feature vectors in low resolution face subspaces. The  matrices contains the 

decimation matrix , the blur matrix 

yW

( )iH
( )iD ( )iB , and the motion warping matrix . Here, 

the decimation matrix maps mean value of pixels of the high resolution image in 

( )iW

2 2x  
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block of pixels to one pixel in the low resolution image; hence it is a fixed matrix for all 

observations. For blurring, we have used a fixed blur matrix which convolves the image 

with a 5 5x  Gaussian kernel with zero mean and one pixel variance, as we have 

mentioned before. On the other hand, the motion warping matrix  is needed to be 

calculated for all observations. However, it is practically impossible to have the actual 

W

( )iW

(i), but we can still estimate the motion warping matrix W(i) by using low-resolution 

images or frames. If the motion vector of a pixel found by using low-resolution images 

is multiplied by a constant 2 and mapped to the motion vector of the corresponding 2x2 

block of pixels in the high-resolution image where 2 is the downsampling factor that is 

used in our experiments, we will have a reasonable estimate of W(i). Using the model 

parameters estimated for independent and principal component analysis, we estimated 

the high resolution feature vectors as described in section 3.5 and 3.6 with ten iterations 

for each sequence and a priori information contribution coefficient for Bayesian 

estimation, λ , is set to 0.5.  

4.4   Face Recognition Performances: 
 
 Our face recognition scenario resembles a possible security system that tries to 

recognize faces coming from surveillance cameras which contains low quality face 

images due to distance between face and the camera and ambient illumination 

conditions. Here, we assume that the security system has high-resolution face images of 

the possible suspects and wants to recognize him/her from the surveillance videos for 

some security concerns. We have presented four different face recognition techniques 

for M2VTS database experiments that are implemented for enabling comparisons. We 

have used three different distance metrics in the decision phase of the algorithms: (i) L1 

norm, (ii) L2 norm, and (iii) cosine similarity (or normalized correlation coefficient, 

CC). 
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 As we have mentioned before, we used two face video databases to test the 

proposed methods and compare them with those already available in the literature. The 

aim of using the M2VTS database is to emphasize the differentiation of PCA and ICA 

representations in case of a noisy environment. By using Gaussian blur kernels with 

varying variance, we have simulated this effect with the assumption that Gaussian blur 

degrades the quality of the low-resolution frames which appears as noise in the 

canonical representations of the faces in subspaces. Observe in Figures 4.13 to Fig 4.15, 

in case of without superresolution (dashed lines, bilinearly interpolated frames are 

used), Fig. 4.13 supports the claims given in [9] and [16] that ICA offers a better 

representation than PCA for face recognition in L1 norm but they provide same 

recognition performance in L2 norm and CC distance metrics . If we compare the 

proposed independent component based superresolution algorithm (ICA-SR) with the 

principal component based one (PCA-SR), in L1 and L2 norm as noise level increases, 

the proposed method outperforms PCA-SR with 100% recognition rate in all noise 

levels. Note that we have mentioned that blur in pixel-domain can be thought as noise in 

canonical representation, in other words in subspace representation. 

 

 

 
Figure 4.13. Comparison of face recognition performances with L1 distance metric 
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Figure 4.14. Comparison of face recognition performances with L2 distance metric 

 

 
Figure 4.15. Comparison of face recognition performances with CC distance metric 

 

 The face recognition scheme for M2VTS database is formed by selecting a high-

resolution frame as training face. For testing, five consecutive frames are chosen 2 

seconds after the training frame, thus training and testing frames have different 

expression and slightly different pose. Later, these five consecutive frames are 

convolved with Gaussian blur and downsampled by a factor of 2; hence low-resolution 

frames are attained for testing. In the Figures 4.13 to 4.15, face recognition is performed 

by comparing distances between features of testing high resolution face and features of 

training low-resolution center frame whose size is incremented by the application of 

subspace superresolution methods (PCA-SR and ICA-SR legends in the figures), pixel 
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domain superresolution methods (Pixel-SR) and just by bilinear interpolation (ICA and 

PCA legends in the figures). Observe that results of the pixel domain superresolution 

are close to the results of the interpolated ones. 

 
 The use of synthetically created low-resolution video frames brings about the 

question whether these methods can work in a real situation where neither high 

resolution images nor low-resolution video frames are created by some downsampling 

operation. The pixel domain imaging model given in eq. (3.4), we observe that the low-

resolution image, y, is formed by blurring and downsampling of the high-resolution 

image. Creating low-resolution video frames by blurring and downsampling and then 

reconstructing them with the same generative model appears to work due to the 

formulation, but would this model work when there is no synthetic relation of formation 

between the high and low resolution images? VPA Face Database described in section 

4.1.2 is formed to test whether this generative imaging model works in a more realistic 

scenario. Table 1 shows results of the five different face recognition approaches with 

cosine similarity metric. Observe in Table 1 that pixel domain superresolution 

algorithm, which works pretty well when the noise level is low and motion estimation 

errors are small, fails to improve the recognition rate compared with the straight 

forward application of bilinear interpolation shown in the first column. However, 

subspace techniques works equally well in this level of noise and nearly 20% 

improvement in the recognition rate is achieved. 

 
Table 1. Recognition performance (%) for, Column # 1: Bilinear interpolation, Column 

# 2: Pixel-domain superresolution, Column # 3: Subspace-based Bayesian (MAP) 

estimation (the result in the ICA row is the result of the proposed method), Column # 4: 

Subspace-based POCS with outliers of residual constraint, Column # 5: Subspace-based 

POCS with variance of the residual constraint. 

# 1 2 3 4 5 
PCA 56.25 56.25 75 62.5 62.5 
ICA 56.25 56.25 75 62.5 62.5 
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5. CONCLUSIONS 
  
 In this thesis, we aim to improve the face recognition performance of existing 

systems that use static images by means of improving their resolution via incorporating 

information coming from multiple video frames. A general framework that enables 

comparison of different superresolution techniques on face recognition problem is given 

for the first time in the literature.  

 

 One of the outcomes of this thesis is to implement and demonstrate that 

superresolution formulations derived from generative imaging model works in a non-

synthetic experimental setup. Previously in the literature low-resolution images were 

generally created synthetically from high resolution images; therefore there was a need 

to demonstrate performance of superresolution techniques in a real setup. For this a new 

database, called VPA SR Face Database, is created. 

 

 This thesis presents how pixel-domain superresolution can be achieved from 

face videos where there are non-rigid motions together with rigid ones. In preceding 

works, pixel-domain superresolution is just applied in case of single or multiple objects 

having rigid motions. By extending studies in pixel-domain superresolution into non-

rigid motion circumstances, this thesis is the first effort. Besides, POCS based signal 

reconstruction algorithm in subspace domain is formulated for superresolution and it is 

found to improve face recognition performance by 6.25 % in VPA SR Face Database 

compared to pixel-domain superresolution. 

 

 Application of eigenface-based superresolution method proposed by Gunturk et 

al [14] was limited to synthetic low resolution still face images. Here, we applied this 

method to real video sequences and demonstrated that it improves face recognition 

performance. Also in this thesis independent component based superresolution 

technique using Bayesian estimation is revealed to be superior to eigenface-based one 

as noise level increases. Moreover, an increase in recognition rate by 18.75% is 

achieved by using Bayesian estimation based subspace methods compared to non-SR 

applications. 
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 In conclusion, we can say that subspace based superresolution methods together 

with computational advantages, provides robustness against noise compared to pixel-

domain superresolution algorithms. Hence, enables better face recognition 

performances. 
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APPENDIX 
 

We have mentioned for the convergences of the projections, PV’s, the necessary 

condition is to have a positive λ  value. To demonstrate, we will use proof of the 

essential features for the convergence of POCS defined in the text. Hence, rather than 

calculating λ  for each constraint set, it is also possible to assign a fixed λ  value which 

can be determined by trial-and-error to achieve the convergence. 

 

Proof for non-expansiveness 
We need to show that the projection operator is non-expansive, in other word; 

                                                         2121 xxOxOx −≤−                                        (A.1) 

where x1 and x2 are two vectors in the Hilbert space and O is the projection operator for 

‘Variance of Residual’, i.e., PV. 

 

In order to prove that our projection operator is non-expansive randomly select two 

vectors x1 and x2 from the Hilbert space defined by subspace methods. Then, 

                                        1
1 1 1

1( ) (T TOx x M M I M g Mx
λ

−= + + − )                          (A.2) 

                                        1
2 2 2

1( ) (T TOx x M M I M g Mx
λ

−= + + − )                           (A.3) 

 
where residual is defined as 2Mxgr −=  (for our case g=sy

(i) , x2=sx , M=WyH(i)Ax and λ 

is the Lagrange multiplier) 

 

Subtraction of eq. (A.2) from eq. (A.3) will give us the following; 
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The matrix M has real values and from the linear algebra we know MTM is a symmetric 

matrix and can be written as; 

Let Γ=MTM 

 49



 

                                                                                                                  (A.5) TQQΛ=Γ

where Q represents the orthogonal eigenvectors and Λ contains eigenvalues for the 

corresponding eigenvectors. 
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Hence eq. (A.4) evolves to 
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where Y is 
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Hence finally we have following equality 

                                                 [ ] )( 2121 xxQYQOxOx T −=−                                     (A.9) 

Using Schwartz inequality norm of difference of the projected vectors can be written as; 

                                                1 2 1.TOx Ox QYQ x x− ≤ − 2                               (A.10) 

Schwartz inequality can be extended as follows; 

                                              TTT QYQYQQQYQ ... ≤≤                               (A.11) 

Since norm of orthonormal vectors is one, eq.(A.10) turns into; 

                                                  1 2 1.Ox Ox Y x x− ≤ − 2                                     (A.12) 

Norm of Y is equal to the largest singular value of Y. Since Y is diagonal its largest 

singular value will be one of its diagonal elements. Let l be the largest singular value of 

Y then in order to have non-expansive projection operator l should be greater than zero 

which implies; 
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Thus, if positive Lagrange multipliers are obtained from optimization which we built to 

minimize the difference between original and the projected signal with the variance 

constraint, non-expansiveness of the projection operator will be satisfied. Hence if λ  is 

positive, non-expansiveness is satisfied. 

 

Proof of asymptotically regular projection 
In order to prove the convergence of the algorithm, we need to show that our projection 

operator is asymptotically regular. In other words following equation should hold; 
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Now let x1 be a vector in the Hilbert space defined by subspace methods. The we can 

write following difference equation for the projection operator O; 
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If x1 is the projection of another vector x0 in the Hilbert space then, 
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Substitute eq.(A.16) into eq.(A.15) 
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Let’s define two symmetric matrices K and L as 

                                                            
MML

IMMK

T

T

≡

+≡ −1)1(
λ                                      (A.18) 

Then eq. (A.17) turns into 
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From these derivations following equality is found 
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Since KL and I-KL are symmetric matrices, we can write the following 

                                                         ( - ) TI KL QYQ=                                              (A.21) 

 where Y is derived and defined in the previous proof. For the non-expansive projection 

operator we need to have  

                                                           10λ
λ

> ⇔ ≥ 0                                                (A.22) 

which implies that every diagonal element of Y is between zero and one; 
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From Schwartz inequality we can write norms as; 

                                   )(.)( 000
1 KLxgKMKLIxOxO Tnnn −−≤−+                   (A.24) 

Norm of (I-KL)n is the largest singular value of the matrix say l. Since every diagonal 

element, including l, is between zero and one we can write 
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Thus, 
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Since norm of a matrix is always non-negative. We have; 

                                                       0lim 00
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∞→
xOxO nn

n
                                      (A.27) 

Therefore, we have proved that the projection operator is asymptotically regular if λ  is 

positive. Moreover, positive λ ensures the projection operator to be asymptotically 

regular and non-expansive, which in return guarantees the convergence of the projection 

operator. 
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