PHOTONIC CRYSTAL BASED SENSING
USING BAND EDGE MODULATION

by
ATILLA OZGUR CAKMAK

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Master of Science

SABANCI UNIVERSITY
Spring 2005



PHOTONIC CRYSTAL BASED SENSING
USING BAND EDGE MODULATION

APPROVED BY:

Associate Prof. Dr. MERIC OZCAN  crrieeeeernenneens

(Thesis Supervisor)

Assistant Prof. Dr. CEM OZTURK  ettiiiieiieeenceeeneaansnn

Assistant Prof. Dr. IBRAHIM TEKIN  oteeeeeeeeeeeenenenn

DATE OF APPROVAL:  ririiiriieeneeneenns

i



© Atilla Ozgiir Cakmak 2005

All Rights Reserved

il



ABSTRACT

A photonic crystal (PC) based structure is proposed for sensing exceptionally
small refractive index changes of a background medium. In a typical PC, we show
that the band edges and the defect band(s) (if present) are very sensitive to the
dielectric contrast. Hence, a propagating electromagnetic wave at a particular
frequency gains significant phase shift due to the index changes. When the phase shift
is measured interferometrically, it is possible to infer refractive index changes as
small as ten to the power minus eleven per lattice distance.

We have concentrated on the band edge shifts of the two lowest bands of a
square lattice of dielectric rods. Calculations reveal that a design of hundred times
hundred rods could be utilized to sense an index modulation of ten to the power
minus thirteen per square root Hertz with a modulation bandwidth of one Hertz,
which is ten to the power five times better than the resolution of waveguide based
sensors. Defect modes in PCs are even better candidates for sensing applications. A
further resolution enhancement on the order of ten could be achieved.

We have performed proof of principle experiments in the microwave regime
with a PC made of seven times seven alumina rods placed in a gas chamber, whose
inner pressure is adjusted with a nitrogen tank. Obtaining the index modulations by
changing the inner pressure, we witnessed that the experimental results are in very
good agreement with the theory at the band edges.
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OZET

Biz, bu proje ile tipik bir fotonik kristal yapisinin frekans bandi ve eger var ise
kusur bant veya bantlarinin kiigiik kirilganlik endeksi degisimlerine dahi ¢ok hassas
olduklarin1 gésteriyoruz. Bu amag ile kurulacak bir yapmin ¢ok ufak mertebelerdeki
kirilganlik endekslerinin degisimlerini 6l¢cmekte kullanilabilecegini idda etmekteyiz.
Oyle ki, fotonik kristal igerisinde seyahat etmekte olan bir elektromanyetik dalganin
bu degisimlerden otiirii ciddi bir faz kaymasina ugrayacani ve bu faz kaymasinin
girisimlendirme yolu ile dlgiilmesi ile kafes basina on {izeri eksi onbir kadar kiigiik
degisiklikleri fark edebilecegimizi savunuyoruz.

Projemiz boyunca asil olarak kare kafesli, yalitkan g¢ubuklardan olusan bir
orgiinlin en alt iki frekans bandini inceledik. Hesaplarimiz gosteriyor ki, ylize yiizliikk
bir kristal yapist ile kirilma endeks frekansi bir Hertz ile degisen bir yapida on tizeri
eksi on tii¢ bolii karekok Hertz lik bir hasasiyeti tutturmamiz miimkiin. Bu
sonuglarimiz bile en iyi dalga kilavuzlariyla yapilan tasarimlardan on iizeri bes kat
daha iistiin bir performans gostermekte. Dahasi, kusur bantlarinin bu hasasiyeti en az
on kat olmak {izere daha da arttirdigini rapor ediyoruz.

Bu iddalarimizi kanitlamak {izere yediye yedilik alumina g¢ubuklar ile
gerceklestirdigimiz fotonik kristal yapilarii mikro dalga rejiminde denedik. Optik
kristalin de igine yerlestirilmis oldugu gaz haznesinin basinct bir nitrojen tiipii
yardimi ile sabitlendi. Nitrojenin basinci ile oynayarak istedigimiz kirilim endeks
degisimlerini yarattik ve deneylere bu kosullarda devam ettik. En son olarak ise,
deney sonuclart ile teorik hesaplara dayali beklentilerimizin harkulade uyum
icerisinde olduklarini gozlemledik.
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CHAPTER 1

INTRODUCTION

1. 1 Motivation

Advances in the industry come along with the demand to engineer sensitive
devices that could distinguish even the tiniest changes. Several sensor topologies have
been developed and employed for specific cases. Sensor design has become an
established separate branch in science, combining distinct parts from material,
mechanical, biological, electrical and optical engineering.

Optical sensing mechanisms have recently attracted much attention due to their
higher sensitivity and resolution. The principle of sensing procedures has been
governed by the refractive index variations. In that account, numerous ways for
optical detection have been proposed. Fiber optic sensors present low loss figures and
immunity to surrounding electromagnetic fields unlike the commercially used
transmission lines. Change in the optical properties of the fiber induces either phase
or amplitude shifts (or both) on the traveling optical field which triggers the sensing
mechanisms. Fibers can be coated with special, chemically sensitive layers to further
increase the resolution [1-4]. Waveguide based sensors are also widely used in

sensing applications. Optical couplers, resonators have been utilized for the best
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performance. Shifts in optical free spectrum and coupling wavelengths have been

correlated with refractive index changes. High resolution constants on the order of

10~ have been obtained with such waveguide based configurations [5,6]. Yet, surface
plasmon resonance is another method. By exciting the free charges at the metal
dielectric interface, a field whose optical characteristics are dependent on the
refractive index profile of the sample deposited over the metal, can be created. Thus,
this dependency has been exploited to improve the sensing characteristics [7,8].

Nevertheless, as an alternative approach, Photonic Crystals have only been
studied extensively since the beginning of 90s, after the first proposals of
Yablonovitch [9] concerning the control of the electromagnetic wave propagations
via periodic arrangements. The field is widely open to new ideas. Therefore,
breakthrough innovations might be feasible with intelligent predictions. The high
sensitivity of Photonic Crystal band edges and defect bands bears an appealing
picture for sensor investigations. As a result, the possibility of sensing very small
refractive index changes with Photonic Crystals has been our top priority and our
possible contributions to the field have always been the ultimate motivation.

In recent years, Photonic Crystals have attracted considerable attention in
sensor applications as well. There are chemical detectors and bio sensors reported in
the literature based on Photonic Crystal configurations which work on the principle of
measuring the changes in the dielectric contrast [10-12]. In such sensors, index
modulation is detected by sensing the shift of the emission wavelength of Photonic
Crystal lasers [13]. In our work here, we propose a method for the detection of a very
small refractive index change by measuring the phase shift of a propagating
electromagnetic wave. As we explain later, band diagrams are a strong function of the
dielectric contrast and a slight change induces a large phase shift on the propagating
wave. Dispersion relation of a Photonic Crystal is crucially significant in determining
the stop bands, and it has been shown that non-linear optical properties of the
Photonic Crystals can be employed to modify the band formations to be utilized for
optical switching [14,15]. Here, we present that the deviations in the dielectric
constants of the Photonic Crystal do also alter the band diagrams of the structure in a

similar fashion. The sensitivity of the sensor can be understood in terms of the
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dynamically revised dispersion relations and thereby the phase shifts of the traveling
electromagnetic wave specifically at the band edges. In the following parts we are

going to show that our method can reach down to refractive index sensitivities of

10" /v Hz .

The scalability of Maxwell’s equations helps us to examine the electromagnetic
waves in a broader spectrum. The modes in the Photonic Crystal can be solved
independent of the lattice constants. Then many of the essential experiments could be
carried out at longer wavelengths. It has been proven that Photonic Crystal based
beam splitters, channel drop filters function at microwave regimes without the loss of
generality [16,17]. Regarding to this fact, we have realized our experimental set-up in
the microwave regime. Our Photonic Crystal based sensor operates in the GHz
frequencies and requires the construction of a square lattice crystal having a certain
dielectric contrast with respect to the background index. Two antennas and an
interferometer configuration are needed to analyze the scattered propagation of the
electromagnetic waves. The modeling and the design of the sensor together with the

experimental setup are investigated in the latter sections.

1.2 Photonic Crystal Literature Survey

Photonic Crystals (PCs) are periodic structures, which modify the dispersion
relations of the electromagnetic (EM) fields. In analogy to that of electrons in a
crystal, EM waves are prohibited from propagating in certain directions. For a
particular frequency range, an EM wave can not be coupled into the PC and forbidden
bands are formed. Many other interesting phenomena have also been suggested and
observed. PCs yield lower radiation losses, and enables higher control of the light that
makes them favorable in the field of integrated optics [18-21]. The transmission of
light can be based on photonic band gap (PBG) effect rather than total internal
reflection. Hence, absolute confinement of light at desired points can be achieved.
This is the main reason of remarkable reduced cladding losses in optical fibers with
PBG guidance. Intentionally created defects in the periodicity of the PCs have been

designed as cavities for the enhancement of the radiation. Such defects perturb the
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ideal photonic band gaps of the crystals, and can cause relatively sharp defect bands
to enter into the gaps [22]. These types of cavities resemble their counterparts in
optical literature and could be modified to create laser cavities with high quality
factors [23]. Defects have also been demonstrated as promising candidates for tunable
filters [24].

Novel ideas have been proposed to adjust the Photonic Crystals for optical
communication systems. Stopping and coherently storing of light methodologies have
been originated from the application of coupling mode theory in between the closely
separated Photonic Crystal cavities [25]. Yet, a similar design has been shown to
perform a complete time-reversal operation on any electromagnetic pulse [26].

Applications directly for microwave regimes have also been offered. Resonant
cavity enhanced detectors and resonant antenna configurations with very high
directivity have been embedded into Photonic Crystals [27,28]. PCs have been
employed as antenna substrates to increase the power ratio of the radiated power into

air to the substrate [29].

1.3 Organization of the Thesis

The thesis is going to proceed with a discussion of theories in Photonic
Crystals, in chapter 2 where different kinds of PCs are going to be examined.
Chapter 3 will be devoted to the computational methodologies of Photonic Crystals.
Chapter 4 is going to be dedicated to the proposed design methodologies of Photonic
Crystal sensors as well as the adaptation methods of Photonic Crystals for sensor
applications. Experimental results will be presented in chapter 5 and finally

conclusion and future work are going to be listed under chapter 6.
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CHAPTER 2

THEORY OF PHOTONIC CRYSTALS

All successful accomplishments in science rely on concrete, consistent,
flawless, applicable and presentable theoretical backgrounds. Math is a tool to
describe and to simulate every problem in nature. Breakthrough innovations are
governed by intelligent predictions based on theoretical calculations. Science is an
accumulation of knowledge about the secrets of the working mechanisms of nature. A
researcher should not be satisfied with any knowledge lacking logical and
mathematical support. Otherwise paradoxes and misunderstanding are impossible to
overcome. In parallel to that conjecture, this chapter aims to deal with both
fundamental and advanced theoretical analysis of the Photonic Crystals. These
analyses constitute the heart of the thesis and they are going to help justify the design
strategies together with the overall approaching style towards Photonic Crystals.

Introducing the fundamentals of Photonic Crystals has been the main objective.

2.1 Wave Equations and Eigenvalue Problem

As mentioned in the first chapter, finding a clever way of controlling the

propagation of the electromagnetic waves has always been a priority. Photonic
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Crystals have just been proposed and used for this specific purpose. Since we are
going to be mainly concentrated on the interaction of the electromagnetic fields with
the rigid structures like Photonic Crystals in this chapter, Maxwell’s equations are the
first and by far the most significant elements of our theory. It is possible to derive all
the proceeding formulas, theories with these equations. The components of an
electromagnetic wave (EM wave), which are the electric and magnetic fields,
traveling through a media free of charges and currents had been proven to show the

following relationships by Maxwell [30].

B(r,t) = o pt(r)H (1, 1),

D(r,t) =g,6(r)E(r,1),

V.D(r,t) =0,

V.B(r,t) =0, (2.1)

VxE(r,f) = —%E’(r,t),

VxH(r,t)= %D(r,t).

The standard notations for the electric field (E), the magnetic field (H), the
electric displacement (D), and the magnetic induction (B) are used in these equations.

Recalling the particular identity from Vector Arithmetic,
VxVx(4)=V(V.4)-V>*4 (2.2)

and adapting it for Maxwell’s equations, the general, commonly cited wave notations

can be reached for bulk materials where V.¢(r) = 0 and u(r) = 1 everywhere.

2.3)
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It is apparent that solutions to such second order differential equations will be in

the form of £=FE,, exp(i(l;.i7 -wt)), H=H exp(i(lg.i7 —wt)) where wave vector

amp
and frequency are designated with k and w respectively. Although bulk example may
present an intuitive, rough idea, it can not be our primary interest since it does not
offer any means to manipulate the fields. The waves will diffract with certain
amplitudes and form an oscillatory pattern. However, the control of the propagating
wave via transforming the power confinement as a function of the position vector
requires the addition of several other layers with different dielectric constants. Then

wave equations will turn out to be,

L xR B = B
e(r c

1

e\r

(2.4)
V x

VxH(r, 0t = (2 H(r,1)
C

Note that the material dispersion relation of &(r, w) is ignored and will be disregarded
as long as a specific, rather narrow frequency spectrum is of our concern.
Furthermore, harmonic waves similar to the solutions of EM waves in the bulk matter
are sought. Speed of light is denoted as ¢, which is identical to (1 / (uge0)) .

Eq. 2.4 is attributed as the master equation among the Photonic Crystal
researchers. Although it does not seem to imply anything new from engineer’s
perspective, examination of the familiarities with the Schrodinger’s energy
eigenvalue theorem in quantum mechanics opens new standpoints. An object with a

mass would obey the Schrodinger equation and its energy could be computed

accordingly. A small comparison reveals the analogy in between.

Quantum Theory Electromagnetic Theory
Fields w(r,t) =w(r)exp(iwt) H(r,t) = H(r)exp(iwt)
Eigenvalue problem Hy =FEy ¢ H=(w/ c)V’H
Operators H=-h*V?/2m)+V(r) $y = V x (1/ e(r))V x

Table 2.1 Analogy between Quantum Theory and Electromagnetic Theory
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The Hamiltonian of the quantum theory (H) determines the eigenenergies (E)
for an object whereas operator ¢, clarifies the eigenfrequencies for the EM wave.
Treating the electromagnetic wave equation in eq. 2.4 as an eigenvalue problem has
been the driving point in Photonic Crystals literature. The eigenfields with separate
eigenfrequencies span the field vector space. The eigenfields become orthogonal to
each other and we may encounter degenerate fields. The operator £, can be shown to
be Hermitian. The consequences of regarding the electromagnetic wave problem as

an eigenvalue question can be summarized in the subsequent section.

Orthogonal
g CoH = e H, = (2) thenif w, % w,, <H, |H, >=0
Fields c c
Hermitian « 1 .
<H,|{,H, >= [drH, VxVxH, =[dr(Vx——VxH,) H,
Operator ¢, &(r) &(r)
<H1 ‘é,HH2 >=< é,HHl ‘Hz >

Table 2.2 Implications of Linear Algebra over Electromagnetic Theory
2.2 Scaling Properties of the Maxwell Equations

Provided that we stay in the macroscopic region, there is no fundamental length
scale for the solutions of the Maxwell’s equations. Researchers have exploited this
feature of the electromagnetic theory to carry out similar experiments in a broad
frequency spectrum. A rough discussion has already been done in the first chapter

but, mathematically when we scale our master equations by a factor of s we get,

r=sr,V'=V/s

L G x Bt = B

e(r c

2.5)

SV)ISV)E ] 5,8)) = (D2 E(r'/ 5,1)
e(r'ls) c

1 @B (.01 = B2 E (.0)
e (") cs
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The solution of the problem at one length scale determines the solutions at all
other length scales. This simple fact is of considerable practical importance. Since
micro fabrication of complex micron-scale photonic crystals can be difficult, models

can easily be tested in the microwave regime.
2.3 Time Reversibility

Time reversibility of the optical modes in the photonic crystals can be explained
with the symmetrical manipulation of the supporting wave vectors. The complex

conjugate of the master equation must also yield real eigenvalues, then we obtain

w(k)

N (@)ZE* 2.6)

It follows that the complex conjugate of the electrical mode produces same
eigenfrequency. It sets the dependence of the eigenfrequencies on the wave vectors

asw(k)=w(—k). It can also be interpreted as the time reversibility of the

electromagnetic waves given that we are working with the harmonic modes.
2.4 Symmetric Dielectric Media

Photonic Crystals are intelligently engineered structures composed of periodic
unit cells. Yet, before going into the further details of the wave propagation and mode
analysis in Photonic Crystals, an outline of these symmetric arrangements could be
helpful. This section of the thesis will deal with the most frequently practiced periodic
arrays in the world. We have also used similar configurations through out our
designs.

Alternating dielectrics give the periodic appearance to the Photonic Crystals.
Solid States is the best known theory for the appreciation of the physics behind these
formations. The translational symmetries can be repeated over different dimensions.

For a one dimensional case, that we can also call as Bragg gratings, may only have
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one discrete translation operator. The dielectric configuration which is given in Fig.

2.1 can be qualified to obey the one dimensional characteristics.

25 T T T T
Lattice constant = a
-’
2 " o
—_—
X
S
w
151 B
1
0_5 | | | |

Fig. 2.1 Bragg Gratings (One Dimensional Symmetry)

Fig. 2.1 illustrates the scenario where €=1 and &=2 are the alternating
dielectric medias. The simplest pattern that can recreate the crystal structure by
repeating itself is called the unit cell and its length is abbreviated with the lattice

constant, a. Then the dielectric function varies with x accordingly
e(x)=¢(x+a) (2.7)

If the pattern is extended into infinity then, it is trivial to assume that the

electromagnetic fields will be in the form of

E(%,7,%,G) o expli(k ;.p)) exp(i(k, + G).%)
p=y+z

(2.8)
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Here G is the reciprocal lattice vector and maintains the equality such that

exp(iG.x) = exp(iG.(x + a))
exp(iG.a) =1 (2.9)
G.a=2m

where n is an integer. The reciprocal lattice vector for Bragg gratings

- 2 .
becomes G = —nXx .
a

The duplication of the unit cells may also continue in the second dimension
whilst keeping the dielectric media homogenous in the third dimension. The square

lattice and the triangular arrays are the generally studied models. Fig. 2.2 portrays a

square lattice of rods on the x-y plane.

oo

Fig. 2.2 Square Lattice of Rods
Any point on the plane can be expressed in terms of the x and y polar
coordinates. However, we might not need to take care of all the points on the plane

since the overall structure is a mere replication of the unit cell. If a particular k is
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closer to a neighboring lattice point, you can always reach it by staying close to the
original lattice vector and then translating by the G that reaches from one lattice point

to the other as in eq. 2.8. The situation is depicted in Fig. 2.3.

Point B

Point A

K

G

Fig. 2.3 Characterization of the First Brillouin Zone

Nevertheless we can specify the precise location of point B in wave vector space in
terms of point A, thanks to the periodicity. Any electromagnetic field at point B will
be just a reflection of the mode at point A. We need not take point B and all likes into
consideration. An easy method of constructing a group of points that span the lattice
space has to be presented. The technique of finding the Brillouin zone of the square
lattice, whose points can not be written as a linear combination of others and

reciprocal lattice vector is exhibited step by step in Fig. 2.4.

M={m/a,r/a}
=> =>
@ @ @ @ @ @
X={m/a,0}
ax 2m/a r={0,0}
ay . . 2m/a . . .
STFP 1 STEP 2 STEP 3

Fig. 2.4 Step by step construction of the First Brillouin Zone. Stepl: Square Lattice
array. Step 2: Reciprocal vector space for the Square Lattice array. Step 3: Midpoints

of the intersecting lines give us a square boundary of the Brillouin zone.
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It is uncovered that the first Brillouin Zone of the square rods is again a square with
corners denoted with M. Point M is invariant under the translational operators Ca,

[31]. Some of the C4, group symmetry operators are

(x,y)——(x,)

(x, ) —=>(-x,y)

(X, ) —"—>(x,~) (2.10)
(x, ) ——>(y,x)

(xa J/) G—Id)(_ya_x)

The points M, X and I' have practical importance, because they found the
Irreproducible Brillouin Zone. In any further calculations, it is going to be sufficient
to only bear with them as the representatives of the overall lattice.

Likewise, similar treatments can be applied for the triangular lattice structures
[32]. Triangular lattice has been demonstrated in Fig. 2.5. The general solutions for
any reciprocal lattice vectors have been outlined as a set of equations for convenience

ineq. 2.11 [33].

e © o o
e ©¢ © o o
e © o o
e ©¢ © o ©
e © o o
e ©¢ © o o
e © o o
e . © © o o

- e o

Fig. 2.5 Triangular Lattice of Rods
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G.R=2aN
a, xd
n =27 2.11)
d,.d, xd,
a. xa
n, =2r———=>
a,.d, xd,
a, Xa
n, =2r——=
a,.d, xd,

The translational symmetries oblige &, (1/ £(r))VxV to commute with all
translation operators of the dielectric system. With this knowledge, we can identify
the modes of ¢ as simultaneous eigenfunctions of both translation operators. This
argument is an entailment of quantum mechanics and has exceptional consequences
that might be valuable in solving the Photonic Crystal bands. An ordinary translation

operator, Tk, may translate a wave function by adding a certain phase to it.
T,¥Y =T, exp(ik.r) = exp(ik.d).exp(ik.r) = exp(ik(r + d)) (2.12)

Symmetric dielectrics simplify many computationally hard problems. The
biggest advantage of working with infinitesimally long periodic patterns is that they
make the mathematical series expansions possible. All dielectric systems either

periodic in one, two or three dimensions can be written as the Fourier expansion.

1 .
e ;g(c) exp(iG.r)

| | (2.13)
&(G) = ;;%exp(—z({r)

where V represents the volume of the unit cell. For example, the expansions of the
dielectrics in Fig. 2.1 and 2.2 can be computed in a standard computer numerically.

The expansions have been shown in Fig. 2.6 and 2.7 respectively.
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Fig. 2.6 Expansion coefficients of one dimensional structure (Fig. 2.1)
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Fig. 2.7 Expansion coefficients of two dimensional structure (Fig. 2.2)
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The DC components of the expansions outweigh the other harmonics as
expected. After a tolerance value, the following harmonics’ contributions become
weaker. Since we are working with finite numerical elements in our hands, DFFT
(Discrete Fast Fourier Transform) should be calculated up to a comparatively large
number to sustain better approximations.

The last periodic formation that is of interest for us will be three dimensional
lattices. Some very interesting and spectacular configurations have already been
proposed by Photonic Crystal research groups. Thus, the most straight forward

arrangement has been face centered cubic lattice (fcc).

Fig. 2.8 FCC lattice

Three dimensional periodic structures can be theoretically analyzed, but the
fabrication of a full 3D Photonic Crystal could be extremely difficult. Face centered
cubic lattice structure is one the recurrently used configurations in solid state theory,

but as we will discuss in further details, people tend to invent new devices in Photonic
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Crystal literature that will somehow behave like a three dimensional periodic

structure.

2.5 Symmetric Surprises, Theory of Photonic Crystals

This portion of the thesis will be devoted to the theory of the Photonic Band
Gap materials. Beginning with the one dimensional case, all possible conventional
configurations will be studied. The core of the theory has been developed since 90s.
Several theories have been recently improved and the ultimate goal of the thesis has
been to cover many of the new prospects of the field during the thesis preparation. In
view of the fact that there is still no perfectly settled and accepted method for
Photonic Band calculations, a considerable amount of ideas have been inspired by
contemporary papers. Distinct computation routines have been adapted, but they will
not be discussed in details in this subsection, but rather will be examined in the next

chapter.

2.5.1 One Dimensional Photonic Crystals

One dimensional Photonic Crystals are excellent candidates to start learning the
band formations and propagating mode analysis. They are relatively easier. An
arrangement similar to Fig. 2.1 is used. As it will be done for others, first band
diagrams will be analyzed. Later on localization at the defect sites and supported
modes will be studied and finally off-axis propagation together with surface states

will be investigated.
2.5.1.1 The Origin of the Bands

It has already been described in the first chapter that in analogy with electrons
in semiconductors, bands appear for photons or in general for electromagnetic waves

in photonic band materials. The dispersion relation exposes that some states with

certain frequencies are not allowed to propagate in the photonic crystal regardless of
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the wave vector, k. A resonant cavity, carved out of a photonic crystal, would have
perfectly reflecting walls for frequencies in the gap. In the bulk material, using eq. 2.3
we see that frequency, w can be related to the wave vector, £ .The dispersion

relationship has been plotted in Fig. 2.9

ck

(2.14)

025

no splitting, bands emerge

015

01r

Normalized Frequency (wa /2t c)

0.05 -

0 1 L 1 1 I 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
wave vector (k a/2 )

Fig. 2.9 First Two Bands for bulk material with & =13. The point k = 0, point k = 0 is

omitted (computational difficulties).

On the other hand, when alternating multilayer dielectrics are studied, like in the case
of Fig. 2.1, the electromagnetic wave propagating will be perturbed. There will be
infinite amount of reflections at the boundaries and a gap will appear. Interesting
enough, the structure will resemble an N slabs waveguide, where N goes to infinity if
we extend the periodicity in one dimension. Then, we could explain the propagation
of the electromagnetic waves in one dimensional Photonic Crystals in a similar

fashion to the treatment of N slab waveguides in integrated optics.
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2.5.1.1.1 Scattering through N Slabs

If we combine the theory of Quantum Tunneling [34] with Integrated Optics
[35], and exploiting eq. 2.12, the dispersion relations can be fully understood.
Visualizing the propagation of the wave in Fig. 2.10, the boundary conditions can be

satisfied.

4 T T T T
35F ; ; ]
Region 1 Region 2
Field1 Fieldz Field3
3F T — i I
]
S
S o5+ ]
=
i il
15F ]
boundary1 boundary2 boundary3
x=0 X=d=a/2 X=Aa
1 | | / | |

Fig. 2.10 Field Propagation in a 1-D (One dimensional) periodic

structure, ¢, =10,¢, =1.

As long as the pattern extends into infinity, the modes will be oscillatory in both
high and low dielectric regions, unlike the case with finite number of N slabs in
Integrated Optics. For the one dimensional case, eq. 2.4 can be interpreted in the
proceeding form. Note that we will be working with TE modes, which also indicates
that electric fields will play the major role, due to a random preference,. The duality
in one dimensional Photonic Crystals compels the eigenstates to be degenerate. TM

modes would support the same eigenfrequencies as TE modes.
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2 2
> O0°E (x,z,1) _ 0°E (x,2,t)

ot*

E, (x,z,0) = [Aeiklx + Be ™" ]e_m”kzz ...regionl

(2.15)

e(x)  ox’
OE,,
H, (x,z,0) = —— 0
iwy, Oz
-1 OE,,
le(x,Z,t)Z . ! —=
iwu, Ox

E, (x,z,t) = [Ceikzx + De " ]5”’”””2 ...region2

1 OFE

H2x(x’Z’t): . —
iwy, 0z
—1 0,

HZz(x’Zat) = -
iwu, Ox

The boundary conditions at x = d = a/2 restricts the tangential components of the E

and H fields to be continuous. But eq. 2.12 says that translational symmetry operators

do not violate the commutation. Then we

propagating wave’s frequency component

have another set of equations at x = a. The

can be evaluated in terms of wave vector in

separate regions. We can define a formula that manages the dispersion relations with

different dielectric constants.

E (x=0,z,0)=F, (x= a,z,t)e ™

w w
k,=—.\l¢& .k, =—4/&,
c c

1 1 _ gt _ piatkath)
ia(ky—k —ia(k, +k
kl _kl _kzem( 2=k) k2€ ia(ky+k)
ol ok Y _ etk
ikyd —ikyd ikyd —ikyd
ke™® —ke™ —k,e™ kye™

2

det(M)=0= cos(k,d)cos(k,(a —d)) - k

(2.16)
=>M

S O O O
OO %
S O O O

A
B
C
D

2

%kkz sin(k,d)sin(k, (a — d)) = cos(ka)

172

Now, we have every tool to compute the band structures. Consistently calculating the

band structure forg, =10,&, =1 and d = a/2, we witness the birth of a frequency gap

as in Fig. 2.11.
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Fig. 2.11 Formation of the Band Gap Note that the band calculation does not

converge at the band edges, k=0.5 has been omitted (computational difficulties).

It strikes our attention that the slope of the bands at the edges reaches almost
zero. It means that an electromagnetic wave traveling with critical frequencies at the
band edges will be stopped propagating at the x-direction (for our case), but still be
diffracting at the other dimensions where no scattering has occurred. It should also be
noted that the frequencies and wave vectors have been normalized, to make them
independent of the lattice constant. Furthermore, only the bands in the Irreducible

Brillouin Zone have been calculated.

2.5.1.1.2 Plane Wave expansion method

Plane wave expansion method is a frequently employed approach. It has been

widely accepted. A lot of papers have been published discussing and weighing the

advantages and the drawbacks of this technique since 90s. Plane wave expansion
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method (PWEM) is adjustable for two and three dimensions as well. Now, a brief
general formalism will be laid out at first and they will be specialized for the one
dimensional case later on.

In the most universal situation, the PWEM relies on the expansion of the
electromagnetic fields in a similar fashion to the dielectric tensors in eq. 2.13 because
of the symmetry. Then mixing the Bloch’s theory with the electromagnetism, the

fields will look like

1 1 .
iR ; K(G)exp(iG.r)
E (r,0) = u, (r)e™ ™ =" E,(G)exp(i(k + G).r —iwt) (2.17)

H, (r,t)=u, (r)e™ ™ => H (G)exp(i(k + G).r —iwt)

Combining the expansion coefficients for dielectric media and inserting into the

master equation of eq. 2.4

XKooy (k4G {(k+ G X Ey g} = () By
¢ (2.18)
DKokt Gk + G xHy o} = (7) g

Each eigenfield is expressed in terms of the series expansion of the other contributors.
Then, the coupled matrix is constructed. Eq. 2.18 is an ordinary eigenvalue equation
and a regular computer can be programmed to numerically solve the matrix formulas.
Computation methodologies and convergence problems of this technique belong to
another chapter.

Even though the equations illustrate the spherical wave expansions to prevent
the loss of generality, plane waves have been utilized in computations, which possess
the property of eq. 2.19. The phase fronts of such fields are constant and form a plane

at a specific point.
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(2.19)

Modifications for the one dimensional structure are needed. Eq. 2.17 and 2.18 can be
transformed into the following statements, and when Maxwell’s equations have been
altered for one dimensional problem, band gaps occur for the exactly same

configuration whose dispersion relations are demonstrated in Fig. 2.11.

1 < . 27m
—= z K, exp(i——x)
e(x) .= a

E, (x,t) =u, (x)e" ™ = Z E, exp(i(k + 2ﬂ)x —iwt)
a

m=—o0

H,(x,t) =u, (x)e™ ™ = Z H, exp(i(k + 2ﬂ)x —iwt) (2.20)
a

m=—w

= 2mm' w
- zEm'(k + )2K(m—m') = (_)2Em
m'=—o0 a C
— ZHm.(k +2ﬂ)(k +2ﬂ),(
a

m'=—co

w
(m—m") = (_)2 Hm
C

a
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Fig. 2.12 PWEM version of the dispersion graph in Fig. 2.11
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Comparison of the two graphs states the fact that for the one dimensional case,
PWEM can be successfully performed. There is still a tiny amount of error involved
in the expansion method, since we are limited with finite quantities of harmonics,
rather than the ideal model in eq. 20. For infinitesimally long periodic structures we
could predict that scattering method would yield the exact results whereas in PWEM

our results would be limited by the number of plane waves taken into consideration.

2.5.1.2 Localization at the Defect Site and Field Profiles

Cavities with high quality factors can be engineered and tuned easily with
Photonic Crystals. This neat feature signifies their practical importance. A defect is
any kind of perturbation in the symmetric crystal. A breakdown in the pattern can be
utilized to localize the fields that used to be in the band gap. Their presence would
actually be prohibited in a perfect crystal, but defects lift up these bands into the
forbidden region. Moreover these modes would not be supported by the Photonic
Crystal itself, so they will have nowhere to escape other than being confined at the
defect site. Defect modes are bound to die in the crystalline structure and they are also
referred as evanescent fields in the Photonic Crystal. This incident bears strong
resemblance to the quantum-mechanical problem of a particle in a box. Even in a one
dimensional array, it is possible to have very sharp, high quality and low bandwidth
cavity configurations. Density of states of the photonic crystal has been clearly
disturbed by the existence of the defect. Fig. 2.13 demonstrates the phenomena for a
periodic arrangement similar to the one in Fig. 2.10. The defect is produced by
removing one of the gratings with dielectric constant of10. The edges of the lower
and upper bands do not change (check from Fig. 2.11 or 2.12), the only major
modification is the insertion of the defect band into the photonic band gap.

The removed grating confines the electric fields at the defect site. In Fig. 2.14
the electric field variation versus dielectric constant is plotted. A quick calculation
displays that %46 of the overall power of the field has been confined at the defect
site. The displacement fields with defects are also computed in the same manner. For

our case N slab scattering method has been employed.
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Fig. 2.13 Defect Band in the Photonic Band Gap. Note that discontinuous points at
the lower and upper bands are computational errors. The defect band is calculated

with the N slab scattering method.
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Fig. 2.14 Field Localization at the Defect Site.
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2.5.1.3 Off-Axis Propagation and Surface States

So far we have considered the modes propagating perpendicular to the gratings.
This is not always the case, for a multilayer film, because the off-axis direction
contains no periodic dielectric regions to coherently scatter the light, the bands will

not split up to open a gap. The bands will occur only if the propagation wave vector
and the V(e(r))dielectric function vectors coincide in the same direction. This

generalization applies for the two dimensional Photonic Crystals as well. Three
dimensional Photonic Crystals have complete periodic patterns in all directions, so
electromagnetic wave can be coupled inside from every track and the traveling waves
may open forbidden regions without any complications.

Furthermore, the majority of our discussion has concerned the interior of
photonic crystals of infinite extent. But real crystals are necessarily bounded. At the
boundary surface of the crystal structure, extended or decaying fields can be
observed. Any defect at the air boundary can localize fields in between Photonic
Crystals and background air region. They may behave like surface plasmon-
polaritons in metallic surfaces. They are very sensitive to the termination of the
structure [36].

These features might obscure the analysis of the Photonic Crystals. Ignoring
these effects, we will be sticking to the essential assumption of infinite crystals while
conveying the design methodologies. The difficulties of projecting these assumptions
into the real life experiments will be described in another chapter. It would not be
beneficial to totally ignore these influences mainly coming from the finite dimensions
of the periodic arrangements, but a clever way to reduce their nonlinear contributions

has to be sought.
2.5.2 Two Dimensional Photonic Crystals
After having examined the interesting properties of one-dimensional photonic

crystals, the thesis will continue to investigate situations where the crystal is periodic

in two dimensions and homogenous in the third. Initially, the gap formation
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mechanisms will be discussed in order to progress with the defect studies. The mode
profiles will be considered and the section will be concluded by briefly referring to
the out of plane propagation and surface states again.

Two dimensional structures are of great significance for the thesis preparation.
Many of the design criteria have been based on the solid theoretical analysis of the

two dimensional Photonic Crystals.

2.5.2.1 Gaps in two dimensions

It is not hard to predict that gaps will also appear in two dimensional structures,
like their counterparts in the one dimension. Two dimensional structures enable us to
confine the electromagnetic wave in a plane. Therefore, polarized plane waves will be
the major actors of the contemplation. First of all, prudently the polarization vectors
inside the crystals must be clarified. There is a small difference in Photonic Crystal
literature in terms of defining the TE and TM polarizations in comparison with the

other photonic contexts [35]. TE and TM polarizations are defined in the following

manner.
TM (about E field) TE (about H field)
S A,
Ez: palarization vectar Hz3 polarization vector
Plane of propagation Plane of propagation

Fig. 2.15 Polarization definitions
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Then the fields will be staying totally in the plane of periodicity and scattering from

crystals will be the source of forbidden gaps. Our fields could be summarized as

?n%n=%emm@x+@y»am4mij' o
H(x,y,t) = H_ exp(i(k,x +k, y))exp(-iwt)...TE

Crystalline structures similar to Fig. 2.2 and 2.5 will be taken into account. Uniquely,

we can now distinguish the propagation of the distinct polarized electromagnetic

waves in different media. Without going any further, an adjustment to the generalized

plane wave expansion method given in eq. 2.17 and 2.18 has to be done to be able to

solve band diagrams in two dimensions. Then polarization dependency on the band

splitting can be scrutinized.
2.5.2.1.1 Plane Wave Expansion for 2-D structures

If we take the square lattice as an example, then points I', X and M (Fig. 2.4)
will become the corners of the Irreducible Brillouin zone. And the reciprocal lattice

vector is simply
G=—n +—n, (2.22)

where n; and n; are any integers. Our master equation in eq. 2.4 is going to look like

1 0* 0?

CoE. (x,0) =~ o) = (5 E, (x,y)
flny) o Oy ‘ (2.23)

o 1 o0 o 1 0 W,
éHHZ(x’y)__{ae(x,y)a+6_yg(x,y)5}Hz(x’y)_(;) H.(x,y)
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Symmetry expansion rules still apply for the fields and dielectric tensors,

E, (x,y,t)= 2 > A, expli((h, +=n, )x + (k, += ; Zn)y) —iwt)

(2.24)

0

Ho ()= Y Y B, expli((k, +2 o+ k2, )p) = i)

Ny =—00 Ny =00

Reminding that these formulas are only valid for the in-plane propagation where
k,~0. Then the two dimensional matrix can be constructed upon calculating the each

harmonic contributor of the eigenvalue equation,

0

< w
Z Z Anl,nZ((kx+ ) +(k + 2) )) (nl—nl)(n2 n'y) (;)2Anl,n2

n'y=—0on';=—o0

33 Bl 2T+ )+, + ) e+ TG e (2.25)

rlz—fsonl—foc

w.
= (_)2 Bnl,nZ
C

Then band formations can be calculated with this technique as shown in Fig. 2.16.
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Fig. 2.16 Band Diagram in Two Dimensions
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2.5.2.1.2 Variation Principle (MIT’s method)

Plane wave expansion method has widely been accepted and used in Photonic
Crystals literature [37-42]. Yet, people might have different perspectives and
methodologies. The Photonic Crystal research group at Massachusetts Institute of
Technology (MIT) has developed their Photonic Crystal solver software [43]. This
software computes the eigenfrequencies based on plane wave expansion method, but
rather than carrying out the calculations with an iterative eigensolver, it makes use of
the variation principle from perturbation theory of quantum mechanics. Variation
method can be reviewed in a couple of words. An intuitive way to find the normalized

frequency can be

" _<HI|S,|H>
" <H|H>

(2.26)
From this standpoint, when we add 6H to our current state, w, should not change, if
we are at a saddle point. Moreover, w, is going to be the lowest possible frequency
value for the ground state.

If we write a state H from the beginning as a linear combination of suitable

basis, and calculate the eigenfrequency, then it should satisfyow, /0H = 0. Hence, as

soon as the ground state is estimated, then simultaneous orthogonal eigenvalues that

span the field space are directly the eigenfields due to the Hermitian ¢, operator.

H*(r) = hg,e, exp(i(k + G)r)
GA

3 [tk +Gyxe, ik +G)x, Je (G, G g,y = (&

(GA) ¢

3 by [k +G) &, [k + G x e, e (G, Gy 2.27)

_ (GA)(GA)
th PGay
GA

)2 h(Gi)

var

_<HY% ¢, 1HN >
<H |H* >

var
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After having expanded the field vectors and attaining the eigenvalue equation,
variation method is exercised [32]. The computations reveal a similar band diagram

that has already been portrayed in Fig. 2.16.
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Fig. 2.17 Two Dimensional Band Diagram from variation method [44]

2.5.2.1.3 Polarization Dependency

The shape of the band diagrams are strongly related with the periodic
configuration of our crystal. As we have seen, a square lattice of dielectric rods would
behave as a photonic band gap material when TM polarized electromagnetic wave is
coupled into them. Therefore, we have to search for the eigenvalues coming from the
expansion of the electric fields instead of magnetic fields. However, if we still desired
to view the band structures for TE polarizations, we would get a continuum of
frequencies as dictated in Fig. 2.18. Yet, for another periodic configuration, such as
for a square lattice of veins, TM polarizations would not split a gap whereas TE

would. Shortly, it can be generalized that TM band gaps are favored in a lattice of
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isolated high dielectric regions, and TE band gaps are favored in a connected lattice.
Research groups have also proposed arrangements where both of the polarizations

would yield a gap for propagating electromagnetic fields [32].

0.7 T
g ni=3 B No gap ocours for TE polarization
N4 © O On2=t A .
@ v \
z
= [} ] @]
(&)
= /
S 03 o il
= / \
&
021 *
01r i i _
0 ¢ 1 X | | M
r wave vector

Fig. 2.18 Bands for TE polarization. Note that K is point {0.1, 0.1} in irreducible

zone
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2.5.2.2 Modes in 2-D crystals

Mode solutions are essentially important in two dimensional crystals for the
examination of the defect modes and their decay rates. Therefore, the proceeding
sections are meant for the theoretical calculation of the modes in finite crystals. The
modes for distinct two dimensional periodic arrangements are going to be laid down

and discussed.
2.5.2.2.1 Field Equations

Photonic Crystals can be thought as an intermediate media with certain
transmission and reflection coefficients. Then, analogous to the plane wave expansion

method, fields can be expanded in different regions [12].

L
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Fig. 2.19 Fields in 2-D crystal

E,.(x.y) = E,exp(ik,r,) + 3 R, exp(ik,.r,)
n=—s (2.28)

E,.(ey)= 3T, exp(ik, (r, - L))

h=—00
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where Ey, R, T are amplitudes of the electric field of the incident wave, the reflected
Bragg waves, and the transmitted Bragg waves respectively. If we define a function

as

F(xy) = % ST, + (L= y)(8,0E, + R,)} explik, )

n=—ow

f(x,0)=E,,(x,0) (2.29)
S(x,L)=E;_(x,L)

such a definition could ease our job by

lII(xny) = Ez,z(xvy) _f(xny)
£ow(x,y) - (%)zw(x,y) =B, (x,9) - (%)ZEZ,Z (60) =& f (% p) + (%)zf(x, y) (2.30)
w(x,0) =y (x,L)=0

A function sustaining these boundary conditions could be in the form of

(x,y) = Z Z A, exp(ik, x) Sln(—)y
n=—com=] 2.31)

S(x ¥) - n;m; K, exp(i(G, x + _y))

Then writing down the boundary continuity equations of the tangential
electromagnetic fields we have 3 sets of equations to extract our coefficients, Aym, R

and T.

) Anm + Z Z{(k ) ) }X{Kﬂ Vl m+m - Vl Vl Sm—. m }Al‘l m'
n'=—o0 m=1
_ 2wt (D"'T, + R, +5n0E0 (2.32)
7Z'C2 m

y (-D"'T,+R,+6,,E,

+_ Z (k ) Z( Kﬂ n',m+m' n rz',m—m') . '

n'=—0 m'=1 m
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xY mA,, =(Lk,, + DR, =T, +38,E,(iLk,, +1)
m=1 (2.33)

ﬂ'z m(-1)" 4,, =R, +(iLk,, -DT, + 5, E,

m=l1

In the actual numerical calculation we restrict the number of terms that appear in the
Fourier expansions as it has been done for the photonic band calculations. The values,
Anm are the same coefficients used in PWEM for the electric field (Ani 2 as given in
eq. 2.24). Once the band calculations are successfully realized, eq. 2.32 and 2.33 can
easily be solved to find the reflection and transmission coefficients as well as to plot
the mode profiles. In the following part we will be studying mode profiles that have
been plotted using Ref. 44. The MATLAB realization has been left as a future work.

2.5.2.2.2 Modes

Sufficient amount of factors give away such field diagrams shown in Fig. 2.20.
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Fig. 2.20 Electrical Fields in lowest bands of Square Lattice
rods at point K, {-1/3,1/3} for TM polarization [44]

The origin of the bands can be explained just by examining the modes. The
lowest mode is concentrated within the dielectric rods to minimize its frequency. The
next bands, in order to be orthogonal, are forced to have a node within the rods,
imposing a larger eigenfrequency, hence cost a gap. A triangular lattice structure has
been examined and the index contrast has been taken to be 3, considering the

background as a reference point. As already discussed a TM polarized
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electromagnetic wave would split up band gaps for this configuration. Then we could

define a parameter called filling factor, which is

_ J.V:highindexE* (r).D(r)dSF (234)

- [ E().D0rdr

The filling factor for TM polarizations is 0.9235 and 0.6449 for consecutive bands.
Filling factor is an indicator of the band gap width as well. The filling factors for

different polarizations are shown in Table 2.3.

™ TE
Bandl 0.9235 0.0235
Band2 0.6449 0.3769

Table 2.3 Filling ratios for different polarizations

2.5.2.3 Defects in 2-D crystals

Planar localization of the light can be achieved by defects in two dimensional
crystals. Defects can be employed to build many analogous components that are
already available in integrated optics literature. Starting from the simplest case of
cavity modes, many possible devices that can be constructed with defects are going to

be clarified.

2.5.2.3.1 Tunable Cavities

Tunable cavities are the one of the most significant part of the thesis. The
working principles of the proposed sensor configurations have been relied on the
tunability of the cavity modes. As mentioned in the last section, we can universally
say that a defect in the crystal pushes states into the forbidden gap. That phenomenon
exactly works in two dimensions as well. When a rod is removed out of the square

lattice of alumina rods (Naumina=3.13), then the band structures will look like
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Fig. 2.21. The modes will be almost fully localized around the defect site. Fig. 2.22
shows the localized mode and %58 percent of the power will be residing within one
lattice site when computed. The field amplitudes are arbitrarily normalized in respect
to the incident wave. It is apparent that the mode will not be supported by the crystals
and is bound to decrease exponentially whilst leaving the defect site. The defect band

is sharp with respect to the continuous bands.
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Fig. 2.21 Defect Band in Square Lattice. Compare with Fig. 2.16 and note that band

edges have not moved
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Fig. 2.22 Localization of the modes at the defect site [44]
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The most important feature of the photonic cavities is that the designated defect
frequency can easily be tuned in terms of both geometric and material dependent
parameters at the defect site. For the same lattice configuration, Fig. 2.23 and 2.24

illustrate the tunability range of the Photonic Crystal using a single defect site.
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Fig. 2.23 Defect Tuning by index modulation. n;ogs = 3, ryogs = 0.2a
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Fig. 2.24 Defect Tuning by size modulation. nyogs = 3, Irods = 0.2a
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We have selected the micro cavity structures for our sensor designs for their large
range of tunability and sensitivity. The response of the cavities with respect to the
either size or index modulation almost outputs a linear behavior. Sometimes they are
also referred as linear defects. The modulation takes a band out of the continuous
bands and places it inside the band gap. However as it can be depicted from the
figures above that the modulation may not be sufficient to lift up the band into the
forbidden region or it might directly be responsible for the defect band to reenter the
continuous region. Such modes can still be called defect modes, but they will not be
perfectly confined at the defect site. Surrounding Photonic Crystal medium will not
act like a totally localizing mirror and modes will be leaking into the lattice structure.
These have been the fundamental characteristics of defects. Many interesting

devices can be manufactured onwards.

2.5.2.3.2 Want to play LEGO?

Several contemporarily available devices in the photonics market can be built

by Photonic Crystals. Here is an outline of the famous ones.
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Fig. 2.25 Build anything you want (a) waveguide (b) beam-splitter
(c) band drop-filter  (d) coupled resonator optical waveguide (CROW)
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Alternating defects on a line form waveguides as it can be seen in Fig. 2.25(a).
Then, several waveguide based devices in Integrated Optics are feasible. Single mode
waveguides, very similar to their counterparts in Integrated Optics have already been
fabricated. Yet, their working mechanism does not depend on the total internal
reflection. The line defect in Photonic Crystal waveguides support a range of distinct
defect bands which are not allowed to propagate in the crystal. Losses due to the
absorption in the cladding layers are minimized. Typically, only material dispersion
relations become important for the waveguide. This brings simplicity to the
calculations by reducing the non-linear effects. Since we can control and guide the
electromagnetic waves in the waveguide by simple geometrical modifications,
radiation losses are tremendously decreased. Localized wave will not be able to
escape outside in the form of radiation.

Beam splitters or in other words, power dividers are feasible to create as well.
The amount of power splitting ratio can be controlled with additional defects.
Mechanically controllable switch designs can be proposed [45].

Band dropping can be managed by simple tuned cavities that are in the vicinity
of the waveguide. Cavities filter out wavelengths out of the waveguide. As we have
witnessed, selectivity of the cavities are reliable to distinguish in between relatively
close frequencies. These magnetic waves either can be trapped in high quality cavities
or can be further guided into other waveguides [46-48].

Cavities that are near enough to each other can form waveguides. The wave
coupling from one cavity to another permits the electromagnetic wave to hop from
one defect site to the following defect site. The working mechanism is governed by
simply coupled-mode theory. In Fig. 2.25 (d), if we call the horizontal cavities as a,
and vertical ones as b,, then we can crudely write the following (ignoring the losses),

where wa, wpare cavity tuned resonance frequencies and o and f are the coupling

da

n

—==iw,a, +ia(a,  +a,, )+ifb,
t

d (2.35)
by oy i
— =1W Lpa

dt B™~n n
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coefficients in between a type cavities and b cavities. Then it can be proved by
ignoring the contributions of the b type cavities that the frequency band of the

waveguide formed by the alternating a type cavities can be represented by

W, =w, +2acos(kl) (2.36)

In terms of the waveguide’s frequency band, the system’s overall eigenfrequency can

be calculated. Photonic Crystal contains two distinct eigenfrequencies.

w, (k) = % {WA,,{ T wy £ wy, —w, +45° } (2.37)

It turns out that rather than solving the complicated expansion coefficients for the two
dimensional structures we can express the w-k band diagrams as a function of the
properties of the smaller sub blocks, in our case the micro cavities of a and b type
have been enough, together with their respective coupling coefficient.

Exciting unique experiments can be carried out when we modulate the micro
cavities. Some research groups have recently been working on intriguing ideas like
stopping and storing of light coherently. The main concept is based on the evolution

of the group velocity of the electromagnetic wave (dw, (k)/dk ) whilst the microwave

index modulation takes place [46].
Limitless number of designs and applications are viable with the introduction of
defects into the crystal structure. All we need is a two dimensional array and an

intelligent suggestion.
2.5.2.4 Surface Waves and Out-of Plane Propagation

So far we have again considered polarized electromagnetic waves propagating
on a plane orthogonal to the polarization vector, in infinitely extended crystals.

However, we live in a three dimensional world and our structures must be compatible

to finite terminated crystals. In real life, aside from theoretical calculations, surface
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localized planar modes might appear at the termination positions of the crystal.
Analogous to the case in one dimension, a defect mode can be created that is
imprisoned at the surface. Modes that decay in both crystal and in air can be analyzed
for different application fields.

As stated before, the homogenous media will not be able to scatter the waves to
form band gaps. Hence three dimensional crystals are vital for the examination of the
randomly polarized waves. Plane waves have been specifically chosen to investigate
in two dimensional crystals, but then we can not generalize our solutions for other
instances. This might be disturbing, and has been a motivation to search for ways to
deal with the third dimension.

We have tried to summarize almost all the theoretical aspects of two
dimensional crystals. In the proceeding parts, methods of controlling the propagation

of electromagnetic waves in all possible dimensions will be discussed.

2.5.3 Road to Three Dimensional Crystals, Photonic Crystal Slabs

Three dimensional crystals are useful, but difficult to manufacture. Even though
nothing can replace them totally, people have looked for other ways to overcome the
problem of confining the waves in the third dimension. No clarification seems to
bring full band gaps. Therefore, a trade-off decision has to be taken. The necessity of
full band gaps has also been discussed. It has been elucidated that full gaps are not a
great restriction to build new optical devices. Nevertheless, the structures must be
designed with precautions. The coupled waves are no longer going to be classified as
TE or TM modes, and there will be no way of traditionally defining the band gaps in
Photonic Crystal slab structures.

Research group at MIT has been one of the first teams to carefully study the
Photonic Crystals Slabs and this subsection has been a quick summary of the
theoretical backgrounds of the working mechanisms of Photonic Crystal Slabs. There
have been recently quite a lot of methods to model them [49-52]. These modeling
techniques will be briefly delivered and interpreted.
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2.5.3.1 What happens in the third dimension?

We have already seen the band diagrams in two dimensional case when k, = 0.
This has been sustained by taking the material to be homogenous in the third
dimension. Plane waves were enough to explain the band diagrams. In spite of that,
with the addition of k, value, we will be destroying the full band gaps that we had

obtained in two dimensions.
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Fig. 2.26 Projection onto the third dimension [44]

However, it must be reminded that these bands are the full projection of the
bands onto the third dimension. That involves a slight modification of the plane wave
expansion formulas. The existence of the band gap disappears and band extends into
air region where bands are continuous.

Before the treatment of the Photonic Crystal Slab, the radiation eigenmodes in
uniform dielectric slabs have to be examined. For a slab structure shown in Fig. 2.27,

when we examine the TE modes, we can write the following equations.

y4

I Height=d

Fig. 2.27 Photonic Crystal Slab

57



0
E, =| E,, |exp(i(k,x—wt))cos(k.z)...—d/2<z<d/2

0
k. sin(k_z)
H = —=— 0 exp(i(k, x — wr))
iwiy |
ik, cos(k,z)
2
w? =Sk, + k) (2.38)
b
0
E, =| E,, |exp(ik,x —kz —iwt)...z>d /2
0
K
H,=—21 0 |exp(ik,x — xz —iwt)
Wy | .
ik,

w?=c*(k,” —xk),k>0

Of course, these equations are only valid for even modes, which are symmetric with
respect to z axis. Then the continuity of the tangential components reveals an
equation where the determinant of the coefficients vanishes and we have a non-trivial

solution.

Ry ke sind

: =0 (2.39)

K cos(

Then « is the attenuation constant for guided modes in the slab. If we solve the even
modes of TE polarizations we encounter such a dispersion relation as demonstrated in
Fig. 2.28.

By intuition we can understand that some of the modes will be guided inside the
slab. These guided modes will not be coupled into the air regions and there will be
some sort of a band gap for them. Likewise the unguided modes will not be coupled
into the slab itself. There will be a clear cut distinction in between these two kinds of

propagating modes. While the modes are traveling in the x-y plane, the guided modes
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will be confined in the third dimension due to the total internal reflection. Another
thing to notice would be that higher order wave vectors are strongly guided in the

slab.
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Fig. 2.28 Dispersion relations for the slab, &, = 2.89. Notice that Frequency values

have not been calculated around k/,= 0 because of computational difficulties

When our two dimensional Photonic Crystal structure is carved into (or out of)
the slab, Photonic Crystal Slab with a finite thickness is created. The band diagrams
can be solved by applying the degenerate time independent perturbation theory of
quantum mechanics [51]. Briefly, along the z direction ¢ of the slab is assumed to

perturb the states.
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Then the dispersion diagrams will look like Fig. 2.29.
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Fig. 2.29 Band Formations for the Photonic Crystal Slab [44]. Even polarization.

We have been dependent on MIT’s software that can simulate the projected band
diagrams of the first Brillouin Zone. MIT’s software computes eigenstates of the slab
using preconditioned conjugate-gradient minimization of the Rayleigh quotient in a

plane-wave basis [52].

2.5.3.2 Do we really need a complete band gap?

The band diagrams show that we can still talk about a legitimate band gap
formation. However, a band gap in this case is a range of frequencies in which no
guided modes exist. It is not a true band gap because there are radiation modes at
those frequencies. The lines that separate the band diagrams are called air lines. The
modes below the air cone are guided bands in the slab. The traditional complete band
gaps are not possible in the third dimension. Hence our states are classified according
to their symmetry along the z axis. The TE polarizations resemble the even modes

whereas odd polarizations can be considered to be similar to TM polarization states.
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The slab thickness plays an important role in determining whether the photonic
crystal slab has a band gap in its guided modes. Fig. 2.30 shows the variation of the
gap size as a function of slab thickness for the very same slab topology whose band

diagrams are drawn in Fig. 2.29.
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Fig. 2.30 Slab Thickness vs Gap Size [44]

When the slab is too thin, it will bring a very weak perturbation to the environment,
such that no guided modes will appear. On the other hand, if the slab is too thick, then
higher order modes will be created easily. The slab will behave as if it is a bulk
material, destroying all the gaps.

Notice that computations after a certain thickness may not be reliable totally due
to computational assumptions that will be described in the next chapters. The gap size
seems to be almost constant after d = 0.5a. Then, it would be proper to choose that
value rather than seeking for a larger gap size with a larger thickness. Another

significant thing is that gaps close to the air lines are roughly in resonance with the
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unguided bands. The most appropriate way would be to design our devices close to M
and K where modes are strongly guided.

Although it will not be proven here, the first band of the Photonic Crystal Slab
is an extension of the solutions in the two dimensional case. They constitute the
ground states for the electromagnetic waves and are assured to lie under the air cone.
The air lines are also defined to be tangential to the first band. The first band decides

the width of the air cone and is strategically important.

2.5.3.3 Defects in Photonic Crystal Slabs

In spite of everything, defect structures based on the shrinking of rods or faults

in crystal slabs are feasible, yet they are not so easy. Radiation losses are inevitable.

The guided defect modes will be coupled to the air cone.

radiation radiation

Fig. 2.31 Photonic Crystal Defects
Since the index guiding can not be sacrificed in the third dimension, the rods can not

be totally removed. The situation is similar for the etched PCs. Light is contained

inside the slab by two different mechanisms, total internal reflection (TIR) in the third
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dimension and Bragg scattering on the planar surface of the periodic structure.
Consequently, people can not avoid losses, so cavities with very high quality factors
are favored in the literature [53,54].

Quality factor of a defect is the measurement of the energy possessing character
of the configuration. It can be calculated with methods like Finite Difference Time
Domain Method (FFTD) which is explained in details in Ref. 31. We did not have a
computational tool to measure the time evolution of the electromagnetic fields in
photonic crystals, and comparisons in between different results have not been
performed. However it should be mentioned that FFTD yields better convergence in
comparison to field expansion methods, and it has been widely accepted among the

Photonic Crystal research groups all over the world.

2.5.4 Three Dimensional Photonic Crystals

Finally, the last type of crystals that will be of our concern will be three
dimensional Photonic Crystals. The remaining part of our section will be devoted to
their examination. This thesis is not directly related with their design topologies and
defect formations, so just the references will be given for any further inspection. This
does not mean that localization of defect modes or confined surface states are not
reported. Three dimensional structures may be the heart of all applications in the near

future, but they are just out of this thesis’s scope for the current being.

2.5.4.1 Distinct, Manufactured Three Dimensional Crystals

The first kind that was predicted to show complete three dimensional band gap
was a diamond lattice of spheres (Fig. 2.8). As long as the sphere radius is chosen
correctly, band gaps would exist. Another proposal suggests that the dielectric rods
form a complete gap when they are designed to be connected to each other [55].

Fig. 2.32 illustrates configurations.
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2.5.4.2 Band Gaps

Generally speaking, band gaps tend to appear in structures with a high dielectric
contrast. The more light is scattered, the more likely a gap will open up. Yet any
geometry does not cause band splitting, which would be the case in two dimensional
structures. Complete photonic band gaps are rarer for three dimensional
arrangements. Drilling the correct dimensions or designing the accurate sizes of
spheres is crucial. Fig. 2.33 shows a complete band gap in three dimensions for a face
centered cubic lattice with a dielectric constant of 11.56. The radius of the spheres is

adjusted to be 0.25a, one quarter of the lattice constant.

(b)

(c) (d)

Fig. 2.32 Different Three Dimensional Configurations. (a) Rods connected to each
other (b) Rods and Holes of 2-D are mixed together (MIT group) (c) Yablonovite, the
first device to demonstrate full band gap, named after Yablonovitch (d) Cylinder
Structure
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Fig. 2.33 Complete Band Gap in Three Dimensions

2.6 Final Words

Essential theoretical background about especially the two dimensional
structures has been lied down. From here, we will be moving and directly focusing on
the design strategies that have been applied in the thesis. We will be again referring to
many points from this chapter to clarify any problems on theoretical grounds and it is
our hope that it will be the verification of why this chapter was claimed to be the

heart of the thesis.
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CHAPTER 3

COMPUTATION METHODOLOGIES

Even though we had not honestly planned to do a very detailed examination of
the conventional computational techniques in Photonic Crystal literature at the
beginning, development of new software tools to compute the band diagrams in one
and two dimensional problems can be thought as a major outcome of the project. The
expensive Photonic Band solvers have been a motivation for this purpose. I have been
encouraged to digest every theoretical step and new information by my supervisor.
The more I had been attached to the theoretical side, the more I understood the
limitations of MIT’s Band Package which has been the only Photonic Crystal
analyzer software in our hands. MIT’s software is relatively easy and user friendly,
however it occurred to us that we would only be controlling our designs behind
software which puts inaccessible boundaries between the user and the physics of the
Photonic Crystals. We do not think that it should be satisfactory for any graduate
student in Sabanci University. Furthermore, Photonic Band calculations are widely
open to assumptions and crude estimations which may cause intolerable errors.

We led this project from that perspective and attempted to write our codes in
order to realize the simulations by using other means of computational tools.
MATLAB has been a great candidate to fulfill our intentions with fast matrix

manipulation instruments.
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In this chapter, we will be discussing both MIT’s software and in some ways
compare the advantages and the shortcomings of our simulation programs. The
chapter is going to start with the introduction of the Band Package program and then
proceed with the applications for different configurations in separate topologies. It is
apparent that we will have to refer back to chapter 2 at any points involving

theoretical equations.

3.1 Introduction to MIT Band Package

MIT’s software depends on the plane wave expansion and variation methods
that we have already described. It can output spatial distribution of both eigenfields
and eigenfrequencies in the form of band diagrams. The mode profiles in the previous
chapter had been calculated by this method.

There are many significant parameters in the plane wave expansion. However,
the only parameter that can be directly controlled from the script prompt is the lattice
resolution constant. We will talk about other factors as we move on, but for now let
us concentrate on the lattice resolution variable.

MIT’s Photonic Band calculator (MPB) is programmed by Steven G. Johnson
and has been an open source that can be downloaded in related pages. MPB is simply
coded with C language and is suitable for UNIX operating system. The figure below

exhibits the shift in w-k diagrams due to resolution errors.

[ resolution=16 i 2 i\
0.32 v /[///,\\\
'%Oml‘ﬂ\niez/ / \\
\/ \
03 < \
resolution=48 p
NS \

P 3
= resolution=64 p Z
8 2

wave vector

Fig. 3.1 Errors due to lattice resolution
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The error percentage between the outputs when resolution is set to 16 and 48 turns
out to be around %1.7 at most. This is a tolerable error percentage, but the designer
should expand the coefficients within the same resolution constant to expect
consistent results for very sensitive devices. The resolution constant is directly
responsible for expressing the dielectric function in the unit cell. It meshes the lattice

with respect to the assigned resolution constant and computes the 1/&(r) matrix

accordingly. This might bring severe problems as we are going to see in more details.

3.2 One Dimensional Problem

The one dimensional Photonic Crystals have been simulated using two different
algorithms. The first methodology has been pointed out in the second chapter and is
based on the boundary calculations inside the infinitesimal crystal. This topology will
be called as the exact solution because of certain reasons. This method had been
submitted in the name of scattering through N-slabs before.

When the lengthy wave expansions and exact solution topologies are
concerned, they share the assumption that the dielectric function is alternating
infinitely in one dimension. However plane wave expansion (PWE) leads even to
more assumptions and thereby errors. For a sufficiently long crystal, exact solutions
will definitely be more accurate as long as it does not involve any other suppositions.
On the other hand PWE includes other propositions;

a) The dielectric function has to be expanded over a satisfactory amount of
harmonics. This means that the unit lattice has to be meshed into adequate
number of discrete elements so that the Fast Fourier Transform (FFT) of the
lattice is performed with enough contributors. Whatever we do, we would still
need infinite number of frequency components to express square waves, SO
specific amount of error is inevitable.

b) The number of eigenvalues is limited. While writing the electric fields in the
Bloch form, we needed to express the fields as an infinitely extended number
of expansions. Hence in the computational world we are bounded with finite

numbers. This would bring an additional error that is unavoidable as well.
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Fig. 3.2 PWE vs Exact Solution for 1-D crystal of ¢, =13,¢, =1

It figures out that rather than the Fourier expansion of the dielectric function, the
number of the eigenvalues to be inserted into our equations becomes the bottleneck.
As it can be depicted from Fig. 3.2, 50 plane waves are only enough to accommodate
for our error percentage in PWE method in comparison with the N-slabs scattering
theory. The evaluation done above has been carried out in between two algorithms
that have been adapted for the one dimensional problem. If we were to judge among
our PWE method and MPB’s PWE method, then we can crudely extract a rough idea
of how many plane waves they might have used. The situation is portrayed in
Fig. 3.3.

Considering the picture below, we can reach several deductions. The most
significant one would be that MPB can not converge for better results with limited
resolution. Actually it is the outermost line considering the upper band. Besides,
solutions approach a saturation point for more than 50 plane waves. The convergence

error of 100 and 400 plane waves seems to be on the same scale.
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Fig. 3.3 Convergence Problem of MPB

It can be claimed that the number of plane waves in PWE calculations would be
much more crucial than the meshing resolution of the dielectric function, unlike
Ref. 56. Theoretically, at the limits the meshing resolution of the lattice constant
determines the number of plane waves that we can insert into our PWE calculations
due to the duality of the Fourier expansion. Eq. 20 is converted into the following

finite forms for computational purposes.

1 J 27m
—= me exp(i——x)
g(x) m=1 a

¥ .- (3.1)
im w
- : :Em'(k-‘r )ZK(m—m') = (_)2Em
m'=1 a 4

Here, the number M will be the limiting factor if it is comparable to M’. For
very low resolution constants, the band edge of the upper band will become seriously

disoriented. But as long as we take M to be a relatively big number, it will not happen
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to be the bottleneck. It should be noted that lattice resolution was set to be around

1000 while calculating the examples in Fig. 3.3.
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Fig. 3.4 Lattice Resolution vs Plane Wave Number

Such lattice resolution constants are comparatively small to be used in actual
calculation. Hence, the influence of the meshing resolution of the lattice (denoted as
lattice resolution) is strikingly smaller than the number of plane waves to be
computed.

Slow convergence is a big issue that PWE methods suffer from. In Ref. 57 a
survey has been accomplished to estimate the error percentage shifts of the upper
band as a function of plane wave numbers to be analyzed. The small shift in the
figure must be because of the attempts performed in conventionally available PWE
methods to treat the dielectric expansion as an independent element. We will be
reanalyzing this point, but it must be remarked that people are interpolating even the
low resolution lattice representations in order to demolish the direct relationship

between the number M and M’ in eq. 3.1. This might be a way to avoid the limiting
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factor of resolution lattice constant. It also enables us to choose as many plane waves
as we desire at low resolutions, nevertheless the improvements coming from larger
amounts of plane wave contributions saturate much faster dissimilar to the case in

Fig. 3.4.

121 blue : PWE on MATLAB =
red stars : Conventional PWE

Error Percentage at the edge of the upperband (%)

[¢] 50 100 150 200 250
# of plane waves

Fig. 3.5 Classical PWE vs PWE on MATLAB for 1D problem

Working at low resolutions might be appealing at first, and it might be attractive
as long as the FFT time is reduced considerably. On the contrary, it may cause slow
convergence and it should be taken care of. We should note that Fig. 3.5 has been
drawn only to demonstrate the similarities of error reduction curves between our
MATLAB implementation and the classical PWE methods in terms of plane wave
numbers. The data about conventional PWE methods has been extracted from
Ref. 57, and the slight shift with respect to the MATLAB version should not be

necessarily interpreted as a significant superiority of our implementation.

3.3 Two Dimensional Problem

Two dimensional Photonic Crystals have been simulated with both MPB and

our PWE methods. Unfortunately, the exact solution’s adaptation to the two
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dimensional case would be extremely difficult and has not been attempted.

Therefore, the main comparisons will be in between these two algorithms.

3.3.1 Computational Differences

It should not be understood that MPB is based on a completely different
methodology. PWE is employed to expand the electromagnetic fields, but at the last
stage variation method (eq. 2.27) is used to guess the ground state by writing it in
terms of the chosen eigenstates. As a result, MPB requires a significant iteration time
to converge to a stable saddle point. On the other hand, our software expands the
electromagnetic fields (eq. 2.25), the eigenfrequencies are directly found by
MATLAB'’s special eigenfunctions. MATLAB can remarkably handle huge matrices
like 961x961 very easily with the help of its internal diagonalization functions. Huge
Matrices with dimensions exceeding 1000x1000 is usually the case to minimize the
error contributions.

If we were to examine the band diagrams very precisely, then they would look

like the following figure.
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Fig. 3.6 Comparison of MPB with our PWE method in 2-D for ¢, =9,¢, =1
SQ lattice of rods, r=0.2a
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For two dimensional problems, results have been compared for various numbers of
plane waves. Since we do not have the absolute control over the parameter, it might
be only a speculation for now, but MPB seems to utilize even more than 1000 plane
waves. Our results tend to come closer to MPBs’ as the number of plane waves is

increased.
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blue : PWE on MATLAB
red stars : Conventional PWE
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Fig. 3.7 Conventional PWE vs PWE on MATLAB for 2D problem

Again when we compare the conventional applications with our software [57],
it can be seen that our algorithm roughly coincides with the band solver solutions
available in the market. Researchers are discussing and proposing even faster
convergences by applying small but useful adjustments to the master eigenvalue
equation of 2.4. In most of the cases, a trade of has to be managed in between the
time consuming FFT of the lattice structure and the appropriate formulation of the
eigenvalue equation. In spite of that, these studies are more related with mathematics
and they are out of scope for just now. We are going to be contented with just

mentioning these examinations.
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3.3.2 Defect Calculations

Defect calculations are very critical for the thesis. In plane wave analysis a
method called supercell expansion is frequently used. In this method, the structure
shown in Fig. 3.8 is regarded as the unit cell, which is in fact a supercell, and the band
calculation by the plane-wave expansion is performed for this unit cell structure.

Then defect modes with a very small bandwidth appear in the band gaps.

® ® 000
5 & 8 e e 0

.
'

.
Unit Cel

Fig. 3.8 Unit Cells in Defects [44]

The figure above is a typical dielectric output function of MPB. Replicating the
supercell by defining a new unit cell might be a neat idea. However it goes along with
serious drawbacks. Firstly, we are going to need plenty of new plane waves to
reconstruct our computational matrix. This is because, when we extract our unit
lattice to create a defect site, we are also recharacterizing the Brillouin Zone by

stretching out the irreducible zone’s volume N*, which is 25 for Fig. 3.8. Then the
new unit cell’s N> —1 will correspond to the first band edge of the old primitive unit
lattice. This means that the band gap will now be starting to appear above the
(N? —1)" band of the new structure. Specifically for the configuration in Fig. 3.8, the
defect band will reside at the 25" band. Calculating accurately the bands starting
by N?, require a huge matrix consisting of a lot of plane wave contributions. The nice
convergence that we have found in Fig. 3.7 can not be applied anymore. The total
computation may entail hours and even days! Fig. 3.9 shows the error ratios and the

demanded CPU time to carry out the calculations.
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Fig. 3.9 Defect Calculations Errors with respect to No Defect Calculations

Another drawback of superlattice method is the so-called defect to defect
modulations. Provided that our defects are separated only by the lattice constant of
the superlattices, our results will also include the defect to defect mode coupling
factors. In the real world, we would like to have sharp resonances for our cavity
designs and defect modulations may not be favored. The defect band should be

limited accordingly. Fig. 3.10 is an illustration of the phenomena.

Af,=0.0295 c/a f; = 0.0039 c/a Af; = 0,006 c/a Af, = 0.001 ¢/a

Fig. 3.10 Defect to Defect Modulation
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The ideal way to handle the problem is to expand the superlattice indefinitely.
Nevertheless, we are bound with the finite memory of the processors. The extension
coefficient of the superlattices is inversely proportional to the required CPU time. We
would like to avoid the accumulation of thousands of plane waves, if possible. Also,

7x7 superlattices’ defect to defect to modulations look to be tolerable.

3.3.3 Further Improvements and Extra Features

PWE method has been modified for MATLAB environment. As it was stated
any improvement over the algorithm by readjusting the matrix formulations has not
been our essential concern. Yet, could there be any advances from an engineering

perspective? The answer to this question has been our driving force.

3.3.3.1 Fast Fourier Transform of the Dielectric Functions

MATLAB can cope with many functions and can produce their n-dimensional
Fast Fourier Transforms successfully consuming little CPU time. Regarding that, the
respective FFTs’ of the one and two dimensional periodic lattices had already been
portrayed in Fig. 2.6 and 2.7. If we remind ourselves that M >> M 'restriction might
be also applied analogously to the one dimensional case in eq. 3.1, then we are free to
represent the unit lattices with enormous resolution. Hence, we need not to consider
all the expansion coefficients. As a result of the periodicity, the pattern can be
recreated from the fundamental and small amounts of harmonics. In Fig. 3.11, high
resolution meshed lattices’ FFT images were used to maintain the old images. For this
specific case, only first 40 harmonics from each side (totally 81 components) have
been utilized to convert the lattice dielectric function. Actually Fig. 3.11 also shows
why we have to face a lot of trouble with super lattice theory. The single rod could be
expressed in terms of dielectric tensors and the single rod image is easily
recognizable, whereas the rods with defect structure have not fully gained their shape

at the defect site even with 81 components, we are still missing some contributors.
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Fig. 3.11 Invertible Images

Based on these ideas, we can ignore the low weighted expansion coefficients to
speed up the PWE algorithms. In our software, we omit the coefficients smaller than
the adjusted fraction of the DC value. In the eigenvalue problem, this technique
decreases the necessary CPU time for evaluations as long as factorization of the

matrix gets easier with less elements placed on the matrix.
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Fig. 3.12 Error vs Tolerance values with respect to No Defect Calculations

78



A tolerance value has been assigned. This value determines whether a matrix

element is going to be inserted into the wave equations or not.

DC
Tolerance

< Harmonic = .inserted (3.2)
Then Fig. 3.12 is obtained. For a 3x3 superlattice of square lattice of dielectric rods
standing in air, CPU time is decreased from 5 min. to 2 min. as expected. The error

values are acquired by comparing the frequency values of the defect bands.

3.3.3.2 Determination of the Phase Shifts

MPB can nicely draw the bands, settling the gaps. The user may interpolate as
many wave vector (k) values as she/he desires. However MPB lacks a tool to
approximately calculate the phase shifts due to the disturbances in the periodic lattice,
which is essentially important for sensor applications in Photonic Crystals.

Any perturbation may alter the band diagrams and an electromagnetic signal
propagating through the crystal with a fixed frequency may be compelled to endure
certain amounts of phase shifts. The problem contains inverse iterations of band
frequencies to estimate the desired k& values.

This feature has also been added in our PWE software and is going to be helpful
in finding out the sensing capabilities of the Photonic Crystals in the following

chapters.

3.4 Photonic Crystal Slabs

Unfortunately, we have been dependent on MPB for the Photonic Crystal Slab
solutions. We could briefly mention the drawbacks of Slab solver tool of MPB. The
analysis has been clearly done in Ref. 52 that symmetric structures in the third
dimension are needed. Any symmetry breakdown along the z axis mixes the odd and

even modes, and therefore destroys the band gap for the guided modes. The software
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may only accept the following configurations if we had to manufacture the slab
structure on a specific substrate. Now, Fig. 3.13 is almost impossible to realize in a
micro fabrication facility, still the symmetry in the third dimension is a strict
requirement of the software. A secondary substrate has to be added with the same
thickness, d. It should be useful to keep these properties in mind during the design

and modeling stages.

d substrate

d substrate

Fig. 3.13 Limitations for MPB’s Slab Solver

3.5 Final Words

The implementation of the PWE has especially helped us to understand the
electromagnetic field propagation in Photonic Crystals. PWE combines the Bloch
vectors of Solid State with Maxwell’s equations in electromagnetic theory and still is
a powerful tool for the beginners in the field. Band diagrams, mode profiles, defect
formations can be explained by this simple theorem which is based on the expansion
of the field coefficients in the coordinate space.

In addition to that, our software gives us the opportunity to control other
parameters as well. A detailed analysis on the error ranges of PWE, and our
awareness of the limitations coming from PWE is going to be our strong points at the

design and experiment phase.
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CHAPTER 4

DESIGN METHODOLOGY

This chapter will be dedicated to the introduction of the methodology for
sensing very small refractive index changes via phase shift of the EM wave as well as
the design stages of our proposed devices that we have built utilizing the special
features of Photonic Crystals. Two different cavity designs based on two dimensional
Photonic Crystals will be presented.

The designs have been both developed specifically for sensing applications. The
main idea has been to examine the perturbing effects of the outer disturbances on the
Photonic Crystals.

The experiments of the suggested devices and comparisons in between the
theoretical expectations and experimental results would be more than convincing. As
a result, the design parameters have been chosen in such a way that realization and
experimental set-up of the overall structure would not be extremely difficult.

It should also be mentioned that the results have been tried to be optimized in a
certain range, but yet even better models with better performance issues could be
offered for other particular design criteria (different frequency range, fabrication
necessities, with different FDTD tools ...).

Both our PWE tool together with MPB have been employed to generate the

theoretical outputs. The output results must always be interpreted considering the
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error tolerances of our programs. The fundamental working mechanisms delivered in
chapter 2, should be enough to understand the general picture.

In this section, we will start from the selection of the background Photonic
Crystal with certain dielectric filling ratio. We will be examining the estimation of the
phase shifts of the traveling EM wave due to the band edge modulations. Then we
will be proceeding with the design of the point defect site. Coupling the waves into
the cavities will be studied and finally the sensing capability of the defect will be

examined.

4.1 Background Crystal

The first step in the design should be the determination of the Photonic Crystal
topology. There are various choices in two dimensions, like triangular lattice and
square lattice configurations of holes or rods as explained in the second chapter. Yet,
the topology that we choose here should easily be realizable in our labs. Therefore,
we have decided on working with rods rather than any other hole arrangements. This
preference is solely based on the fact that it would be easier to construct a perfect
crystal with periodically spaced rods, instead of struggling to carve perfect holes into
a fairly tall bulk material in the microwave regime. Etched hole configurations would
be much more efficient and would yield better results if we had to micro fabricate our
designs in optical communication wavelengths.

As for the index contrast, PWE may not converge very well, aftere, =10,¢, =1.

We have tried to work for the case where the results of our PWE and MPB programs
agreed the most. Fig. 4.1 shows this phenomenon as the background material, air’s
index is kept constant, gap size and mid band gap frequencies have been analyzed.
We would need a certain amount of gap to let the disturbances swing the defect band
freely. The more the index contrast we have the bigger gaps we do maintain. But we
can not increase the contrast indefinitely, because PWE methods become liable to
errors. Also for the low index contrast case, gap frequencies are really quite high and
gap sizes are relatively small to design our cavity structures. Values around 2.7 and

3.2 seem to be suitable for our purpose. Consequently we have chosen our high index
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material to have a refractive index value of 3.13 in our cavity designs. Actually this
has not been a random choice as well. Alumina rods, which are frequently used in

Photonic Crystal literature, have also a refractive index value of 3.13 around 9GHz.

0.2

05 T T

&
i

Mid Gap Frequency
Gap Size

0.3

3.5
nhigh
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The second important parameter that we have to consider now is the volume ratio of
the crystals in the unit cell which is another way of saying r/a. Fig. 4.2 is plotted to
point out the gap size dependency to the rod radius. It is obvious that gap sizes would
shrink as we increase 7/a values after a certain point. The propagating wave would
see almost a homogenous block rather than a crystal structure. Too thin crystals
would also not be able to scatter the light, so splitting only small gaps. It can be
deducted from the figure that »/a values in the range of 0.15 to 0.25 might be
practical. However frequencies around the value of 0.15 are comparatively large and
we may not be able to sweep the whole frequency spectrum in the gap at the
experimental stage. In fact, » = 0.2a both addresses lower frequencies and huge band
gaps as we desire. This methodology is analogous to the small signal amplifier
designs in analog circuits where we begin by searching for a biasing point that
produces swings without distortions.

Then two important factors have been settled down. In the continuing parts, our

crystals will be alumina rods with a radius of 0.24, in terms of the lattice constant.

4.2 Proposed Method for sensing very small refractive index changes

As an example, we calculated the lowest two bands for a square lattice of rods
with a lattice constant a and a rod diameter of d = 0.4a. The dispersion diagram is
plotted in Fig. 4.3 where the points I', X, M are the traditional representations for the
corners of the irreducible Brillouin zone of the square lattice. Each rod stands in air
and has a dielectric constant of &,,4,= 13.39. The slopes at the three designated band
edges are small enough to practically study the phase shifts. When the background
dielectric constant, which is air in our case, is perturbed, band diagrams move such
that an EM wave traveling with a certain frequency and a wavevector, is going to
require a phase shift. If the transmission at that particular frequency is investigated,
the amount of phase shift, A® is directly proportional to Ak. The phase shifts at the
first band edge can graphically be seen in Fig. 4.4. For the same PC configuration
whose band diagram is displayed in Fig. 4.3, Fig. 4.4 illustrates the band modulations

at the first edge. The dispersion relations have been solved in the I'-X direction as the
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background index is incremented (dashed line) from its initial value (solid line). At a
specific frequency, f;, the EM wave will have a phase shift that can be defined as,

A® = Ak.L where L represents the optical path traveled by the EM wave.

05 4
0.4r @ bl
@
03 4
g O,
=]
g €y,
[T
02 4

%

0 1 I I

r X Wave vector M I
Fig. 4.3 Band edges
0.25
S ]
I /// I
02 Lo ! i
T |
- |
R | |
e | I
S
o 015F e | | ]
S e | |
- : :
] . I I
3 e I I
o e I I
s - : :
= o4t 7 ‘ | i
P I I
e I I
d | |
& | |
i | |
e | I
s I I
e I I
I I I
// I I
0051 o’ } } .
re | I
e | |
e I I
e | |
7 | |
/ | |
7 | I
a | I
0 | | = [
Wavevector, k « Ak —s

Fig. 4.4 Phase shift estimation from w-k graph at band edge 1

85



Following the same methodology, we have estimated the relevant phase shifts at our
three band edges separately. The evaluations have been computed for index
modulations starting with 10 down to 107'°. The graph in Fig. 4.5 reveals that the
phase shifts pursue almost a linear response on the logarithmic scale with respect to
the index modulations. It should be noticed that the reported phase shift values are

given per unit lattices. Consequently, we deduce that we should theoretically detect

index variations on the order of 107" /+/Hz with a 100x100 PC configuration of

square lattice of dielectric rods using a very sensitive interferometer structure [58].
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Fig. 4.5 Phase change per lattice for the band edges shown in Fig. 4.3 is plotted as a

function of the index change.

An Band Edge 1 Band Edge 2 Band Edge 3
10 2.4x10° 2.7x 107 8x10”
10”7 1.2x 10" 9.3x 107 4.1x10"
1070 1.8x 107 8.8x 10" 56x 107

Table 4.1 Phase change per lattice for the band edges shown in Fig. 4.3 is listed as a

function of the index change
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Moreover, when we compare the performance characteristics at distinct band
edges, it is apparent that better results can be attained by working at edge 3. Upper
band is influenced at higher rates from index modulations, which causes larger phase
shifts as an output. Likewise, similar arguments can be done for PC with defects.
Modest defect bands, created by the removal of one dielectric rod would also produce
phase shifts. Actually, we anticipate that defect based PCs are promising candidates
for sensor applications. PC defects set up cavities whose bands can easily be

modulated by refractive index perturbations. We propose that sensitivities can be

further improved down to 10™* /+/Hz with simple defect formations.
4.3 Cavity based designs

The proposed cavity structure can be further used on for two specific goals.
First, it can be operated to sense the material based faults, in other words to sense the
refractive index alterations in materials. Secondly it can be utilized to serve as a gas
sensor, which can sense the index changes at the background material, which is air in

our case.
4.3.1 Sensing Material Faults

The tuning ranges of these types of cavities had been laid down in Fig. 2.23 and
2.24. When Fig. 2.24 is examined carefully, it is apparent that the only useful parts
are in between rgeree= [0, 0.15a] and rgefee= [0.25a, 0.4a]. Modulation effects after
Tqefect = 0.4a has not been drawn, but similar behavior of the defect site continues there
as well. Hence, all the states lose their uniqueness once they sweep the band and
develop into at least doubly degenerate states. But we would like to work with single
mode, non-degenerate elements. The dipole modes contain two states with the same
wave vector. This may bring trouble for our measurement techniques. So our range is
further narrowed down to rgefec= [0, 0.15a].

Our objective in this sensing mechanism is to build a system that can perceive

the small refractive index changes of the rod at the defect site. In other words we are
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perturbing the confined electric fields. Then we would like our perturbation to be as
efficient as possible. Coupled mode theory tells us that it can be maintained by

maximizing the overlap integral of the perturbation function with the electric fields.
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In the given range, the defect size variations would modify both the power
confinement and the bandwidth of the defect band. These are the parameters directly
responsible for the quality assessment of the defect site. We would favor power
confinement over anything, because our perturbations would be sensed by the system
in a more delicate way. A defect radius of 0.1a seems to be meeting our expectations.
Then our cavity is totally formed.

If the material’s refractive index at the defect site is electroptically tuned to
imitate the refractive index modulation, then the transmission spectrum of the defect
would shift accordingly. In the light of Fig. 4.7, the frequency shifts of the midband
frequency of the defect band almost follow a linear path with a finite slope of

approximately 0.03.
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Fig. 4.7 Frequency Shift vs index modulation
Chemical sensing with Photonic Crystal based cavities has attracted

considerable attention recently. Loncar et al. [13] had proposed a laser cavity whose

spectrum can be shifted by an amount of A4 = 266An (as a fitting parameter) for a

&9



Photonic Crystal structure with lattice constant on the order of 400 nm. Then when
we reconfigure Fig. 4.7 for wavelength swings, we can obtain Fig. 4.8. For the same
lattice constant, this cavity structure yields AL = 115An.

Nevertheless, our major concern has never been the long wavelength shifts due
to large index modulations. We are rather trying to sense very low index modulations
which Loncar et. al. have not particularly studied. For such modulations the plane
waves inside the crystal will still be in phase. The phase shift brought by the crystal

can be calculated.
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Fig. 4.8 Wavelength Shift vs index modulation

Fitting functions reveal that the linearity of the modulation is preserved even at
comparatively low modulations. We suggest that using simple cavity structures like
we have already defined, super sensitive refractive index sensing can be feasible.
Fig. 4.9 implies that theoretically speaking, 1 GHz frequency shift would be the result
of only10~®in the optical regime. PWE might have convergence problems, but these
problems are valid for every single calculation. The error offset is almost constant and
our computation tolerance value can be lifted up to 10~*c¢/a without any significant

problems. Then the swinging w-k band diagrams at the resonance frequency could be
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drawn. The defect band is modulated by An=107°,5x10"10"respectively in
Fig. 4.10. There are two suitable saddle points to study the phase shifts, one at point
K and the other at point M. The slopes are too low and makes it practical to study

the Ak

w=const. *

0.3498 T

0.3498 - q

0.3498 - Ny Af=0.0838n -

0.3497 - *

0.3497 - T

Frequency ¢/a

0.3497 - b

0.3497 - T &

0.3497 - s T

0.3407 ! ! I ! ! ! !
1

Fig. 4.9 Frequency Shifts at low Index Modulation

0.352 .
03515 i 4
0.351

0.3505

o
4
&

Frequency ¢/a

0.3495

0.349

0.3485

0.348 'X . M

Wave vector

Fig. 4.10 Defect Band Hopping with Index Modulations

91



The relative phase shifts at band M are listed in Table 4.2.

Phase Shifts (mRad / a)
An=10"* 133.5-138.7

An=10" 31.8-51.1

Table 4.2 Phase Shifts vs Index Modulations

When we compare the results listed in Table 4.2 with the phase shift values
with bulk PCs without any defect site, there evidently exist an enhancement on the
order of 10. Accordingly, if we again assume a linear behavior in the logarithmic
scale, similar to the case depicted in Fig. 4.5, we can deduct that it is possible to sense
refractive index variations down to 107" per lattice distance at band edge M. Roughly
speaking, the performance characteristics are improved 10 times with the inclusion of
a defect site.

The values in Table 4.2 are given inside certain intervals unlike the bulk crystal,
because of the difficulties in determining the exact phase shifts with MIT Band

package program.

4.3.2 Gas Sensor

A gas sensor could also be realized with a similar configuration. Gas sensor that
can sense the perturbations in the environment would be more than functional. In this
part, we will examine the performance issues of such a design.

The same cavity design could be applied to this version of the problem.
However now, the background index modulation is taking place. Assuming that the
index of the air is almost homogenously perturbed in a unit volume, the cavity could
be utilized to work in an analogous fashion.

The background index modulations should be a major element in determining
the resonance frequency of the defect. Then again the electric fields should be
localized where the perturbation takes place. In other words, the defect must be

created by totally removing the rod. Next we can start by inspecting the defect
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resonance frequency shifts in the same manner like we have just done for our first

design. But in this case, the background material is in the gas form, and would only

yield perturbations on the order of 10™* — 107" at most. Actually, the index of air that
we breathe may fluctuate around those values as a function of harsh pressure and
temperature conditions.

It appears that such a design is much more sensitive to index modulations. This
is logical under the context that we are modifying the whole crystal structure rather
than just being contended with the defect site. Comparing it again, this corresponds to

a value of A4 = 660An for a lattice constant of 400nm.

Phase Shifts (mRad / a)
An=10"" 164.3 — 166.9

An=10" 48.5—58.1

An=107° 9.7-344

Table 4.3 Phase Shifts vs Index Modulations for the second design
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Fig. 4.11 Frequency Shift vs index modulation for the second design
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Table 4.3 dictates that sensing 102 per lattice is feasible with the proposed gas
sensor, again by extrapolating the values for smaller changes. MIT is not very helpful
for such calculations. The exact results should be obtained directly by other PWE
methods. Still an improvement on the order of 100 with respect to the bulk crystals

can be attained.
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Fig. 4.12 Wavelength Shift vs index modulation for the second design
4.4 Final Words

We have tried to deliver the basic design frame that we have been through. The
results show that even with these modest and trivial cavity structures together with
the band edge modulation techniques of the bulk crystals, high resolution, and
sensitive sensing mechanisms are feasible. People have come up with many other
topologies. Most of them require a lot more significant control and FDTD tools are
like an obligation.

Yet, with only employing PWE methods, nice designs are still achievable with
some error tolerances. However, we also have made some significant assumptions in

our designs. In real life it would be hard to fabricate alumina rods with perfectly 3.13
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refractive indices and with exact dimensions. We also neglected the material
dispersion effects. The dielectric constants would also be shifted while sweeping a
frequency interval. One last supposition has been the consideration of the gas
surrounding the sensor to be homogenous. A closed and isolated environment could
only sustain such conditions.

Consequently, one must be precautious while applying the theoretical designs
into the real world. The tolerable error margins have to be decided upon and the
viability of the experiments should be discussed ahead.

In the following chapter we will be presenting the attainment of the
experimental set-up at the microwave regime. Similar design configurations will be of

our concern.
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CHAPTER S

PHOTONIC CRYSTALS AT THE MICROWAVE REGIME

Owing to the generality of our master equation (eq. 2.4), we have so far limited
ourselves to no specific frequency regime or in other words to any dimensions. We
have paid attention to write all the frequency components in terms of the lattice
constants. So, all the frequency values are easily scalable to any frequency regime.

Inspired by the works of Ref. 58, we have been determined to experimentally
demonstrate the basic notions that we have laid out theoretically in the previous
chapters.

Building a Photonic Crystal block that closely satisfies our design parameters in
chapter 4 has been our major objective. Now, we are going to begin by presenting our
experimental set-up. First, the Photonic Crystal structure will be clarified, and then
other microwave components will be described. Our fundamental theoretical

expectations will be compared with the experimental outputs at the final stage.

5.1 Photonic Crystal

We have conducted our experiments in the microwave regime with a PC made

up of a 7x7 (49) matrix of alumina rods. The simulations had been carried out for 2-D
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structures and therefore the length of the constructed PC has been chosen to be long
enough to sustain homogeneity in the third dimension. The main operating frequency
has been selected as 10GHz, which corresponds to a wavelength of A=3cm. At this
stage, we predicted that a length of 5A would be sufficient to minimize the scattering
in the third dimension. A square lattice configuration has been achieved by arranging
15cm long alumina rods properly with a lattice constant of 1cm. Alumina is a reliable

material with low tangent losses and a relatively high dielectric constant of 9.79.

Frequency {(GHz)

r X Wavevector M a

Fig. 5.1 Band diagram of our Photonic Crystal

The radius of the rods were assigned to be 0.2cm to split up a band gap approximately
between 7.91-13.04 GHz in the I'-X direction and 9.25-15.96 GHz in the X-M
direction. The band diagram of our Photonic Crystal configuration has been portrayed
in Fig. 5.1. Rod, by rod we carefully constructed our crystal structure by gluing to
Plexiglas holders. The holders were placed to make sure that alumina rods were
standing totally aligned and straight. Actually, we had planned to carry out the

experiments with a greater matrix of 11x11, but the limitations in the market obliged
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us to work with a 7x7 matrix. Still we were well aware of the difficulties that smaller
matrices would bring [59]. Smaller dimensions would mean, bigger deviations from
the theoretical results, which were performed assuming infinitely extending PCs in

the x-y plane.

5.2 Experimental Set-Up

Our experimental set-up is composed of two antennas for transmitting and
receiving purposes. Both of the horn antennas have been designed with the following
parameters as shown in Fig. 5.2. The designed antenna’s operating frequency has

been chosen to be closer to the mid-bandgap.

E=9mm
H=22mm

Fig. 5.2 Horn Antenna Dimensions for f= 10 Ghz

The antennas exhibited a flat transmission (flat S;;) and high radiation (low S;;)
around the two lowest frequency bands of the PC, which have been vital for our
experiments. Fig. 5.3 and Fig. 5.4 demonstrate S-parameters of the antennas with
respect to the frequency. The S;; stays below -10dB which is a widely accepted
threshold for a well designed antenna. Moreover, S;;, that determines the
transmission characteristics were relatively flat around our operating frequencies that
ensured minimal non-idealities contributed by our antennas. The antennas have been
strictly aligned to face each other on the same horizontal line. The aperture and the
beam size of the antennas were comparably smaller than the dimensions of our PC to
allow most of the field to be coupled into the PC and thereby preventing the

unwanted fields to be detected by the receiver horn due to the finite size of our PC.
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Antennas were manufactured from brass and copper. Representative layouts were

drawn for the antennas. The exact dimensions are given in Fig. 5.5.
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Fig. 5.5 Layout representation of the antennas
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Fig. 5.6 Experimental Set-up

After having investigated antenna characteristics, Fig. 5.6 shows the
experimental setup built in our microwave laboratories. The index modulation and
thereby the sensing mechanism is based on the pressure dependence of the refractive
index of the nitrogen gas. A Plexiglas gas chamber sustained isolation for the PC that
is located inside. The inner pressure is adjusted with the help of a nitrogen tank. All
the air is assured to be taken out to the chamber via the gas outlet while nitrogen is
steadily pumped from the gas inlet. A pressure sensor, MPX2202DP had been
attached to the gas chamber to keep track of the dielectric constant of the nitrogen
gas. In order to realize our aim, an expression was already available. At higher radio
frequencies, the refractive index of nitrogen gas is assumed to vary almost linearly

with changing pressure (P) according to the following equation [60,61]

~1)x10° =294.1x P (5.1)

(nnitrogen
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Our chamber could stand up to 1.5 atm that would alter the refractive index of
nitrogen by 10™ at most. This value would be our top boundary for highest index
modulations to achieve phase shifts on the traveling EM wave. For that prospect,
S-parameter Vector Network Analyzer, Agilent 8720ES has been used to generate the
EM waves propagating through the PC located inside the gas chamber. Data analysis

of the received signals has also been carried out with the Network Analyzer

5.3 Experimental Results

First, in order to annul the Fabry Perot resonations from the consecutive walls of
the Plexiglas gas chamber, the transmission characteristics of our PC has been studied
in air. The free space transmission of the antennas (Fig. 5.4) had been saved initially,
and then the transmission values through the PC structure have been processed.

Fig. 5.7 illustrates the ratio of these gathered quantities.

180 T T

160 i

Transmission (Arbitrary Scale)

Frequency (GHz)

Fig. 5.7 Transmission characteristics in air. Notice that the transmission values on the
y-axis are arbitrary units.
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As the network analyzer sweeps the frequency ranges, we would expect to see
discontinuities in S,; parameters due to the photonic forbidden region. The
transmission characteristics reveal the band edges of our configuration. In agreement
with the theoretical expectations, the band edges turned out to lie roughly at 8GHz
and 13GHz. Yet, there is still considerable amount of transmission up to 9.3GHz
owing to the unstoppable coupling of the wave vectors in the X-M direction.

Nonetheless, we have determined our band edges. Later on, we would work
specifically at these points. Experiments that are carried out at 8 and 9.3GHz show
that our theoretical expectations are in very good agreement with the measured phase
shifts as depicted in Fig. 5.8. While the inner pressure is modulated in between latm
and 1.5atm, the phase shifts of the EM wave have been registered as an output of the
network analyzer. The network analyzer’s embedded inner circuits combine both of
the transmitted and received signals with some kind of a mixer topology to calculate
the relative phase differences. This is supposedly the electrical analogy of the optical

interferometer configuration that has already been discussed.

defect band = 11.7 Ghz

Frequency (Ghz)
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Fig. 5.9 Defect band diagram
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Fig. 5.10 Confined mode profile at the defect site
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Fig. 5.11 Transmission characteristics of the defect configuration in air. Notice that

the transmission values on the y-axis are arbitrary units.
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We have also investigated the defect configuration by removing a single rod
from the middle of the matrix. According to the theoretical results, the defect band
would reside at 11.7GHz. The band structure has been exhibited in Fig. 5.9.
Experimentally, we have examined the case by inspecting the transmission
characteristics of the PC again in air. Experimental results support that there is a
confined mode inside the cavity, whose mode profile is given in Fig. 5.10. The
transmitted power out of the cavity has been detected by the network analyzer and is
plotted in Fig. 5.11. There used to be no resonances in the band gap, but a sharp peak
can now be noticed when the rod is removed from the middle of the matrix. However,
we have not been able to follow the same procedure by particularly determining the

phase shifts at defect bands. It has been left as a future study.
5.4 Discussion of the Experiment

We have also calculated possible phase differentiations if PC were not present
in the chamber to convince ourselves that the primary changes were caused by the
band edge modulations. As we modify the gas pressure, an L = 12c¢m long chamber
would also yield a phase difference in proportional to the expression given in

Eq. (5.2).

L (5.2)

7 nnitrogen
However, even if a rather huge modulation were applied on the order

of An =10, a phase change of only 0.14 degrees would be achieved, which

nitrogen
obliges our resolution to be around 25 times worse than the scenario with PC.
Without any doubt, modulation at the photonic band edges is dominantly responsible
for phase shifts. Besides, a waveguide structure with the same length, experiencing
the same amount of index modulations in its claddings would at most cause a phase
shift of 0.1 degrees, which again signifies the importance of our configuration.

In our experiment, most of the errors are coming from the nonidealities of the
antennas and PC structure. Better results are predicted with improved antenna

designs. Moreover, as the number of layers in PCs has increased, deviations from
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theoretical results are expected to decrease dramatically. The finite size of the PC is
the major problem. Hence, larger superlattices could bring our simulation results
closer to the experiment output values.

Nevertheless, we have accomplished several significant points. Theoretical
calculations have been successfully carried out in the simulation environments, and
the experimental results back up the theoretical expectations. The theoretically
determined phase shift values can be directly correlated with our experimental results
as shown in Fig. 5.8 at two separate band edges. We have completed our proof of
principle experiments fruitfully. The method looks very promising and we have not
come across with a particular problem that would prevent us from sensing even much
smaller index modulations in a perfectly isolated space with higher resolution

interferometer topologies for future attempts.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have proposed that the location of the band edges and the location of the
defect bands of a photonic crystal structure is a strong function of the dielectric
contrast; hence a propagating EM wave will acquire a phase shift if there is a change
in the dielectric constants of the structure.

We have performed the proof of principle experiments in the microwave regime
with a photonic crystal made of 7X7 alumina rods placed in a gas chamber. The
refractive index changes were obtained by changing the gas pressure and the resultant
phase shifts were recorded with a vector network analyzer. The experimental results
were in good agreement with the theoretical calculations.

In our experiments we employed rather large index changes since the vector
network analyzer is rather a crude instrument to determine very small phase shifts.

However if the phase shifts can be recorded interferometrically, calculations show

that we can sense index changes on the order of 107"/ JHz down to signal bandwidth
of 1Hz by using a 100 lattices. Also, a further sensitivity increase of a factor of 10 is
possible by recording the phase shift of a defect mode signal.

The theoretical investigations show that defect bands are even better candidates

specifically for sensor applications. The realization of the experimental setup with the
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defect band and the demonstration of the predicted theoretical phase shifts are major
future works at the experimental side. Also, the volume of the gas chamber could be
shrunk down. Further experiments can be carried out at higher frequency regimes
such that the control and isolation over the gas pressure in the chamber could be
handled much more efficiently with smaller dimensions. Then, the limits of our
sensor could be tried with the construction of interferometers with very high
sensitivities. The established multi functional sensor design could be used as a
chemical detector in liquids where ultra precision is vital. It could be utilized as a

pressure sensor and could find many other application fields in biomedical practices.
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