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Abstract

A permutation polynomial (PP) over a finite field I, is a polynomial in F [z] which
induces a bijective map from F, to itself. PPs are of great theoretical interest and are
also needed for applications.

This thesis starts with some basic facts about PPs. Recent results about one of
the most important open problems in this topic: counting PPs of a given degree, are
presented.

Well known classes of PPs are the linear polynomials, the monomials x*, with
gcd(k,q — 1) = 1, the linearized polynomials, and the Dickson polynomials. It turns
out that finding new classes of PPs is not easy. We also focus on this problem and give

a survey of some recent constructions.



SONLU CISIMLER UZERINDE PERMUTASYON POLINOMLARI

Esen Aksoy
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Tez Danigmani: Prof. Dr. Alev Topuzoglu

Anahtar Kelimeler: permiitasyon polinomu, sonlu cisim, Dickson polinomlari, derecesi

n olan simetrik grup.

Ozet

Sonlu bir cisim F, iizerindeki bir permiitasyon polinomu (PP), F, dan F, ya birebir ve
orten bir fonksiyondur. PP lar1 teorik acidan biiyiik énem tagimakta ve ayni zamanda
uygulamalarda da kullanilmaktadair.

Bu tez PP larn hakkinda temel bazi bilgilerle baglamaktadir. Bu konuyla ilgili
acik problemlerden biri olan "verilen bir derecedeki PP larimin sayisi" iizerinde son
zamanlarda yapilmig olan caligmalar incelenmektedir.

Dogrusal polinomlar, (k,q—1) = 1 kogulunu saglayan x* formundaki polinomlar ve
Dickson polinomlar: bilinen bazi PP simiflaridir. Yeni PP siniflarim1 bulmanin kolay bir
problem olmadig1 bilinmektedir. Bu tezde son zamanlarda bu problem iizerinde elde

edilen sonuclara da yer verilmigtir.
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CHAPTER 1

INTRODUCTION

Permutation polynomials (PP) over finite fields play important role in the study of
secure transmission of data and in combinatorics for the construction of several com-
binatorial designs. Throughout this thesis, we intend to give a survey of some recent
theoretical results on PPs over finite fields. For a detailed literature on this subject we
refer to the books [8] and [12], and to the article [10].

In this Chapter, we first introduce the well known criterion for the determination

of PPs and review some of the known classes of PPs.

1.1 Preliminaries

Definition 1.1.1. Let [F, be a finite field of ¢ elements, where ¢ = p", p is a prime
and n is a positive integer. A polynomial f(x) € F,[z] is said to be a PP of F, if the

induced map a — f(«) from F, to itself is bijective.

Given a permutation o of the elements of IF, there exists a unique polynomial
fo € F,[z] with deg(f,) < g and f,(c) = o(c) for all ¢ € F,. The polynomial f, can be
given by the formula

folw)= Y oe)(1 = (z—)""). (1.1)

c e Iy

or by the Lagrange interpolation formula, see for instance [8]. From (1.1), we note that
deg(f,) < q — 2, since all elements of F, sum up to zero.

Consider an (arbitrary) polynomial f € F,[x]. One can asscociatef to the reduction
polynomial g € F,[z] by taking f mod (z? — x), since g and f induce the same map

over [F,, as stated in the following lemma.

Lemma 1.1.1. For f,g € F [z], f(c) = g(c) for all ¢ € Fy if and only if f(z) = g(x)

mod (z? — x).



Proof. Using divison algorithm we have, f(x) — g(x) = h(z)(2? — z) + r(x) for some
h,r € F,[z] with deg(r) < ¢. Substituting ¢ for z, we get f(c) = g(c) for all ¢ € F, if
and only if r(c¢) = 0 for all ¢ € [, which is equivalent to r = 0. m

1.2 Analysis of Permutation Polynomials

In order to classify PPs over finite fields, one needs some criteria to test whether a
given polynomial f(z) € F,[z] is a permutation of F, or not. Among these criteria, in
some sense, the most useful one was given by Hermite for prime fields, which was then

generalized by Dickson to finite fields IF;, where ¢ is a prime power.

Theorem 1.2.1. (Hermite’s Criterion)
Let F, be a finite field of characteristic p. A polynomial f(x) € F,[z] is a PP of F, if

and only if the following two conditions are satisfied:

(i) f has exactly one root in F,

(ii) For each integer t with 1 <t < q—2 and t Z 0 mod p, the reduction of f(x)'

mod (27 — x) has degree < q— 2.
See [8] for the proof.
Corollary 1.2.1. If d > 1 is a divisor of ¢ — 1, then there is no PP of F, of degree d.

Proof. Let f € F,[z] with deg(f) = d. Then there exists 1 <t =(¢—1)/d < q—2
such that f(z)® mod (27 — x) has degree ¢ — 1. Therefore by Hermite’s Criterion, we

conclude that f is not a permutation polynomial of F,. O]
Using additive characters, we state another criterion.

Theorem 1.2.2. The polynomial f € Fylx] is a PP of F, if and only if

c e Fy

for all nontrivial additive characters x of F,

Proof. We first recall that an additive character x of I, is defined by
Y = X(I> — 627riTr(a:v)/p’ a € ]Fq-
where Tr(«) denotes the (absolute) trace Tr : F, — FF,, defined by

Tr(a)=a+a?+..+af

2



From the properties of characters of a finite abelian group, it follows that if x is any
nontrivial additive character of F,, then
> x(e)=0.
c e Iy
Now let f be a PP of F, and x be a nontrivial character of F,. Then
D x(f0)= > x(o=0
c € Fy c € Fq
For the converse, assume that 3 . » x(f(c)) = 0 for all nontrivial additive characters
x of F,. We can give the number of solutions f(x) = a in F, for any a € F, by
rDIDNCIROEIETD SO RICIESE
celF, x X;ﬁxg c €Iy

where we used the so-called orthogonality of characters:

3 ey =< Ha=?

c € F, 0 otherwise.

Therefore, f is a PP of F,,. O]

1.3 Main Classes of Permutation Polynomials
(1) Every linear polynomial ax +b € Fy[z] , a #0, is a PP of F, .

Proof. Every linear polynomial over [F, is one to one, the rest follows from the definition

of PPs. []
(2) The monomial z* is a PP of F, if and only if ged(k,q — 1) = 1.

Proof. 1f a is an element of F, of order m, then | < a* > | = Therefore, the

gcd( m)°

function ¢ — ¢* from F, to F, is onto if and only if ged(k,q — 1) = 1. O

(3) Let F, be an extension field of F,, of degree n. Then, the linearized polynomial

n

L(z) = Zaixpi € F,[z]

=0

is a PP of F, if and only if 0 is the only root of L(z) € F,.

Proof. Since we have L(ax +y) = aL(x) + L(y) for all z,y € F,, and a € F), L is a
linear operator on F,. Hence, for L to be one-to-one, it is necessary and sufficient that

0 is the only root of L(x) in F,. O



(4) Dickson Polynomials (of the 1st kind) defined by the formula

El

Dy(z,a) = > % (k ]_ j) (—a)lah=% (1.2)

NES

where a € [y, also constitute a class of PPs.

The Dickson polynomial of the 1st kind Dy(z,a) € Fy[z], a € F}, is a PP of F, if and
only if ged(k,¢*> — 1) = 1.

Proof. Let ged(k,q* — 1) = 1 and Dy(b,a) = Dy(c,a) for some b,c € F,. Let o, be
the roots of 22 — bx + a and 2* — cx + a, respectively, in F2. Then «, 3 satisfy the

equations a +aa~t = b, S+ afB~' = ¢, so that
Di(a+aa™t a) = Di(B+ap™",a).
Then, from the "functional equation" (see for example [8])
Dk(x—l—%,a) =z" 4 — (1.3)

it follows that

Hence, either o = g% or a* = (af~1)*. Since ged(k,q®> — 1) = 1, 2* is a permutation
polynomial of F2. So we have @ = 3 or a = af7', and both cases give us b—c.
Therefore, Dy(z,a) is a PP of F,.

For the converse, assume that Dy(x,a) is a PP of F, and ged(k,¢* — 1) = d where
d > 1. If d is even, then k is even and ¢ is odd. But then, from (1.2) it follows that
all powers of z in Dy(z,a) are even. So, we get Dy(b,a) = Dy(—b,a) for all b € F;,
which is a contradiction to our assumption, since ¢ is odd and therefore char(F,) # 2.
Therefore d is odd and there exists an odd prime divisor r of d such that r| k£ and
r| ¢> — 1. We consider the following two cases:
Case 1 Let | k and r| ¢ — 1. Since all roots of " — 1 are the elements of F,, there
exists an element o # 1,a € F, with " = 1. Then o* =1 and

k

Di(a+aa™t,a) :ak—l—a—k =1+ d" = Di(1 +a,a).
oY

1

Knowing that Dy(z,a) is a PP of F,, we have a + aa™' = 1+ a implying a = 1 or

«a = a which is impossible by the choice of a.



Case 2 Let r| k and | ¢ + 1. Let o be a root of 297! — a in F2. Since 2" — 1 has r
roots in F 2, we can choose a root 8 of 2" — 1 with 3 # 1,aa™2. Using ¥ = 1, we can

write,

ak

BEak’

Di(a +aa™,a) = Dy(Ba + a(Ba)~", a),

a”
k k_k
of +— = ["a" +
a

where the second identity follows from (1.3). But since « is a root of 27! —a, it follows

that
a+aat = a+al.
On the other hand,
(a+a)? = a4+ o’
= o'+«

which shows that o + a? € [F,. Therefore,

1

a+tao =a+al el

Similarly
Ba +a(Ba)! = fa+ (Ba)! € F,.

Now considering the assumption that Dy (z,a) is a PP of F,, we would have

a+aa! = Ba+ a(pfa)?

2

implying 3 = 1 or = aa~~ which is impossible by the choice of j.

Hence, we conclude that ged(k,q?> — 1) = 1. O

Remark 1.3.1. Since Dy(x,0) = z*, the Dickson polynomials can be considered as
the generalization of the power polynomials. We also note that deg(Dy(z,a)) = k and
for a given Dickson polynomial Dy(x,a) over F,, being a permutation of F, is only

dependent on k.

A monic polynomial f is said to be in normalized form if f is of the form:
f(@)=a"+a, 12" '+ ... +ax € F,[z]

and when the characteristic p does not divide n, then a,,_; = 0.
Given a PP f(z) of F,, we can reduce it to the normalized form by composing it

with a suitable linear polynomial g(x) = ax + b € F,[z]. Hence, rather than general

5



class of PPs it is convenient to just study PPs in normalized form. In Table below,
which can be found in [11], we give the Dickson’s lists of all normalized PPs of degree
at most 6, on account of Hermite’s Criterion. We note that generalization of these

polynomials to higher degrees is still an unsolved problem.

Normalized PP of F, q

x any q

x2 q =0 mod 2
x> q %1 mod 3
23 — ax(a not a square) g =0mod 3
zt £ 3z qg=

zt + ay2? + asz(if its only root in F, is 0) g =0 mod 2
x? q# 1mod5
2% — ax(a not a fourth power) g =0mod 5
25 + ax(a® = 2) g=9

x® £ 222 q=71

25 + az® + 22 4+ 3ax?(a not a square) q=7

25 + az® + 57 'a?z(a arbitrary) g =12 mod 5
25 + ax® + 3a%x(a not a square) g=13

2% — 2ax® + a®x(a not a square) ¢g=0mod 5
20 £+ 2z q=11

28 £ atz? + a?2? £ 5z(a #£ 0) g=11

2% + 46223 + ax? £ 42(a = 0 or a not a square) ¢ =11

Lemma 1.3.1. Let f(z),g(x) € F,[z]. Then the composition f(g(z)) is a bijection of
F, if and only if f(x) and g(z) are bijections of F,.

Proof. Let f(xz) and g(x) be bijections of F,. Then if f(g(x1)) = f(g(x2)), then
g(z1) = g(x3) implying z; = x5. Conversely assume that f(g(x)) is a bijection of F,.
If f(x) is not a bijection, that is not onto, then f(g(x)) can not be onto, contradicting

to f(g(x)) being a bijection of F,. Now let g(x1) = g(x2). Then, f(g(z1)) = f(g(x2)),
implying that x; = 9. Therefore f(z) and g(x) are bijections of IF,. O

Lemma 1.3.2. Let f(z) € Fy[x] and a,b € F,, b # 0. Then the following statements

are equivalent:

(i) f(x) is a PP of F,,



(ii) f(z)+a is a PP of F,,
(iii) bf(x) is a PP of IF,.

Proof. The proof follows from LLemma 1.3.1, since we know that every linear polynomial

over IF, is a PP of IF,. O

1.4 Groups of Permutation Polynomials

Definition 1.4.1. Let n be a positive integer. The set of all one-to-one mappings,
i.e. permutations, from the set {1,2,...,n} onto {1,2,...,n} forms a group under the

composition. This group is called the symmetric group of degree n, and denoted by

S

Let S = {f(z)| f(x) is a PP of F,}. Define an operation "." on the set S in such
a way that g(z).f(x) = h(x) whenever f(g(x)) = h(z) mod (z¢ — z). Under this

operation (5, .) is a group and it is isomorphic to the symmetric group S,.

Theorem 1.4.1. For q > 2, S, is generated by x4 % and all (non-constant) linear

polynomials over F,.

Proof. Note that the polynomial f,(z) = —a?[((z—a)??+a"1)9"2—a]?"2 represents the
transposition (0a), a € F}. Since every permutation of F, is a product of transpositions
and that every transposition (bc) can be written as a product (0b)(0c)(0b), we conclude

the proof. 0

Theorem 1.4.2. If ¢ > 2 and c is a fived primitive element of Fy, then S, is generated

by cx,x + 1, and 2972,

Proof. Let a,b € F,. Then there exist s,¢ € Z such that a = ¢® and b = ¢'. Now, the
Theorem follows from the identity ax+b = (cx)**.(x+1).(cx)" and Theorem 1.4.1. [

Theorem 1.4.3. Let
S ={Dy(z,a) € Flz]| (k,¢* —1) =1}

be the set of all Dickson Polynomials Dy(x,a) € F,[z] that are PPs over F,. Then S

15 closed under the composition of polynomials if and only if a = 0,1 or —1.

Proof. Assume that a # 0 and S is closed under composition. Let Dg(z,a) and

D, (z,a) be two polynomials in S. Then their composition Dy (D,,(x,a),a) is also



in S. Since from the choice of Dy(x,a) and D,,(z,a), (k,¢* —1) = (m,¢* —1) =1, we
have (km,q?> — 1) = 1 and therefore, the polynomial Dy, (z,a) is also in S. But from
(1.2),

deg(Di(Dm(x,a), a)) = deg(Dim(x, a)),

which implies that
Di(Dy(z,a),a) = Dy (z, a). (1.4)

Using (1.3), one gets

ka(y+§,a) = gy
ez
_ Dk(Dm(y+—a), )

Dim(x,a) = Di(Dp(x,a),a™). (1.5)

CL
ykm
m

Hence,

Now combining (1.4) and (1.5), we get
Dy(Dy(z,a),a) = Di(Dp(x,a),a™). (1.6)
Since D,,(z,a) is an onto function, we can write (1.6) as
Dy(z,a) = Dy(x,a™).

And comparing the coefficient of 272 in these two polynomials, we conclude that

a™ = a, and this holds for all m with (m,¢* — 1) = 1. Thus for m = ¢ — 2,

so that a =1 or —1.
Now, conversely assume that a = 0,1 or —1. Let Dg(z,a) and D,,(z,a) be two
polynomials in S, so that (k,¢*> — 1) = (m,¢> — 1) = 1. We want to show that the

composition Dy(D,,(z,a),a) is also in S. First note that, for a = 0,1 or —1,
Di(Dy(,a),a) = Dip(Dp(z,a),a™)

and by (1.5)
Dy(Dy(z,a),a) = Dy (z,a).

Since (km,q* — 1) = 1, Dgm(z,a) € S, therefore, Dy(D,,(z,a),a) € S. O



CHAPTER 2

ENUMERATION OF PERMUTATION POLYNOMIALS

Lidl and Mullen listed a number of open problems related to PPs in [6], |[7]. In this
Chapter we will be dealing with one of these problems, namely finding the number of

PPs of a given degree d.

2.1 An Upper Bound for the Number of Permutation Polynomials with

Non-Maximal Degree

Recall that from (1.1) all PPs of a finite field F; have degree < ¢ — 2. In [4] Konyagin
and Pappalardi give an asymptotic bound for the number of PPs of degree less than
g — 2 and state that almost all PPs of F, have degree ¢ — 2, according to the following

Theorem. We will first present some notation. Let
No(d) = [{o € 54 deg(fs) = d}|

and

N(g,m) = [{o € Sy deg(f,) < q—m}l.

Theorem 2.1.1. For N(q,2), where N(q,2) = |{oc € S,| deg(f,) < q— 2},

Hence for N,(q — 2), where N,(q — 2) represents the number of PPs of F, of degree

we have

q — 2, we have a significantly large lower bound

Na=2) > (g g 1) — ) 2t

We have the following table for the values of N(q,2), corresponding to the first eight

ST

prime powers.



q 234 5 7 8 9 11
N(¢,2) 0 0 12 20 630 5368 42120 3634950
(g—1! 1 2 6 24 720 5040 40320 3628800

Proof. Let S be a fixed subset of .
Define

Ng =|{fIf :F, — S, and Z cf(c) =0}

ce S

From (1.1), one can easily see that, for a permutation o € S, the coefficient of x972 in

fo(x) is

so that deg(f,) < ¢ — 2 if and only if

Z co(c) = 0.

ce Fy
Therefore for N(q,2) we have
N(q,2) = Ng, + Y (1) FINg = > " (1) NG, (2.1)
SCF, SCF,

TIT

Put e,(z) = ¢ % . Then from the properties of additive characters, it follows that

q ifz=0

ep(Tr(ax)) =
a;Fq ( ( >) 0 if X 7& 0.

Now using the identity

it cf(c) =
LY e (e X epten | =4 T e em =0

a€F, cely 0 otherwise.

10



we have

- %—Fé > (H ZBP(TT(Ct)))

ceclF,te S

— % + % H Z ep(Tr(ct)). (2.2)

ceF,te S
Combining (2.1) with (2.2), we obtain
—1)e- ISl -1 B
Nig2) - 3 T g0 2 LS (e ts TS e (Tr(et).
SCF, q 1 scr, ce Fyte S

We also note that

—1)2- 15l 1
SV g = L S ey
SCFq q SCFq
q
= (¢—1)!
Therefore,
—1
N(g,2) — (¢ - D)l = 2= 3" (07 81s| TT X ep(Tr(et)).
q SCF, ce Frte S

Using the fact that

Z ep(Tr(ct)) = — Z ep(Tr(ct)) for ¢ € Ty,

te S t¢ S

we consider two cases:

(i) If ¢ is odd, then

11 (—Zep(Tr(ct))) = 1] D_ en(Tr(ct)).

ce F; te S c€ Fite S

Also note that |S| is even if and only if ¢ — | S| is odd, hence, for each subset S of F,
(_1)q*\5\ — _(_1)|5|

11



N(@2) — (-1 = TS (e ()P 1) TT 3 en(Tr(en)

q SCFq ce Frte S
qg—1
= oS 0B -2s) [T Y elTren).
q SCFq ce Fite S

(ii) If ¢ is even, then

I1 (—Zep<Tr<ct>>> =TI 3 ep(Tr(ct))

ce F; te S ce F;te S

and |S| is even if and only if ¢ — |S| is even. Hence,
(_1)q—\5| _ _(_1)|5l.

Therefore

N@2) - (-1 = L2300 = (—)sig - 1sp) T 3 en(Tr(et))

2q SCF, ce Frte S
L DV
= — (—1)”'(2]S| — HZepTrct
2q SCF, ce Fyte S

Now taking the absolute value of both sides in (2.3) and (2.4) , we get

Zep (Tr(ct) )|

te S

IN(q,2) — (¢ —1) '|<—Z|q—2|SH 11

SCIFy ce Fy

(2.3)

(2.4)

(2.5)

Note that the geometric mean is always less than or equal to the arithmetic mean, i.e.

n 1 n
([T1atns < 2> latl
k=1 k=1

or equivalently,

- > 1
Ne < = 2
(Tlah® < 312l
k=1 k=1
n 1 n i
QTlah < (D lat.
k=1 k=1
Taking
a; =1 ep(Tr(cit))], fori=1,..,¢—1
te S
we have
gq—1
2 2

>

q ce IF(’;

> ep(Tr(ct))

te S

I1

ce IF;

Z ep(Tr(ct))| <

te S

12
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We also note that

2

ce Fy

> ep(Tr(ct))

te S

c€ Fq \te S te S

= > (Z ep(Tr(ct))) (Z e, (Tr(ct))

te S te S

- Z Z e, Tr(cty)e,Tr(cty)

ce Fyti,tae S

= Z Z ep(Tr(cty — cty))

ce Fyti,tae S

— Z Z ep(Tr(c(ty —ta)))

t1,t2€ Sce Fy

= 4|95,

ce Iy

where we used the following identity in the last step:

Z ep(Tr(c(ty —t2))) = { q ift; =1

ce Fy 0 iftl#tg

So, we have
2

= (g = 1SDIS]-

2

ce ]F;

> ep(Tr(ct))

te S

Hence (2.6) can be written as

I1

ce IF;;

> ep(Tr(et))| < (%)

te S

Combining (2.8) with (2.5), we obtain

2q(¢—1) 7 4,

13

— Z (Z ep(Tr(ct))) (Z ep(Tr(ct))

)
)

—1
2

IN(2,2) = (= D) < — L= S 1g—218]| (¢ — ISDIS)

(2.7)

(2.8)

(2.9)



Now our aim is to estimate the right-hand side of this inequality. First note that

Yola-2sl = 2 > (a-2IS)

SCF, SCFq,|S|<4

4]

= 2;(3)@—2])
L8]/, o

= 2 ]Zo(j)(q_j)_jl (j)(J)

., I ¥ ST

N ;(q—J)'J'(q_])_;(Q—J)'J'j
4] 4]

_ (-1 (¢ —1)!

- ;O(q—]—l)!ﬂ jzl(qy)'(Jl)']
1] 4]

B g—1\ q—1

SEI oG B al e

(2.10)

Using the inequality

we also have

Hence (2.10) can be written as

S%;m 2|5 = 2q(qL Jl) \/z 2qq1. (2.11)

4=

On the other hand,

-t < (o= (3D 13) "

IN
—~
N[
~—
i
—_

(2.12)

14



Inserting (2.11) and (2.12) in (2.9), we have

q—1
—1 2 T2 q
IN(¢q,2) = (¢ —D!| < \/L \E(q%l) qz.
L /q

Considering the inequalities

we obtain

(2.13)

]

Following their results in [4], Konyagin and Pappalardi extended their work obtain-

ing in [5] an asymtotic bound for the number of PPs of degree not exceeding a fixed

number ¢ — m — 1 on a finite field. Before giving the related Theorem, we present

further notation.

Let 0 € S, with the representing polynomial

q—2
i=1
Let ki,....kg € Z with 1 <k < ... <ky <qg—2. Then define

Nlki,...,kq] = {o € Sylar, =0foralli =1,...,d}|.
Theorem 2.1.2.

INky, ..., kq] — Z—i| < (qlqg— ki —1))? (1 + \/9 :

Proof. Recall that for a permutation o € S,, the corresponding f,(z) is given by

folw) = o(e)(1—(x—)).

c e Iy
Therefore the coefficient of z* in f,(z) is
(a1 —1—i
1) =15 (c).
(1) et

But in ¥y,

(2.14)



foralli=1,...,qg — 1. So, (2.14) is equal to
(—1)¢ Z Ao (c) = — Z Ao (c).
ce Fy ce Fq
Therefore, the coefficients a;, = 0 for ¢ = 1, ..., d if and only if

Zch )=0,1=1,...,d.

celfy

Now define,

Nslky, oo ka) = [{f|f : Fg = 5, and Y "™ 7" f(c) =0, for alli =1, ..., d}|.

celfy

Then we can write

N[kb "'7kd] = NFq[kla “'7kd] + Z (_1)q_IS|NS[k17 "'7kd]'

SCF,
= D (1) PNk, .., b (2.15)
SCF,
Then
Nglky,y .o k] = —d Z ZepTr Zf Jact k=t ZepTr Zf Jact™Fa1Y)
f Fy—S \a€F, c€lFq a€lFq c€lq
= Y Z ep(Tr(QY_ ()™ ) ey(Tr(Y ] f(e)age"™ )
fFq—S (ay,..., GFd celFy, celFy
= d Z Z ZTT c)ayc?™ = 1 .ep( ZTT c)agc?™ ka— 1))
fFq—S (ay,..., eIE‘d ceF, celFy
= — Z Z Z Tr(f(c)arct™ 1)+ ...+ Z Tr(f(c)aget™ =1
f ]FqHS ( ..... E]Fd CEIFq CE]Fq
1 d
RSP S Py (f<c> Z)
(a1,-0q)€FY f:Fq—S c€F, i=1
1
S D RO W ))
q (a1,...,aq)€FY c€Fq t€S
sl 1 .
= ata 2 el tZach -
(a1,...,aq) EFI\{0} c€Fq tES
Let
Rg = Z H Zep (TT’ (tZalcq s _1>>
(a1,...,aq)€EFI\{0} c€Fy teS
and

d
Z €p (TT (t Z aicq_k"_1>> ‘ )
€F, | tes i=1
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Then since |[{(ay, ..., aq) € FA\{0}}| = ¢* — 1, we have
|RS‘ S (qd - 1)M7
and therefore
IS\q ¢’ =1

Nolky, ik < +4—-
s[k1 ] . 7

We again use the fact that the geometric mean is always bounded by the arithmetic

;ep (Tr (tZacq ki ))

Consider the polynomial p(z) = Zle a;z97 %=1, Since p(x) has degree ¢ — k; — 1, for

M. (2.16)

mean to get

[ (r (1o )| < (25

c€F, | teS cqu

2\ 5

(2.17)

each u € F,, the equation
d

pe) = 3 a0
i=1
has at most ¢ — k; — 1 solutions in F,. Therefore

Z Zep (Tr <tZaicq_ki_l>> < Z(q — ki —1)

2 2

Z ep(Tr(tu))

ceF, u€l, tesS
(2.18)
Now combining (2.18) with (2.17) we obtain
. 2\ 2
H Zep<T7’ <t2ach ))' < —Z(q—k’l—l) Zep(Tr(tu))
ceF, | tes q u€lFy tes
= (ISllg— ki — 1))
where we used the identity
2
> [D_el(Tr(te)| =dls|
ceF, | tes
in the last step. Then from the definition of M and (2.16), it follows that
|S|q _ 1 a
Nglki, .o ka] < " +14 (lg — k1 — 1]]9])2. (2.19)

Now inserting (2.19) in (2.15), we obtain

— S| qd_l q
Mok < 3 0 (B E 22— b - it

SCF, q

= Y s S e g s

SCF, SCF,
(2.20)
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Using the fact that

SCF,
(2.20) becomes
Nk, ok < 24 3 (-1 ‘S'Q L la =k — 115))%.
SCF,
Therefore,
q g —1 a
Nk, oo k] — = — > (lg—ky — 1]|S))?
q ¢ T
< lg=—ki—12 YIS
SCF,
~ (q
= (qg—k —1)2 3 2.21
@k =03 (1) (2.21)

Now, since 1 4+ x < e”, for x = % we have
n—q n—g
q
n < qe . (2.22)

1+

Therefore, inserting (2.22) in (2.21),

q' q a q q
Nlky,oka) = | < (@g—Fk—1)2 ()qeq )2
q

Corollary 2.1.1. For N(q,m+1), we have N(qg,m+1) ~ qq—,i” ifm < lo‘éq(%loglogq—
logloglog q) and q is large enough.

Proof. Note that
N(gym+1)=N[lg—m—1,...,q —2].

Therefore in Theorem 2.1.2 taking ky = ¢ — m — 1, we have
q! [l 1
Ngm+1)= L < (mof(i+y oy
< (mg)?2¢ (2.23)

Now the Corollary follows using the Stirling formula which states that

im L 1
i \2mq(d)e
for an estimation of the right-hand side of (2.23). O
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2.2 The Number of Permutation Polynomials with Non-Maximal Degree

Let o be a permutation of the elements of F,. Define the set
S, ={ceF,lo(c) #c}

i.e. S, is the set of all elements of I, that are not fixed by . Note that the roots of
the polynomial f,(x)— x are all elements of F, that are not in S,. Hence, if o # id, so
that f,(x) # x, then deg(f,(z) — z) = deg(f,) and hence deg(f,) is at least ¢ — |S,|.
Recall that we have deg(f,) < ¢ — 2. So if o # id, we get

q— |Sa‘ § de.g(fo) § q— 2.

In particular, we conclude that all transpositions in F, correspond to PPs of degree
q — 2, compared with Theorem 1.4.1. Now we recall that a cycle (a; as...a) € S, is
the permutation which sends a; to a; and a; to a1 for 1 < ¢ < k — 1, fixing all the
elements 7, where 1 < j <n, j # qa; fori =1, ..., k. The length of a cycle is the number
of integers which appear in it and a cycle of length k is called a k-cycle.

Let o be a permutation in S,,. Then the conjugacy class of o is defined by
C(o)={ror™' | 7€ S,}.

Proposition 2.2.1. Let o and 7 be two permutations in S,,. Suppose o has the cycle

decomposition

(Cll CLQ...CLkl) (bl bgka)

Then ot~ ! has the cycle decomposition

(t(ay) 7(ag)...7(ag,)) (7(b1) 7(b2)...7(bxy))....

Proof. The proof follows from the observation that if o(i) = j, then

ror H7(i)) = 7(j).
Therefore if (i7) is an ordered pair in o, then (o(i)o(j)) is an ordered pair in o7 1. [

We therefore have by Proposition 2.2.1 that, if o; and o, are two conjugate per-
mutations, then their cycle decompositions have the same structure, i.e. the lengths of
the cycles in both permutations are the same. Conversely, as easily can be seen, if two
permutations o; and oy have the same cycle structure then they are conjugate. Hence

the conjugacy classes of permutations in S,, form a partition of .S,,.
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Now, let ¢ be a conjugacy class in S,,. Then, fixing ¢ and m we define a function

Ne(g,m) = [{o € (|deg(fs) < q—m}|

on the set of conjugacy classes of permutations in S,. In 1968 Wells (see [16]) gave the
formula for the number N, (g, 2) for the conjugacy class ¢ of 3-cycles which we denote
by ¢ = [3]. Later in 2002, Malvenuto and Pappalardi generalized this result to some
more conjugacy classes (see [9]). In this section we will present these results of Wells,

Malvenuto and Pappalardi.

Theorem 2.2.1. If ¢ > 3, then the number of 3-cycle permutations o of F, with
deg(f,) < q—3is
q(¢g—1) if¢=0mod 3
g(¢g—1) ifqg=1mod 3
if ¢ =2 mod 3

N[S] (qv 2) =

O W Wi

Proof. Let 0 = (a b ¢) be a 3-cycle in S;. Then, o can be represented by
fo@)=x+(a=b)(x—a) +(b—c)(x—b)*"" 4+ (c—a)(x —c)".
Note that the coefficient of 2972 in f,(z) is
ag—2 = a(a —b) +b(b — ¢) + ¢(c — a).

Hence, the polynomial f,(x) is of degree < ¢ — 2 if and only if a;_ o = 0 or a is a

solution of the equation
22— (b+c)x+b* +c* —be=0. (2.24)
The discriminant of this equation is
A= -3(b—c) (2.25)

so that the system has a solution if and only if —3 is a square element in F,. We will
continue the proof in two cases. First assume that ¢ is odd. Then the characteristic
p is odd, and —3 is a square element in F, if and only if (‘73> = 1, where (%) is the

Legendre symbol. Now, since p is an odd number, we have two subcases:

(i) If p=1 mod 4, then from the quadratic reciprocity law, it follows that

G)-0E)-6)-6)

<_—3) — 1if and only if <§> — 1ifand only if p = 1 mod 3.
p
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(ii) If p = 3 mod 4, then again from the quadratic reciprocity law, it follows that

-GG =6 -6)

<§) = 1if and only if p = 1 mod 3.

Clearly, if p = 0 mod 3, then (‘73) =1, so by the reasoning in (i) and (ii), we conclude
that the only case that (‘f) = —1 occurs when p = 2 mod 3.

Here, we also note that, if —3 is a square element of [F,,, then it is a square element
in F . for any k. And if —3 is not a square element in F,, then it is a square element
in Fpx if and only if & is even.

Finally, we can say that —3 is not a square element of IF,, where ¢ = p*, if and only
if p =2 mod 3 and k is odd, where the latter condition is equivalent to ¢ = 2 mod 3.
Therefore, there is no 3-cycle over I, that gives a permutation polynomial of < ¢ — 2,
if ¢ is odd and ¢ = 2 mod 3.

Now if p = 1 mod 3, hence ¢ = 1 mod 3, the solutions of (2.24) are
1
T2 = §<b +CcFV —3(b — C))

So for every ¢(q—1) choices of b and ¢, we have two values for a and since permuting the
elements in a cycle does not change the permutation, we have %2q(q — 1) 3-cycles that
give a PP of degree < ¢—2, if ¢ is odd and ¢ = 1 mod 3. And lastly, if ¢ = 0 mod 3 then
A = 01in (2.25), so for every ¢(q— 1) choices of b and ¢, a is uniquely determined, so we
have %q(q — 1) 3-cycles that give a PP of degree < ¢ — 2, if ¢ is odd and ¢ = 0 mod 3.

Now assume that ¢ is even. Then the equation (2.24) can be written as
(x+b)(z+c)=(b+c) (2.26)

Setting d = b+cand y = d~(z+b), the last equation can be converted to y*+y+1 = 0.
The polynomial y* + y + 1 is irreducible over Fyn, that is, the system in (2.26) has no
solution if and only if n is odd. But in this case ¢ = 2" implies ¢ = 2 mod 3. The only
remaining case is ¢ = 2" when n is even. In this case ¢ = 1 mod 3 and for the ¢(q — 1)
choices of b and ¢ the system in (2.26) has two solutions in F,, therefore there are

%Zq(q — 1) 3-cycles that give a PP of degree < ¢ — 2, if ¢ is even and ¢ =1 mod 3. [

Let ¢ be a permutation of the elements of I, that is represented by the PP f,(z) =

ag 201 2 4a, 127 +. . +ag € F [z]. Then as we know from Chapter 1, the polynomial
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fo(x) can be written as

folw) = Y o)1 —(@—o)")

_ :EEU(C) —~ %F: a(e)(z — )"
- %; o(c) (mq—l + <q I 1) 2T —e) + .+ (Z _ D ”0(_C)> '

Therefore, when ¢ > 3, the coefficient of 2972 in f,(x) is

Ag—2 = —Za(c)c

c€lfy
= ) (c—0o(0)e
c€ly
= Z (c—o(c))e. (2.27)
CcESy
Let [l; ,...,lx] denote the conjugacy class of permutations that are products of cycles
of length [y, ..., ;. Now if
o= (c11,--scn)(C1, 5 C) s (Chty s Criy)

then according to (2.27) the coefficient of 2772 in f,(z) is

kU
Qg—2 = Z Z(Cj’i — Cj7i+1)cj7’i'
j=1 i=1
In what follows (mj, ma,...,m;) will denote the elements of the conjugacy class ( =
(mq,ma, ..., my) which are the products of m; cycles of lenght 1, my cycles of lenght
2,..., and m; cycles of lenght ¢, where my 4+ 2ms + ... +tm; = ¢q. Then we will have
q
mql1mimeyl2m2  omltme
Now for the conjugacy class ¢ = [y ,...,[;], we define a polynomial A, in ¢ variables,

where ¢ =11 + ... + [, as follows

c k
AC(xl,--.,xc) = E (xl - xi-i-l)xi + E (xll+---+li - xl1+---+li71+1)xl1+---+li
i=l,’i¢{l1,ll+l2,...,c} =1

Then every permutation counted by N¢(g,2) is an element of F, that is a root of
the polynomial A.. Since shifting the elements in a cycle or interchanging different

cycles of the same length gives the same permutation, we have

No(.2) = (21,...,2.) € F, 2; # x; for i # j and A¢(x) = 0|
)= myl2m2 . my,ltme )

Now, as an application of the arguments above, we consider the conjugacy class ( =

2,2], see [9)].
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Theorem 2.2.2. Suppose q is odd and q > 3. Then

1
Nie21(¢,2) = galg = (g = (1 +n(=1)),
and if q 1s even, then
n 1 n n n
Npg(27,2) = §2 (2" = 1)(2" — 2).

Proof. Let 0 = (ab)(cd) be a permutation that is represented by a PP of degree < ¢—2
in F,[x]. Then from (2.27) we get

(a—=b)b+ (b—a)b+ (c—d)c+(d—c)d = 0
(a—b)?+(c—d)? = 0. (2.28)

Note that this equation has a solution if and only if —1 is a square element in [F,. First
assume that ¢ is an odd prime power. Then for the ¢(q — 1) fixed choices (ag, by) for

(a,b), we have
(c=d)?* = —(ao—bo)*,
¢c = dFvV—1(ag — by).

Now for the choice of d € F,\{ao, by, a0 F vV—1(ap — by), by F v —1(ap — bo)}, we have

exactly 2 values for ¢. And if

d=apF \/—_1(% —bg) ord="byF \/—_1(% — bo),
then, ¢ is uniquely determined. Hence, we have

29(¢ —1)(¢ —6) +4g(g—1) = 2q(¢—1)(qg—4)

solutions for the equation (2.29). But, since permuting the elements in 2-cycles or

interchanging the cycles do not give a different permutation,

Noo(0:2) = gys2ala—1)a -
= g1 4)
1

where the last identity comes from the necessity that for (2.28) to have a solution, —1
should be a square element in F,,.

Now if ¢ is even, that is ¢ = 2™ for some integer n, the equation
(a=b2+(c—d)? = 0
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in (2.28) becomes
@+ +E+d =0
(a+b+c+d)?® = 0
at+b+c+d = 0.
d=a+b+c

and once the ¢q,q — 1,q — 2 choices of a,b and ¢ respectively are made, d is uniquely

determined. Then with the same argument as before,

1

2.3 The Number of Permutation Polynomials of a Given Degree

In his paper [2], Das gives a formula for the number of PPs of degree d by relating it

to the number of solutions of a system of linear equations.

Definition 2.3.1. Let A = (a;5), ¢, = 1,...,n , be an n X n matrix. The permanent

of A is defined by

per(A) =Y [ aioto-
oeSy i=1

where S, is, as usual, the symmetric group of degree n.

Definition 2.3.2. Let A = (a;;) be an n x n matrix. Then A is called a Vandermonde

matriz and denoted by A = Vand(zy, 29, ..., 2,) if a;; = z;-_l fori,j=1,2,...,n.

Note that, in this section we will just consider the PPs with zero constant term.
Now let f(z) = ag227 2 4+ a,_127 ' + ... + @12 be in Fy[z] and w € F, be a primitive

element so that the value set of f can be written as

Vi = {f(0), f(1), f(w), .o f(w®)}.

Define the matrix W = (w(D0=V) = Vand(1,w, ...,w?™?), 4,5 = 1,...,q — 1.

Considering the matrices

a=(0ayay..a, )" andv = (f(1) f(w) f(w?) ... f(w??)"

we have



or

1 1 1 1 0 a1+...+aq_2

1 w w? L. w2 a amw + ...+ ag_ow??

1 w? wt o w2la=2) a9 = ayw? + ...+ aq,ng(q_m

1 wq_2 w2(q_2) . w(q_2)(q_2) aq_2 alwq_2 _|_ . _|_ aq_Qw(q_2)(q_2)

Since W is an invertible (Vandermonde) matrix , we have
a=W o

If fis a PP of F, then v = P(1 w w? ... w7 2)T where P denotes a permutation of the
rows of v. Therefore

a=W1P(1lww? .. w?)T,

that is
0 1 1 1 .. 1 1
a 1 wi2 22 . la=2)(a-2) w
a2 e q_% 1 wq_3 wz(q_3) - w(q—Q)(q—3) P w2 . (229)
(g2 1 w w? o w2 Wq—2

Let N,(d) denote the number of permutation polynomials f € F,[x] with deg(f) = d
and f(0) = 0. Then we have the following theorem.

Theorem 2.3.1. N,(d) is equal to the number of solutions in Fg_l of the system of

the equations

21+ w4 T gy L pp@DeTd g

ry + w2y 4w gy Dy =

Ty +wry +wrs+ .. +wi Tz, = 0 (2.30)
with x; # 0 and x; # x; fori#j, i,j=1,...,¢— 1L

Proof. Let f(z) = ag227% 4+ ag129' + ... + a1z € F,fx] be a PP of F,. Then,
deg(f) = d if and only if ay # 0 and agy1 = a4 = ... = 0. From (2.29), we have the

25




following equations

ag = I + wq—d—le + w2(q_d_1)1‘3 4+ ...+ w(q_g)(q_d_l)(ﬂq_l
Gap1 = o1+ w2y + w0 gy 4 fl DAy
g9 = T1+wry+ ...+ wq_Qasq_g

with z; # 0 and z; # z; for ¢ # j, 4,7 = 1,...,q — 1. Since every ¢ — 1 tuple
(x1 ... x4—1) that is a solution of the system (2.30) gives a permutation polynomial of

degree d in F,[z], the Theorem follows. O
Corollary 2.3.1. For the prime power q, we have
Ny(qg—2)=(g— 1! = # (21 + wry + w'x3 + ... + w2, 4 = 0),

where # represents the number of solutions in ng of the corresponding equation with

x; # 0 and x; # x; for i # j.

In particular, for a prime number p, we have

Ny(p—2)=p—1)—# (21 + 229+ 3z35+ ...+ (p — 1)z,-1 = 0 mod p)
with x; # 0 and x; # x; for i # j.
Proof. From Theorem 2.3.1, we have
N,(q—2) = # (z1 + wzg + w’r3 + ... + w22,y #0).

But note that, we have in total (¢ — 1)! tuples (z1 x2 ... x4—1) in F, with z; # 0 and
x; # x;j for i # j, so the result follows. m

Corollary 2.3.2. Let E,(d) be the number of solutions in F, of the system of equations

21+ Wy 420 4 @Dy
21 w2y 4 20D Dy
T, + wxe + wixrs + ...+ wq_2xq_1 =0 (2.31)

with x; # 0 and x; # x; fori# 3, i,j=1,...,q— 1. Then,

No(d) = (¢ = D! = No(q — 2) = No(q = 3) — ... = Ny(d + 1) — E,(d)
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Now our aim is to give a formula for the number N,(p — 2). For this purpose, by
Corollary 2.3.1, it is sufficient to find a formula for # (21 +222+3z3+.. . +(p—1)2p,—1 =
0 mod p).

Theorem 2.3.2. Let A= Vand(x,...,2P7') and per(A) = c;x'. Then,
# (r1+ 222+ 323+ ...+ (p—1)xpy_; =0 mod p) :Zci,
i:pli
where the sum is over all those coefficients for which the exponent of x is divisible by

p. Therefore,
Nyp—2)=@p-1'-) e

i:pli
Proof. Since A =Vand(z,...,a?7 "), i.e. A= (x""15); 1. p-1, we can write A explic-
itly as
1 1 1 1
x x? x? P!
P2 p2(0—2)  3(r—2) 2(P=1)(p—2)
Define the matrix B by
T x? z3 P!
22 A 26 £2(-1)
B = 23 26 29 23(—1)
Pl p2(-1) p3(-1) 2 (P=D(-1)

Then it is easily seen that

per(B) = zx?x®. .. 2P per(A)

p(p—1)

= x z per(A). (2.32)

Now, if 2" is an element in the expansion of per(B), then n =i, +2is+...+(p—1)i,_;
for some i1,4a,...,9,-1 € F, with i, # 4, for k # [. Therefore every term z" in the
expansion of per B gives rise to a solution of the equation z; + 229 + 323+ ...+ (p —
1)z,—1 = 0 mod p such that z; # 0 and x; # x; for ¢ # j, and vice versa. But since
p is a prime number, from (2.32) we observe that all terms z" in per(B), where n is
divisible by p, come from the terms in per(A) whose exponents are also divisible by

p. [
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Example 2.3.1. Now using Theorem 2.3.2, we will compute the number of PPs of

degree 3, with zero constant term, in Fs[z]. Let A = Vand(z,z? 2, ). Then

So, we have
per(A) = 2® + 32" + o' + 42" 4+ 220 + 221° + 2™ 4 42 + 212 + 32 + 21°.
Note that the coefficients of #2°, #1510 are 1,2, 1, respectively, in per(A). Therefore
#H(x1+2x94+ 303+ 44, =0mod 5) =1+2+1=4.

Now, we conclude that the number of PPs of degree 3 in F5[x] with constant term zero
is

N5(3) = 4! — 4 = 20.
Remark 2.3.1. We would like to remark here that, if the condition f(0) = 0 is
discarded, then we will have 5.20 = 100 PPs of degree 3 in F5[z]. Also from the Table
in Theorem 2.1.1, we know that there are 20 PPs of degree less than 3 in F5[z]. Adding

these two values, we find that there are 120 PPs in F5[z], in total, as is expected.

Remark 2.3.2. In the Example above, we found that there are 20 PPs of degree 3,

with zero constant term expecting that there is %% = 1 normalized PP of degree 3 in
F5]x]. From the Table of Dickson’s list of normalized PPs , we see that there is exactly
one PP, namely z°, in Fs[z|, which is in accordence with our expectation. (If f is a
normalized PP of F,, then taking the composition af(z+0b)+c with a,b,c € F,, a # 0,
we obtain g(q¢ — 1) PPs with zero constant term corresponding to the (¢ — 1) choices

of a and ¢ choices of b.)
Theorem 2.3.3. Let
A=Vand(zz ... 20,2325 ... 22, ,zf_lzép_1)2 A i
where 1 <n < p—2. Let per(A) = 3. Ciyiy..i, 21 25 ... 2. Then the number of solutions
in F, of the system of equations

v +2"+ 3" +...+(p—1D"zp0y = 0

T+ 2"y 3" g+ 4 (p— 1)”_1xp_1 = 0

$1+2$2+3J}3—|—...+(p—1)l’p,1 =0
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with x; # 0 and x; # x; fori # j,i,7 =1,...,p—1, is equal to Zp‘il - plin Citiz..in where

the sum s over all coefficients c;,q,..;, for which p divides the exponent iy of each zj.

Proof. The proof follows by a similar argument to that used in the proof of Theorem

2.3.2. [l

Example 2.3.2. Now, suppose we want to find out the number of PPs of degree 2,

with zero constant term, in F;[z]. From Corollary 2.3.2 we have
N5(2) = (5— 1)l - N(3) — Es(2), (2.3
where F5(2) is the number of solutions in F5 of the system of equations

1 + wias + w iy + w3z, = 0
T+ wry + wlrs +wilr, = 0
with x; # 0 and x; # x; for ¢ # j. Since we are in a prime field, this system of equations
is equivalent to the system
21+ 2200 + s+ 4224 = 0

1+ 229 + 33+ 424 = 0.

Now in Theorem 2.3.3, let

_ 2,22 332 4 42
A =Vand(z 122, 2725 , 2125 ,21%5 )

and
per(A) = Z Ciyig 2 222
Then,

E5(2): Z Citig-

5‘i1,5|i2

Writing per(A) explicitly, we have all the terms 20210 2215235 219229 in which the

exponents of both z; and z, are divisible by 5. So that
Es(2)=14+2+1=4.

Also from the previous example we know that N5(3) = 20. Combining these results in
(2.33), we get

N5(2) =24 —-20—-4=0.
Remark 2.3.3. The result in the Example 2.3.2 agrees with the Table in Theorem

2.1.1, since we know that there exist 20 PPs of degree less than 3 in F5[x] and we know

that all linear polynomials are PPs, and there are already 20 of them in F;[z].
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CHAPTER 3

SOME NEW CLASSES OF PERMUTATION POLYNOMIALS

In this Chapter we will present some new classes of PPs.

3.1 Permutation Polynomials of the form xrf(x%)

Let s be a divisor of ¢ — 1. In this section, following [14], we present a criterion for the
polynomials of the form xrf(xq;f) to be PPs of IF,. First we introduce some notation.
Let g be a primitive element of F, and § = gq% be a primitive s-th root of unity € F,.
Now for all a € Fy, we put

Ey(a) = k mod (¢ — 1),

where a = g* and k denotes the least residue modulo (g — 1) of k.
Let
(a) = Ey(a) mod s.

Then, we have the following identities:

Ey(a®) = zE,(a),

Ey(ab) = Eg(a) + Ey(b),

Also one has

a=1
= ol mod s

g
—1
gEg(aqs > mod s

g=1
a - mod s.

Theorem 3.1.1. Let s, r be positive integers, with s|q—1. Let g be a primitive element,
&= gq;s1 be a primitive s-th root of unity in F,. Let f(x) € Fy|x]. Then the polynomial
h(z) = :crf(:cq;l) is a PP of F, if and only if the following conditions hold:
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@) (n5) =1,

(i) f(&) #0 for all 0 < i< s,

(iii) o (;Eg;;) Z r(ig —i1) mod s, for all 0 < iy < iy < s.

Proof. Let h(z) be a PP of F,. Then, F(c5)#0, forall ¢ € [y, since h(0) = 0. That
is f(z) # 0, for any s-th root of unity x in F,. Since £ is already an s-th root of unity

in IF,, we have

f(€) #0forall 0 <i < s.

So (ii) is satisfied. For the rest of the proof, we will assume that (ii) holds and show
that h(x) is a PP if and only if (i) and (iii) are satisfied. From the definition of E,
it follows that h(x) is a PP of I, if and only if E,(h(¢")) mod ¢ — 1 is the complete
residue system modulo (¢ — 1), for 0 <t < g — 2.

Note that for all such ¢ , we can write

o . oqg—1 :
t=sj+1 where 0 <j < —— 0<1<s.
s

Therefore,

Ey(h(g") = Ey(h(g”™))
- B, <g(sj+i)rf <g(sj+i)q;sl)>
= B¢+ E, (£ (4"7))
= (sj+i)r + B, (f(€))
— () + i+ By(F(€). (32)

Now assume that (i) and (iii) are satisfied and let

Ey(h(g")) = Eq(h(g")),

for some t1 = le + 17 and ty = jQS + 129 where 0 < jl,jg < %, 0< ’il,ig < S.

Then from (3.2),
s(rjr) +riv+ E(f(€7) = s(rjz) + ria + Ey(f(€7)) mod (¢ - 1),

equivalently,

sr(jo — j1) +r(ia —i1) — E, (f(éz:l)) = 0 mod (¢—1),

sr(j2 — 1) + iz — i) — ( ) = Omod (¢ —1). (3.3)
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Note that if i; # ig, (iii) implies

f€n)
f&2)

and since s is a divisor of ¢ — 1, (3.3) is not possible. Thus,

r(ig—il)—2/1< >;¢_Omods,

11 = 19
so that

sr(jo—71) =0 mod (¢—1),

Ll).

r(jo—7j1) =0 mod ( (3.4)

As0<ji, < % and (r, %1) =1, (3.4) holds if and only if j; = j,. Hence,
ty = J1s +11 = Jas + 12 = o,

that is h(z) is one-to-one.

Conversely assume that h(x) is one-to-one. We will show that (i) and (iii) hold. First
assume that (iii) does not hold. Then for j; = j, and for some distinct values of i,
and iy, with 0 < 41,45 < s the equation in (3.3) holds contradicting to h(z) being
one-to-one. So (iii) necessarily holds. Now assume that (i) does not hold. Then in
(3.3), we can take i; = 4y, so that 7(j> — j1) = 0 mod (£1). But since (r, ©1) = 1, we
can find 0 < j; # js < % satisfying the equation (3.3), which is a contradiction to h

being one-to-one. Therefore (i) holds. O

Corollary 3.1.1. Let s, € N, with s|g— 1 and (r,q — 1) = 1. Then the polynomial
f(z) = xr(g(:p%))s is a PP of F, if and only if g(xq%l) has no non-zero root in F,.

Proof. Since (r,q—1) =1, (r, %) = 1 so the condition (i) in Theorem 3.1.1 is satisfied.

Suppose

Then, for 0 < 11 <19 < S,
p(f“)) _ (9(6“)5)
v (p(f"?) MVIGIE

()

= 0 mod s. (3.5)

Since (r,s) = 1 and i; # i3 mod s from (3.5) it follows that

(0 (ig;) # r(iy —4;) mod s.
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Hence the condition (iii) in Theorem 3.1.1 is also satisfied. Now it is clear that f(z)
is a PP of F, if and only if the condition (ii) in Theorem 3.1.1 holds or equivalently

a=1 .
g(xz"s) has no non-zero root in F,. O

3.2 Binomial Permutation Poynomials

In this section we will investigate the permutation properties of the binomials az® +
b7 + c over F, following [3] and [13]. We will consider the binomial % — az? instead of
az' + ba’l 4 ¢, where a = —a~'b € F,, since their permutation properties are the same

by Lemma 1.3.2.

Theorem 3.2.1. Let f(z) =2’ —az!, 1 < j <i,a € F}. Let (i,j) =d, andi =i'd,j =
j'd, so that (i',5') = 1. Then, f(x) is a PP of F, if and only if g(x) = 2 —axl isa
PP of F, and (d,q — 1) = 1.

Proof. We can write f(z) = (xd)i/ - a(md)jl. Thus, f(z) = g(z?), where g(z) =

J
7

» —az’ . Now from Lemma 1.3.1, f(z) is a PP of F, if and only if g(x) and 2% are

PPs of F,. But 2% is a PP of F, if and only if (d,q — 1) = 1. So the result follows. [

In what follows IF([;] denotes the elements of F, which are i-th powers, i.e. o € F E,"]

if and only if there exists an element v € F, such that o = 7'

Theorem 3.2.2. Let f(z) =2’ —ax/,1 < j <i,a€F; Ifae Fi then f(x) is
not a PP of IF,.

Proof. Since a # 0 and 0 is already a root of f(z) = 23(z'~9 — a), if « € FI7, f(z)

will have more than than one root, which implies that it is not a PP of F,. O]

Lemma 3.2.1. Leta € F, and 0 <i < q—2. Then a ¢ IFg] if and only if o7 #1,
where d = (i,q — 1).

Proof. Since d = (i,q — 1), we can write,
d = ai + b(q — 1) for some a,b € Z.

Assume that « ¢ IF([;] and a"7 = 1. Let /3 be a primitive element of F, and o = 8* for

some 0 < k < q—1. Then

BT =1,
qg—1
—1 k_
q | T
d | k.
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Let k = dt for some 0 <t < %. Then,

o = ﬁdt

_ (6t)ai+b(q—1)

— (6q71>bt+(ﬂta>i
— (B)

which contradicts to « ¢ IFEJ]. For the converse assume that a € ]Fg]. We want to show

that o = 1. Since a € Fgﬂ, a=~"forsomey€F, 1 <i<qg—1. Nowifi= di',
g—1 -g—1
A = VZT
= ()

O

Corollary 3.2.1. Let f(x) = 2" — aa? € Fylz],1 < j < i,a # 0. Also let d =
(t—7,9—1). Then f(z) is not a PP of F, in any of the following cases:

(1) i=j+1,

(i) a =1,

(iii) a=—1 andi—j ord is odd,

(iv) d=1,

(v) i —j is a power of the characteristic of F,,.

Proof. (i) Ifi—j =1, forany a € F}, a € F[qi_j] = IF,, therefore, from Theorem 3.2.2,
f(z) is not a PP of F,.

(ii) If « = 1, since 1 = 177, a € Iﬁ‘g_ﬂ for any 1 < j < 1, therefore, from Theorem

3.2.2, f(x) is not a PP of F,.

(iii) If o = —1 and i — j is odd, then —1 = (—1)i, that is & € F: ?. From Theorem
3.2.2, f(x) is not PP of F,. Now let ¢ — j be even. If « = —1 and d is odd, since
d=(i—j,q—1), ¢ — 1 must be odd, that is ¢ is even. But in this case —1 = 1, and

the claim follows by the argument in (ii).
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(iv) If d = 1, T =atl=1foralla € Fy. So from Lemma 3.2.1, a € IF([;*j], and

from Theorem 3.2.2, f(z) is not a PP of F.

(v) If i — j is a power of the characteristic p of F,, that is i — j = p"* for some k € N,
then d = (i — j,q — 1) = (p*,p™ — 1) = 1, hence the rest follows from (iv).
[

The next Theorem is from [3] where Janphaisaeng et al present a new class of PPs.

Theorem 3.2.3. Let f(x) = 2'—aa? € Fylx], 1 < j <i. Assume thati—j = q—1,a #
1, and (j,q — 1) = 1. Then f(z) mod (29 — x) is a PP of F,.

Proof. Write f(z) = 2" — az/ = 27(2"7 — a). In Corollary 3.1.1 setting
r=j 9x)=x—a, s=q—1,

we obtain that f(x) = xr(g(xs))q%l is a PP of F, if and only if g(z*) = 277! — « has no
nonzero root in F,. But since o # 1 the polynomial g(x°) has no root in F,, implying

that f(x) is a PP of F,. O
The following Theorem states a criterion for binomial PPs, see [13].

Theorem 3.2.4. Let f(z) =2'—aa? €Fylz], 1 <j<i<q—1,a#0. Letn=1i—73.

If f(z) is a PP of F,, then we have two cases:

() ifg—1+n

(ii) il¢—1+n and if ik = q— 1+n, then k is a multiple of the characteristic p of F,.

Proof. Let f(z) = 2'—az’ be a PP of F, and assume that i|g—1+n. Then ik = ¢g—1+n

for some 1 < k < ¢ — 1. Knowing that f(z) is a PP of F,, and using the fact that

0 if0<t<qg—2

d = (3.6)

= 1 ift=q—1

we get

Z(Ci —ad)t = Z " =0. (3.7)
c€lq c€lq
On the other hand,

k
Z(Ci —ad)t = Z (f) (—a) Z A=+t (3.8)

celfy



Combining (3.7) and (3.8), we obtain

i(i)(—a)tzcmﬂﬂf = 0. (3.9)

t=0 celfg

But the only nonzero term in the sum (3.9) comes from ¢ = 1 and it is

celFy celfg
= —ko Z 11
c€lfg
= ka
Theretore, ko = 0 for o € Fy, which shows that k& is a multiple of p. O
Example 3.2.1. Let f(z) = 23 + az'® € Fios.
n=1—j=16.

Since 35124 + 16 = 140, but % = 4 which is not a multiple of the characteristic 5,
from Theorem 3.2.4, we conclude that f(z) is not a PP of F,.

Theorem 3.2.5. Let f(z) = 2% — aa?” € F[z] with 0 < j <i,a #0. Then f(x) is a
PP of F, if and only if o ¢ FM where k = pi — pJ.

Proof. Let f(xz) be a PP of F,. Then from Theorem 3.2.2, it follows that o ¢ ng]
where k& = p" — p?. For the converse assume that f(x) is not a PP of F,. We want to
show that o € ng]. Since f(x) is not a PP of F,, there exist ¢, ¢y in Fy, with ¢; # co,
such that f(c1) = f(c2). So,

V—ad = & —ad
o —ad) = & - &
alc; — 02)pj = (¢ — Cg)pl
a = (e —c)' P
Therefore o € F¥ where k = pi — p/. O

3.3 Permutation Polynomials of the form z*(z" + 1)

Using Hermite’s criterion, Wang gave the following characterization for a class of PPs

of the form z*(z" + 1) (see [15]).
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Theorem 3.3.1. let 3|¢ — 1 and
[(@) = a"(a” + 1) € Fyfal,

u,v € ZT, (v,qg—1) = %. Then f(z) is a PP of F, if and only if
1 .
(u, T) =1,u % v mod 3 and 25 =1 inF,.

To prove this theorem we first need some lemmas.
Lemma 3.3.1. If f(x) = 2" (2" 4+ 1) is a permutation polynomial in F,[x], then
(u,v,q—1)=1.

Proof. Let (u,v,q — 1) = d. We can write f(z) = g(z%) where g(z) = xd(zd + a).

Now let 2§ = x4 for some z1, 29 € F,. Then, g(z%) = g(23), so that f(z1) = f(x2).
Since f is a permutation polynomial , it follows that x; = x5, hence h(x) = 2% is a
permutation polynomial over F,. In this case, from the properties of binomial PPs, we

have (d,q — 1) = 1. But since we also know that d|¢ — 1, d = 1. ]

Lemma 3.3.2. If d is odd, d|q — 1, 27 = 1 mod p, and (v,q — 1) = %, then

f(z) =x"(z" 4+ 1) = 0 has only one root, namely 0.

Proof. Since 27 =1 mod p, p must be odd. If f(z) has another root ¢ in F,, then
fle)=c"(c"+1)=0. But ¢ # 0, s0 ¢ +1 = 0. Since (v,q—1) = ‘%1, dr € Z such
that 1r = v, so (¢ — 1)r = dv, (¢ — 1)|vd. And since /! =1 we have ¢*? = 1.

But on the other hand, ¢*® = (¢*)? = (—1)¢ = —1, as d is odd. This a contradiction
since the characteristic p of F, is odd, so that —1 # 1. Therefore there is no such c in
F,. O
Lemma 3.3.3. Let (v,q—1) =d, (u,d) =1 and d ft. Then, (z*(z"+1))" mod (z?—x)
has degree < q — 1.

Proof.

(x"(z" + 1)) = z"(2" +a)’

_ (z; C) (ﬂ)*id) .

Note that the reduction f(z) mod (z? — x) has a term with exponent ¢ — 1 if and only
if f(x) has a term with the exponent which is a multiple of ¢ — 1. Now if n is the

degree of any term in the expansion, then
n = ut + vi for some i =1,...,t.
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Since d|v, we have n = ut mod d. Also, since (u,d) = 1 and d ft, we obtain that d [n

and therefore ¢ — 1 fn. O

Now let n,k € Z*, b € Z. Define the function
Ln;c i
M(n,k,b) =
k=3 (),

=1

where b = ¢ mod k. Then clearly, if @ = b mod k, then M(n, k,a) = M(n, k,b). And
if b = ¢ mod k, using the identity

(-0

we obtain
M(n+1,kb) = Ln:iocj (Z@ilc)
== | =]
- ; (k‘@iC) * Z; (kn’+nc—1>
=5 [ 5=
- ;) (kﬂc) - ;) <k‘i—|—nc—1)
= M(n, k,b)+ M(n, k,b—1). (3.10)

Lemma 3.3.4. If 2n + ¢ = 0 mod 3, then M(2n,3,¢) = 227;—” If 2n + ¢ # 0 mod 3,
then M(2n,3,c) = £22=1,

3

Proof. To prove the Lemma, we will divide the even numbers into three parts, namely,
6n,6n + 2,6n + 4, according to their remainders modulo 3, and consider the cases

seperately. First note that

D

M(6n,3,0) = \ (27;)

=0

- (6)- (%)

20m —1

| E—

(o)

on
M 1) =
LRSS <3@-+ 1)

~ [6bn 6n 6n
- (1)+(4)+...+(6n_2)
20m 1
3
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M(6n,3,2) = ng <3¢612>

= (5) () ()

B 20m _ 1
= T
so that

26n+1_|_1
M(6n +1,3,0) = M(6n,3,0) + M(6n,3,2) = —3
26n+1_|_1
M(6n+1,3,1) = M(6n,3,0) + M(6n,3,1) = — s
26n+1 -9

M(6n +1,3,2) = M(6n,3,1) + M(6n,3,2) = 5
26n+2 -1

M(6n+2,3,0)=M(6n+1,3,0)+ M(6n+1,3,2) = 5
26n+2+2
M(6n+2,3,1) = M(6n+1,3,0)+ M(6n+1,3,1) = — s
26n+2 -1

M(6n+2,3,2) = M(6n+1,3,1)+ M(6n+1,3,2) = 5
26n+3 -9

M(6n+3,3,0) = M(6n+2,3,0) + M(6n+2,3,2) = 5
26n+3_|_1
M(6n+3,3,1) = M(6n+2,3,0) + M(6n+2,3,1) = —
26n+3_|_1
M(6n+3,3,2) = M(6n+2,3,1) + M(6n +2,3,2) = —
26n+4_ 1

M(6n+4,3,0) = M(6n+3,3,0) + M(6n+3,3,2) = 5
26n+4_ 1

M(6n+4,3,1) = M(6n+3,3,0) + M(6n+3,3,1) = 5
26n+4+2
M(6n+4,3,2) = M(6n+3,3,1) + M(6n+ 3,3,2) = —
26n+5+1
M(6n+5,3,0) = M(6n+4,3,0)+ M(6n+4,3,2) = —
26n+5 -9

M(6n+5,3,1) = M(6n+4,3,0)+ M(6n+4,3,1) = 5
26n+5_|_ 1
M(6n+5,3,2) = M(6n+5,3,1)+ M(6n+5,3,2) = —

]
Now we are ready to prove the Theorem 3.3.1
Proof. First suppose that f(z) is a PP. Since (v,q — 1) = q;gl, v can be expressed as

V= vl% for some v; € Z. Here,
3 /{/Ul,
since, otherwise if 3|v; then vy = 3k, kK € Z, and v = 3/{%1 = k(q — 1), so that

(v,g—1)=(k(g—1),g — 1) = ¢ — 1, a contradiction. Also since 3 fvi, v; = 1 mod 3
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or v1 = 2 mod 3. If vy1 =1 mod 3, then v; — 1 = 0 mod 3, and if v1 = 2 mod 3, then
vy +1 =0 (mod 3). Therefore,

v? =1 mod 3.

Consider
(f@)5 = (@@ +1)%
= x“agé; ( ’ );c . (3.11)

Now we prove that the coefficient of 297! in the reduction (f(m))q;s1 mod (27 — z) is

M (%, 3, —Ulu). If n is the degree of any term in the expansion of (f(a;))q%l, from

(3.11) n = u% + vi, for some ¢ =0, ..., q;31' Now for i = —vyu,
g—1 . q—1
3 = u (—vyu)
-1 —1
= QT +vlq 3 (—viu)
qg—1
= 3 u(1 _Ul)

But, since v{ = 1 mod 3, 3|u(l — v?) so that ¢ — 1|% u(1 — vf). Thus, for i = —vyu,

(q — 1)|u; + vi. Also note that, if (¢ — 1)|u% + vi for some i =0,...,¢ — 1, then
(¢ — 1)|ust + (i + 3), since in this case

. B q— .
(i+3) = (u ) + 3v

1
_ qil : _
S (S

So we conclude that, the coefficient of x971 in (f(yc))q%1 mod (27 — x) is

g—1 =
M(——,3,— = 3.12
s T (1) 3.12)
where ¢ = —vyu mod 3.
Similarly, the coefficient of 97! in the reduction (f(x))@ mod (z7 — z) is
2(¢g—1
M( <q3 ) 3 _ouu). (3.13)

Since we assumed that f(xz) = 2%(2¥ + 1) is a PP from Lemma 3.3.1,

=1.

qg—1
3)

Assuming that f(z) is a PP, by Hermite’s criterion for ¢t = &%, (f(z))! mod (27 — )

(U,U,(] - 1) = (u,

has degree < ¢ — 1. Therefore

—1
M(q_

3 , 3, —vju) = 0.
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But from Lemma 3.3.4,

_ q—1
-1 23 —1 273 42
M(QT,& —vju) = 3T or BT+

Since (2%)3 =21 =1in F,, and ¢ = 1 mod 3, 2% # —2. Hence, from Lemma
3.3.4,

—1 23 —1
(qTagv —U1U) - 3— =0

M

so that 25 = 1 and % —vu Z 0 mod 3. Using 3 fuy,

qg—1
3

vy ( —vu) =v —viu Z 0 mod 3

and since v = 1 mod 3, v # u mod 3.
Conversely, let

u,——) =1, u# v mod 3 and 25 = 1.

In Lemma 3.3.4, let d = 3, as we know that 3|¢ — 1, we have 2% = 1 mod 3, and
(v,g—1) = qg—l. Then, finding such an odd number, we conclude that the only root
of f(z) = z"(z" +1) is 0. Since (v,q—1) = %+, we have (u, ') = 1. Now in Lemma

3
3.3.3, let d = 3+, Then, for all ¢ such that 4+ ft,

(f(x))" mod (27 — z) has degree < q — 1.

Now for t = ©1, we know that the coefficient of 277! in (f(x))(qgl) mod (z? — x) is

M(%*,3, —vyu) and since v # u mod 3, we have “* —vju # 0 mod 3. Then according

to Lemma 3.3.4
1 25t 1
M(QT,?), —vu) = =0,

where we used the assumption that 2% =1 in the second identity. Similarly, since
2(¢g—1)

@ — 2viu #Z 0 mod 3, the coefficient of z971 in (f(z))” 5  mod (27 — x) is

M(Q(q?jl) ,3,—2v1u) and from Lemma 3.3.4, it follows that

2(g—1)

2(q—1 275 —1
M(%,S, —20u) = ST = 0.
Therefore, f(z)! mod (27 — z) has degree < ¢ — 1 for ¢t = % and @. Finally, by
Hermite’s criterion, we conclude that f(x) is a PP. O

Example 3.3.1. In this example using Theorem 3.3.1, we will write all PPs of the
form z"(z¥ + 1) in Fi97 satisfying (v,126) = 1. First note that

127—1 .
275 =22 =1 inFor.
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Also the assumption of the Theorem requires that (v,126) = 42. So there exist two
values for v, namely, 42, 84. Hence, keeping in mind that deg(f(z)) < 125, we have
two cases:

Case 1 Let v = 42. Then f(z) = (2% +1) is a PP of F97 if and only if (u, 42) = 14
(in which case u #Z 0 mod 3 is necessarily satisfied ). Thus, all the possible values for

u corresponding to v = 42 are

1,4,5,11,17,19,23,25,29, 31, 35,37, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 71, 73, 79, 83.

Case 2 Let v = 84. Then f(z) = z%(2® + 1) is a PP of Fyy; if and only if (u,84) =1
( in which case u # 0 mod 3 is necessarily satisfied). Thus, all the possible values for

u corresponding to v = 84 are
1,4,5,11,17,19, 23, 25,29, 31, 35,37, 41.

Therefore, all PPs of the form x"(z" + 1) in Fy9; are:

—_

—_

2@+ 1), (@2 + 1), @2+ 1), 2 @2 4 1), 2@ 1 1)
@+ 1), 2B @+ 1), 2B @+ 1), 22 @ + 1), 2@+ 1)
B2 41, @ 1), (@2 1), 2¥@2 4 1), (@2 4+ 1)
P2 4 1), 2@ 1), 2P @ 1), (@2 4 1), 2@ 4 1)
2 1), 2@ 1), (@2 1), 2 (@2 4 1), 2P 4 1)
(z +1)
(=™ +1)
+

—_
~—

(3.14)

3.4 Permutation Poynomials of the form 2% +ar

Before giving a criterion related to polynomials of the form 2% +ax we will first recall

that the quadratic character 7 of a finite field I, of odd characteristic is defined by

1 if ¢ is square in F}
n(c) = | (3.15)
—1 otherwise

Note that as a convention we let 7(0) = 0.
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Lemma 3.4.1. Let ¢ be a nozero element in F,. Then,

gzt )b o=t (3.16)

=1 ifn(c) =-1
Theorem 3.4.1. Let q be a odd prime power and f(x) = % +ax € F,[z]. Then
f(x) is a PP of F, if and only if n(a® —1) = 1.

Proof. We will show that f(x) = z'T + ax is not a PP if and only if n(a® —1) # 1.
First assume that f(z) = z*s + ax is not a PP, therefore not one-to-one. Then we
have two cases:

Case 1 There exists an element ¢ € F} such that f(c)=f(0)=0. In this case,

g+1

¢z +ac = 0

a = —C?2

n(a® = 1) =n(c"" = 1) = n(0) = 0.

Case 2 There exist elements b, c € F; with b # ¢, such that f(b) = f(c). Then

+1

BT +ab = T +ac (3.17)

1

b(bq%1 +a) = ¢(c'T +a)

bt = (¢ + a)(bq%1 +a)™? (3.18)
Now if n(b) = n(c), from Lemma 3.4.1 it follows that
p'T = T (3.19)

Inserting (3.19) in (3.17), we obtain b = ¢, which is a contradiction with the choice of
b and c. Therefore 7(b) # n(c).

Since b, ¢ € I}, without loss of generality, we can assume that 7(b) = 1 and 7(c) =
—1 . Then we have

qg—1 —1

b7 =landc'z = —1.

and (3.15) becomes
be ' =(a+ 1) (a—1).
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Hence,

Therefore both in Case 1 and Case 2, we have n(a? — 1) # 1.

Now, conversely assume that n(a® — 1) # 1. We consider two cases:

Case 1 Let n(a* — 1) = 0. In this case a® — 1 =0, hence a = 1 or —1. In either case,

there exists an element ¢ € F} such that n(c) = —a, i.e. ¢z = —a. But then
f(e) ¢+ ca
c(cq%1 +a)
0.

Hence f(x) is not one-to-one, thereby is not a PP of F,.

Case 2 Let n(a® — 1) = —1.

flla+D@-1)7") =

a—+1
a—1
= a+1

= f(Q).

(a+Da—1((a+1)7 (a—1)7%
(a—1)

—qt1

+a)

And since (a+1)(a —1)7! # 1, we conclude that f(z) is not one-to-one, therefore it is

not a PP of F,,.
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