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Abstract

A permutation polynomial (PP) over a �nite �eld Fq is a polynomial in Fq[x] which
induces a bijective map from Fq to itself. PPs are of great theoretical interest and are

also needed for applications.

This thesis starts with some basic facts about PPs. Recent results about one of

the most important open problems in this topic: counting PPs of a given degree, are

presented.

Well known classes of PPs are the linear polynomials, the monomials xk, with

gcd(k, q − 1) = 1, the linearized polynomials, and the Dickson polynomials. It turns

out that �nding new classes of PPs is not easy. We also focus on this problem and give

a survey of some recent constructions.



SONLU C�S�MLER ÜZER�NDE PERMÜTASYON POL�NOMLARI

Esen Aksoy
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Tez Dan�³man�: Prof. Dr. Alev Topuzo�glu

Anahtar Kelimeler: permütasyon polinomu, sonlu cisim, Dickson polinomlar�, derecesi

n olan simetrik grup.

Özet

Sonlu bir cisim Fq üzerindeki bir permütasyon polinomu (PP), Fq dan Fq ya birebir ve
örten bir fonksiyondur. PP lar� teorik aç�dan büyük önem ta³�makta ve ayn� zamanda

uygulamalarda da kullan�lmaktad�r.

Bu tez PP lar� hakk�nda temel baz� bilgilerle ba³lamaktad�r. Bu konuyla ilgili

aç�k problemlerden biri olan "verilen bir derecedeki PP lar�n�n say�s�" üzerinde son

zamanlarda yap�lm�³ olan çal�³malar incelenmektedir.

Do�grusal polinomlar, (k, q−1) = 1 ko³ulunu sa�glayan xk formundaki polinomlar ve

Dickson polinomlar� bilinen baz� PP s�n��ar�d�r. Yeni PP s�n��ar�n� bulman�n kolay bir

problem olmad��g� bilinmektedir. Bu tezde son zamanlarda bu problem üzerinde elde

edilen sonuçlara da yer verilmi³tir.
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CHAPTER 1

INTRODUCTION

Permutation polynomials (PP) over �nite �elds play important role in the study of

secure transmission of data and in combinatorics for the construction of several com-

binatorial designs. Throughout this thesis, we intend to give a survey of some recent

theoretical results on PPs over �nite �elds. For a detailed literature on this subject we

refer to the books [8] and [12], and to the article [10].

In this Chapter, we �rst introduce the well known criterion for the determination

of PPs and review some of the known classes of PPs.

1.1 Preliminaries

De�nition 1.1.1. Let Fq be a �nite �eld of q elements, where q = pn, p is a prime

and n is a positive integer. A polynomial f(x) ∈ Fq[x] is said to be a PP of Fq if the

induced map α→ f(α) from Fq to itself is bijective.

Given a permutation σ of the elements of Fq, there exists a unique polynomial

fσ ∈ Fq[x] with deg(fσ) < q and fσ(c) = σ(c) for all c ∈ Fq. The polynomial fσ can be

given by the formula

fσ(x) =
∑
c ∈ Fq

σ(c)(1− (x− c)q−1). (1.1)

or by the Lagrange interpolation formula, see for instance [8]. From (1.1), we note that

deg(fσ) ≤ q − 2, since all elements of Fq sum up to zero.

Consider an (arbitrary) polynomial f ∈ Fq[x]. One can asscociatef to the reduction

polynomial g ∈ Fq[x] by taking f mod (xq − x), since g and f induce the same map

over Fq, as stated in the following lemma.

Lemma 1.1.1. For f, g ∈ Fq[x], f(c) = g(c) for all c ∈ Fq if and only if f(x) ≡ g(x)

mod (xq − x).
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Proof. Using divison algorithm we have, f(x) − g(x) = h(x)(xq − x) + r(x) for some

h, r ∈ Fq[x] with deg(r) < q. Substituting c for x, we get f(c) = g(c) for all c ∈ Fq if

and only if r(c) = 0 for all c ∈ Fq, which is equivalent to r = 0.

1.2 Analysis of Permutation Polynomials

In order to classify PPs over �nite �elds, one needs some criteria to test whether a

given polynomial f(x) ∈ Fq[x] is a permutation of Fq or not. Among these criteria, in

some sense, the most useful one was given by Hermite for prime �elds, which was then

generalized by Dickson to �nite �elds Fq, where q is a prime power.

Theorem 1.2.1. (Hermite's Criterion)

Let Fq be a �nite �eld of characteristic p. A polynomial f(x) ∈ Fq[x] is a PP of Fq if

and only if the following two conditions are satis�ed:

(i) f has exactly one root in Fq,

(ii) For each integer t with 1 ≤ t ≤ q − 2 and t 6≡ 0 mod p, the reduction of f(x)t

mod (xq − x) has degree ≤ q − 2.

See [8] for the proof.

Corollary 1.2.1. If d > 1 is a divisor of q − 1, then there is no PP of Fq of degree d.

Proof. Let f ∈ Fq[x] with deg(f) = d. Then there exists 1 ≤ t = (q − 1)/d ≤ q − 2

such that f(x)t mod (xq − x) has degree q − 1. Therefore by Hermite's Criterion, we

conclude that f is not a permutation polynomial of Fq.

Using additive characters, we state another criterion.

Theorem 1.2.2. The polynomial f ∈ Fq[x] is a PP of Fq if and only if∑
c ∈ Fq

χ(f(c)) = 0,

for all nontrivial additive characters χ of Fq

Proof. We �rst recall that an additive character χ of Fq is de�ned by

χ = χ(x) = e2πiTr(ax)/p, a ∈ Fq.

where Tr(α) denotes the (absolute) trace Tr : Fq → Fp, de�ned by

Tr(α) = α+ αp + ...+ αp
n−1

.
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From the properties of characters of a �nite abelian group, it follows that if χ is any

nontrivial additive character of Fq, then∑
c ∈ Fq

χ(c) = 0.

Now let f be a PP of Fq and χ be a nontrivial character of Fq. Then∑
c ∈ Fq

χ(f(c)) =
∑
c ∈ Fq

χ(c) = 0.

For the converse, assume that
∑

c ∈ Fq
χ(f(c)) = 0 for all nontrivial additive characters

χ of Fq. We can give the number of solutions f(x) = a in Fq for any a ∈ Fq by

1

q

∑
c ∈ Fq

∑
χ

χ(f(c))χ(a) = 1 +
1

q

∑
χ6=χ0

χ(a)
∑
c ∈ Fq

χ(f(c)) = 1,

where we used the so-called orthogonality of characters:

∑
c ∈ Fq

χc(a)χc(b) =

 q if a = b

0 otherwise.

Therefore, f is a PP of Fq.

1.3 Main Classes of Permutation Polynomials

(1) Every linear polynomial ax+ b ∈ Fq[x] , a 6= 0, is a PP of Fq .

Proof. Every linear polynomial over Fq is one to one, the rest follows from the de�nition

of PPs.

(2) The monomial xk is a PP of Fq if and only if gcd(k, q − 1) = 1.

Proof. If a is an element of Fq of order m, then | < ak > | = m
gcd(k,m)

. Therefore, the

function c→ ck from Fq to Fq is onto if and only if gcd(k, q − 1) = 1.

(3) Let Fq be an extension �eld of Fp of degree n. Then, the linearized polynomial

L(x) =
n∑
i=0

aix
pi ∈ Fq[x]

is a PP of Fq if and only if 0 is the only root of L(x) ∈ Fq.

Proof. Since we have L(ax + y) = aL(x) + L(y) for all x, y ∈ Fq, and a ∈ Fp, L is a

linear operator on Fq. Hence, for L to be one-to-one, it is necessary and su�cient that

0 is the only root of L(x) in Fq.
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(4) Dickson Polynomials (of the 1st kind) de�ned by the formula

Dk(x, a) =

b k
2c∑
j=0

k

k − j

(
k − j

j

)
(−a)jxk−2j, (1.2)

where a ∈ Fq, also constitute a class of PPs.

The Dickson polynomial of the 1st kind Dk(x, a) ∈ Fq[x], a ∈ F∗q, is a PP of Fq if and

only if gcd(k, q2 − 1) = 1.

Proof. Let gcd(k, q2 − 1) = 1 and Dk(b, a) = Dk(c, a) for some b, c ∈ Fq. Let α, β be

the roots of x2 − bx + a and x2 − cx + a, respectively, in Fq2 . Then α, β satisfy the

equations α+ aα−1 = b, β + aβ−1 = c, so that

Dk(α+ aα−1, a) = Dk(β + aβ−1, a).

Then, from the "functional equation" (see for example [8])

Dk(x+
a

x
, a) = xk +

ak

xk
(1.3)

it follows that

αk + akα−k = βk + akβ−k,

(αkβk − ak)(αk − βk) = 0.

Hence, either αk = βk or αk = (aβ−1)k. Since gcd(k, q2 − 1) = 1, xk is a permutation

polynomial of Fq2 . So we have α = β or α = aβ−1, and both cases give us b=c.

Therefore, Dk(x, a) is a PP of Fq.

For the converse, assume that Dk(x, a) is a PP of Fq and gcd(k, q2 − 1) = d where

d > 1. If d is even, then k is even and q is odd. But then, from (1.2) it follows that

all powers of x in Dk(x, a) are even. So, we get Dk(b, a) = Dk(−b, a) for all b ∈ F∗q,

which is a contradiction to our assumption, since q is odd and therefore char(Fq) 6= 2.

Therefore d is odd and there exists an odd prime divisor r of d such that r| k and

r| q2 − 1. We consider the following two cases:

Case 1 Let r| k and r| q − 1. Since all roots of xr − 1 are the elements of Fq, there

exists an element α 6= 1, a ∈ Fq with αr = 1. Then αk = 1 and

Dk(α+ aα−1, a) = αk +
ak

αk
= 1 + ak = Dk(1 + a, a).

Knowing that Dk(x, a) is a PP of Fq, we have α + aα−1 = 1 + a implying α = 1 or

α = a which is impossible by the choice of α.

4



Case 2 Let r| k and r| q + 1. Let α be a root of xq+1 − a in Fq2 . Since xr − 1 has r

roots in Fq2 , we can choose a root β of xr − 1 with β 6= 1, aα−2. Using βk = 1, we can

write,

αk +
ak

αk
= βkαk +

ak

βkαk
,

Dk(α+ aα−1, a) = Dk(βα+ a(βα)−1, a),

where the second identity follows from (1.3). But since α is a root of xq+1−a, it follows

that

α+ aα−1 = α+ αq.

On the other hand,

(α+ αq)q = αq + αq
2

= αq + α

which shows that α+ αq ∈ Fq. Therefore,

α+ aα−1 = α+ αq ∈ Fq.

Similarly

βα + a(βα)−1 = βα + (βα)q ∈ Fq.

Now considering the assumption that Dk(x, a) is a PP of Fq, we would have

α+ aα−1 = βα + a(βα)−1

implying β = 1 or β = aα−2 which is impossible by the choice of β.

Hence, we conclude that gcd(k, q2 − 1) = 1.

Remark 1.3.1. Since Dk(x, 0) = xk, the Dickson polynomials can be considered as

the generalization of the power polynomials. We also note that deg(Dk(x, a)) = k and

for a given Dickson polynomial Dk(x, a) over Fq, being a permutation of Fq is only

dependent on k.

A monic polynomial f is said to be in normalized form if f is of the form:

f(x) = xn + an−1x
n−1 + ...+ a1x ∈ Fq[x]

and when the characteristic p does not divide n, then an−1 = 0.

Given a PP f(x) of Fq, we can reduce it to the normalized form by composing it

with a suitable linear polynomial g(x) = ax + b ∈ Fq[x]. Hence, rather than general
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class of PPs it is convenient to just study PPs in normalized form. In Table below,

which can be found in [11], we give the Dickson's lists of all normalized PPs of degree

at most 6, on account of Hermite's Criterion. We note that generalization of these

polynomials to higher degrees is still an unsolved problem.

Normalized PP of Fq q

x any q

x2 q ≡ 0 mod 2

x3 q 6≡ 1 mod 3

x3 − ax(a not a square) q ≡ 0 mod 3

x4 ± 3x q = 7

x4 + a1x
2 + a2x(if its only root in Fq is 0) q ≡ 0 mod 2

x5 q 6≡ 1 mod 5

x5 − ax(a not a fourth power) q ≡ 0 mod 5

x5 + ax(a2 = 2) q = 9

x5 ± 2x2 q = 7

x5 + ax3 ± x2 + 3ax2(a not a square) q = 7

x5 + ax3 + 5−1a2x(a arbitrary) q ≡ ±2 mod 5

x5 + ax3 + 3a2x(a not a square) q = 13

x5 − 2ax3 + a2x(a not a square) q ≡ 0 mod 5

x6 ± 2x q = 11

x6 ± a4x3 + a2x2 ± 5x(a 6= 0) q = 11

x6 ± 4a2x3 + ax2 ± 4x(a = 0 or a not a square) q = 11

Lemma 1.3.1. Let f(x), g(x) ∈ Fq[x]. Then the composition f(g(x)) is a bijection of

Fq if and only if f(x) and g(x) are bijections of Fq.

Proof. Let f(x) and g(x) be bijections of Fq. Then if f(g(x1)) = f(g(x2)), then

g(x1) = g(x2) implying x1 = x2. Conversely assume that f(g(x)) is a bijection of Fq.

If f(x) is not a bijection, that is not onto, then f(g(x)) can not be onto, contradicting

to f(g(x)) being a bijection of Fq. Now let g(x1) = g(x2). Then, f(g(x1)) = f(g(x2)),

implying that x1 = x2. Therefore f(x) and g(x) are bijections of Fq.

Lemma 1.3.2. Let f(x) ∈ Fq[x] and a, b ∈ Fq, b 6= 0. Then the following statements

are equivalent:

(i) f(x) is a PP of Fq,
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(ii) f(x) + a is a PP of Fq,

(iii) bf(x) is a PP of Fq.

Proof. The proof follows from Lemma 1.3.1, since we know that every linear polynomial

over Fq is a PP of Fq.

1.4 Groups of Permutation Polynomials

De�nition 1.4.1. Let n be a positive integer. The set of all one-to-one mappings,

i.e. permutations, from the set {1, 2, ..., n} onto {1, 2, ..., n} forms a group under the

composition. This group is called the symmetric group of degree n, and denoted by

Sn.

Let S = {f(x)| f(x) is a PP of Fq}. De�ne an operation "." on the set S in such

a way that g(x).f(x) = h(x) whenever f(g(x)) ≡ h(x) mod (xq − x). Under this

operation (S, .) is a group and it is isomorphic to the symmetric group Sq.

Theorem 1.4.1. For q > 2 , Sq is generated by xq−2 and all (non-constant) linear

polynomials over Fq.

Proof. Note that the polynomial fa(x) = −a2[((x−a)q−2+a−1)q−2−a]q−2 represents the

transposition (0a), a ∈ F∗q. Since every permutation of Fq is a product of transpositions

and that every transposition (bc) can be written as a product (0b)(0c)(0b), we conclude

the proof.

Theorem 1.4.2. If q > 2 and c is a �xed primitive element of Fq, then Sq is generated

by cx, x+ 1, and xq−2.

Proof. Let a, b ∈ Fq. Then there exist s, t ∈ Z such that a = cs and b = ct. Now, the

Theorem follows from the identity ax+b = (cx)s−t.(x+1).(cx)t and Theorem 1.4.1.

Theorem 1.4.3. Let

S = {Dk(x, a) ∈ Fq[x]| (k, q2 − 1) = 1}

be the set of all Dickson Polynomials Dk(x, a) ∈ Fq[x] that are PPs over Fq. Then S

is closed under the composition of polynomials if and only if a = 0, 1 or −1.

Proof. Assume that a 6= 0 and S is closed under composition. Let Dk(x, a) and

Dm(x, a) be two polynomials in S. Then their composition Dk(Dm(x, a), a) is also

7



in S. Since from the choice of Dk(x, a) and Dm(x, a), (k, q2 − 1) = (m, q2 − 1) = 1, we

have (km, q2 − 1) = 1 and therefore, the polynomial Dkm(x, a) is also in S. But from

(1.2),

deg(Dk(Dm(x, a), a)) = deg(Dkm(x, a)),

which implies that

Dk(Dm(x, a), a) = Dkm(x, a). (1.4)

Using (1.3), one gets

Dkm(y +
a

y
, a) = ykm +

akm

ykm

= Dk

(
ym +

am

ym
, am

)
= Dk

(
Dm

(
y +

a

y
, a)

)
, am

)
.

Hence,

Dkm(x, a) = Dk(Dm(x, a), am). (1.5)

Now combining (1.4) and (1.5), we get

Dk(Dm(x, a), a) = Dk(Dm(x, a), am). (1.6)

Since Dm(x, a) is an onto function, we can write (1.6) as

Dk(x, a) = Dk(x, a
m).

And comparing the coe�cient of xk−2 in these two polynomials, we conclude that

am = a, and this holds for all m with (m, q2 − 1) = 1. Thus for m = q − 2,

aq−2 = a−1 = a

so that a = 1 or −1.

Now, conversely assume that a = 0, 1 or −1. Let Dk(x, a) and Dm(x, a) be two

polynomials in S, so that (k, q2 − 1) = (m, q2 − 1) = 1. We want to show that the

composition Dk(Dm(x, a), a) is also in S. First note that, for a = 0, 1 or −1,

Dk(Dm(x, a), a) = Dk(Dm(x, a), am)

and by (1.5)

Dk(Dm(x, a), a) = Dkm(x, a).

Since (km, q2 − 1) = 1, Dkm(x, a) ∈ S, therefore, Dk(Dm(x, a), a) ∈ S.

8



CHAPTER 2

ENUMERATION OF PERMUTATION POLYNOMIALS

Lidl and Mullen listed a number of open problems related to PPs in [6], [7]. In this

Chapter we will be dealing with one of these problems, namely �nding the number of

PPs of a given degree d.

2.1 An Upper Bound for the Number of Permutation Polynomials with

Non-Maximal Degree

Recall that from (1.1) all PPs of a �nite �eld Fq have degree ≤ q − 2. In [4] Konyagin

and Pappalardi give an asymptotic bound for the number of PPs of degree less than

q− 2 and state that almost all PPs of Fq have degree q− 2, according to the following

Theorem. We will �rst present some notation. Let

Nq(d) = |{σ ∈ Sq| deg(fσ) = d}|

and

N(q,m) = |{σ ∈ Sq| deg(fσ) < q −m}|.

Theorem 2.1.1. For N(q, 2), where N(q, 2) = |{σ ∈ Sq| deg(fσ) < q − 2}|,

we have

|N(q, 2)− (q − 1)!| ≤
√

2e

π
q

q
2 .

Hence for Nq(q− 2), where Nq(q− 2) represents the number of PPs of Fq of degree

q − 2, we have a signi�cantly large lower bound

Nq(q − 2) ≥ (q − 1)!(q − 1)−
√

2e

π
q

q
2 .

We have the following table for the values of N(q, 2), corresponding to the �rst eight

prime powers.
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q 2 3 4 5 7 8 9 11

N(q, 2) 0 0 12 20 630 5368 42120 3634950

(q − 1)! 1 2 6 24 720 5040 40320 3628800

Proof. Let S be a �xed subset of Fq.

De�ne

NS = |{f |f : Fq → S, and
∑
c ∈ S

cf(c) = 0}|.

From (1.1), one can easily see that, for a permutation σ ∈ Sq the coe�cient of xq−2 in

fσ(x) is

−
∑
c∈ Fq

cσ(c),

so that deg(fσ) < q − 2 if and only if∑
c∈ Fq

cσ(c) = 0.

Therefore for N(q, 2) we have

N(q, 2) = NFq +
∑
S(Fq

(−1)q−|S|NS =
∑
S⊆Fq

(−1)q−|S|NS. (2.1)

Put ep(x) = e
2πix

p . Then from the properties of additive characters, it follows that

∑
a ∈ Fq

ep(Tr(ax)) =

 q if x = 0

0 if x 6= 0.

Now using the identity

1

q

∑
a ∈ Fq

ep

Tr(a ∑
c ∈ Fq

cf(c))

 =

 1 if
∑

c ∈ Fq
cf(c) = 0

0 otherwise.

10



we have

NS =
∑

f :Fq→S

1

q

∑
a ∈ Fq

ep

Tr(a ∑
c ∈ Fq

cf(c))


=

1

q

∑
a ∈ Fq

 ∑
f :Fq→S

ep

 ∑
c ∈ Fq

Tr(acf(c))


. =

1

q

∑
a ∈ Fq

 ∏
c ∈ Fq

∑
t∈ S

ep(Tr(act))


=

|S|q

q
+

1

q

∑
a ∈ F∗q

 ∏
c ∈ Fq

∑
t∈ S

ep(Tr(ct))


=

|S|q

q
+
q − 1

q

∏
c ∈ Fq

∑
t∈ S

ep(Tr(ct)). (2.2)

Combining (2.1) with (2.2), we obtain

N(q, 2)−
∑
S⊆Fq

(−1)q−|S|

q
|S|q =

q − 1

q

∑
S⊆Fq

(−1)q−|S|
∏
c∈ Fq

∑
t∈ S

ep(Tr(ct)).

We also note that

∑
S⊆Fq

(−1)q−|S|

q
|S|q =

1

q

qq − ∑
S(Fq

(−1)q−|S||S|q


=
1

q
q!

= (q − 1)!.

Therefore,

N(q, 2)− (q − 1)! =
q − 1

q

∑
S⊆Fq

(−1)q−|S||S|
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct)).

Using the fact that ∑
t∈ S

ep(Tr(ct)) = −
∑
t/∈ S

ep(Tr(ct)) for c ∈ F∗q,

we consider two cases:

(i) If q is odd, then

∏
c∈ F∗q

(
−
∑
t∈ S

ep(Tr(ct))

)
=
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct)).

Also note that |S| is even if and only if q − |S| is odd, hence, for each subset S of Fq

(−1)q−|S| = −(−1)|S|

11



N(q, 2)− (q − 1)! =
q − 1

2q

∑
S⊆Fq

((−1)q−|S| + (−1)|S|(q − |S|))
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct))

=
q − 1

2q

∑
S⊆Fq

(−1)|S|(q − 2|S|)
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct)). (2.3)

(ii) If q is even, then

∏
c∈ F∗q

(
−
∑
t∈ S

ep(Tr(ct))

)
= −

∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct))

and |S| is even if and only if q − |S| is even. Hence,

(−1)q−|S| = −(−1)|S|.

Therefore

N(q, 2)− (q − 1)! =
q − 1

2q

∑
S⊆Fq

((−1)|S| − (−1)|S|(q − |S|))
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct))

=
q − 1

2q

∑
S⊆Fq

(−1)|S|(2|S| − q)
∏
c∈ F∗q

∑
t∈ S

ep(Tr(ct)). (2.4)

Now taking the absolute value of both sides in (2.3) and (2.4) , we get

|N(q, 2)− (q − 1)!| ≤ q − 1

2q

∑
S⊆Fq

|q − 2|S||
∏
c∈ F∗q

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣ . (2.5)

Note that the geometric mean is always less than or equal to the arithmetic mean, i.e.

(
n∏
k=1

|a2
i |)

1
k ≤ 1

k

n∑
k=1

|a2
i |,

or equivalently,

(
n∏
k=1

|ai|)
2
k ≤ 1

k

n∑
k=1

|a2
i |,

(
n∏
k=1

|ai|) ≤ (
1

k

n∑
k=1

|a2
i |)

k
2 .

Taking

ai = |
∑
t∈ S

ep(Tr(cit))|, for i = 1, ..., q − 1

we have ∏
c∈ F∗q

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣ ≤
 1

q − 1

∑
c∈ F∗q

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣
2


q−1
2

. (2.6)
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We also note that

∑
c∈ Fq

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣
2

=
∑
c∈ Fq

(∑
t∈ S

ep(Tr(ct))

)(∑
t∈ S

ep(Tr(ct))

)

=
∑
c∈ Fq

(∑
t∈ S

ep(Tr(ct))

)(∑
t∈ S

ep(Tr(ct))

)
=

∑
c∈ Fq

∑
t1,t2∈ S

epTr(ct1)epTr(ct2)

=
∑
c∈ Fq

∑
t1,t2∈ S

ep(Tr(ct1 − ct2))

=
∑

t1,t2∈ S

∑
c∈ Fq

ep(Tr(c(t1 − t2)))

= q|S|, (2.7)

where we used the following identity in the last step:

∑
c∈ Fq

ep(Tr(c(t1 − t2))) =

 q if t1 = t2

0 if t1 6= t2

So, we have ∑
c∈ F∗q

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣
2

= (q − |S|)|S|.

Hence (2.6) can be written as

∏
c∈ F∗q

∣∣∣∣∣∑
t∈ S

ep(Tr(ct))

∣∣∣∣∣ ≤
(

(q − |S|)|S|
q − 1

) q−1
2

. (2.8)

Combining (2.8) with (2.5), we obtain

|N(q, 2)− (q − 1)!| ≤ q − 1

2q(q − 1)
q−1
2

∑
S⊆Fq

|q − 2|S|| ((q − |S|)|S|)
q−1
2 . (2.9)

13



Now our aim is to estimate the right-hand side of this inequality. First note that∑
S⊆Fq

|q − 2|S|| = 2
∑

S⊆Fq ,|S|≤ q
2

(q − 2|S|)

= 2

b q
2c∑
j=0

(
q

j

)
(q − 2j)

= 2

b
q
2c∑
j=0

(
q

j

)
(q − j)−

b q
2c∑
j=1

(
q

j

)
(j)


= 2

b
q
2c∑
j=0

q!

(q − j)!j!
(q − j)−

b q
2c∑
j=1

q!

(q − j)!j!
j


= 2q

b
q
2c∑
j=0

(q − 1)!

(q − j − 1)!j!
−
b q

2c∑
j=1

(q − 1)!

(q − j)!(j − 1)!


= 2q

b
q
2c∑
j=0

(
q − 1

j

)
−
b q

2c∑
j=1

(
q − 1

j − 1

)
= 2q

(
q − 1⌊
q
2

⌋ ).
(2.10)

Using the inequality (
2n

n

)
≤
√

2

π

22n√
2n+ 1

2

we also have (
q − 1⌊
q
2

⌋ ) ≤
√

2

π

2q−1√
q − 1

2

.

Hence (2.10) can be written as

∑
S⊆Fq

|q − 2|S|| = 2q

(
q − 1⌊
q
2

⌋ ) ≤√ 2

π

2qq√
q − 1

2

. (2.11)

On the other hand,

((q − |S|)|S|)
q−1
2 ≤

(
(q −

⌊q
2

⌋
)
⌊q
2

⌋) q−1
2

=

(√
(q −

⌊q
2

⌋
)
⌊q
2

⌋)q−1

≤ (
q

2
)q−1.

(2.12)
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Inserting (2.11) and (2.12) in (2.9), we have

|N(q, 2)− (q − 1)!| ≤

 q − 1√
q − 1

2

√
q

√ 2

π

(
q

q − 1

) q−1
2

q
q
2 . (2.13)

Considering the inequalities

q − 1√
q − 1

2

√
q
< 1 and

(
q

q − 1

) q−1
2

<
√
e

we obtain

|N(q, 2)− (q − 1)!| ≤
√

2e

π
q

q
2 .

Following their results in [4], Konyagin and Pappalardi extended their work obtain-

ing in [5] an asymtotic bound for the number of PPs of degree not exceeding a �xed

number q − m − 1 on a �nite �eld. Before giving the related Theorem, we present

further notation.

Let σ ∈ Sq with the representing polynomial

fσ(x) =

q−2∑
i=1

aix
i.

Let k1, ..., kd ∈ Z with 1 ≤ k1 < ... < kd ≤ q − 2 . Then de�ne

N [k1, ..., kd] = |{σ ∈ Sq|aki
= 0 for all i = 1, ..., d}|.

Theorem 2.1.2.

|N [k1, ..., kd]−
q!

qd
| < (q(q − k1 − 1))

q
2

(
1 +

√
1

e

)q

.

Proof. Recall that for a permutation σ ∈ Sq, the corresponding fσ(x) is given by

fσ(x) =
∑
c ∈ Fq

σ(c)(1− (x− c)q−1).

Therefore the coe�cient of xi in fσ(x) is

(−1)q−i
(
q − 1

i

) ∑
c∈ Fq

cq−1−iσ(c). (2.14)

But in Fq, (
q − 1

i

)
=

(q − 1)...(q − i)

i!

=
(−1)ii!

i!

= (−1)i

15



for all i = 1, ..., q − 1. So, (2.14) is equal to

(−1)q
∑
c∈ Fq

cq−1−iσ(c) = −
∑
c∈ Fq

cq−1−iσ(c).

Therefore, the coe�cients aki
= 0 for i = 1, ..., d if and only if∑

c∈Fq

cq−ki−1σ(c) = 0, i = 1, ..., d.

Now de�ne,

NS[k1, ..., kd] = |{f |f : Fq → S, and
∑
c∈Fq

cq−ki−1f(c) = 0, for all i = 1, ..., d}|.

Then we can write

N [k1, ..., kd] = NFq [k1, ..., kd] +
∑
S(Fq

(−1)q−|S|NS[k1, ..., kd].

=
∑
S⊆Fq

(−1)q−|S|NS[k1, ..., kd] (2.15)

Then

NS[k1, ..., kd] =
1

qd

∑
f :Fq→S

∑
a∈Fq

ep(Tr(
∑
c∈Fq

f(c)acq−k1−1))...
∑
a∈Fq

ep(Tr(
∑
c∈Fq

f(c)acq−kd−1))


=

1

qd

∑
f :Fq→S

∑
(a1,...,ad)∈Fd

q

ep(Tr(
∑
c∈Fq

f(c)a1c
q−k1−1))...ep(Tr(

∑
c∈Fq

f(c)adc
q−kd−1))

=
1

qd

∑
f :Fq→S

∑
(a1,...,ad)∈Fd

q

ep(
∑
c∈Fq

Tr(f(c)a1c
q−k1−1))...ep(

∑
c∈Fq

Tr(f(c)adc
q−kd−1))

=
1

qd

∑
f :Fq→S

∑
(a1,...,ad)∈Fd

q

ep

∑
c∈Fq

Tr(f(c)a1c
q−k1−1) + ....+

∑
c∈Fq

Tr(f(c)adc
q−kd−1)


=

1

qd

∑
(a1,...,ad)∈Fd

q

∑
f :Fq→S

ep

∑
c∈Fq

Tr

(
f(c)

d∑
i=1

aic
q−ki−1

)
=

1

qd

∑
(a1,...,ad)∈Fd

q

∏
c∈Fq

∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))

=
|S|q

qd
+

1

qd

∑
(a1,...,ad)∈Fd

q\{0}

∏
c∈Fq

∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))
.

Let

RS :=
∑

(a1,...,ad)∈Fd
q\{0}

∏
c∈Fq

∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))
and

M := max
(a1,...,ad)∈Fd

q\{0}

∏
c∈Fq

∣∣∣∣∣∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣ .
16



Then since |{(a1, ..., ad) ∈ Fdq\{0}}| = qd − 1, we have

|RS| ≤ (qd − 1)M,

and therefore

NS[k1, ..., kd] ≤ |S|q

qd
+
qd − 1

qd
M. (2.16)

We again use the fact that the geometric mean is always bounded by the arithmetic

mean to get

∏
c∈Fq

∣∣∣∣∣∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣ ≤

1

q

∑
c∈Fq

∣∣∣∣∣∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣
2


q
2

(2.17)

Consider the polynomial p(x) =
∑d

i=1 aix
q−ki−1. Since p(x) has degree q − k1 − 1, for

each u ∈ Fq, the equation

p(x) =
d∑
i=1

aix
q−ki−1 = 0

has at most q − k1 − 1 solutions in Fq. Therefore∑
c∈Fq

∣∣∣∣∣∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣
2

≤
∑
u∈Fq

(q − k1 − 1)

∣∣∣∣∣∑
t∈S

ep(Tr(tu))

∣∣∣∣∣
2

.

(2.18)

Now combining (2.18) with (2.17) we obtain

∏
c∈Fq

∣∣∣∣∣∑
t∈S

ep

(
Tr

(
t

d∑
i=1

aic
q−ki−1

))∣∣∣∣∣ ≤

1

q

∑
u∈Fq

(q − k1 − 1)

∣∣∣∣∣∑
t∈S

ep(Tr(tu))

∣∣∣∣∣
2


q
2

= (|S||q − k1 − 1|)
q
2

where we used the identity ∑
c∈Fq

∣∣∣∣∣∑
t∈S

ep(Tr(tc))

∣∣∣∣∣
2

= q|S|

in the last step. Then from the de�nition of M and (2.16), it follows that

NS[k1, ..., kd] ≤ |S|q

qd
+
qd − 1

qd
(|q − k1 − 1||S|)

q
2 . (2.19)

Now inserting (2.19) in (2.15), we obtain

N [k1, ..., kd] ≤
∑
S⊆Fq

(−1)q−|S|
(
|S|q

qd
+
qd − 1

qd
(|q − k1 − 1||S|)

q
2

)

=
∑
S⊆Fq

(−1)q−|S|
|S|q

qd
+
∑
S⊆Fq

(−1)q−|S|
qd − 1

qd
(|q − k1 − 1||S|)

q
2 .

(2.20)
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Using the fact that ∑
S⊆Fq

(−1)q−|S||S|q = q!

(2.20) becomes

N [k1, ..., kd] ≤
q!

qd
+
∑
S⊆Fq

(−1)q−|S|
qd − 1

qd
(|q − k1 − 1||S|)

q
2 .

Therefore, ∣∣∣∣N [k1, ..., kd]−
q!

qd

∣∣∣∣ ≤ qd − 1

qd

∑
S⊆Fq

(|q − k1 − 1||S|)
q
2

< |q − k1 − 1|
q
2

∑
S⊆Fq

|S|
q
2

= (q − k1 − 1)
q
2

q∑
n=0

(
q

n

)
n

q
2 . (2.21)

Now, since 1 + x < ex, for x = n−q
q

we have

1 +
n− q

q
≤ e

n−q
q

n ≤ qe
n−q

q . (2.22)

Therefore, inserting (2.22) in (2.21),∣∣∣∣N [k1, ..., kd]−
q!

qd

∣∣∣∣ ≤ (q − k1 − 1)
q
2

q∑
n=0

(
q

n

)
(qe

n−q
q )

q
2

= ((q − k1 − 1)q)
q
2

q∑
n=0

(
q

n

)(√
1

e

)q−n

= ((q − k1 − 1)q)
q
2

(
1 +

√
1

e

)q

.

Corollary 2.1.1. For N(q,m+1), we have N(q,m+1) ≈ q!
qm , if m ≤ q

log q
(1

2
log log q−

log log log q) and q is large enough.

Proof. Note that

N(q,m+ 1) = N [q −m− 1, ..., q − 2].

Therefore in Theorem 2.1.2 taking k1 = q −m− 1, we have∣∣∣∣N(q,m+ 1)− q!

qm

∣∣∣∣ < (mq)
q
2 (1 +

√
1

e
)q

< (mq)
q
2 2q (2.23)

Now the Corollary follows using the Stirling formula which states that

lim
q→∞

q!√
2πq( q

e
)q

= 1

for an estimation of the right-hand side of (2.23).
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2.2 The Number of Permutation Polynomials with Non-Maximal Degree

Let σ be a permutation of the elements of Fq. De�ne the set

Sσ = {c ∈ Fq|σ(c) 6= c}

i.e. Sσ is the set of all elements of Fq that are not �xed by σ. Note that the roots of

the polynomial fσ(x)−x are all elements of Fq that are not in Sσ. Hence, if σ 6= id, so

that fσ(x) 6≡ x, then deg(fσ(x) − x) = deg(fσ) and hence deg(fσ) is at least q − |Sσ|.

Recall that we have deg(fσ) ≤ q − 2. So if σ 6= id, we get

q − |Sσ| ≤ deg(fσ) ≤ q − 2.

In particular, we conclude that all transpositions in Fq correspond to PPs of degree

q − 2, compared with Theorem 1.4.1. Now we recall that a cycle (a1 a2...ak) ∈ Sn is

the permutation which sends ak to a1 and ai to ai+1 for 1 ≤ i ≤ k − 1, �xing all the

elements j, where 1 ≤ j ≤ n, j 6= ai for i = 1, ..., k. The length of a cycle is the number

of integers which appear in it and a cycle of length k is called a k-cycle.

Let σ be a permutation in Sn. Then the conjugacy class of σ is de�ned by

C(σ) = {τστ−1 | τ ∈ Sn}.

Proposition 2.2.1. Let σ and τ be two permutations in Sn. Suppose σ has the cycle

decomposition

(a1 a2...ak1) (b1 b2...bk2)....

Then τστ−1 has the cycle decomposition

(τ(a1) τ(a2)...τ(ak1)) (τ(b1) τ(b2)...τ(bk2))....

Proof. The proof follows from the observation that if σ(i) = j, then

τστ−1(τ(i)) = τ(j).

Therefore if (ij) is an ordered pair in σ, then (σ(i)σ(j)) is an ordered pair in τστ−1.

We therefore have by Proposition 2.2.1 that, if σ1 and σ2 are two conjugate per-

mutations, then their cycle decompositions have the same structure, i.e. the lengths of

the cycles in both permutations are the same. Conversely, as easily can be seen, if two

permutations σ1 and σ2 have the same cycle structure then they are conjugate. Hence

the conjugacy classes of permutations in Sn form a partition of Sn.
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Now, let ζ be a conjugacy class in Sn. Then, �xing q and m we de�ne a function

Nζ(q,m) = |{σ ∈ ζ |deg(fσ) < q −m}|

on the set of conjugacy classes of permutations in Sn. In 1968 Wells (see [16]) gave the

formula for the number Nζ(q, 2) for the conjugacy class ζ of 3-cycles which we denote

by ζ = [3]. Later in 2002, Malvenuto and Pappalardi generalized this result to some

more conjugacy classes (see [9]). In this section we will present these results of Wells,

Malvenuto and Pappalardi.

Theorem 2.2.1. If q > 3, then the number of 3-cycle permutations σ of Fq with

deg(fσ) ≤ q − 3 is

N[3](q, 2) =


1
3
q(q − 1) if q ≡ 0 mod 3

2
3
q(q − 1) if q ≡ 1 mod 3

0 if q ≡ 2 mod 3

Proof. Let σ = (a b c) be a 3-cycle in Sq. Then, σ can be represented by

fσ(x) = x+ (a− b)(x− a)q−1 + (b− c)(x− b)q−1 + (c− a)(x− c)q−1.

Note that the coe�cient of xq−2 in fσ(x) is

aq−2 = a(a− b) + b(b− c) + c(c− a).

Hence, the polynomial fσ(x) is of degree < q − 2 if and only if aq−2 = 0 or a is a

solution of the equation

x2 − (b+ c)x+ b2 + c2 − bc = 0. (2.24)

The discriminant of this equation is

∆ = −3(b− c)2, (2.25)

so that the system has a solution if and only if −3 is a square element in Fq. We will

continue the proof in two cases. First assume that q is odd. Then the characteristic

p is odd, and −3 is a square element in Fp if and only if
(
−3
p

)
= 1, where

(
a
p

)
is the

Legendre symbol. Now, since p is an odd number, we have two subcases:

(i) If p ≡ 1 mod 4, then from the quadratic reciprocity law, it follows that(−3

p

)
=
(3

p

)(−1

p

)
=
(3

p

)
=
(p

3

)
.

Therefore, (−3

p

)
= 1 if and only if

(p
3

)
= 1 if and only if p ≡ 1 mod 3.
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(ii) If p ≡ 3 mod 4, then again from the quadratic reciprocity law, it follows that(−3

p

)
=
(3

p

)(−1

p

)
= −

(3

p

)
=
(p

3

)
.

giving the same result (p
3

)
= 1 if and only if p ≡ 1 mod 3.

Clearly, if p ≡ 0 mod 3, then
(
−3
p

)
= 1, so by the reasoning in (i) and (ii), we conclude

that the only case that
(
−3
p

)
= −1 occurs when p ≡ 2 mod 3.

Here, we also note that, if −3 is a square element of Fp, then it is a square element

in Fpk for any k. And if −3 is not a square element in Fp, then it is a square element

in Fpk if and only if k is even.

Finally, we can say that −3 is not a square element of Fq, where q = pk, if and only

if p ≡ 2 mod 3 and k is odd, where the latter condition is equivalent to q ≡ 2 mod 3.

Therefore, there is no 3-cycle over Fq that gives a permutation polynomial of < q − 2,

if q is odd and q ≡ 2 mod 3.

Now if p ≡ 1 mod 3, hence q ≡ 1 mod 3, the solutions of (2.24) are

x1,2 =
1

2
(b+ c∓

√
−3(b− c)).

So for every q(q−1) choices of b and c, we have two values for a and since permuting the

elements in a cycle does not change the permutation, we have 1
3
2q(q− 1) 3-cycles that

give a PP of degree < q−2, if q is odd and q ≡ 1 mod 3. And lastly, if q ≡ 0 mod 3 then

∆ = 0 in (2.25), so for every q(q−1) choices of b and c, a is uniquely determined, so we

have 1
3
q(q − 1) 3-cycles that give a PP of degree < q − 2, if q is odd and q ≡ 0 mod 3.

Now assume that q is even. Then the equation (2.24) can be written as

(x+ b)(x+ c) = (b+ c)2. (2.26)

Setting d = b+c and y = d−1(x+b), the last equation can be converted to y2+y+1 = 0.

The polynomial y2 + y + 1 is irreducible over F2n , that is, the system in (2.26) has no

solution if and only if n is odd. But in this case q = 2n implies q ≡ 2 mod 3. The only

remaining case is q = 2n when n is even. In this case q ≡ 1 mod 3 and for the q(q− 1)

choices of b and c the system in (2.26) has two solutions in Fq, therefore there are

1
3
2q(q− 1) 3-cycles that give a PP of degree < q− 2, if q is even and q ≡ 1 mod 3.

Let σ be a permutation of the elements of Fq that is represented by the PP fσ(x) =

aq−2x
q−2+aq−1x

q−1+. . .+a0 ∈ Fq[x]. Then as we know from Chapter 1, the polynomial
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fσ(x) can be written as

fσ(x) =
∑
c∈Fq

σ(c)(1− (x− c)q−1)

=
∑
c∈Fq

σ(c)−
∑
c∈Fq

σ(c)(x− c)q−1

= −
∑
c∈Fq

σ(c)

(
xq−1 +

(
q − 1

1

)
xq−2(−c) + . . .+

(
q − 1

q − 1

)
x0(−c)

)
.

Therefore, when q > 3, the coe�cient of xq−2 in fσ(x) is

aq−2 = −
∑
c∈Fq

σ(c)c

=
∑
c∈Fq

(c− σ(c))c

=
∑
c∈Sσ

(c− σ(c))c. (2.27)

Let [l1 , . . . , lk] denote the conjugacy class of permutations that are products of cycles

of length l1, . . . , lk. Now if

σ = (c1,1, . . . , c1,l1)(c2,1, . . . , c2,l2), . . . , (ck,1, . . . , ck,lk)

then according to (2.27) the coe�cient of xq−2 in fσ(x) is

aq−2 =
k∑
j=1

lj∑
i=1

(cj,i − cj,i+1)cj,i.

In what follows (m1,m2, . . . ,mt) will denote the elements of the conjugacy class ζ =

(m1,m2, . . . ,mt) which are the products of m1 cycles of lenght 1, m2 cycles of lenght

2,. . . , and mt cycles of lenght t, where m1 + 2m2 + . . .+ tmt = q. Then we will have

|ζ| = q!

m1!1m1m2!2m2 . . .mt!tmt
.

Now for the conjugacy class ζ = [l1 , . . . , lk], we de�ne a polynomial Aζ in c variables,

where c = l1 + . . .+ lk, as follows

Aζ(x1,...,xc) =
c∑

i=1,i/∈{l1,l1+l2,...,c}

(xi − xi+1)xi +
k∑
i=1

(xl1+...+li − xl1+...+li−1+1)xl1+...+li

Then every permutation counted by Nζ(q, 2) is an element of Fq that is a root of

the polynomial Aζ . Since shifting the elements in a cycle or interchanging di�erent

cycles of the same length gives the same permutation, we have

Nζ(q, 2) =
|x = (x1, . . . , xc) ∈ Fcq, xi 6= xj for i 6= j and Aζ(x) = 0|

m2!2m2 . . .mt!tmt
.

Now, as an application of the arguments above, we consider the conjugacy class ζ =

[2, 2], see [9].
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Theorem 2.2.2. Suppose q is odd and q > 3. Then

N[2,2](q, 2) =
1

8
q(q − 1)(q − 4)(1 + η(−1)),

and if q is even, then

N[2,2](2
n, 2) =

1

8
2n(2n − 1)(2n − 2).

Proof. Let σ = (ab)(cd) be a permutation that is represented by a PP of degree < q−2

in Fq[x]. Then from (2.27) we get

(a− b)b+ (b− a)b+ (c− d)c+ (d− c)d = 0

(a− b)2 + (c− d)2 = 0. (2.28)

Note that this equation has a solution if and only if −1 is a square element in Fq. First

assume that q is an odd prime power. Then for the q(q − 1) �xed choices (a0, b0) for

(a, b), we have

(c− d)2 = −(a0 − b0)
2,

c = d∓
√
−1(a0 − b0).

Now for the choice of d ∈ Fq\{a0, b0, a0 ∓
√
−1(a0 − b0), b0 ∓

√
−1(a0 − b0)}, we have

exactly 2 values for c. And if

d = a0 ∓
√
−1(a0 − b0) or d = b0 ∓

√
−1(a0 − b0),

then, c is uniquely determined. Hence, we have

2q(q − 1)(q − 6) + 4q(q − 1) = 2q(q − 1)(q − 4)

solutions for the equation (2.29). But, since permuting the elements in 2-cycles or

interchanging the cycles do not give a di�erent permutation,

N[2,2](q, 2) =
1

2.2.2
2q(q − 1)(q − 4)

=
1

4
q(q − 1)(q − 4)

=
1

8
q(q − 1)(q − 4)(1 + η(−1)),

where the last identity comes from the necessity that for (2.28) to have a solution, −1

should be a square element in Fq.

Now if q is even, that is q = 2n for some integer n, the equation

(a− b)2 + (c− d)2 = 0
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in (2.28) becomes

a2 + b2 + c2 + d2 = 0

(a+ b+ c+ d)2 = 0

a+ b+ c+ d = 0.

d = a+ b+ c.

and once the q, q − 1, q − 2 choices of a, b and c respectively are made, d is uniquely

determined. Then with the same argument as before,

N[2,2](2
n, 2) =

1

8
2n(2n − 1)(2n − 2).

2.3 The Number of Permutation Polynomials of a Given Degree

In his paper [2], Das gives a formula for the number of PPs of degree d by relating it

to the number of solutions of a system of linear equations.

De�nition 2.3.1. Let A = (aij), i, j = 1, ..., n , be an n× n matrix. The permanent

of A is de�ned by

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

where Sn is, as usual, the symmetric group of degree n.

De�nition 2.3.2. Let A = (aij) be an n×n matrix. Then A is called a V andermonde

matrix and denoted by A = V and(z1, z2, . . . , zn) if aij = zi−1
j for i, j = 1, 2, . . . , n.

Note that, in this section we will just consider the PPs with zero constant term.

Now let f(x) = aq−2x
q−2 + aq−1x

q−1 + ... + a1x be in Fq[x] and w ∈ Fq be a primitive

element so that the value set of f can be written as

Vf = {f(0), f(1), f(w), ..., f(wq−2)}.

De�ne the matrix W = (w(i−1)(j−1)) = V and(1, w, ..., wq−2), i, j = 1, ..., q − 1.

Considering the matrices

a = (0 a1 a2 ... aq−2)
T and v = (f(1) f(w) f(w2) ... f(wq−2))T

we have

Wa = v,
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or

1 1 1 . . . 1

1 w w2 . . . wq−2

1 w2 w4 . . . w2(q−2)

...
...

...
...

1 wq−2 w2(q−2) . . . w(q−2)(q−2)





0

a1

a2

...

aq−2


=



a1 + . . .+ aq−2

a1w + . . .+ aq−2w
q−2

a1w
2 + . . .+ aq−2w

2(q−2)

...

a1w
q−2 + . . .+ aq−2w

(q−2)(q−2)


.

Since W is an invertible (Vandermonde) matrix , we have

a = W−1v.

If f is a PP of Fq, then v = P (1 w w2 ... wq−2)T where P denotes a permutation of the

rows of v. Therefore

a = W−1P (1 w w2 ... wq−2)T ,

that is

0

a1

a2

...

aq−2


=

1

q − 1



1 1 1 . . . 1

1 wq−2 w2(q−2) . . . w(q−2)(q−2)

1 wq−3 w2(q−3) . . . w(q−2)(q−3)

...
...

...
...

1 w w2 . . . wq−2


P



1

w

w2

...

wq−2


. (2.29)

Let Nq(d) denote the number of permutation polynomials f ∈ Fq[x] with deg(f) = d

and f(0) = 0. Then we have the following theorem.

Theorem 2.3.1. Nq(d) is equal to the number of solutions in Fq−1
q of the system of

the equations

x1 + wq−d−1x2 + w2(q−d−1)x3 + . . .+ w(q−2)(q−d−1)xq−1 6= 0

x1 + wq−d−2x2 + w2(q−d−2)x3 + . . .+ w(q−2)(q−d−2)xq−1 = 0

...

x1 + wx2 + w2x3 + . . .+ wq−2xq−1 = 0 (2.30)

with xi 6= 0 and xi 6= xj for i 6= j, i, j = 1, . . . , q − 1.

Proof. Let f(x) = aq−2x
q−2 + aq−1x

q−1 + . . . + a1x ∈ Fq[x] be a PP of Fq. Then,

deg(f) = d if and only if ad 6= 0 and ad+1 = ad+2 = . . . = 0. From (2.29), we have the

25



following equations

ad = x1 + wq−d−1x2 + w2(q−d−1)x3 + . . .+ w(q−2)(q−d−1)xq−1

ad+1 = x1 + wq−d−2x2 + w2(q−d−2)x3 + . . .+ w(q−2)(q−d−2)xq−1

...

aq−2 = x1 + wx2 + . . .+ wq−2xq−2

with xi 6= 0 and xi 6= xj for i 6= j, i, j = 1, . . . , q − 1. Since every q − 1 tuple

(x1 . . . xq−1) that is a solution of the system (2.30) gives a permutation polynomial of

degree d in Fq[x], the Theorem follows.

Corollary 2.3.1. For the prime power q, we have

Nq(q − 2) = (q − 1)!−# (x1 + wx2 + w2x3 + . . .+ wq−2xq−1 = 0),

where # represents the number of solutions in Fq−1
q of the corresponding equation with

xi 6= 0 and xi 6= xj for i 6= j.

In particular, for a prime number p, we have

Np(p− 2) = (p− 1)!−# (x1 + 2x2 + 3x3 + . . .+ (p− 1)xp−1 ≡ 0 mod p)

with xi 6= 0 and xi 6= xj for i 6= j.

Proof. From Theorem 2.3.1, we have

Nq(q − 2) = # (x1 + wx2 + w2x3 + . . .+ wq−2xq−1 6= 0).

But note that, we have in total (q − 1)! tuples (x1 x2 . . . xq−1) in Fq with xi 6= 0 and

xi 6= xj for i 6= j, so the result follows.

Corollary 2.3.2. Let Eq(d) be the number of solutions in Fq of the system of equations

x1 + wq−d−1x2 + w2(q−d−1)x3 + . . .+ w(q−2)(q−d−1)xq−1 = 0

x1 + wq−d−2x2 + w2(q−d−2)x3 + . . .+ w(q−2)(q−d−2)xq−1 = 0

...

x1 + wx2 + w2x3 + . . .+ wq−2xq−1 = 0 (2.31)

with xi 6= 0 and xi 6= xj for i 6= j, i, j = 1, . . . , q − 1. Then,

Nq(d) = (q − 1)!−Nq(q − 2)−Nq(q − 3)− . . .−Nq(d+ 1)− Eq(d)
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Now our aim is to give a formula for the number Np(p − 2). For this purpose, by

Corollary 2.3.1, it is su�cient to �nd a formula for # (x1+2x2+3x3+. . .+(p−1)xp−1 ≡

0 mod p).

Theorem 2.3.2. Let A = V and(x, . . . , xp−1) and per(A) =
∑
cix

i. Then,

# (x1 + 2x2 + 3x3 + . . .+ (p− 1)xp−1 ≡ 0 mod p) =
∑
i:p|i

ci,

where the sum is over all those coe�cients for which the exponent of x is divisible by

p. Therefore,

Np(p− 2) = (p− 1)!−
∑
i:p|i

ci.

Proof. Since A = V and(x, . . . , xp−1), i.e. A = (xi−1j)i,j=1,...,p−1, we can write A explic-

itly as

A =



1 1 1 . . . 1

x x2 x3 . . . xp−1

x2 x4 x6 . . . x2(p−1)

...

xp−2 x2(p−2) x3(p−2) . . . x(p−1)(p−2)


.

De�ne the matrix B by

B =



x x2 x3 . . . xp−1

x2 x4 x6 . . . x2(p−1)

x3 x6 x9 . . . x3(p−1)

...

xp−1 x2(p−1) x3(p−1) . . . x(p−1)(p−1)


.

Then it is easily seen that

per(B) = xx2x3 . . . xp−1per(A)

= x
p(p−1)

2 per(A). (2.32)

Now, if xn is an element in the expansion of per(B), then n = i1 +2i2 + . . .+(p−1)ip−1

for some i1, i2, . . . , ip−1 ∈ F∗q with ik 6= il for k 6= l. Therefore every term xn in the

expansion of perB gives rise to a solution of the equation x1 + 2x2 + 3x3 + . . . + (p−

1)xp−1 ≡ 0 mod p such that xi 6= 0 and xi 6= xj for i 6= j, and vice versa. But since

p is a prime number, from (2.32) we observe that all terms xn in per(B), where n is

divisible by p, come from the terms in per(A) whose exponents are also divisible by

p.
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Example 2.3.1. Now using Theorem 2.3.2, we will compute the number of PPs of

degree 3, with zero constant term, in F5[x]. Let A = V and(x, x2, x3, x4). Then

A =


1 1 1 1

x x2 x3 x4

x2 x4 x6 x8

x3 x6 x9 x12

 .

So, we have

per(A) = x20 + 3x19 + x18 + 4x17 + 2x16 + 2x15 + 2x14 + 4x13 + x12 + 3x11 + x10.

Note that the coe�cients of x20, x15, x10 are 1, 2, 1, respectively, in per(A). Therefore

#(x1 + 2x2 + 3x3 + 4x4 ≡ 0 mod 5) = 1 + 2 + 1 = 4.

Now, we conclude that the number of PPs of degree 3 in F5[x] with constant term zero

is

N5(3) = 4!− 4 = 20.

Remark 2.3.1. We would like to remark here that, if the condition f(0) = 0 is

discarded, then we will have 5.20 = 100 PPs of degree 3 in F5[x]. Also from the Table

in Theorem 2.1.1, we know that there are 20 PPs of degree less than 3 in F5[x]. Adding

these two values, we �nd that there are 120 PPs in F5[x], in total, as is expected.

Remark 2.3.2. In the Example above, we found that there are 20 PPs of degree 3,

with zero constant term expecting that there is 20
4.5

= 1 normalized PP of degree 3 in

F5[x]. From the Table of Dickson's list of normalized PPs , we see that there is exactly

one PP, namely x3, in F5[x], which is in accordence with our expectation. (If f is a

normalized PP of Fq, then taking the composition af(x+ b)+c with a, b, c ∈ Fq, a 6= 0,

we obtain q(q − 1) PPs with zero constant term corresponding to the (q − 1) choices

of a and q choices of b.)

Theorem 2.3.3. Let

A = V and(z1z2 . . . zn, z
2
1z

22

2 . . . z2n

n , . . . , z
p−1
1 z

(p−1)2

2 . . . z(p−1)n

n ),

where 1 ≤ n ≤ p−2. Let per(A) =
∑
ci1i2...inz

i1
1 z

i2
2 . . . z

in
n . Then the number of solutions

in Fq of the system of equations

x1 + 2nx2 + 3nx3 + . . .+ (p− 1)nxp−1 = 0

x1 + 2n−1x2 + 3n−1x3 + . . .+ (p− 1)n−1xp−1 = 0

...

x1 + 2x2 + 3x3 + . . .+ (p− 1)xp−1 = 0
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with xi 6= 0 and xi 6= xj for i 6= j, i, j = 1, . . . , p−1, is equal to
∑

p|i1,...,p|in ci1i2...in where

the sum is over all coe�cients ci1i2...in for which p divides the exponent ik of each zk.

Proof. The proof follows by a similar argument to that used in the proof of Theorem

2.3.2.

Example 2.3.2. Now, suppose we want to �nd out the number of PPs of degree 2,

with zero constant term, in F5[x]. From Corollary 2.3.2 we have

N5(2) = (5− 1)!−N5(3)− E5(2), (2.33)

where E5(2) is the number of solutions in F5 of the system of equations

x1 + w2x2 + w2.2x3 + w3.2x4 = 0

x1 + wx2 + w2x3 + w3x4 = 0

with xi 6= 0 and xi 6= xj for i 6= j. Since we are in a prime �eld, this system of equations

is equivalent to the system

x1 + 22x2 + 32x3 + 42x4 = 0

x1 + 2x2 + 3x3 + 4x4 = 0.

Now in Theorem 2.3.3, let

A = V and(z1z2, z
2
1z

22

2 , z
3
1z

32

2 , z
4
1z

42

2 )

and

per(A) =
∑

ci1i2z
i1
1 z

i2
2 .

Then,

E5(2) =
∑

5|i1,5|i2

ci1i2 .

Writing per(A) explicitly, we have all the terms z20
1 z

70
2 , 2z

15
1 z

45
2 , z

10
1 z

20
2 in which the

exponents of both z1 and z2 are divisible by 5. So that

E5(2) = 1 + 2 + 1 = 4.

Also from the previous example we know that N5(3) = 20. Combining these results in

(2.33), we get

N5(2) = 24− 20− 4 = 0.

Remark 2.3.3. The result in the Example 2.3.2 agrees with the Table in Theorem

2.1.1, since we know that there exist 20 PPs of degree less than 3 in F5[x] and we know

that all linear polynomials are PPs, and there are already 20 of them in F5[x].
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CHAPTER 3

SOME NEW CLASSES OF PERMUTATION POLYNOMIALS

In this Chapter we will present some new classes of PPs.

3.1 Permutation Polynomials of the form xrf(x
q−1

s )

Let s be a divisor of q− 1. In this section, following [14], we present a criterion for the

polynomials of the form xrf(x
q−1

s ) to be PPs of Fq. First we introduce some notation.

Let g be a primitive element of Fq, and ξ = g
q−1

s be a primitive s-th root of unity ∈ Fq.

Now for all a ∈ F∗q, we put

Eg(a) = k mod (q − 1),

where a = gk and k denotes the least residue modulo (q − 1) of k.

Let

ψ(a) = Eg(a) mod s.

Then, we have the following identities:

Eg(a
x) = xEg(a),

Eg(ab) = Eg(a) + Eg(b),

gEg(a) = a. (3.1)

Also one has

ξψ(a) ≡ ξEg(a) mod s

≡ g
q−1

s
Eg(a) mod s

≡ g
Eg

�
a

q−1
s

�
mod s

≡ a
q−1

s mod s.

Theorem 3.1.1. Let s, r be positive integers, with s|q−1. Let g be a primitive element,

ξ = g
q−1

s be a primitive s-th root of unity in Fq. Let f(x) ∈ Fq[x]. Then the polynomial

h(x) = xrf(x
q−1

s ) is a PP of Fq if and only if the following conditions hold:
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(i) (r, q−1
s

) = 1,

(ii) f(ξi) 6= 0 for all 0 ≤ i < s,

(iii) ψ
(
f(ξi1 )

f(ξi2 )

)
6≡ r(i2 − i1) mod s, for all 0 ≤ i1 < i2 < s.

Proof. Let h(x) be a PP of Fq. Then, f(c
q−1

s ) 6= 0, for all c ∈ F∗q, since h(0) = 0. That

is f(x) 6= 0, for any s-th root of unity x in Fq. Since ξ is already an s-th root of unity

in Fq, we have

f(ξi) 6= 0 for all 0 ≤ i < s.

So (ii) is satis�ed. For the rest of the proof, we will assume that (ii) holds and show

that h(x) is a PP if and only if (i) and (iii) are satis�ed. From the de�nition of Eg,

it follows that h(x) is a PP of Fq if and only if Eg(h(gt)) mod q − 1 is the complete

residue system modulo (q − 1), for 0 ≤ t ≤ q − 2.

Note that for all such t , we can write

t = sj + i, where 0 ≤ j <
q − 1

s
, 0 ≤ i < s.

Therefore,

Eg(h(g
t)) = Eg(h(g

sj+i))

= Eg

(
g(sj+i)rf

(
g(sj+i) q−1

s

))
= Eg(g

(sj+i)r) + Eg

(
f
(
gi

q−1
s

))
= (sj + i)r + Eg(f(ξi))

= s(rj) + ri+ Eg(f(ξi)). (3.2)

Now assume that (i) and (iii) are satis�ed and let

Eg(h(g
t1)) = Eg(h(g

t2)),

for some t1 = j1s+ i1 and t2 = j2s+ i2 where 0 ≤ j1, j2 <
q−1
s
, 0 ≤ i1, i2 < s.

Then from (3.2),

s(rj1) + ri1 + Eg(f(ξi
1

)) ≡ s(rj2) + ri2 + Eg(f(ξi
2

)) mod (q − 1),

equivalently,

sr(j2 − j1) + r(i2 − i1)− Eg

(
f(ξi1)

f(ξi2)

)
≡ 0 mod (q − 1),

sr(j2 − j1) + r(i2 − i1)− ψ

(
f(ξi1)

f(ξi2)

)
≡ 0 mod (q − 1). (3.3)
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Note that if i1 6= i2, (iii) implies

r(i2 − i1)− ψ

(
f(ξi1)

f(ξi2)

)
6≡ 0 mod s,

and since s is a divisor of q − 1, (3.3) is not possible. Thus,

i1 = i2

so that

sr(j2 − j1) ≡ 0 mod (q − 1),

r(j2 − j1) ≡ 0 mod (
q − 1

s
). (3.4)

As 0 ≤ j1, j2 <
q−1
s

and (r, q−1
s

) = 1, (3.4) holds if and only if j1 = j2. Hence,

t1 = j1s+ i1 = j2s+ i2 = t2,

that is h(x) is one-to-one.

Conversely assume that h(x) is one-to-one. We will show that (i) and (iii) hold. First

assume that (iii) does not hold. Then for j1 = j2 and for some distinct values of i1

and i2, with 0 ≤ i1, i2 < s the equation in (3.3) holds contradicting to h(x) being

one-to-one. So (iii) necessarily holds. Now assume that (i) does not hold. Then in

(3.3), we can take i1 = i2, so that r(j2 − j1) ≡ 0 mod ( q−1
s

). But since (r, q−1
s

) = 1, we

can �nd 0 ≤ j1 6= j2 <
q−1
s

satisfying the equation (3.3), which is a contradiction to h

being one-to-one. Therefore (i) holds.

Corollary 3.1.1. Let s, r ∈ N , with s|q − 1 and (r, q − 1) = 1. Then the polynomial

f(x) = xr(g(x
q−1

s ))s is a PP of Fq if and only if g(x
q−1

s ) has no non-zero root in Fq.

Proof. Since (r, q−1) = 1, (r, q−1
s

) = 1 so the condition (i) in Theorem 3.1.1 is satis�ed.

Suppose

p(x) = (g(x
q−1

s ))s,

Then, for 0 ≤ i1 < i2 < s,

ψ

(
p(ξi1)

p(ξi2)

)
= ψ

(
g(ξi1)s

g(ξi2)s

)
= ψ

((
g(ξi1)

g(ξi2)

)s)
≡ 0 mod s. (3.5)

Since (r, s) = 1 and i1 6≡ i2 mod s from (3.5) it follows that

ψ

(
p(ξi1)

p(ξi2)

)
6≡ r(i2 − i1) mod s.
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Hence the condition (iii) in Theorem 3.1.1 is also satis�ed. Now it is clear that f(x)

is a PP of Fq if and only if the condition (ii) in Theorem 3.1.1 holds or equivalently

g(x
q−1

s ) has no non-zero root in Fq.

3.2 Binomial Permutation Poynomials

In this section we will investigate the permutation properties of the binomials axi +

bxj + c over Fq following [3] and [13]. We will consider the binomial xi−αxj instead of

axi + bxj + c, where α = −a−1b ∈ Fq, since their permutation properties are the same

by Lemma 1.3.2.

Theorem 3.2.1. Let f(x) = xi−αxj, 1 ≤ j < i, α ∈ F∗q. Let (i, j) = d, and i = i
′
d, j =

j
′
d, so that (i

′
, j

′
) = 1. Then, f(x) is a PP of Fq if and only if g(x) = xi

′
− αxj

′
is a

PP of Fq and (d, q − 1) = 1.

Proof. We can write f(x) = (xd)i
′
− α(xd)j

′
. Thus, f(x) = g(xd), where g(x) =

xi
′
− αxj

′
. Now from Lemma 1.3.1, f(x) is a PP of Fq if and only if g(x) and xd are

PPs of Fq. But xd is a PP of Fq if and only if (d, q − 1) = 1. So the result follows.

In what follows F[i]
q denotes the elements of Fq which are i-th powers, i.e. α ∈ F[i]

q

if and only if there exists an element γ ∈ Fq such that α = γi.

Theorem 3.2.2. Let f(x) = xi − αxj, 1 ≤ j < i, α ∈ F∗q. If α ∈ F[i−j]
q , then f(x) is

not a PP of Fq.

Proof. Since α 6= 0 and 0 is already a root of f(x) = xj(xi−j − α), if α ∈ F[i−j]
q , f(x)

will have more than than one root, which implies that it is not a PP of Fq.

Lemma 3.2.1. Let α ∈ Fq and 0 ≤ i ≤ q − 2. Then α /∈ F[i]
q if and only if α

q−1
d 6= 1,

where d = (i, q − 1).

Proof. Since d = (i, q − 1), we can write,

d = ai+ b(q − 1) for some a, b ∈ Z.

Assume that α /∈ F[i]
q and α

q−1
d = 1. Let β be a primitive element of Fq and α = βk for

some 0 ≤ k < q − 1. Then

(βk)
q−1

d = 1,

q − 1 | k
q − 1

d
,

d | k.
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Let k = dt for some 0 ≤ t < q−1
d
. Then,

α = βdt

= (βt)ai+b(q−1)

= (βq−1)bt + (βta)i

= (βta)i

which contradicts to α /∈ F[i]
q . For the converse assume that α ∈ F[i]

q . We want to show

that α
q−1

d = 1. Since α ∈ F[i]
q , α = γi for some γ ∈ Fq, 1 ≤ i ≤ q − 1. Now if i = di

′
,

α
q−1

d = γi
q−1

d

= γdi
′ q−1

d

= (γq−1)i
′

= 1.

Corollary 3.2.1. Let f(x) = xi − αxj ∈ Fq[x], 1 ≤ j < i, α 6= 0. Also let d =

(i− j, q − 1). Then f(x) is not a PP of Fq in any of the following cases:

(i) i = j + 1,

(ii) α = 1,

(iii) α = −1 and i− j or d is odd,

(iv) d = 1,

(v) i− j is a power of the characteristic of Fq.

Proof. (i) If i− j = 1, for any α ∈ F∗q, α ∈ F[i−j]
q = Fq, therefore, from Theorem 3.2.2,

f(x) is not a PP of Fq.

(ii) If α = 1, since 1 = 1i−j, α ∈ F[i−j]
q for any 1 ≤ j < i, therefore, from Theorem

3.2.2, f(x) is not a PP of Fq.

(iii) If α = −1 and i− j is odd, then −1 = (−1)i−j, that is α ∈ F[i−j]
q . From Theorem

3.2.2, f(x) is not PP of Fq. Now let i − j be even. If α = −1 and d is odd, since

d = (i − j, q − 1), q − 1 must be odd, that is q is even. But in this case −1 = 1, and

the claim follows by the argument in (ii).
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(iv) If d = 1, α
q−1

d = αq−1 = 1 for all α ∈ F∗q. So from Lemma 3.2.1, α ∈ F[i−j]
q , and

from Theorem 3.2.2, f(x) is not a PP of Fq.

(v) If i− j is a power of the characteristic p of Fq, that is i− j = pk for some k ∈ N ,

then d = (i− j, q − 1) = (pk, pn − 1) = 1, hence the rest follows from (iv).

The next Theorem is from [3] where Janphaisaeng et al present a new class of PPs.

Theorem 3.2.3. Let f(x) = xi−αxj ∈ Fq[x], 1 ≤ j < i. Assume that i−j = q−1, α 6=

1, and (j, q − 1) = 1. Then f(x) mod (xq − x) is a PP of Fq.

Proof. Write f(x) = xi − αxj = xj(xi−j − α). In Corollary 3.1.1 setting

r = j, g(x) = x− α, s = q − 1,

we obtain that f(x) = xr(g(xs))
q−1

s is a PP of Fq if and only if g(xs) = xq−1−α has no

nonzero root in Fq. But since α 6= 1 the polynomial g(xs) has no root in Fq, implying

that f(x) is a PP of Fq.

The following Theorem states a criterion for binomial PPs, see [13].

Theorem 3.2.4. Let f(x) = xi−αxj ∈ Fq[x], 1 ≤ j < i < q−1, α 6= 0. Let n = i− j.

If f(x) is a PP of Fq, then we have two cases:

(i) i 6 |q − 1 + n

(ii) i|q− 1 +n and if ik = q− 1 +n, then k is a multiple of the characteristic p of Fq.

Proof. Let f(x) = xi−αxj be a PP of Fq and assume that i|q−1+n. Then ik = q−1+n

for some 1 < k < q − 1. Knowing that f(x) is a PP of Fq, and using the fact that

∑
c∈Fq

ct =

 0 if 0 ≤ t ≤ q − 2

−1 if t = q − 1
(3.6)

we get ∑
c∈Fq

(ci − αcj)k =
∑
c∈Fq

ck = 0. (3.7)

On the other hand,

∑
c∈Fq

(ci − αcj)k =
k∑
t=0

(
k

t

)
(−α)t

∑
c∈Fq

ci(k−t)+jt. (3.8)
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Combining (3.7) and (3.8), we obtain

k∑
t=0

(
k

t

)
(−α)t

∑
c∈Fq

ci(k−t)+jt = 0. (3.9)

But the only nonzero term in the sum (3.9) comes from t = 1 and it is(
k

1

)
(−α)

∑
c∈Fq

cik−i+j = k(−α)
∑
c∈Fq

c(q−1+n)−n

= −kα
∑
c∈Fq

cq−1

= kα

Therefore, kα = 0 for α ∈ F∗q, which shows that k is a multiple of p.

Example 3.2.1. Let f(x) = x35 + αx19 ∈ F125.

n = i− j = 16.

Since 35|124 + 16 = 140, but 140
35

= 4 which is not a multiple of the characteristic 5,

from Theorem 3.2.4, we conclude that f(x) is not a PP of Fq.

Theorem 3.2.5. Let f(x) = xp
i − αxp

j ∈ Fq[x] with 0 ≤ j < i, α 6= 0. Then f(x) is a

PP of Fq if and only if α /∈ F[k]
q where k = pi − pj.

Proof. Let f(x) be a PP of Fq. Then from Theorem 3.2.2, it follows that α /∈ F[k]
q

where k = pi − pj. For the converse assume that f(x) is not a PP of Fq. We want to

show that α ∈ F[k]
q . Since f(x) is not a PP of Fq, there exist c1, c2 in Fq, with c1 6= c2,

such that f(c1) = f(c2). So,

cp
i

1 − αcp
j

1 = cp
i

2 − αcp
j

2

αcp
j

1 − αcp
j

2 = cp
i

1 − cp
i

2

α(c1 − c2)
pj

= (c1 − c2)
pi

α = (c1 − c2)
pi−pj

.

Therefore α ∈ F[k]
q where k = pi − pj.

3.3 Permutation Polynomials of the form xu(xv + 1)

Using Hermite's criterion, Wang gave the following characterization for a class of PPs

of the form xu(xv + 1) (see [15]).
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Theorem 3.3.1. let 3|q − 1 and

f(x) = xu(xv + 1) ∈ Fq[x],

u, v ∈ Z+, (v, q − 1) = q−1
3
. Then f(x) is a PP of Fq if and only if(

u,
q − 1

3

)
= 1, u 6≡ v mod 3 and 2

q−1
3 = 1 in Fq.

To prove this theorem we �rst need some lemmas.

Lemma 3.3.1. If f(x) = xu(xv + 1) is a permutation polynomial in Fq[x], then

(u, v, q − 1) = 1.

Proof. Let (u, v, q − 1) = d. We can write f(x) = g(xd) where g(x) = x
u
d (x

v
d + a).

Now let xd1 = xd2 for some x1, x2 ∈ Fq. Then, g(xd1) = g(xd2), so that f(x1) = f(x2).

Since f is a permutation polynomial , it follows that x1 = x2, hence h(x) = xd is a

permutation polynomial over Fq. In this case, from the properties of binomial PPs, we

have (d, q − 1) = 1. But since we also know that d|q − 1, d = 1.

Lemma 3.3.2. If d is odd, d|q − 1, 2
q−1

d ≡ 1 mod p, and (v, q − 1) = q−1
d
, then

f(x) = xu(xv + 1) = 0 has only one root, namely 0.

Proof. Since 2
q−1

d ≡ 1 mod p, p must be odd. If f(x) has another root c in Fq, then

f(c) = cu(cv + 1) = 0. But c 6= 0, so cv + 1 = 0. Since (v, q − 1) = q−1
d
, ∃r ∈ Z such

that q−1
d
r = v, so (q − 1)r = dv, (q − 1)|vd. And since cq−1 = 1 we have cvd = 1.

But on the other hand, cvd = (cv)d = (−1)d = −1, as d is odd. This a contradiction

since the characteristic p of Fq is odd, so that −1 6= 1. Therefore there is no such c in

Fq.

Lemma 3.3.3. Let (v, q−1) = d, (u, d) = 1 and d 6 |t. Then, (xu(xv+1))t mod (xq−x)

has degree < q − 1.

Proof.

(xu(xv + 1))t = xut(xv + a)t

= xut

(
t∑
i=1

(
t

i

)
(xv)t−iai

)
.

Note that the reduction f(x) mod (xq − x) has a term with exponent q− 1 if and only

if f(x) has a term with the exponent which is a multiple of q − 1. Now if n is the

degree of any term in the expansion, then

n = ut+ vi for some i = 1, . . . , t.
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Since d|v, we have n ≡ ut mod d. Also, since (u, d) = 1 and d 6 |t, we obtain that d 6 |n

and therefore q − 1 6 |n.

Now let n, k ∈ Z+, b ∈ Z. De�ne the function

M(n, k, b) =

bn−c
k c∑
i=1

(
n

ki+ c

)
,

where b ≡ c mod k. Then clearly, if a ≡ b mod k, then M(n, k, a) = M(n, k, b). And

if b ≡ c mod k, using the identity(
n+ 1

i

)
=

(
n

i

)
+

(
n

i− 1

)
we obtain

M(n+ 1, k, b) =

bn+1−c
k c∑
i=0

(
n+ 1

ki+ c

)

=

bn+1−c
k c∑
i=0

(
n

ki+ c

)
+

bn+1−c
k c∑
i=0

(
n

ki+ c− 1

)

=

bn−c
k c∑
i=0

(
n

ki+ c

)
+

bn+1−c
k c∑
i=0

(
n

ki+ c− 1

)
= M(n, k, b) +M(n, k, b− 1). (3.10)

Lemma 3.3.4. If 2n + c ≡ 0 mod 3, then M(2n, 3, c) = 22n+2
3

. If 2n + c 6≡ 0 mod 3,

then M(2n, 3, c) = 22n−1
3

.

Proof. To prove the Lemma, we will divide the even numbers into three parts, namely,

6n, 6n + 2, 6n + 4, according to their remainders modulo 3, and consider the cases

seperately. First note that

M(6n, 3, 0) =

b 6n
3 c∑
i=0

(
6n

3i

)
=

(
6n

0

)
+

(
6n

3

)
+ . . .+

(
6n

6n

)
= 1 +

26n − 1

3

=
26n + 2

3
,

M(6n, 3, 1) =

b 6n−1
3 c∑
i=0

(
6n

3i+ 1

)
=

(
6n

1

)
+

(
6n

4

)
+ . . .+

(
6n

6n− 2

)
=

26n − 1

3
,
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M(6n, 3, 2) =

b 6n−2
3 c∑
i=0

(
6n

3i+ 2

)
=

(
6n

2

)
+

(
6n

5

)
+ . . .+

(
6n

6n− 1

)
=

26n − 1

3
,

so that

M(6n+ 1, 3, 0) = M(6n, 3, 0) +M(6n, 3, 2) =
26n+1 + 1

3

M(6n+ 1, 3, 1) = M(6n, 3, 0) +M(6n, 3, 1) =
26n+1 + 1

3

M(6n+ 1, 3, 2) = M(6n, 3, 1) +M(6n, 3, 2) =
26n+1 − 2

3

M(6n+ 2, 3, 0) = M(6n+ 1, 3, 0) +M(6n+ 1, 3, 2) =
26n+2 − 1

3

M(6n+ 2, 3, 1) = M(6n+ 1, 3, 0) +M(6n+ 1, 3, 1) =
26n+2 + 2

3

M(6n+ 2, 3, 2) = M(6n+ 1, 3, 1) +M(6n+ 1, 3, 2) =
26n+2 − 1

3

M(6n+ 3, 3, 0) = M(6n+ 2, 3, 0) +M(6n+ 2, 3, 2) =
26n+3 − 2

3

M(6n+ 3, 3, 1) = M(6n+ 2, 3, 0) +M(6n+ 2, 3, 1) =
26n+3 + 1

3

M(6n+ 3, 3, 2) = M(6n+ 2, 3, 1) +M(6n+ 2, 3, 2) =
26n+3 + 1

3

M(6n+ 4, 3, 0) = M(6n+ 3, 3, 0) +M(6n+ 3, 3, 2) =
26n+4 − 1

3

M(6n+ 4, 3, 1) = M(6n+ 3, 3, 0) +M(6n+ 3, 3, 1) =
26n+4 − 1

3

M(6n+ 4, 3, 2) = M(6n+ 3, 3, 1) +M(6n+ 3, 3, 2) =
26n+4 + 2

3

M(6n+ 5, 3, 0) = M(6n+ 4, 3, 0) +M(6n+ 4, 3, 2) =
26n+5 + 1

3

M(6n+ 5, 3, 1) = M(6n+ 4, 3, 0) +M(6n+ 4, 3, 1) =
26n+5 − 2

3

M(6n+ 5, 3, 2) = M(6n+ 5, 3, 1) +M(6n+ 5, 3, 2) =
26n+5 + 1

3
.

Now we are ready to prove the Theorem 3.3.1

Proof. First suppose that f(x) is a PP. Since (v, q − 1) = q−1
3
, v can be expressed as

v = v1
q−1
3

for some v1 ∈ Z. Here,

3 6 |v1,

since, otherwise if 3|v1 then v1 = 3k, k ∈ Z, and v = 3k q−1
3

= k(q − 1), so that

(v, q − 1) = (k(q − 1), q − 1) = q − 1, a contradiction. Also since 3 6 |v1, v1 ≡ 1 mod 3
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or v1 ≡ 2 mod 3. If v1 ≡ 1 mod 3, then v1 − 1 ≡ 0 mod 3, and if v1 ≡ 2 mod 3, then

v1 + 1 ≡ 0 (mod 3). Therefore,

v2
1 ≡ 1 mod 3.

Consider

(f(x))
q−1
3 = (xu(xv + 1))

q−1
3

= xu
q−1
3

q−1
3∑
i=1

( q−1
3

i

)
xvi. (3.11)

Now we prove that the coe�cient of xq−1 in the reduction (f(x))
q−1
3 mod (xq − x) is

M
(
q−1
3
, 3,−v1u

)
. If n is the degree of any term in the expansion of (f(x))

q−1
3 , from

(3.11) n = u q−1
3

+ vi, for some i = 0, . . . , q−1
3
. Now for i = −v1u,

u
q − 1

3
+ vi = u

q − 1

3
+ v(−v1u)

= u
q − 1

3
+ v1

q − 1

3
(−v1u)

=
q − 1

3
u(1− v2

1).

But, since v2
1 ≡ 1 mod 3, 3|u(1 − v2

1) so that q − 1| q−1
3
u(1 − v2

1). Thus, for i = −v1u,

(q − 1)|u q−1
3

+ vi. Also note that, if (q − 1)|u q−1
3

+ vi for some i = 0, . . . , q − 1, then

(q − 1)|u q−1
3

+ v(i+ 3), since in this case

u
q − 1

3
+ v(i+ 3) =

(
u
q − 1

3
+ vi

)
+ 3v

=

(
u
q − 1

3
+ vi

)
+ v1(q − 1).

So we conclude that, the coe�cient of xq−1 in (f(x))
q−1
3 mod (xq − x) is

M(
q − 1

3
, 3,−v1u) =

� q−1
3 −c

3

�∑
i=0

( q−1
3

3i+ c

)
(3.12)

where c ≡ −v1u mod 3.

Similarly, the coe�cient of xq−1 in the reduction (f(x))
2(q−1)

3 mod (xq − x) is

M(
2(q − 1)

3
, 3,−2v1u). (3.13)

Since we assumed that f(x) = xu(xv + 1) is a PP from Lemma 3.3.1,

(u, v, q − 1) = (u,
q − 1

3
) = 1.

Assuming that f(x) is a PP, by Hermite's criterion for t = q−1
3
, (f(x))t mod (xq − x)

has degree < q − 1. Therefore

M(
q − 1

3
, 3,−v1u) = 0.
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But from Lemma 3.3.4,

M(
q − 1

3
, 3,−v1u) =

2
q−1
3 − 1

3
or

2
q−1
3 + 2

3

Since (2
q−1
3 )3 = 2q−1 = 1 in Fq, and q ≡ 1 mod 3, 2

q−1
3 6= −2. Hence, from Lemma

3.3.4,

M(
q − 1

3
, 3,−v1u) =

2
q−1
3 − 1

3
= 0

so that 2
q−1
3 = 1 and q−1

3
− v1u 6≡ 0 mod 3. Using 3 6 |v1,

v1(
q − 1

3
− v1u) = v − v2

1u 6≡ 0 mod 3

and since v2
1 ≡ 1 mod 3, v 6≡ u mod 3.

Conversely, let

(u,
q − 1

3
) = 1 , u 6≡ v mod 3 and 2

q−1
3 = 1.

In Lemma 3.3.4, let d = 3, as we know that 3|q − 1, we have 2
q−1
3 ≡ 1 mod 3, and

(v, q − 1) = q−1
3
. Then, �nding such an odd number, we conclude that the only root

of f(x) = xu(xv + 1) is 0. Since (v, q− 1) = q−1
3
, we have (u, q−1

3
) = 1. Now in Lemma

3.3.3, let d = q−1
3
. Then, for all t such that q−1

3
6 |t,

(f(x))t mod (xq − x) has degree < q − 1.

Now for t = q−1
3
, we know that the coe�cient of xq−1 in (f(x))

(q−1)
3 mod (xq − x) is

M( q−1
3
, 3,−v1u) and since v 6≡ u mod 3, we have q−1

3
−v1u 6≡ 0 mod 3. Then according

to Lemma 3.3.4

M(
q − 1

3
, 3,−v1u) =

2
q−1
3 − 1

3
= 0,

where we used the assumption that 2
q−1
3 = 1 in the second identity. Similarly, since

2(q−1)
3

− 2v1u 6≡ 0 mod 3, the coe�cient of xq−1 in (f(x))
2(q−1)

3 mod (xq − x) is

M(2(q−1)
3

, 3,−2v1u) and from Lemma 3.3.4, it follows that

M(
2(q − 1)

3
, 3,−2v1u) =

2
2(q−1)

3 − 1

3
= 0.

Therefore, f(x)t mod (xq − x) has degree < q − 1 for t = q−1
3

and 2(q−1)
3

. Finally, by

Hermite's criterion, we conclude that f(x) is a PP.

Example 3.3.1. In this example using Theorem 3.3.1, we will write all PPs of the

form xu(xv + 1) in F127 satisfying (v, 126) = 1. First note that

2
127−1

3 = 242 = 1 in F127.
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Also the assumption of the Theorem requires that (v, 126) = 42. So there exist two

values for v, namely, 42, 84. Hence, keeping in mind that deg(f(x)) ≤ 125, we have

two cases:

Case 1 Let v = 42. Then f(x) = xu(x42 + 1) is a PP of F127 if and only if (u, 42) = 14

( in which case u 6≡ 0 mod 3 is necessarily satis�ed ). Thus, all the possible values for

u corresponding to v = 42 are

1, 4, 5, 11, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 71, 73, 79, 83.

Case 2 Let v = 84. Then f(x) = xu(x84 + 1) is a PP of F127 if and only if (u, 84) = 1

( in which case u 6≡ 0 mod 3 is necessarily satis�ed). Thus, all the possible values for

u corresponding to v = 84 are

1, 4, 5, 11, 17, 19, 23, 25, 29, 31, 35, 37, 41.

Therefore, all PPs of the form xu(xv + 1) in F127 are:

x(x42 + 1), x4(x42 + 1), x5(x42 + 1), x11(x42 + 1), x17(x42 + 1)

x19(x42 + 1), x23(x42 + 1), x25(x42 + 1), x29(x42 + 1), x31(x42 + 1)

x35(x42 + 1), x37(x42 + 1), x41(x42 + 1), x43(x42 + 1), x47(x42 + 1)

x51(x42 + 1), x53(x42 + 1), x55(x42 + 1), x57(x42 + 1), x59(x42 + 1)

x61(x42 + 1), x65(x42 + 1), x67(x42 + 1), x71(x42 + 1), x73(x42 + 1)

x79(x42 + 1), x83(x42 + 1), x(x84 + 1), x4(x84 + 1), x5(x84 + 1)

x11(x84 + 1), x17(x84 + 1), x19(x84 + 1), x23(x84 + 1), x25(x84 + 1)

x29(x84 + 1), x31(x84 + 1), x35(x84 + 1), x37(x84 + 1), x41(x84 + 1).

(3.14)

3.4 Permutation Poynomials of the form x
q+1
2 + ax

Before giving a criterion related to polynomials of the form x
q+1
2 +ax we will �rst recall

that the quadratic character η of a �nite �eld Fq of odd characteristic is de�ned by

η(c) =

 1 if c is square in F∗q
−1 otherwise

(3.15)

Note that as a convention we let η(0) = 0.
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Lemma 3.4.1. Let c be a nozero element in Fq. Then,

c
q−1
2 =

 1 if η(c) = 1

−1 if η(c) = −1
(3.16)

Theorem 3.4.1. Let q be a odd prime power and f(x) = x
q+1
2 + ax ∈ Fq[x]. Then

f(x) is a PP of Fq if and only if η(a2 − 1) = 1.

Proof. We will show that f(x) = x
q+1
2 + ax is not a PP if and only if η(a2 − 1) 6= 1.

First assume that f(x) = x
q+1
2 + ax is not a PP, therefore not one-to-one. Then we

have two cases:

Case 1 There exists an element c ∈ F∗q such that f(c)=f(0)=0. In this case,

c
q+1
2 + ac = 0

a = −c
q−1
2

η(a2 − 1) = η(cq−1 − 1) = η(0) = 0.

Case 2 There exist elements b, c ∈ F∗q with b 6= c, such that f(b) = f(c). Then

b
q+1
2 + ab = c

q+1
2 + ac (3.17)

b(b
q−1
2 + a) = c(c

q−1
2 + a)

bc−1 = (c
q−1
2 + a)(b

q−1
2 + a)−1 (3.18)

Now if η(b) = η(c), from Lemma 3.4.1 it follows that

b
q+1
2 = c

q+1
2 . (3.19)

Inserting (3.19) in (3.17), we obtain b = c, which is a contradiction with the choice of

b and c. Therefore η(b) 6= η(c).

Since b, c ∈ F∗q, without loss of generality, we can assume that η(b) = 1 and η(c) =

−1 . Then we have

b
q−1
2 = 1 and c

q−1
2 = −1.

and (3.15) becomes

bc−1 = (a+ 1)−1(a− 1).
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Hence,

η(a2 − 1) = η((a+ 1)(a− 1))

= η((a+ 1)−1(a− 1))

= η(bc−1)

= η(b)η(c)

= −1

Therefore both in Case 1 and Case 2, we have η(a2 − 1) 6= 1.

Now, conversely assume that η(a2 − 1) 6= 1. We consider two cases:

Case 1 Let η(a2 − 1) = 0. In this case a2 − 1 = 0, hence a = 1 or −1. In either case,

there exists an element c ∈ F∗q such that η(c) = −a, i.e. c q−1
2 = −a. But then

f(c) = c
q+1
2 + ca

= c(c
q−1
2 + a)

= 0.

Hence f(x) is not one-to-one, thereby is not a PP of Fq.

Case 2 Let η(a2 − 1) = −1.

f((a+ 1)(a− 1)−1) = (a+ 1)(a− 1)−1((a+ 1)
q−1
2 (a− 1)

−q+1
2 + a)

=
a+ 1

a− 1
(a− 1)

= a+ 1

= f(1).

And since (a+ 1)(a− 1)−1 6= 1, we conclude that f(x) is not one-to-one, therefore it is

not a PP of Fq.
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