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Abstract

In this thesis, we establish global well-posedness of the Cauchy problem for a par-

ticular higher-order Boussinesq equation.

At the microscopic level this sixth order Boussinesq equation was derived in [11] for

the longitudinal vibrations of a dense lattice, in which a unit length of the lattice

contains a large number of lattice points.

We take the initial data in the Sobolev space Hs with s > 1
2
. With smoothness

assumptions on the nonlinear term, we establish local existence and uniqueness of

the solution. Under further assumptions, we prove the global existence for s ≥ 1.

Finally, we show continuous dependence of the solution on the initial data.



YÜKSEK MERTEBEDEN BİR BOUSSINESQ DENKLEMİ İÇİN CAUCHY

PROBLEMİ

Nilay Duruk

Matematik, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Prof. Dr. Albert Kohen Erkip
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Anahtar Kelimeler: Yüksek mertebeden Boussinesq denklemi, Global varlık,

Cauchy problemi, Genelleştirilmiş çift daǧılma denklemi.

Özet

Bu tezde, yüksek mertebeden özel bir Boussinesq denklemi için yazılmış Cauchy

probleminin global olarak iyi konulmuş olduǧu gösterilmiştir.

Altıncı mertebeden olan bu Boussinesq denklemi mikroskobik düzeyde, bir yoǧun

latisin boyuna titreşimlerini tanımlamak için [11]’de türetilmiştir. Birim uzunluǧunda

çok sayıda latis noktası içeren latisler yoǧun latis olarak adlandırılır.

Baslangıç verilerini s > 1
2

için Hs Sobolev uzayında alarak, lineer olmayan ter-

imin yeterince düzgün olduǧu varsayımı altında çözümün lokal varlıǧı ve tekliǧi elde

edilmiştir. Ek varsayımlar altında s ≥ 1 için global varlık ispat edilmiştir. Son

olarak, çözümün başlangıç verileri üzerine sürekli baǧlılıǧı gösterilmiştir.



Acknowledgments

First of all, I wish to express my gratitude to the Mathematics Program of Sabancı

University since all the academicians and my collegaues always made me feel in

comfort with their smile. I had the chance to get help whenever I need. Hence,

things never got worse.

I feel so lucky that my supervisors Prof. Dr. Albert Kohen Erkip and Prof. Dr.

Hüsnü Ata Erbay never hesitated to work with me and to share their experience

at all stages of my study. I would not imagine to overcome the difficulties without

them.

I would also like to thank my family and my friends one by one for their love, care

and toleration. I specially thank Bora Sezer for coming into my life in the right time,

supporting all my decisions about my career and using the best kind of behaviour

at anywhere and any time.

I hope I did not disappoint anyone who has believed in my success because I did my

best for this purpose.

vii



Table of Contents

Abstract v

Özet vi

Acknowledgments vii

1 Introduction and Preliminary Concepts 1
1.1 Nonlinear Evolution Equations . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Classical and Weak Solutions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Weak Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Some Special Function Spaces . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Useful Inequalities and Theorems . . . . . . . . . . . . . . . . . . . . 10

2 Physical Model 12
2.1 Derivation of the Higher Order Boussinesq Equation . . . . . . . . . 12

2.1.1 Vibrations of a Harmonic Lattice . . . . . . . . . . . . . . . . 12
2.1.2 Vibrations of an Anharmonic Lattice . . . . . . . . . . . . . . 14
2.1.3 Quasicontinuum Approximation of the Discrete Model . . . . 15
2.1.4 The Higher-Order Boussinesq Equation . . . . . . . . . . . . . 18

2.2 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Conservation of Momentum . . . . . . . . . . . . . . . . . . . 24

3 Cauchy Problem for the Generalized Double Dispersion

Equation 25
3.1 Cauchy Problem for the Linearized Equation . . . . . . . . . . . . . . 25
3.2 Local Existence for the Nonlinear Problem . . . . . . . . . . . . . . . 30
3.3 Global Existence for the Nonlinear Problem . . . . . . . . . . . . . . 33

4 Cauchy Problem for the Higher-Order Boussinesq Equa-

tion 36
4.1 Cauchy Problem for the Linearized Equation . . . . . . . . . . . . . . 36

viii



4.2 Local Existence for the Nonlinear Problem . . . . . . . . . . . . . . . 39
4.3 Global Existence for the Nonlinear Problem . . . . . . . . . . . . . . 42
4.4 Continuous Dependence on Initial Data . . . . . . . . . . . . . . . . . 44

Bibliography 45

ix



Chapter 1

Introduction and Preliminary Concepts

In this thesis, we study a higher-order Boussinesq type equation and the related

Cauchy problem. The higher-order Boussinesq equation models the longitudinal

vibrations of a dense lattice. We prove the existence and uniqueness of the global

solution for the Cauchy problem. For this purpose, we give some definitions and

relations, then we introduce some typical problems and use the ideas in our problem.

As far as we know, the results that we obtained are new.

The rest of Chapter 1 is devoted to the preliminaries. Mainly, we give a brief

overview of nonlinear evolution equations, weak solutions, Fourier transform, and

some special function spaces. We also give some useful theorems and inequalities.

We refer to [6] for the notation and the definitions given. We also use some parts

of [10], [16] to define weak derivatives and Fourier transform.

Before giving the higher-order Boussinesq equation we consider, we describe the

physical model in Chapter 2. We derive the equation using quasi-continuum ap-

proximation for lattice dynamics equations. Moreover, we derive the conservation

laws.

Cauchy problem for the generalized double dispersion equation was studied by Wang

and Chen in [2]. In Chapter 3, we study their methods used to prove the global

existence and uniqueness.

Finally, Chapter 4 contains our own results on the higher-order Boussinesq equa-

tion. Parallel to Chapter 3, we study the linearized problem and obtain the local

existence and uniqueness by contraction mapping principle. Then, we prove the

global existence and uniqueness theorem and show that the solution of the problem

under consideration depends continuously on the initial data.
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1.1 Nonlinear Evolution Equations

Partial differential equations with time t as one of the independent variables, namely

nonlinear evolution equations arise not only from many fields of mathematics but

also from other branches of science such as physics, mechanics and material science.

For example, Navier-Stokes and Euler equations from fluid mechanics, nonlinear

reaction-diffusion equations from heat transfer and biological sciences, nonlinear

Klein-Gorden equations and nonlinear Schrödinger equations from quantum me-

chanics are special equations of this type. In particular, the Boussinesq-type equa-

tion that we study in this thesis describes non-linear vibrations arising in lattice

dynamics.

The first question to ask is whether for a nonlinear evolution equation with given

initial data there is a solution at least locally in time, and whether it is unique in

the considered class. While the initial data are given at t = 0, we want to find

the solution for later time t > 0. This problem has been solved for a wide class

of nonlinear evolution equations by two powerful theorems in nonlinear analysis:

the contraction mapping theorem and the Leray-Schauder fixed-point theorem [16].

Since the 1960’s, much more attention has been paid to the question of global

existence, in other words, whether a solution can be extended to all times. As

we know from the theory of ordinary differential equations, there is a significant

difference between linear and nonlinear equations. For a linear ordinary differential

equation, we can often find a solution defined globally for all t > 0, while for a

nonlinear equation it is not always possible. This is also true for nonlinear evolution

equations which are clearly more complicated than ordinary differential equations.

The standard method for proving global existence and uniqueness is to combine a

local existence and uniqueness result with estimates. A local existence result can be

obtained as follows: First, the linearized problem is solved, then the original problem

is transformed into a fixed point problem using this linearized problem. Finally, a

suitable fixed point theorem will yield the result. Such results are local, because the

fixed point theorems usually work for small time intervals. Obtaining estimates for

global existence is usually a separate step in the proof since the special structure of

nonlinear problem has to be exploited. A typical example of the scheme above is

the existence and uniqueness theorem for ordinary differential equations [9].
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We give some basic definitions and some useful inequalities below.

1.2 Classical and Weak Solutions

We say that a given problem for a partial differential equation is well-posed if

• the problem in fact has a solution;

• this solution is unique; and

• the solution depends continuously on the data given in the problem.

By solving a partial differential equation with initial/boundary conditions, we mean

to show that the three conditions above are satisfied. In other words, for a solution,

we want all derivatives involved in the equation to exist and satisfy the equation with

initial/boundary conditions at each point of the domain. Such a solution is called

a classical solution. Certain specific partial differential equations such as the wave

equation can be solved in the classical sense; but if we wish to study conservation

laws and recover the underlying physics, we must allow for solutions which are not

continously differentiable or even not continous. As in the case of conservation

laws, some equations can be described in weaker forms and may be satisfied by

functions that are not sufficiently smooth. Moreover, a solution that starts smooth

may eventually become singular as in the case of shock waves. To overcome this

difficulty, we allow for generalized or weak solutions.

Example 1.2.1 Consider the Cauchy problem:

utt − c2uxx = 0 x ∈ R, t > 0,

u(x, 0) = ϕ(x) x ∈ R,

ut(x, 0) = ψ(x) x ∈ R,

where ϕ(x) and ψ(x) are arbitrary initial value functions. We know from D’Alembert’s

formula that if ϕ(x) ∈ C2(R) and ψ(x) ∈ C1(R) then the problem has a unique so-

lution u ∈ C2(R×R+) given by the formula

u(x, t) =
1

2
(ϕ(x+ ct) + ϕ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s)ds.

3



If the assumptions ϕ(x) ∈ C2(R) and ψ(x) ∈ C1(R) are not satisfied, then u(x, t)

given by this formula is not a classical solution but still describes a wave motion.

For this reason, we define a weak (generalized) solution using approaches involving

weak derivatives [6].

1.3 Weak Derivatives

Let C∞c (U) denote the space of infinitely differentiable functions φ : U ⊂ (Rn) → R,

with compact support in U , an open subset of Rn. A function φ belonging to C∞c (U)

is called a test function.

Consider a function u ∈ C1(U). Then if φ ∈ C∞c , we see from integration by parts

formula that ∫
U

uφxi
dx = −

∫
U

uxi
φdx (i = 1, 2, ..., n), (1.1)

where dx = dx1dx2...dxn. There are no boundary terms since φ has compact support

in U and thus vanishes near the boundary ∂U . If k is a positive integer, u ∈ Ck(U),

and α = (α1, α2, ..., αn) is a multiindex of order |α| = α1 + α2 + ...+ αn = k, then∫
U

uDαφdx = (−1)|α|
∫
U

Dαuφdx (1.2)

where we use the multiindex notation

Dαφ =
∂α1

∂xα1
1

...
∂αn

∂xαn
n

φ.

Equation (1.2) is obtained by applying formula (1.1) |α| times. If u is not k times

continously differentiable, then the expression ”Dαu” on the right hand side of (1.2)

has no obvious meaning.

Definition 1.3.1 The linear space of all measurable functions u : U → C, from an

open subset U of Rn to the set of complex numbers C, for which

‖f‖Lp(U) = (

∫
U

|f |p dx)
1
p <∞

where 1 ≤ p <∞, is defined as Lp(U).

Definition 1.3.2 A function u : U → C, from an open subset U of Rn to the set of

complex numbers C, is essentially bounded on U if it is measurable and there exists

a real number M > 0 such that |u(x)| ≤ M for almost all x ∈ U . The infumum of

4



all such numbers M is called essential supremum of u and is denoted by ‖u‖∞. The

set of all essentially bounded functions on U is denoted by L∞(U).

Definition 1.3.3 Let U, V denote open subsets of Rn. We write

V ⊂⊂ U

and say V is compactly contained in U if V ⊂ K ⊂ U for some compact set K.

Definition 1.3.4 Let 1 ≤ p ≤ ∞. Lploc(U) is the set of locally integrable functions,

Lploc(U) = {u : U → C | u ∈ Lp(V ) for each V ⊂⊂ U} ,

i.e. u ∈ Lp if u : U → C satisfies u ∈ Lp(V ) for all V ⊂⊂ U .

Definition 1.3.5 Suppose u, v ∈ L1
loc(U) and α is a multiindex. If the equality∫

U

uDαφdx = (−1)|α|
∫
U

vφdx (1.3)

is satisfied for all test functions φ ∈ C∞c , then v is called the weak derivative of order

|α| of the function u in the domain U and is denoted by Dαu, i.e. v = Dαu. In

other words, if we are given u and if there exists a function v which verifies (1.3) for

all φ, we say that Dαu = v in the weak sense. If there does not exist such a function

v, then u does not possess a weak αth-partial derivative.

Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. We define now certain function

spaces, whose members have weak derivatives of various orders lying in various Lp

spaces.

Definition 1.3.6 The Sobolev space W k,p(U) consists of all integrable functions

u : U → R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak

sense and belongs to Lp(U).

Similarly we define the space W k,p
loc (U) using locally integrable functions instead of

integrable ones.

We introduce a natural norm on the Sobolev space:

‖u‖Wk,p =
∑
|α|≤k

‖Dαu‖Lp .

5



We have the following sequence of inclusions of Sobolev spaces:

Lp(U) = W 0,p(U) ⊃ W 1,p(U) ⊃ W 2,p(U) ⊃ ...

A sequence (uk) converges to u in the Sobolev space W k,p if and only if Dαuk → Dαu

in Lp(U) as k →∞ for all multiindices α such that |α| ≤ k.

Theorem 1.3.7 [6] For each k = 1, 2, ... and 1 ≤ p ≤ ∞, the Sobolev space

W k,p(U) is a Banach space.

Remark: If p = 2, we write

Hk(U) = W k,2(U) (k = 0, 1, 2, ...).

The letter H is used since Hk(U) is a Hilbert space. Note that H0(U) = L2(U).

Remark: At the end of Example 1.2.1, we mentioned about some approaches for

introducing weak solutions. One of them is to use weak derivatives so that the

wave equation is satisfied in a form of integral identity. The other one is to define

a weak (generalized) solution of the problem by approximating (ϕ, ψ) with smooth

data (ϕk, ψk) ∈ C2(R) × C1(R) and passing to the L2-limit in L2 spaces of the

corresponding solutions uk.

Example 1.3.1 (Continuation of Example 1.2.1) Following the definition of weak

derivative, a function u ∈ W 2,1
loc (R

2) is said to be a weak solution of the wave equation

utt − c2uxx = 0 iff ∫
R2

u(φtt − c2φxx)dxdt = 0

for every test function φ ∈ C∞0 (R2).

Another approach to weak solutions is as follows: A function u ∈ W 2,1
loc (R

2) is said

to be a weak solution of the wave equation utt− c2uxx = 0 iff there exists a sequence

of solutions uk(x, t) ∈ C2(R2) of the wave equation such that for every compact set

K ⊂ R2, ‖uk − u‖W 2,1(K) → 0 as k →∞.

In [14], these two approaches are shown to be equivalent.

1.4 Fourier Transform

The Fourier transform is of basic importance in various areas of analysis, especially

in applications of partial differential equations and in the theory of probability.
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The general idea for solving various problems (usually a partial or ordinary differ-

ential equation) using the Fourier method consists in the following three steps:

i. to convert the original problem to simpler one (ordinary differential equation

or algebraic equation, respectively) using the Fourier transform;

ii. to solve the new equation;

iii. to obtain the solution of the original problem using the inverse Fourier trans-

form.

Let u ∈ L1(R). Consider the function (ξ, x) 7→ e−ixξu(x) from R×R into C. As for

given ξ ∈ R the function x 7→ e−ixξu(x) is integrable on R since its absolute value

equals |u|. Moreover, the function û : R→ C given by the integral

û(ξ) =
1

(2π)
1
2

∫ ∞

−∞
e−ixξu(x)dx

is well-defined.

Definition 1.4.1 The function û is called the Fourier transform of the function u

and is also denoted by F(u) or Fu.

Definition 1.4.2 For v ∈ L1(R), the function

v̌(x) =
1

(2π)
1
2

∫ ∞

−∞
eixξv(ξ)dξ

is called the inverse Fourier transform of the function v.

We extend the definition of Fourier and inverse Fourier transform to functions

u ∈ L2(R) by the following theorems( [6], [10]).

Theorem 1.4.3 (Plancherel’s Theorem) Assume u ∈ L1(R) ∩ L2(R). Then û, ǔ ∈

L2(R), and

‖û‖L2(R) = ‖ǔ‖L2(R) = ‖u‖L2(R) . (1.4)

Theorem 1.4.4 Assume u, v ∈ L2(R). Then

i.
∫
R
uvdx =

∫
R
ûv̂dξ,

ii. (Dαu)ˆ(ξ) = (iξ)αû(ξ) for each multiindex α such that (Dαu)ˆ∈ L2(R),

7



iii. (̂u ∗ v) = (2π)
1
2 ûv̂, where u∗v denotes the convolution of u and v (Convolution

Theorem),

iv. u = (û)ˇ (the Inversion Theorem)

where z denotes the complex conjugate of z ∈ C.

The Sobolev space Hk(R) can be related to Fourier transform in the following sense

where we write ‖.‖ instead of ‖.‖L2 :

‖u‖2
Hk = ‖u‖2

Wk,2 =
∑
|α|≤k

‖Dαu‖2 .

From Plancherel’s theorem and Theorem 1.4.4 (ii),∑
|α|≤k

‖Dαu‖2 =
∑
|α|≤k

∥∥∥D̂αu
∥∥∥2

=
∑
|α|≤k

‖(iξ)αû‖2 =
∑
|α|≤k

∫
R

|iξ|2α |û(ξ)|2 dξ

=
∑
|α|≤k

∫
R

ξ2α |û(ξ)|2 dξ =

∫
R

(
∑
|α|≤k

ξ2α) |û(ξ)|2 dξ.

Let ∑
|α|≤k

ξ2α = 1 + ξ2 + ξ4 + ...+ ξ2k = Pk(ξ).

Since

lim
ξ→∓∞

Pk(ξ)

(1 + ξ2)k
= 1

and
Pk(ξ)

(1 + ξ2)k
> 0,

there exists c1,c2 such that

c1(1 + ξ2)k ≤ Pk(ξ) ≤ c2(1 + ξ2)k

where c1 > 0 and c2 = 1. Therefore as a weight, Pk(ξ) is equivalent to (1 + ξ2)k.

Using this equivalence, we obtain an equivalent definition of Hk as follows:

Proposition 1.4.1 The Sobolev space Hk(R) can also be defined by

Hk(R) =
{
u ∈ L2(R) | (1 + ξ2)

k
2 û(ξ) ∈ L2(R)

}
, (1.5)

where ξ ∈ R, and û is the Fourier transform of u. The usual norm is equivalent to

‖u‖Hk(R) = (

∫
R

(1 + ξ2)k |û(ξ)|2 dt)
1
2 . (1.6)

8



We give a scale of Sobolev spaces Hs(R) defined for all real numbers s ≥ 0 instead

of integers k ≥ 0 by:

Hs(R) =
{
u ∈ L2(R) | (1 + ξ2)

s
2 û(ξ) ∈ L2(R)

}
. (1.7)

Thus, u ∈ Hs(R) if and only if u is Lebesgue measurable and

‖u‖Hs(R) = (

∫
R

(1 + ξ2)s |û(ξ)|2 dt)
1
2 <∞.

For s1 < s2 we have a continuous imbedding

Hs2(R) ⊂ Hs1(R) (1.8)

and H0(R) = L2(R). We can prove this fact using (1.7). Note that s1 < s2 and

1 + ξ2 ≥ 1 together imply that (1 + ξ2)s1 ≤ (1 + ξ2)s2 . Multiplying this inequality

by |û(ξ)|2, then integrating over R, we obtain

‖u‖Hs1 ≤ ‖u‖Hs2 . (1.9)

This means that the imbedding Hs2(R) → Hs1(R) is continuous. Functions from

Hs(R) are more differentiable as s increases, where s is the degree of regularity

of functions. On the other hand, the Lebesgue spaces Lp(R) do not satisfy this

inclusion property because R is unbounded. Both L1(R) \L2(R) and L2(R) \L1(R)

are nonempty sets.

1.5 Some Special Function Spaces

We define some suitable function spaces for nonlinear evolution equations so that

we can obtain their global solutions using the methods mentioned in Section 1.1.

They are all function spaces involving time t.

Let X be a Banach space, 1 ≤ p < ∞, −∞ ≤ a < b ≤ ∞. Then Lp((a, b);X)

denotes the space of Lp functions from (a, b) into X. In other words, a function

f ∈ Lp((a, b), X) if f(t) belongs to X for each t ∈ (a, b) and

‖f‖Lp((a,b);X) = (

∫ b

a

(‖f(t)‖X)pdt)
1
p <∞.

Lp((a, b);X) is a Banach space with the norm given above.

9



For p = ∞, L∞((a, b), X) is the space of measurable functions from (a, b) into X

which are essentially bounded. It is a Banach space for the norm

‖f‖L∞((a,b);X) = ess supt∈(a,b) ‖f(t)‖X .

Similarly, when −∞ < a < b < ∞ we can define the Banach spaces Ck([a, b];X)

with the norm

‖f‖Ck([a,b];X) =
k∑
i=0

max
t∈[a,b]

∥∥∥∥difdti (t)
∥∥∥∥
X

.

They denote the functions which are k times differentiable, and which belong to X

for each t ∈ [a, b].

Example 1.5.1 When X = L2(R), u ∈ L2([0, T ], L2(R)) is actually a function of

two variables u = u(x, t) satisfying

‖u‖L2([0,T ],L2(R)) =

∫ T

0

‖u(t)‖2
L2 dt =

∫ T

0

∫ ∞

−∞
|u(x, t)|2 dxdt = ‖u‖L2([0,T ]×R) .

1.6 Useful Inequalities and Theorems

Lemma 1.6.1 (Minkowski’s Inequality for Integrals) [4] If 1 ≤ p ≤ ∞,

u ∈ L1(I, Lp(R)) for a.e. t, where I ⊂ [0,∞), then∥∥∥∥∫
I

u(., t)dt

∥∥∥∥
Lp

≤
∫
I

‖u(., t)‖Lp dt.

Remark: Obviously, Lemma 1.6.1 also holds for Sobolev spaces, i.e. L1(I,W k,p).

Lemma 1.6.2 (Integral Form of Gronwall’s Inequality) [6]

i. Let φ(t) be the nonnegative, continuous function on [0, T ] which satisfies al-

most everywhere t the integral inequality

φ(t) ≤ C1

∫ t

0

φ(s)ds+ C2

where C1 and C2 are nonnegative constants. Then,

φ(t) ≤ C2e
C1t

for almost all 0 ≤ t ≤ T .

10



ii. In particular, if

φ(t) ≤ C1

∫ t

0

φ(s)ds

for almost all 0 ≤ t ≤ T , then φ(t) = 0 almost everywhere.

Theorem 1.6.3 (Banach Fixed Point Theorem/Contraction Mapping Principle)

Let f be a contraction mapping on a complete metric space. Then there exists

a unique z ∈ F such that f(z) = z. The typical case for this theorem is when

f : F → F where F is a closed subset of a Banach space.

Theorem 1.6.4 (Sobolev Imbedding Theorem) [1] Let Ω be a domain in Rn, j ≥ 0

and m ≥ 1 be integers and 1 ≤ p <∞.

i. If either mp > n or m = n and p = 1, then

W j+m,p(Ω) → Cj
B(Ω)

where Cj
B(Ω) is the space of functions having bounded, continuous derivatives

up to order j on Ω.

Moreover,

Wm,p(Ω) → Lq(Ω)

for p ≤ q ≤ ∞.

ii. If mp = n, then

Wm,p(Ω) → Lq(Ω)

for p ≤ q <∞, where q ≥ p is an arbitrary number.

iii. If mp < n, then

Wm,p(Ω) → Lq(Ω)

for p ≤ q ≤ p∗ = np/(n−mp).

Remark: In particular, for n = 1, p = 2 and s > 1
2
, we have Hs(R) ⊂ L∞ and

moreover, there is some constant d, depending on s, so that ‖u‖∞ ≤ d ‖u‖Hs for

u ∈ Hs.
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Chapter 2

Physical Model

In this chapter, we show that the motion of dense lattices is modelled by the higher-

order Boussinesq equation when higher order discrete effects are included. It is

well-known that Boussinesq type equations like the Boussinesq equation, the im-

proved Boussinesq equation and the modified improved Boussinesq equations occur

in the continuum limit description of nonlinear lattices. The higher-order Boussinesq

equation to be considered was first derived by Rosenau [11] using the quasicontin-

uum approximation for dense lattices. In Section 2.1, we rederive the higher-order

Boussinesq equation using a similar approach. In Section 2.2, we present the con-

servation laws.

2.1 Derivation of the Higher Order Boussinesq Equation

In this section, as in [11], we derive a higher order Boussinesq type equation using the

principles of lattice dynamics. We first consider the linear case related to vibrations

of a harmonic lattice in Section 2.1.1. Then, in Section 2.1.2, we introduce the

nonlinear case with vibrations of an anharmonic lattice. In Section 2.1.3, we give

the quasicontinuum approximation of the discrete model. Finally, in section 2.1.4,

we derive the higher-order Boussinesq equation.

2.1.1 Vibrations of a Harmonic Lattice

We now consider a one-dimensional chain of (equally spaced) particles as a simple

model of crystal lattices. We assume that all the particles are identical and that the

particles are interconnected by elastic springs. We denote the mass of the particles

by m and the interparticle separation by h. The nearest neighbor interactions will be

12



considered here. We label the particles by the number n and denote the displacement

of a particle from the equilibrium position by Yn. Note that Yn is a function of the

time t.

The kinetic energy of a particle is given by 1
2
m(Ẏn)

2 where Ẏn ≡ dYn

dt
. The elastic

energy stored in a spring is given by κ
2h2 (Yn − Yn−1)

2 where κ is a constant related

to the interparticle elastic constant (spring constant). The (total) kinetic energy of

the discrete system of particles due to the displacements Yn(t) is

T =
∑
n

1

2
m(Ẏn)

2.

The (total) potential energy, the deformation energy, of the discrete system is

V =
∑
n

κ

2
(
Yn − Yn−1

h
)2

Then, the Lagrangian of the discrete system of particles,

L = T − V,

is a function of the time t, and of the displacements Yn and velocities Ẏn of the

particles in the system. The equations of motion for the system of particles can

be derived using the principle of least action, which states that the motion of the

discrete system of particles during the time interval [t1, t2] minimizes the action

functional ∫ t2

t1

Ldt

[7]. The Euler-Lagrange equations associated with the action are given by

d

dt

∂L

∂Ẏn
− ∂L

∂Yn
= 0. (2.1)

A substitution of L into these equations provides the equations describing the dy-

namics of the discrete system

mŸn =
κ

h2
(Yn+1 − 2Yn + Yn−1). (2.2)

These equations admit plane wave solutions of the type:

Yn = A exp[i(kxn − ωt)], xn = nh (2.3)

13



where k denotes a wave number and ω is the frequency. Substituting the plane wave

solution, (2.3), into the equations of motion, (2.2), we obtain the (exact) dispersion

relation of the harmonic lattice

ω2

c2
=

4

h2
sin2(

kh

2
) (2.4)

where c = ( κ
m

)
1
2 is the speed of sound. The phase velocity is defined by cp = ω

k
and

is the velocity of the propagation of the plane wave. We note that the phase velocity

depends on wave number, that is, lattice waves are dispersive. The long wavelength

limit (i.e. the limit of small wave numbers) implies that kh << 1. If the sine

function in (2.4) is expanded in the limit, we obtain ω2 = c2k2 which implies that

cp = c for long waves. That is, in the long wavelength limit, the wave propagation is

nondispersive and the wave cannot identify the discreteness of the system in which

it propagates.

2.1.2 Vibrations of an Anharmonic Lattice

In the preceeding analysis, the deformation energy involved only the terms of second

degree in the displacements. This results in the linearized equations of motion. The

approximation of the potential energy may not be appropriate for some specific

cases, for instance the cases involving large displacements. Therefore, in this part

we consider the potential energy for the one-dimensional chain with the nearest

neighbor interactions in the form

V =
∑
n

κW (
Yn − Yn−1

h
)

where W is an arbitrary function. Sometimes we use a decomposition of W into

harmonic and anharmonic parts:

W (u) =
1

2
u2 +G(u)

in which we recover the linear case G ≡ 0. Then we have

W
′
(u) = u+ g(u)

where g(u) = G
′
(u). We assume that the equilibrium potential energy of the discrete

system is zero, i.e. W (0) = 0 which implies

G(0) = 0 and G(u) =

∫ u

0

g(p)dp.

14



The first-order derivative of the potential energy with respect to Yn is the negative

of the net force acting on the nth particle. We assume that the net force at the

equilibrium position is zero, i.e. W ′
(0) = 0 which implies g(0) = 0. Therefore, the

first nonnegligible term in the Taylor series expansion of W about the equilibrium

position is the quadratic term from which we obtain the harmonic approximation.

The Euler-Lagrange equations (2.1) obtained from the principle of least action are

also valid for the nonlinear case. A substitution of the Lagrangian L = T − V gives

the equations of motion for the discrete system in the form

mŸn = −κ
h

[W
′
(
Yn − Yn−1

h
)−W

′
(
Yn+1 − Yn

h
)]

Introducing the notation

yn =
Yn − Yn−1

h

we can rewrite the equations of motion as

ÿn =
c2

h2
[W

′
(yn+1)− 2W

′
(yn) +W

′
(yn−1)] (2.5)

Note that the dispersion relation for the linearized form of these equations is given

by (2.4).

2.1.3 Quasicontinuum Approximation of the Discrete Model

In this subsection, a quasicontinuum approximation of the dynamics of the lattice

model is developed. Our aim is to incorporate correctly the leading effects of the

discrete system in a continuum description. For this aim, we wish to find a smooth

function u(x, t) as an interpolation of the sampling [xn = nh, yn(t)] such that

u(xn, t) = yn(t). Note that the correspondence between the continuous variables

resulting from the quasicontinuum approximation to be developed below and the

discrete variables of the lattice dynamics will be in the form n⇒ x, Yn(t) ⇒ U(x, t)

and yn(t) ⇒ u(x, t) = Ux(x, t).

Consider a dense lattice, a lattice where a macroscopic unit length L of the lattice

contains a large number of particles. This means that h << 1. Taylor series

expansions for (W
′
(yn∓1)) near (xn, t) give

W
′
(yn∓1) ≡ W

′
(u(xn∓h, t)) = W

′
(u)(xn,t)∓[

∂

∂x
W

′
(u)](xn,t)h+

1

2!
[
∂2

∂x2
W

′
(u)](xn,t)h

2+...

(2.6)
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If we substitute (2.6) into (2.5) and drop the index n, we obtain the following

equation of motion for the second-order approximation

utt = c2[W
′
(u)]xx +O(h2).

The corresponding linearized equation is

utt = c2uxx +O(h2).

For the plane wave solution u(x, t) = A exp[i(kx − ωt)], the dispersion relation is

obtained as cp = ω
k

= c. This dispersion relation obtained from the quasicontin-

uum system is exactly the same as that obtained from the discrete system in the

long wavelength. That is, the wave propagation in the present continuum system

is nondispersive as in the long wavelength limit of the discrete system. The dis-

crepancy between the dispersive wave propagation in the discrete system and the

nondispersive wave propagation in the continuum system can be eliminated using a

higher order approximation in the above derivation.

We now substitute (2.6) into (2.5) and drop the index n, thus we obtain

utt = c2[W
′
(u)]xx +

c2h2

12
[W

′
(u)]xxxx +O(h4)

for the fourth-order approximation. The corresponding linearized equation and its

dispersion relation are in the form

utt = c2uxx +
c2h2

12
uxxxx +O(h4) (2.7)

and
ω2

c2k2
= 1− h2

12
k2, (2.8)

respectively. As it is expected, the present higher-order approximation provides a

remedy for the above-mentioned discrepancy. In other words, the wave propagation

in the continuum system is dispersive now.

We note that the dispersion relation (2.8) approximates the exact dispersion relation

of the lattice up to O(h4). In other words, the two term Taylor series expansion of

the exact dispersion relation gives (2.8). There exists still a discrepancy between

the exact dispersion relation and (2.8). Recall that the exact dispersion relation is

bounded for every k. However, the dispersion relation (2.8) becomes unbounded for
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large k. This discrepancy is eliminated by replacing the polynomial function in (2.8)

by a rational function. We rewrite the dispersion relation (2.8) up to O(h4) in the

form
ω2

c2k2
=

1

1 + h2k2

12

. (2.9)

Note that the new dispersion relation (2.9) is bounded for every k and that it is

equivalent to (2.8) for small k. The linear wave equation corresponding to the

dispersion equation (2.9) is given by

utt = c2uxx +
h2

12
uxxtt. (2.10)

The Cauchy problem for this equation is well posed for all times while the Cauchy

problem for (2.7) is ill posed.

The rest of this is devoted to the extension of the above results obtained for the

linearized equations to the nonlinear case. We now assume that, with the use of

the quasicontinuum approximation, the equations of motion for the discrete system,

(2.5), can be written as

utt = c2LD2W
′
(u) (2.11)

with

LD2 =
4

h2
sinh2(

hD

2
)

D ≡ ∂

∂x
, L = 1 +

h2

12
D2 +

2h4

6!
D4 + ...

As an application of this approach we first consider the second order approximation.

That is, we restrict our attention to the invertible operators L2 and L−1
2 as a second-

order approximations of L and L−1:

L2 = 1 +
h2

12
D2, L−1

2 = 1− h2

12
D2.

An application of L−1
2 on (2.11) gives

L−1
2 utt = c2D2W

′
(u)

or explicitly

utt = c2[W
′
(u)]xx +

h2

12
uxxtt. (2.12)
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The linearized form of this equation and the corresponding dispersion relation are

given by (2.10) and (2.9), respectively. The above equation (2.12), which can be

also written as

utt − c2uxx −
h2

12
uxxtt = c2[g(u)]xx, (2.13)

is the so-called generalized "improved" Boussinesq equation ( [2], [3]). The terms

"improved" and "generalized" can be explained as follows. The equation

utt − c2uxx −
c2h2

12
uxxxx = c2[g(u)]xx (2.14)

is the so-called generalized Boussinesq equation ( [2], [3]). We have already shown

that the linear dispersion relation for (2.13) leads to a nonphysical instability of

linear waves. The term "improved" means that (2.13) does not admit such an

instability of linear waves. Usually, the above evolution equations appear in the

literature with the quadratic nonlinearities:

utt − c2uxx −
c2h2

12
uxxxx = c2[u2]xx (2.15)

and

utt − c2uxx −
h2

12
uxxtt = c2[u2]xx (2.16)

Equations (2.15) and (2.16) are called the Boussinesq equation (or the "bad" Boussi-

nesq equation or the "ill-posed" Boussinesq equation) and the improved Boussinesq

equation (or the "good" Boussinesq equation or the "well-posed" Boussinesq equa-

tion), respectively [15]. The term "generalized" means that the evolution equation is

not restricted to the quadratic nonlinearity and that it involves an arbitrary function

in the nonlinear term.

2.1.4 The Higher-Order Boussinesq Equation

In this subsection, we derive a nonlinear evolution equation such that its linear

dispersion relation approximates the exact dispersion relation of the discrete system

with a fourth order accuracy for every k. For this aim, we first consider the three-

term Taylor series expansion of the exact dispersion relation (2.4) in the form

ω2

c2k2
= 1− h2

12
k2 +

h4

360
k4. (2.17)
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We approximate this polynomial function by the following rational function

ω2

c2k2
=

1

1 + b1k2 + b2k4
(2.18)

where b1 and b2 are constants. The coefficients b1 and b2 are determined by com-

paring the Taylor expansion of the rational function by the polynomial expansion

(2.17). The taylor expansion of (2.18) up to O(h4) is given by

ω2

c2k2
= 1− b1k

2 + (b21 − b2)k
4. (2.19)

A comparison of (2.19) with (2.17) we obtain

b1 =
h2

12
, b2 =

h4

240
.

We now consider the invertible operators L4 and L−1
4 as a fourth-order approxima-

tions of L and L−1:

L4 = 1 +
h2

12
D2 +

h4

360
D4, L−1

4 = 1− h2

12
D2 +

h4

240
D4.

An application of L−1
4 on (2.11) gives

L−1
4 utt = c2D2W

′
(u)

or explicitly

utt = c2[W
′
(u)]xx +

h2

12
uxxtt −

h4

240
uxxxxtt.

The linearized form of this equation is

utt = c2uxx +
h2

12
uxxtt −

h4

240
uxxxxtt.

The corresponding dispersion relation which is given by (2.18), is bounded for every

k as in the exact dispersion relation of the discrete system. The above nonlinear

evolution equation can be written as

utt − c2uxx −
h2

12
uxxtt +

h4

240
uxxxxtt = c2[g(u)]xx.

Henceforth this equation will be called the higher-order Boussinesq equation. If we

introduce the following dimensionless variables

ξ =

√
12x

h
, τ =

√
12ct

h
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the higher-order Boussinesq equation takes the following form

uττ − uξξ − uξξττ +
144

240
uξξξξττ = [g(u)]ξξ.

Replacing (ξ, τ) by (x, t), we rewrite the equation in the form

utt − uxx − uxxtt + βuxxxxtt = g(u)xx

where β = 144
240

> 0. Henceforth, the above form of the higher-order Boussinesq

equation will be used in the rest of this study.

2.2 Conservation Laws

We will study the conservation laws for the higher order Boussinesq equation

utt − uxx − uxxtt + βuxxxxtt = g(u)xx. (2.20)

We substitute u = Ux into (2.20) and then, integrate on R with respect to x with

the assumptions U,Ux, Ut, Uxx, Utt, Uxt...→ 0 as x→ ∓∞, to obtain

Utt − Uxx − Uxxtt + βUxxxxtt = [g(Ux]x. (2.21)

A Lagrangian density function for (2.21) is

L =
1

2
(Ut)

2 −W (Ux) +
1

2
(Uxt)

2 +
β

2
(Uxxt)

2

where g(u) = −u+W
′
(u).

The equation is derived as the Euler-Lagrange equation of the functional (action)

S[U ] =

∫ t2

t1

∫ ∞

−∞
L(Ut, Ux, Uxt, Uxxt)dxdt. (2.22)

Our aim is to state Noether’s theorem for (2.22) and then to derive the conservation

laws.

We first introduce the notation

ξ1 = t, ξ2 = x, v1 = U, v2 = Ux, v3 = Uxx.

Then the above functional becomes

S[v1, v2, v3] =

∫ ∫
L(
∂v1

∂ξ1
,
∂v2

∂ξ1
,
∂v3

∂ξ1
,
∂v1

∂ξ2
)dξ1dξ2
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where

L =
1

2
(
∂v1

∂ξ1
)2 +

1

2
(
∂v2

∂ξ1
)2 +

β

2
(
∂v3

∂ξ1
)2 −W (

∂v1

∂ξ2
). (2.23)

For simplicity, we introduce the vectors,

ξ = (ξ1, ξ2), v = (v1, v2, v3)

and interprete ∇v as the tensor with components ∂vj

∂ξi
, (i = 1, 2; j = 1, 2, 3).

Using the vector notation, we can rewrite the functional in the form

S[v] =

∫
Ω

L(ξ, v,∇v)dξ (2.24)

where dξ = dξ1dξ2 and Ω is the space-time region, i.e. Ω = [0, T ]× (−∞,∞). Now,

consider a transformation

ξ∗i = Φi(ξ, v,∇v), (i = 1, 2) (2.25)

v∗j = Ψj(ξ, v,∇v), (j = 1, 2, 3) (2.26)

Definition 2.2.1 [7] The functional (2.24) is said to be invariant under the trans-

formation (2.25), (2.26) if S[v∗] = S[v], i.e. if∫
Ω∗
L(ξ∗, v∗,∇∗v∗)dξ∗ =

∫
Ω

L(ξ, v,∇v)dξ.

Theorem 2.2.2 (Noether) [7] Assume Ω is an arbitrary region. If the functional

S[v] =

∫
Ω

L(ξ, v,∇v)dξ

is invariant under the family of transformations

ξ∗i = Φi(ξ, v,∇v; ε) ∼ ξi + εϕi(ξ, v,∇v) (i = 1, 2) (2.27)

v∗j = Ψj(ξ, v,∇v; ε) ∼ vj + εψj(ξ, v,∇v) (j = 1, 2, 3) (2.28)

then
2∑
i=1

∂

∂ξi
[

3∑
j=1

∂L

∂(
∂vj

∂ξi
)
ψ̃j + ϕiL] = 0 (2.29)

on each extremal surface of S[v], where

ψ̃j = ψj −
2∑
l=1

∂vj
∂ξl

ϕl. (2.30)

21



Using equation (2.23), the identity (2.29) can be rewritten in the form

∂

∂ξ1
(
∂v1

∂ξ1
ψ̃1 +

∂v2

∂ξ1
ψ̃2 + β

∂v3

∂ξ1
ψ̃3 + ϕ1L) +

∂

∂ξ2
(−W ′

(
∂v1

∂ξ2
)ψ̃1 + ϕ2L) = 0. (2.31)

If we introduce the notation

δt = εϕ1, δx = εϕ2, δU = εψ1, δUx = εψ2, δUxx = εψ3

and write (2.30) in terms of the original variables, we obtain

εψ̃1 = −Utδt− Uxδx+ δU (2.32)

εψ̃2 = −Uxtδt− Uxxδx+ δUx (2.33)

εψ̃3 = −Uxxtδt− Uxxxδx+ δUxx. (2.34)

Then the equation (2.31) becomes

Pt +Qx = 0, (2.35)

where

P = −[(Ut)
2 + (Uxt)

2 + β(Uxxt)
2 − L]δt

− (UtUx + UxtUxx + βUxxtUxxx)δx

+ UtδU + UxtδUx + βUxxtδUxx

Q = (Utδt+ Uxδx− δU)W
′
(Ux) + Lδx.

Recalling that Ut, Ux and the higher-order derivatives tend to zero as x→ ∓∞, this

implies Q→ 0 as x→ ∓∞. Then, if we integrate equation (2.35) with respect to x

from −∞ to ∞, we obtain a conservation law

d

dt

∫ ∞

−∞
Pdx = 0 (2.36)

or ∫ ∞

−∞
Pdx = c (2.37)

where c is a constant. Here P is called the density of the conserved quantity. If we

introduce the notation

I(t) =

∫ ∞

−∞
Pdx
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for the conserved quantity, the conservation law implies

I(t) = I(0).

Noether’s theorem guarantees that if the action is invariant under a transforma-

tion, there exists a conservation law corresponding to the transformation. It also

provides a general method of deriving conservation laws as discussed above for the

higher-order Boussinesq equation. We now derive the three conservation laws of the

higher-order Boussinesq equation which correspond to the conservation of mass, the

conservation of energy and the conservation of momentum.

2.2.1 Conservation of Mass

The action functional of the higher-order Boussinesq equation is invariant under

function translations, i.e. under the transformation U∗ = U + ε where ε is arbitrary.

Then we have

δt = δx = δUx = δUxx = 0, δU = ε.

Equation (2.35) reduces to

(P1)t + (Q1)x = 0

with

P1 = Ut, Q1 = −W ′
(Ux).

Then the conserved quantity related to the mass is

I1 =

∫ ∞

−∞
P1dx.

2.2.2 Conservation of Energy

The action is invariant under time translations, i.e. under the transformation

t∗ = t+ ε. Then we have

δx = δU = δUx = δUxx = 0, δt = ε.

Equation (2.35) becomes

(P2)t + (Q2)x = 0
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with

P2 = (Ut)
2 + (Uxt)

2 + β(Uxxt)
2 − L

=
1

2
[(Ut)

2 + (Uxt)
2 + β(Uxxt)

2] +W (Ux)

Q2 = −UtW
′
(Ux)

where P2 denotes the energy density. Equation (2.35) implies that the energy

I2 =

∫ ∞

−∞
P2dx

is conserved.

2.2.3 Conservation of Momentum

The action is invariant under space translations, i.e. under the transformation

x∗ = x+ ε. Then we have

δt = δU = δUx = δUxx = 0, δx = ε.

We get from equation (2.35) that

(P3)t + (Q3)x = 0

with

P3 = UtUx + UxtUxx + βUxxtUxxx (2.38)

Q3 = −UxW
′
(Ux)− L (2.39)

where P3 denotes the momentum density. Then the equation (2.36) corresponds to

the conservation of the momentum defined by

I3 =

∫ ∞

−∞
P3dx.

Note that we can write I3 explicitly in the form

I3 =

∫ ∞

−∞
Ux(Ut − Uxxt + βUxxxxt)dx

by successive integration by parts. The conserved quantities I1, I2, I3 derived above

are equivalent to those given in equation (55) of [11].
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Chapter 3

Cauchy Problem for the Generalized Double Dispersion

Equation

In this chapter, we will study the Cauchy problem

utt − uxx − uxxtt + uxxxx = g(u)xx, x ∈ R, t > 0, (3.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (3.2)

Here ϕ(x) and ψ(x) are the given initial functions and g is a given real-valued

function, satisfying g(0) = 0.

This problem has been studied by Wang and Chen [2]. We will present here some

of the results from [2]. This will also serve as a guide for the next chapter, where

we study another Boussinesq type equation with a similar approach.

We introduced nonlinear evolution equations in Chapter 1, and mentioned some

methods for proving global existence and uniqueness of their solutions. In this

chapter, we use the standard method which we have explained. In Section 3.1, we

solve the linear version of this problem, where g(u(x, t))xx is replaced by (h(x, t))xx,

and give estimates for the solution. We give the proof of existence and uniqueness

of the local Hs- solution of the Cauchy problem (3.1), (3.2) by the contraction

mapping principle in Section 3.2. Finally, in Section 3.3, we prove the existence and

uniqueness of the global solution in a certain case.

3.1 Cauchy Problem for the Linearized Equation

The main theorem in this section is given below. Linear version of the Cauchy

problem (3.1), (3.2) is described and the properties of the solution are proved.
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Theorem 3.1.1 ( [2], [12], [13]) Let s ∈ R. For any T > 0, suppose that ϕ ∈ Hs,

ψ ∈ Hs−1 and h ∈ L1([0, T ];Hs−1), then the Cauchy problem for the linear equation

utt − uxx − uxxtt + uxxxx = (h(x, t))xx, x ∈ R, t > 0, (3.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (3.4)

has a unique solution u ∈ C([0, T ], Hs)∩C1([0, T ], Hs−1) and there is the estimation

‖u(t)‖Hs+‖ut(t)‖Hs−1 ≤ 4(1+T )(‖ϕ‖Hs+‖ψ‖Hs−1+

∫ t

0

‖h(τ)‖Hs−1 dτ), 0 ≤ t ≤ T.

(3.5)

Proof : Applying Fourier transform in (3.3) with respect to x, we get:

(1 + ξ2)ûtt + ξ2(1 + ξ2)û = −ξ2ĥ(ξ, t).

Dividing by (1 + ξ2), the problem becomes,

ûtt + ξ2û = − ξ2

1 + ξ2
ĥ(ξ, t) (3.6)

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ). (3.7)

We observe that the partial differential equation turns into a non-homogenous ordi-

nary differential equation with parameter ξ. The solution of this ordinary differential

equation is of the form:

û(ξ, t) = ûhom(ξ, t) + ûpart(ξ, t)

where

ûhom(ξ, t) = c1(ξ) cos(tξ) + c2(ξ) sin(tξ)

denotes the solution of the homogeneous equation.

For a particular solution ûpart of (3.6), we use the variation of parameters method:

ûpart(ξ, t) = û1(ξ, t) cos(tξ) + û2(ξ, t) sin(tξ).

Taking derivative with respect to t,

(ûpart)t = −ξ sin(tξ)û1 + ξ cos(tξ)û2 + cos(tξ)(û1)t + sin(tξ)(û2)t.

In this method, we set

cos(tξ)(û1)t + sin(tξ)(û2)t = 0
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and if we use this particular solution in (3.6), we see that

−ξ sin(tξ)(û1)t + ξ cos(tξ)(û2)t = − ξ2

1 + ξ2
ĥ(ξ, t).

Solving these equations, we find

(û1)t = sin(tξ)
ξ

1 + ξ2
ĥ(ξ, t)

and

(û2)t = − cos(tξ)
ξ

1 + ξ2
ĥ(ξ, t).

Integrating them over [0, t],

û1 =

∫ t

0

sin(τξ)
ξ

1 + ξ2
ĥ(ξ, τ)dτ

and

û2 = −
∫ t

0

cos(τξ)
ξ

1 + ξ2
ĥ(ξ, τ)dτ.

Combining all of these,

ûpart(ξ, t) = −
∫ t

0

ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)dτ.

So,

û(ξ, t) = c1(ξ) cos(tξ) + c2(ξ) sin(tξ)−
∫ t

0

ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)dτ.

Using the initial conditions (3.7), c1(ξ) = ϕ̂(ξ), c2(ξ) = ψ̂(ξ)
ξ

and the solution is given

by,

û(ξ, t) = ϕ̂(ξ) cos(tξ) +
ψ̂(ξ)

ξ
sin(tξ)−

∫ t

0

ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)dτ. (3.8)

We obtain the estimation for Hs norm of u(x, t) by recalling the norm related to

the Fourier transform:

‖w‖2
Hs =

∥∥(1 + ξ2)
s
2 ŵ(ξ)

∥∥2
=

∫
R

(1 + ξ2)s |ŵ(ξ)|2 dξ.

If we write u = v1 + v2 + v3, where

v̂1 = ϕ̂(ξ) cos(tξ)

v̂2 =
ψ̂(ξ)

ξ
sin(tξ)

v̂3 = −
∫ t

0

ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)dτ,
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then

‖u‖Hs ≤ ‖v1‖Hs + ‖v2‖Hs + ‖v3‖Hs . (3.9)

Hence, we estimate the terms separately.

For the first term,

‖v1‖2
Hs =

∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 cos2(tξ)dξ ≤
∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 dξ = ‖ϕ‖2
Hs .

For the second term, we observe that if we use the inequality
∣∣∣ sin(tξ)

ξ

∣∣∣ ≤ 1
ξ
, a singu-

larity occurs at ξ = 0 whereas if we use
∣∣∣ sin(tξ)

ξ

∣∣∣ ≤ |ξt|
|ξ| = t, we lose ξ and it affects the

estimate we evaluate. Taking these differences into account, we divide the integral

into two parts:

‖v2‖2
Hs =

∫
R

(1 + ξ2)s
sin2(tξ)

ξ2

∣∣∣ψ̂(ξ)
∣∣∣2 dξ

=

∫
|ξ|<1

(1 + ξ2)s
sin2(tξ)

ξ2

∣∣∣ψ̂(ξ)
∣∣∣2 dξ +

∫
|ξ|≥1

(1 + ξ2)s
sin2(tξ)

ξ2

∣∣∣ψ̂(ξ)
∣∣∣2 dξ

≤ t2
∫
|ξ|<1

(1 + ξ2)s
∣∣∣ψ̂(ξ)

∣∣∣2 dξ +

∫
|ξ|≥1

(1 + ξ2)s
1

ξ2

∣∣∣ψ̂(ξ)
∣∣∣2 dξ.

For |ξ| < 1, 1 + ξ2 ≤ 2, and for |ξ| ≥ 1, we have 1
ξ2
≤ 1, so

‖v2‖2
Hs ≤ 2t2

∫
|ξ|<1

(1 + ξ2)s−1
∣∣∣ψ̂(ξ)

∣∣∣2 dξ + 2

∫
|ξ|≥1

(1 + ξ2)s−1
∣∣∣ψ̂(ξ)

∣∣∣2 dξ
≤ 2(1 + t2)

∫
R

(1 + ξ2)s−1
∣∣∣ψ̂(ξ)

∣∣∣2 dξ = 2(1 + t2) ‖ψ‖2
Hs−1 .

Hs norm of the third term in (3.8) can be evaluated similarly as follows:

‖v3‖Hs =

∥∥∥∥−∫ t

0

(1 + ξ2)
s
2
ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)dτ

∥∥∥∥ .
From Minkowski’s inequality for integrals [4],

‖v3‖Hs ≤
∫ t

0

∥∥∥∥(1 + ξ2)
s
2
ξ sin((t− τ)ξ)

1 + ξ2
ĥ(ξ, τ)

∥∥∥∥ dτ =

∫ t

0

‖J(τ)‖ dτ.

Now,

‖J(τ)‖2 =

∫
|ξ|<1

(1 + ξ2)s
ξ2 sin2((t− τ)ξ)

(1 + ξ2)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ
+

∫
|ξ|≥1

(1 + ξ2)s
ξ2 sin2((t− τ)ξ)

(1 + ξ2)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ.
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Similar arguments mentioned before show that

‖J(τ)‖2 ≤
∫
|ξ|<1

(t− τ)2(1 + ξ2)s(
ξ2

1 + ξ2
)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ
+

∫
|ξ|≥1

(1 + ξ2)s
ξ2

(1 + ξ2)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ.
Since ξ2

(1+ξ2)2
≤ 1, and 0 ≤ τ ≤ t implies (t− τ)2 ≤ t2

‖J(τ)‖2 ≤ 2(t2 + 1)

∫
R

(1 + ξ2)s−1
∣∣∣ĥ(ξ, τ)∣∣∣2 dξ.

So,

‖v̂3‖Hs ≤
√

2(1 + t)

∫ t

0

‖h(τ)‖Hs−1 dτ.

From (3.9) and summing up the estimates, we get

‖u(t)‖Hs ≤ ‖ϕ‖Hs +
√

2(1 + t) ‖ψ‖Hs−1 +
√

2(1 + t)

∫ t

0

‖h(τ)‖Hs−1 dτ. (3.10)

We now obtain the estimate for ut. Taking derivative with respect to t, we derive

from (3.8)

ût(ξ, t) = −ξ sin(tξ)ϕ̂(ξ) + cos(tξ)ψ̂(ξ)−
∫ t

0

cos((t− τ)ξ)
ξ2

1 + ξ2
ĥ(ξ, τ)dτ. (3.11)

Now, we consider Hs−1 norm of ut. Similar to what we did above, since∥∥∥−(1 + ξ2)
s−1
2 ξ sin(tξ)ϕ̂(ξ)

∥∥∥2

=

∫
R

(1 + ξ2)s−1ξ2 sin2(tξ) |ϕ̂(ξ)|2 dξ

≤
∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 dξ = ‖ϕ‖2
Hs ,

∫
R

(1 + ξ2)s−1 cos2(tξ)
∣∣∣ψ̂(ξ)

∣∣∣2 dξ ≤ ∫
R

(1 + ξ2)s−1
∣∣∣ψ̂(ξ)

∣∣∣2 dξ = ‖ψ‖2
Hs−1 ,

(

∫
R

(1 + ξ2)s−1 cos2((t− τ)ξ)(
ξ2

1 + ξ2
)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1
2 ≤ (

∫
R

(1 + ξ2)s−1
∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1

2

= ‖h‖Hs−1 ,

we get

‖ut(t)‖Hs−1 ≤ ‖ϕ‖Hs + ‖ψ‖Hs−1 +

∫ t

0

‖h(τ)‖Hs−1 dτ. (3.12)

Therefore, estimation (3.5) holds. 2
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3.2 Local Existence for the Nonlinear Problem

In this section, our aim is to prove the local existence and uniqueness for the Cauchy

problem (3.1), (3.2). By local existence, we mean the existence of the solution in

small time interval. We first define a suitable function space.

For s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs−1, and fixed T > 0, we consider the Banach space

X(T ) =
{
u ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1)

}
(3.13)

which is endowed with the norm

‖u‖X(T ) = max
t∈[0,T ]

(‖u(t)‖Hs + ‖ut(t)‖Hs−1). (3.14)

The Sobolev imbedding theorem [1] implies that in R, for s > 1
2
, Hs ⊂ L∞ with

‖.‖∞ ≤ d ‖.‖Hs . Thus, for u ∈ X(T ), u ∈ C([0, T ], L∞) and ‖u(t)‖∞ ≤ d ‖u(t)‖Hs .

For some constant A > 0 that we will later determine, we let

Y (T ) = {u ∈ X(T ) | ‖u‖X(T ) ≤ A}. (3.15)

Y (T ) is a closed subset of X(T ).

For ω ∈ Y (T ), we consider the problem

utt − uxx − uxxtt + uxxxx = g(ω)xx (3.16)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (3.17)

We observe that with g(ω(x, t)) = h(x, t), this problem reduces to the problem given

by (3.3), (3.4). Thus, Theorem 3.1.1 can be applied. We let S(ω) = u(x, t), where

u(x, t) is the unique solution of (3.16),(3.17). Here S denotes the map which carries

ω into the unique solution of (3.16),(3.17). Our aim is to show that S has a unique

fixed point in Y (T ) for appropriately chosen T and A.

For ω ∈ Y (T ) (i.e. ‖ω‖X(T ) ≤ A ) and u = S(ω), we have some problems that have

to be solved:

1. What is the range of Y (T ) under the map S(ω)?

2. How can we obtain suitable estimates on ‖S(ω)‖X(T )?

3. Is S(ω) a contraction mapping?
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As in [2], we need the following two lemmas to control the non-linear term.

Lemma 3.2.1 [3] Assume that f ∈ Ck(R), f(0) = 0, u ∈ Hs∩L∞ and k = [s] + 1,

where s ≥ 0. Then we have

‖f(u)‖Hs ≤ K1(M)‖u‖Hs

if ‖u‖∞ ≤M, where K1(M) is a constant dependent on M .

Lemma 3.2.2 [3] Assume that f ∈ Ck(R), u, v ∈ Hs ∩L∞ and k = [s] + 1, where

s ≥ 0. Then we have

‖f(u)− f(v)‖Hs ≤ K2(M)‖u− v‖Hs

if ‖u‖∞ ≤M , ‖v‖∞ ≤M, where K2(M) is a constant dependent on M .

Lemma 3.2.3 [2] Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs−1 and g ∈ C [s]+1(R), then

for T sufficiently small S is a contractive mapping from Y (T ) into itself .

Proof : Let ω ∈ Y (T ) be given. Then, for t ∈ [0, T ]

‖ω(t)‖∞ ≤ d ‖ω(t)‖Hs ≤ d ‖ω‖X(T ) ≤ dA.

By (1.9) and Lemma 3.2.1,

‖g(ω(t))‖Hs−1 ≤ ‖g(ω(t))‖Hs ≤ K1(dA) ‖ω(t)‖Hs

where K1(dA) is a constant dependent on d and A.

Letting h(x, t) = g(ω(x, t)), it follows from Theorem 3.1.1 that the solution u = S(ω)

of problem (3.16), (3.17) belongs to C([0, T ], Hs) ∩ C1([0, T ], Hs−1) and

‖u(t)‖Hs + ‖ut(t)‖Hs−1 ≤ 4(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs−1 +

∫ t

0

‖g(ω(τ))‖Hs−1 dτ).

So,

‖S(ω)‖X(T ) = max
t∈[0,T ]

(‖u(t)‖Hs + ‖ut(t)‖Hs−1)

≤ 4(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs−1) + 4(1 + T )T ( max
t∈[0,T ]

‖g(ω(t))‖Hs−1)

≤ 4(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs−1) + 4(1 + T )TK1(dA) ‖ω‖X(T )

≤ 4(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs−1) + 4(1 + T )TK1(dA)A.
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Call ‖ϕ‖Hs + ‖ψ‖Hs−1 = a. In order to prove the lemma, we need to show that

‖S(ω)‖X(T ) ≤ A so that S(Y (T )) ⊂ Y (T ), i.e.

4(1 + T )a+ 4(1 + T )TK1(dA)A ≤ A.

We observe that our constant A is related to a. This means that the setting of Y (T )

depends on ‖ϕ‖Hs +‖ψ‖Hs−1 . We try to determine A as a multiple of a, i.e. A = ka.

We want

4(1 + T )a+ 4(1 + T )TK1(dka)ka ≤ ka

or

4a+ 4aT [1 + kK1(dka) + kTK1(dka)] ≤ ka.

By choosing k = 8 and T small enough to have T [1 + kK1(dka) + kTK1(dka)] ≤ 1,

we get ‖S(ω)‖X(T ) ≤ 8a = A. Hence, for these values of A and T , S(Y (T )) ⊂ Y (T ).

Now, let ω, ω̃ ∈ Y (T ) and u = S(ω), ũ = S(ω̃). Set V = u − ũ,W = ω − ω̃. Then

V satisfies

Vtt − Vxx − Vxxtt + Vxxxx = (g(ω)− g(ω̃))xx, (3.18)

V (x, 0) = Vt(x, 0) = 0. (3.19)

Hence by Theorem 3.1.1 and Lemma 3.2.2,

‖V (t)‖Hs + ‖Vt(t)‖Hs−1 ≤ 4(1 + T )

∫ t

0

‖g(ω(τ))− g(ω̄(τ))‖Hs−1 dτ

≤ 4(1 + T )

∫ t

0

‖g(ω(τ))− g(ω̄(τ))‖Hs dτ

≤ 4(1 + T )

∫ t

0

K2(8da) ‖ω(τ)− ω̄(τ)‖Hs dτ

= 4(1 + T )

∫ t

0

K2(8da) ‖W (τ)‖Hs dτ

≤ 4(1 + T )TK2(8da) max
t∈[0,T ]

‖W (t)‖Hs .

Hence,

‖V ‖X(T ) ≤ 4(1 + T )TK2(8da) ‖W‖X(T ) .

By choosing T small enough once more, so that 4(1 + T )TK2(8da) ≤ 1
2
, S becomes

contractive. Thus the lemma is proved. 2

As S is a contraction mapping from a closed subset Y (T ) of a Banach space X(T )

into Y (T ), Banach fixed point theorem states that there is a unique ω ∈ Y (T ) such

that S(ω) = ω. So, we have proved the local existence result;
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Theorem 3.2.4 [2] Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs−1 and g ∈ C [s]+1(R), then

there is some T > 0 such that the Cauchy problem (3.1),(3.2) has a unique solution

u ∈ C([0, T ], Hs) ∩ C1([0, T ], Hs−1).

Remark: By (3.1),

utt = uxx + ∂2
x(1− ∂2

x)
−1(g(u)).

If u ∈ Hs, then uxx ∈ Hs−2. So, by the differential equation utt ∈ Hs−2 . Thus, we

observe that u ∈ C2([0, T ], Hs−2).

Summing up, the unique solution in Theorem 3.2.4 is in fact an element of

C([0, T ], Hs) ∩ C1([0, T ], Hs−1) ∩ C2([0, T ], Hs−2).

3.3 Global Existence for the Nonlinear Problem

In the previous section, we proved the existence and uniqueness of the local solution

in some interval [0, T ]. We now want to study a particular type of nonlinearity and

show that in this case the solution exists for all t ∈ [0,∞). For this aim, we must

first think about the extension of the solution to the maximal time interval. We will

sketch below an outline of this standard extension process [9].

Let us consider the problem (3.1),(3.2). We proved that there is a number T1 > 0

such that the solution exists uniquely in [0, T1]. Now, we will look for a solution for

t ≥ T1. We can write a shifted problem as follows:

utt − uxx − uxxtt + uxxxx = g(u)xx, x ∈ R, t > T1

u(x, T1) = ϕ1(x), ut(x, T1) = ψ1(x)

where ϕ1 ∈ Hs and ψ1 ∈ Hs−1 are obtained from the solution on [0, T1]. Theorem

3.2.4 applied to the shifted problem gives a solution on the interval [T1, T2] for some

T2 > T1. Therefore, solution is extended to [0, T2]. Continuing this way, solution can

be extended to [0, Ti] as long as u(x, Ti) = ϕi ∈ Hs and ut(x, Ti) = ψi ∈ Hs−1. This

way we can extend the solution to some maximal interval [0, Tmax). If Tmax < ∞,

the solution cannot be extended beyond Tmax. The construction above shows that

Tmax can be characterized as follows:

Theorem 3.3.1 Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs−1 and g ∈ C [s]+1(R), and the

solution of (3.1), (3.2) is defined on the maximal interval [0, Tmax). If Tmax < ∞,
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we have

lim supt→T−max
[‖u(t)‖Hs + ‖ut(t)‖Hs−1 ] = ∞.

Remark: Theorem 3.3.1 says that if Tmax <∞, then the solution blows up at Tmax.

Conversely, if we know that the solution never blows up, then Tmax = ∞.

Looking for the conditions that will yield global existence of solutions to the problem

(3.1),(3.2), we first derive an energy identity for the equation:

utt − uxx − uxxtt + uxxxx = g(u)xx.

Let Λ−αw = F−1[|ξ|−α Fw], where F and F−1 denote Fourier transform and inverse

Fourier transform in the x-variable respectively. It follows from Plancherel’s theorem

that Λ−α is a self-adjoint operator [5] on L2(R). Note that Λ2 is actually the positive

operator −∂2
x. Then

Λ−2utt + u+ utt − uxx = −g(u).

Multiplying both sides with ut and integrating over R with respect to x, we get

(Λ−2utt + u+ utt − uxx + g(u), ut) = 0,

where (., .) denotes the inner product of L2 space, i.e. (f, g) =
∫
R
fgdx.

Using the self-adjointness of Λ−1, since Λ−2 = Λ−1Λ−1, this equation becomes

(Λ−1utt,Λ
−1ut) + (ut, u) + (utt, ut)− (uxx, ut) + (g(u), ut) = 0.

We note that the left-hand side can be expressed as;

1

2

d

dt
(
∥∥Λ−1ut

∥∥2
+ ‖u‖2 + ‖ut‖2 + ‖ux‖2 + 2

∫
R

(

∫ u

0

g(p)dp)dx) = 0.

Hence we have proved:

Lemma 3.3.2 [2] Suppose that g ∈ C(R), G(u) =
∫ u

0
g(p)dp, ϕ ∈ H1, ψ ∈ L2,

Λ−1ψ ∈ L2 and G(ϕ) ∈ L1. Then for the solution u(x, t) of problem (3.1),(3.2), we

have the energy identity

E(t) =
∥∥Λ−1ut

∥∥2
+ ‖u‖2 + ‖ut‖2 + ‖ux‖2 + 2

∫ ∞

−∞
G(u)dx = E(0) (3.20)

for all t > 0 for which the solution exists.
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Theorem 3.3.3 Assume that s = 1, g ∈ C2(R), ϕ ∈ H1, ψ ∈ L2, Λ−1ψ ∈ L2,

G(ϕ) ∈ L1 and G(u) ≥ 0 for all u ∈ R, then the problem (3.1), (3.2) has a unique

global solution u ∈ C([0,∞), H1) ∩ C1([0,∞), L2).

Proof : If G(u) ≥ 0, then from (3.20)

∥∥Λ−1ut
∥∥2

+ ‖u‖2 + ‖ut‖2 + ‖ux‖2 ≤ E(0).

In other words, both H1-norm of u, i.e. ‖u‖2+‖ux‖2, and L2-norm of ut are bounded

by E(0), and do not blow-up in finite time. More precisely,

lim supt→T [‖u(t)‖H1 + ‖ut(t)‖] ≤ E(0) <∞.

Therefore, by Theorem 3.3.1, the global solution u(x, t) ∈ C([0,∞), H1)∩C1([0,∞), L2).

2
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Chapter 4

Cauchy Problem for the Higher-Order Boussinesq Equation

In this chapter, we deal with the higher order Boussinesq equation constructed in

Chapter 2. Our aim is to prove the existence and uniqueness of the global solution

and show that the Cauchy problem is well-posed. For this purpose, we follow the

same procedure used in Chapter 3 and examine how it is applicable to our problem.

Our problem is

utt − uxx − uxxtt + βuxxxxtt = g(u)xx, x ∈ R, t > 0, (4.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (4.2)

Here ϕ(x) and ψ(x) are the given initial value functions and g is a given real-valued

function of u, satisfying g(0) = 0; and β is a positive constant.

In Section 4.1, we solve the linear equation where g(u) is replaced by h(x, t). After

giving the estimates of the solution at the end of Section 4.1, we prove the existence

and uniqueness of the local solution in Section 4.2. In Section 4.3, we prove existence

of the global solution in a certain case as in Theorem 3.3.3. In addition to these,

in Section 4.4, we show that the solution depends continuosly on the given initial

data, so the problem is well-posed.

4.1 Cauchy Problem for the Linearized Equation

We define the linear version of the equation (4.1) and give the estimates to its

solution by the following theorem.

Theorem 4.1.1 Let s ∈ R, T > 0. Suppose that ϕ ∈ Hs, ψ ∈ Hs and h ∈
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L1([0, T ];Hs−2), then the Cauchy problem for the linear equation

utt − uxx − uxxtt + βuxxxxtt = (h(x, t))xx, x ∈ R, t > 0, (4.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (4.4)

has a unique solution u ∈ C1([0, T ], Hs) and there is the estimation with some

constant m ≥ 2

‖u(t)‖Hs + ‖ut(t)‖Hs ≤ m(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs +

∫ t

0

‖h(τ)‖Hs−2 dτ), 0 ≤ t ≤ T.

(4.5)

Proof : We take Fourier transform of (4.3) with respect to x.

(1 + ξ2 + βξ4)ûtt + ξ2û = −ξ2ĥ. (4.6)

Let 1 + ξ2 + βξ4 = λ2(ξ). Since

lim
ξ→∞

λ2(ξ)

(1 + ξ2)2
= β > 0

and
λ2(ξ)

(1 + ξ2)2
> 0,

there exists α1,α2 such that

α−1
1 (1 + ξ2)2 ≤ λ2(ξ) ≤ α2(1 + ξ2)2 (4.7)

where α−1
1 > 0, α2 > 0. Therefore, as a weight λ2(ξ) is equivalent to (1 + ξ2)2.

Dividing (4.6) by λ2(ξ),

ûtt +
ξ2

λ2(ξ)
û = − ξ2

λ2(ξ)
ĥ(ξ, t) (4.8)

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ). (4.9)

This is a non-homogenous initial value problem. We find the solution in two steps

as in Section 3.1:

û(ξ, t) = ûhom(ξ, t) + ûpart(ξ, t)

ûhom(ξ, t) = c1(ξ) cos(t
ξ

λ(ξ)
) + c2(ξ) sin((t

ξ

λ(ξ)
)

ûpart(ξ, t) = −
∫ t

0

sin((t− τ)
ξ

λ(ξ)
)
ξ

λ(ξ)
ĥ(ξ, τ)dτ.
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Using initial conditions (4.9), c1 = ϕ̂(ξ), c2 = ψ̂(ξ)λ(ξ)
ξ

, and the solution is given by,

û(ξ, t) = ϕ̂(ξ) cos(t
ξ

λ(ξ)
) + ψ̂(ξ)

λ(ξ)

ξ
sin(t

ξ

λ(ξ)
)−

∫ t

0

sin((t− τ)
ξ

λ(ξ)
)
ξ

λ(ξ)
ĥ(ξ, τ)dτ.

(4.10)

Now, we find the suitable estimates for the Hs norm of u(x, t) in a similar manner

to the ones in the proof of Theorem 3.1.1.

First, ∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 cos2(t
ξ

λ(ξ)
)dξ ≤

∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 dξ = ‖ϕ‖2
Hs .

Then,∫
R

(1 + ξ2)s
∣∣∣ψ̂(ξ)

∣∣∣2 λ2(ξ)

ξ2
sin2(t

ξ

λ(ξ)
)dξ ≤

∫
R

(1 + ξ2)s
∣∣∣ψ̂(ξ)

∣∣∣2 λ2(ξ)

ξ2
t2

ξ2

λ2(ξ)
dξ

≤ t2
∫
R

(1 + ξ2)s
∣∣∣ψ̂(ξ)

∣∣∣2 dξ
= t2 ‖ψ‖2

Hs . (4.11)

Finally for the integrand of the third term,

(

∫
R

(1 + ξ2)s sin2((t− τ)
ξ

λ(ξ)
)(

ξ

λ(ξ)
)2

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1
2

≤ (

∫
R

(1 + ξ2)s((t− τ)
ξ

λ(ξ)
)2(

ξ

λ(ξ)
)2

∣∣∣ĥ(ξ, τ)∣∣∣2) 1
2

≤ ((t− τ)2

∫
R

(1 + ξ2)s
ξ4

λ4(ξ)

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1
2

≤ ((t− τ)2

∫
R

(1 + ξ2)s
∣∣∣ĥ(ξ, τ)∣∣∣2 α2

1

(1 + ξ2)2
dξ)

1
2

≤ (α2
1t

2

∫
R

(1 + ξ2)s−2
∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1

2 = α1t ‖h(τ)‖Hs−2 ,

where we used the inequality λ−2(ξ) ≤ α1(1 + ξ2)−2 from (4.7).

So, we obtain the following estimate for ‖u(x, t)‖Hs :

‖u(t)‖Hs ≤ ‖ϕ‖Hs + t ‖ψ‖Hs + α1t

∫ t

0

‖h(τ)‖Hs−2 dτ. (4.12)

We now estimate for the Hs norm of ut(x, t). For this purpose, we first take the

derivative of (4.10) with respect to t:

ût(ξ, t) = − ξ

λ(ξ)
sin(t

ξ

λ(ξ)
)ϕ̂(ξ)+cos(t

ξ

λ(ξ)
)ψ̂(ξ)−

∫ t

0

cos((t−τ) ξ

λ(ξ)
)
ξ2

λ2(ξ)
ĥ(ξ, τ)dτ.
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Then we continue with the usual method of estimating the terms separately:∫
R

(1 + ξ2)s
ξ2

λ2(ξ)
sin2(t

ξ

λ(ξ)
) |ϕ̂(ξ)|2 dξ ≤

∫
R

(1 + ξ2)s |ϕ̂(ξ)|2 dξ = ‖ϕ‖2
Hs , (4.13)∫

R

(1 + ξ2)s cos2(t
ξ

λ(ξ)
)
∣∣∣ψ̂(ξ)

∣∣∣2 dξ ≤ ∫
R

(1 + ξ2)s
∣∣∣ψ̂(ξ)

∣∣∣2 dξ = ‖ψ‖2
Hs , (4.14)

(

∫
R

(1 + ξ2)s cos2((t− τ)
ξ

λ(ξ)
)
ξ4

λ4(ξ)

∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1
2

≤ (α2
1

∫
R

(1 + ξ2)s−2
∣∣∣ĥ(ξ, τ)∣∣∣2 dξ) 1

2 = α1‖h(τ)‖Hs−2 . (4.15)

These three inequalities imply

‖ut(t)‖Hs ≤ ‖ϕ‖Hs + ‖ψ‖Hs + α1

∫ t

0

‖h(τ)‖Hs−2 dτ. (4.16)

We see u and ut are all in Hs since their norms are bounded. This result verifies

that there exists a unique solution in C1([0, T ], Hs) for 0 ≤ t ≤ T , and by (4.12)

and (4.16), the estimation (4.5) holds for the constant m = max(α1, 2).

2

Remark: In deriving (4.11), the process differs from the one in Theorem 3.1.1.

Here we only use the inequality |sin(w)| ≤ |w| rather than |sin(w)| ≤ 1 because the

latter would yield a worse estimate.

Moreover, when we consider Hs norm of ut(x, t), we observe that we could obtain a

better estimate for the first term, but we will not need it for later.

4.2 Local Existence for the Nonlinear Problem

In this section, we use Theorem 4.1.1 and the contraction mapping principle to prove

that the local solution to the Cauchy problem (4.1), (4.2) uniquely exists for data

in Hs with s > 1
2
. We construct a complete metric space similar with the one in

Section 3.2 and adapt Lemma 3.2.3 to our problem.

For s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs, and fixed T > 0, consider the Banach space

X(T ) = {u ∈ C1([0, T ], Hs)} (4.17)

which is endowed with the norm

‖u‖X(T ) = max
t∈[0,T ]

(‖u(t)‖Hs + ‖ut(t)‖Hs). (4.18)

39



We define,

Y (T ) = {u ∈ X(T ) | ‖u‖X(T ) ≤ A} (4.19)

for some constant A > 0. Y(T) is a closed subset of X(T ).

For ω ∈ Y (T ), we consider the problem

utt − uxx − uxxtt + βuxxxxtt = g(ω)xx (4.20)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (4.21)

We see that for g(ω(x, t)) = h(x, t), this problem reduces to the linearized problem

in Theorem 4.1.1. So, as in Section 3.2, we let S(ω) = u(x, t); here u(x, t) is the

unique solution of (4.20), (4.21) and S denotes the map which carries ω into the

unique solution of (4.20), (4.21). Our aim is again to show that for appropriately

chosen T and A, S has a unique fixed point in Y (T ).

We prove the following lemma for given ω ∈ Y (T ) and u = S(ω).

Lemma 4.2.1 Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs and g ∈ C [s]+1(R), then for T

sufficiently small, S is a contractive mapping from Y (T ) into itself.

Proof : Theorem 4.1.1 says that the solution u = S(ω) of problem (4.20), (4.21)

belongs to C1([0, T ], Hs) and

‖u(t)‖Hs+‖ut(t)‖Hs ≤ m(1+T )(‖ϕ‖Hs+‖ψ‖Hs+

∫ t

0

‖g(ω(τ))‖Hs−2 dτ), 0 ≤ t ≤ T.

So,

‖S(ω)‖X(T ) = max
t∈[0,T ]

(‖u(t)‖Hs + ‖ut(t)‖Hs)

≤ m(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs) +m(1 + T )T ( max
t∈[0,T ]

‖g(ω(t))‖Hs−2).

Since ‖w(t)‖∞ ≤ d ‖w(t)‖Hs ≤ A, and Lemma 3.2.1 holds,

‖g(ω(t))‖Hs−2 ≤ ‖g(ω(t))‖Hs ≤ K1(dA) ‖ω(t)‖Hs ≤ K1(dA) ‖ω‖X(T )

where K1(A) is a constant dependent on A. Then,

‖S(ω)‖X(T ) ≤ m(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs) +m(1 + T )TK1(dA) ‖ω‖X(T )

≤ (1 + T )(‖ϕ‖Hs + ‖ψ‖Hs) + (1 + T )TK1(dA)A.
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Call ‖ϕ‖Hs + ‖ψ‖Hs = a. Since we want S(Y (T )) ⊂ Y (T ), the inequality

‖S(ω)‖X(T ) ≤ A

must hold. Thus we want

m(1 + T )a+m(1 + T )TK1(dA)A ≤ A. (4.22)

As in Section 3.2, letting A = ka, k > 0, (4.22) becomes

m(1 + T )a+m(1 + T )TK1(dka)ka ≤ ka.

Equivalently,

ma+maT [1 + kK1(dka) + kTK1(dka)] ≤ ka.

By choosing k = 2m and T small enough to have T [1+kK1(dka)+kTK1(dka)] ≤ 1,

we get ‖S(ω)‖X(T ) ≤ 2ma = A. Hence, S(Y (T )) ⊂ Y (T ).

Now, let ω, ω̄ ∈ Y (T ) and u = S(ω), ū = S(ω̄). Set V = u − ū,W = ω − ω̄. Then

U satisfies

Vtt − Vxx − Vxxtt + βVxxxxtt = (g(ω)− g(ω̄))xx, (4.23)

V (x, 0) = Vt(x, 0) = 0. (4.24)

Hence by Theorem 4.1.1,

‖V (t)‖Hs + ‖Vt(t)‖Hs ≤ m(1 + T )

∫ t

0

‖g(ω(τ))− g(ω̄(τ))‖Hs−2 dτ

≤ m(1 + T )TK2(2mda) max
t∈[0,T ]

‖W (t)‖Hs .

So,

‖V ‖X(T ) ≤ m(1 + T )TK2(2mda) ‖W‖X(T ) .

If we further choose T small enough so that m(1 + T )TK2(2mda) ≤ 1
2
, S becomes

contractive. The lemma is proved since S is a contraction mapping from Y (T ) into

itself for T sufficiently small.

2

Hence, by Banach fixed point theorem, we obtain the following theorem which states

local existence and uniqueness. We note that as in the Remark after Theorem 3.2.4,

examining utt, we have the extra smoothness.

Theorem 4.2.2 Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs and g ∈ C [s]+1(R), then there

is some T > 0 such that problem (4.1), (4.2) has a unique solution u ∈ C2([0, T ], Hs).
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4.3 Global Existence for the Nonlinear Problem

As we have seen before, looking for the global solution is equivalent to showing that

there is no blow-up.

As a result of the extension process, we obviously have as in Theorem 3.3.1,

Theorem 4.3.1 Assume that s > 1
2
, ϕ ∈ Hs, ψ ∈ Hs and g ∈ C [s]+1(R), and the

solution of (4.1),(4.2) is defined on the maximal interval [0, Tmax). If Tmax <∞, we

have

lim supt→T−max
[‖u(t)‖Hs + ‖ut(t)‖Hs ] = ∞,

When we intend to determine the conditions of the global existence of solutions to

the problem (4.1),(4.2) for initial data ϕ ∈ Hs and ψ ∈ Hs, we first derive an energy

identity for the problem:

utt − uxx − uxxtt + βuxxxxtt = g(u)xx.

As in Section 3.3, we use the operator Λ−αw = F−1[|ξ|−α Fw]. Then,

Λ−2utt + u+ utt − βuxxtt = −g(u).

Multiplying both sides with ut and integrating over R with respect to x, we get

(Λ−2utt + u+ utt − βuxxtt + g(u), ut) = 0

or

(Λ−1utt,Λ
−1ut) + (ut, u) + (utt, ut) + β(uxtt, uxt) + (g(u), ut) = 0.

The left-hand side can be expressed as;

1

2

d

dt
(
∥∥Λ−1ut

∥∥2
+ ‖u‖2 + ‖ut‖2 + β ‖uxt‖2 + 2

∫
R

(

∫ u

0

g(p)dp)dx) = 0.

Thus, the following lemma has been proved:

Lemma 4.3.2 Suppose that g ∈ C(R), G(u) =
∫ u

0
g(p)dp, ϕ ∈ H1, ψ ∈ H1,

Λ−1ψ ∈ H1 and G(ϕ) ∈ L1. Then for the solution u(x, t) of problem (4.1),(4.2), we

have the energy identity

E(t) =
∥∥Λ−1ut

∥∥2
+ ‖u‖2 + ‖ut‖2 + β ‖uxt‖2 + 2

∫ ∞

−∞
G(u)dx = E(0) (4.25)

for all t > 0 for which the solution exists.
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Remark: For u = Ux, the identity (4.25) and I2, conserved energy formula shown

in Chapter 2, are the same. This confirms that the energy identity we obtained in

the lemma agrees with the physical structure mentioned in Chapter 2.

Theorem 4.3.3 Assume that s ≥ 1, g ∈ Cs+1(R), ϕ ∈ Hs, ψ ∈ Hs, Λ−1ψ ∈ Hs,

G(ϕ) ∈ L1, and G(u) ≥ 0 for all u ∈ R, then the problem (4.1), (4.2) has a unique

global solution u ∈ C2([0,∞) , Hs).

Proof : We first prove the theorem for the case s = 1. If G(u) ≥ 0, then from (4.25)

∥∥Λ−1ut
∥∥2

+ ‖u‖2 + ‖ut‖2 + β ‖uxt‖2 ≤ E(0) <∞.

Hence, H1 norm of ut, i.e. ‖ut‖2 +‖uxt‖2, is bounded, and does not blow-up in finite

time. We need an estimate for ‖u(t)‖H1 ; so we write u(x, t) as an integral equation:

Since u(x, 0) = ϕ(x),

u(x, t) = ϕ(x) +

∫ t

0

ut(x, τ)dτ.

Then,

‖u(t)‖H1 ≤ ‖ϕ‖H1 +

∫ t

0

‖ut(τ)‖H1 dτ. (4.26)

We had, ‖ut‖H1 ≤ γE(0), where γ = max {1, β−1}. Therefore, it can be easily seen

from (4.26) that

‖u(t)‖H1 ≤ ‖ϕ‖H1 + γtE(0).

Thus, for any finite T > 0,

lim supt→T− [‖u(t)‖H1 + ‖ut(t)‖H1 ] ≤ ‖ϕ‖H1 + γ(1 + T )E(0) <∞.

So, under the conditionG(u) ≥ 0, given ϕ ∈ H1, and ψ ∈ H1 imply u ∈ C2([0,∞) , H1)

by Theorem 4.3.1.

We now claim that if ϕ, ψ ∈ Hs, and g ∈ C [s]+1(R) for some s > 1, then u ∈

C2([0,∞], Hs). By the above, we already know that u ∈ C2([0,∞) , H1), so all

we need to show is that u(., t), ut(., t) (and utt(., t)) are in Hs. We will apply an

inductive process.

Suppose that u(., t), ut(., t) ∈ Hr for some r ≤ s− 2. By Lemma 3.2.1,

‖g(u(t))‖Hr ≤ K1(A) ‖u(t)‖Hr
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with A = ‖u(t)‖∞ ≤ d ‖u(t)‖H1 . Then the estimate of Theorem 4.1.1 with h(x, t) =

g(u(x, t)) shows that for 0 ≤ t ≤ T ,

‖u(t)‖Hr+2 + ‖ut(t)‖Hr+2 ≤ m(1 + T )(‖ϕ‖Hr+2 + ‖ψ‖Hr+2 +

∫ t

0

‖g(u(τ))‖Hr dτ)

≤ m(1 + T )(‖ϕ‖Hs + ‖ψ‖Hs +

∫ t

0

K1(A) ‖u(τ)‖Hr dτ)

which shows that ‖u(t)‖Hr+2+‖ut(t)‖Hr+2 <∞ for all t ∈ [0, T ]. Since T is arbitrary,

this proves that u ∈ C2([0,∞) , Hr+2). The induction process allows us to obtain

u ∈ C2([0,∞) , Hs). 2

4.4 Continuous Dependence on Initial Data

We now want to show that the solution of (4.1), (4.2) depends continuously on

the initial data so that the problem is well-posed. For this purpose, we take two

solutions u1, u2 of (4.1) with initial data (ϕ1, ψ1) and (ϕ2, ψ2) respectively defined

on some interval [0, T ].

Let v = u1 − u2. Then v satisfies

vtt − vxx − vxxtt + βvxxxxtt = (g(u1)− g(u2))xx

v(x, 0) = ϕ1(x)− ϕ2(x), vt(x, 0) = ψ1(x)− ψ2(x).

By Theorem 4.1.1,

‖u1 − u2‖Hs ≤ m(1 + T )(‖ϕ1 − ϕ2‖Hs + ‖ψ1 − ψ2‖Hs +

∫ t

0

‖g(u1)− g(u2)‖Hs−2 dτ)

≤ m(1 + T )(‖ϕ1 − ϕ2‖Hs + ‖ψ1 − ψ2‖Hs +

∫ t

0

‖g(u1)− g(u2)‖Hs dτ).

By the Sobolev imbedding theorem, u1 and u2 are in L∞. LettingM = max {‖u1‖∞ , ‖u2‖∞},

from Lemma 3.2.2, we get

‖u1 − u2‖Hs ≤ m(1 + T )(‖ϕ1 − ϕ2‖Hs + ‖ψ1 − ψ2‖Hs +K2(M)

∫ t

0

‖u1 − u2‖Hs dτ).

Integral form of Gronwall’s inequality implies that

‖u1 − u2‖Hs ≤ m(1 + T )(‖ϕ1 − ϕ2‖Hs + ‖ψ1 − ψ2‖Hs)e
m(1+T )K2(M)t,

for all t ∈ [0, T ].

Therefore, the solution depends continuously on the given initial data since it is

bounded by a continuous function related with the difference of the initial data.
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