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Abstract

Zinc content of the wheat seed has significance for agronomy, environment
and also for human health. Seeds containing higher amounts of micronutri-
ents, especially zinc, are better at germination and show high resistance to
pests. Experiments on the mechanisms of micronutrient uptake and their
accumulation in the plant body and the seeds showed a correlation between
zinc and protein amount in the seed, which suggested some proteins, mostly
abundant in the embryo and the aleurone layer, might be sinks for zinc.
There is a lack of knowledge on zinc binding proteins of wheat seed.

In this project, we aimed to determine the effect of environmental condi-
tions on the protein and micronutrient content of the durum wheat seed and
to screen the proteome of the wheat seed to identify the proteins with metal-
in particular Zn-binding propensity. Protein analyses were carried out on
seeds with extreme N and Zn content. Extraction methods available in the
literature were modified to obtain reproducible profiles of the total protein
content and to separate seed proteins into fractions of different storage pro-
tein classes. Extracts were analyzed using polyacrylamide gel electrophoresis
and a procedure for detection of Zn-binding proteins was developed. Results
showed Zn-binding by Cys rich proteins in the molecular mass range 30 to
50 kDa. The method was extensively tested to confirm the association of Zn
with specific proteins, however, if those proteins bind metal in vivo remains
to be shown. Microscopic analysis of in situ staining for protein and Zn lo-
calization showed preferential staining in the embryo and aleurone layers of
the seed and led to determination of the protein profiles from embryo and
endosperm tissues, separately. The methods developed during this and fur-
ther studies, shall be used to do the same screening for different wild-type
and cultivated genotypes of wheat.
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BUĞDAY DANESİNDEKİ ÇİNKO BAĞLAYAN PROTEİNLERİN
TANIMLANMASI

Onur GÖKÇE

BIO, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Prof. Dr. Zehra SAYERS

Anahtar Kelimeler: buğday, çinko, dane depolama proteinleri, metal
bağlayan proteinler, protein ekstraksiyonu.

Özet

Buğday danesindeki çinko miktarının tarımsal, çevresel ve insan sağlığı açısın-
dan önemi vardır. Önceki çalışmalarda, yüksek miktarlarda mikrobesin, özel-
likle çinko, içeren danelerin daha iyi çimlendiği ve zararlılara karşı daha
dirençli oldukları gösterilmiştir. Mikrobesin alım mekanizmaları ve bitkinin
gövde ve tohumlarında birikimi üzerine yapılan deneyler, danedeki çinko ve
protein miktarı arasında bir bağ olduğunu göstermiş ve daha çok aleuron
tabakası ve embriyoda bulunan bazı proteinlerin, çinko depolamada rol oy-
nayabileceğini önermiştir. Danedeki çinko bağlayan proteinler hakkında daha
fazla bilgi bulunmamaktadır.

Bu projede, farklı çevresel faktörlerin, durum buğdayı danelerindeki pro-
tein ve mikrobesin içeriği üzerinde olan etkilerini bulmak ve buğday danesi
proteomunu analiz ederek, metal, özellikle çinko, bağlama eğilimi olan prote-
inleri adlandırmak amaçlanmıştır. Protein analizleri, aşırı miktarda azot ve
çinko içeren daneler üzerinde yapılmıştır. Literatürde mevcut ekstraksiyon
metodları, tüm protein içeriğinin tekrarlanabilir profilini elde etmek ve dane
proteinlerini, farklı depolama proteini sınıflarına ayrıştırıp çıkarmak için bazı
değişiklerle kullanılmıştır. Ekstraktlar poliakrilamit jel elektroforezi ile ana-
liz edilmiş ve çinko bağlayan proteinlerin belirlenebilmesi için bir prosedür
geliştirilmiştir. Alınan sonuçlar, molekül ağırlıkları 30 ile 50 kDa arasında
olan sisteince zengin bazı proteinlerde çinko bağlandığını göstermiştir. Gelişti-
rilen metot, alınan sonuçlarda çinkonun ilgili proteinlerle ilişkisini doğrulamak
için, farklı şekillerde test edilmiştir, ancak bu proteinlerin in vivo metal
bağlayıp bağlamadığı gösterilmemiştir. İn situ protein ve çinko boyamaları
sonucu, embriyoda ve aleuron tabakasında daha yoğun boyanma görülmüş
ve bu, embriyo ve endosperm dokularının protein profillerinin ayrı ayrı ince-
lenmesine yöneltmiştir. Bu ve ileriki çalışmalarda geliştirilen metotlar, farklı
yabani ve evcil buğday genotiplerinin analizlerinde kullanılabilir.
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Chapter 1

Introduction

1.1 Plants and micronutrients

1.1.1 Micronutrients

Micronutrients, such as transition metals like Fe, Cu, Mn and Zn, are es-

sential for growth and development of the living, as they are found in most

redox reactions fundamental for cellular processes and in proteins and en-

zymes for structural and catalytic activities [1]. Shortage of these metals in

plants causes deficiency semptoms and growth is reduced [2] and unfortu-

nately, micronutrient deficient soils are widespread throughout the world [3].

Accumulated Zn in the seeds of Triticum aestivum L. wheat cultivars was

shown to positively effect vegetative growth and grain yield in zinc deficient

soils [4, 5, 6].

Micronutrient deficiency is not only a problem of the plant kingdom. It

is estimated that over 3 million people are affected by micronutrient such as

Fe, Zn and vitamin A deficiencies. These deficiencies also account for almost

two thirds of childhood deaths worldwide and developmental problems [7,

8], the reason being related to the dietary habits of developing countries

which is based on cheap but low nutritional cereal products rather than

animal products of rich micronutrient content [9, 10, 11, 12]. Fortunately,

1



there are ways to fight this problem, such as food fortification, improving

cereal varieties, addition of enhancers for zinc absorption, changing milling

procedures and several more, along with combined strategies of them [13].

Therefore, it is beneficial to increase micronutrient, especially Zn, con-

tent in the seeds of the wheat for both agricultural and world human health

purposes. This can be done by agricultural approaches, such as classical

breeding methods and fertilizer application [14, 7], as well as genetic modifi-

cations [15].

On the other hand, excess amounts of these essential metals along with

nonessential metals such as Pb, Hg and Cd are toxic due to a range of in-

teractions at the cellular and molecular level [16, 17]. Toxicity arises from

oxidative damage [18, 19], disruption of protein function [20] and/or geno-

toxicity1 [21].

For these reasons, cellular concentrations of these metals must be carefully

regulated both to avoid deficiencies and toxicity.

1.1.2 Homeostasis and metal accumulation in plant body
and seeds

General overview of mechanisms of metal accumulation has been summarized

in Figure 1.1.

Micronutrient metals mentioned above are among the most abundant ele-

ments on Earth, but their bioavailability may be limited due to low solubility

in oxygenated water and binding to soil particles, therefore, what is abun-

dant cannot be easily taken up from the soil [22]. Focusing on Zn, availability

and absorption of Zn from the rhizosphere is affected by several factors in-

cluding those that are chemical, such as soil pH, redox potential or nutrient

1Causing damage to or mutation of DNA.
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interactions; physical, such as matter content, soil texture or clay content

and type; and biological, such as mycorrhizae formation, phytosiderophore2

release. All these factors work on the root-soil interface [23].

Plants have adapted various strategies to mobilize most of the metal

content in the rhizosphere. These include improved root architectures (e.g.

increasing root/shoot ratio [24], root colonization by mycorrhizal fungi [25]

or bacteria [26]), altering the chemistry of the rhizosphere by changing the

pH of the soil or by releasing organic ligands to chelate soil Zn and thus

increase the availability.

Mobilized Zn, mainly as Zn2+ ion [27], sometimes as Zn-phytosiderophore

complex, is uptaken by roots, first by diffusion into root cell walls then into

the plasma membrane by the aid of ion transport proteins (Figure 1.2) [1].

Figure 1.2: Plant metal transporters [1].

Long distance transport of Zn is believed to be faciliated by the xylem

stream, because high concentrations of Zn is found in the xylem sap and

2Phytosiderophores are nonprotein amino acids that chelate a number of micronutri-
ents.
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accumulation of Zn in older leaves even during Zn deficiency suggests that

phloem mobility of Zn is low [2], but not impossible [28]. The transportation

of ions into the xylem is regulated by membrane transport proteins, however

those for metals are not known.

When the metals reach to the tissues in the shoot, homeostasis is regu-

lated by complex mechanisms involving transportation, chelation, trafficking

and sequestration into vacuoles [29]. Zn is not found as an ion in the cells,

it is chelated and there are various sinks: phytochelatins, metallothioneins,

phytic acid, etc. These are discussed in Subsection 1.2.4 on page 17.

1.2 Seed of the wheat

1.2.1 Morphology

Seed of the wheat consists of three major divisions, which are the testa (seed

coat) derived from the integument3, diploid embryo that develops from the

zygote of the fusion of the egg cell and a sperm nucleus, and the triploid

endosperm emerging from the fusion of the two polar nuclei and a second

sperm nucleus (Figure 1.3) [30, 31]. Upon the differentiation during develop-

ment of the seed new tissues emerge in embryo and endosperm. The tissues

of the embryo is out of scope here. Mature endosperm consists of starchy

endosperm, aleurone layer, transfer cells and embryo-surrounding region [32]:

Starchy endosperm Largest body of cells in the endosperm that function

to accumulate starch, prolamin storage proteins, macromolecules and

minerals required for the tissues after germination [34].

Aleurone layer One to several cells thick layer that covers the perimeter

of the starchy endosperm which during germination functions in the

3The envelope of an ovule
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Figure 1.3: Sections of the wheat kernel [33].

mobilization of starch and protein reserves from the starchy endosperm.

Aluerone layer is very nutritious. The protein content is remarkably

high with amino acid content well balanced. Sulfur containing amino

acids (methionine and cysteine) are low when compared to others. More

than 80% of minerals like K, Mg, Ca, Fe and Zn in the wheat seed are

concentrated in aleurone layer [35]. Cytoplasm of the aleurone cells are

filed with organelles, dominantly by protein storage vacuoles, where

amino acid building blocks are stored for quick enzyme synthesis [36].

These vacuoles are also the principal storage of minerals in the cereal

grain.

Transfer cells Faciliates the transport of amino acids, sucrose and monosac-

carites between the endosperm and maternal plant during the develop-

ment of the seed [37].
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Embryo-surrounding Region Although the exact function is not known,

it is possible that this tissue provides nutrition to the embryo and

provides a barrier and communication zone between the embryo and

the endosperm of the seed. These cells have dense cytoplasmic contents,

particularly in maize [38].

1.2.2 Development

Whole life cycle of angiosperms has been summarized in Figure 1.4.

Figure 1.4: Life cycle of angiosperms [39].

Development of the wheat seed, as other angiosperms, starts with double

fertilization, where one sperm nucleus fuses with the egg to produce the em-

bryo, while a second sperm nucleus fuses with the two polar nuclei to form the

progenitor of the triploid endosperm [40]. Therefore, development of the seed

involves embryogenesis where the single celled zygote undergoes complex se-
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ries of morphological and cellular changes which results in a developmentally

arrested, dormant, embryo [41] and also it involves the differentiation of en-

dospermic tissues to give the mature endosperm. The development requires

complex interactions between cells within tissues, as well as interactions be-

tween embryo, endosperm and maternal tissues [40].

Embryogenesis starts with morphogenesis, where the polar axis of the

plant body is defined by specification of shoot and root apices and em-

bryonic tissues and organ systems are formed. Embryo maturation follows

morphogenesis and storage reserves are accumulated. In the last phase of

embyogenesis, embryo becomes desiccated and development is arrested until

germination [41].

The endosperm development has three general patterns, which are nu-

clear, cellular helobial and wheat endosperm development is nuclear with fol-

lowing phases: syncytial, cellularization, differentiation and maturation [30,

42, 43].

In the syncytial phase, the primary endosperm nucleus, formed by fer-

tilization, goes through mitosis without cytokinesis, therefore resulting in a

multinucleate cell (coenocyte). Cellularization follows until every cell in the

endosperm becomes uninucleate (Figure 1.5). Cellularization and differen-

tiation are closely integrated processes in terms of timing and place. They

occur simultaneously. Those nuclei close to the maternal tissues differentiate

to become transfer cells, those close to the embryo become embryo surround-

ing cells. Peripheral cells of the first periclinal division of the alveolar nuclei

become aleurone, daughters without preprophase bands [44] become starchy

endosperm. [45, 34].

Cellularization and differentiation is followed by maturation of the tis-

sues which involve cellular expansions and reserve depositions. During seed
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Figure 1.5: Cellularization and differentiation of endosperm coenocyte of ce-
reals. (a–d) Anticlinal cell wall formation: (a) Cellularization is initiated by
the formation of radial microtubule system (RMS) on all nuclear surfaces. (b)
RMSs extend and initially overlap, soon forming cytoplasmic phragmoplast
that deposit anticlinal cell walls (acw). (c) Partial anticlinal cell walls are
formed around each nucleus. (d) Walls extend centripetally toward the cen-
tral vacuole (cv) by the aid of adventitious phragmoplast formed by a canopy
of microtubular arrays extending from upper pole of endosperm nuclei. En-
dosperm alveoli is formed (al). (d–j) Periclinal division in endosperm alveoli:
(e) Mitotic spindles in metaphase, periclinal orientation. (f) Mitotic spindles
in anaphase, periclinal orientation. (g–i) Funtional interzonal phragmoplast
is formed at mitotic interzone, separating the daughter nuclei. Periclinal en-
dosperm cell wall (pcw) is deposited. (j) Second layer of cells are formed.
Peripheral cells have preprophase bands (PPB). (j–m) Endosperm cell file
development: (j–l) Process repeated three times to have four layers. (l) Mi-
totic divisions in the endosperm cells that lack PPBs at random division
planes. (m) Starchy endosperm cells are formed. (n–s) Expansition of the
aleurone layer: (n) Two neighboring aleurone cells with hoop-like cortical
arrays. (o) Future of division plane is determined by PPBs. (p) Mitotic
spindle axis. (r) Interzonal phragmoplast formation in the anticlinal plane.
(s) Four aleurone cells are formed [32, 45]. (ccw: central cell wall.)
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development, endosperm cells synthesize storage polymers that are largely

insoluble and have low osmotic activity. Primary stored polymer in the

starchy endosperm is starch. Storage proteins accumulate in the grain to

supply nitrogen and sulphur for the embryo [46].

Cereal seed storage proteins are produced by the secretory pathway and

deposited in discrete protein bodies. Wheat prolamins (gliadins) are syn-

thesized on the rough endoplasmic reticulum and accumulate in membrane-

bound protein bodies. Two mechanisms have been observed in the formation

of protein bodies in different cereals. After their synthesis in rough endoplas-

mic reticulum (ER), either proteins are deposited within the lumen of rough

ER, such as prolamins of maize, rice and sorghum or proteins are packed

into protein bodies in golgi apparatus, such as rice glutelins. In wheat, the

mechanism of gliadin deposition in protein bodies also makes use of the golgi

apparatus [47]. Among the factors that affect the protein composition of the

seed is the availability of nitrogen and sulfur. When nitrogen is sufficient

enough, varying sulfur supply causes changes in the abundance of S-rich or

S-poor proteins [48].

During late maturation, till the end of the development, starchy en-

dosperm cells undergo programmed cell death accompanied by an increase

in nuclease activity and internucleosomal fragmentation of nuclear DNA, in-

duced by ethlene. Death of the starchy endosperm tissue ensures and is

required for rapid hydrolysis and mobilization of storage reserves during ger-

mination. This process is regulated, so that premature death of starchy

endosperm cells can be avoided, which if not, would result in a limitation of

storage reserve synthesis [30].
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1.2.3 Germination

Germination is the group of events that start with imbibition by quiescent

dry seed and end with the elongation of the embryonic axis. The visible

sign of the completion of the germination is the penetration of the structures

surrounding the embryo by the radicle. Later events as the mobilization of

major storage reserves are associated the growth of the seedling [49]. Various

phases and major events are summarized in Figure 1.6.

Figure 1.6: Phases of germination and major events that take place [49].

As the dry seed is soaked in water, the imbibition causes termporary

structural perturbations to membranes and this leads to immidiate and rapid

leakage of solutes and low molecular weight substances, which may be ex-

plained by the transition of membrane phospholipid components from gel

phase to hydrated liquid-crystalline state [50].

With imbibition, dry seed resumes its metabolic activity. The structures
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and enzymes that are required for the initial metobolism are present within

the dry seed. Respiratory activity is restored within minutes of water contact

after poorly differentiated mitochondria, already present in the quiescent

seed, go through rapid development. Oxygen consumption rate declines until

the end of germination, but increases immidiately after [51].

Protein synthesis is recovered upon imbibition since all of the components

required are present in the mature dry embryos, except for polysomes, which

are assembled from the ribosomes after rehydration. Initial protein synthesis

is dependent on the extant ribosomes, however new ribosomes are produced

and used within hours of initial polysome assembly [52]. Preformed mRNA

is also present at the mature dry seed and some of these residual mRNAs are

associated with previous developmental processes [53] and may be used in

early germination. Those mRNAs that are only residual and will not be used

during germination degrade rapidly [54, 55], whereas those that translate the

proteins required in early germination are used, but replaced gradually by

newly synthesized identical mRNAs and transcription becomes more and

more dependent on the fresh copies [56]. Among those residual transcripted

genes, mRNAs translating for germin, Em (early methionine-labelled) and Ec

(early cysteine-labeled; gene encoding Zn binding metallothionein [57]) are

present [58].

Imbibition triggers the embryo to release gibberellic acid (GA), which

in turn diffuses to the scutellum and the aleurone layer, and induces the

synthesis and secretion of numerous hydrolytic enzymes to breakdown the

polysaccharides, storage proteins, lipids and nucleic acids in the starchy en-

dosperm. The products are relayed back to the embryo via the scutellum

(Figure 1.7) [34, 36]. These hydrolases also breakdown storage proteins in

protein storage vacuoles of the aleurone cells. During these processes, ab-
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scisic acid (ABA) counterworks against GA [59]. After mobilizing all their

content, aleurone cells go through programmed cell death [36].

Figure 1.7: Mobilization of stored nutrition in starchy endosperm [34].

Among the factors that effect germination, protein content of the seed

should be noted. Comparing germinating seeds of high and low protein

content, it was shown by Ching et al. [60] that high protein content resulted

in a faster rate of seedling growth and a higher yield of product.

1.2.4 Proteins of wheat seed

Classification of the proteins of cereal seeds has followed various schemes over

the years. Initial, and still valid, classification by Osborne [61], was based on

the solubility of the proteins and they were grouped according to their sol-

vents: albumins (water), globulins (dilute saline), prolamins4 (alcohol-water

mixtures), and glutelins5 (dilute acid or alkali or SDS solution). Some pro-

teins are grouped further according to their sedimentation constants, such as

2S albumins [62], 7S and 11S globulins. More recent classifications grouped

proteins by their functional roles as storage, structural and biologically active

proteins by Fukushima in 1991 [63] and later as storage, structural/metabolic

4Prolamins of the wheat are called gliadins.
5Glutelins of the wheat are called glutenins.
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and protective proteins by Shewry et al. in 2002 [64]. New ways of classi-

fication emerge, one of them being based on structural and evolutionary

relationships [65]. With this classification, over 50% of seed proteins are

classified within prolamin and cupin superfamilies.

Because of their dominance in seeds and their agricultural importance,

most research has been conducted on cereal storage proteins. These proteins,

along with metal binding proteins and peptides of the seed, will be introduced

here because of their relevance for this thesis.

Storage proteins

Seed storage proteins have some distinct characteristics. During the devel-

opment of the seed, they accumulate in high amounts in protein bodies, to

be used later during germination. These proteins are synthesized only by

the endosperm tissues and lack any other function other than storage. Since

they are used for nitrogen storage, they are rich in asparagine, glutamine,

arginine and prolamine [66].

Prolamin superfamily

Prolamins are major storage proteins in the endosperm of cereals and

form the major components of gluten protein fraction in the seed. Their

molecular weights are between 10 kDa and 100 kDa. These proteins have

two common structural features: the presence of distinct regions or domains

adopting different structures to each other, possibly from different origins;

the presence of repeated blocks of one or more short proline and glutamine-

rich motifs, or repeated blocks enriched in residues such as methionine. The

prolamins of Triticeae (wheat, barley and rye) have been divided into three

groups, sulphur-rich (S-rich), sulphur-poor (S-poor) and HMW, based on
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their sequences, which can further be classfied based on the amino acid com-

position [64].

S-rich prolamins are the major group of prolamins in Triticeae, most

having molecular weights between 36 kDa and 44 kDa. They have a simi-

lar basic structure with proline-rich repeats at the N-terminal domain and

a C-terminal that has most, if not all, of the cysteine residues. In some

proteins, repeats of the N-terminal domain may be preceeded by a short

unique sequence. There are three types that belong to this class of proteins,

which have structural differences when looked in detail: γ-type, α-type and

aggregated type (LMW subunits of glutenin). These proteins are thermally

stable [67].

S-poor prolamins lack cysteine residues and therefore cannot form oligomers

or polymers. Molecular weight of these proteins are between 44 kDa and

78 kDa. They have β-turn rich structures. ω-gliadins are the corresponding

proteins in wheat [67].

HMW prolamins are the HMW subunits of wheat glutenin and have two

types, x-type (Mr 83–88 kDa) and y-type (Mr 67–74 kDa). They have a clear

domain structure, each type consisting of non-repetitive regions forming the

N-terminal domain and the C-terminal domain and a region of repeating

motifs between these termini. Most of the cysteines are in the non-repetitive

domains; three in x-type, five in y-type N terminal domain and one in C-

terminal domain of both x and y-type. The repeating motifs are a hexapep-

tide (Pro-Gly-Gln-Gly-Gln-Gln) and a nonapeptide (Gly-Tyr-Tyr-Pro-Thr-

Ser-[Pro/Leu]-Gln-Gln), found in both types of glutenin, and a tripeptide

(Gly-Gln-Gln) for the x-type only. Structural of glutenin are predicted to

be α-helical at the terminal domains and β-turns in the central repetitive

region [67].
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Cupin superfamily

Cupin family is a superfamily of prokaryotic and eukaryotic proteins,

having a common double-stranded β-helix (jelly-roll) barrel structure that

is thought to come from a prokaryotic ancestor. They have a two-motif se-

quence Pro-Gly-(xxx)5-His-xxx-His-(xxx)4-Glu-(xxx)7-Gly and Gly-(xxx)5-

Pro-xxx-Gly-(xxx)2-His-(xxx)3-Asn which are separated by 15–50 amino acids.

Proteins belonging to this family are generally single or double domain, each

domain having the common structure, however multidomain proteins with a

single cupin domain, such as some transcription factors exist [68, 69].

Germin and germin-like proteins are from the single-domain proteins of

the cupin superfamily which are extensively used during development and

germination. They have metal binding capacity. Germins have different

functions and uses, including oxalate oxidase enzyme in wheat, structural

proteins in barley and receptors in barley [70].

Globulins, proteins of interest of this section, are double domain bicupins,

deficient in cysteine and methionine. Depending on their sedimentation co-

efficients, globulins are grouped in two types, which are 7S vinicilin-type and

11–12S legumin-type. 7S type is related to the vicilin proteins of legumes and

proteins of this type are typically trimeric with Mr values approximately be-

tween 150 kDa and 190 kDa. They go through post-translational processing

(proteolysis and glycosylation), therefore their detailed subunit compositions

show varience. In wheat, oat and barley, proteins of similar structure and

properties, but with limited sequence similarity are found in the embryo and

the aluerone layer [64, 71].

11S type globulins are related to the legumins of legumes. Tricitin is

the corresponding protein of the wheat which make about 5% of the total
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seed protein. They are found in the starchy endosperm, forming dimeric

structures with a large (Mr 40 kDa) acidic polypeptide chain linked to a

small (Mr 22–23 kDa) basic chain by a single disulphide bond [72, 71].

Metal binding proteins and metal storage

Metallothioneins

Metallothioneins (MTs) are described as low molecular weight (4–8 kDa),

cysteine rich, gene encoded proteins. High number of cysteine residues of

these proteins, allow binding of metals through mercaptide bonds. Typically,

metallothioneins have two metal binding, cysteine rich domains, linked with

a hinge region. They are classified according to the arrangement of Cys

residues into three classes. Class I MTs are a group containing 20 highly

conserved Cys residues based on mammalian MTs, lacking aromatic amino

acids, and are commonly seen in vertabrates. These can coordinate seven

divalent or twelve monovalent metal ions in two clusters [73]. In animals, MTs

function in the Cu and Zn homeostasis and protection from Cd toxicity [74].

There are four different isoforms of Class I MTs that have been described

in mammalians; MT-1 and MT-2 are expressed in all organs, where MT-3 is

more abundant in the brain and MT-4 mostly in certain stratified tissues [75].

Class II MTs are MTs without strict arrangements of Cys, constituting

all MTs of plants, fungi and some nonvertebrate animals. As more MT genes

were isolated from plants, Class II MTs were further grouped into different

types, based on amino acid sequence similarity [73]. Plant Type 1, 2 and

3 MTs all have two cysteine-rich domains, separated roughly by 40 amino

acids including aromatic residues, in contrast to MTs from other organisms

where the hinge region is less than 10 amino acids long and lack aromatic

residues. Type 1 has six Cys-xxx-Cys motifs equally distributed among two
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domains. Type 2 is slightly different than Type 1 in terms of Cys distribution

and in term of the diversity of the hinge region among species. Type 1

and 2 MTs were first classified by Robinson et al. [76]. Type 3 MTs are

expressed during fruit ripening and have slight seqential differences to Type

1 and 2. Type 4 includes the wheat Ec protein, which is the first identified

plant metallothionein. This protein is expressed during embryogenesis and

bind Zn [77]. Unlike to other plant MTs, Type 4 has three domains with

each containing 5 or 6 conserved cysteine residues, separated by 10-15 amino

acids [73]. The expression of MTs are induced in plants by Cu and to a lesser

extend by Cd and Zn [78, 79, 80].

Phytochelatins are classified as Class III MTs, but these peptides are syn-

thesized rather than gene encoded.

Phytochelatins

Phytochelatins (PCs) are polypeptides that are formed only by Glu, Cys

and Gly amino acids and are classified as class III MTs which play a key role

on metal homeostasis and heavy metal detoxification. The general structure

has repetitions of γ-Glu-Cys dipeptide followed by a terminal Gly. These

repetitions are usually in the range of 2 to 5, sometimes up to 11. Structural

resemblence of phytochelatins to glutathione (GSH) tripeptide suggested,

and this has later been confirmed, that phytochelatins are synthesized from

GSH by phytochelatin synthase enzyme [81], which is shown in vitro [82]

and in studies with mutants [83] to be activated by heavy metal ions (Fig-

ure 1.8). Variants have been identified in some plant species, that had the

same repeating dipeptide, but ended with a different terminal amino acid

and synthesized not from GSH, but from related compounds. Five major

families are identified with following structures [84]:
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1. (γ-Glu-Cys)n-Gly (phytochelatin)

2. (γ-Glu-Cys)n-β-Ala (homophytochelatin)

3. (γ-Glu-Cys)n

4. (γ-Glu-Cys)n-Ser (hydroxymethyl-phytochelatin)

5. (γ-Glu-Cys)n-Glu

Figure 1.8: Synthesis of phytochelatins. (a) Synthesis of phytochelatins,
sequestration of Cd and deposition in the vacuole. (GCS: γ-glutamyl-Cys
synthetase, GS: GSH synthetase, PCS: PC synthase) (b) Model mechanism
of PC synthase activity. Cys rich C-terminal of the enzyme works as a heavy
metal sensor, relaying metals to the catalytic domain at the N-terminal [85].

Phytochelatins can bind heavy metals such as Cd, Hg, Cu, Zn, Ni and Ag

via thiolate coordination and their per Cys residue metal binding capacity is
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higher compared to those of MTs [86]. The exact mechanism of regulating the

biosynthesis of the phytochelatins is not known, but various models exist [85].

Other proteins

Among proteins that bind metals for storage and detoxification, ferritins

should be noted. These are proteins that play an important role in the

iron metabolism as they are able to sequester many iron ions. They have

a ubiquitous distribution among species and three-dimensional structure is

highly conserved. All ferritins have 24 subunits arranged in 432 symmetry6

that give a hallow shell of 80 Å diameter which can store up to 4500 Fe(III)

atoms [87]. Although not reported in plants, it is showed that animal ferritins

are able to bind metals other than Fe, such as, Cu, Zn, Cd, Pb, Be and

Al [17]. In transgenic rice with soybean ferritin, Zn accumulation was noted

to be higher, although the mechanism is not known [88].

As noted earliar, cupin superfamily proteins are also able to bind metals

because of their structure [69], however it seems to be more for catalytic

purposes rather than storage.

It was also shown in various plants that the expression of heat shock

proteins (HSPs), that are generally expressed more in organisms which are

grown at temperatures higher than their optimal growth temperature, in-

creased in response to heavy metal stress [89].

Small molecular weight metal chelators

Additional to the proteins and polypeptides mentioned above, several

low molecular weight compounds play a significant role in metal homeosta-

6achiral octahedral symmetry
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sis. These include some organic acids (e.g. citrate, malate, oxalo acetate),

some amino acids (e.g. histidine) and their derivatives (e.g. nicotianamine,

mugineic acids) and phosphate derivatives (e.g. phytate) [17].

Phytates are mono to dodeca anions of phytic acid (myo-inositol-1,2,3,4,5,6-

hexakis(dihydrogen phosphade)) and they constitute about 0.5–2.0% by weight

of cereal seeds, being concentrated at the aleurone. Various physiological

roles are described, as phosphate and inisitol source, as reactive phosphoryl

groups source, as energy source and possibly as source for cations [90]. A

heterometallic Mn/Zn-phytate complex has been presented as a model for

grain metal storage [91].

It was shown also that phytates interact with proteins, although the na-

ture is not known. It is possible that the interaction is electrostatical, since,

depending on pH, up to 12 hydrogens may dissociate from phytic acid, yield-

ing phytates of different degree of protonation and since proteins are also

charged molecules, especially at a lower pH than the isoelectric point of pro-

teins, where lysine, histidine and arginine residues can be positively charged.

Since polyvalent cations also interact with phytates, introducing such cations

decrease the interaction between phytic acid and the protein, forming phytic

acid-mineral-protein complexes [92]. This interaction may also be present in

the cereal and legume seeds [93].

Although protective roles of phytic acid are known, still it is not a good

nutritional compound as it is a strong chelator for minerals such as Zn, Fe,

Ca and Mg and causes a decrease in the bioavailablity of these elements [94].

1.3 Metal binding proteins

Understanding the structural chemistry of the metals, metal binding sites of

proteins and the chemistry of the binding itself is important, not only be-
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cause it provides a better understanding for the workings of metal storage,

metalloenzymes, transcriptions factors, etc., but also, this knowledge devel-

ops the intuition to understand about one-third of all proteins (that require

metals for their structure and function), and to design novel metal binding

peptides.

Following section will provide some theoritical basis for the experimenta-

tion conducted during this research.

1.3.1 Protein chemistry with respect to metal cations

Generally speaking, protein sites with bound metal have following func-

tions [95]:

1. structural: metal is required for the conformation;

2. storage: uptake, binding and release of metals in soluble form;

3. electron transfer: uptake, release and storage of electrons;

4. dioxygen binding: for O2 coordination and decoordination;

5. catalytic: substrate binding, activation and turnover.

Complexing power of a metal ion with a metal-binding site is dependent

on its polarizing power, which is the ratio of charge to ionic radius. As the

metal ion polarizability increases, high density positive charge also increases,

resulting in stronger interaction between the metal and the protein. Looking

at solely the properties of the metals, some things may be presumed about

the binding site, however proteins also influence metal site geometry and

activity [96].
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Proteins coordinate metal ions with nitrogen, oxygen and sulfur. Side-

chain carboxylate, sulfur and imidazole groups dominate the metal coordina-

tion in proteins, but in some sites, main-chain carbonyl oxygens are also used.

First row transition metal ions, except for Zn2+, are subject to ligand field

stabilization. Since Zn2+ is a d10 metal ion (valence d shell has 10 electrons),

it is not stabilized to be coordinated in a octahedral geometry, therefore Zn2+

ion-binding sites almost always have a distorted tetrahedral geometry, but

at some instances, it might have a 5 or 6 coordination geometry. Because of

its electron configuration, Zn2+ does not have a biologically relevant redox

activity, however it acts as an electrophilic catalyst that stabilizes negative

charges during an enzyme-catalyzed reaction. Usually, catalytic Zn2+ ion is

coordinated by His residues, whereas it is coordinated by Cys residues for

structural purposes [97, 95].

The metal-ligand bond is dependent on the detailed nature of the valence

orbitals of ligands, as well as the effective nuclear charge and coordination

number and geometry of the metal ion [95]. Recognition of a transition metal

by a protein is faciliated by discrimination of ionic size, charge and chemical

nature of the metal by the binding site. These factors are summarized as the

hardness/softness of the metal. One binding site for a cation would not be

suitable for another cation, as the chemical composition of the binding site

is usually optimal for a certain cation. Hardness of the binding site needs

to be complementary to the hardness of the cation for the optimum binding.

A number of interactions, additional to the one above, work on the protein-

metal ion recognition, such as electrostatic, molecular orbital and entropy

effects [97].

Abundance of polarizable cysteine thiolate ligands in MTs, gives the pro-

teins a high affinity for soft d10 metal ions such as Zn2+, Cd2+ and Cu+ and
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naturally occuring MTs are isolated with these ions [75].

Metal binding sites are usually located inside cavities and crevices of the

protein, making the site solvent inaccessible, which in turn results in a low

dialectric constant enhancing the metal-protein ligand interactions. This

favors inner-sphere metal binding. Binding site selectivity appears to be

anticorrelated with the natural abundance of a metal in the living system.

For instance, Mg-binding sites are not very specific for Mg, which is the

most abundant mineral in body fluids. As a result, these sites are weakly

protected against other metals. However, binding sites for elements found in

minute quantities have evolved to become very specific, in order to selectively

bind the required metal ion, eliminating binding of other cations of higher

concentrations [98].

1.3.2 Metal and metal bound detection

Monitoring if a protein binds metals involves specific approaches depending

on the protein in question. The ideal approach would be purification of the

specific protein from the native source with the bound metal, followed by

biochemical and biophysical characterization of the holo-protein (metal con-

taining protein) using methods mentioned under “Metal Detection” heading

(Page 25). However, this approach requires prior identification of the protein

and the metal. In cases where metal-binding proteins are not clearly identi-

fied, total protein extraction is carried out wherever possible under conditions

that would preserve the native state. Different techniques are then applied to

analyze the total extract and identify metal containing fractions. In the cases

where protein solubility is severely limited, extraction is carried out under

denaturing conditions and metal-binding is tested on apo-protein separated

by different techniques.
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Bioinformatics should also be used during such a research as some theo-

ritical predictions might save time [99].

After crude fractionation, proteins may be separated from one another

and purified using chromatography. Different liquid chromatography appli-

cations, including size exclusion, ion exchange, affinity and reverse phase

chromatography may be used. The principles of these methods and example

metal binding protein applications for each method have been reviewed by

de la Calle Guntiñas et al. [100]. Immobilized metal affinity chromatography

has also been used for the purpose [101]. The use of chromatography systems

like fast protein liquid chromatography (FPLC) and high performance liquid

chromatography (HPLC) improves the results.

Depending on the setup, structure or the purity of the protein, there are

various electrophoresis methods of separation. These are SDS and native

polyacrylamide electrophoresis on slab gels or in capillaries [102], two dimen-

sional electrophoresis techniques, such as isoelectric focusing (IEF) [103] and

immunoelectrophoresis [104], affinity capillary electrophoresis [105], etc.

Metal detection

Metals can be detected using a variety of ways. The most straight-forward

method is staining. There are some colorimetric and fluorometric indi-

cators that chelate metals. Such chemicals, that the wavelength of ab-

sorbance or emittance chage upon metal binding, include dithizone (DTZ), 1-

(2-thiazolylazo)-2-naphtol (TAN), 1-(2-pyridylazo)-2-naphtol (PAN), tetra-

phenylporphin (TPP), etc. and some assays are described making use of

these stains [106, 107, 108]. Such indicators have also been used to deter-

mine the localization of heavy metals in various organisms and tissues; e.g.

blood [109, 110, 111], pancreas [112], algae [113], yeast [114], and wheat
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seed [115]. Results acquired by these indicators can be assessed visually, or

quantitively, by making use of spectrophotometry and fluorometry.

Spectroscopy based methods are more accurate and directly detect for the

metal, without the need of an indicator. Some of methods that can detect and

identify metals are synchrotron X-ray fluorescence, particle induced X-ray

emission, flame atomic absorption spectroscopy, inductively coupled plasma

mass spectrometry and optical emission specrometry and the list can be

exhausted [116].

Radioactive isotopes of heavy metals may also be used for detection,

however, although sensitive, these methods are hazardous.

Metal detection may be done on protein solutions, for instance, on frac-

tions from chromatography, on SDS gels by sychrotron X-ray fluorescence [117],

on solid surfaces by reflective synchrotron X-ray fluorescence [118], on PVDF

membranes where the proteins are blotted by autoradiography [119, 120, 103],

on native gels by laser ablation-inductively coupled plasma-mass spectrome-

try [121].

Since the metal has an effect on the conformation of the protein, spectro-

scopic methods, such as circular dichroism (CD), nuclear magnetic resonance

(NMR), near-infrared spectroscopy, etc., may allow to monitor if the protein

is bound to a metal or not. However, prior data on the protein is required

to assess, as these methods are based on comparisons between different con-

formations of the proteins. This way of metal detection is indirect.

Combined methods

Techniques mentioned above are the most basic forms. High-throughput

and sensitive results are acquired by combining several methods. So called

in-line hyphenated techniques, that are coupled separation and detection
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techniques, increase the accuracy and precision of the measurements. The

setup of these techniques allow the sample, for instance, to be separated by

HPLC or capillary electrophoresis, then, as the sample is separated, quantify

the metal concentration and identify the proteins, sequentially and continu-

ously [122, 123].

1.4 Purpose of study

It is of great importance to be able to maximize stored essential micronutrient

amount in cereals, especially in wheat, for the reasons discussed above.

In this study, proteome of the wheat seed (specifically of durum wheat) is

screened for proteins which have metal binding properties. Balcalı2000 wheat

cultivars are grown under varying environmental Zn and N concentrations.

Wheat plants and seeds are analyzed for Zn, N and P content and correlations

with environmental conditions are determined.

Total and fractionated proteins are characterized by PAGE analysis and

methods are developed for detection of Zn-binding/chelating by proteins that

are separated on polyacrylamide gels or on those that are blotted onto mem-

branes. Reliability of the method for determining metal storage proteins and

for screening different wild-type and cultivated wheat genotypes is assessed

through control experiments.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Chemicals and Equipment

For the detailed list of chemicals and equipment that has been used during

this project, please refer to Appendix B.2 and B.3.

2.1.2 Solutions

For the recipes of solutions that are mentioned only by name, please refer to

Appendix B.1.

2.2 Methods

2.2.1 Greenhouse trials with plants growth under dif-
ferent zinc and nitrogen concentrations

Different zinc and nitrogen concentrations were applied to the durum wheat

genotype “Triticum turgidum, cv. Balcalı-2000” for the greenhouse trial.

These concentrations were 0.5 ppm, 8 ppm, 24 ppm and 24 ppm with foliar

ZnSO4 application for zinc and 75 ppm, 225 ppm, 675 ppm and 675 ppm

with foliar urea application for nitrogen. The basal treatment were the same
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for all pots (Table 2.1). The pot placement and trial setup is summarized at

Table 2.2.

Element Chemical Dosage
B

as
al Fe Fe-EDTA 5 ppm

P KH2PO4 100 ppm
S K2SO4 20 ppm

T
ri

al N Ca(NO3)2·4H2O varying
Zn ZnSO4·7H2O varying

Table 2.1: Applied nutrition and the dosages.

Nitrogen Concentration (ppm)

75 225 675 675+spray

Z
in

c
C

on
ce

n
tr

at
io

n
(p

p
m

)

0.5
6864 6879 6894 6909

...
...

...
...

6868 6883 6898 6913

8
6869 6884 6899 6914

...
...

...
...

6873 6888 6903 6918

24
6874 6889 6904 6919
6875 6890 6905 6920
6876 6891 6906 6921

24+spray
6877 6892 6907 6922
6878 6893 6908 6923

Table 2.2: Greenhouse trial setup. Sample numbers for each pot are shown.
Seeds, protein extracts or any material derived from these pots are coded
with the same number.

The following steps were taken as preparations for the trial:

1. All the equipment, including pots, were washed first with dilute HCl,

then rinsed with distilled water.

2. Soil was weighed so that each pot had 3 kg of it.
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3. Basal and trial nutritions, as indicated in Table 2.1, were applied to

the soil accordingly and mixed thoroughly.

4. 10 to 12 seeds were planted to each pot.

After sowing, the pots were watered on a daily basis, as required. Once

the germination was complete, plants were thinned to have 6 to 7 plants at

each pot. After about one month, foliar nutrition applications were started.

For zinc, 0.2% ZnSO2 solution, and for nitrogen, 0.5% urea solution were

sprayed on each corresponding plant until started dripping. The nutrition

was applied during the evening and outside the greenhouse to avoid contam-

ination. Plants were carried back to the greenhouse only after the leaves

were totally dry. Both nutritent solutions had 0.01% Tween to eliminate

the surface tension and thus maximize wetting. This foliar application was

repeated 3 more times, until the spikes emerged.

Dosage of basal treatments that were applied before sowing was only

adequate for the first two months. As the plants were to continue their

growth and as senescence on old leaves were observed, additional nutrition

was applied. Each pot received 50 ppm more phosporus (KH2PO4) and

additional one third of the initial dosage of nitrogen (Ca(NO3)2·4H2O).

Sister spikes were not removed during the trial. The plants were harvested

when all of the spikes turned yellow. Full spikes, empty spikes and the

plant bodies were counted and placed in the oven at 45◦C in paper bags for

complete dehydration. After the removal of residual water, to determine dry

weights, spikes, bodies and seeds were weighed.

During the growth, plants were invaded with bugs for several times. 0.2%

Didifos 55 EC Pesticide was sprayed on the leaves.
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2.2.2 Spectrophotometry

For absorbtion measurements, spectrophotometers were used. Spectra were

recorded in the near UV–visible light range or measurements were taken

at specific wavelengths. Hellma QH or QS quartz cuvettes were used for

measurements in the UV range (380 nm–200 nm), whereas Kodak plastic

cuvettes were used for measurements of only visible light region (800 nm–

380 nm).

2.2.3 Elemental analysis of samples

Inductively coupled plasma-optical emission spectroscopy

Samples that were acquired from the greenhouse trial were analyzed with

inductively couple plasma-optical emission spectroscopy for their elemental

content [124]. Samples were prepared as follows:

1. 5 average looking seeds were selected from each sample pool to make

an amount between 0.2 g and 0.3 g. They were weighed and. DWF and

blank were among samples for control. These samples were transfered

to containers.

2. 5 ml of 65% nitric acid was added to each container and incubated for

10 minutes.

3. 2 ml of 30% hydrogen peroxide was added to each container.

4. The containers were locked and put into the microwave oven and incu-

bated for half an hour at 1200 W.

5. After samples were allowed to cool, adequate ddH2O was added to the

containers to make a final volume of 20 ml.

31



Processed samples were analyzed with ICP-OES for zinc as well as other

elements (Ca, K, P, S, Mg, Fe, Mn, Cu, Al, Na). Standarts were also analyzed

for calibration of the device.

Dumas combustion and GPC estimation

Dumas combustion was carried out automatically by LECO TruSpec CN

for the determination of nitrogen and carbon percentages in the seed sam-

ples [125]. Seeds were selected of each sample to make approximately 0.2 g

for the analysis. These seeds, along with reference pulverized peach leaf, were

wrapped in tin foils and placed in the equipment.

To approximate the grain protein content of the seeds, nitrogen percent-

ages were multiplied by a factor of 5.83 [126].

2.2.4 Protein extraction

Protein extractions were done on whole seed samples, as well as endosperm

and embryo sections. Endosperm and embryo sections were seperated un-

der a dissecting microscope. After the embryo was removed from the seed,

scutellum and aluerone layer was removed from endosperm by sanding. Be-

cause of high protein content of embryos, 2/3 of required meal in Osborne

fractionation and half of required meal in extraction for SDS analysis is used.

Osborne fractionation

A modified Osborne fractionation protocol based on Fido et al. [127] was

used. This method makes use of different solvents, both organic and aqueous,

to extract seed proteins. Seeds were ground before extraction. One gram of

meal was incubated in 10 mL of respective solvent while stirred constantly.

Each extraction step was carried for 1 hour at 20◦C if not otherwise stated and

steps were repeated once. At the end of each extraction step, the mixture was
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centrifuged for 20 minutes at 10000 g. Supernatants of the same extraction

step were combined and saved at 4◦C for analysis. Proceeding steps used the

pellet from the previous extraction. The procedure is as follows:

1. Extract lipids with water saturated 1-butanol.

2. Resuspend the pellet in 0.5 M NaCl to extract salt soluble albumins,

globulins and non-protein components. Include 1 mM PMSF. Work at

4◦C.

3. Resuspend the pellet in ddH2O to remove residual NaCl. Vortex shortly,

centrifuge and combine this supernatant with the supernatant from

step 2.

4. Resuspend the pellet in 50% (v/v) 1-propanol to extract monomeric

prolamins and alcohol soluble stabilized proteins. This step may be

omitted.

5. Resuspend the pellet in 50% (v/v) 1-propanol containing 1% (v/v) 2-

mercaptoethanol and 1% (v/v) acetic acid to extract reduced subunits

of alcohol insoluble disulfide bonded polymers.

6. Resuspend the pellet in 0.05 M borate buffer pH 10 containing 1% (v/v)

2-mercaptoethanol and 1% (w/v) SDS to extract glutelins.

Supernatants were either used directly or dialysed against ddH2O for 48

hours at 4◦C with several changes of dialysis buffer. Samples were lyophilized

after dialysis. Originally, the following was suggested [127] for the super-

natants, but was not followed:

Supernatant 1 (SUP1) (from water saturated 1-butanol extraction) Dis-

card as this fraction only contains lipids.
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Supernatant 2–3 (SUP2–3) (combination of the supernatants acquired

during 0.5 M NaCl extraction and residual NaCl removing step) Dial-

yse against several changes of ddH2O for 48 hours at 4◦C. Centrifuga-

tion after dialysis removes globulins and lyophilization allows soluble

albumins to be recovered.

Supernatant 4a (SUP4a) (from 50% 1-propanol extraction) Prolamins

may be recovered upon precipitation at 4◦C overnight by dialysis against

ddH2O or by addition of two volumes of 1.5 M NaCl solution.

Supernatant 4b (SUP4b) (from 50% 1-propanol with reducing agents ex-

traction) Procedure is the same as for supernatant 4a.

Supernatant 5 (SUP5) (from 0.05 M borate buffer extraction) Glutelins

are recovered after dialysis against ddH2O and lyophilization. SDS may

be removed using standart procedures.

A modification by Singh et al. [128] to Osborne fractionation procedure

was followed to be able to extract gliadins and glutenins. This method was

modified slightly and several chemicals were replaced for practical reasons:

1. For 20 mg of crushed kernel, extract gliadins in 1 ml of 50% (v/v)

1-propanol at 65◦C with intermittent vortexing for 30 minutes. Cen-

trifuge for 5 minutes and save the supernatant for further analysis.

2. Repeat above step, discard the supernatant. Wash the pellet with

0.5 ml of 50% (v/v) 1-propanol. Centrifuge for 5 minutes and discard

the supernatant. The pellet is now free of gliadins.

3. Extract glutenins in 0.1 ml of 50% (v/v) 1-propanol with 0.08 M Tris-

HCl pH 8.0 containing 1% (w/v) DTT at 65◦C for 30 minutes. Do not
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vortex except for the beginning of this step. Centrifuge for 5 minutes.

Save the supernatant containing reduced glutenins, discard the pellet.

Native extraction

It is also favorable to extract proteins in their native state. For the pur-

pose, the ground seeds were incubated in 62.5 mM Tris-HCl pH 6.8 buffer

containing 1 mM PMSF to inhibit protease activity and 0.1 mM ZnSO4 for

the stability of metal binding proteins. Extraction was carried at 4◦C for

20 hours under agitation.

Extraction for SDS-PAGE analysis

For the bulk extraction of seed proteins, the method based on Fido et al. [127]

was used. Steps were as follows:

1. Grind the seeds in a mortar with 25 µl of SDS extraction buffer per

milligram of meal.

2. Transfer the ground seed and buffer mixture to eppendorf tubes and

leave at least 2 hours while vortexing.

3. Boil at 95◦C for 5 minutes.

4. Allow to cool, then spin in a microfuge.

5. Load the supernatant directly to SDS-PA gels and separate the pro-

teins.

2.2.5 S-carboxymethylation of cysteine

For some applications, after reducing with β-mercaptoethanol or DTT, pro-

teins of some extracts are incubated in buffers containing 100 mM IAA at
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65◦C for 15 minutes. This procedure alkylated cysteine residues of the pro-

teins irreversibly [129].

2.2.6 Bradford assay and protein concentration approx-
imation

For the determination of protein concentrations method of Bradford [130] is

used. Reagents were purchased from Bio-Rad and Sigma-Aldrich. For the

standart curve, following concentrations (in mg/ml) of BSA solutions were

prepared in ddH2O: 0.050, 0.075, 0.100, 0.150, 0.200, 0.300, 0.400, 0.500,

0.750, 1.000, 1.250, 1.500. Assays were done on 96 well plates. Bio-Rad

reagent concentrate was diluted with 5 parts water and 200 µl of diluted

reagent was added to 10 µl of protein solutions. Sigma-Aldrich reagent was

used as purchased and 250 µl of reagent was added to 5 µl protein solutions.

Following the addition of reagents, absorbances were measured at 595 nm

after a minimum of 5 minutes.

For the cases, where method of Bradford could not be applied due to

the use of already colored buffers, spectrophotometry was used to estimate

the protein content. Absolute concentrations were not possible to find, since

extinction coefficients of extracts were not known. Absorbances at 230 nm

and 260 nm were noted and concentrations of the samples were determined

relative to each other.

2.2.7 Electrophoresis

Protein samples and extracts were run on polyacrylamide gels as described [131].

SDS gels and native gels were prepared according to the recipes at Tables 2.3

and 2.4. After preparation of the mixture, the gels were allowed to polymer-

ize at 4◦C for a minimum of 12 hours. Running buffers were used at room

temperature and gels were not equilibrated with the running buffer before
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the run. Proteins that were extracted for SDS-PAGE analysis were loaded di-

rectly to the gel, whereas Osborne fractions were mixed with Laemmli buffer

and incubated at 95◦C for 5 minutes. Samples containing alcohol in extrac-

tion solutions like SUP4, were incubated at 70◦C for an additional 5 minutes

with caps on, in order to evaporate the alcohol. Alcohol prevented samples

to fill in the wells of PA gels. Samples were analyzed on native gels with

native sample buffer without prior boiling.

Depending on the gel thickness and well sizes, 20–30 mg of protein was

loaded. Optimum amount to load to the gels were chosen on a trial and

error basis, where it was not possible to calculate absolute protein amount.

To emphasize the differences between protein profiles, amount to load to the

gels were normalized after estimating the protein concentration of the sam-

ples by spectrophotometry and Bradford assays. Assessing yield of different

extraction methods was done by loading same volumes of extract.

Electrophoresis was carried out at 20 mA constant current for stacking

of proteins and at 30 mA constant current for resolution in PAGE running

buffers. During the run, if the buffer temperature or resistance increased too

high, it was replaced. Electrophoresis was carried out until the leading dye

mark reached the bottom of the gel.

2.2.8 Gel staining

After the electrophoresis, the gels were either stained in coomassie stain-

ing solution or were directly used for blotting. Duration of staining was

approximately 2 hours. Stained gels were destained with boiling ddH2O. Af-

ter documentation of gels, they were either air dried between two sheets of

cellophane or vacuum dried for preservation.

A metal staining procedure is also experimented. Instead of staining
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Stacking Gel:
Material Final Concentration
ddH2O
1 M Tris-HCl pH 6.8 50 mM
20% SDS 0.1%
30% Acryl-0.8% Biacryl 5%
10% APS 0.075%
100% TEMED 0.05%

Resolving Gel:
Material Final Concentration
ddH2O
3 M Tris-HCl pH 8.9 375 mM
20% SDS 0.1%
30% Acryl-0.8% Biacryl 12% or 15%
10% APS 0.075%
100% TEMED 0.05%

Table 2.3: Recipe of the SDS polyacrylamide gels.

native gels with Coomassie Brilliant Blue R-250, solutions with heavy metal

indicators are prepared. Gels are incubated in these solutions of DTZ and

DEDC. Solutions experimented were 0.01% DTZ in 100% ethanol or 0.001%

DTZ in 40% methanol with 10% acetone or 100 mM DEDC in ddH2O.

2.2.9 Blotting

Proteins were transfered from polyacrylamide gels to Hybond-P PVDF mem-

branes [132] using the wet transfer technique [133] for detection of zinc bind-

ing. After separation of proteins, before the transfer, the SDS-PA gels were

incubated in reducing buffer for blotting for 1 hour at 37◦C. For transfer

from SDS-PA gels, SDS transfer buffer, for transfer from native gels, native

transfer buffer was used. The membranes were activated by 100% methanol

prior to transfer.
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Stacking Gel:
Material Final Concentration
ddH2O up to final volume
1 M Tris-HCl pH 6.8 50 mM
30% Acryl-0.8% Biacryl 5%
10% APS 0.075%
100% TEMED 0.05%

Resolving Gel:
Material Final Concentration
ddH2O up to final volume
3 M Tris-HCl pH 8.9 375 mM
30% Acryl-0.8% Biacryl 8%
10% APS 0.075%
100% TEMED 0.05%

Table 2.4: Recipe of the native polyacrylamide gels.

Electrophoretic transfer was done at 200 mA constant current for 90 min-

utes at 4◦C. After the transfer, the efficiency was assesed by staining the gel

with coomassie staining solution. Transfers of low efficiency were discarded.

2.2.10 Detection of zinc binding

Procedure of Mazen et al. [119] and Schiff et al. [120] was modified to replace

radioactive 65Zn(II) with non-radioactive Zn(II). Procedure is as follows:

1. Keep the membrane on the rotator during the procedure.

2. For the renaturation of the proteins, soak the PVDF membrane with

the transfered proteins in renaturation buffer containing 0.1% Triton X-

100 for one hour at 4◦C. Triton X-100 will remove SDS.

3. Wash the membrane in zinc incubation buffer for 15 minutes at 4◦C.
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4. Incubate the membrane in zinc incubation buffer containing 100µM

ZnCl2 for 15 minutes at 20◦C.

5. Wash the membrane 3 times for 10 minutes each time in zinc incubation

buffer at 20◦C.

6. Spray metal indicator solutions onto the membrane on a clean zinc-free

surface.

If staining was poor, sprayed membrane was rapidly dipped in 100%

methanol to get brighter and more intense staining. Digital photographs of

the processed membranes were taken and the images were digitally enhanced

with GIMP 2.2.12 software.

To test the validity of this method, various control runs has been per-

formed. These included replacement of zinc with cadmium, nickel, 5 mM

EDTA, water; applying different concentrations of zinc; loading different

amounts of protein; and including reducing agents (5 mM TCEP-HCl) dur-

ing procedure. The membranes were also destained with 100% methanol of

metal indicators to be later stained by Ponceau S for protein content verifi-

cation.

Sometimes, it was desired to observe the bands on the gels before blotting,

therefore they were prestained by coomassie staining solution. After the

electrophoretic transfer, the dye also passed onto the membrane. In these

cases, the membrane was destained of coomassie with 100% methanol before

proceeding with the protocol.

2.2.11 Seed sections and microscopy

Longitutional seed sections were stained for zinc with DTZ or PAN solutions

to see the localization of the metal. The method was a modification to the
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method of Ozturk et al. [115]. Selected seeds with high zinc content were

left to start germination at room temperature between water soaked tissue

papers and in dark. Germination was arrested at various times by removing

the seed from the set-up and flash freezing with liquid nitrogen. Seeds were

collected at these times: 0 min, 5 min, 10 min, 15 min, 30 min, 60 min,

90 min, 2 hr, 3 hr, 4 hr and 5 hr. These seeds were later broken in halves

through longitudinal sections in a mortar with a pestle. Later, staining was

applied and the results were recorded using a zoom stereo microscope and a

digital camera.

Same procedure was repeated with 1% ninhydrin in 100% ethanol solu-

tion, this time to stain the proteins and see the localization of the proteins.

Ninhydrin is a pale yellow solution that turns purple upon interaction with

amines of polypeptides. Seed sections were incubated in the ninhydrin solu-

tion for increasing intervals of time at 70◦C.

2.2.12 Statistical methods

Measurements representing each group of plants grown in the greenhouse are

arithmetic averages of five paralles in the group. Error value is the standart

deviation of the measurements from five parallels.
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Chapter 3

Results

3.1 Effect of varying nitrogen and zinc con-

centrations on Triticum durum growth

and seed properties

3.1.1 Dry matter production

It is seen that increasing nitrogen and zinc nutrition had a positive effect on

the dry matter and seed production (Table 3.1, Figure 3.1). However, nitro-

gen concentrations higher than 225 ppm and zinc concentrations higher than

8 ppm, had no significant positive effect, even in some cases, had a negative

one. Foliar applications do not seem to have any observable outcome.

3.1.2 Element analyses of seeds

Analyzed results for element analyses of zinc, phosphorus, nitrogen and GPC

are summerized at Table 3.2 and Figure 3.2. Zinc accumulation in the seeds

were proportional to the zinc application during growth. As the applied

zinc concentration was increased, the accumulation in the seeds was also in-

creased. It is noteworthy that an increase in the nitrogen application from

75 ppm to 225 ppm, increased zinc accumulation by approximately 30%.

Higher concentrations of nitrogen application did not show significant differ-
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Total Dry Nitrogen Concentration (ppm)
Weight (g.) 75 225 675 675+foliar
0.5 ppm Zn 2.14 ± 0.27 2.42 ± 0.33 2.46 ± 0.43 2.31 ± 0.38

8 ppm Zn 1.72 ± 0.28 2.94 ± 0.39 2.36 ± 0.11 2.48 ± 0.28
24 ppm Zn 1.72 ± 0.24 3.05 ± 0.53 2.22 ± 0.26 2.23 ± 0.22

Seed Weight (g.) 75 225 675 675+foliar
0.5 ppm Zn 1.34 ± 0.13 1.55 ± 0.12 2.07 ± 0.53 1.91 ± 0.16

8 ppm Zn 1.36 ± 0.27 1.74 ± 0.10 1.98 ± 0.22 1.87 ± 0.20
24 ppm Zn 1.39 ± 0.15 1.56 ± 0.32 1.63 ± 0.26 1.62 ± 0.31

Table 3.1: Total dry weight and seed production of plants grown at the
greenhouse. Values are per plant average weights and standart deviations of
five independent replications. Tables are total dry weights and produced seed
weights averages. Labels correspond to the growth conditions as described in
Section 2.2.1. Data from individual samples can be found in Appendix A.1.
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Figure 3.1: Total dry weight and seed production of plants grown at the
greenhouse. Growth conditions, shown below the bars, are quantities in ppm.
Quantities with a (+) symbol indicate foliar application of that nutrition.
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ences on the zinc content.

Phosphorus accumulation was independent of zinc application, however,

nitrogen applications of 625 ppm and higher resulted the accumulated phos-

phorus concentration to drop by approximately 15%.

The nitrogen content in the seeds, thus grain protein content increased

with the increase in the nitrogen application. However, as in zinc accumula-

tion, concentrations higher than 225 ppm nitrogen did not show important

variations. At nitrogen applications higher than 225 ppm, increasing zinc ap-

plication affected nitrogen accumulation positively, but at 75 ppm of nitrogen

application, zinc application had a negative effect.

3.2 DTZ and PAN properties

Interactions of metal indicators DTZ and PAN with various metals (Zn, Cd,

Ni, Mn, Cu, Hg, Pb) were investigated both visually and with spectropho-

tometry. Color of pure DTZ and PAN showed significant changes upon bind-

ing with metals. Figure 3.3 shows these changes visually. Neither DTZ

nor PAN interacted with manganese. Although DTZ interacted with rest of

the heavy metal solutions, PAN did not interact with cadmium or mercury.

The color acquired by their interaction with zinc is similar. Concentration

of the indicators determines the intensity of the color of solutions, whereas

concentration of the metal determines how much colors will shift.

Spectrum of different colors acquired by interactions with excess concen-

tions of metals are shown on Figure 3.4. Different metals gave peaks at

different wavelengths with different absorbances.

Visually, an increase of the concentration of the indicators was described

as an increase in the intensity or saturation of the color. There is, actually,

an increase in the absorbances of the solutions, proportional to the increase
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Nitrogen Concentration (ppm)
Zn (ppm) 75 225 675 675+foliar

0.5 ppm Zn 18.0 ± 1.1 16.3 ± 2.9 15.7 ± 2.8 16.8 ± 1.7
8 ppm Zn 62.0 ± 2.5 79.2 ± 5.6 74.1 ± 6.3 76.1 ± 3.6

24 ppm Zn 77.0 ± 9.8 110.2 ± 10.7 94.5 ± 7.3 100.8 ± 15.4

P (ppm) 75 225 675 675+foliar
0.5 ppm Zn 5005.2 ± 111.7 5068.7 ± 238.7 4411.8 ± 334.3 4222.6 ± 184.7

8 ppm Zn 5035.8 ± 127.1 4981.6 ± 199.0 4248.6 ± 223.8 4322.8 ± 299.2
24 ppm Zn 4972.3 ± 233.3 5269.5 ± 129.4 4347.9 ± 407.3 4588.6 ± 377.7

N (%) 75 225 675 675+foliar
0.5 ppm Zn 2.67 ± 0.09 3.04 ± 0.07 3.11 ± 0.19 3.11 ± 0.02

8 ppm Zn 2.52 ± 0.19 3.26 ± 0.05 3.15 ± 0.08 3.17 ± 0.05
24 ppm Zn 2.49 ± 0.20 3.33 ± 0.15 3.24 ± 0.07 3.31 ± 0.20

GPC (%) 75 225 675 675+foliar
0.5 ppm Zn 15.59 ± 0.52 17.72 ± 0.39 18.16 ± 1.10 18.14 ± 0.13

8 ppm Zn 14.72 ± 1.11 19.02 ± 0.27 18.35 ± 0.45 18.48 ± 0.30
24 ppm Zn 14.52 ± 1.19 19.42 ± 0.88 18.87 ± 0.41 19.30 ± 1.17

Table 3.2: Element accumulation in the seeds of samples acquired from
greenhouse experiment. Values are averages and standart deviations of five
independent replications. Labels correspond to the growth conditions as
described in Section 2.2.1. Data from individual samples can be found in
Appendix A.2 and A.3.
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Figure 3.2: Element accumulation in the seeds of samples acquired from
greenhouse experiment. Grain protein content was calculated from nitro-
gen percentages. Growth conditions, shown below the bars, are quantities
in ppm. Quantities with a (+) symbol indicate foliar application of that
nutrition.
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Figure 3.3: PAN and DTZ interacting with indicated metal solutions at
indicated concentrations. 1A: 50 µM PAN. 1B-1H: 50 µM PAN with 5 mM
ZnCl2, CdSO4, NiCl2, MnSO4, CuSO4, HgCl2, Pb(NO3)2. 2A: 50 µM DTZ.
2B-2H: 50 µM DTZ with 5 mM ZnCl2, CdSO4, NiCl2, MnSO4, CuSO4,
HgCl2, Pb(NO3)2. 3A-3F: 50 µM PAN with 100 µM, 200 µM, 400 µM,
800 µM, 1.6 mM and 3.2 mM ZnCl2. 4A-4F: 50 µM DTZ with 100 µM,
200 µM, 400 µM, 800 µM, 1.6 mM and 3.2 mM ZnCl2. 5A-5F: 250 µM,
125 µM, 67.5 µM, 33.5 µM, 16.8 µM and 8.4 µM PAN. 5G-5L: 250 µM,
125 µM, 67.5 µM, 33.5 µM, 16.8 µM and 8.4 µM PAN with 5 mM ZnCl2.
6A-6F: 250 µM, 125 µM, 67.5 µM, 33.5 µM, 16.8 µM and 8.4 µM DTZ.
6G-6L: 250 µM, 125 µM, 67.5 µM, 33.5 µM, 16.8 µM and 8.4 µM DTZ with
5 mM ZnCl2.
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Figure 3.4: Spectrum of DTZ, PAN and their metal complexes. Metals
interacting are Zn, Cd, Ni, Cu, Hg and Pb for DTZ, and Zn, Ni, Cu, and
Pb for PAN. 50 µM DTZ and PAN in acetone is used. Metal solutions are
5 mM.

of the concentrations (Figure 3.5).

Shifting of colors due to the addition of metal solutions are seen as a loss

of the characteristic peaks of indicators, whilst emergence of a new peak that

is specific to the metal (Figure 3.6).

3.3 Protein extraction from T. durum seeds

3.3.1 Analysis of total and fractionated protein ex-
tracts

Prior to the analysis of seeds from the greenhouse experiment, several refer-

ence genotypes were chosen to optimize protein extraction methods. Geno-

type Bezostaja was used for most of the initial experimentation. TAM107,

Kharkov and Scout66 genotypes were chosen for comparison with previously

identified protein bands in Budak et al. [134]. Three extraction methods,

as noted in Section 2.2.4, were used; Osborne fractionation, extraction for

SDS-PAGE analysis and native extraction.

48



350 400 450 500 550 600

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

 125uM PAN
 67.5uM PAN
 33.5uM PAN
 16.8uM PAN
 125uM PAN+Zn
 67.5uM PAN+Zn
 33.5uM PAN+Zn
 16.8uM PAN+Zn

A
bs

or
ba

nc
e

Wavelength (nm.)
350 375 400 425 450 475 500 525 550 575 600 625 650 675 700

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

2,50

A
bs
or
ba

nc
e

Wavelength (nm.)

 67.5uM DTZ
 33.5uM DTZ
 16.8uM DTZ
 8.4uM DTZ
 67.5uM DTZ+Zn
 33.5uM DTZ+Zn
 16.8uM DTZ+Zn
 8.4uM DTZ+Zn

Figure 3.5: Spectrum of different concentrations of DTZ and PAN with and
without 5 mM of ZnCl2. DTZ concentrations are 67.5 µM, 33.5 µM, 16.8 µM
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Figure 3.6: 50 µM DTZ and PAN with increasing concentrations of zinc.
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Figure 3.7: Spectrum of interactions of 50 µM DTZ and PAN with 5 mM
Tris-HCl pH 8.9 and 5 mM ZnCl2.

Protein yields of Osborne fractionation and native extraction were de-

termined by Bradford assays and spectrophotometry and the yield of total

extraction was determined by spectrophotometry alone. The concentrations

values were then used to normalize the amount for loading for electrophore-

sis. Amount to be loaded were normalized to be able to make better com-

parisons between samples. Gels were stained with Coomassie Brilliant Blue

R-250, which initially resulted in the low molecular weight proteins being

not clearly visible when compared to the mid range proteins, however with

improved quality gels and use of fresh staining solutions visible bands were

acquired.

Preliminary results and comparison of these methods can be seen on Fig-

ures 3.8 and 3.9. Samples of total extraction are loaded in lanes 2–4 of

Figure 3.8 at different amounts for better visualization. Of all methods, best

yield per gram of ground seed is acquired by total extraction. Still, it was pos-

sible to adjust the concentration of the Osborne fractions after lyophilization.

As expected, proteins extracted for SDS-PAGE analysis appear as overlay of
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different Osborne fractions. Native extraction, when compared with total ex-

traction, does not include all the proteins, but rather gives a similar protein

span to the SUP2–3 fraction of Osborne procedure.

Figure 3.8: SDS-PAGE analysis of seed proteins extracted by total extraction
and Osborne fractionation. Extracts are from T. durum, genotype Bezostaja.
Gel is 12% SDS-PA.
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lanes 2–4: 10 µl, 5 µl and 2.5 µl loading of total extracts.
Lanes 5–8: Osborne fractions. SUP5, SUP4b, SUP4a and SUP2–3 (See
Section 2.2.4 on Page 33).

3.3.2 Analysis of total and fractionated protein ex-
tracts from T. durum grown under varying ni-
trogen and zinc concentrations

Four samples were chosen from the greenhouse experiments as models, ac-

cording to growth conditions. Seeds were selected to represent those grown

under low nitrogen concentration with low zinc concentration, low nitrogen

51



Figure 3.9: SDS-PAGE analysis of seed proteins extracted by total extraction
and native buffers. Extracts are from T. durum, genotype Bezostaja. Gel is
10% SDS-PA.
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lanes 2–4: 10 µl, 5 µl and 2.5 µl loading of total extracts.
Lanes 5–8: 20 µl, 15 µl, 10 µl and 5 µl loading of native extracts.

concentration with high zinc concentration, high nitrogen concentration with

low zinc concentration and high nitrogen concentration with high zinc con-

centration. Accordingly, it is expected that samples grown under low nitrogen

concentration to have low protein content and samples grown under low zinc

concentration to have low zinc content. Similarly, high accumulations were

expected for samples grown under high concentrations of nitrogen and zinc.

All of the extraction methods have been applied to these seeds and ex-

tracts were compared on SDS-PA and native gels. As SUP5 fraction of the

Osborne procedure was very similar to total extracts in terms of both protein

profiles (Figure 3.8) and the chemistry of solvents, the Osborne procedure

was followed only until the end of step 5 for practical reasons and time con-
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straints. SUP4 was extracted in one step, therefore SUP4a and SUP4b does

not exist for these samples. Figure 3.10 shows the first three fractions. SUP1

was loaded as a verification that proteins were not extracted at this step.

On this application of Osborne procedure, the extracts were not dialysed or

lyophilized, but used directly to avoid losses due to precipitation during dial-

ysis. This resulted in better yields as well as more accurate protein profiles.

As can be seen in Figure 3.10, the fractionated components from seeds

obtained under different environmental conditions appear very similar.

Figure 3.10: SDS-PAGE analysis of Osborne fractions of greenhouse samples.
Gels are 12% SDS-PA.
Lanes 1, 9: PageRuler protein ladder. Molecular weights are given on the
left.
Lanes 2–5: SUP1 of greenhouse samples 6867, 6876, 6911, 6921.
Lanes 6–9: SUP4 of greenhouse samples 6867, 6876, 6911, 6921.
Lanes 10–13: SUP2–3 of samples 6867, 6876, 6911, 6921.

Comparison of total protein extractions by SDS of greenhouse samples

with each other and with reference samples for identification of the protein

bands is shown in Figure 3.11.

Protein profiles of different regions of the seeds, representing low content

and high content, were also investigated. Total extraction and Osborne frac-
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Figure 3.11: SDS-PAGE analysis of total protein extracts from reference
samples and greenhouse samples. Gel is 12% SDS-PA.
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lane 2: Extraction from Bezostaja. Lane 3: Extraction from Scout66.
Lane 4: Extraction from Kharkov. Lane 5: Extraction from TAM107.
Lanes 6–9: Extraction from samples 6867, 6876, 6911, 6921.

tionation were carried out for the embryo and the endosperm. Although care

was taken in dissections, extracts may have cross-contaminations. Differences

in the protein concentrations (Table 3.3) and differences in protein profiles

(Figure 3.12) between various regions of the seed are presented. As can be

seen in the table, second extraction steps have 3-4 fold less protein and for

this reason these supernatants were not combined to avoid the dilution of

proteins in the first extract. Notable and expected differences in the protein

concentration of low and high content samples were not seen, however, dif-

ferences between extracts of embryo and endosperm were observed. Protein

concentrations in the mild saline extracts are much higher in embryos, but

this is reversed in propanol extracts. When comparing the total extracts,

it can be seen that embryo extractions have higher protein concentrations
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than endosperm extracts. Extraction and load amounts were normalized for

protein amount to emphasize the differences between profiles.

Figure 3.12: SDS-PAGE analysis of Osborne fractions (left gel) and total
protein extracts (right gel) of parts of the seed. Residual protein content of
samples after Osborne fractionation is also shown (right gel). “lo” denotes
samples of low nitrogen, low zinc content (blend of seeds 6864, 6866) and “hi”
denotes samples of high nitrogen, high zinc content (blend of seeds 6890, 6891,
6920, 6922, 6889). Samples are loaded after normalizing their concentration.
In cases where protein content of the extract was very low, such as in propanol
solution extracts of high and low embryo samples, samples are loaded at the
maximum volume the wells can take. Gels are 12% SDS-PA.
Left:
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lanes 2–5: 0.5 M NaCl extracts (SUP2–3) of embryo and endosperm.
Lanes 6–9: 50% propanol extracts (SUP4a) of embryo and endosperm.
Lanes 10–13: 50% propanol with reducing agent extracts (SUP4b) of embryo
and endosperm.
Right:
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lanes 2–5: Total protein extraction of embryo and endosperm.
Lanes 7–10: Total protein extracts of the final pellet of Osborne fractionation.

To see the effect of Singh modification to the Osborne procedure, gliadins

and glutenins were extracted from embryo and endosperm sections (Fig-

ure 3.13). Gliadin extracts corresponded to SUP4a, glutenin extracts corre-

sponded to SUP4b of the Osborne fractions.
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Extract 1st Extract 2nd

Meal Vol. Dilution OD280 Norm. OD280 Norm.
(g) (ml) Factor (Abs.) (Abs.)

S
U

P
2
–
3 embr. (lo) 0.0955 1.50 15.71 1.897 29.796 0.454 7.131

embr. (hi) 0.1015 1.50 14.78 2.007 29.660 0.517 7.640
endsp. (lo) 0.0995 1.00 10.05 0.261 2.623 0.055 0.553
endsp. (hi) 0.1043 1.00 9.59 0.209 2.004 0.061 0.585

S
U

P
4
a embr. (lo) 0.0955 1.50 15.71 0.057 0.895 0.021 0.330

embr. (hi) 0.1015 1.50 14.78 0.079 1.167 0.033 0.488
endsp. (lo) 0.0995 1.00 10.05 0.307 3.085 0.019 0.191
endsp. (hi) 0.1043 1.00 9.59 0.428 4.099 0.051 0.484

S
U

P
4
b embr. (lo) 0.0955 1.50 15.71 0.004 0.063

embr. (hi) 0.1015 1.50 14.78 0.019 0.281
endsp. (lo) 0.0995 1.00 10.05 0.122 1.221
endsp. (hi) 0.1043 1.00 9.59 0.176 1.683

F
in

a
l

P
e
ll
e
t embr. (lo) 0.0955 1.50 15.71 1.354 21.267

embr. (hi) 0.1015 1.50 14.78 1.329 19.640
endsp. (lo) 0.0995 1.00 10.05 0.188 1.889
endsp. (hi) 0.1043 1.00 9.59 0.262 2.507

T
o
ta

l

E
x
tr

a
ct embr. (lo) 0.0330 1.50 45.45 1.736 78.909

embr. (hi) 0.0330 1.50 45.45 1.963 89.227
endsp. (lo) 0.0330 0.75 22.73 1.383 31.432
endsp. (hi) 0.0337 0.75 22.26 0.869 19.340

Table 3.3: Protein concentration of Osborne and total extractions from em-
bryo (embr.) and endosperm (endsp.). Normalized concentrations are in-
dicated as relative values based on 280 nm UV absorbances at 1 mm path
length. Normalized values are calculated by multiplying the absorbance with
the dilution factor. Dilution factor is the ratio of extraction volume to the
initial weight of sample. SUP2–3, SUP4a and SUP4b are Osborne fractions.
Total protein extraction was done on the remaining pellet from Osborne
fractionation, also, and the measurements are shown in “Final Pellet” rows.
Measurements of the extraction for SDS analysis is shown in “Total Ex-
tract” rows. “lo” denotes samples of low nitrogen, low zinc content (blend
of seeds 6864, 6866) and “hi” denotes samples of high nitrogen, high zinc
content (blend of seeds 6890, 6891, 6920, 6922, 6889). Second extractions
are repeated extractions before proceeding to the next solvent.
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Figure 3.13: Gliadin and glutenin
extraction from embryo and en-
dosperm by Singh modifications.
Samples are loaded at normalized
quantities. Gel is 12% SDS-PA.
Lane 1: PageRuler protein ladder.
Molecular weights are on the left.
Lane 2–3: Gliadin extracts from
embryo and endosperm of 6920.
Lane 4–5: Glutenin extracts from
embryo and endospem of 6920.

Dealing with proteins without disrupting their native structures have defi-

nate advantages that shall be discussed elsewhere. Therefore, native extracts

were analyzed on native gels, however it was not possible to derive meaningful

results (Figure 3.14).

3.4 Detection of Zn-binding with proteins an-

alyzed by PAGE

3.4.1 Analyses after native PAGE

Metal indicator chemicals were used to detect protein bound metals on native

PA gels. Solutions of DTZ, PAN and DEDC at various concentrations were

prepared and applied to gels using different procedures (see Section 2.2.8).

DEDC appeared to be the better canditate of all indicators, because of its sol-

ubility in water. However, transparent solution of DEDC only changed color

to crimson and precipitated upon binding copper, but only precipitated with-

out any color change upon interaction with other heavy PageRuler protein

ladder.metals. Therefore, any attempts to stain gels with aqueous solution
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Figure 3.14: Native PAGE analysis of proteins extracted under native con-
ditions. Gel is 8% native PA.
Lanes 1–4: Native extracts of 6867, 6876, 6911 and 6921.
Lanes 5–8: Native extracts of 6867, 6876, 6911 and 6921.

of DEDC was not successful.

Solutions of DTZ in pure organic solvents such as methanol, ethanol

and acetone were used, however this resulted a sudden reversible dehydra-

tion, thus shrinkage of the gels. Stability of DTZ in the solution was tested

by varying the amount of water included, therefore dilutions of the solu-

tion in water are very limited and acetone solution can be diluted to have

40% final concentration, which is about the same organic solvent concentra-

tion of Coomassie Brilliant Blue R-250 staining solution. It was observed

that Tris also interacts with DTZ and the color changes from blue-green to

yellow-orange, but this does not affect the interaction with zinc when later

introduced.

Application of a bulk solution may dislocate the coordinated metals and
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to avoid this DTZ in pure acetone or methanol was sprayed over gels. As

can be seen on Figure 3.15, althought the gel changed color, no bands corre-

sponding to seed proteins could be visualized.

Figure 3.15: Native PAGE analysis of total native extracts from T. durum
seeds, stained by sprayed DTZ. After electrophoresis, the gel was stained by
spraying with DTZ solution. Note the pink blobs at the bottom sides due to
handling with latex gloves. Gel is 8% native-PA.

3.4.2 Detection and characterization of zinc-binding
proteins after blotting

Using an alternative approach to detection metal bound proteins on native

gels, attempts were mande to detect the metal binding proteins after they

have been separated by SDS-PAGE and blotted on membranes. As men-

tioned in Section 2.2.9, total extracts or fractionated proteins were separeted

by SDS-PAGE and blotted onto PVDF membranes. Membranes were sub-
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sequently incubated in renaturing solutions and metal solutions and were

stained for metal.

Figure 3.16 shows zinc detection on membranes containing the Osborne

fractions of greenhouse samples. As can be seen from the figure, only SUP4,

containing mainly prolamines (see Page 33), shows reddish bands reflect-

ing DTZ-Zn interaction on the membrane. Proteins with molecular weights

between 60 kDa and 30 kDa are stained for zinc.

Although DTZ is blue-green in solution, membrane is stained yellow due

to Tris buffer-DTZ interaction. As DTZ-Zn complex yields a pink solution,

reddish regions on membranes correspond to zinc containing parts. PAN is

itself yellow in pure solution and does not interact with Tris buffers. PAN-

Zn complex is also a pink solution, therefore both staining procedures gave

similar results.

To see if there are differences in the protein profiles that bind zinc, Os-

borne fractions of embryo and endosperm sections of samples representing

high content and low content seeds were blotted and stained for zinc (Fig-

ure 3.17). On the extracts of propanol solutions (SUP4a and SUP4b) of

endosperm, same bands were stained as in the previous figure.

For the verification and credibility of the method, several control experi-

ments were carried out. Each time, replica gels were stained with Coomassie

Brilliant Blue R-250 to identify stained bands. Effect of concentration of

zinc in the incubation was tested and as can be seen on Figure 3.18, high

concentrations of zinc did not necessarily produce more intense bands, there-

fore further experiments were conducted with lower concentrations of zinc

for specificity. Proteins with molecular weights between 60 kDa and 30 kDa

are stained for zinc. This result is consistent with SUP4 from Osborne frac-

tionation.
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Figure 3.16: Detection of zinc binding to blotted proteins. This membrane
is transfered from a gel that is identical to the gels on Figure 3.10. Samples
were run on 12% SDS-PA then transfered to PVDF membrane.
Lanes 1–4: SUP2–3 of samples 6921, 6911, 6876 and 6867.
Lanes 5–8: SUP4b of samples 6921, 6911, 6876 and 6867.
Lanes 9: Prestained molecular weight marker.

Association of zinc with membrane bound proteins was investigated by

incubating the membrane with 5 mM EDTA instead of zinc. It can be seen

in Figure 3.19 that, proteins were not stained in absence of zinc. Here,

GST-dMt and BSA was also present in the gels as they are known to bind

zinc [135, 136]. This staining shows that, although proteins from endosperm

were stained for zinc, there seems to be no visible bands for embryo proteins.

The effect of cadmium incubation can be seen in Figure 3.20. Although no

staining is seen in cadmium incubated membrane, when it was rapidly dipped

into 100% methanol, same staining pattern was acquired on Samples I and II.

Rapid dipping of zinc incubated membrane into methanol yielded bands much

intense than those of cadmium incubation.
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Figure 3.17: Detection of zinc on Osborne fractions of embryo and en-
dosperm tissues. The gel is the same gel as in left part of Figure 3.12.
Lane 1: PageRuler protein ladder. Molecular weights are given on the left.
Lanes 2–5: 0.5 M NaCl extracts (SUP2–3) of embryo and endosperm.
Lanes 6–9: 50% propanol extracts (SUP4a) of embryo and endosperm.
Lanes 10–13: 50% propanol with reducing agent extracts (SUP4b) of embryo
and endosperm.

Figure 3.18: Effect of zinc concentration on detection of Zn bound to blotted
proteins. The blots are shown with the original gel on the left. Left hand
membrane was incubated in 1 M ZnCl2 and right hand membrane was incu-
bated in 0.1 M ZnCl2. Samples were run on 12% SDS-PA. Membrane was
stained by sprayed DTZ.
Lanes 1–3: Extracts from TAM107, Kharkov and Scout66.
Lanes 4–7: Extracts from 6867, 6876, 6911 and 6921.
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Figure 3.19: Comparison of the ef-
fect of EDTA to the effect of zinc
incubation in Zn detection. Left
membrane was incubated in EDTA,
while right membrane was incu-
bated in 0.1 M ZnCl2. No visible
bands on EDTA incubation and on
embryo extracts.
Lane 1: Embryo extract.
Lane 2: Endosperm Extract.
Lane 3: GST-dMT. Lane 4: BSA

Figure 3.20: Comparison of zinc in-
cubation to cadmium incubation in
zinc detection. Left part of the
membrane was incubated in 100 µM
ZnCl2, while right part of the mem-
brane was incubated in 100 µM
CdCl2.
Sample I: total protein extraction
from embryo of 6891.
Sample II: total protein extraction
from endosperm of 6891.
Sample III: GST-dMT. Sample IV:
GFP.
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To be able to understand the nature of zinc binding, blotting procedure

was done on protein extracts with IAA alkylated cysteine residues and with

the presence of reducing agent TCEP. As seen in Figure 3.21, proteins mod-

ified with IAA and membrane incubated in presence of TCEP did not stain

for zinc.

Figure 3.21: Effect of IAA and TCEP in the blotting procedure. Left
and right membranes are identical. Left membrane was treated regularly,
whereas right membrane was treated with the precence of 5 mM TCEP at
all steps of zinc detection procedure.
Lane 1: Gliadin extraction from 6920 embryo.
Lane 2: Gliadin extraction from 6920 endosperm.
Lane 3: Glutenin extraction from 6920 embryo.
Lane 4: Glutenin extraction from 6920 endosperm.
Lane 5: Glutenin extraction from 6920 embryo, treated with IAA.
Lane 6: Glutenin extraction from 6920 endosperm, treated with IAA.

Increasing amounts of protein were loaded to gels and later blotted and

stained for zinc to see the effect of protein amount on the blotting procedure

and to see if there are zinc binding proteins present in low concentrations.

Results may be seen on lanes 7 to 14 of Figure 3.22. Increasing the protein
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amount increased the intensity of staining.

Figure 3.22: Effect of protein amount on detection of Zn bound to blotted
proteins. Original gel is shown to the left.
Lane 1: PageRuler protein ladder.
Lane 2: Whole seed extract. Lane 3: Embryo extract.
Lane 4: Endosperm extract. Lane 5: type550 white flour extract.
Lanes 7–14: Whole seed extracts loaded 0.5 µl, 1 µl, 2 µl, 3 µl, 4 µl, 6 µl,
8 µl and 10 µl.

3.5 Microscopy

Longitudinal sections of seeds were stained with PAN and ninhydrin and

results are shown in Figure 3.23. The backgrounds are yellow due to the

color of PAN and ninhydrin solutions. Red regions in PAN staining are

heavy metal containing parts, and purple regions in ninhydrin staining are

high concentration protein containing parts.
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Figure 3.23: Seed longitudinal sections, non-stained (a) and stained with
PAN (b) and ninhydrin (c).
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Chapter 4

Discussion

4.1 Zinc and nitrogen applications have ef-

fects on wheat plant

Results of applications of different concentrations of zinc and nitrogen have

been introduced in Section 3.1. It is seen from the data that zinc and nitrogen

applications had effects on the dry weight and produced seed amounts, as

well as effects on the accumulation of zinc, phosphor and nitrogen in the

seed. Foliar applications of zinc and nitrogen in this trial did not present any

significant effects.

At low applications of nitrogen (75 ppm), increasing the concentration of

the zinc applications decreased the dry weight production, possibly due to

zinc toxicity [137]. However, at 225 ppm nitrogen application, dry matter

production was proportional to the concentration of zinc application (Fig-

ure 3.1). Similar results were also seen in the nitrogen accumulation in the

seed. Except for 75 ppm nitrogen application, increasing zinc application,

increased the accumulated nitrogen in the seed (Figure 3.2). This suggests

that, zinc application has a positive effect on the growth of the plant and

seed formation, which is consistent with the literature [138]. As zinc appli-

cation shows toxicity at low nitrogen concentrations, but not when sufficient
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nitrogen is present, mechanisms involving nitrogen, such as protein synthesis,

might play a role in detoxification of zinc.

Increasing the nitrogen application increases the dry matter production

to some extent (Figure 3.1). At nitrogen applications 675 ppm and higher,

dry matter production shows a decrease. Significant differences in seed pro-

duction at different growth conditions were not observed.

As noted in the literature, zinc accumulation in the seed was proportional

to the zinc application (Figure 3.2) [138]. It is also observed that zinc ac-

cumulation is also proportional to the nitrogen application. The correlation

between zinc and nitrogen accumulation to zinc and nitrogen application

supports the idea that some proteins are sinks for zinc.

Phytates are also thought to be responsible of zinc accumulation [90]. For

this reason, phophorus measurements were taken to see if there was a cor-

relation between zinc application and phophorus accumulation (Figure 3.2).

No correlation was observed. Nitrogen application of 675 ppm and above

decreased the phosphorus accumulation in the seed, because high nitrogen

present in the soil decreases the uptake of phosphorus [139].

4.2 DTZ and PAN solutions detect heavy met-

als

Heavy metal indicators, such as DTZ and PAN, have been used by environ-

mental scientists to detect heavy metal contamination and its level in water

and soil [140]. As discussed in Section 1.3.2, these chemicals have also been

used to localize heavy metals in tissues. For these reasons, the properties of

DTZ and PAN solutions were studied to see if these chemicals can be used

in this research.

As seen in the photograph in Figure 3.3 and in spectrophotometric mea-
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surements in Figures 3.4, 3.6 and 3.5, upon interaction with various heavy

metals, these indicators change color dramatically, even in low concentra-

tions of metal, and color change is proportional to the concentration. This

suggests that these indicators not only may be used for detection of metals,

but also for their quantification. In cases where only one metal is present,

these indicators can also be used for identification, as with some metals, the

color change is specific to that metal only.

In this research, these indicators were used to detect zinc in proteins.

Although sensitivity of DTZ is higher compared to PAN, since DTZ also

interacted with buffers used in experiments and since the concentrations

of zinc encountered in this research were not that low, PAN was chosen

for most of the applications. DTZ and PAN is not soluble in water and

organic solvents are required to get a working solution. This incompability

has created limitations of application.

4.3 Protein and zinc is more concentrated in

seed embryo

It is already known that protein and zinc concentration is higher in embryo

and aleurone layer than the starchy endosperm [115, 35]. This has also

been observed during the experiments with seed section staining and protein

extraction from tissues. As seen in the microscopy results in Figure 3.23,

abundance of protein and zinc is much higher in the embyro when compared

to the endosperm.

In Table 3.3, protein yields from embryo and endosperm tissues are shown.

In all cases, extractions were first attempted with the same proportion of

solvent to meal to facilitate comparison of concentrations of extracts directly.

However, as results from seed section experiments were reviewed and it was
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seen that protein concentrations were much higher in the embyro, the solvent

to meal ratio was increased to avoid saturation. For the comparison of the

extraction yields, differences in dilutions were taken into account and values

were normalized. As expected, embryo total extract has more protein than

endosperm total extract. The differences between the protein profiles will be

discussed below.

4.4 Proteins of different extraction methods

In this research, mainly two methods were used to extract proteins. These

were Osborne fractionation and extraction for SDS-PAGE analysis. The ex-

tract for SDS-PAGE analysis includes all the proteins from different Osborne

fractions. This method yields a profile of the total protein extraction. Since

the method of Osborne separated different seed proteins into fractions, it was

possible to identify some of the seed proteins.

In the original method, Osborne fractionation gives four protein contain-

ing supernatants, as mentioned in Section 2.2.4, however, after preliminary

results, fractionation was halted after propanol solution extractions. It was

observed (Figure 3.8) that protein profile of SUP5 resembles the protein

profiles acquired by total extraction. Recommended procedures on the su-

pernatants were also not followed, as explained below.

When recommended procedures [127] were applied, most of the proteins

were lost due to precipitation or were diluted during dialysis steps. To main-

tain the protein yield, proteins were kept in the original extraction buffer,

which in turn prevented lyophilization. Thus, extracts could not be concen-

trated and samples could be preserved without degradation or aggregation

only for short periods. Most reliable results were obtained in the analyses

shortly after extractions.
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Also, Osborne fractionation protocol states that each extraction step

should be repeated two times and that the supernatants should be combined.

However, since samples could not be lyophilized, combining supernatants

only diluted the extracts. In Table 3.3, differences in the protein concentra-

tion of repeats of extraction can be seen. Extraction steps were repeated to

remove all the proteins, but the second supernatants were discarted.

Native extraction was tried, but this method was not pursued, when it

was seen that the profile of the native extract is actually very similar to

SUP2–3 of Osborne fractionation.

A modification to Osborne procedure, suggested by Singh et al. [128],

was also used to extract gliadins and glutenins. Results of this extraction

(Figure 3.13) were compared to the Osborne fractions (Figure 3.12) and it was

observed that the extracts of Singh corresponded to the supernatants SUP4a

and SUP4b. SUP4a contains monomeric prolamins. Polymeric prolamins,

held together with disulphide bonds, are not readily soluble in 50% propanol,

therefore reducing agents should be included in the extraction solution to

break the disulphide bridges and have these proteins in solution. SUP4b

contains these polymeric prolamins. According to Fido et al. [127], glutenins,

glutelins of wheat, are extracted with the borate buffer and are present in

SUP5. Protein profile of SUP5 is observed to be different from glutenin

extracts of Singh method. This inconsistency should be noted here.

Although the Osborne procedure facilitated separation of seed proteins

into different fractions, each fraction still contained several different proteins

(subunits). This made use of native gel electrophoresis ineffective as can be

seen in Figure 3.14.

Seed protein extracts were separated on SDS-PA gels by electrophoresis.

For the purpose of this analysis, a concentration of 12% PA was adequate,
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when completely polymerized giving good resolutions both for high molecular

weight and low molecular weight proteins.

Because there are a large number of proteins in seeds, and because pro-

tein(s) of interest was (were) not yet identified, chromatography was not

used.

4.5 Different tissues of the seed have different

protein profiles

Extractions from embryo and endosperm tissues showed that, these tissues

have different protein profiles. From the data in Table 3.3, it is seen that

embryo has an abundance of water and mild saline soluble proteins, whereas

alcohol soluble storage proteins are abundant in the endosperm. This was

expected, since embryo has most of the metabolic activity and cytoplasmic

proteins are water or mild saline soluble proteins, whereas starchy endosperm

contains polymeric storage proteins, insoluble in water and mild saline.

Major differences between high and low zinc and nitrogen content seed

were not observed, but there are some proteins that need further attention.

As the proteins were loaded at normalized amounts, and staining level of

some major bands were similar, protein bands of different staining levels

are likely to be due to a difference in levels of expression in the presence

of zinc or nitrogen. In Figure 3.12, a band of 30 kDa of NaCl and total

extractions of endosperm shows increased levels in high content seeds. There

is another significant band in the NaCl extraction of embryo between 50 kDa

and 60 kDa that shows to be more in high content seeds. However, these

results are highly speculative.
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4.6 Developed blotting method detects zinc

binding on PVDF membranes

A new method was developed from Mazen et al. [119] and was used to detect

if certain proteins were able to bind zinc. There were numerous studies in

literature that made use of the original method [103, 141, 142, 143], however,

since this method utilized radioactive isotope of zinc, it was modified to use

non-radioactive zinc. Also, this method has not been used on seed proteins,

previously. The validity of this new method was checked extensively.

After the first results that showed staining (Figure 3.16), the nature of this

staining was investigated. Protein blotted PVDF membranes were incubated

in solutions containing no metals, but EDTA to chelate any contaminating

metals and no staining was seen (Figure 3.19), suggesting that the staining

is due to zinc, not due to the chemistry of proteins at the stained bands.

Similar stainings were acquired from experiments where the protein blotted

membranes were incubated in solutions containing different concentrations of

ZnCl2 (Figure 3.18), suggesting that zinc concentration is not a determining

factor for the staining. For the specificity of the binding, lower concentrations

of zinc was chosen in incubations.

Effect of cadmium was also checked. When compared to the staining

after zinc incubation, cadmium incubated membranes showed a lesser degree

of staining (Figure 3.20). This suggested that the ligands are more specific

to zinc.

Membranes were blotted with GST-dMT and BSA that are known to bind

zinc [135, 136], and the procedure was repeated, showing staining at GST-

dMT and BSA bands (Figure 3.19). Increasing amounts of loaded proteins

showed more intense staining (Figure 3.22). This correlation between the

amount of zinc and the amount of protein shows that stained zinc is bound
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to proteins, and when more protein is present, more zinc is able to bind and

thus more staining is achieved.

When zinc incubation was done in presence of the reducing agent TCEP,

no staining was seen. Similarly, proteins with modified cystine residues with

IAA showed no staining (Figure 3.21). TCEP when present in the incubation,

constantly reduces the cysteine residues and IAA S-carboxymethylates the

cysteine residues, irreversibly [129]. Distruption of staining after modification

of cysteine residues and under constant reducing suggests that zinc binding

is faciliated by the cystine residues.

Proteins that are separated by SDS-PAGE are blotted on PVDF mem-

branes, and are later monitored for zinc. These proteins are denatured and

are allowed to renature in the renaturation buffer. It is not clear to what

extent the proteins are able to refold to their native structure, if at all, but

some renaturation seems to occur that faciliates zinc binding. The procedure

works better when Triton X-100 is included in the renaturation buffer. Tri-

ton removes SDS more effectively than the plain buffer, therefore providing a

more suitable environment for proteins to renature and giving better results.

Use of Triton X-100 to renature proteins is present in the literature [144].

Various methods to stain the membranes were tried. Staining the mem-

branes in metal indicator solutions were not possible, because bound zinc

was chelated by the dye in the solution immidiately before any photos could

be taken. For this reason, staining was done by spraying metal indicator so-

lutions on the membranes, not distrupting the localization of zinc. Initially,

DTZ was used in staining procedures, although it also interacted with the

buffer. Later, DTZ was replaced with PAN, because PAN was more specific

to zinc, and less sensitive than DTZ, so that the background was reduced

and did not interact with buffers used in the procedure.
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4.7 Zinc binding was detected on some pro-

teins on PVDF membranes

During the validation of the method, samples were chosen among protein ex-

tracts of greenhouse samples. Total extractions, Osborne fractions and Singh

fractions from whole seed, embryo and endosperm sections were analyzed for

zinc binding proteins.

Experiments gave the following results:

1. Some proteins blotted on the membranes are stained for zinc after the

procedure.

2. These proteins belong to the Osborne fractions SUP4a and SUP4b.

Osborne fractions SUP4a and SUP4b are prolamins abundant in the

starchy endosperm. From SDS-PAGE analysis, it is seen that these

stained proteins have molecular weights between 30 kDa and 50 kDa.

3. Comparing above results with the literature on seed storage proteins

presented in Section 1.2.4, these proteins are thought to be sulfur rich

low molecular weight prolamins. Sulfur is located in cysteine residues

of the proteins.

4. These result are consistent with the results of experiments with IAA

and TCEP. Zinc binding is said to be faciliated by cysteine residues,

as discussed earlier.

5. Procedure on total extracts gave similar results.

6. With this detection method, no proteins from embryo extracts were

stained on PVDF membranes and this contradicts literature [115].
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7. This surpising result may be interpreted as (a) embryo stores Zn in

non-peptide complexes e.g. in phytate or in a form which is completely

destroyed by our procedures, or (b) Zn-binding proteins of the embryo

are hard to detect by electrophoresis due to their low molecular weight.

These proteins may also exist in such low quantities and may also be

so instable that the method is not sensitive enough to detect them.

8. No differences were detected between high and low zinc and nitrogen

containing seeds.
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Chapter 5

Conclusion

Both zinc and nitrogen applications have positive effects on the dry weight

and on the accumulation of nitrogen and zinc in the seed.

There are differences between embryo and endosperm tissues of the seed

in terms of protein concentration, protein profile and zinc concentration. Pro-

tein and zinc concentration is higher in the seed embryo. Polymeric storage

proteins are majorly found in the starchy endosperm, whereas albumins and

globulins are located in the embryo.

With the developed zinc detection method, it is showed that sulfur rich

LMW (Mr: 30–50 kDa) prolamins bind zinc via cysteine residues on PVDF

membranes, however it is not known what happens in vivo.

Contrary to the literature, no zinc binding proteins were detected on

extracts from embryo tissues. This may be due to the fragility, the size and

the concentration of those proteins, if they exist.
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Table A.1: Total dry matter (TDM) and seed production of individual sam-
ples. Values are one plant averages from each pot. Total dry matter weight
is the total weight minus seed weight, after complete drying in the oven.
Growth conditions are indicated in the labels.

75 ppm N 675 ppm N
Sample Seed (g.) TDM (g.) Sample Seed (g.) TDM (g.)

0
.5

p
p
m

Z
n 6864 1.31 2.24 6894 1.71 2.14

6865 1.37 1.96 6895 2.88 3.18
6866 1.16 1.76 6896 1.57 2.28
6867 1.37 2.39 6897 2.29 2.53
6868 1.52 2.33 6898 1.92 2.17

8
.0

p
p
m

Z
n 6869 1.24 1.63 6899 1.84 2.47

6870 1.83 2.17 6900 1.81 2.43
6871 1.33 1.72 6901 2.08 2.28
6872 1.28 1.69 6902 2.33 2.42
6873 1.12 1.38 6903 1.85 2.21

2
4
.0

p
p
m

Z
n 6874 1.30 1.66 6904 1.67 2.32

6875 1.59 2.01 6905 2.06 2.61
6876 1.52 1.94 6906 1.49 2.07
6877 1.24 1.48 6907 1.37 1.93
6878 1.31 1.52 6908 1.59 2.19

225 ppm N 675 ppm N + foliar
Sample Seed (g.) TDM (g.) Sample Seed (g.) TDM (g.)

0
.5

p
p
m

Z
n 6879 1.75 2.10 6909 1.70 1.87

6880 1.51 2.17 6910 2.13 2.64
6881 1.45 2.89 6911 1.97 2.69
6882 1.58 2.32 6912 1.81 2.42
6883 1.47 2.60 6913 1.93 1.95

8
.0

p
p
m

Z
n 6884 1.88 3.42 6914 1.72 2.49

6885 1.62 2.78 6915 1.77 2.53
6886 1.73 2.51 6916 2.21 2.25
6887 1.81 6917 1.86 2.20
6888 1.68 3.06 6918 1.79 2.91

2
4
.0

p
p
m

Z
n 6889 1.99 3.84 6919 1.72 2.01

6890 1.66 2.80 6920 1.71 2.25
6891 1.18 2.54 6921 2.04 2.59
6892 1.64 3.36 6922 1.33 2.22
6893 1.33 2.74 6923 1.32 2.07
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Table A.2: Zinc and phosphorus accumulation in the seeds of individual
samples. Growth conditions are indicated in the labels.

75 ppm N 675 ppm N
Sample Zn (ppm) P (ppm) Sample Zn (ppm) P (ppm)

0
.5

p
p
m

Z
n 6864 17 4977 6894 19 4646

6865 20 5191 6895 12 4041
6866 18 4904 6896 17 4843
6867 17 5014 6897 14 4150
6868 18 4941 6898 17 4379

8
.0

p
p
m

Z
n 6869 61 5136 6899 84 4577

6870 66 5076 6900 68 4358
6871 61 4835 6901 71 4119
6872 62 4992 6902 71 4004
6873 60 5141 6903 76 4185

2
4
.0

p
p
m

Z
n 6874 72 4903 6904 97 4341

6875 70 4784 6905 84 3721
6876 68 4782 6906 91 4368
6877 92 5339 6907 102 4856
6878 82 5053 6908 98 4454

225 ppm N 675 ppm N + foliar
Sample Zn (ppm) P (ppm) Sample Zn (ppm) P (ppm)

0
.5

p
p
m

Z
n 6879 17 5207 6909 17 4326

6880 15 5195 6910 18 4440
6881 13 4763 6911 19 4262
6882 15 4867 6912 15 3964
6883 21 5311 6913 15 4121

8
.0

p
p
m

Z
n 6884 73 4645 6914 76 3919

6885 82 5005 6915 79 4627
6886 74 5039 6916 77 4612
6887 82 5047 6917 70 4204
6888 86 5173 6918 79 4252

2
4
.0

p
p
m

Z
n 6889 99 5248 6919 89 4399

6890 104 5206 6920 125 5206
6891 127 5496 6921 86 4216
6892 110 5225 6922 99 4478
6893 111 5173 6923 105 4644
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Table A.3: Nitrogen accumulation and estimated grain protein content
(GPC) in the seeds of individual samples. GPC is calculated from nitrogen
data, by multiplying with a factor of 5.83. Growth conditions are indicated
in the labels.

75 ppm N 675 ppm N
Sample N (%) GPC (%) Sample N (%) GPC (%)

0
.5

p
p
m

Z
n 6864 2.57 15.00 6894 3.07 17.90

6865 2.68 15.62 6895 3.26 19.00
6866 2.60 15.18 6896 3.35 19.54
6867 2.72 15.85 6897 2.90 16.89
6868 2.79 16.29 6898 2.99 17.45

8
.0

p
p
m

Z
n 6869 2.76 16.09 6899 3.16 18.39

6870 2.25 13.09 6900 3.03 17.65
6871 2.57 14.97 6901 3.20 18.68
6872 2.45 14.30 6902 3.22 18.78
6873 2.60 15.13 6903 3.13 18.27

2
4
.0

p
p
m

Z
n 6874 2.69 15.66 6904 3.19 18.62

6875 2.31 13.44 6905 3.30 19.21
6876 2.30 13.39 6906 3.33 19.41
6877 2.72 15.87 6907 3.18 18.54
6878 2.44 14.22 6908 3.19 18.58

225 ppm N 675 ppm N + foliar
Sample N (%) GPC (%) Sample N (%) GPC (%)

0
.5

p
p
m

Z
n 6879 3.12 18.17 6909 3.11 18.12

6880 3.05 17.76 6910 3.12 18.20
6881 2.98 17.39 6911 3.15 18.34
6882 2.96 17.27 6912 3.10 18.06
6883 3.09 18.04 6913 3.09 17.99

8
.0

p
p
m

Z
n 6884 3.32 19.38 6914 3.20 18.67

6885 3.22 18.75 6915 3.15 18.39
6886 3.22 18.76 6916 3.09 18.01
6887 3.28 19.11 6917 3.22 18.76
6888 3.28 19.11 6918 3.19 18.59

2
4
.0

p
p
m

Z
n 6889 3.43 19.98 6919 3.05 17.77

6890 3.37 19.67 6920 3.45 20.09
6891 3.50 20.42 6921 3.38 19.70
6892 3.16 18.41 6922 3.52 20.54
6893 3.19 18.61 6923 3.15 18.37
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Appendix B

Materials

B.1 Solution recipes

SDS extraction buffer 62.5 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 5%
(v/v) 2-mercaptoethanol, 10% (w/v) glycerol, 0.002% (w/v) bromophe-
nol blue in ddH2O.

2x Laemmli sample buffer 125 mM Tris-HCl pH 6.8, 4% (w/v) SDS, 5%
(v/v) 2-mercaptoethanol, 20% (v/v) glycerol, 0.005% (w/v) bromophe-
nol blue in ddH2O.

2x Native sample buffer 200 mM Tris-HCl pH 8.8, 20% (v/v) glycerol,
0.005% (w/v) bromophenol blue in ddH2O.

SDS-PAGE running buffer 25 mM Tris, 192 mM glycine, 0.1% (w/v)
SDS in ddH2O.

Native-PAGE running buffer 25 mM Tris, 192 mM glycine in ddH2O.

Coomassie staining solution 0.1% (w/v) Coomassie Brilliant Blue R-250,
40% (v/v) methanol, 10% (v/v) acetic acid in ddH2O.

Reducing buffer for blotting SDS-PAGE running buffer, 0.7 M 2-mercaptoethanol
in ddH2O.

SDS transfer buffer SDS-PAGE running buffer, 20% (v/v) methanol in
ddH2O.

Native transfer buffer 100 mM CAPS buffer pH 11, 10% methanol in
ddH2O.

Renaturation buffer 50 mM Tris-HCl pH 7.5 in ddH2O.
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Zinc incubation buffer 50 mM Tris-HCl pH 7.5, 100 mM KCl in ddH2O.

Metal indicator solutions 2 mM PAN or DTZ in 100% acetone.

B.2 Chemicals

Chemical Company Catalog No.
Acetic acid (glacial) Riedel-de Haën, Germany 27225
Acetone Merck, Germany 100013
30% Acrylamide-0.8% Bi-
acrylamide

Sigma, Germany A3699

Albumin (bovine serum) Sigma, Germany A7906
Ammonium persulphate Carlo-Erba, Italy 420627
Boric acid (99%) Sigma, Germany B6768
Bradford reagent Sigma, Germany B6916
Bromophenol blue Applichem, Germany A3640
1-Butanol Merck, Germany 100988
Cadmium (II) sulphate Fluka, Switzerland 20920
Calcium nitrate Merck, Germany 102120
Copper (II) sulphate Riedel-de Haën, Germany 12849
Coomassie Brilliant Blue R-
250

Fluka, Switzerland 27816

N-Cyclohexyl-3-
aminopropanesulfonic
acid

Amresco, USA 0365

ddH2O Millipore, France
Didifos 55 EC Hektas, Turkey
Dithiocarb Sigma, Germany D3506
1,4-Dithiothreitol Fluka, Switzerland 43815
Dithizone Merck, Germany 103092
DryEase mini cellophane Invitrogen, Germany NC2380
Ethanol Riedel-de Haën, Germany 32221
Ethylenediaminetetraacetic
acid

Riedel-de Haën, Germany 27248

Ferric EDTA Fluka, Switzerland 03650
Glycerol (87%) Riedel-de Haën, Germany 15523
Glycine Amresco, USA 0167
Hybond-P PVDF mem-
branes

Amersham Biosciences,
Sweden

RPN2020F

Hydrochloric acid (37%) Merck, Germany 100314
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Chemical Company Catalog No.
Hydrogen peroxide (30%) Merck, Germany 107209
Iodoacetic acid Merck, Germany 822282
Lead (II) nitrate Riedel-de Haën, Germany 11520
Magnesium sulphate Riedel-de Haën, Germany 13246
2-Mercaptoethanol Aldrich, Germany M370-1
Mercury (I) chloride Fluka, Switzerland 83354
Methanol Riedel-de Haën, Germany 24229
Nickel (II) chloride Riedel-de Haën, Germany 31462
Ninhydrin Fluka, Switzerland 72490
Nitric acid (65%) Merck, Germany 100456
PageRuler protein ladder Fermentas, Germany SM0661
Phenylmethylsulphonyl-
fluoride

Amresco, USA 0754

Ponceau S Applichem, Germany A1405
Potassium chloride Fluka, Switzerland 60129
Potassium dihydrogen
phosphate

Riedel-de Haën, Germany 04243

Potassium sulphate Merck, Germany 105153
Prestained protein MW
marker

Fermentas, Germany SM0441

1-Propanol Merck, Germany 100996
Protein assay BioRad, USA 500-0006
1-(2-Pyridylazo)-2-
naphthol

Fluka, Switzerland 82960

Sodium chloride Riedel-de Haën, Germany 13423
Sodium dodecyl sulphate Sigma, Germany L-4390
Tetramethylethylenediamine Sigma, Germany T-7029
Tris Fluka, Switzerland 93349
Tris(2-Carboxyethyl) Phos-
phine, HCl

Sigma, Germany C4706

Triton X-100 Applichem, Germany A1388
Urea Fluka, Switzerland 51461
Zinc (II) chloride Riedel-de Haën, Germany 14422
Zinc (II) sulphate Merck, Germany 108883

B.3 Equipment

Autoclave Hirayama, Hiclave HV-110, Japan.

Balance Sartorius, BP610, BP221S, BP221D, Germany.
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Blot Module Novex, X Cell II Blot Module, USA.

Centrifuge Eppendorf, 5415R, Germany; Hitachi, Sorvall RC5C Plus, USA.

Cuvette Hellma, QH, QS, Germany.

Deep Freeze Bosch, -20◦C, Turkey.

ddH2O Millipore, MilliQ Academie, Elix-S, France.

Digital Camera Canon, PowerShot SD 400, USA; Olympus, C-7070, USA.

Electrophoresis BioRad Inc., USA; Novex, X Cell SureLock Electrophore-
sis Cell, USA.

Element Analysis Varian, Vista-Pro CCD Simultaneous ICP-OES, Aus-
tralia; LECO, TruSpec CN, USA.

Gel Documentation BioRad, Universal Hood II, USA; BioRad, Quantity
One, USA; BioRad, GelDoc XR, USA.

Gel Dryer EC Apparatus Corporation, Gel Dryer EC355, Gel Dryer Pump
EC353, USA.

Ice Machine Scotsman Inc., AF20, USA.

Imaging Software GIMP 2.2.12.

Lighting Olympus, LG-PS2, USA.

Magnetic Stir VELP Scientifica, ARE Heating Magnetic Stirrer, Italy.

Microliter Pipette Gilson, Pipetman, France.

Microplate Reader BioRad, Model 680 Microplate Reader, USA.

Microscope Olympus, SZ61, USA.

Microwave Oven CEM Corp., Mars Xpress, USA; Bosch, Turkey.

pH Meter WTW, pH540GLP MultiCal, Germany.

Power Supply BioRad, PowerPac 300, USA; Wealtec, Elite 300, USA.

Refrigirator Bosch, +4◦C, Turkey.

Sonicator Bioblock Scientific, Vibracell 75043, France; Bandelin, Sonorex,
Germany.
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Spectrophotometer Schimadzu, UV-3150, Japan; Nanodrop, ND-1000,
USA.

Thermomixer Eppendorf, Thermomixer Comfort, Germany.

Vortex VELP Scientifica, 2x3, Italy.
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