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ABSTRACT 

 

 

A biologically-inspired micropropulsion method is presented by constructing a 
series of finite element computational fluid dynamics models for time irreversible 
inextensible wave propagation method in viscous medium. First, micropump models 
encompassing fully submerged and anchored waving inextensible film mounted inside a 
microchannel are analyzed to attain flow, hydraulic power consumption and efficiency 
plots with respect to parameterized design variables via both 2D and 3D models. Each 
model is governed by incompressible isothermal Stokes and Navier-Stokes equations 
respectively and conservation of mass, integrated with deforming mesh employing 
arbitrary Lagrangian Eulerian method.  

Next, propulsion velocity, power consumption and efficiency plots of a fully 
submerged free microswimmer utilizing a wave propagating tail inside a viscous 
environment is analyzed with respect to parameterized design variables via 3D models 
governed by incompressible isothermal Navier-Stokes equations and conservation of 
mass, integrated with deforming mesh employing arbitrary Lagrangian Eulerian 
Method. All resultant swimmer motions are modeled directly incorporating with stress 
interactions between surrounding viscous fluid and swimmer surfaces. It is 
demonstrated that net forward thrust can be harvested from this interaction. 

Numerical results are compared with the asymptotical results to analytical studies 
mainly carried out by Sir Taylor (1951), Katz (1974) and Childress (1981) based on 
mainly 2D assumptions. It is observed that there exists a strong agreement between 
earlier results and numerical results besides from wavelength parameter which 
illustrates slight deviation in power consumption characteristics due to the effects 
introduced by the existence of third dimension.  
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ÖZET 

 

 

Doğadan esinlenerek, sonlu eleman hesabına dayalı akışkanlar dinamiği modelleri 
yardımı ile ağdalı ortamlarda zamanla tersinemez-uzatılamaz dalga yayılımı ile eylenen 
mikro-itici yöntemi sunulmuştur. Öncelikle, sıvı ile dolu bir mikrokanal içerisinde 
çapalanmış uzatılamaz ince filmden oluşan iki ve üç boyutlu mikropompa modelleri 
analiz edilerek parametrik tasarım değişkenlerinin sıvı akışı, hidrolik güç tüketimi ve 
verim üzerindeki etkisi grafiksel olarak elde edilmiştir. Tüm modeler, sırasıyla 
sıkıştırılamaz-izotermal Stokes ve sıkıştırılamaz-izotermal Navier Stokes denklemleri, 
kütlenin korunumu yasası ve biçimi bozulan örgü yöntemi (ALE) kullanılarak 
çözülmüştür.  

Sonraki adımda, tamamen ağdalı akışkan içerisine batırılmış ve yürüyen-düzlem-
dalga hareketi ile eylenen kuyruk yardımı ile hareket eden üç boyutlu mikroyüzücü 
tasarımının parametrik tasarım değişkenlerinin itici hızı, hidrolik güç tüketimi ve 
yüzücü verimi üzerinki etkisi sıkıştırlamaz-izotermal Navier-Stokes, kütlenin korunumu 
yasası ve biçimi bozulan örgü yapısı (ALE) yardımı ile grafiksel olarak elde edilmiştir. 
Mikroyüzücünün hareketleri, etrafını saran ağdalı akışın mikroyüzücü yüzeyine 
uyguladığı kuvvetlerden yararlanılarak elde edilmiştir. Bu etkileşimden net itme kuvveti 
elde edilebileceği gözlemlenmiştir.  

Sayısal sonuçlar başlıca Taylor (1951), Katz (1974) ve Childress (1981) tarafından  
iki boyutlu varsayımlar üzerinde yapılmış analitik çalışmaların asemptotic sonuçları ile 
karşılaştırılmıştır. Üçüncü boyutun varlığının etkisi yüzünden dalga boyu grafiklerinde 
gözlemlenen sapma dışında, sayısal sonuçlarla asemptotic sonuçlar arasında güçlü bir 
tutarlılık olduğu görülmüştür.  
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CHAPTER 1 
 

INTRODUCTION 
 

 

Microelectromechanic systems are widely employed in different areas such as 

telecommunication, chemical analysis and biomedical applications. Novel micro and 

nanoscale robotic applications are in development. Autonomous mobile micro devices, 

namely microrobots are promising gadgets for future uses especially in medical area. 

One important issue on autonomous microdevices is the ability of self mobility. Physical 

interactions in microrealm have their own set of interpretations due to the scaling issue. 

Some forces inherently dominant in macro world can not overcome surface forces in 

micro world and ruled out by nature herself. Fluid structure interaction is a perfect 

example of these phenomena. Micropropulsion systems can not operate a kin to their 

macroscale counterparts so there must be found an original realization to the problem at 

hand. 

Ideally, a microelectromechanical system equipped with necessary gadgets can 

roam inside the human body and carry out surgical operations without any external 

interference on the target. The question is that whether it is possible to achieve this 

journey on feasible routes or not. Maneuverability and controllability of such a system 

depend on feasible transportation solutions. This problem represents a new research area 

since generally microsystems are designed to operate while mounted on larger 

structures. A micropropulsion system must overcome tremendous surface forces 

dominating against the inertial forces due to the aspect ratio with reasonable thrust 

effect. The surface force effect can be exemplified by the driver inside a car filled with 

honey. As driver brakes viscous medium does not let the driver’s inertia to carry on the 

motion, unlike what is experienced in real life. As dimensions gets smaller the relative 

viscosity of the fluidic medium appears to increase significantly. 
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The literature which inspired this work is Feynman’s (1918-1988) famous talks in 

the years 1959 and 1983. Therein Feynman suggested a device that can steer in 

microrealm and elaborated his thoughts on the ideal medical microdevice where 

Feynman and his friend Albert R. Hibbs discussed which was quoted as “Hibbs’s 

swallowable surgeon” [1], [2]. The studied method on the other hand came from the 

nature. Nature’s solutions to this specific problem and their unique properties have a 

significant role in embodiment of this work. As will be explained later on, motion in 

microrealm must satisfy some mandatory conditions and solutions presented by nature 

seem to obey. 

 

1.1 Conservation of Mass and Momentum 

 

Key elements to fluidic analysis should be introduced before going into details of 

microfluidic analysis. Landau and Lifshitz (2003) gave a complete definition on 

conservation laws [3]. Conservation of momentum is an interpretation of “homogeneity 

of space” by which meant is the invariance of mechanical properties in translational 

motions and can be expressed in terms of Lagrangian formulation [3]. Momentum 

equation is defined as: 

 

( )ii
M= ΣP U           (1.1) 

 

which is a vector quantity, where U is the particle velocity (will be referred as the fluid 

velocity vector later on) with respect to XYZ and M denotes the mass of a particle. 

Lagrange equation has the property of invariance under infinitesimal position changes 

which is expressed as i
i

L/ = 0XYZΣ∂ ∂r  where r is the position vector of any arbitrary 

location in XYZ frame [3]. This relationship leads to the conservation of momentum 

principle (1.2) since velocity vector U is the total time derivative of the position vector 

as: 

 

L 0d d
dt dt

∂
= =

∂
P

U
         (1.2) 
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Momentum can be expressed in any frame via relative velocity analysis due to the 

fact that position or velocity vectors in a reference frame can be expressed with a vector 

originating in another reference frame [4]. This formulation (1.3) will be cherished for 

moving mesh interpretation throughout following chapters: 

 
1 2 1 2 2 2R P R R R P= +r r r          (1.3) 

 

where superscripts R1, R2 represent two reference frames and P1, P2 are arbitrary 

locations on these frames.  

Conservation of momentum can be interpreted as a combination of conservation of 

energy and mass. It can also be derived from equation of motion on a control volume for 

fluidic applications as an interpretation of Newton’s second law of motion [5] and 

expressed with non-isothermal effects as in: 
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where D Dt is called “material derivative” [5], iie is called “volumetric strain rate” [6], 

µ is dynamic viscosity, ρ is the density, P is pressure and F is body force. Conservation 

of mass on the other hand is derived from continuity equation which encompasses the 

compressibility effects (1.9) as: 

 

( ) 0
t
ρ ρ∂
+∇ ⋅ =

∂
U                    (1.9) 
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Obviously for incompressible fluids, equation (1.9) will reduce to equation (1.10) 

which would eliminate the volumetric strain rate expression (1.7) as: 

 

0∇⋅ =U                    (1.10) 

 

The viscous dissipation inside a compressible fluid is known to be modeled in two 

dimensions [7] as: 

 

2 2 2 222
3

u v u v u v
Y X X Y X Y

  ∂ ∂ ∂ ∂ ∂ ∂        µΦ = µ + + + − +          ∂ ∂ ∂ ∂ ∂ ∂          
            (1.11) 

 

which is equal to zero for an incompressible and isothermal flow, which is suitable for 

locally-constant-temperature environments like human body. Thus Navier-Stokes 

equation reduces to (1.12) in vector form for incompressible-isothermal-Newtonian 

fluids as: 

 

D P g
Dt

ρ ρ 2= −∇ + +µ∇
U U                  (1.12) 

 

1.2 Non-dimensional Approach and Implications of Reynolds Number 

 

Non-dimensionalization procedure transforms the dimensional Navier-Stokes 

equations into a non-dimensional equivalent which allows the solution to be purely 

numeric. This way, physical characteristics of the flow are determined by a series of 

dimensionless number groups. First step is to select characteristic scales for each 

physical quantity, i.e. for dimension, 0A , for time, 0t  and for pressure, P0. These factors 

are used to obtain the dimensionless form of physical quantities as *
0/X X= A , 

*
0/t t t=  and *

0/P P P= , also resulting in *
0 0/t=U U A  hence where ‘*’ denotes 

dimensionless quantities. Substituting these dimensionless quantities in equation (1.12) 

and rearranging the constants yields equation (1.13) as: 
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            (1.13) 

 

Equation (1.13) is dimensionless Navier-Stokes where dimensions of each 

constant group have cancelled out each other. The most important dimensionless group 

among these is the Reynolds number [5] where 0 0 0/U t= A  as in: 

 

0 0Re
Uρ

=
µ
A

                   (1.14) 

 

which corresponds to the ratio of inertial forces to the viscous (surface) forces. Re 

number is the dominant factor in transition between laminar and turbulent flow as well 

as the transition between laminar flow and creeping flow where inertial forces can be 

neglected [8]. Navier-Stokes equations reduces into Stokes Equations (1.15) where there 

must be an acceleration expression only if Re < 1 is considered to be suitable for 

creeping flow analysis due to the existence of density term [8], which is going to be 

determined to be the actual situation. 

 

P
t

ρ 2∂
= −∇ +µ∇

∂
U U                    (1.15) 

 

Equation (1.15) can be transformed into dimensionless form by ρ = 1 and µ = 1/Re 

replacement which automatically changes the interpretation of other terms from 

dimensional to dimensionless form considering that ( )20 0 0/ t Pρ =A . Re < 1 has an 

important outcome on physical explanation of fluid flow. Elimination of body forces 

means pre-acquired velocities are not that effective on general behavior. In real life 

when a driver brakes, his or her inertia wants to keep moving but in micro realm surface 

forces do not allow the inertia to be dominant so when a microscale driver brakes, he or 

she would stop almost instantaneously; furthermore as long as Re number is smaller 

than 1, dimensions are not important and surface forces will be dominant [9]. Hence the 

question of artificial mobility in microrealm, in other words propulsion in fluidic media 

with low Re number, arises. 
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CHAPTER 2 
 

BACKGROUND 
 

 

After introducing the basics of fluid analysis, it is necessary to review systems 

handling fluid volumes by means of various methodologies in microscales; either man 

made or via natural solutions. Hence, this part of the work is divided into two main 

sections one of which is dedicated to a brief review of pump mechanism and their 

working principles by introducing key elements of their conceptual designs without 

getting into mathematical details. Following section focuses on microswimmers; mainly 

the overview of the theoretical work done so far to explain how and why 

microswimmers swim the way they do. Finally a few examples from the literature will 

be discussed. 

  

2.1 Micropump Systems 

 

Since fluid and structure interaction in micro realm is a much different issue than 

in macro world as briefly introduced in the previous section, micro pump mechanisms 

differ from their macro ancestors due to the fact that qualities scale down not only for 

fluids but other mechanical and electrical systems such that well known behaviors 

change, some of which will be introduced during this short review of micro pumps. 

Following, micro pump systems are divided into two subcategories, as mechanically and 

electrically driven, in an unconventionally way which will be evident through the end. 

Mechanically driven micropumps are usually of displacement pump fashion as depicted 

in Figure 2.1.  
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2.1.1 Mechanically Driven Micropumps 

 

Mechanically driven micropumps are based on fluid structure interactions such 

that form of a mechanical energy stored is released from the structure, penetrating into 

the fluid by means of momentum flux as explained in conservation of momentum 

discussion. Most common mechanical micropump structures can be roughly separated 

as Piezo-displacement micropumps, thermally driven micropumps, pneumatic 

micropumps, rotary/centrifugal micropumps, electrostatic micropumps and 

mechanically induced traveling wave micropumps. There are of course several other 

distinctive types [10]. 

 

2.1.1.1 Piezo-displacement Micropumps 

 

Piezo-displacement micropumps work with the very idea of contracting and 

expanding the fluid volume inside the pump reservoir [10]. These reservoirs are covered 

with a thin membrane on top and connected to the outside world by two micro channels. 

In general, piezo materials can be used both as strain [11] or stress sources, i.e. as a 

strain source a piezo material is mounted on top of the membrane and essentially 

responsible for the volume change of the pump reservoir due to its ferroelectric 

capabilities [12], hence transforming applied electric field into deformations which will 

be discussed in detail later on. Piezo materials allow high driving frequencies and 

materials like silicon or glass are commonly used due to their fast response abilities and 

relatively higher stiffness [10] but they are not capable of large deformations since piezo 

materials are generally brittle [10], [13]. If reservoirs are to be connected in series, then 

it is possible to control the flow without any valve structure [10]. Otherwise different 

check-valve mechanisms may be needed to control the flow inside the pump. Although 

valve systems are beyond the scope of this work, it is crucial to stress that check valves 

complicate the micro fabrication process [14], [15].  

 

2.1.1.2 Thermally Actuated Micropumps 

 

Thermally driven micropumps are conventionally considered as a member of 

micropumps category because strain source is an auxiliary fluid within a second 

chamber on top of the main reservoir, in which heat interaction takes place resulting in 
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series of expansion and contractions [10]. Both chambers are separated by a flexible 

membrane which couples the stroke effects from second chamber to the main reservoir. 

Although in micro scales heat diffusion takes shorter time, it is not possible to introduce 

and extract heat rapidly without uninvited losses. Hence thermally driven micropumps 

can not operate at high frequencies [10], [13]. Such pumps are capable of relatively 

higher stroke volumes which are apparently restricted with the deflection limits of the 

separating membrane [16]. In addition to second chamber approach, it is also possible to 

employ heat flow upon shape memory alloys to create desired periodic volume 

variations on the reservoir without the need of an auxiliary fluid [17] but driving 

frequencies are still low for these kind of designs due to same heat flow characteristics. 

Desired heat for either fluidic expansion or shape memory alloy expansion-contraction 

can be harvested from Joule heating [18] which will not be discussed here. 

 

2.1.1.3 Pneumatic Micropumps 

 

Pneumatic micropumps are considered as an other member of the displacement 

pump family and are in need of an external pressure source and extensive valve 

structures to operate [10], [19] since valve operation frequency is actually the driving 

frequency of the micropump. Like thermally driven micropumps, pressure is introduced 

into the secondary chamber leading a deflection on the separator membrane in between 

the secondary chamber and main reservoir. Separating membrane properties once again 

limits the maximum possible deflection. Moreover, this design may need two sets of 

valves, i.e. one pair to control the external pressure source actively and another pair to 

control the flow inside the main reservoir passively. Due to high surface forces, the 

cycling effect on active valves may cause increased failures as in MEMS switches used 

[20] in microwave systems and needs to be extensively designed to achieve longer 

operation capacity. 

 

2.1.1.4 Rotary/Centrifugal Micropumps 

 

Rotary/Centrifugal micropumps are not necessarily working with the same 

common principle but they generally include at least one free rotating part to create 

desired effect on the fluid. Because of this reason they form a completely different 

category and no matter how differently they are actuated they finally transform 
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mechanical energy of the rotating part into kinetic energy of the fluid by means of 

momentum diffusion. They are used mostly for highly viscous fluids [10]. There are 

several designs such as planetary gear micropump driven by electrostatic comb driver 

[21], [22], gear micropump driven by small scaled electromagnetic motor in high 

frequencies [23], eccentric cylinder rotation in micro channels [24] and impeller rotation 

to create suction effect inside a cylindrical reservoir [25]. These designs are more 

complicated and expensive due to the fact that rotating parts can be mostly micro 

fabricated by LIGA technique [13].  

 

2.1.1.5 Electrostatic Micropumps 

 

Electrostatic micropumps belong to the mechanical micropumps category because 

of their actuation principle. The electrostatic force between two loaded membranes 

which actually constitute a capacitor is balanced with natural spring force of one of the 

membranes and under proper conditions this system shows a harmonic oscillatory 

behavior if constantly fed by a power source [18]. This behavior lets the deflecting 

charged membrane to act as a reciprocating membrane on top of a reservoir [26] much 

like as mentioned in piezo or thermally and pneumatic driven micropumps and force the 

flow by mechanical energy transfer. 

 

 
Figure 2.1: Conceptual displacement pump design 
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2.1.1.6 Mechanically Induced Traveling Wave Micropumps 

 

Mechanically induced traveling wave micropumps are based on an entirely 

different concept. Mechanical energy is introduced into the fluid by means of periodic 

sinusoidal deflections of various amplitudes, wavelength and driving frequencies [27]. 

This creates consequently shifts in pressure and shear zones to force the fluid in the 

vicinity of the structure to flow. There are two widely known ways to create such an 

effect. Surface acoustic waves (SAW) can be utilized via inter-digital transducer 

structures [28] on a thin elastic structure inside a microchannel [29] or out-of-phase 

ferroelectric materials can handle such deformations under applied electric fields to 

introduce traveling waves into the fluids [30]. However due to the nature of SAW and 

especially piezo ceramic materials, these systems should operate with high frequency 

and small amplitudes.  

On the other hand, a very interesting study on traveling wave pumps was carried 

out by Shapiro et al. (1969) which is actually about a mechanically induced traveling 

wave pump for viscous fluids with an efficiency of almost as much as 70% but 

unfortunately frequency data here was claimed to be “several waves per minute (Table 

2)” rather than a specific value. System was composed of a macro scale rotating wheel 

and adjustable fingers attached to the sides such that as rotation takes place finger 

structures would introduce deformations on the flexible channel wrapped around the 

disk within a constant distance [31]. Although channel was very long, i.e. 30 cm, inside 

diameter was claimed to be at most 0.5 cm. Indeed, a system with such dimensions can 

not be considered as a micropump but the actuation principle and regime is quite 

inspiring due to the fact that Re < 1 condition is satisfied. Extensive results on traveling 

wave actuation will be discussed in following chapters since the actuation mechanism 

proposed for the micro propulsion system in this work is the traveling wave method. But 

to make the proper distinction in advance, it must be pointed out that proposed traveling 

wave actuation mechanism does not require a reservoir, a valve mechanism or a rotating 

part but theoretically a sole composite film structure of preferable dimensions and yet is 

capable of supplying controllable steady flows with relatively high deformations. 
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2.1.2 Electrically Driven Micropumps 

 

These systems are designed in such a way that they minimize the necessity of 

secondary mechanical energy conservations before introducing the kinetic energy into 

the fluid but directly interact with the fluid itself. There may be some other systems to 

be considered controversial according to this definition, that is to say categorizing as 

pure electrically driven or mechanically driven may be tough. Hence the preferred 

choice is to limit this section with pump systems based on forces concerning pure 

electrohydrodynamic or magnetohydrodynamic interactions. There exist three subtitles 

in this section, i.e. electrohydrodynamic micropumps, electroosmotic micropumps and 

magnetohydrodynamic micropumps. 

 

2.1.2.1 Electrohydrodynamic (EHD) Micropumps 

 

These pumps rely on a very complex and extended interpretation of Coulomb 

force acting on the free ions inside the fluids such that applied electric field on dielectric 

fluids (with not only mobile ions inside but a more general interaction encompassing the 

polarization, permittivity and temperature effects) results in a non-uniform volumetric 

force which compels the flow [10]. There are three distinctive sub categories of EHD 

micropumps: If electric field is applied on the fluid results in induction inside the fluid 

that it is called induction EHD pump [32], if applied electric field results in dislocation 

of ions inside the fluid than this system is referred to as conduction EHD pump [33] and 

finally if ion exchange occurs between electrode structures and the fluid under high 

electric fields than this system is referred to as injection EHD pump [34]. In either case 

viscous interaction between the ions and rest of the fluid causes the net flow [10]. 

 

2.1.2.2 Electroosmotic Micropumps 

 

Electroosmotic phenomena takes place in the vicinity of charged surfaces since 

there exists a charged boundary layer which can be forced to move by external electric 

fields [10]. This phenomenon is modeled by introducing the electric field into Navier-

Stokes equations in which inertia and pressure is neglected due to capillary action [35]. 

That is to say as in the previous section net flow occurs due to shear interaction between 
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ions inside the so called charged boundary layer and the rest of the fluid causing the 

electroosmotic pumping effect [36].  

 

2.1.2.3 Magnetohydrodynamic (MHD) Micropumps 

 

Magnetohydrodynamic micropumps are based on the Lorentz force principle [10] 

which dictates that charged particles moving within an electrical field would feel a 

certain force acting on them causing a deviation in their path while entering a magnetic 

field with certain orientation [37]. This interaction finally results in pumping effect if 

this phenomenon takes place in fluids within a proper geometry [38]. These systems are 

not suitable for high viscous fluids since efficiency drops due to viscous forces [10]. 

 

2.1.3 Areas of Use 

 

This part will briefly present the micropump exploited areas with technical data 

readily supplied by the designers/producers with some intrinsic inspirations. As one may 

expect, the most important field of study for micropump technology is medical 

applications.  There are several examples of micropumps used directly for health care. 

An electrostatic pump design was made by Bourounia et al. (1996) for drug delivery 

applications. Proposed system was 5 mm by 5 mm with a membrane of 2 mm by 2 mm 

in dimensions. Under 10 V driving potential, it has the capability of operating with 

driving frequencies more than 1 KHz with certain types of fluids and supply a flow rate 

in range of 10 to 100 nl/min [26]. Another design was carried out by Cao et al. (2000) 

where the overall system was an implantable apparatus with a micropump consisting of 

three pump chambers connected in series. Each chamber is 90 µm in depth with 12 mm 

in diameter. Connecting channels are 2 mm x 10 mm rectangular openings. Each 

chamber has 80 µm thick membranes connected to PZT materials, which supply 10 

µl/min flow rate at 0.5 Hz driving frequency [39]. A more comprehensive study was 

made by Polla et al. (2000) according to which medical micro systems can be 

categorized into three subcategories which directly utilize micropumps, i.e. surgical 

microsystems, therapeutic microsystems and diagnostic microsystems. An example to 

surgical microsystems is the study carried out by Meyns et al. (2000) which 

concentrates on micropump exploitations during beating heart CABG operations [42] as 

myocardial support systems [43]. On the other hand diagnostics microsystems are 
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basically “lab on a chip” designs [44] to analyze biochemical materials such as in 

conducting tests on blood sample in order to search malaria [45]. 

Other than medical applications there are some interesting areas where 

micropumps are extensively used or promising for future use. For instance the Ph.D. 

thesis study made by Tao Zhang (2005) is entirely focused on fuel delivery systems 

based on piezo driven valve-less displacement micropumps integrated with fuel cells 

[46]. Another area is microelectronic cooling where high flow rates, i.e. more than 100 

ml/min liquid flow, are preferable [47]. Finally, a very interesting and the most relevant 

area of use is micropropulsion [48] in space where micropumps are expected to work on 

“ion-based” fluids with a flow rate of 1 ml/min [10] to create the necessary thrust effect 

for small scale space vehicles.  

As a final addition to this list, reader may recall from the movie ‘The Hunt for Red 

October’ (1990) that the Russian submarine ‘Red October’ had a magnetohydrodrive 

system called “silent drive” which was actually so silent to hear  for it had no moving 

parts to create thrust. The reason why such methods are not preferable as a micro-

propulsion system in micro fluids is because of the high shear forces overcoming the 

electric or magnetic forces [10]. High shear issue will be discussed in detail in following 

chapters, during numerical results discussions.  

 

2.2 Microswimmers: Biology and Math 

 

Natural swimmers are no doubt wondrous creatures if not perfect due to the fact 

that they are fond of their harsh environment and limited energy sources. Maybe the 

only plagiarism to be pardoned is imitating the nature, copying the solution presented by 

living creatures. Thus this section is dedicated to a rather detailed review, especially for 

planar wave propagation method occupying swimmers for they are definitely the natural 

inspiration for this thesis work. 

 

2.2.1 Propulsion Methods of Natural Microswimmers 

 

One of the most comprehensive studies on micro propulsion (or locomotion) was 

carried out by Brennen and Winet (1977). According to their study, natural swimmers 

utilize so called “contractile” organelles which can be classified into four main groups, 

i.e. with the exact words “prokaryotic flagella, cytoplasmic filaments or microtubules, 
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eukaryotic cilia and flagella, and smooth or striated muscle”.  In this work for the mean 

focus is on the distinction between helical rotation drive and planar wave propagation 

drive, again unconventionally, the classification above will be divided into two main 

parts, i.e. helical rotation (or in a sense, helical wave propagation) and planar wave 

propagation. Although there are some single celled organisms utilizing both techniques 

[50], this context is omitted in this content. 
 

2.2.1.1 Helical Wave Propagation 

 

Although their composition and energy source may differ, helical rotations are 

carried out by both eukaryotic and prokaryotic flagella structures. Prokaryotic cell [51] 

flagellums are mounted on the cell walls with “hook-basal body complex” [52]. 

Bacterial flagellum has four rings in so called hook-basal body complex, two of which 

are mounted on cytoplasmic membrane under the cell wall and actuation for the rotation 

of the flagellum takes place in between. The other two rings are mounted in the cell wall 

responsible for attaching the flagellum to the cell wall [50] which is actually a very 

interesting organization due to its similarity to the bearing mounting [53] where bearings 

are used to protect the motor shaft from excessive bending stresses and torsion to keep 

motor structure intact during operation. Energy source of these rotating rings are not 

necessarily ATP molecules [54] and they rotate the flagellum as a rigid body, if the fluid 

forces on the structure is omitted. For instance, spirochaetes phylum members exploit 

this type of propulsion [50], e.g. Cristispira balbiani has more than 100 flagella, each 

approximately 21 µm in length and a body of 80 µm (total 101 µm) [55]. Figure 2.2 is a 

colored picture of Treponema pallidum spirochetes, another prokaryotic single celled 

organism, with helical tails [56].  

On the other hand, helical wave propagating eukaryotic single celled organisms 

employ ATP molecules as energy source [50]. An example to this type of single celled 

organisms is Rhabdomonas spirallis [57], having helical flagella of 15 µm in length and 

body of 40 µm (total 55 µm). Hydrodynamics of helical rotations (or helical wave) are 

beyond the scope of this text but reader can find extensive analysis on the issue in the 

study carried out by Higdon (1978). 
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Figure 2.2: Treponema pallidum spirochetes [56] 

  

2.2.1.2 Planar Wave Propagation 

 

Planar wave propagation is used mostly by eukaryotic [51] cells and the main 

energy source is known to be ATP molecules [50]. Planar wave propagation is possible 

due to the “sliding filaments” inside the eukaryotic flagella or cilia structure via a series 

of interactions between sub-layers [59]. Wave propagation direction is generally from 

base to tip [50] but there exist opposite cases [60] where propagation direction is from 

tip to base. Also, in most of the cases direction of propulsion happens to be in the 

opposite direction of the wave propagation [50] but propagation and propulsion can also 

take place in the same direction regarding to the swimmers natural design i.e. in some 

single celled organism there are row like structures called “mastigoneme” perpendicular 

to the flagellum which results in forward thrust [61]. Most of the spermatozoa cells 

employ planar wave propagation, e.g. Lytechinus (sea urchin) with a flagellum of 37.5 

µm in length and a body of 5.1 µm in length (total 42.6 µm) where ratio of propulsion 

speed to the wave propagation speed is 0.185 and wave amplitude is 4.6 µm [59]. 

Another example can be Colobocentrotus (sea urchin) with a flagellum of 45 µm in 
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length and a body of 8.2 µm in length (total 53.2 µm) where ratio of propulsion speed to 

the wave propagation speed is 0.237 and wave amplitude is 2.8 µm [62]. 

Having introduced the planar wave propagation concept, it is the next step to get 

into the planar wave mathematics to understand how it interacts with the surrounding 

fluid and creates the thrust effect. 

 

2.2.1.3 Mathematical Model for Planar Wave Propagation Based Propulsion 

 

A great body of work has been carried out to explain the basics of planar wave 

propagation, both from fluid and structure perspectives. Although numerical results 

presented in this work are entirely concerned the fluidic perspective, it will be evident 

that it also constitutes the base for future structural analysis. 

 

2.2.1.3.1 Fluidic Perspective 

 

Macro scale fish propel and maneuver themselves with systematic utilization and 

control of their tail and set of specialized fins which fluid drag depends on [63] but in 

micro scale a fish like swimming is not possible for scallop theorem states that time 

reversible motion results in no net propulsion due to high viscous forces against 

relatively negligible inertial forces [9]. The ratio between shear and inertial forces is 

quantified by the Re number, equation (1.16), mentioned through the end of the 

introduction. Although microswimmers are three dimensional creatures despite their 

size, first mathematical analysis was carried out for two dimensional assumptions for 

sake of simplicity and the analysis carried out by Sir Taylor (1951) is a symbol of a 

cornerstone among these. 

First of all, the stream function definition must be introduced to be able to continue 

any further. A stream function is actually the mathematical representation of the time 

and coordinate dependent trajectory of fluid packets since it is always tangential to the 

local velocity vector thus velocity components can be found by spatial derivation of it 

(2.1) [5] and must satisfy (2.2) for irrotational plane flow [6] as: 
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          (2.1) 

 
2 0∇ Ψ =           (2.2) 

 

 Sir Taylor (1951) reminded that any stream function representing a flow field 

passing over a body in two-dimensional world must also obey (2.3) for inertia neglected 

viscous flow as in: 

 
4 0∇ Ψ =           (2.3) 

 

After it is suggested that no-slip boundary conditions must be invoked on the 

boundary of a waving thin membrane in contact with a viscous fluid only on one side, 

equation (2.4) is proposed to model the waving phenomena. No-slip condition implies 

that fluid molecules on the surface will move if and only if the surface moves as shown: 

 

( )o cos
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ω ω
∂Ψ −  − − ∂ =   ∂Ψ   

 ∂ 

        (2.4) 

 

where Bo is the maximum possible wave amplitude, k is the wave number (= 2π/ λ), ω is 

the angular frequency (= 2πf) with f denoting the driving frequency and λ is the 

wavelength. This surface velocity vector represents a sinusoidal ‘waving action’, i.e. 

continuous propagation of a sinusoidal wave on the surface. Another interpretation of 

equation (2.4) is inextensibility of the sheet which is why the small amplitude 

assumption (i.e. Bok  0) with Y 0 statement was invoked, to obtain the following 

expression (2.5) for the stream function [64]: 

 

( ) ( )o 1 sinkYB kY e kX t
k
ω ω−Ψ = − + −        (2.5) 
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Equation (2.5) is important because one can find the pressure expression under the 

assumption that all inertia dependent variables in the incompressible isothermal Navier-

Stokes equations (1.12) are ruled out which results in a new equation, known as the 

Stokes equations (2.6) [65] stating that fluid is in static equilibrium in stress-wise since 

explicit time and trajectory dependence is lost as can be observed: 

 
2

0
Pµ∇ = ∇

∇⋅ =
U

U
          (2.6) 

 

If equation (2.4) is substituted in equation (2.6) and re-written for only X-direction, 

then the following expression (2.7) is obtained [66]: 

 

2P
X Y
∂ ∂Ψ

= µ∇
∂ ∂

          (2.7) 

 

Integrating both sides with respect to X yields pressure formulation presented by 

Sir Taylor (1951) as in (2.8): 

 

( )o2 coskYP B k e kX tω ω−= µ −                  (2.8) 

 

which actually may appear to be a controversial result since (2.7) seems to omit the fact 

that inertia can be omitted but flow is still unsteady due to the time term ‘t’ inserted in 

(2.4). Batchelor (1967) pointed out this issue and underlined that when neglecting the 

inertia, convection term in Navier-Stokes equations drops completely only if flow is 

steady or ∂U/∂t is smaller than the rest (i.e. U·gradU) [67] which brings the small 

amplitude assumption of Sir Taylor’s (1951) analysis in to the picture one more time. In 

order to avoid a possible disagreement, an acceleration correction has been made in 

(2.6) and numerical setup of the problem during Stokes solutions as will be pointed out 

again.  
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Exploiting the mentioned pressure expression (2.8) within the principle-Y-stresses 

component in the full stress tensor (2.9) [68] and substituting the new principle-Y-stress 

expression into (2.10), Sir Taylor (1951) had found the rate of work for described 

waving action per unit area to be proportional to µBo
2ω2k (i.e. ~Bo

2f 2/λ) for small 

amplitude assumption. Also, ratio between the propagation velocity and resultant 

upstream flow velocity found to be proportional to 2π2 Bo
 2/ λ2-9.5π4 Bo

 4/ λ4 (i.e. ~ Bo
 2/ 

λ2 without higher order terms) via solution to the series expansion of the stream function 

to the fourth power of the amplitude for large amplitude case [64] using perturbation 

method [6]. These results also coincide with the ones represented later on by Gray and 

Hancock (1955) and Childress (1981). 

The work published by Katz (1974) extended the analytical study from 

inextensible sheet with one surface in contact with fluid assumption to extensible sheet 

with both surfaces in contact with fluid assumption [70]. Updated version of velocity 

equations used for no-slip boundary conditions included the propulsion velocity of the 

sheet but again with small amplitudes invoking “combined biharmonic-lubrication-

theory” [8] only to find the ratio between propulsion velocity and propagation velocity 

to be proportional to ~ λf Bo
 2, a kin to Taylor’s and Childress’s results, and energy 

consumption to be proportional to ~λf 2. The disagreement in the results of Sir Taylor’s 

(1951) and Katz’s (1974) on energy consumption, will be clarified with the numerical 

results to the parametric study of λ throughout following chapters, as well as the 

consequences of inextensibility approach. 

Extending the analytical analysis on resulting propulsion velocity and 

energy/power need for the desired waving action, has led to the efficiency study for such 

swimmers. For large scale swimmers such as fish, the efficiency is proposed be to 

calculate by the expression (2.11) known as the Froude efficiency defined in terms of 

mean propulsion velocity, mean power requirement and mean forward push, i.e. Fp [63], 

assuming that net propulsion is in X-direction as in: 

 

p pu F
η =

Π
                             (2.11) 

 

Propulsion velocity up is obviously the velocity of the center of the mass of the 

swimmer and unfortunately can not be precisely calculated analytically for all cases. But 
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there exists an important criterion (2.12) imposed by Gray and Hancock (1955) on local 

propulsion velocity for any arbitrary point to provide instantaneous thrust on the tail as 

follows [69]: 

 

pu dt
X X X
∂Ψ ∂ ∂Ψ >  ∂ ∂ ∂ ∫                  (2.12) 

 

Sir Lighthill (1975) has suggested a very similar form of efficiency for 

microswimmers by introducing the concept of tangential and normal forces (i.e. ,K K⊥& ) 

on the swimmer surface. The significant difference on the proposed formulation was in 

the interpretation of Fp ; e.g. thrust force and power need was both formulated based on 

the total motion done by the swimmer hence both tangential normal forces were 

introduced in all expressions making them rather complicated.  

Stone and Samuel (1996) re-interpreted Sir Lighthill’s (1975) efficiency definition 

into a form closer to Sir Taylor’s (1951) interpretation and suggested the generalized 

form of hydraulic power (2.13) consumed by “swimming stroke” as: 

 

( )S t
dSΠ = − ⋅ ⋅∫ n σ U                  (2.13) 

 

where S is time dependent surface, n is the surface normal vector and σ is the total stress 

tensor.  

A more stronger distinction has been made by Wiggins and Goldstein (1998) who 

defined the efficiency as the ratio between power consumption for net propulsion in X-

direction (2.14) and power consumption for transverse motions (2.15) for the so called 

“Elastohydrodynamic Problem II”; e.g. the swimmer with both ends free and waving 

motion is propagated from head to tail with a dissipative effect. Although the 

interpretation is exactly same, since the problem definition is unique, efficiency 

formulation is almost entirely different [73] as shown: 

 

2 /

0 0

( , )
( , )

2

f
f

p f
Y X t

u Y X t dX dt
X t

π ωζ ω
π
⊥

  ∂ ∂  Π =   ∂ ∂     
∫ ∫

A

&             (2.14) 
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2( , )f

S

Y X t
dS

t
ζ⊥ ⊥

 ∂  Π =    ∂  
∫                (2.15) 

 

where Y(Xf,t) is the Y-position function of any arbitrary point on the tail, ζ⊥ is the 

normal viscous drag coefficient [74], fA  is the length of the tail. 

Additionally Sir Lighthill stressed that microswimmers are bounded to have low 

efficiencies due to their propulsion methods [71]. Purcell (1976) made a similar 

discussion about how small the efficiency of microswimmers even with optimal 

conditions is [9]. This last discussion on efficiency actually concludes the basics of 

planar wave model from a fluidic point of view.  

 

2.2.1.3.2 Structural Perspective 

 

Although structural analysis is not covered in the numerical study, some 

introductory elements will be revealed for the sake of a more comprehensive 

background, very briefly. Taylor (1951) suggested it would be possible to determine the 

moment on a tail like structure by invoking the static beam deflection equations (2.16) 

from Euler-Bernoulli Beam Theory [75] as: 

 

M;
dF dP F
dX dX

⊥
⊥= − =                   (2.16) 

 

where F⊥  denotes the normal stress and M denotes the moment on the tail. Nevertheless 

pressure is not the only concern obviously. Childress (1981) gave the two dimensional 

stress tensor (2.17) for fluid exerted forces [66] as: 

 

2 2 2

2 2

2 2 2

2 2

2

2

P
X Y Y X

P
X YY X

  ∂ Ψ ∂ Ψ ∂ Ψ
− + µ µ −  

∂ ∂ ∂ ∂  =   ∂ Ψ ∂ Ψ ∂ Ψ µ − − − µ  ∂ ∂∂ ∂  

σ                 (2.17) 
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Regrettably, the stream function, Ψ, may change in time accordingly with the 

changing orientation of the swimmer and hence has to be modified with additional 

effects of a head or asymmetric channel geometry. Although stream functions can be 

superposed [5], necessity for a more common approach has been raised for analytical 

purposes.  Slender body theory exploits the tangential and normal forces (i.e. ,K K⊥& ) 

introduced in the previous section [50], [66], [69], [74], [76] as represented in equations 

(2.18) and (2.19) to calculate the forces acting on an infinitesimal part of the swimmer 

surface which are proportional to the fluid velocity as depicted: 

  

K C U dS= −& & &                     (2.18) 

K C U dS⊥ ⊥ ⊥= −                    (2.19) 

 

In equations (2.18) and (2.19), U is the generic local velocity of any infinitesimal 

part of the swimmer body (i.e. tail or head) or can be interpreted as the velocity of the 

upstream without any explicit orientation. C⊥  and C&  are the resistive force coefficients 

[50] of the swimmer but are also known as the drag coefficient [74] as introduced in the 

previous section (i.e. ,C Cζ ζ⊥ ⊥= =& & ). These coefficients are usually in the following 

form, i.e. (2.19) and (2.20): 

 

( ) 2
1

4
ln 2 /a b

πζ⊥
µ

= ℘  +℘
                  (2.20) 

( ) 2
1

2
ln 2 /a b

πζ µ
= ℘  −℘&                   (2.21) 

 

where 1℘  and 2℘  are the geometry dependent higher order variables, a is major axis 

and b is the minor axis of the swimmer geometry [50]. In addition to the previous 

expressions for power and force calculations, normal viscous coefficient appears in two 

important formulations where surrounding fluid is correlated with structural behavior: 

(i) In the hyperdiffusion constant inside the equation of elastohydrodynamics 

(2.22) [73] derived to explain the behavior of elastic tails in low Reynolds number 

medium as follows: 

 



 23

4

4( , ) ( , )EY X t Y X t
t Xζ⊥

∂ ∂
=

∂ ∂
                  (2.22) 

 

where E is the bending rigidity of the structure, i.e. E ζ⊥ constitutes the hyperdiffusion 

constant. 

(ii) Sperm Number (2.23), a quantity which defines the ratio between viscous 

forces exerted by the surrounding fluid and bending forces inside the tail structure [77] 

as: 

 
1/44

Sp f

E

ωζ⊥ 
 =
 
 

A
                   (2.23) 

 

Sp number has three known outcomes [77]. As Sp  0, up and η goes to zero,     

up-max and ηmax occurs where Sp ~4 and finally at very high Sp numbers, propulsion and 

efficiency becomes independent of Sp [77]. 

 

2.2.1.3.3 Examples from Literature 

 

Microswimmer experiments or simulations are relatively immature comparing 

with all the analytical work done so far. However, there are few interesting examples on 

the experimental or simulation studies carried out recently.  

Experimental data published by Dreyfus et al. (2005) embodies the most 

interesting study so far for the swimmer structure with the actuation mechanism choice 

of bounded living cell with an artificial organelle.  The proposed swimmer structure is 

composed of a red blood cell and a magnetic tail composed of “streptavidin magnetic 

particles” and “dibiotin ds-DNA (315 bp)”. This artificial tail is driven by external 

magnetic fields such that changing orientation of applied magnetic field results in 

beating motion, i.e. planar wave propagation, on the artificial tail structure. A parametric 

study was carried out to explain the relationship between magnetic field strength, 

velocity field and Sp number. Reported results show that maximum propulsion is 

achieved with Sp ~3 and dimensionless magnetic field of Mn = 4.5 with a driving 

frequency around 10 Hz and 4ζ π⊥ = µ  [78]. 
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Another microscale experimental setup was used by Wiggins et al. to check the 

reliability of the analytical solution to the “elastohydrodynamic problem II”. Here an “F-

actin” connected to a spherical body. This structure is placed between two slides with 

only 20 µm apart. Structure is observed with a laser beam directed via a microscope 

objective. Experimental results for different driving frequencies and filament lengths 

were presented [74]. A very similar study has been carried out by Lagomarsino et al. 

(2003) including effect of Sp number and wave amplitude on propulsion velocity and 

effect of Sp number on swimmer efficiency, e.g. maximum efficiency was found to be 

almost 0.095 for Sp = 3 [77]. 

A different experimental design was carried out by Behkam and Sitti (2006) using 

macroscale helical tail. Although experimental setup was not small, silicone oil made it 

possible to work with small Re numbers i.e. Re < 1. Helical tail was actuated by a motor 

and three different designs with two different containers in size were used in to find out 

the effects on propulsion velocity and efficiency under parameterized design variables, 

i.e. diameter of the head piece, amplitude of helical waves and diameter of tail structure 

[79]. 

Conceptual design for a micro robot design was suggested by Edd et al. (2003) to 

be used for surgical applications. The propulsion mechanism was the rotary motion of a 

micro disc with several tail-like structures attached to one surface to simultaneously 

propagate helical waves due to the rotary action of the base. Normalized efficiency was 

found to be at most 0.025 under varying number of tail structures (i.e. 0-100), rotation 

angle (i.e. 0-90), driving frequency (i.e. 10 Hz – 100 kHz) and amplitude (i.e. 0-15 µm) 

[80]. 
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CHAPTER 3 
 

NUMERIC PROCEDURE 
 

 

This chapter is dedicated to the numerical setup of the micropump and 

microswimmer models in detail as a foundation before the results of the parametric 

studies are presented. There will be a discussion on the most celebrated moving frame 

interpretation and its utilization. Preparing the groundwork for moving boundaries, first 

the necessary equations are derived for moving boundaries of 2D and 3D micro pump 

designs, thereafter equations corresponding to boundaries of the 3D swimmer model are 

derived. Finally the scheme to the boundaries of numerical scenarios will be clarified for 

all various cases. 

 

3.1 Moving Boundaries: Mathematical Interpretation 

 

Simulating the boundaries in motion is an important part of numerical study. The 

medium occupied by fluid is basically meshed by computer, with or without human 

interference, in order to solve the set of equations corresponding for every designated 

mesh nodes within finite element solution. When a physical problem, namely physical 

scenario, is given it is not feasible to solve the problem for every physical point on the 

system for it will surely occupy a great deal of time, effort and storage means. In order 

to solve a physical problem, the continuous medium is transferred into a simplified 

model composed of discrete points where the calculations would take place [81]. 

Numerical methods are widely used for solving differential equations which can form a 

system of linear equations that expressed in matrix form to be solved via certain 

procedures. Roots of system of differential equations for a physical model are simply the 

Eigenvalues to the matrix form of the same model [82]. Each mesh node is associated 

with a set of equation and each equation enters into the matrix to be solved. Each 
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unknown inside the matrix is called ‘degrees of freedom’. Obviously, to be able to solve 

such a system, boundary conditions must be introduced to the mathematical model. 

Finite element models created in computer environment gives the user the freedom to 

define proper boundary conditions to designated boundaries of the simulated physical 

system.  

Boundaries where fluid-structure interaction is taking place are hard to interpret 

for mutual force couples would result in stress and strain effect in the structural side as 

well as pressure and velocity fields in the fluid side of the model. When a boundary 

moves, mesh nodes on that boundary also move. When structural analysis is considered 

strain on a boundary is directly transferred to other boundaries under proper 

mathematical procedures unless a joint exists, as in Figure 3.1. On the other hand, when 

a fluidic analysis is carried out, motion of a boundary is not necessarily resulting in 

deformation of other boundaries hence stretching effect deforms the mesh elements on 

the corresponding medium as in Figure 3.2. 

 

 
Figure 3.1: Cantilever beam, deformed geometry results in translated mesh nodes. 

 

 
Figure 3.2: Moving boundary with compression and expansion effect on triangular mesh 

elements. 
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As it is demonstrated in Figure 3.2 deformed boundary may result in following 

mesh elements to deform. There are three numerical methods to model and interpret the 

mesh structure, i.e. to follow the medium. They are known as Eulerian, Lagrangian and 

arbitrary Lagrangian Eulerian method. Eulerian method [83] suggests rather fixed 

geometry size and shape while Lagrangian method [84] forces the whole mesh to move 

with the medium. Arbitrary Lagrangian Eulerian method makes it possible to force mesh 

follow the medium only near moving boundaries [85]. Since moving and non moving 

mesh coexists in the same medium at the same time, there must be a distinction between 

stationary frame and moving frame, also known as ALE frame. The motion in ALE 

frame is projected to the stationary frame thus into Navier-Stokes Equations (1.12). Due 

to the fact that the motion in material frame and motion in mesh frame are independent 

of each other there is a third common stationary fame of reference to be considered to be 

able to write the equation of motion properly [86]. Therefore, there are three velocity 

definitions to consider. One is the mesh velocity with respect to the stationary reference 

frame (3.1), second is the particle velocity with respect to the material reference frame 

(3.2) and the last one is the material velocity vector with respect to the reference frame 

(3.3). Together they form a transformation equation (3.4) which results in terms of the 

particle velocity with respect to the mesh velocity (3.5) as follows [87]: 

 

( )m , t
t

∂ =  ∂ X

xu X            (3.1) 

( ), t
t

∂ =  ∂ x

xU χ           (3.2) 

t
∂ =  ∂ 
Xw

χ
           (3.3) 

( ) ( ) m

TT T
,

,
11 1

t
t

ϕ
∂ ∂   ∂ 

∂     ∂ ∂∂=     ∂         

x XxU wu
X

00 0

χ χχ
χ

      (3.4) 

r m
∂

= − = ⋅
∂

xu U u w
X

          (3.5) 

 

where ϕ  is the so called “particle motion function” [87] which is used to compute the 

mesh velocity, X denotes the reference frame, χ  denotes the material frame and x 
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denotes the ALE frame and um is the mesh velocity vector. Finally the resulting relative 

velocity just computed can be used in Navier-Stokes equations and Stokes Equations 

such that moving mesh and unsteady moving boundaries are taken into account [87], 

[88], [89] as can be seen in equations (3.6), (3.7) and (3.8) respectively. These equations 

are solved with Winslow smoothing method [85], [90], [91] later on, i.e. another 

mathematical algorithm employed in mesh calculations (3.9); in order to satisfy (3.8) 

[85]. The reason how and why relative velocity enters the momentum equation was 

explained in the introductory section 1.4: 

 

2
r P

t
ρ ∂ + ⋅∇ = −∇ +µ∇ ∂ 

U u U U         (3.6) 

2
m P

t
ρ ∂ − ⋅∇ = −∇ +µ∇ ∂ 

U u U U         (3.7) 

2
m 0u∇ =             (3.8) 

2 2

2 2 0
x y
∂ ∂

+ =
∂ ∂

X X           (3.9) 

 

3.2 Moving Boundaries in Pump Simulations 

 

After clearing up the issue on moving mesh interpretation, moving boundaries of 

the pump system can be designated. Moving boundaries are actually the boundaries 

where dynamic structure and fluid interaction takes place. Since it is assumed that 

desired motion is prearranged, this section will cover the mathematical expressions for 

moving boundary conditions; Navier-Stokes / Stokes and ALE frame settings with 2D 

and 3D models which are solved via a commercial standalone finite element solver 

packet COMSOL® [92]. MATLAB®, another commercial package for simulations [93], 

is used to communicate with COMSOL®, i.e. without graphic user interface. Details on 

solution method will be given in successive sections. 

 

3.2.1 2D Geometry 

 

2D geometry (hence planar kinematics) has only 3 degrees of freedom for any 

point particle on the plane, i.e. translation on X and Y-axes and rotation around Z-axis. 
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Hence, pump design consists of a stationary waving membrane has only one motion 

design to consider for ALE and one motion design to consider for Stokes equations (3.7) 

which is the choice of governing differential equation for 2D pump simulations. In 

previous chapter waving function has been determined from the stream function Sir 

Taylor (1951) suggested [64]. From Stokes point of view, surface velocity of the waving 

membrane, mesh deformation speed, is also the no-slip boundary conditions for the fluid 

which states that fluid molecules are strictly following the boundary. On the other hand, 

time integration of the same equation gives the Y-translation of the mesh nodes on 

waving boundaries. Since both ends of the waving membrane are considered to be fixed, 

there is a parabolic envelope function (3.10) to determine the maximum amplitude with 

respect to time with an extra ramp function (3.10) to ensure that system starts from 

initial rest position. Hence modified Stokes and ALE boundary condition equations 

(3.12) – (3.16) [89], [94], [95] are given as: 

 

( ) ( )( )o, 4 1f f f f fB X t B X XA A= − ℜ                 (3.10) 

( )min ,1t fℜ=                    (3.11) 

( ) ( ) ( ),
2 , sinD p
f f f fy X t B X t t kXω− = −                 (3.12) 

( )2 , , 0D p
f f fu x y t− =                    (3.13) 

( )
( ) ( ) ( ) ( )

2 , ,

,
sin , cos

fD p
f f f

f
f f f

Y
v X Y t

t

B X t
t kX B X t t kX

t
ω ω ω

− ∂
=

∂
 ∂   = − + − ∂  

         (3.14) 

( )2
m , , 0f f

D pu X Y t− =                    (3.15) 

( )
( ) ( ) ( ) ( )

2
m , ,

,
sin , cos

fD p
f f

f
f f f

Y
v X Y t

t

B X t
t kX B X t t kX

t
ω ω ω

− ∂
=

∂
 ∂   = − + − ∂  

        (3.16) 

 

where Xf  and Yf  represent the time-dependent position of the thin-film with respect to 

the reference frame, fA  is the waving film length and Bo stands for the maximum 
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possible amplitude value.  Note that, although partial derivatives of Yf and B with 

respect to Xf  are non-zero, since Xf  does not change with time, vertical component of 

the film velocity can be calculated from (3.14). 

 

3.2.2 3D Geometry 

 

Pump design in 3D geometry is not any different from 2D geometry except this 

time parabolic shape function is replaced with a hyperbolic shape function to ensure that 

one end is free and third axis comes into picture without any contribution to the motion 

[27] in equations (3.17) – (3.24) as: 

 

( ) ( )o, tanhf fB X t B X= ℜ                  (3.17) 

( ) ( ) ( )3 , , sinD p
f f f fy X t B X t t kXω− = −                (3.18) 

( )3 , , 0D p
f f fu X Y t− =                   (3.19) 

( )
( ) ( ) ( ) ( )

3 , ,

,
sin , cos

fD p
f f f

f
f f f

Y
v X Y t

t

B X t
t kX B X t t kX

t
ω ω ω

− ∂
=

∂
 ∂   = − + − ∂  

        (3.20) 

( )3 , , 0D p
f f fw X Y t− =                   (3.21) 

( )3
m , , 0D p

f fu X Y t− =                   (3.22) 

( ) ( )
2 2

3 3
m m

1 1, , 4 , , 4
4 4

fD p D p
f f f f

YY Yv X Y t v X Y t
H H t

− −
   ∂         = − = −            ∂     

                (3.23) 

( )3
m , , 0D p

f fw X Y t− =                   (3.24) 

 

It is noted that 3
m

D pv − has an extra Y-component in it. This feature will prove useful 

within the section where boundary conditions are described with mesh deformation 

limit. One can notice that same ramp function was used to guarantee that system starts 

from stationary initial conditions. Mesh deformation data can be introduced to the model 

in two possible ways; one is providing the mesh deformation velocity on the boundary, 
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the other is providing the mesh deformation in the domain; although second choice was 

used for 3D pump model, it must be pointed out that either approach must satisfy (3.22), 

(3.23) and (3.24). All boundary conditions and initial condition data for both moving 

and nonmoving boundaries are provided in following sections. 

 

3.3 Moving Boundaries in 3D Swimmer Simulations 

 

Moving boundaries for swimmer constitute a  more complicated problem to handle 

with respect to pump analysis since swimmer geometry is no more fixed and is taking 

full advantage of translation on X and Y-axes and rotation around Z-axis. Since swimmer 

is supposed to move free by means of force interactions with surrounding fluid, 

especially comparing with the pump simulations where structure is kept stationary with 

a presumed anchoring force, boundary condition equations are expected to be more 

complicated as will be observed in the following sections.  

 

3.3.1 ALE Boundary Conditions for Moving Boundaries 

 

Resultant motions of waving action on a tail can be simplified to 2D due to the fact 

that flow in the vicinity is symmetric with respect to XY plane so rotations in X and Y-

axes are ruled out. Hence there are four distinctive motions to solve for and these can be 

expressed in two general equations, (3.25) and (3.26) which are combination of series of 

sub-expressions to mesh deformation [96] as follows: 

 

Sdx dx dxθ= +&                     (3.25) 

wSdy dy dy dyθ⊥= + +                    (3.26) 

 

where X-translation is denoted by dx& , Y-translation is denoted by dy⊥ , rotation 

components are denoted by ,dx dyθ θ and finally waving motion is denoted by wdy . 

These equations are known as the prescribed mesh deformation functions, i.e. motion of 

each mesh node is pre defined by user and as a result need for computational power is 

reduced. Also this method reduces the possibility of “inverted mesh” error which occurs 

if a mesh element gets twisted during deformation procedure [85].  

 



 32

3.3.1.1 Translations 

 

Translation is the net pure displacement of the center of the mass to the swimmer 

in both X and Y-axes governed by the following equations. Unfortunately the below 

predefined mesh equations must satisfy that outer boundaries remain strictly stationary 

and a motion exists depending on swimmer dynamics [96] as: 

 

m xdx x β=&                     (3.27) 

m /Xx F dtdt M= ∫∫                    (3.28) 

( )
X X

S t
F dS= Σ∫                     (3.29) 
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( ) ( )( ) ( )( ) ( )0 0 0 1 1 2 1/ /z z z z z z z
y Y Y Y Y Y Y Y Y Y Y H Y H Yβ = < + ≥ ≤ + > − −                  (3.36) 

M ρϑ=                      (3.37) 

 

Equations (3.27) – (3.37) are mathematical representations of the translational 

deformations of the mesh around the unconstrained swimmer. If swimmer is assumed to 
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be neutrally buoyant than mass, M, can be found by (3.37) [5], where ϑ denotes the total 

volume of the swimmer, i.e. volume of the head plus volume of tail. After determining 

the mass, it is possible to find the acceleration and displacement data of the swimmer, 

on X and Y-axes from equations (3.28) – (3.30) and (3.33) – (3.35), i.e. X and Y-forces 

are calculated from the total stress tensor [68], where n is the surface normal vector. H is 

the height of the domain in which the swimmer is placed. 0 1 2 0 1, , , ,z z z z zX X X Y Y are 

deformation limit coordinates employed in order to specify where to start and where to 

stop the deformation in mesh function β .  ‘ β ’ functions are generally responsible from 

determination of expanding and compressing portions of the mesh domain, namely 

rubber mesh behavior.  

 

3.3.1.2 Rotation 

 

Rotation can be described as the rigid body rotation of the swimmer with respect 

to its own center of mass. The rotational components of the motion of swimmer are 

found in a similar manner (3.38) – (3.45) as: 

 

x xdxθ θ β=                     (3.38) 

( ) ( )( ) cos ( )sinx com com comX X Y Y X Xθ θ θ= − − − + −               (3.39) 

y ydyθ θ β=                     (3.40) 

( ) ( )( )sin ( )cosy com com comX X Y Y Y Yθ θ θ= − − − + −               (3.41) 

/Tdtdt Jθ = ∫∫                     (3.42) 

( )
( )

x yX Y
S t

T dSφ φ= Σ +Σ∫                   (3.43) 

( ) ( )( )
0.52 2 cos arctan ( ) /( )x com com com com t dtY X Y Y X Xφ θ −= + − − +              (3.44) 

( ) ( )( )
0.52 2 sin arctan ( ) /( )y com com com com t dtY X Y Y X Xφ θ −= + − − +              (3.45) 

 

Rotation of the swimmer body with respect to its center of mass is denoted byθ  

and coordinates of center of the mass is given by ( ),com comX Y  where the subscript 

‘com’ stands for the center of mass to the swimmer which is assumed to be where tail 
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and head piece is connected to each other. θ  is updated via, T and J which is the mass 

moment of inertia of the swimmer. Torque is calculated on the swimmer surface (3.43), 

i.e. integration of torque values of each single point over total swimmer surface, S(t), 

employing the current θ  data, i.e. t dtθ − , before the new time step is being commenced. 

Equations (3.28), (3.33) and (3.43) are solved with the help of numerical ordinary 

differential equation solver embedded in COMSOL® [85].  

 

3.3.1.3 Waving Action 

 

 Final motion to model is the wave propagation on tail. Waving action is similar to 

the 3D pump model with minor changes, e.g. most importantly shape function is 

replaced with an exponential expression similar to hyperbolic tangent. Hence one end is 

still free and the other end is fixed at the head piece of the swimmer and a limiting term 

has been added to the equation. Equations for the waving tail portion to the swimmer are 

given as: 

 

w w wdy Y β=                     (3.46) 

( ) ( )( )( ), sin / 0 / 1w com comf f f f f fY B X t t kX X X X Xω= − − ≥ − ≤A A             (3.47) 

( ) 0, 1
C X Xcomsh f

fB X t B e
 
 
 

− − 
= − ℜ  

 
                (3.48) 

( ) ( )( )( )
( ) ( )( )( )

( )( )
( ) ( )( )( )
( )

0 0 0

1 1 1

1 1 1

0

/

/

/

z z z
com com

w z z z
com com

com com f

z z z
com comf f

z

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

X X X X

X X X X X X X X

Z Z

β
 − − < ≥ +
 =
 − − ≥ ≤ 

 ≥ ≤ + +
 
  − − − > + ≤ 

<

A

A A
             (3.49) 

 

where Csh is the shape function constant and the last term, i.e. ( )0
zZ Z< , guarantees that 

waving deformation dissipates before it can reach lateral boundary of the channel 

shaped control volume occupied by fluid, i.e. Ω(t). Note that waving action is limited 
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with the tail length on X-axis and amplitude diminishes long before it reaches to the 

outer surfaces.  

 

3.3.2 Navier-Stokes Boundary Conditions on Moving Boundaries 

 

Designating the Navier-Stokes boundary conditions is easy once ALE expressions 

are cleared for velocities are basically total time derivatives of the given expressions 

(3.25) and (3.26) which is feasible because spatial limitations are clearly defined for 

each component of X and Y-deformations and each deformation has been formulated in 

terms of reference frame coordinates hence for instance there won’t be a waving action 

on the headpiece. Thus, velocities on swimmer surfaces are defined by the following 

equation (3.50) based on (3.25) and (3.26) as: 

 

3 ( )

3

( )3
0

S
D s S t

D s
S

S tD s

d dx
dt

u
dv dy
dt

w

−

−

−

 
 
  
  

=   
  
   
 
  

                 (3.50) 

 

3.4 Setting up the Numerical Scenario 

 

Following the moving boundary interpretation discussion, in this section the 

overall numerical setup is explained. Again, there is pump – swimmer and 2D – 3D 

partition within the context. Boundary conditions and initial conditions for all designs 

will be explained in detail in the light of previous sections. The scenarios explained here 

were given to the software environment by a graphical user interface (GUI) of 

COMSOL® [85].  

 

3.4.1 Pump Simulations 

 

In this section, initial and boundary conditions for 2D and 3D pump models are 

discussed in detail with diagrams. Instead of long versions of the expressions derived so 

far, their representative symbols are used where they fit. On the other hand, the last part 
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of this section contains extra derivations to be used during analysis of the numerical 

results. Additionally, towards the end of each section, mesh details will be given for 

specific designs. 

 

3.4.1.1 2D Pump Model 

 

This section is devoted to articulate the numerical model for 2D pump design. 

Figure 3.3 illustrates the proposed pump design with a waving membrane placed 

concentrically within a channel formed by two plates. Position of an arbitrary location 

on the membrane surface is expressed by reference coordinates. Shape function 

boundary is also shown in the Figure 3.3. Interpretation of 2D models is such that the 

image shown below can be extruded for any preferred distance in Z-direction; each and 

every slice will be identical which is why plates and membrane is considered to be 

infinite in Z-axis. 

 

 
Figure 3.3: 2D pump scheme: Wave propagation on an elastic thin film placed in a 

microchannel filled with an incompressible fluid. 
 

3.4.1.1.1 Spatial and Temporal Boundary Conditions 

 

Figure 3.3 represents the 2D pump mechanism which consists of two stationary 

infinite plates and an inextensible membrane in-between where H is channel height and 

L is the channel length. The domain ( )tΩ  is defined with fixed boundaries, which 

correspond to the channel’s walls, inlet and outlet, and moving boundaries that coincides 

with the film’s surface. Boundary conditions for the Stokes equation are no-slip 

conditions on the plate walls as: 

Y
X 0

zX X=

Xf 
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fX X= + A  Yf 
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( )
( )

( )
( )

,0, , , 0
,0, , , 0

u X t u X H t
v X t v X H t

     
     = =         

                 (3.51) 

 

Velocity on moving boundaries of the actuator film is zero in the X-direction since 

both ends are fixed. Velocity condition for moving boundary, i.e. waving infinite film 

can be expressed as: 

 

( )
( )

2

2

, ,

, ,

D p
f f f

D p
ff f

u X Y t u

vv X Y t

−

−

        =          

                 (3.52)  

 

At the channel inlet and outlet, unless efficiency study is carried out, the neutral 

flow boundary condition is used, which corresponds to vanishing total forces acting on 

the surface as expressed in (3.53) as: 

 

[ ] { }0, , ,X L Y tPI σ n 0
=

− + ⋅ =                   (3.53) 

 

where n is the outward normal of the surface, and σ is the total stress tensor as described 

in previous sections. For efficiency study there need to be a pressure difference between 

channel inlet and outlet, i.e. pressure head. Hence (3.53) is replaced with (3.54) for those 

particular cases as: 

 

( )0, , , ,
0;     out inX Y t X L Y t

P P P P P
= =

      − ⋅ = − ⋅ = ∆ ≡ −I n I n               (3.54) 

 

Note that it is possible to specify the total pressure force on inlet and outlet 

boundaries alternatively for all cases; however, solution may not always converge as the 

pressure constraint becomes too stringent on the flow for all wavelengths, amplitudes, 

and frequencies. Therefore, that condition is relaxed in general parametric study, with 

neutral boundary conditions that the flow is not restricted at the inlet and the outlet of 

the micropump [89], [94], [95] in terms of normal forces (3.54). Initial condition for the 

fluidic domain Ω(t) is the flow at rest, i.e. the velocity components and the pressure are 

all equal to zero at t = 0 as demonstrated: 
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( ) ( ) ( ), , 0 , ,0 , ,0 0u X Y v X Y P X Y= = =                 (3.55) 

( ) ( )m m, ,0 , ,0 0u X Y v X Y= =                   (3.56) 

 

Apparent velocity of the mesh, um in Stokes equations, needs to be calculated due 

to the propagation of the motion of the boundary into the fluid domain Ω(t) as 

explained. The arbitrary Lagrangian Eulerian (ALE) method that incorporates Winslow 

smoothing is used with the following boundary conditions. 

 

( )
( )

2m m
2
mm

, ,

, ,

D pf f

D p
f f

u X Y t u

vv X Y t

−

−

        =        

                  (3.57) 

( )
( )

( )
( )

( )
( )

( )
( )

m m m m

m m m m

0, , , , ,0, , , 0
0, , , , ,0, , , 0

u Y t u L Y t u X t u X H t
v Y t v L Y t v X t v X H t

         
         = = = =                 

             (3.58) 

 

Meshing the waving action is an important concept since sufficient data can be 

obtained if there are at least 5 mesh nodes per half a wave on the waving boundary. This 

model was meshed via triangular elements such that there are total of 2144 mesh nodes 

resulting in 37596 degrees of freedom, i.e. equations to solve at each time step with 10-8 

absolute tolerance under COMSOL® with Stokes Flow and Moving Mesh modules 

coupled together [85]. Simulations employed UMFPACK [97] solver method. A typical 

simulation takes about 6 hours on a single processor of a dual 2.4 GHz 32-bit Xenon 

workstation with 1GB of RAM running on SUSE Linux 10.0 operating system. 

 

3.4.1.1.2 Post-Processing for 2D Pump Simulations 

 

Since numerical study for the proposed 2D pump design was carried out under 

non-dimensional quantities, i.e. 1/ Reµ = and 1ρ =  as discussed in the introduction, 

hence some ground rules, namely dimensionalization tables must be provided before any 

attempts are placed explain the results. Table 3.1 and Table 3.2 represents these rules for 

this particular parametric simulation family where ‘*’ denotes dimensionless quantities 

and subscript ‘0’ stands for characteristic scale [89]. 
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Table 3.1: Characteristic scales and their base values used in simulations and 
comparison of results for 2D pump analysis 

Characteristic scales Representative values 

0Length,  A  2.5×10-4 [m] 

0Velocity,  U  5×10-4 [m/s] 

0Time,   t  0.5 [s] 

Pressure and shear, P0 2
0Uρ , 2.5×10-4 [Pa] for water 

Power, Π0 2 3
0 0UρA ,  7.81 ×10-15 [W] for water 

 

Table 3.2: Default values for geometric variables used in simulations for 2D pump 
analysis, unless otherwise noted. 

Geometric variables (dimensionless) Value 
Channel height, H* 2.5 
Channel length, L* 9.0 

Film’s length, *
fA  5.0 

Maximum amplitude of the deformation 
for general case, Bo

*  
0.0581 

Wavelength, λ* 5.0 

Frequency, f * 1.0 
Wave speed, u* = c* 5.0 
 

The instantaneous flow rate per unit depth delivered by the pump for a given set of 

inputs, i.e. the set of parameterized constants{ }o , ,λ,B f H , is computed by the 

integration of the X-component of the velocity over the inlet or outlet of the channel as 

given by (3.59): 

 

( ) { } ( ) ( ) { }( ), ,

H

in out in out
Y H

Q t Q t t dYU n∓
=−

= = ⋅∫                (3.59) 

 

where nin and nout correspond to inlet and outlet surface normals, pointing outward 

direction, due to which the ‘+’ sign applies for the outlet flow, and ‘–’  for the inlet flow. 

In practice, we also check the conservation of mass by comparing inlet and outlet flow 

rates, the relative difference of which always remains well below the tolerance of the 

numerical procedure, i.e.  2|Qin – Qout|/| Qin + Qout| ≈10-8 <10-3. 
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The time-averaged flow rate is computed from the integral of instantaneous flow 

rate given by (3.59) over at least 3 full periods of plane-wave deformations after a 

steady-periodic state is observed as expressed in (3.60): 

 

{ } { } ( )
3 o

, ,
o

1
3av

t f t

in out in out
t

Q Q Q t dt
f

= +

= = ∫                           (3.60) 

 

Due to relatively short length of the channel and the dominance of viscous effects 

the flow becomes steady-periodic within the first period following the initial ramp of 

plane-wave deformations.  

The rate of work done on the fluid by the deforming motion of the film is 

calculated by the area integral of the product of the film’s y-velocity and the y-

component of the total stress tensor on the film as shown in (3.61): 

 

( ) ( ) ( )
( )

, , , ,Y f f f f
S t

t X Y t v X Y t dSΠ = Σ∫                (3.61) 

 

where Π is the rate of work (power) done on the fluid, also called “shaft power” in 

classical texts such as in Munson et al. (2006), ΣY is the Y-component of the stress 

tensor in 2D [67], [68], which is exerted by the structure on the fluid, and v is the Y-

velocity of the film surface as in: 

 

( ), , 2Y Y Xf f
v u vX Y t P n n
Y Y X

µ µ
   ∂ ∂ ∂  Σ = − + +       ∂ ∂ ∂

              (3.62) 

 

where, µ is the viscosity of the fluid, nX and nY are X and Y-components of the surface 

normal vector n. The time-averaged power is calculated the same way as the time-

averaged flow rate, which is calculated by (3.60).  

Hydraulic efficiency of the pump, η (3.63), based on the imposed pressure load at 

the exit, ∆P, time-averaged flow rate given by (3.60), and time-averaged power based 

on (3.61) are defined as proposed in [5]: 
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η 100 av
av

PQ∆=
Π

                    (3.63) 

 

The hydraulic efficiency given by (3.63), in effect, is the net portion of the rate of 

mechanical work done on the fluid and converted to flow against the pressure load 

imposed at the exit and zero inlet pressure.  

 

3.4.1.2 3D Pump Model 

 

3D pump design is very similar to the 2D design, but it can not be sliced into 

identical pieces since width of the waving membrane is not equal to the width of the 

channel which introduces an extra design parameter, i.e. the ratio between film width 

and channel width, Wf /Wch , instead of channel height, H, and wavelength, λ. Figure 3.4 

illustrates the top view of the channel structure where in fact the pump is divided into 

two parts along its lateral axis in order to reduce computational power during 

simulations since the flow inside the channel is known to be symmetric [95]. Figure 3.5 

is the three dimensional view of the ‘half channel’.  

 

 
Figure 3.4: 3D Pump top-view in the Y-direction on the XZ plane 
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Figure 3.5: 3D Pump, plane-wave deformations traveling in the Z-direction on the thin 

membrane placed in a channel. 
 

3.4.1.2.1 Spatial and Temporal Boundary Conditions 

 

Time dependent deforming domain, Ω(t),  is designated as the volume occupied by 

the fluid inside the channel and um is the mesh deformation velocity of the domain Ω(t)  

[88], which is induced due to moving boundaries of the membrane. Channel walls are 

subjected to no-slip boundary conditions, i.e. fluid molecules on the wall surfaces do not 

move with the flow inside as: 

 

( )
( )

( )
( )

,0, , , , , ( , ,0, ) 0( , , , )
,0, , , , , ( , ,0, ) ( , , , ) 0

( , , , )( ,0, , ) ( , , , ) ( , ,0, ) 0
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uu X Z t u X H Z t u X Y t X Y W t
v X Z t v X H Z t v X Y t v X Y W t

w X Y W tw X Z t w X H Z t w X Y t

                                            

= = = =             (3.64) 

 

where H is the channel height and Wch is the channel width. Similarly to the 2D pump 

model, thin-membrane moves in the Y-direction only leading to zero tangential 

components of the velocity on the membrane, both reference frame and ALE frame 

wise. Boundary conditions for outer extremities are also designated such that 

deformations do not occur but only on XY-symmetry plane where waving action takes 

place. 
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= =

               (3.65) 

 

Boundary conditions on the membrane are given by the velocity equations derived 

in section 3.2.2 in accordance with the no-slip boundary condition as: 
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                 (3.66) 
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                            (3.67) 

 

Mesh velocity vector, um, is not explicitly given as boundary condition because it 

is a prescribed condition [85], i.e. deformation in Ω(t) domain is modeled and 

expression is introduced as mesh deformation xm (3.68) and guarantees that mesh 

deformation is limited within an artificial domain and diminishes before reaching 

channel surfaces as: 
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Inlet and outlet pressures are specified as zero in all simulations (3.69) and (3.70) 

but for the ones used to obtain the flow rate as a function of the pressure head for a 

typical pump as: 

 

0, , ,
0inX Y Z t

P P
=

  − ⋅ = =I n                   (3.69) 

, , ,
0outX L Y Z t

P P
=

  − ⋅ = =I n                   (3.70) 

( )0, , , , , ,
    0; out inX Y Z t X L Y Z t

P P P P P
= =

      − ⋅ = − ⋅ = ∆ ≡ −I n I n              (3.71) 

 

For the flow at rest, all velocity components for material flow and mesh velocity 

with mesh deformation are specified as initially zero as: 

 

( ) ( ), , ,0 , , ,0 ( , , ,0) 0u X Y Z v X Y Z w X Y Z= = =                (3.72) 

( ) ( )m m m, , ,0 , , ,0 ( , , ,0) 0u X Y Z v X Y Z w X Y Z= = =                (3.73) 

( ) ( ), , ,0 , , ,0 ( , , ,0) 0x X Y Z y X Y Z z X Y Z= = =                (3.74) 

 

Finally, the boundary condition for symmetry plane is set as slip/symmetry [85], 

i.e. normal velocity component (3.75) and tangential stress (3.76) component becomes 

zero as: 

 

0⋅ =n U                      (3.75) 

[ ] , , 0.5 ,X Y Z W tch
PI σ t 0

=
− + ⋅ =                   (3.76) 

 

where t is the surface tangent vector designated for XY symmetry plane. Similarly, mesh 

is created such that at least 5 mesh nodes exist per half a wave on the waving boundary. 

3D pump model was meshed by triangular elements such that there are 4980 mesh nodes 

resulting in 222249 degrees of freedom, i.e. equations to solve at each time step, with 

10-5 absolute tolerance under COMSOL® with Incompressible Navier-Stokes and 

Moving Mesh modules coupled together [85]. PARDISO solver [98] was used as 

numerical solution method and simulations were carried out on a double 2.73 GHz 64-

Bit Xenon workstation with 16 Giga-bytes of RAM operating on Suse Linux 10.0 
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incorporating with Intel® Math Kernel Library, namely MKL Blas [99], and each 

simulation took about 1 day to complete. 

 

3.4.1.2.2 Post-Processing for 3D Pump Simulations 

 

Similar to the 2D case, numerical studies for 3D pump design are carried out 

employing non-dimensional quantities, i.e. 1/ Reµ = and 1ρ =  as discussed in 

introduction. Therefore dimensionalization tables must be provided to be able to 

transform numerical data in to meaningful results. Table 3.3 and Table 3.4 represent the 

transformation for this particular parametric simulation family where subscript ‘0’ 

stands for characteristic scale [95]. 

 

Table 3.3: Standard parameters and their units for 3D pump simulations. 

Name, symbol Values/dimensions 

Wch Wf +10-4 [m] 

Channel Height, H 10-4  [m] 

Channel Length, L 4x10-4  [m] 
Membrane Length, fA  10-4  [m] 

Wavelength, λ 0.5 fA   [m] 

Dynamic Viscosity of water, µ 1.12x10-3 [Pa.s] 

Density of water, ρ 999 [kg/m3] 

 

Table 3.4: Characteristic scales and their values for 3D pump simulations. 

Characteristic scales Representative 
values/dimensions 

Length, 0A  10-4  [m] 

Time, 0t  1/f [s] 

Velocity, 0U  0 0t  [m/s] 

Pressure and shear, P0 2
0Uρ  [Pa] 

Power, Π0 2
0 0 0P UA  [W]  
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The instantaneous flow rate is computed for a given set of inputs, i.e. the set of 

parameterized constants{ }o , , /f chB f W W  for this simulation study, by integrating the X-

velocity over the inlet, or outlet of the channel as: 

 

( ) ( ) { , }
0 0

0, , ,
W Hch

in out
Z Y

Q t u Y Z t dYdZ
= =

= ∫ ∫ n                (3.77) 

 

where nin and nout correspond to inlet and outlet surface normal vectors, respectively. 

Time-averaged flow rate is computed from the integration of the instantaneous flow rate 

over at least two full cycles after the flow reaches the steady-periodic state as: 

 

( )
2o

o
2

t f

av
t

fQ Q t dt
+

= ∫                    (3.78) 

 

The Y-component of the stress exerted on the fluid due to the membrane’s motion 

on its surface is determined from the full stress tensor [68] as: 
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  =     
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∂ ∂+
∂ ∂

∂Σ − ⋅
∂

∂ ∂+
∂ ∂

n                  (3.79) 

 

where n is the outward normal of the membrane’s surface. Instantaneous rate of work 

done on the fluid by the deforming membrane is the surface area integration of the 

product of the total Y-stress and the Y-velocity on the membrane as: 

 

( ) Y f
S(t)

t v dSΠ = Σ∫                    (3.80) 

 

Time-averaged rate of work done by the membrane is calculated from: 
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( )
2o

o
2

t f

av
t

f t dt
+

=Π Π∫                    (3.81) 

 

where to stands for the time for ramp function to take the system from initial conditions 

to normal operating parameters. Hydraulic efficiency, η,  of a typical micropump that 

consists of a thin-membrane, which deforms according to traveling-plane waves is 

calculated from the ratio of the fluid power, which is given by the product of the total 

pressure head and the flow rate, and the rate of work done by the membrane as follows 

[5]:  

 

η 100 av
av

PQ∆=
Π

                   (3.82) 

 

3.4.2 3D Swimmer Simulations 

 

Swimmer model is similar to the 3D pump design except swimmer surface is not 

just deforming with time, i.e. S=S(t), it is also in motion with respect to the stationary 

common reference frame, i.e. S=S(X,Y,Z,t). Figures 3.6 and 3.7 illustrate the swimmer 

inside a channel, from XY and ZX planes. Figure 3.8 shows a 3D picture of swimmer and 

the channel it is placed in, sliced in half with respect to XY symmetry plane. Notice that 

tail is a whip like structure when compared with channel and head piece of the swimmer 

is bullet shaped, i.e. combination of a cylinder and half a sphere on top. 

 

 
Figure 3.6: Swimmer and channel, conceptual design, snapshot from XY symmetry 

plane. 

 

Limiting envelop 
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Figure 3.7: Swimmer and channel, conceptual design, top view (ZX plane). 

 

 
Figure 3.8: Swimmer and channel; split in to two symmetric parts with respect to XY 

symmetry plane. 
 

3.4.2.1 3D Spatial and Temporal Boundary Conditions 

 

Once more, time dependent deforming domain, Ω(t),  is refers to the volume 

occupied by the fluid inside the channel and um is the mesh deformation velocity of the 

domain Ω(t) [88], which is induced due to moving boundaries of the swimmer. Channel 

walls are subjected to no-slip boundary conditions, i.e. fluid molecules on the wall 

surfaces do not move with the flow inside (3.83). Also swimmer surface is designated as 

X
Z Xf 

Symmetry 
Axis 

 

Head 
Tail 

Propagation direction 

(Z,X)=(0,0) 

(Z,X)=(Wch,L) 
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no-slip (3.84) that is to say the fluid molecules on swimmer surface are moving with the 

swimmer as in: 

 

( )
( )

( )
( )

,0, , , , , ( , ,0, ) 0( , , , )
,0, , , , , ( , ,0, ) ( , , , ) 0

( , , , )( ,0, , ) ( , , , ) ( , ,0, ) 0

ch

ch

ch

uu X Z t u X H Z t u X Y t X Y W t
v X Z t v X H Z t v X Y t v X Y W t

w X Y W tw X Z t w X H Z t w X Y t
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Neutral flow boundary conditions have been assigned to channel inlet and outlets 

as: 

 

[ ] { }0, , ,X L Y tPI σ n 0
=

− + ⋅ =                  (3.85) 

 

and initial XY symmetry plane boundary condition is designated as slip/symmetry to 

ensure the flow symmetry on Z-axis: 

 

0⋅ =n U                     (3.86) 

[ ] , , 0.5 ,X Y Z W tch
PI σ t 0

=
− + ⋅ =                  (3.87) 

 

Mesh deformation, i.e. xm, in domain Ω(t) is set as prescribed deformation which 

is expressed through (3.25) - (3.49). Deformation vector is given as: 

 

m

0

S

S

dx
dy
 
 =  
  

x                     (3.88) 

 

where deformations are numerically computed and updated by solving ordinary 

differential equations (3.28), (3.33) and (3.42) for each time step based on dynamic 
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forces on swimmer body during simulation. Initial conditions for flow inside the 

channel, swimmer velocity and mesh deformation are set to zero as expected as: 

 

( ) ( ), , ,0 , , ,0 ( , , ,0) 0u X Y Z v X Y Z w X Y Z= = =               (3.89) 

, , ,0 , , ,0 ( , , ,0) 0
f f f f f f f f f

u X Y Z v X Y Z w X Y Z            
= = =              (3.90) 

( ) ( )m m m, , ,0 , , ,0 ( , , ,0) 0u X Y Z v X Y Z w X Y Z= = =               (3.91) 

( ) ( ), , ,0 , , ,0 ( , , ,0) 0x X Y Z y X Y Z z X Y Z= = =               (3.92) 

 

Similarly, mesh is carried out in the same way to get at least 5 mesh nodes per half 

a wave on the waving boundary. 3D swimmer design was meshed by triangular 

elements with a total of 1530 mesh nodes resulting in 33495 degrees of freedom, i.e. 

equations to solve at each time step with 10-4 absolute tolerance under COMSOL® with 

Incompressible Navier-Stokes and Moving Mesh modules coupled together [85]. These 

simulations were carried out on double 2.73 GHz 64-Bit Xenon workstation with 16 

Giga-bytes of RAM operating on openSuse Linux 10.2 incorporating with Intel® Math 

Kernel Library, i.e. namely MKL Blas [99], and each simulation took about 2 to 3 hours 

to complete. 

 

3.4.2.2 Post-Processing for 3D Swimmer Simulations 

 

The most important difference between the swimmer and pump simulations is that 

they are carried out in dimensional form, i.e. the numerical outputs are obtained in SI 

units. Table 3.5 contains all data on simulation constants including geometry and 

material properties. 

 

 

 

 

 

 

 

 



 51

Table 3.5: Simulation constants for 3D swimmer study 

Name, symbol Values/dimensions 

Wch 4x10-3 [m] 

Channel Height, H 3x10-3  [m] 

Channel Length, L 6x10-3 [m] 

Tail Length, fA  1.25x10-3  [m] 

Head Length, Lh 6.25x10-4 [m] 

Head Radius, rh 1.25x10-4 [m] 

Tail (membrane) width, Wf 2x10-5 [m] 

Swimmer Mass Moment of Inertia, J 7.073456x10-12 [kg.m2] 

Mass of the Swimmer, M 1.713071x10-8 [kg] 

Dynamic Viscosity of water, µ 1.12x10-3 [Pa.s] 

Density of water, ρ 999 [kg/m3] 

 

In the simulations, flow velocity inside the channel was not of concern whereas 

average swimmer velocity components were of interest. Hence velocity vector for the 

swimmer is obtained from equations (3.27), (3.32) and (3.42) derived in previous 

sections by integrating and averaging the numerical values over two periods as: 
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t f

av
t

df dt
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θϖ

+

= ∫                   (3.95) 

 

where ϖ is the angular velocity of the swimmer with respect to its center of mass. The 

Y-component of the stress exerted on the fluid due to the waving motion on tail surface 

is determined from the Y-component of the full stress tensor [68] as: 
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where n is the outward normal of the tail’s surface. Instantaneous rate of work done on 

the fluid by the deforming tail is the surface area integration of the product of the total 

Y-stress and the Y-velocity on the tail. Notice that tail velocity is zero if the 

corresponding surface coordinates are not on the tail (3.49). 

 

( ) w
Yw S(X ,Y ,Z ,t)S(X ,Y ,Z ,t) f f ff f f

dYt dSdtΠ = Σ∫                (3.97) 

 

Time-averaged rate of work done by the tail is calculated from integration of 

(3.97) over two complete periods as: 
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where to stands for the time for ramp function to take the system from initial conditions 

to normal operating parameters. The X-component of the stress exerted on the swimmer 

due to the net propulsion is determined from the X-component of the full stress tensor 

[68] as: 
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where n is the outward normal of the membrane’s surface. The instantaneous power to 

overcome the X-component of the total force exerted on swimmer surface is the surface 

integral of the propulsion velocity (3.93) and X-stress (3.99) product as: 

 

( ) 3D s
avX X

S(X,Y,Z,t)
t u dS−Π = Σ∫                (3.100) 

 

which is used to calculate the time averaged power consumption in X-direction. 
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Swimmer efficiency as depicted by Sfakiotakis et al. (1999) known as Froude 

efficiency and is given by (3.102) as: 

 

X

w

Π
η =

Π
                 (3.102) 

 

These final remarks on swimmer efficiency conclude most of the theoretical and 

numerical background on this subject from the fluidic perspective, introducing the 

groundwork of the theoretical and numerical studies. Some additional comments will be 

added into this text in the following chapter as are seem to fit. 
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CHAPTER 4 
 

RESULTS 
 

 

In this section, numerical results to the simulations carried out for both pump and 

swimmer studies are presented extensively. The most intensive study is done for 2D 

pump model. This model is the key element to understand how fluid in the vicinity of a 

waving membrane behaves and what is to expect as well as to compare and check the 

numerical results with the asymptotical results found by Sir Taylor (1951) and Katz 

(1974), later on Childress (1981). 3D pump simulations were mostly the basis to 

explore the 3D behavior of the flow and understand the basic capabilities about the 

FEA tool; what is possible and what is not. 3D swimmer simulations are carried out 

lastly since they demand the most insight and experience about the behavior of flow as 

well as the capabilities of the mesh deformation module used throughout this study. 

The following results represented here are either published in different papers or about 

to be published in time [27], [89], [94], [95], [96]. Keep in mind that each data point in 

the plots correspond to an individual simulation. 

 

4.1 Pump Results 

 

Pump simulations have been carried out for various sets of parameters. 2D pump 

behavior is studied for wavelength, λ, wave amplitude, Bo, channel height, H and 

driving frequency, f . Summing up all the mathematical background for this simulation 

batch, the main partial differential equation to be solved is the dimensionless 

incompressible isothermal Stokes with moving mesh and unsteady flow (4.1) with 

conservation of mass (4.2) incorporating Winslow smoothing method (4.3) as: 
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3D pump behavior is studied for wave amplitude, Bo, membrane width to channel 

width ratio, Wf/Wch and driving frequency, f. The main partial differential equation to be 

solved is the dimensionless incompressible isothermal Navier-Stokes with moving 

mesh and unsteady flow (4.4) with conservation of mass (4.5) incorporating Winslow 

smoothing (4.6). The important difference in between is that the mesh deformation is a 

predefined quantity instead of a boundary condition. 
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4.1.1 2D Pump Results 

 

This section has six sub-components: First of all the dimensionalization procedure 

is overviewed then working principles of the proposed pump system is discussed, then 

the effect of design parameters are studied in a dimensionless manner. After the 

characteristic pump curve is investigated in the fourth part, in the fifth part the 

parametric study is revisited for maximum dimensional quantities. Finally combined 

effects of the design variables for power consumption and flow rate are studied in the 

sixth part. 

 

4.1.1.1 Dimensionalization Process  

 

Dimensionalization procedure is an important element to understand the pump 

behavior for a specific set of design parameters since nondimensional results are the 
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generalized behavior of the proposed pump design in any dimensions as long as the Re 

criteria, i.e. Re < 1, discussed in the introduction is satisfied. Table 3.1 contains the 

characteristic scales for length, 0A , velocity, 0U , time, t0, pressure and shear, P0, and 

power, Π0. Basically dimensionalization procedure is relying on the product of 

nondimensional results with characteristic scales satisfying the Re criteria, 

i.e. *
0dim =A A A , *

0dimU u U= , *
0dim /t t f= , *

0dimP P P= and *
0dimΠ = Π Π  where 

subscript ‘dim’ stands for dimensional quantity. 

 

4.1.1.2 Analysis of Operating Principles 

 

In Figure 4.1, a series of snapshots of the pressure and velocity distribution in the 

channel is shown for f* =1.0, λ* = f
*

 = 5 and Bo
*

 = 0.365.  First half of the full period 

between t* = 3.9 and t* = 4.9 is covered in the snapshots. The other half of the period is 

mirror-symmetric with respect to the channel centerline. At a given instant, such as any 

snapshot shown in Figure 4.1-(a) –(e) , higher pressure takes place on the side of the 

film that pushes the fluid than the side which pulls the fluid.  

In other words, a particular point on the film is exposed to a higher pressure above 

the film than below when the slope of the film at that point is negative and lower 

pressure than the one below when the slope is positive as the waves travel in the X-

direction. These high and low pressure couples move downstream at the same velocity 

as the speed of wave propagation. Once the high (low) pressure point on the film passes 

the midpoint, it starts decreasing its intensity; and reaches to its lowest when the film 

takes the shape of a ‘Mexican hat’ as depicted in Figure 4.1-(c) corresponds to the 

largest deformation of the midpoint. As the wave travels further downstream and the 

slope of the film changes, high and low pressure regions switch sides; high pressure 

takes place under the film and low pressure above the film. It is noted that Figure 4.1-

(d) (t* = 4.3) is the mirror image of Figures 4.1-b (t* = 4.0) and 4.1-e (t* = 4.4) of 4.1-

a (t* = 3.9). 
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(a)  

(b)  

(c)  

(d)  

(e)  

Figure 4.1: 2D Pump; H*=2.5, B* = 0.365, λ*= f* = 5, f * = 1; snapshots of the 
pressure distribution (color shading), and flow velocity (arrows) for t* = 

3.9,4.0,4.15,4.3, and 4.4 respectively from (a) to (e). The length of the arrows is 
proportional to local magnitude of the velocity. 
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Furthermore, in combination with the local vertical motion of the film, net 

pressure difference across the film introduces a moment and is accompanied by 

recirculation in the fluid. As the recirculation moves downstream it results in a net flow 

rate in the channel albeit smaller than the local flow rate taking place above or below 

the film. The relative size of the velocity arrows indicate the local speed in Figures 4.1-

(a) – (e). At any given instant and X-position on the film, Xf, the sum of the two flows 

on both sides of the film must be equal to the total flow rate: 

 

( ) ( ) ( ), ,top f down fQ t Q X t Q X t= +                  (4.7) 

( ) ( ), ,
H

top f f
Y f

Q X t u X t dY= ∫                   (4.8) 

( ) ( )
0

, ,f

Y f

down fQ X t u X t dY= ∫                   (4.9) 

 

Hence, for the flow rate to be positive at all times, either both Qup and Qdown must 

be positive at any position on the film, or when one is negative the other must be 

positive and have a larger magnitude.  

In Figure 4.2, total flow rate and relative variations of Q*
top and Q*

down
 for 

/ 2f fX = A  are shown with respect to time. The net flow rate, Q* (t), remains always 

positive, but oscillates between its minimum, 0.77, and maximum values, 0.99. The 

partial flow rate above and below the film, is also steady-periodic but oscillates 

between –1.25 and 2.02 for the case shown in Figure 4.2. When the flow rate above the 

film reaches its maximum, the flow rate below the film becomes the minimum and vice 

versa. 
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Figure 4.2: 2D Pump; flow rates through top and down side of the elastic film and the 

net flow. 
 

 
Figure 4.3: 2D Pump; flow rates through top and down side of the elastic film and the 

net flow. 
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The Y-profile of the X-component of the fluid velocity at the midpoint of the 

channel is shown for t*= 4.15, 4.3, 4.35, 4.4, 4.45, 4.5, and 4.65 in Figure 4.3. The      

Y-position of the film at the midpoint, ( )2,f fY t  is maximum when t* = 4.15 and 

minimum when t* = 4.65. At t* = 4.15, the X-component of the velocity is in the 

negative direction above the film, and in the positive direction below confirming 

observations in Figure. 4.2. At t*= 4.3, the flow passing the midpoint slows down in 

magnitude both above and below the film; this corresponds to diminishing intensity of 

the high and low pressures. At t* =4.35, flow above the film changes its direction near 

the film; net flow rate above the film at that time is about zero as shown in Figure 4.2. 

At t* =4.40, deformation of the film at the midpoint is zero and the X-velocity profiles 

above and below the film are almost identical and positive corresponding to Q*
top = 

Q*
down = 0.494 as in Figure 4.2. At t* =4.45, velocity profile above (below) the film is 

similar to the velocity profile below (above) the film at t* = 4.35. This is also valid for 

t* = 4.50 and 4.30, and t* = 4.65 and 4.15. From that time onward, the evolution of the 

velocity profile is reversed until t* = 5.15, when the cycle is completed. 

Figures 4.4-(a) and 4.4-(b) depict the pressure distribution and Figure 4.4-(c) 

shows the u–velocity and streamlines in the channel for the case which corresponds to 

small wavelengths compared to the length of the film. Namely, we have * * 1 11fλ =A , f* 

= 1, and B*
0 = 0.058. In this simulation, the length scale is kept the same as in Table 1, 

and the time scale is, t0 = 5.5 s. According to Figure 4.4-(a), high and low pressure 

regions are distributed in the close vicinity of the film on both sides. Similar to the 

response shown in Figures 4.4-(a) – (e), pressure is higher when the slope of the surface 

is positive and lower when negative above the film. However, there are multiple pairs 

of high and low pressure regions on both sides of the film corresponding to a multitude 

of waves on the film as shown in Figure 4.4-(a). Maximum and minimum pressures are 

closer to deformation peaks. Multiple snapshots are omitted, as the pressure changes 

locally near the film only. In fact, in Figure 4.4-(b), the pressure distribution along the 

channel is shown at Y* =2.0 and t* = 4.0 (see section A-A in Figure 4.4-(a)) – it is noted 

that, this profile remains almost steady and does not change significantly in time.  
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Figure 4.4: 2D Pump; for / fλ A = 11, f * = 1, Bo
* = 0.058 at t* = 4.0: (a) color shaded 

pressure distribution; (b) pressure plot at section A-A (a); (c) color shaded X-velocity 
distribution and streamlines. 

 

The pressure profile in Figure 4.4-(b) is typical for a dynamic pump placed in a 

channel, where the pressure first drops due to friction in the channel prior to the 

position where pumping takes place, increases due to pumping action, and, finally, 

decreases again due to friction in the exit portion. Corresponding X-velocity 

distribution and streamlines are shown in Figure 4.4-(c), which does not vary 

significantly in time near the walls confirming a steady flow in that region but varies 

with respect to traveling waves near the film. Inlet and exit portions of the channel 

correspond to almost steady-laminar parabolic profiles as indicated by color shading of 

the X-velocity. Moreover, there is a steady vortex pair in the middle of the channel on 

both sides of the film near the walls indicating that average X-velocity must be higher 

near the film. In essence, streamlines indicate that the time-averaged velocity 

distribution is similar to that of converging-diverging nozzles.  

 

(a) 

(b) 

(c) 
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A special case of the flow regime takes place when the amplitude of the waves is 

comparable to the height of the channel. In the limit, when Bo = H/2 the pump in fact 

works as a displacement pump, where the deformation waves on the film carries the 

fluid steadily.  

Another flow regime occurrence is an expected case when the wavelength is 

much larger than the length of the film. In this case, the net flow rate goes to zero and 

the effectiveness of the pump diminishes. The film simply deforms according to um 

with a parabolic deformation profile not yielding a significant net flow. 

 

4.1.1.3 Parametric Study-1: Parametric Analysis of Time-Averaged Results 

 

Figure 4.5-(a) depicts the relationship between the channel-height-to-amplitude 

ratio, H/Bo, and the time and area-averaged velocity, * * * * *
avu U U Q H= = = , 

which decreases with the square of the H/Bo ratio. Katz (1974) observed that velocity 

normalized with the speed of wave propagation is proportional to the square of Bo/H 

ratio when  / (1)H Oλ ∼  according to: 

 

( )
1
2

o 2

U
c H B
∞ Λ

=
+Λ

                            (4.10) 

 

where ‘∞ ’ denotes the upstream velocity property, ‘ ’ stands for time averaged 

quantity as subscript ‘av’ or ‘ ’ used interchangeably so far throughout this text, c is 

the wave propagation speed (= λf), Λ1 and Λ 2 are positive constants and U is the 

generic velocity expression which corresponds to upstream velocity without 

orientation. This behavior is consistent with what is reported by Katz (1974) in the 

analysis of the propulsion of an infinitely extending sheet placed between parallel 

plates and subject to traveling deformation-waves. This relationship is predominant 

regardless whether the amplitude or the channel height is varied in simulations. 

Moreover, in Figure 4.5-(a), it is shown that the average velocity converges to the 

displacement-pump limit, which is characterized by the amplitude of the waves being 

equal to the half of the channel’s height. In that case, essentially, the average velocity 

of the flow is the same as the propagation speed of the waves.  
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Figure 4.5: 2D Pump; (a) parametric dependence of the time and area averaged velocity 
with respect to channel-height to wave amplitude ratio, H/Bo (b) parametric dependence 

of the time-averaged power exerted on the fluid by the film with respect to H/Bo for 
varying H and Bo. 

 

(a) 

(b) 
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In Figure 4.5-(b), time-averaged nondimensional rate-of-work done on the fluid 

by the elastic film is plotted against the H/Bo ratio. Rate of work decreases proportional 

to the square of H/Bo ratio. This behavior is observed in the case for variable amplitude 

simulations.  

In effect, this result agrees qualitatively well with the asymptotic analysis 

presented by Childress (1981) for the time-averaged work per unit horizontal area per 

time for the infinite sheet, which results in quadratic dependence of power on the 

amplitude as: 

 
2 2

o2 BC ω
∞Π = µ

λ
                                                                       (4.11) 

 

where the proportionality constant, C is equal to one for the infinite sheet. Furthermore 

variable height runs deviate from the square dependence due to the relative change in 

other variables such as λ, which has a profound effect on the flow regime as discussed 

earlier and shown in Figures 4.1-(a) – (e) and Figures 4.4-(a) – (c).  

In Figure 4.6-(a), the relationship between the time-averaged flow rate and the 

frequency of the deformation waves is shown. It is clear that the average flow rate tends 

to increase linearly with the frequency. This is also observed by Sir Taylor (1951) in 

the analysis of swimming microorganisms, which is modeled via a sheet of infinite 

extension that propagates deformation waves in the opposite direction to the swimming 

direction in an infinite medium without walls. In Taylor’s (1951) analysis the average 

velocity of the microswimmer has a leading term proportional to the frequency of the 

deformations on the film as: 

 
2

2 2 o
o

BU k B c ω
∞ ≈

λ
∼                  (4.12) 

 

Based on (4.10) and (4.12) it is plausible to expect the average velocity, hence the 

flow rate for constant channel height, constant amplitude and constant wavelength to 

have a linear dependence on the frequency.  
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Figure 4.6: 2D Pump; (a) time-averaged flow rate as a function of the frequency of the 
sinusoidal deformations on the film; (b) time-averaged dimensionless power exerted on 

the fluid as a function of the frequency. 
 

(a) 

(b) 
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Figure 4.6-(b) demonstrates the behavior of time-averaged nondimensional power 

exerted on the fluid, which is calculated from (4.12), with respect to driving frequency. 

Power exerted by elastic thin film tends to increase with the square of frequency, which 

qualitatively agrees well with the result of the analysis presented in Childress (1981) 

and given by (4.11).  

In Figure 4.7-(a), average flow rate is plotted against the wavelength. As reported 

in Figures 2 and 3, the wavelength, in fact, determines the flow regime that takes place 

in the channel. For small wavelengths, almost-steady flow rate in the channel decreases 

slowly with the wavelength agreeing well with the result given by (4.12). 

As the wavelength becomes comparable with the separation of channels, which is 

half of the length of the film, steady-periodic flow rate increases proportional to the 

square root of the wavelength rather than the linear dependence suggested by (4.10). 

Note that the analysis, which is the basis of the result presented in (4.10), is for an 

infinitely long sheet unlike the finite film considered here and for which / (1)H Oλ ≈ . It 

is presumable to suggest that the deviation is due to film’s finite-length, and further 

studies are necessary to elucidate this behavior. Moreover, due to the finite length of 

the film further increase of the wavelength is expected to reduce the flow rate as the 

limiting envelope around the waving action reduces the effectiveness of the wave 

propagation. 

In Figure 4.7-(b), time-averaged power is plotted as a function of the wavelength, 

λ. For small wavelengths, / 2fλ ≤ A , nondimensional power exerted on fluid by the 

film decreases linearly with respect to the wavelength according to (4.12). But 

for / 2f Hλ ≥ =A , a different pattern emerges and the power linearly increases with the 

wavelength. According to the analysis carried out by Katz (1974), when the wavelength 

is comparable to the separation between the channel walls, leading order of the average 

rate of work is given by: 

 
2 2 2 2, o oH c kB Bω∞ λΠ µ = µ λ∼ ∼                (4.13) 
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Figure 4.7: 2D Pump; (a) the time-averaged flow rate as a function of wavelength to 

film’s length ratio; (b) time-averaged power exerted on fluid by the film as a function 
of wavelength to film’s length ratio. 

 

(a)  

(b) 
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For that regime, the pressure itself varies proportional to the wavelength. For very 

large wavelengths compared to the film’s length, uniform steady flow can not be 

maintained since the motion of the finite film turns into a simple uniform vertical 

motion of a parabolic curve and the propagation of waves diminishes. This behavior 

manifests itself as leveling off of the curve for large wavelengths in Figure 4.7-(b). 

 

4.1.1.4 Characteristic Pump Curve 

 

In Figure 4.8, the pressure load and the efficiency are plotted against the time-

averaged flow rate for the base case, for which λ = f = 1.25 mm, Bo
 = 14.5 µm and f = 

2 Hz. The performance is that of a typical dynamic pump without inertial effects as the 

pressure difference due to higher exit pressure varies linearly with the flow rate, and, 

hence, the efficiency of the pump is given by a perfect parabola. The maximum time-

averaged flow rate is obtained for zero pressure load at Qmax = 0.42 µl/min, and the 

maximum pressure load for the zero time-averaged flow rate is 0.99 mPa. The pump 

operates at constant fluid power (rate of work done on the fluid by the film) of 2.60 pW 

with small variations (<10-2 pW) as the pressure load changes.  The energy of the flow 

is distributed between the kinetic energy of the flow and the pressure according to the 

pressure load as expected. The maximum efficiency is obtained at the average flow rate 

that equals the half of the Qmax as 0.067 %; based on the linearity between the pressure 

load and the average flow rate. To calculate the efficiency, we also have: 

 

max max
max

max
100

4
P Q

=
∆η

Π
                 (4.14) 

 

where maxΠ is the time-averaged maximum power exerted on fluid in Ω(t) for specified 

wavelength, λ, frequency, f, and amplitude, Bo. The power, maxΠ , remains nearly 

constant as the flow rate or the applied pressure varies. Note that, under varying power 

conditions with the flow rate and the pressure load for a fixed operating condition, 

linear dependence between the pressure and the average flow rate observed in Figure 

4.8 would no longer be valid. 

 

 



 69

 
Figure 4.8: 2D Pump; inlet-to-outlet pressure increase, ∆P, and efficiency, η, vs. time-

averaged flow rate, Qav, for the base case, λ = 125 µm, Bo
  = 14.5 µm, and  f = 2Hz; 

results indicated with symbols are from numerical simulations, and dashed lines 
indicate the linearity of ∆P with Qav. 

 

4.1.1.5 Parametric Study-2: Maximum Values  

 

All results discussed under the following section correspond to the maximum 

values represented in characteristic pump curve plot (Figure 4.8) and they are all in 

dimensional form. In Figures 4.9, 4.10 and 4.11, variations of the maximum values of 

time-averaged flow rate for zero ∆P in the channel (in Figures 4.9-(a), 4.10-(a) and 

4.11-(a)), the maximum pressure difference for zero time-averaged flow rate (in Figures 

4.9-(b), 4.10-(b) and 4.11-(b)), the rate-of-work done on the fluid (in Figures 4.9-(c), 

4.10-(c) and 4.11-(c)), and maximum pump efficiency (Figures 4.9-(d), 4.10-(d) and 

4.11-(d)), an extra quantity, are plotted against the wavelength in Figure 4.9, frequency 

in Figure 4.10 and the amplitude in Figure 4.11 respectively. In Figures 4.9, 4.10 and 

4.11, the base case conditions are set to λ = 1.25 mm, Bo
 = 14.5 µm and f = 2Hz. 
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For shorter wavelengths than half of the film’s length, the maximum flow rate and 

maximum pressure load decrease with increasing wavelength as depicted in Figures 

4.9-(a) and 4.10-(b). For the same range of wavelengths, the power exerted on the fluid 

tends to decrease with a faster rate than the one for Qmax and ∆Pmax as in Figure 4.9-(c). 

Hence the efficiency tends to decrease with a rate similar to that of Qmax and ∆Pmax. 

Unfortunately, it is harder to quantify the rates especially for Qmax and ∆Pmax, as there 

are not enough data points especially for short wavelengths due to numerical instability 

of the solutions as the resolution of each wave requires increasing number of mesh 

nodes on the film, which, in turn, poses a difficulty in deforming mesh calculations. 

However for the power, one can argue that Πmax is proportional to 1/λ. 

For larger wavelengths than about the half of the film’s length, in a relatively 

small intermediate regime Qmax and ∆Pmax increase with the wavelength for up to about 

twice the length of the film as can be observed in Figures 4.9-(a) and 4.9-(b). Further 

increase in the wavelength do not yield larger flow rates or pressure increase in the 

channel due to the shape function which results in a simple vertical motion of the film 

without an effective wave propagation and, hence, pumping.  

In that window, power exerted on the fluid observed in Figure 4.9-(c) increases 

with the wavelength with a faster rate than that of Qmax and ∆Pmax. In combination of 

responses of the flow rate, pressure and the power, the efficiency of the pump drops 

with the increasing wavelength as in Figure 4.9-(d). 

In Figure 4.10, the frequency is varied while the wavelength and the amplitude 

are kept at their reference values. Hence, the flow regime corresponds to the case for 

large wavelengths. Increasing the frequency results in increased flow rate, pressure and 

the power, but efficiency remains unaffected from the frequency variations. From 

Figures 4.10-(a) and 4.10-(b), one can easily inspect that the Qmax and ∆Pmax vary 

linearly with the frequency, i.e. Qmax ~ f, and ∆Pmax ~ f. From Figure 4.10-(c), it is 

observed that the power exerted on the fluid varies with the square of the frequency, i.e. 

Πmax ~f 2. Therefore the efficiency remains constant at its reference value (.067 %). 

Lastly, it is observe that the flow rate in Figure 4.11-(a), pressure in Figure 4.11-

(b), power 4.11-(c), and, hence, the efficiency in Figure 4.11-(d) increase with the 

square of the amplitude, i.e. 2 2 2 2
max max max0 0 0 0 .~ , ~ , ~ , and  η ~ Q B P B B B∆ Π  

These results are all in agreement with the results discussed so far, i.e. the asymptotic 

results for upstream velocity and power consumption are totally match with the 
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numerical results. Moreover, offered results exhibit an inverse relationship between the 

power and the wavelength capturing the asymptotic result reported by Childress (1981) 

for infinite-sheet in infinite-medium in full for small wavelengths compared to the 

film’s length and the channel height as in Figure 4.9-(c). Hence the disagreement 

between small and large wavelengths stated in previous sections is resolved by numeric 

investigation for infinite waving sheet (membrane). 

 

 

Figure 4.9: 2D Pump; flow rate for zero pressure load (a), pressure rise for zero flow 
rate (b), pressure (c) and efficiency (d) vs. the wavelength. 

 

 

 

(a) (b)

(c) (d) 
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Figure 4.10: 2D Pump; flow rate for zero pressure load (a), pressure rise for zero flow 
rate (b), pressure (c) and efficiency (d) vs. the frequency. 

 

 

(c) 

(a) (b) 

(d) 



 73

 

Figure 4.11: 2D Pump; flow rate for zero pressure load (a), pressure rise for zero flow 
rate (b), pressure (c) and efficiency (d) vs. the amplitude. 

 

4.1.1.6 Parametric Study-3: Combined Effects of the Design Parameters 

 

Final comments on parametric 2D pump results will be on ‘combined effect 

constants’, quantities generated to explain the pump behavior in a combination of all 

design parameters discussed so far. In Figure 4.12-(a), combined effects of the 

amplitude and the frequency for constant wavelength and channel height is put together 

to characterize the flow rate.  From what are depicted in Figures 4.5-(a), 4.6-(a) and 

4.7-(a), a flow rate parameter is defined as follows: 

 

(a) (b) 

(c) (d) 
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( )* * *o
oQ

BC B
H

ω = λ 
 

               (4.15) 

 

Dimensionless average flow rate which is based on the scales provided in Tables 

3.1 and 3.2 scales with the flow rate parameter, CQ, given in equation (4.15).  As the 

wavelength dictates the flow regime of the finite-length film, only a portion of the 

wavelength simulations match to this general behavior for wavelengths comparable to 

the base case, which is used in other simulations for amplitude, frequency and the 

channel height.  

In Figure 4.12-(b), time-averaged power exerted on the fluid is plotted against a 

power parameter that puts together the parametric behavior of nondimensional power, 

which is shown in Figures 4.5-(b), 4.6-(b) and 4.7-(b), as given by: 

 
2

2*oBC
H H

ωΠ
λ   =   

  
                (4.16) 

 

All four curves coincide except for the parametric wavelength curve, which 

matches to others only partially, as also observed in Figure 4.12-(b) and discussed 

above. The power coefficient given by (4.16), in effect, is derived for constant 

viscosity. It is clear that the power exerted on the fluid must scale with the viscosity of 

the fluid linearly. In fact, an alternate and common nondimensionalization of the 

pressure and shear stress is based on the scale, µU0/ℓ0. If the viscosity were used in 

nondimensionalization of stress variables and the power, then, without loss of 

generality (4.16) would have been used directly without including the effect of 

viscosity additionally in practical calculations.  
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Figure 4.12: 2D Pump; (a) combined effects of the amplitude and the frequency for 
constant wavelength and channel height on time averaged flow rate vs. the flow rate 

parameter; (b) combined effects of the amplitude and the frequency for constant 
wavelength and channel height on time averaged power exerted on fluid vs. the power 

parameter. 
 

 

(a)  

(b)
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4.1.2 3D Pump Results 

 

The general idea presenting 2D pump results in previous section was to show that 

it is possible to push the fluid in the vicinity of a waving boundary. This section is 

dedicated to elaborate the flow and pump characteristics when both channel and waving 

membrane is finite. Simulations carried out with dimensionless parameters and results 

transformed into dimensional form later on with a similar procedure described in the 

previous section. 

 

4.1.2.1 Dimensionalization Process 

 

Dimensionalization procedure for 3D pump design is carried out for the constants 

that are given in Table 3.4. To summarize once more, to get the dimensional quantities 

out of dimensionless simulation outputs, it is essential to invoke scaling factors 

satisfying the Re < 1 condition. Hence dimensional results can be obtained by 
*

0dim =A A A , *
0dim u U=U , *

0dim /t t f= , *
0dimP P P= and *

0dimΠ = Π Π  where 

subscript ‘dim’ stands for dimensional quantity. 

 

4.1.2.2 Analysis of Operating Principles 

 

Vertical motion of the fully submerged elastic membrane causes dynamic high and 

low pressure regions resulting in a flow between them. As the deformation shifts 

position accordingly with the propagation of traveling waves, high and low pressure 

regions in the vicinity of the membrane demonstrate consequential shifts which result in 

a net flow in propagation direction. This relation between pressure and deformation was 

deduced by means of work exerted on the fluid by the deforming membrane. 

Numerical results that are presented here are obtained for water flow in a pump 

whose dimensions are listed in Table 3.3. Nondimensional equations are used in the 

simulations. Results presented here depend on parameterized flow conditions namely 

the wave-amplitude, Bo, excitation frequency, f, and the ratio of the widths of the 

membrane and the channel, Wf /Wch. Time-averaged quantities are obtained from 

integration over the last two cycles. Unless otherwise noted the base case used in the 

simulations corresponds to λ = 50 µm, Bo = 5 µm, f = 112 Hz, and Wf /Wch = 0.5.  
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In Figures 4.13 and 4.14 pressure distribution on the center symmetry plane with 

deformed membrane structure and instantaneous streamlines are shown for the base 

case at t = 6. Pressure variations take place in the vicinity of the membrane away from 

the top and bottom walls of the channel parallel to the flow direction and away from the 

channel entrance and exit. Therefore it is reasonable to claim that there is a uniform 

flow at the channel entrance and exit owing to this localization of the pressure 

variations in the membrane’s vicinity. Instantaneous streamlines are uniform near the 

inlet, exit and away from the membrane. Furthermore, having sides of the membrane 

exposed to the flow results in downstream vortex formations around and behind the 

membrane. As membrane width gets comparable with the channel width, lateral wall 

shear effects cause a sharper velocity gradient in Z-direction due to the no-slip 

boundary conditions invoked on both membrane and wall surfaces. This effect would 

trigger an enlarged high-velocity-zone display on exit velocity profile. 

Figures 4.15, 4.16 and 4.17 demonstrate the velocity profiles on different sections 

of the half-channel via arrow plots for λ = 50 µm, Bo = 5 µm, f = 112 Hz, and Wf/Wch = 

0.5 with Wch = 200 µm at simulation time t = 6. Velocity field is steady in both inlet and 

outlet of the channel despite the large vortices formed by the free end of the membrane.  

 

 
Figure 4.13: 3D Pump; snapshot of the streamlines from inlet and outlet of the channel 
both ending on bottom surface of the membrane, pressure distribution on the symmetry 

plane, and the exit velocity distribution at t = 6. First color bar stands for the 
nondimensional velocity profile on outlet half plane; second color bar stands for 

nondimensional pressure profile on the symmetry plane. 
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Figure 4.14: 3D Pump; snapshot of the streamlines from inlet and outlet of the channel 
both ending on top surface of the membrane with the circulation formed behind the 
membrane ending on outlet, pressure distribution on the symmetry plane, and the 
velocity distribution at the exit. First color bar stands for nondimensional velocity 

profile on outlet half plane; second color bar stands for nondimensional pressure profile 
on the symmetry plane. 

 

 
Figure 4.15: 3D Pump; normalized velocity vectors on YZ planes at X = -2, -1, 0, 1, 2. 

 

 
Figure 4.16: 3D Pump; normalized velocity vectors on XZ plane at Y = -0.1. 
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Figure 4.17: 3D Pump; normalized velocity vectors on XY plane at Z = 0.6. 

 

4.1.2.3 Parametric Study: Parametric Analysis of Time-Averaged Results 

 

Figure 4.18, demonstrates the relationship between the amplitude and the average 

flow rate for all the variables fixed at the base case except the amplitude. As amplitude 

increases the average flow rate increases quadratically with the amplitude which is in 

agreement with the asymptotical predictions [64], [70] and earlier published 2D 

numerical results [95]. Slight deviation from quadratic relationship at large amplitudes 

is due to increased interaction of the three-dimensional flow with the channel walls. 

Further simulations are necessary to elucidate this slight leveling behavior.  

 

 
Figure 4.18: 3D Pump; amplitude vs. average flow rate for Wf/Wch =0.5 and f = 112 Hz. 
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Figure 4.19 demonstrates the relationship between the wave-amplitude, Bo and the 

time-averaged power consumption, Πav, which is also quadratic with the amplitude, and 

in agreement with the asymptotic solutions given by Childress (1981) and two-

dimensional simulation results [95].  

 

 
Figure 4.19: 3D Pump; amplitude vs. average power consumption for Wf/Wch =0.5 and f 

= 112 Hz. 
 

Figure 4.20 demonstrates the relationship between the average flow rate and the 

frequency for all the variables fixed at the base case except the frequency. The average 

rate of work done on the fluid Πav varies quadratically with the frequency as depicted in 

Figure 4.21. The effect of the frequency, also, agrees well with the asymptotic results 

[64], [70] and previous numeric results, where small amplitude choice was 

mathematically justified and numerical results obtained by the previous 2D simulations 

[95]. 
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Figure 4.20: 3D Pump; frequency vs. average flow rate for λ = 0.5 f = 0.5H = 0.5Wf = 
50 µm, Wf/Wch =0.5 and Bo = H/20 = 5 µm. 

 

 
Figure 4.21: 3D Pump; frequency vs. average power consumption for Wf /Wch = 0.5 and 

Bo = 5 µm. 
 

Figures 4.22 and 4.23, display the effect of the ratio of the membrane’s width to 

the channel width on the average flow rate and the rate of work done on the fluid. In 

simulations that correspond to data points on the graph, width ratio is adjusted by means 

of adjusting the membrane’s width and fixing the other variables at the base case. As the 
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width of the channel approaches to the width of the membrane, i.e. 1f chW W → , not 

only the flow rate (Figure 4.22) but also the average power increases rapidly, hinting 

that the gap between the membrane and the channel’s side walls play a very important 

role in addition to increasing membrane area. In fact, when the ratio goes to zero, 

i.e. 0f chW W → , both the power and the flow rate increases almost linearly.  

The average flow velocity, which is given by Qav /Ach, is plotted against the width 

ratio in Figure 4.24. Clearly, as the ratio increases, i.e. the membrane width increases, 

the membrane becomes more effective in propulsion. For large width ratios, Wf /Wch > 

0.5, as the width ratio decreases, momentum flux into the Z-direction drains the 

available mechanical energy and reduces the net propulsion. On the other hand, for 

small width ratios, the average velocity tends to approach a limit, which, presumably, 

corresponds to the average velocity of the swimmer in an infinite medium.  

Area averaged power consumption, which is computed by Πav/Af, is plotted 

against the width ratio in Figure 4.25. Even though total power consumption increases, 

power consumption per unit area drops almost linearly for small width ratios, which 

may be due to decreasing flow in the Z-direction. For large width ratios, area-averaged 

rate-of-work done on the fluid does not vary significantly. 

As membrane width becomes comparable with channel width, flow rate and total 

power consumption approaches to a limit value as can be observed in Figures 4.22 and 

4.23. Elimination of parasitic effects results in reduced power consumption per unit 

area as illustrated in Figure 4.25. 
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Figure 4.22: 3D Pump; Wf/Wch vs. average flow rate for Bo = 5 µm and f = 112 Hz. 

 

 
Figure 4.23: 3D Pump; Wf/Wch vs. average power consumption for Bo = 5 µm and          

f = 112 Hz. 
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Figure 4.24: 3D Pump; Wf/Wch vs. average velocity for Bo = 5 µm and f = 112 Hz. 

 

 
Figure 4.25: 3D Pump; Wf/Wch vs. power consumption per unit area for Bo = 5 µm and   

f = 112 Hz. 
 

4.1.2.4 Characteristic Pump Curve 

 

Pressure head and efficiency dependency on the flow rate are shown in Figure 4.26 

for the micropump that operates at the base case, for which Bo = 5 µm, Wf/Wch = 0.5 

with and f = 112 Hz. For simulations corresponding to the date points in the figure, 
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outlet pressure is kept at zero and the inlet pressure is varied. Calculated flow rates for 

the prescribed pressure difference between the exit and the inlet, ∆P= Pout –Pin, are 

shown in Figure 4.26. Furthermore, the efficiency of the micropump is calculated and 

plotted as a function of the average-flow rate on the right-axis of the plot in Figure 4.26. 

Similarly to an ideal pump, the pressure head vs. the flow rate is linear, and the 

efficiency is parabolic. The maximum flow rate for zero pressure head and the 

maximum pressure head for zero flow-rate are about 0.04 µl/min and 40 mPa 

respectively. Moreover, the maximum efficiency takes place at the half of the maximum 

flow rate, i.e. Qav = 0.02 µl/min, and is 0.085%. Note that, in general, micro fluidic 

devices have small efficiencies because of the dominance of the viscous effects [10]. 

 

 
Figure 4.26: 3D Pump; pressure head (blue circles, left axis) and efficiency (green 
circles, right axis) of the micropump as a function of the flow rate. Each data point 
corresponds to a numerical simulation for which pressure boundary conditions are 

specified according to the corresponding pressure head. 
 

4.1.3 Final Remarks for Pump Analysis 

 

A biologically inspired micropump actuation mechanism is reported in this 

section. The effects of some of the performance variables such as the channel height, 

wavelength, wave amplitude, excitation frequency and width ratio between membrane 

and channel are demonstrated by means of two-dimensional and three-dimensional time-
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dependent simulations of the flow. Flow induced by traveling-plane-wave deformations 

on the thin-membrane that has finite dimensions and is placed inside a channel is 

modeled by incompressible isothermal Stokes and Navier-Stokes equations on a 

deforming mesh due to moving boundaries. In the former Stokes case, deformation of 

the mesh is given as boundary condition and for the later Navier-Stokes case mesh is 

given as prescribed condition and an arbitrary Lagrangian Eulerian method is used to 

ensure the physical solution via Winslow smoothing method in each case.  

Based on our numerical results, the flow rate increases linearly with the excitation 

frequency and quadratically with the amplitude. Similarly, the dependence of the rate-

of-work done on the fluid is quadratic with both the frequency and the amplitude. The 

average velocity of the flow increases almost linearly with the increasing width of the 

membrane. However, the area-averaged power tends to converge to a limit as the width 

ratio increases. Therefore, from the geometric design point-of-view, it is recommended 

to limit the space between the membrane and the channel’s side walls for better 

efficiency and higher flow rates.  Although 3D and 2D interpretations are different, i.e. 

one is an arbitrary slice of an infinite medium, other is a finite medium respectively; 

numerical results clearly show that the flow induced by the waving motion on a 

membrane surface has the properties suggested by the asymptotical results to the 

analytical studies carried out long before [64], [70] and [66]. 

Finally, the performance of a typical micropump that uses traveling-plane-wave 

deformations on a thin membrane inside a channel for flow and pressure head is 

obtained and reported. The micropump has similar characteristics compared to its 

counterparts using other mechanisms.    

 

4.2 3D Swimmer Results 

 

In contrast with pump simulations, 3D swimmer simulations were carried out for 

dimensional quantities with relatively larger dimensions. Head piece is bullet shaped 

geometry and tail is a conical structure, different from the 2D case as shown in Figures 

4.22-4.25 which is supposedly the more realistic case. It is decided to choose the 

geometry to the head piece with relatively larger cross-sectional area since head is 

supposed to home the controller electronics and power supply system when swimmer is 

built although exact size is uncertain for now. It is noted that no control algorithm is 
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utilized in this study. Once more, the main equations solved for this simulation batch are 

as follows: 

 

2
r
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4.2.1 Analysis of Operating Principles 

 

 
Figure 4.27: 3D swimmer; wave propagation and swimmer propulsion takes place on 

the same axis but opposite directions (Simulation time t=20). 
 

In Figure 4.27 net motion of swimmer surface is illustrated. Notice that 

propagation and net propulsion action takes place on opposite directions but on the 

same axis. Base case run is made for λ = 625 µm, Bo = 45.625 µm, f = 1 Hz and Csh = 6. 

Time averaged quantities are obtained from integration over the last two cycles long 

after initial ramp is completed. All propagation basics are a kin to the pump models 

except for propulsion phenomenon. Vortex formations occur behind the swimmer as 

can be observed in Figure 4.28. Vortex formations in microrealm are energy draining 

phenomenon while in macrorealm it is possible to extract power from vortices causing 

tremendous swimming efficiencies [100].  
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Optimum flow efficiency occurs for combined values of 0.4>St>0.25 and 

106>Re>104 [63] which obviously is the reason why it is not included within the 

microflow context in detail. While forward motion takes place head piece pushes the 

fluid on the propulsion direction due to no-slip conditions as illustrated in Figure 4.29.  

 

 
Figure 4.28: 3D Swimmer; normalized streamlines around the swimmer, view from XY 

plane. Notice that vortex formations do not take place in front of the swimmer 
(Simulation time t=2 sec). 

 

Flow fields illustrated in Figures 4.28 and 4.29-(a)-(b) demonstrates the counter 

flows coexisting. As can be observed in Figure 4.28, the flow field in front of the 

swimmer body is not disturbed since the X-velocity is bigger than the Y-velocity as will 

be demonstrated in Figures 4.30 and 4.31. On the other hand the flow field in the 

vicinity of the tail contains vortex structures due to the existence of larger counter flow 

fields due to waving action as can be inspected in Figure 4.29-(b) since the Y-velocity 

on the tail is comparable with the propulsion velocity. Larger alternating Y-velocities 

introduce considerable perturbations to the flow. This phenomenon takes place 

especially when tail velocity changes sign and immediately confronts the flow field 

created by the previous reverse motion. The vortex structure located behind the 

swimmer forms due to the free tail end which causes the same effect. Also wider 

domain allows bigger vortex structures to form. Due to high surface forces all these 

vortex structures drain the mechanical energy by means of shear losses.  
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Figure 4.29: 3D Swimmer; (a) velocity field depicted via normalized 3D arrows on XY 

symmetry plane. Notice that head pushes the flow towards the propulsion direction 
forming homogeneous flow field and rotational flow field exists on both sides of the 

tail (t=3); (b) velocity profile on YZ plane where / 2f fX = A  at simulation time t=2.75. 

Notice that fluid velocity is almost homogeneous below and above the tail on the 
symmetry plane; two opposite fields meet head-on on the very neighbor causing 

random vortex formations. 
 

 

(a) 

(b) 
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Figure 4.30: 3D Swimmer; propulsion velocity (X-velocity) versus simulation time for 

base case run. Apart from sudden spikes, X-velocity becomes steady periodic soon after 
initial ramp is ended (Base case run.). 

 

 
Figure 4.31: 3D Swimmer; transverse velocity (Y-velocity) versus simulation time for 

base case run. Y-velocity becomes steady periodic after initial ramp is ended. 
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Figure 4.32: 3D Swimmer; (a) angular velocity with respect to center of mass versus 

simulation time for base case run. (High resolution plot), (b) Angular velocity has 
secondary frequency effects with longer period (Base case run). 

(a) 

(b) 
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While propulsion is commencing, swimmer’s center of mass has three degrees of 

freedom, translation in both X and Y-directions and rotation around Z-axis. Net motion 

takes place in X-direction as shown in Figure 4.30 since Y-translation and Z-rotation 

happen in a sinusoidal behavior around zero as portrayed in Figures 4.31 and 4.32-(b) 

except X-velocity (propulsion velocity). Angular velocity has secondary frequency 

effects embedded within itself as can be seen in Figure 4.32. 

 

4.2.2 Parametric Study: Time averaged results 

 

In this part, numerical results for the parametric study carried out will be 

represented respectively for parameterized design variables, namely o sh{ , , , }B f Cλ , via 

time averaged results. The disadvantage of dimensional analysis is that although 

general behavior is the same for proposed geometry and wave actuation, numeric 

results are unique for predefined design specifications.  

 

4.2.2.1 Amplitude Effect 

 

Following results are obtained for base case values of λ = 625 µm, f = 1 Hz and 

Csh = 6 and varying amplitudes with the constants represented in Table 3.5. Figure 4.33 

shows the relationship between wave amplitude and propulsion velocity. Presented 

curve exhibits almost a quadratic relationship similar to the asymptotic results given by 

Taylor (1981) and Katz (1974), except for the geometrical constants or higher order 

effects. As amplitude increases propulsion velocity increases with the square of the rate 

of change in amplitude. This behavior is limited by the deflection capacity of the 

structure to form the tail which will be partially discussed in following sections. 

Figure 4.34 demonstrates the effect of wave amplitude on power requirement to 

support the desired waving affect. Again the dimensional numerical results of swimmer 

behavior for power consumption agree with the asymptotic results presented by Sir 

Taylor (1981); i.e. power need to gain desired waving action is proportional to the 

square of the change in wave amplitude. 
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Figure 4.33: 3D Swimmer; wave amplitude vs. Propulsion velocity for λ = 625 µm, f = 

1 Hz and Csh = 6. 
 

 
Figure 4.34: 3D Swimmer; wave amplitude vs. power consumption for λ = 625 µm, f = 

1 Hz and Csh = 6. 
 

Figure 4.35 shows the effect of wave amplitude on swimming efficiency of the 

proposed system, which is calculated as the percentage ratio of power to overcome the 

shear forces on X-axis to the power to sustain desired waving action on the tail 

neglecting structural or electrical conversions. Swimming efficiency also changes 

proportional almost with square of the change in wave amplitude as depicted in Figure 
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4.35. It can be seen that for Bo = 100 µm efficiency gets close to %0.5 for the particular 

case. 

 

 
Figure 4.35: 3D Swimmer, wave amplitude vs. swimmer efficiency for λ = 625 µm, f = 

1 Hz and Csh = 6. 
 

4.2.2.2 Wavelength Effect 

 

Following results are obtained for base case values of Bo = 45.625 µm, f = 1 Hz 

and Csh = 6 with varying wavelengths. Figure 4.36 represents the impact of wavelength 

on propulsion velocity. Propulsion velocity changes linearly proportional to the change 

in the wavelength just as Katz (1974) suggested but numerical results show that the 

swimmer behavior does not include an inversely proportional behavior for small 

wavelengths as Sir Taylor (1951) predicted. 

Figure 4.37 illustrates the impact of wavelength on power required to sustain 

desired waving action on the tail. Numerical results show that power consumption 

changes almost proportional to the 1.5th power of the wavelength change but definitely 

not liner which is clearly not in agreement with results published by either Sir Taylor 

(1951) or Katz (1974) and Childress (1981). Possible grounds for this nonlinear effect 

will be discussed in following sections. 
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Figure 4.36: 3D Swimmer; ratio of wavelength to tail length vs. swimmer velocity for 

Bo = 45.625 µm, f = 1 Hz and Csh = 6. 
 

 
Figure 4.37: 3D Swimmer; ratio of wavelength to tail length vs. power consumption for 

Bo = 45.625 µm, f = 1 Hz and Csh = 6. 
 

Figure 4.38 shows that there is a minimum possible efficiency which occurs when 

wavelength is equal to the half tail length. As wavelength goes to zero efficiency seems 

to increase as it does while the ratio gets larger but each direction change happens in 

small amounts hence the curve is like a very shallow valley shape. These results show 
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that there is a trade-off between optimum efficiency and high velocities. As can be 

monitored from Figures 4.36-4.38, it is possible to conclude that for high efficiency and 

low power consumption, wavelength choice should be within 0 / 0.5fλ <� A  for 

considerable velocities. 

 

 
Figure 4.38: 3D Swimmer; ratio of wavelength to tail length vs. swimmer efficiency for 
Bo = 45.625 µm, f = 1 Hz and Csh = 6. Notice that the minimum efficiency takes place 

where wavelength is equal to half tail length. 
 

4.2.2.3 Driving Frequency Effect 

 

Following results are obtained for base case values of λ = 625 µm, Bo = 45.625 

µm, Csh = 6 with variable driving frequencies. Figure 4.39 represents the impact of 

driving frequency on propulsion velocity. The change in propulsion velocity is linearly 

proportional to the rate of change in the driving frequency as Katz (1974) suggested. 

Figure 4.40 demonstrates the effect of frequency on power consumption. As it can 

be observed power consumption increases with a ratio proportional to square of the 

change of frequency which is completely concur with the results given by Taylor 

(1951) and Katz (1974).  
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Figure 4.39: 3D Swimmer; driving frequency vs. propulsion velocity for λ = 625 µm, 

Bo = 45.625 µm and Csh = 6. 
 

 
Figure 4.40: 3D Swimmer, driving frequency vs. power consumption for λ = 625 µm, 

Bo = 45.625 µm and Csh = 6. 
 

Figure 4.41 demonstrates the characteristic behavior of efficiency with respect to 

driving frequency. As observed before, frequency almost does not change efficiency of 

the swimmer (or the waving membrane). 
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Figure 4.41: 3D Swimmer; driving frequency vs. swimmer efficiency for λ = 625 µm, 

Bo = 45.625 µm and Csh = 6. 
 

4.2.2.4 Shape Constant Effect 

 

Following results are obtained for base case values of λ = 625 µm, Bo = 45.625 

µm, f = 1 Hz with variable shape constants. Shape constant, Csh, is the constant to 

determine what portion of the tail will achieve maximum amplitude during waving 

action by modifying the behavior of envelope function (3.48). Figure 4.42 represents 

the role of shape constant on propulsion velocity. Like one may predict, as shape 

constant gets larger, propulsion velocity reaches to an asymptotical value for after a 

certain value it has no effect since whole tail achieves the maximum amplitude value. 

Figure 4.43 expresses the behavior for the relationship between shape constant 

and hydraulic power consumption. When Csh = 4, maximum amplitude occurs on the tip 

with approximately more than %95 of the real maximum. The maximum power 

consumption takes place where Csh = 10 as observed in Figure 4.43. Velocity profile 

changes its slope after Csh = 4 such that relatively fast incline turns into a slow approach 

to the asymptotical value, i.e. for Csh > 4 sinusoidal wave propagation tends to get more 

homogeneous throughout the waving tail. Thus same homogeneous effort causes 

relatively less power consumption per wave against the fluid resistance since whole 

boundary starts to force the surrounding fluid with the same stroke without letting fluid 

loose its energy by means of shear losses and stand down. 
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Figure 4.44 shows the effect of shape constant on swimmer efficiency. As shape 

constant approaches to Csh = 10, efficiency increases approaching a limit value 

eventually. As expected, after tail assumes the maximum amplitude value from start to 

end and as expected efficiency is does not change anymore. Nevertheless, this is indeed 

the ideal case, the waving action is never supposed to be totally homogeneous 

throughout the tail since one end is always fixed. 

 

 
Figure 4.42: 3D Swimmer; shape constant vs. swimmer velocity for λ = 625 µm,         

Bo = 45.625 µm and f = 1 Hz. 
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Figure 4.43: 3D Swimmer; shape constant vs. power consumption for λ = 625 µm, Bo = 

45.625 µm and f = 1 Hz. 
 

 
Figure 4.44: 3D Swimmer; shape constant vs. swimmer efficiency for λ = 625 µm, Bo = 

45.625 µm and f = 1 Hz. 
 

4.2.3 Revisiting the Extensibility Approach 

 

It is obvious that inextensibility approach does not hold for large amplitudes. In 

reality inextensibility is only possible if surface acoustic waves are invoked in shear 
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mode [28]. Childress (1981) has discussed a set of prerequisites for inextensibility 

approach and concluded that combination of X and Y-motions of the waving membrane 

results in even more than 40% higher propulsion velocities without disturbing system 

behavior under design parameters [66]. Combining these two facts results in the issue 

on the maximum X-velocity of any arbitrary point located on the tail. That is to say, if 

any arbitrary point has a larger X-velocity with respect to center of mass of the 

swimmer than the velocity of the center of mass with respect to a stationary eye in XYZ 

frame then the dominant inextensibility approach does not hold anymore because of the 

inevitable effect of no-slip conditions. In this case, simulation results become 

questionable because in real life, no-slip conditions would make sure that the 

contribution occurs as Childress (1981) states. To find out the limits on this issue, 

maximum velocities were tested under extensibility assumption. 

The proper approach to calculate the maximum X-velocity on the tail for any set 

of design parameters is to integrate the local contributions of each point in a cumulative 

approach. Derivation of Yf(Xf,t,) with respect to X-axis would yield slope of the tangent 

line at that point, i.e. dY/dX=tan(Θ). But for small deflections it is safe to say that dX is 

also equal to fdA , the infinitesimal portion of the tail, and this results in equating 

tan(Θ) expression to sin(Θ). This results in dX = fdA -cos(arcsin(dY/dX)) fdA  thus 

leading to (4.20): 

 

cos arcsinf f
dYd d
dXdX

dt dt

  −     =
A A

               (4.20) 

 

The expression above (4.20) needs to be integrated over the tail, i.e. from 0 to fA  

with the transformation of f fd dX=A on the right hand side, in order to find the 

velocity data of each point on the tail. Since MATLAB® has the ability to integrate both 

symbolic and numeric expressions so it was preferred to integrate (4.20) invoking the 

trapezoidal rule [101]  function, i.e. “trapz” [102], to obtain the numerical results 

depicted in Figures 4.45, 4.46, 4.47 and 4.48. By sweeping a full simulation period for 

base case parameters changing in turn, all maximum values are obtained for this 

simulation batch. 
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Figure 4.45 shows the maximum X-velocity on tail inspected for validation to 

amplitude runs, which is almost 20 times smaller than the velocity of center of mass 

with respect to the stationary frame.  

Figure 4.46 shows the maximum X-velocity on tail inspected for frequency run 

check, which is again almost 20 times smaller than the velocity of center of mass. 

Figure 4.47 illustrates a different behavior, i.e. as wavelength increases, the 

maximum velocity decreases and vice versa. For small wavelength values the center of 

mass velocity and the maximum tail velocity is comparable and very close to each 

other. For large wavelength values velocity of center of mass is more than 150 times 

larger in magnitude. There is an inflection point where / 1f λ =A . 

Finally, Figure 4.48 demonstrates the Csh effect on maximum X-velocity which is 

ten times smaller for its highest value on tail surface. Hence all simulations except for 

smallest wavelength value are conveniently checked out for inextensibility condition. 

 

 
Figure 4.45: Extensibility; maximum X-velocity on tail with respect to center of mass 

for λ = 625 µm, f = 1 Hz and Csh = 6 with one complete simulation period with varying 
Bo. 
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Figure 4.46: Extensibility; maximum X-velocity on tail with respect to center of mass 
for λ = 625 µm, Bo = 45.625 µm and Csh = 6 with one complete simulation period and 

varying f. 
 

 
Figure 4.47: Extensibility; maximum X-velocity on tail with respect to center of mass 

for Bo = 45.625 µm, f = 1 Hz and Csh = 6 with one complete simulation period and 
varying λ. 
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Figure 4.48: Extensibility; maximum X-velocity on tail with respect to center of mass 
for λ = 625 µm, Bo = 45.625 µm and f = 1 Hz with one complete simulation period and 

varying Csh. 
 

4.2.4 Conclusion and Final Remarks on 3D Microswimmer 

 

Both amplitude and driving frequency simulations in 2D and 3D show that 

contribution to the flow behavior of both pump and swimmer model is the same as 

Taylor (1951), Katz (1974) and Childress (1981) suggested. Wavelength tends to show 

a dual behavior encompassing both approaches expressed by Taylor (1951), Katz 

(1974) for pump simulations.  

On the other hand results for swimmer runs show that wavelength effect deserves 

extra attention. Although 2D and 3D pump simulation results for changing wavelength 

are in agreement with the asymptotical results found in analytical studies, swimmer 

results with a rod like tail exhibits an entirely different behavior and deserves a detailed 

analysis. 

One possible explanation may be the aspect ratio between channel and tail 

geometry which is not an entirely unexpected outcome, since neither Taylor (1951) nor 

Katz (1974) or Childress (1981) have included Wf/Wch effect in their analysis that 

proved to be an important parameter in 3D pump results, even if only for geometric 

reasons. The explanation for this deviation may partially be that each full wave is 

actually interacting with lateral flows and is responsible for supplying the essential 
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momentum to mobilize the fluid in the vicinity against this drain effect by sustaining the 

pre-assumed waving action. Since Wf/Wch  0, it becomes as if a finite width tail is 

operating in between relatively infinite stationary plates. Such a configuration drains 

considerable momentum both in axial and lateral directions as explained in 3D pump 

case, i.e. as Wf/Wch  0, not only the power requirement per unit area increases but also 

behavior, namely slope, changes as seen in Figure 4.25. Hence one may conclude that 

additional stresses result in behavioral change. That may be the reason why different 

wavelengths have the same effect on propulsion velocity while power requirement to 

create propulsion differs, which will be evident towards the end of this discussion. 

 

 
Figure 4.49: Perpendicular resistive force coefficient with respect to λ, Bo, and f. Notice 

that wavelength is a factor to resistive force coefficient. 
 

Another approach to confirm this peculiar behavior on λ dependence is through the 

resistive force theory since propulsion velocity is found to be concurrent with 

asymptotical results found for analytical studies. Resistive force theory states that force 

on an infinitesimal portion of the structure can be calculated as the product of fluid 

velocity components and special constants, namely normal or tangential resistive force 

coefficients in (2.18) and (2.19). As one can observe in Figure 4.49, while wavelength, 
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λ, is changing, the normal (perpendicular) resistive force coefficient is also changing 

which suggest that ( )ζ ζ⊥ ⊥≡ λ , rather than being constant. Amplitude and driving 

frequency do not seem to have a similar effect on resistive force coefficients but they 

reveal an almost global constant for proposed design geometry. 

Reader should keep in mind that numerical integration procedure is carried out 

over entire tail surface including both ends. On the other hand, the infinitesimal part 

depicted in Figure 4.49 and discussed later on is taken from the middle section of the 

tail where end effects are minimal. This discussion is elaborated on the wavelength, λ, 

since it has a different consequence on power consumption with higher order effects 

than the suggested results in previous studies. A sound method to find out the 

mechanism which led wavelength to have such a consequence on resistive force 

coefficient is to examine the derivative terms inside the Y-component of the full stress 

tensor shown as (3.79) and (3.96). Figures 4.50-4.54 show the role of each derivative 

term. 

 

 
Figure 4.50: Effect of λ, Bo, and f on v X∂ ∂ expression. Notice that λ change does not 

have any contribution. 
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Figure 4.51: Effect of λ, Bo, and f on v Y∂ ∂ expression. Notice that λ and v Y∂ ∂ are 

almost linearly proportional, with higher order effects. 
 

 
Figure 4.52: Effect of λ, Bo, and f on v Z∂ ∂ expression. Notice that the change in 

v Z∂ ∂ is 2/3 of the change in λ. 
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Figure 4.53: Effect of λ, Bo, and f on u Y∂ ∂ expression. Notice that the change in 

u Y∂ ∂ is 3/4 of the change in λ. 
 

 
Figure 4.54: Effect of λ, Bo, and f on w Y∂ ∂ expression. Notice that λ and w Y∂ ∂ are 

almost linearly proportional to each other. 
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It is evident that the deviation in wavelength behavior relies on the expressions 

which behave differently, i.e. showing a profile other than linear proportionality with 

design parameters shown in Figure 4.50, 4.52 and 4.53. Especially X and Z-components 

of flow variation cause this divergence due to vortex formations. In addition, all these 

results concur with the conclusion based on Figure 4.55.  Y-velocity dependent Y and Z-

shear forces exist because of the positive and negative velocity field collusions in the 

vicinity of the waving tail surfaces as can be examined in a slice plot at the center point 

of the tail. 

 

 
Figure 4.55: Zoomed view on collusion of negative and positive velocity fields in the 

vicinity of waving tail, at X = 2.875x10-3 m and t = 2.38 sec. Tail section moves 
downwards and confronts the positive velocity field on Y and Z-directions created by 

the previous traveled wave. 
 

Final possible approach is related to the effect of attack angle of the tail surface, 

i.e. ( )tan( ) 4 ,fB X tΘ = /λ , on the resistive force, which was discussed as the effect of 

attack angle on the propulsion velocity [103]. Figure 4.56 illustrates the nonlinear 

relationship between surface angle and the perpendicular resistive force coefficient 

versus design parameters, which is obtained purely numerically. 
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Figure 4.56: Effect of attack angle on resistive force coefficient against design 

parameters, λ, Bo, and f. Notice that for λ, ( )44 / tan( )ζ⊥ Θ Θ has a peak value and still in 
need of a ‘higher order’ correction. 

 

Swimmer efficiency values are found to be very small as Lighthill (1975) pointed 

out, with very high Strouhal number, the dimensionless frequency of the flow, i.e. 

bigger than 1000, and very low Re numbers, i.e. smaller than 0.01 for most of the cases. 

These dimensionless number groups shows that either proposed pump design or 

swimmer design loose excessive energy unlike fish like macroscale natural swimmers 

[100]; i.e. under these physical conditions vortex structures drains the power exerted 

into the fluid before it can be converted to net propulsion of the swimmer. 

Inextensibility approach does not change the behavior but affects the numerical 

results as Childress (1981) depicted. The inquiry was to confirm that relative motion on 

the tail for proposed swimmer does not become a dominant effect on propulsion in real 

case. It is shown that for most of the cases relative motion is smaller than the swimmer 

itself including the base case, except for 0.2 fλ = A  (Figures 4.36 and 4.47) where 

swimmer is still faster but velocities are very close to each other. After all, extensible 

sheet assumption may affect the efficiency results in either way since it has an 

influence on both propulsion velocity and power consumption [66]. 
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CHAPTER 5 
 

MICROPROPULSION SYSTEM DESIGN: AN INTRODUCTION 
 

 

All waving models discussed so far are assumed to be prearranged. In this chapter, 

it is the intention to carry out a very brief introductory discussion for future work on 

micropropulsion system design by means of an overview on actuation mechanisms and 

energy harvesting methods can be employed in MEMS based applications. 

 

5.1 Creating Wave Deformations 

 

Waving geometry and properties were given as design parameters in analytical and 

numeric studies presented earlier in this text. This section is dedicated to review possible 

alternative ways to create propagating waving action on structures. Waving action 

without any rotating or mechanically independent moving parts is possible via 

deformable structures which act as electrical to mechanical transducers, and vice versa. 

In this section, two material types, namely piezoelectric materials and ionic polymer-

metal composites (IPMC) will be reviewed for wave traveling purposes. 

 

5.1.1 Piezo Materials 

 

Piezo is a word descended from Greek connotation “to squeeze” [104]. Piezo 

materials can be ceramic, polymer or in composite form [105], [106]. Piezo materials 

have a considerable value since their electrical-mechanical-electrical transformation 

feature represents practical solutions in several micro applications, especially for micro 

sensors [21] and micropump systems as portrayed in previous chapters. This advantage 

is known to be due to the “inversion-asymmetry” which is a consequence of asymmetric 

crystalline structure [75]. Nevertheless, this feature is not always inherited; generally 
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ferroelectric materials are manufactured via a procedure known as “poling” to include 

this quality [12]. Whenever unevenly charged molecules are displaced inside the 

structure with an external load an electric field is created and whenever an external 

electric field is applied on the piezo material it results in net displacement of charged 

particles [75]. All these interactions can be modeled with two very compact matrix 

equations, one for transversely polarized piezomaterials (5.1) and other for axially 

polarized piezomaterials (5.2) [18] as: 
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              (5.2) 

 

where d represents piezoelectric coupling constant, E is the electric field on the 

piezomaterial, ε  is axial deformation, γ  is shear deformation, σ is axial stress, τ  is 

shear stress, ∈ is the permittivity constant, D is electric displacement and  s is the 

compliance matrix element. Compliance matrix is the inverse of stiffness matrix and 

stiffness matrix elements can be found from Lamé constants [18] for each particular 

element. As it can be observed from equations (5.1) and (5.2), stress or electric field 

applications with correct configuration can result in deflections with different 
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orientations. Piezomaterials can be used in two different ways to implement waving 

action while satisfying the inextensibility approach up to some degree, namely shear 

actuation and acoustic actuation. 

Although piezo materials can reach high frequencies, i.e. f > 1 kHz, [107] there are 

two important setbacks. One difficulty with piezomaterials is the hysteresis behavior. 

Hysteresis behavior is the term for going from one state by a particular course and 

coming back with a different course which eventually leads to a slightly different state 

than the initial one [12]. Hysteresis behavior similar to Figure 5.1 is also can be 

explained by hysteretic damping phenomenon which is the energy loss within the 

material due to friction by any means. Hysteretic friction for polycrystalline materials 

has a very complex model which depends on temperature, grain size, driving frequency, 

density, heat conductivity, heat capacity, thermal expansion and wavelength [108]. 

Hysteretic energy dissipation inside the materials can be calculated with viscous 

damping analogy [109] which will eventually reduce the overall efficiency of the 

system. The other problem is the brittle nature of ceramic materials which evidently 

does not allow high deformations on the crystalline structure [110]. 

 

 
Figure 5.1: Hysteretic behavior for shear stress and shear deformation 

 

5.1.1.1 Shear Actuation 

 

Shear deflection is a promising candidate for wave propagation. Benjeddou et al. 

(1997, 1999), Piefort (2000, 2001), and Hofer and Lerch (2002) made insightful 

analyses on shear actuation mode. Piezoelectric coupling coefficients are categorized as 
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“inplane” (i.e. d31 and d32), “thickness” (i.e. d33) and “shear” (i.e. d15 and d24) modes 

[114]. Application of external electric fields in appropriate orientations can cause shear 

mode actuation of piezomaterials which are predicted by (5.1) and (5.2). A single shear 

actuated piezo material can lead to pure shear deflection as expressed in (5.3) and 

illustrated in Figure 5.2: 

 

o 24 yyB Ld∆ = ∆ Ε                     (5.3) 

 

 
Figure 5.2: Shear actuation 

 

A series of piezoelectric materials, i.e. driven out-of-phase, stacked between other 

materials with higher deflection capabilities can support traveling waves [115] with 

larger amplitudes. Hence it would be possible to create the desired wave propagation 

along a tail-like structure. 

 

5.1.1.2 Acoustic Actuation 

 

Surface acoustic waves (SAW) travel causing elastic wave shaped deformations on 

the material surface by sliding the molecules in opposite directions [28], [75]. Nguyen 

and White (1999) proposed a pump mechanism utilizing interdigital transducer 

structures [28], [116]  a kin to the conceptual drawing of Figure 5.3, to create and 

harvest SAW on piezoelectric films while propagating deformation on film surface 

causing net fluid velocity in the vicinity via no-slip conditions. Considering the fluid-

structure interaction, acoustic pumping method is identical to the proposed traveling 
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wave micropumps in this text [27], [89], [94], [95] but acoustic actuation employs high 

frequencies and small amplitudes. In acoustic actuation case, wave speed is expressed in 

terms of physical properties of the material [108] rather than a choice as discussed in 

earlier chapters; hence wavelength is inversely proportional to the frequency on the 

contrary to the shear actuation method where wavelength and amplitude are determined 

by the number of out-of-phase piezo materials. 

 

 
Figure 5.3: A conceptual interdigital transducer design (zoomed view). Proper electrical 
potential application with driving frequency equal to the natural frequency of interdigital 

transducer (left hand side) structure causes wave propagation and this wave can be 
harvested as electric signals by the counter part (right hand side). 

 

5.1.2 Ionic Polymer-Metal Composite (IPMC) Materials 

 

Ionic polymer-metal composites (IPMC) are in use of biomimetic applications 

such as gripper mechanisms due to their electrical-mechanical-electrical transformation 

capability [117]. They are capable of high deformations due to their low stiffness but 

they are not preferred to be operated at high frequencies, i.e. f << 1 kHz; as driving 

frequency increase their deformation capability decreases with corresponding power 

requirement [118], [119]. Their mechanical behavior can also demonstrated by circuitry 

analogy as a series of resistances, capacitors and diodes based on electrical properties of 

the actuation [120] which is beyond the scope of this project. The particular IPMC 

structure discussed briefly here is Nafion. Actuation principle of Nafion is very different 

than the actuation principle of piezomaterials. The electrical potential causes 

deformations on inner structure not due to displacement of charged molecules of the 

structural matrix but by mobilizing foreign ions inside, i.e. moving ions between 

electrodes coated on the sides stretching the molecules to cause local deformation via 

counter expansions and contractions as illustrated in Figure 5.4. However surrounding 



 116

fluid must contain water for ion mobility and as a consequence of liquid transport 

within, deformation time is limited with back flow incidence inside the structure [121].  

 

 
Figure 5.4: Actuation principle of metal coated Nafion. 

 

Traveling waves can be produced by isolated Nafion stacks bonded one another 

and driven out-of-phase a kin to shear driven piezo stacks [121]. Kim et al. (2005) 

studied an experimental centimeter scale tadpole, i.e. larval amphibian [122], imitating 

swimming micro robot. Traveling waves generated on 95 mm length Nafion tail driven 

with 4 Hz ±2.5 V potential; resulting in 1 mm wave amplitude and 23.6 mm/s velocity 

in water which leads to Re > 1. This experiment violates both low Re number and 

inextensibility approach expressed in this text but with smaller stack size and smaller 

amplitude would satisfy these assumptions on microscale.  

 

5.2 Possible Energy Harvesting Methods 

 
A microscale propulsion system is meaningful only if the driving circuitry and 

energy supply are in microscale and provide the necessary power during operation. It is 

obvious that an autonomous microrobot should contain its own power supply but 

conventional batteries are manufactured at least in millimeter sizes [123]. Although 

energy supply problem is beyond the scope of this text it is imperative that there exist 

alternative methods to harvest desired power in microscale and thus to realize the 

micropropulsion system if built. 

Different possible energy harvesting methods exist for MEMS applications. Jeon 

et al. (2005) studied a system to transform the acoustic energy to electrical energy by 

means of transverse piezoelectric sensing [124]. Soliman et al. (2005) studied 

Aquatic Medium

Nafion 

ion flow 

Metal 
Coating 

Anode 

Cathode 

Expansion 

Contraction 



 117

electromagnetic and electrostatic power generator structures based on electrical-

mechanical interactions in microrealm [125]. Nielsen et al. (2003) and Bermejo et al. 

(2005) have published a study on “photovoltaic” cell based MEMS power harvesting 

method to collect the necessary energy from considerable light sources [126], [127]. A 

micro fuel cell design was discussed for medical MEMS devices by von Stetten et al. 

(2006). There exist other types of electrochemically actuated power systems as 

discussed by Koeneman et al. (1997) and Cardenas-Valencia et al. (2003). Another 

method is harvesting energy directly from human body, (i.e. by means of heat, motion 

etc.) [131]. There are some other power-supply methods for MEMS applications [129]. 

Most of the methods presented above require periodic external power or material 

treatment to operate. Another promising alternative which can answer the power 

demand in non-stop long term operations is nuclear power. Ni-63 [132]  and Tritium 

[133]  are reported to be promising nuclear materials which do not scatter particles in 

dangerous dozes and could be sealed in microstructures to produce relatively higher 

amount of power, more than a thousand times of a Li-ion cells, with higher efficiencies, 

i.e. 40 percent efficiency instead of 5 percent, than conventional batteries for longer 

duration intervals, such as a few months for some cases [134]. Implementation of 

nuclear power would increase the possible life time of micro scale autonomous robotic 

devices. 

Since proposed system is supposed to operate in a highly viscous medium with 

large loss factors, energy supply must be as efficient and durable as possible. Thus 

nuclear power generation seems to be a viable candidate for possible microswimmer 

applications. 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE WORK 
 

 

A biologically inspired propulsion method is presented based on numerical data 

obtained via computational fluid dynamic methods employing deformable mesh 

formulation to implement moving boundaries. Extensive numerical studies are carried 

out in order to confirm the asymptotical results to the earlier analytical work discussed 

so far and the possible actuation methods are partially addressed at the end. Proposed 

pump systems are in total agreement with those results exposing dynamic pump 

characteristic. In absence of dominant inertial effects, dynamic behavior originates from 

the acceleration attribute of the moving boundaries which introduces partial time 

derivative term into Stokes equations. It is demonstrated that as a stationary boundary in 

contact with a highly viscous fluid propagates a sinusoidal wave, considerable upstream 

flow is obtained. As deformations takes place on the boundary, shear force zones 

appears due to changing velocities. These zones are balanced with counter pressure 

zones. All these counteracting zone couples shift their positions consequently with the 

deformations. Simply, there must be flow between high and low pressure zones in the 

vicinity of the waving membrane. Dragging these zone couples results in dynamically 

shifting of local flow fields; this time dependent incident eventually leads to a net flow 

field over the waving boundary. Time permitting; most of the important design variables 

have been studied in a parametric manner to investigate the general behavior of the 

proposed pump and swimmer actuation method in the most possible comprehensive 

manner. 

In earlier analytical studies upstream velocity behavior was found to be similar to 

swimmer velocity behavior which is also validated throughout the swimmer analysis 

except for the effect of wavelength parameter. It is shown that 3D simulations in 

particular have extra factors to be considered which could not be covered solely by 2D 
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assumptions. Detailed analysis on the effect of third dimension revealed that the case of 

an infinite sheet placed in between two infinite plates can not represent the higher order 

variations fully. Proposed microswimmer assumed to be neutrally buoyant in the 

surrounding fluid and was modeled such that only wave propagation is in need of energy 

supply. All other motions are direct result of the force interaction between swimmer 

surfaces and surrounding fluid. It is demonstrated that in absence of anchoring force, 

necessary thrust to move a free body in a highly viscous environment can be obtained by 

adjusting the design variables of waving action. It is also observed that although 

instantaneous motion of the swimmers center of mass is a combination of translations 

and rotations in all three axes, net propulsion takes place on the same axis with wave 

propagation but in opposite direction. All other motions vanish when averaged over 

time. Even though steering capabilities of the proposed system are not referred to at any 

level, it is obvious that combinations of waving tails, i.e. double, triple etc., would grant 

adequate maneuverability under appropriate control techniques. 

Swimmer efficiency is found to be very low due to viscous dissipations as pointed 

out in previous studies. Especially shear effect inherited from the third dimension results 

in excessive loss of momentum flux by means of dissipation. Although considerable 

losses occur, swimmer is supposed to operate in a thermal reservoir, such as human 

body, which is pre-assumed by isothermal Navier-Stokes equations explained within the 

introduction. Constant temperature and density assumptions are usually satisfied in real 

life situations, if not strictly.  

In all simulations, waving action on membrane or tail is assumed to be given.  In 

the last chapter some possible ways to create this sinusoidal wave propagation and some 

power supply methods are discussed in general. This last brief discussion constitutes 

some of the theoretical background for future work. It is intended to simulate and 

partially experiment the proposed systems with structural emphasis, with the help of the 

results presented here in spite of the fact that real life results for fluid studies may differ 

since there is always an error margin between real life phenomenon and their 

mathematical representations in numerical procedures.  

In the future, the resistive force theory issue addressed at the end of the 3D 

microswimmer results section will be studied in detail to resolve the wavelength and 

attack angle issue. Additional structural simulations and experiments will be carried out 

to demonstrate the feasibility of possible actuation methods for plane-wave-propagation. 

Large scale experimental pump systems will be manufactured to check the results of 
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analytical and numerical studies carried out on the subject so far. Hopefully, time 

permitting; miniaturization of these systems will follow, including the study of proper 

manufacturing techniques of proposed systems. Construction and power management of 

the proposed micropump systems are relatively easier since they are supposed to be 

anchored.  
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