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ABSTRACT

APPLICATION OF AUTOMATIC MUTATION-GENE PAIR EXTRACTION TO
DISEASES

Miige Erdogmus
Master of Science, 2007
Prof. Dr. Kemal Oflazer

Assoc. Prof. Dr. Osman Ugur Sezerman

Keywords: disease, mutation, gene, information extraction

Nowadays, it is known that several inherited genetic diseases; such as sickle cell
anemia, are caused by mutations in genes. In order to find ways to prevent and even
better to circumvent occurrence of these diseases, knowledge of mutations and the
genes on which the mutations occur is of crucial importance.

Information on disease related mutations and genes can be accessed through
publicly available databases or biomedical literature sources. However, acquiring
relevant information from such resources can be problematic because of two reasons.
Firstly manually created databases are usually incomplete and not up to date. Secondly
reading through vast amount of publicly available biomedical documents is very time
consuming. Therefore, there is a need for systems that are capable of extracting relevant
information from publicly available resources in an automated fashion.

This thesis presents the design and implementation of a system, MuGeX, that
automatically extracts mutation-gene pairs from MEDLINE abstracts for a given
disease. MuGeX performs mainly three tasks. First task is identification of mutations,
applying pattern matching in conjunction with a machine learning algorithm. The
second task is identification of gene names utilizing a dictionary-based method. The
final task is building relations between genes and mutations based on proximity
measures.

Results of experiments indicate that MuGeX identifies 85.9% of mutations that
are on experiment corpus at 95.9% precision. For mutation-gene pair extraction, we
focused on Alzheimer’s disease. We observed that 88.9% of mutation-gene pairs
retrieved by MuGeX for Alzheimer’s disease are correct.
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OZET

MUTASYON-GEN CIFTLERININ OTOMATIK OLARAK TANIMLANMASININ
HASTALIKLARA UYGULANMASI

Miige Erdogmus
Yiiksek Lisans, 2007
Prof. Dr. Kemal Oflazer

Dog. Dr. Osman Ugur Sezerman

Anahtar Sozciikler: hastalik, mutasyon, gen, bilgi ¢ikarimi

Giliniimiizde, akdeniz anemisi gibi bir¢cok kalitsal hastaligin genlerde olan
mutasyonlar sonucu ortaya ¢iktig1 bilinmektedir. Bu hastaliklarin ilerlemelerinin ve
hatta ortaya ¢ikmalarinin engellenmesini saglayacak yontemlerin bulunmasi konusunda
mutasyonlar ve bu mutasyonlarin gerceklestigi genlerin bilgisi biiyiik Onem
tagimaktadir.

Hastaliklara iliskin mutasyon ve gen bilgilerine herkese agik veri bankalarindan
ve biyomedikal literatiir kaynaklarindan erismek miimkiindiir. Yalniz, bu kaynaklardan
ilgili bilgilerin elde edilmesi iki sebepten otiirii problemli olabilir. ilk olarak bilgilerin
elle girildigi veri bankalar1 genellikle eksik ve gilincel olmayan bilgiler icermektedirler.
Ikinci olarak ¢ok biiyiik miktarda biyomedikal dékiimani okumak olduk¢a zaman
almaktadir. Bu yiizden ilgili bilgileri erigsime a¢ik mevcut kaynaklardan otomatik olarak
cikartacak sistemlere ihtiyag vardir.

Bu tezde, istenilen bir hastalik icin MEDLINE o6zetlerinden mutasyon-gen
ciftlerini otomatik olarak ¢ikartan MuGeX isimli sistemin tasarimi ve uygulanmasi
sunulmaktadir. MuGeX sistemi temel olarak ii¢ islem gerceklestirmektedir. Ilk islem,
Ozetlerde gecen mutasyonlarin oriintii eslestirme yonteminin bir makine Ogrenimi
algoritmas1 ile birlikte kullanilmas1 yolu ile tanimlanmasidir. Ikinci islem, gen
isimlerinin sozliikk kullanimina dayanan bir metod ile tanimlanmasidir. Sonuncu islem
ise mutasyonlar ve genler arasinda yakmlik goz Oniinde bulundurularak iliskilerin
kurulmasidir.

Gergeklestirilmis olan deneylerin  sonuglar1  gosteriyorki MuGeX deney
Ozetlerinde mevcut olan mutasyonlarin  %85.9’unu  %95.9 dogruluk orani ile
bulmaktadir. Mutasyon-gen ciftlerinin tanimlanmasi islemi i¢in Alzheimer hastaligina
odaklandik. Gozlemledigimiz tizere MuGeX Alzheimer hastaligma iligkin mutasyon-
gen ¢iflerinin getirilmesinde %88.9’luk bir dogruluk oranina sahiptir.
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CHAPTER 1

Introduction

1.1. Sources of Information and the Need for Information Extraction

Scientific literature is the most important information source for researchers in the
biomedical domain. In order to keep up with information on novel breakthroughs and
new trends in other domains of biology, researchers get assistance from published
scientific works. Through publicly available literature databases and online journals
researchers are able to access and utilize the information found in scientific literature.
MEDLINE database is one of the most commonly used information sources that
contains journal articles embracing all areas of biomedical domain; and through public
server of MEDLINE (PubMed), researchers can access online published literature. The
number of published articles and journals in these databases increases constantly as the
volume of scientific literature increases. Figure 1 shows increase in number of abstracts
with respect to years (statistics are acquired by querying PubMed).

In order to find information relevant to their purposes, researchers need to read
through a vast amount of publicly available biomedical articles. As a consequence of the
continuing increase in amount of scientific information, finding relevant information by
reading through the articles is a very time-consuming process. In such a case, the best
thing that a researcher can do, is to use an accurate information retrieval system.

However, even in that case the number of returned articles may be in the order of



hundreds. Due to this information overload, it is difficult for researchers to keep up to

date knowledge even on their own areas of specialization.
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Figure 1 Increase in number of abstracts with respect to years

Other information sources for researchers are the databases that are created as
results of previous works of peer researchers. These manually created comprehensive
databases are commonly accessible through the Internet. However, such databases have
one great drawback: they are usually incomplete and not up to date. For that reason, a
researcher may not find what he or she is looking for unless the database is up to date.
Furthermore, creation and maintenance of such databases require significant amount of
manual labor. Werner Syndrome Mutational Database,[8] KMeyeDB,[14] and
AD&FTDMDBJ2] are examples of such online databases, yet we did not consider them
in our study.

Because of the stated reasons application of automated methods in biomedical
domain is a necessity, rather than luxury, that arises from the need to access relevant
information as efficient and as timely as possible. With the advances in information
extraction and knowledge management, it is possible to access relevant information
from electronically available biomedical documents accurately in an automated fashion.
By exploiting automatic information extraction methods the time required to access
relevant information may be reduced and the dependence on manual labor may be

eliminated.



1.2. Motivation

Disease specific mutation extraction is one of the sub-domains of biomedical
domain that require application of automated information extraction methods. Research
in this sub-domain is very important due to the fact that information acquired from these
studies can help us to understand the origins of diseases. Along with mutation
information, knowledge of genes on which the mutations occur is also important.
Because a gene is a sequence of nucleotides that contain information about how a
specific protein is to be synthesized in a cell. Moreover, proteins are large molecules
and are essential components of all cells. For cells to perform properly, the proteins
must carry out their functions without any error. In its most basic form, a protein can be
defined as a sequence of amino acids. According to lining up of its amino acids, the
protein folds and as a result of its proper folding the protein acquires its function.
Everything that is essential for a protein depends on the way it folds.

Mutations that occur in the gene coding for a protein may cause the protein to
function improperly by changing the amino acid sequence of that protein. In such a
case, the protein cannot fold properly and the incorrectly folded protein may result in
emergence of certain diseases. For instance, sickle cell anemia is known to be caused by
a single mutation, change of Glutamic acid to Valine at position 6, in the amino acid
sequence of hemoglobin.

Therefore, to have a better understanding of the mechanisms of disease
development, the knowledge of mutations and the genes on which the mutations occur
is of crucial importance. Understanding the development mechanism of a disease means
being able to reason about the occurrence of that disease. Thus, scientists can find ways
to prevent growth of certain diseases; and even better circumvent occurrence of certain
diseases.

With this idea in mind, several experimental and computational studies have been
conducted on mutations that are related to diseases — the so called disease specific
mutations. Results of such studies are commonly accessible via comprehensive
databases in the Internet. But, due to the reasons stated in Section 1.1, information in
these databases might be inadequate and therefore utilization of such databases may
give inaccurate results. So, there is a need for automatic information extraction

methods. However, although there has been much prior work in the use of information
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extraction methods in biomedical domain, thus far no system associated extracted
mutation information and their related genes to diseases. This is the reason that led us to
the development of this thesis.

We have developed an automated system, called MuGeX, that is capable of
extracting mutation-gene pairs from MEDLINE abstracts for a given disease name. The
system is platform independent and has a web interface that allows the user to perform
queries for diseases. The system utilizes natural language processing and machine
learning methods with the aim of extracting and retrieving information relevant to a

given disease.

1.3. Thesis Layout

The organization of the thesis as follows: Chapter 2 presents an overview of
information extraction and its applications in biomedical domain. Chapter 3 presents the
main natural language processing and machine learning techniques that are used in this
thesis. Chapter 4 presents the followed methodology in detail. Chapter 5 discusses the

experiments and results, and conclusions are given in Chapter 6.



CHAPTER 2

Information Extraction in Biological Domain

2.1. Introduction

This chapter discusses the notion of information extraction. First, a brief
description of information extraction is given along with some of the commonly
addressed problems. Afterwards, the applications of information extraction in

biomedical domain are explained in detail.

2.2. Information Extraction

Information extraction (IE) is the task of extracting information relevant to a
question in hand from unstructured data, i.e., natural language text. Owing to Message
Understanding Conferences (MUCs), information extraction gained much prevalence.
Besides, these conferences assisted in shaping the constituents of information
extraction. Several tasks are dealt with in scope of information extraction. Some of the

highly addressed tasks may be summarized as follows:



o Named Entity Recognition Task aims to extract names of entities from
unstructured text; such as names of people, places, and brands. The extracted
names are generally tagged for further processing.

e Relation Extraction Task aims to build relations between previously identified
entities; such as finding out which brand belongs to which company in an
article.

o Template Filling Task aims to extract relevant information from unstructured
text and map the extracted information into a previously defined structure,
which may be designated as a template. Figure 2 shows a template entity for
“Bridgestone Sports Company”. Information to fill the template is extracted

from the text written above.[19]

... Bridgestone Sports has so far been entrusting production of golf club parts
with union precision casting and other Taiwan companies. With the
establishment of the Taiwan unit, the Japanese sports goods maker plans to
increase production of luxurv clubs in Japan ...

<ENTITY-0392-1> =

ENT NAME: "BRIDGESTONE SPORTS"

ENT TYPE: ORGANIZATION

ENT DESCRIPTOR: "JAPANESE SPORTS GOODS MAKER"

ENT CATEGORY: ORG CO

Figure 2 An example of Template Filling Task

2.3. Background Work in Biomedical Domain

One of the most widely addressed information extraction tasks in biomedical
domain is named entity recognition. The aim of named entity recognition in this domain
is to extract names of genes, proteins and other cellular substances. Named entity
recognition encompasses two main problems: term identification and term
classification. While term identification deals with identification of words that indicate

existence of domain specific information in an article, term classification as the name



implies, tries to classify the identified terms into biological categories, i.e., gene,
protein.

On the surface named entity recognition seems to be trivial, however due to a number of
problems it is one of the most challenging tasks. The major difficulty in named entity
recognition arises from absence of a standard naming convention. While many entities
have more than one name, a name may refer to different entities depending upon the
context. For instance, both PTEN and MMACI are used to refer to same gene; CD4
may refer to a cell or a protein depending upon its context.

Approaches to the problem of named entity recognition may be grouped into three
categories: dictionary-based approaches, rule-based approaches, and machine learning -
based approaches. Main idea in dictionary-based approaches is to match the entries in
the dictionary against text. Due to previously mentioned problems of ambiguity in
naming and the absence of a naming convention, exact matching yields very low recall
values. In order to overcome low recall, instead of performing exact matching on
original dictionary entries, Hanisch et al,[10] extended the dictionary by generating
typical variants of each entry and then applied exact matching on extended dictionary in
ProMiner system. Another solution to low recall problem has been proposed by
Tsuruoka and Tsujii[26] where they used approximate string matching in place of exact
matching.

The underlying idea of rule-based approaches is to build a set of rules that
describes common naming structures for desired entity category. In construction of
these rules, surface clues, such as symbols and capitalization, morpho-syntactic features
such as singularity-plurality, dictionary of affixes and certain name constituents are
utilized. For instance, the rule, “words that contains capital letters, digits, and non-
alphabetical characters” can be used to extract candidate gene names. One of the
successful systems that adopt a rule-based approach is developed by Wilbur and
Tanabe, named AbGene.[25] As first step, by using a modified version of Brill POS
tagger[6], which is adapted to tag also gene and protein names, AbGene tags all
sentences. Then in order to eliminate falsely identified gene and protein names, a set of
manually created rules are applied to each sentence.

In addition to dictionary-based and rule-based approaches, several studies are
carried out that employs numerous supervised machine learning techniques. For
instance, Chang et al.[1] built a system called GAPSCORE and compared performances

of Naive Bayes classifiers, Support Vector Machines and Maximum Entropy models on
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the named entity recognition task. The GAPSCORE system constructs a numerical
feature vector for each word by analyzing the word’s surface form, context and
morphology. Then with the use of machine learning algorithms each word is given a
score; and according to their scores, words are classified as denoting gene or not.
Another system is developed by Collier et al.[7] that employs use of a Hidden Markov
Model. This model, which exploits lexical and orthographic features of words, is trained
with word bi-grams. For a specified word sequence, the system attempts to find the
most likely sequence of entity categories.

The current trend in biomedical named entity recognition systems is to use hybrid
approaches that combine machine learning algorithms with rule-based and/or
dictionary-based approaches. In such systems, a given text is initially processed via
several natural language processing methods, such as part-of-speech tagging. Afterward,
several machine learning algorithms are run and for further refinement results of
machine learning algorithms are filtered with use of pre-defined rules.

Researchers working in biology domain also make use of information extraction
methods to extract relationships between biological entities. Some aim to extract the
interactions between proteins and detect molecular pathways (e.g. Krauthammer et
al.[15]). Current systems for relation extraction may be categorized into two: co-
occurrence based systems and systems that make use of natural language processing. In
co-occurrence-based systems two entities that are frequently observed together in
abstracts or sentences have high probability of being actually related. However, with
this approach the type of relation between the entities cannot be inferred. In natural
language processing based systems the relation extraction process usually starts with
basic operations like tokenization, part-of-speech tagging, and sentence splitting. Then
for each sentence, a syntax tree is constructed to analyze the relationships between noun
phrases of the sentence. In order to mark biological entities in sentences, different
named entity recognition methods are used. Afterwards, a set of hand crafted rules are
used to extract relationships between biological entities in the light of constructed
syntax trees.

Recently the interest of researchers in biomedical information extraction domain
have shifted to new problems as several initial problems like named entity recognition
are considered to be solved. New initiatives have focused on the automated extraction of

proteins and the sequence mutations related to them from biomedical literature.



Rebholz-Schuhmann et al.[22] developed an information extraction system called
MEMA that scans Medline abstracts for mutations and extracts mutation-gene pairs.

MEMA system is capable of extracting both nucleotide and protein sequence
mutations. It consists of three processes: identification of gene names, identification of
mutations and disambiguation of gene names. For mutation identification a set of hand-
crafted mutation patterns are formed and compiled into a finite state automaton (FSA).
For gene name identification another set of regular expressions that are based on a gene
name dictionary are compiled into another FSA. When more than one gene name is
identified in a sentence or in an abstract in order to decide to which gene the identified
mutation is to be linked, MEMA uses syntactical rules and a proximity based distance
measure.

Horn et al[12] developed MuteXt that extracts single point mutations from
abstracts and full-text articles, whenever available. MuteXt follows an approach similar
to that of MEMA to identify protein names and mutations. However, it extracts only
protein sequence mutations for the GPCR and nuclear hormone receptor super-families.
So as to identify mutations and protein names MuteXt utilizes regular expression
matching. As it was the case with MEMA, regular expression to identify protein name
makes use of a protein name dictionary and a list of synonyms.

Another system is developed by Baker et al.,[3,4] named Mutation Miner, that
retrieves mutation annotations from full-text documents and associates them to “protein
structure visualizations”. Mutation Miner is a four-tier system, where tier 1 is a web
client that allows users to interact with the system, tier 2 is a web server that receives
the user query and notices the tier 3, which performs information retrieval and analysis,
and tier 4 is the layer that handles the resources. Tier 3 contains natural language
processing subsystem that performs named entity recognition, sentence splitting, part-
of-speech tagging, noun phrase chunking. Mutation Miner makes use of finite state
transducers to extract named entities from the documents. It extracts protein citations
and mutation expressions at named entity recognition stage. Following natural language
processing operations, relations are built between extracted proteins and mutations.
Proteins are related to mutations on the basis of the assumption that a protein cited in
the same sentence with a mutation must be the protein that has been mutated. For
extraction of relations between proteins and host organisms, Mutation Miner utilizes a

template-based approach that investigates NP-NP patterns.



Cohen et al.[16] developed Mutation GraB that extracts and validates amino acid
level point mutations from biomedical literature. Mutation GraB utilizes a rule-based
method for protein name identification. For this purpose they created a dictionary of
protein names and synonyms, and searched the documents for the dictionary entries via
regular expressions. Similar to previous methods, mutations are identified by applying
regular expressions. For mutation-protein association Mutation GraB uses a novel
graph-based method. This method investigates significance of word bi-grams and then
applies a shortest path distance search in order to associate a mutation with a protein.

From all of the mentioned points above, it is seen that biomedical information
extraction is a very active and promising research area. While some of the problems are

answered there are still lots of problems that are waiting to be solved.

2.4. Conclusions

In this chapter we answered the questions of what the notion of information
extraction means, what are the most commonly addressed problems in information
extraction, and what kind of works are carried in biomedical domain that benefit from
information extraction methods. Next chapter discusses techniques that are used in the

development of this thesis.
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CHAPTER 3

Background Information

3.1. Introduction

This chapter presents the main natural language processing and machine learning
techniques that are used in the context of the development of this thesis. First a brief
introduction to regular expressions is given along with its application areas. Afterwards,
lexical analysis is described succinctly. Following lexical analysis, two machine

learning algorithms that are used in scope of this thesis are explained.

3.2. Regular Expressions

Before starting to explain what regular expressions are, it will be better to give
some basic notions of automata theory; namely alphabets, strings and languages. An
alphabet is defined as a finite set of symbols and is denoted with 2..[11] A string is
described as concatenation of a set of characters that are selected from .. Finally, a

language is defined as a subset of all possible strings that can be derived from a specific
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finite alphabet. It should be noted that the string that consists of no symbols is denoted
as empty string and it is denoted with symbol €. Likewise, a language that contains no
strings is named as empty language, and is denoted with symbol .

To give an example, let the alphabet be defined as > = {0,1}. We can define
strings over this alphabet by concatenating any combination of Os and 1s. For instance,
010 and 11010 are possible strings over alphabet X.. A language that can be defined over
the alphabet . is the set of all strings that consist of alternating Os and 1s.

As it is defined by Hopcroft, Motwani and Ullman[11] regular expressions are
patterns that are “capable of defining all and only the regular languages”. Regular
languages are the most restricted languages in the Chomsky hierarchy. Informally one
can define a regular language as the one that can be accepted by a finite state
automaton.

Before giving formal definition of what is meant by the notion of regular
expression, it will be convenient to define the following three operations on languages:
concatenation, union and closure. Concatenation of two languages L1 and L2 is
accomplished by concatenating every string in language L1 with each string in language
L2. In a similar manner we can define union of two languages as the set of strings all of
which are in at least one of the two languages. Closure operation on a language L is
described as concatenation of “any number of strings” that are taken from a language
L.[11]

Now, we are equipped with all the information that is necessary to define regular
expressions. One can define a regular expression over an alphabet . as follows:[11,24]

o Jisaregular expression that defines the empty language, &.

o € is a regular expression that defines the language, which consists of the

empty string, {€}.
o For any symbol a that belongs to the alphabet 2, there is a regular expression
that defines the language, which consists of the string a, {a}.

o For any two regular expressions E and F over the same alphabet 2., E+F is a
regular expression over 2. that denotes the union of the two languages defined
by the two regular expressions E and F.

o For any two regular expressions E and F over the same alphabet >, EF is a

regular expression over 2. that symbolizes the concatenation of the two

languages defined by the two regular expressions E and F.
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For a regular expression E over an alphabet Y. , E* is a regular expression over
the same alphabet that symbolizes the closure of the language that is defined
by E.

Finally, for a regular expression E over an alphabet >, (E) is a regular

expression that symbolizes the same language that is defined by E.

Informally one may define regular expressions as patterns that are used to specify

certain classes of strings in a text document. Regular expressions are supported by

several programming languages; and the syntax used to define the regular expressions

slightly changes depending on the programming language. One of the most commonly

used syntax is the Perl syntax. Perl regular expressions allow us to write character

patterns to represent large sets of characters as briefly as possible. Some of the most

commonly used regular expression rules are given below.[27]

The symbol dot (.) is used to represent any character.

A sequence of characters given inside square braces is used to represent union
of characters, i.e., [0123456789] denotes “any single digit”.

Instead of enumerating all characters, one can specify a range of characters
using x-y format inside square braces. This rule is used to represent disjunction
of all characters between and including x and y. For instance, instead of
enumerating all characters inside the square braces, one can write a rule that
signifies “any digit” using [0-9].

The symbol bar (| ) is used to represent union of characters.

The symbol star (*) means zero or more occurrence of the character or the
regular expressions that precedes it. For instance, [0-9]* means zero or more
occurrence of a digit.

The symbol question mark (?) means zero or one occurrence of the character
or the regular expressions that precedes it. For instance, [0-9]? means zero or
one occurrence of a digit.

The symbol plus (+) means one or more occurrence of the character or the
regular expressions that precedes it. For instance, [0-9]+ means one or more

occurrence of a digit.

Regular expressions are mostly used to find patterns in natural language

documents. This process is called matching. If a certain series of characters matches a

regular expression then that series of characters belongs to the set that is defined by that

specific regular expression; and the matching results in success. One may start with a
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rather general regular expression and then modify it so as to describe the pattern more
accurately. Regular expressions are not only used for pattern extraction purposes.

Another common usage of regular expressions is seen in lexical analyzers.

3.3. Lexical Analysis

Lexical analyzers are frequently used in compilers for scanning a given program
code and recognizing all tokens of the input program.[11] A token is defined as a
sequence of characters, such as names and literals. In identification of tokens, lexical
analyzers make use of regular expressions. In the most basic sense a lexical analyzer
consists of

e aset of regular expressions to identify each token

e a bracketed code section for each regular expression that describe what should

the lexical analyzer do when it identifies a token corresponding to that specific
regular expression.

Lex command in UNIX or flex command in GNU allows users to create lexical
analyzers. Below you may see a simple /ex input that scans the text and identifies tokens

that consist of only digits and tokens that consist of only uppercase and lowercase

letters.
%%
[0-9]+ {
printf(““’A number is identified\n”);
j
[A-Za-z]+ {
printf(““A word is identified\n”);
h

The first line after “%%” symbol handles the tokens that consist of only digits. When
lexical analyzer identifies a token that matches this regular expression, it displays a
message on the screen. In a similar manner, whenever the lexical analyzer identifies a
token that consists of only uppercase and lowercase letters, it informs the programmer

that a word is seen in the input text.
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3.4. Machine Learning Algorithms

Machine learning is a subfield of artificial intelligence. It deals with development
of algorithms that automatically enhances their performance through learning and
experience.[18] Machine learning has wide application areas, including data mining,
bioinformatics, speech recognition, pattern recognition, robotics.

In scope of this thesis we concentrated on application of machine learning
algorithms to the problem of document classification. In the most basic sense, aim of
document classification task can be described as categorization of documents into
previously defined categories on the basis of their contents. The two most commonly
used algorithms for document classification are Rocchio algorithm and Naive Bayes

algorithm. Below we give brief descriptions of these algorithms.

3.4.1. Rocchio Algorithm with TF-IDF Weighting

Rocchio learning algorithm is based on vector space model.[23] In vector space
model each document is represented with a vector of form d= (@, ®,,...,0), Where
each @, represents a distinct word in the document and | N |is the number of unique
words in the document. Weight of each @, is calculated using TF-IDF weighting

scheme. TF-IDF stands for term frequency-inverse document frequency. In TF-IDF
weighting a word is important to a document if it occurs frequently in that document
and infrequently in other documents of the corpus. Term frequency (TF) is simply the

number of times a given word @, appears in a given document d and is calculated with

equation (3.1).

i (3.1)

Zk N

TF(w;,d) =
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where n; is the number of occurrences of word @;. Inverse document frequency (IDF)

is calculated using equation (3.2).

IDF (w;)=1o |D| (3.2)
e ed |

1

In this formula |D| is the number of documents in corpus and |a)l. ed | is the number of

documents that contain word @;, where d € D As can be understood from the formula,

IDF produces low values for words that occur frequently, and high values for words that
occur rarely across corpus. Therefore, by combining term frequency with inverse
document frequency, we incorporate the knowledge of how discriminative a word is
across whole documents in corpus into our weight calculation. TF-IDF weight of a word

in a document is calculated with equation (3.3).
TF — IDF (w;) = TF (w;,d ) * IDF () (3.3)

For classification purposes, document vectors of each class are combined, and
consequently one prototype vector is constructed for each class. These vectors serve as
the learned model, and used for classifying new documents. A new document is
classified into one of the classes using Cosine similarity measure. According to cosine
similarity measure, similarity between two vectors is captured by the cosine of the angle
between them. Therefore, in order to assign new document to one of the classes the
cosines of class vectors and the new document are calculated. The new document is

assigned to the class with which its document vector has the highest cosine.

3.4.2. Naive Bayes Algorithm

Naive Bayes algorithm is one of the most widely used algorithms for document

classification. As the name implies, Naive Bayes algorithm is based on the Bayes
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theorem with strong independence assumptions. By taking a probabilistic approach,
Naive Bayes algorithm attempts to assign a new document to the most probable class,
i.e.,, class of documents that contain amino acid level mutations, given the feature
values.[18] As with Rocchio learning algorithm, the features of a document are the
words of that document; and values of these features are the probabilities that are
assigned based on Bayes’ theorem. According to Bayes’ theorem the probability of

assigning a document with feature vector X to a class ¢ is computed with equation (3.4).

P(X | c)*P(c)

P(c|X) = P(X)

(3.4)

In this formula P(X)is probability of observing the feature vector X and P(c)is the

probability of assigning any document to classc. As mentioned before, Naive Bayes
algorithm assumes that all features of a document occur independently from each other.
By taking this assumption into consideration Naive Bayes algorithm assigns a document

with feature vector X = (x;,x,,...,x,) to a class c using equation (3.5).

P(e| X)=Ple)* [ [ P(x; ) (3.5)

where x; is a feature of document’s feature vector. For each class P(c|X)is calculated

and a new document is assigned to the class with maximum probability.

3.5. Conclusions

In this chapter we presented to give information on the main natural language
processing and machine learning techniques that are used in the context of the
development of this thesis. Next chapter presents how these techniques are combined

together so as to form the underlying structure of MuGeX system.

17



CHAPTER 4

Methodology

4.1. Introduction

This chapter discusses the methodology that is followed throughout the
development of this thesis. First a brief description of the system is given. Then

functioning and working principles of each module is described in detail.

4.2. System Overview

The document corpus that is used throughout the thesis consists of abstracts that
are published on MEDLINE before January 1%, 2005 and that contain either word
“mutation” or “polymorphism”. There were 376211 abstracts that matched the search
criteria. Figure 3 shows the basic components of the MuGeX system. As seen from
figure, the system is composed of two main stages: pre-processing stage and analysis
stage. In pre-processing stage the downloaded abstracts are first parsed. Then

tokenization and sentence splitting operations are performed on resulting structures.
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Following pre-processing stage, analysis of abstracts begins with extraction of
mutations via regular expression matching. Abstracts that contain potentially ambiguous
mutations are passed through an operation called disambiguation, where incorrectly
identified mutations are filtered out via a machine learning algorithm. After mutation
extraction process is completed, abstracts that contain mutations are scanned for gene
names. Finally each identified mutation is associated with a gene according to proximity
measures.

MuGeX is a platform independent system that has a web interface. Users are able
to query the system to find mutation-gene pairs related to a disease by entering the name
of the disease. As result of a query the information relevant to that specific disease is
retrieved from the system and displayed on the web.

In scope of this thesis, we focused on extraction of mutation-gene pairs for
Alzheimer’s disease since there is great amount of information and easily accessible
databases. However the system is designed in such a way so as to respond to any query
for any disease name without any modification. Still, in case of demand, modular nature
of the system makes it easier for developers to modify or extend the system’s

capabilities.

Medline «| Trainmg
Abstracts Corpus
|
¥
M achine z Classification
Learning i Maodel
* Tckenizati
enization :
= Mutation ; T Gena/Praotein
Parser » &Sem.&nm ™ Eivantion + Disambiguation Esieaohion
Splitting & f
Relation
PRE-PROCESSING Sxlmatan

Figure 3 A schematic illustration of MuGeX system
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4.3. Pre-Processing Stage

4.3.1. Parser Module

Abstracts downloaded from public server of MEDLINE consist of not only
information relevant to our task, but also some unnecessary information; such as
address of authors, names of authors. A parser module extracts the information that is
important for our purpose — name of the journal, title of the abstract, content of the
abstract and its unique PubMed identifier — from the downloaded abstracts. It utilizes a
lexical analyzer in connection with a parser generator. The lexical analyzer was
developed using Flex[9] and parser generator was developed using Bison[5]. While the
lexical analyzer breaks a given text into tokens, parser generator translates a grammar
specification into an executable program which then can parse that specific grammar.
When lexical analyzers and parser generators are used in connection each token that is
identified by the lexical analyzer is passed to parser generator, which reconstructs the
text on the basis of its grammar rules using these tokens from lexical analyzer.

As with many natural language texts, the file that contains downloaded abstracts
has a grammar. In the most basic form its “language” can be defined as a series of
abstracts that are separated by two empty lines. Going one step further we can define the
“abstract” as consisting of a series of sections an abstract has. For instance, journal
name is followed by topic of the abstract, which in turn is followed by content of the
abstract, which is consecutively followed by a unique PubMed identifier. It should be
noted that each section of an abstract is separated with a single empty line (see Figure
4). Again going one step further, we can construct a grammar rule for a section as a

series of tokens separated by white spaces.
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37: J Biosci Bioeng. 2000;90(1):74-80. Journal Name

The conserved tryptophan-arginine-tyrosine motif of a proteinaceous alpha-amylase
inhibitor T-76 from Streptomyces nitrosporeus is important for inhibition of animal Topic
alpha-amylases but not for an alpha-amylase from Bacillus sp. No. 195.

Sumitani J, Hattori N, Nakamura Y, Okuda Y, Kawaguchi T, Arai M.

Department of Applied Biological Chemistry, College of Agriculture, and Research
Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan.

Site-directed mutagenesis of Trp-16, Arg-17, and Tyr-18, which were thought to form a
putative active site in proteinaceous alpha-amylase inhibitor T-76 from Streptomyces
nitrosporeus for inhibition, was performed. The mutation at the site (W16A, R17A, and
Y18A) resulted in a marked decrease in inhibitory activity against all animal alpha-
amylases tested. Only the alpha-amylase from Bacillus sp. No. 195 (BAA) remained
sensitive to all the constructed mutant inhibitors. A competition between T-76 mutants
and the wild-type for porcine pancreatic alpha-amylase (PPA) suggest that the loss of
inhibitory activity against PPA in mutant inhibitors was due to the decrease in their
binding ability for PPA. T-76 formed a complex with BAA as well as PPA at the Content
stoichiometric ratio of 1:1. A competition between BAA and the PPA/T-76 complex
suggests that PPA and BAA might bind to the same region or regions close to each other
on the T-76 molecule. These results indicate that the conserved Trp-Arg-Tyr motif of T-
76 is involved in the interaction between T-76 and PPA while other amino acid residues
seem to be important for the T-76/BAA interaction. Since the BAA-type alpha-amylase
is the actual target of the inhibitors from microbes in comparison with animal alpha-
amylases, BAA might be a better material than PPA to elucidate the “true” function of
proteinaceous alpha-amylase inhibitors.

PMID: 16232821 [PubMed] | PubMed Identifier

Figure 4 Sections of a MEDLINE abstract

As mentioned before, the lexical analyzer breaks a given abstract into tokens and
sends each identified token to parser generator. It also identifies the sections of the
abstract by searching for specific signs. To give an example of what is implied by
“sign” take the name of the journal in which the abstract is published. The journal name
is always specified with a number followed by a colon, which is in turn followed by the
name of the journal (see Figure 4). So, whenever lexical analyzer identifies this sign it
sends a signal to parser generator specifying the beginning of a journal section and
continues to send the tokens it identifies. Since each section ends with two carriage
returns, whenever lexical analyzer sees two carriage returns it sends another signal to
parser generator specifying end of a section, in this case end of journal section.
Consequently, parser generator recreates the journal section of the given abstract.

Thus, in order to reconstruct an abstract with desired sections, a set of regular

expressions is defined and given as an input to the lexical analyzer to identify beginning
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and ending of each section. Each section is parsed in a manner similar to the parsing of
the journal section, which is described above, and brought together by the parser
generator.

As result of this whole parsing process relevant information from each abstract is
parsed and combined together in an XML-like format (see Figure 5). This formatting

makes it easier to process the downloaded abstracts in the following stages.

<entry>

<id>37</id>

<journal>37: J Biosci Bioeng. 2000;90(1):74-80.</journal>

<topic>The conserved tryptophan-arginine-tyrosine motif of a proteinaceous alpha-
amylase inhibitor T-76 from Streptomyces nitrosporeus is important for inhibition of
animal alpha-amylases but not for an alpha-amylase from Bacillus sp. No. 195.</topic>

<content>Site-directed mutagenesis of Trp-16, Arg-17, and Tyr-18, which were
thought to form a putative active site in proteinaceous alpha-amylase inhibitor T-76 from
Streptomyces nitrosporeus for inhibition, was performed. The mutation at the site (W16A,
RI17A, and Y18A) resulted in a marked decrease in inhibitory activity against all animal
alpha-amylases tested. Only the alpha-amylase from Bacillus sp. No. 195 (BAA) remained
sensitive to all the constructed mutant inhibitors. A competition between T-76 mutants and
the wild-type for porcine pancreatic alpha-amylase (PPA) suggest that the loss of inhibitory
activity against PPA in mutant inhibitors was due to the decrease in their binding ability for
PPA. T-76 formed a complex with BAA as well as PPA at the stoichiometric ratio of 1:1. A
competition between BAA and the PPA/T-76 complex suggests that PPA and BAA might
bind to the same region or regions close to each other on the T-76 molecule. These results
indicate that the conserved Trp-Arg-Tyr motif of T-76 is involved in the interaction
between T-76 and PPA while other amino acid residues seem to be important for the T-
76/BAA interaction. Since the BAA-type alpha-amylase is the actual target of the inhibitors
from microbes in comparison with animal alpha-amylases, BAA might be a better material
than PPA to elucidate the “true” function of proteinaceous alpha-amylase
inhibitors.</content>

<pmid>PMID: 16232821 [PubMed]</pmid>
</entry>

Figure 5 Parsed MEDLINE abstract in XML-like format

4.3.2. Tokenization and Sentence Splitting Module

The second step in pre-processing is composed of tokenization and sentence
splitting operations. At this step, non-alphanumeric characters, except hyphens, are
removed from content and topic of each abstract. Hyphens are not removed since they
are occasionally used to denote mutations, i.e., V113-->A. Also each sentence is labeled

with <sentence> and </sentence> tags.
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As it is the case with parser module, this module utilizes a lexical analyzer in
connection with a parser generator in order to split the content and topic of each abstract
into sentences. Again the lexical analyzer is developed using Flex[9] and parser
generator is developed using Bison[5]. The grammar used by the parser generator for
this module is an extended version of the grammar for parser module. A section is
assumed to consist of a series of sentences and a sentence is described as a series of
tokens separated by white spaces and ending with a period.

Yet again the lexical analyzer breaks a given abstract into tokens and sends each
identified token to the parser generator. The so called “signs” that designate the
beginning and ending of sections is redefined for the lexical analyzer.

Once more take the journal name as example. As seen from Figure 5, journal
section is bounded by <journal> and </journal> tags. Thus, each time lexical analyzer
identifies the token <journal>, it sends a signal to parser generator specifying the
beginning of a journal section and continues to send the tokens it identifies. In order not
to give rise to wrong sentence boundaries, which is generally caused by use of
abbreviations, a list of commonly used abbreviations is used (see Appendix A for
details of the list). Each time a period, which is not preceded by an abbreviation, is
encountered an end of sentence signal is sent to the parser generator, so that each
sentence is enclosed with <sentence> and </sentence> tags. Since journal section ends
with token </journal>, when lexical analyzer encounters this token it sends a signal
specifying the end of journal section.

As mentioned before, tokenization encompasses removal of non-alphanumeric
characters excluding hyphens. Tokenization is performed via regular expression
matching. For this purpose a set of regular expressions are created and each identified
section is matched against this set of rules. Whenever a match occurs, the matched
portion of the text is simply deleted. A regular expression library is utilized to
implement this operation.

Figure 6 illustrates format of the abstract entry at the end of this step. As seen in
figure, original versions of topic and content are also preserved for they might be
necessary in the future. Another thing to mention is that a new tag, named “ambiguous”,
is introduced. This tag implies that the abstract contains an “ambiguous” mutation.
What is meant by ambiguous mutation will be made clear in next section. For now, it is

sufficient to note that a special rule is defined to identify certain mutation-like tokens in

23



lexical analysis phase. If there is at least one such token then value of ambiguous tag is

set as 1; otherwise it is set as 0.

<entry>

<id>37</id>
<ambiguous>1</ambiguous>
<journal>37: J Biosci Bioeng. 2000;90(1):74-80.</journal>
<topic>

<sentence>The conserved tryptophan-arginine-tyrosine motif of a proteinaceous
alpha-amylase inhibitor T-76 from Streptomyces nitrosporeus is important for inhibition of
animal alpha-amylases but not for an alpha-amylase from Bacillus sp. No. 195.</sentence>
</topic>
<tok_topic>

<sentence>The conserved tryptophan-arginine-tyrosine motif of a proteinaceous
alpha-amylase inhibitor T-76 from Streptomyces nitrosporeus is important for inhibition of
animal alpha-amylases but not for an alpha-amylase from Bacillus sp. No. 195</sentence>
</tok_topic>
<content>

<sentence>Site-directed mutagenesis of Trp-16, Arg-17, and Tyr-18, which were
thought to form a putative active site in proteinaceous alpha-amylase inhibitor T-76 from
Streptomyces nitrosporeus for inhibition, was performed.</sentence>

<sentence> The mutation at the site (W16A, R17A, and Y18A) resulted in a marked
decrease in inhibitory activity against all animal alpha-amylases tested.</sentence>

<sentence> Since the BAA-type alpha-amylase is the actual target of the inhibitors
from microbes in comparison with animal alpha-amylases, BAA might be a better material
than PPA to elucidate the “true” function of proteinaceous alpha-amylase
inhibitors.</sentence>
</content>
<tok_content>

<sentence>Site-directed mutagenesis of Trp-16 Arg-17 and Tyr-18 which were
thought to form a putative active site in proteinaceous alpha-amylase inhibitor T-76 from
Streptomyces nitrosporeus for inhibition was performed</sentence>

<sentence>The mutation at the site W16A R17A and Y 18A resulted in a marked
decrease in inhibitory activity against all animal alpha-amylases tested</sentence>

<sentence> Since the BAA-type alpha-amylase is the actual target of the inhibitors
from microbes in comparison with animal alpha-amylases BAA might be a better material
than PPA to elucidate the true function of proteinaceous alpha-amylase
inhibitors</sentence>
</tok_content>
<pmid>PMID: 16232821 [PubMed]</pmid>

</entry>

Figure 6 Illustration of abstract entry at the end of pre-processing stage
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4.4. Analysis Stage

4.4.1. Mutation Extraction Module

The mutations that are extracted by MuGeX are amino acid level protein
mutations, meaning that the mutations cited using amino acid terminology. Mutation
extraction is performed by regular expression matching. For this purpose a set of 20
patterns is formed from phrases that describe protein mutations. A subset of example

mutation citations that are extracted by MuGeX is shown in Table 1.

WI6A
Ile-15-Thr
Arg506 to Gln
Ala399-> Asp
Substitution of Methionine for valine at position 30
glycine 264 is replaced with a serine
Ala 231 to Val substitution
Table 1 A subset of protein mutation examples

In the most basic sense, a mutation is described with a wild-type' amino acid
followed by position of mutation on the amino acid sequence of the protein, which is in
turn followed by a mutant amino acid. Amino acids can be designated using single-
letter codes (i.e., R), three-letter codes (i.e., Arg), or full names (i.e., arginine). While
conventionally three-letter codes start with an uppercase letter, there is no such
convention for full names. Therefore full names are matched in all lowercase letters;
and lowercase letters with a leading uppercase letter (i.e., [Ala]rginine).

All of our regular expressions are based on one basic expression, which is used to
detect mutations similar to W16A. That basic expression is [Amino][0-9]+[Amino],’
where Amino is a list of single-letter amino acid codes. Remaining mutation patterns
are found by making modifications to this expression. All regular expressions are

compiled with the help of a C++ regular expression library.

" Typical form of an organism, strain, gene, or characteristic as it occurs in nature.

2 [Amino]: (A|V|L|T/G[F|W|MP|S|T|Y|N|Q|C|D|E/K|R/H).
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As pre-processing operations are completed for an abstract, pattern matching is
applied sentence by sentence to tokenized versions of topic and content of that abstract
in order to identify mutations. Whenever a mutation is identified, it is enclosed with
<mutation> and </mutation> tags for further processing.

At the end of this step, all information about each abstract is inserted into a
database table, named Tbl:Medline (see Appendix C for detailed information on major
database tables). While each entry of the database table represents an abstract, each field
of the database table represents each tag, excluding sentence tag, seen in Figure 6.
Further processing on an abstract will be made by querying the database for the abstract
in question; and any modification on the abstract will be reflected to its corresponding
database entry.

The main challenge in the mutation extraction process is to distinguish actual
protein mutations from mutation like terms. For instance, due to ambiguity in naming,
one may misinterpret a nucleotide mutation as a protein mutation. A14C is one example
of such mutations. A14C can refer either to mutation of alanine to cysteine at position
14 or mutation of adenine to cytosine at position 14. This naming ambiguity exists also
between mutations and other biological entities. The name of a strain or a cell line may
easily be misinterpreted as a protein mutation, i.e., T47D is name of a cell line. As can
be understood from the given examples, this ambiguity emanates when mutations are
expressed in [Amino][0-9]+[Amino]* format using single-letter amino acid codes. From
now on, the term “potentially ambiguous mutations” will be used to refer to the tokens
in this format. Potentially ambiguous mutations are identified during lexical analysis via
regular expression matching, and the abstracts that contain these mutations are tagged
for further processing. In order to resolve disambiguities MuGeX utilizes a machine

learning technique. The next section discusses this disambiguation process.

4.4.2. Disambiguation Module

As mentioned in previous section, nucleotide mutations and names of some
biological entities cited using single-letter codes are prone to confusion with protein
mutations. The disambiguation module aims to classify the abstracts that are previously

labeled as containing potentially ambiguous mutation. The classification is performed
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by applying a supervised machine learning algorithm on topic and content of the labeled
abstracts. We focused on two learning algorithms: The Naive Bayes algorithm and the
Rocchio algorithm with Term Frequency-Inverse Document Frequency (TF-IDF)
weighting. In order to decide which algorithm to use and which processing options to
apply, a set of experiments are carried out.

In order to test the performance of the of Rocchio algorithm and Naive Bayes
algorithm we designed a training benchmark that consists of randomly selected 3600
Medline abstracts. This value corresponds to 10% of abstracts that contain potentially
ambiguous mutations in the whole corpus. 2771 of those abstracts contain amino acid
level mutations, 768 contain DNA level mutations, and the remaining abstracts contain
biological entities that are cited with mutation-like terms. An abstract is labeled as
“protein”, if it contains at least one amino acid level mutation, and it is labeled as “not
protein” if it does not contain any amino acid level mutations. For classification, we
have used Rainbow[17], which is one of the front-ends of Bow library[17] designed for
document classification. Rainbow not only provides functions to process documents;
but also provides several classification algorithms including Naive Bayes and Rocchio
with TF-IDF weighting.

Since both learning algorithms adopt a bag-of-words approach, first, feature
vectors for each abstract are constructed. As feature values, the frequency of words are
used instead of just a binary presence or absence of words. In order to remove common
words, a stop-word’ list is constructed (see Appendix B for details of the list). The list is
a combination of most common English words and a list of stop-words for Medline
Database.

In order to decide which algorithm to use the classification performance of the
two algorithms with respect to different processing options were investigated. The
effects of tokenization, stemming and use of word n-grams on performance of
classifiers are analyzed. For this purpose eight different classifier models are
constructed. The results for this dataset are averaged over a number of random train/test
splits; and in each experiment 30% of data is used for testing. Results are given in Table
2.

Before going into detail of test results, it should be noted that stemming is

performed utilizing Porter stemmer.[20] Porter stemmer removes commonly observed

? Common words that have no meaning by themselves.
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morphological and inflectional suffixes from the English words. Another thing to be
mentioned is that two types of tokenization procedure are used. The first one, which is
named by McCallum[17] as white space tokenizer, delimits the tokens in an input text
by only white spaces ignoring tokens that contain characters other than uppercase and
lowercase letters. The second tokenizer is named alphanumeric tokenizer; and it
delimits tokens in an input text by non-alphanumeric characters. It should be mentioned
that the tokens that consist of only digits are not included in the dictionary. Apart from
these, in dictionary construction we used word n-grams. We tested the effect of using
uni-grams and bi-grams.

The disambiguation performance is measured in terms of precision, recall and
accuracy. While accuracy measures how close the result of an experiment to the actual
value, precision measures how close the results of an experiment to each other.
Equations (4.1), (4.2), (4.3) gives the formulas for precision, recall and accuracy

respectively.

TP

recision= 4.1
P TP+FP @D
recall = L 4.2)

TP+FN
T
accuracy = TP+1N 4.3)
TP+TN + FP+ FN

In these equations TP denotes true positive, FP denotes false positive, TN denotes true
negative and FN denotes false negative. True positive is used to indicate that an abstract
that contains amino acid level mutation is classified as containing amino acid level
mutation. In a similar manner, true negative is used to indicate that an abstract that does
not contain any amino acid level mutation is classified as not containing amino acid
level mutation. False positive is used to indicate that an abstract that does not contain
any amino acid level mutation is classified as containing amino acid level mutation. In
the same way, false negative is used to signify that an abstract that contains amino acid

level mutation is classified as not containing any amino acid level mutation.
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While precision values for both algorithms are almost same in all experiments,
due to low recall values Rocchio learning algorithm performed worse than Naive Bayes
learning algorithm. However both algorithms respond to the changing processing

options in a more or less similar manner.

Rocchio Naive Bayes
Model | %Precision %Recall %Accuracy | %Precision %Recall %Accuracy
1 89.8 77.0 76.0 90.2 86.6 82.7
2 90.2 82.4 79.9 90.6 87.7 83.8
3 89.8 75.9 75.3 90.3 85.2 81.9
4 89.3 77.3 80.7 82.4 97.2 82.2
5 90.5 76.1 75.9 90.8 87.1 83.6
6 89.8 88.7 83.8 84.7 97.0 84.6
7 89.4 83.0 79.6 82.9 96.7 82.5
8 90.1 85.8 82.1 85.1 96.6 84.7

Note: 1: white space tokenizer, no stemming, unigram. 2: alphanumeric tokenizer, no stemming, unigram. 3:
white space tokenizer, stemming, unigram, 4: white space tokenizer, no stemming, bi-gram. 5: alphanumeric
tokenizer, stemming, unigram. 6: alphanumeric tokenizer, no stemming, bi-gram. 7: white space tokenizer,
stemming, bi-gram. 8: alphanumeric tokenizer, stemming, bi-gram.

Note: Model 1 constitutes the basis case.

Table 2 Comparison of Rocchio and Naive Bayes algorithms

When abstracts are processed using only Porter stemming algorithm (Model 3),
accuracy of both classifiers show no significant difference with respect to Model 1. It is
observed that while frequent words tend to have more inflected forms, infrequent
words, such as gene names, tend to have less inflected forms in the vocabulary.
Therefore, when words are stemmed, frequently observed words become more frequent
while frequency of infrequent words increase relatively less. As a result, weights of
words stay nearly same after stemming; and hence performances of classifiers show no
significant difference.

When tokenization is performed considering not only words that consist of letters
but also words that consist of alphanumeric characters (Model 2), accuracy values of
classifiers improve. This is to be expected because use of words that consist of
alphanumeric characters is highly common in medical literature. Incorporating that
information into classification process improves performance in terms of precision,
recall and accuracy. When alphanumeric tokenization is applied along with stemming
(Model 5), because of the reasons stated above, the accuracy values do not change
significantly for Naive Bayes algorithm. However, decrease in recall for Rocchio
algorithm is rather unexpected. Even though performance of Rocchio on this model

(Model 5) is increased with respect to its performance on the model which processes
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data using only stemming (Model 3), it would be reasonable to apply Rocchio on a
dataset which is processed only with alphanumerical tokenization.

Looking at word bi-grams instead of unigrams (Model 4) caused small amount of
decrease in precision and increase in recall values of Rocchio algorithm, which led to a
considerable increase in accuracy. On the other hand, while recall of the Naive Bayes
algorithm increases significantly, due to decrease in precision, the accuracy of Naive
Bayes decreases slightly. When bi-grams are used, due to not having enough instances
of word pairs in the corpus classification accuracy drops.

We believe that if size of the training set increases, the precision of Naive Bayes
algorithm will increase. On the other hand, since frequency of word pairs in the corpus
is small, weights of such pairs is high according to TF-IDF weighting. By taking these
high weighted word pairs into consideration, the accuracy of Rocchio algorithm
increases. Furthermore, when bi-grams are used in accordance with stemming (Model
7) the frequency of word pairs increases since all inflected forms of the words are
mapped to single representation. Due to increase in frequency of word pairs, the
accuracy of Naive Bayes algorithm slightly increases while accuracy of Rocchio
algorithm slightly decreases. However, still the changes in accuracy values are not
significant.

When bi-grams are used in accordance with alphanumeric tokenization (Model 6)
precision, accuracy and recall values of both classifiers increases. Because now the
information that comes from words that contains alphanumeric characters is
incorporated into the classifier models.

Highest classifier accuracy is obtained using Naive Bayes learning algorithm and
processing the data by performing stemming, alphanumeric tokenization and
considering word bi-grams (Model 8). For disambiguation purposes, we want
classification results to be as accurate as possible while conserving high precision value.

In order to improve classification accuracy feature reduction is performed on
previously constructed models. For this purpose, first N unique words that have the
highest information gain are selected and remaining words are removed from
vocabulary, where N ranges between 1000 and 150000°. Performance graphic of

classifiers with respect to changing values of N are seen in Figure 7 and Figure 8.

* Size of vocabulary increases to 150000 when word bi-grams are used.
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The performance of Naive Bayes algorithm for all models changes substantially
with respect to the size of vocabulary. As expected accuracy first increases up to some
point and then decreases; finally reaching to a value closer to the accuracy value when
vocabulary pruning is not performed. As seen in Figure 7, best performance is obtained
using Model 8 on a vocabulary consisting of 22500 words with highest information
gain. Unlike Naive Bayes algorithm, accuracy values for Rocchio do not improve very
much, and tend to oscillate inside a value range. The highest accuracy value for Rocchio
is obtained using Model 6. Compared to accuracy values of previous experiments,
application of feature reduction caused a considerable improvement in performance of
both classifiers; but still Naive Bayes algorithm outperforms Rocchio algorithm.
Therefore, the Naive Bayes algorithm with feature reduction performed on Model 8 is
used.

After deciding on which algorithm and processing options to use, the selected
model is trained and incorporated into MuGeX system. For disambiguation purposes,
the content and topic of each abstract that contain potentially ambiguous mutation are
retrieved from the medline database table via querying the database table against value
of the field named “ambiguous”. Afterwards, topic and content of each retrieved
abstract is classified using Naive Bayes algorithm that is trained with the selected
model. If the abstract is classified as not containing protein mutation then <mutation>
tags around all potentially ambiguous mutations are removed; and the tokenized topic
and tokenized content fields of the database table entry corresponding to that abstract is
updated. Otherwise tokenized versions of topic and content of the abstract is remained

unchanged.

4.4.3. Gene/Protein Extraction Module

For gene name identification, a dictionary is constructed from HUGO
database.[13] The dictionary consists of approved symbols, approved names, previous
symbols and possible aliases of genes. Currently there are 82.408 entries in the
dictionary.

When dictionary-based approaches are employed the problem of the absence of a

standard naming convention arises. The naming variations are used inconsistently most
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of the time. Therefore, prior to gene name extraction, the gene dictionary has to be
processed in order to normalize gene names. The dictionary is processed in the
following manner. For gene symbols all hyphens are replaced with white spaces,
parenthesized materials are removed; and for gene names parenthesized materials are
removed, all punctuation characters are replaced with white spaces and all uppercase
characters are converted into lowercase characters. Table 3 shows some examples of

gene name normalization.

HUGO Entry Normalized Form
alpha-1-B glycoprotein alpha 1 b glycoprotein
alpha 1,3-galactosyltransferase 2 alpha 1 3 galactosyltransferase 2

(isoglobotriaosylceramide synthase)
CD2 (cytoplasmic tail) binding protein 2 | ¢d2 binding protein 2
AGT-1 AGT 1

Table 3 Examples of Gene Name Normalization

A database table, named gene synonyms, is constructed from normalized form of
gene symbols and names. This table contains two fields: approved gene symbol and
gene synonym. For each approved gene symbol, there are as much entries in the table as
sum of the number of approved names, previous symbols and possible aliases for that
gene. This table is used to map identified gene names into its approved symbol; so that
all identified genes will be unified at the final stage.

This module employs exact matching method to identify gene names. Gene
identification is performed with the help of a lexical analyzer that is capable of
identifying the entries in the dictionary. The lexical analyzer is developed using Flex.

Gene extraction module operates in the following way. As first step, tokenized
versions of topic and content of each abstract that contain at least one mutation is
retrieved from medline database table. Afterwards all hyphens and parenthesized
materials are removed from both topic and content of each abstract; and they are
scanned to find gene symbols by the lexical analyzer. Subsequently, both content and
topic are converted into lowercase letters and are scanned to find gene names. Each time
a gene mention is identified by the lexical analyzer, it is encapsulated with <gene>,
</gene> tags for further processing. After all genes of an abstract are identified, these
genes are unified via a simple database query on gene synonyms database table. At the

final step, if at least one gene is found in an abstract, then the tokenized topic and/or
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tokenized content fields of the database table entry corresponding to that abstract is

updated.

4.4.4. Relation Extraction Module

The final step of the analysis stage is relation extraction. In order to associate a
mutation with a gene, an approach similar to that of Rebholz-Schuhmann et al.[22] is
employed. The relation extraction module first checks whether a given abstract
mentions a single gene or not. If it does, then any mutation in the abstract is associated
directly with that gene. Otherwise, the sentence that contains the mutation is scanned for
existence of a gene. If sentence does not contain any gene mention then first sentence of
the abstract is analyzed, since authors usually tend to mention name of the gene on
which they conduct an experiment in the first sentence. However, if there is a gene in
the same sentence with a mutation, then the mutation is associated with that gene. On
the other hand, if there exist more than one gene in the same sentence, then the mutation
is associated to one of the genes according to proximity rules; meaning that the
mutation is associated to the most closest gene.

A database table, named Tbl:Mutation, is constructed from identified mutation-
gene pairs (see Appendix C for detailed information on major database tables). This
table will be useful when a user queries the system in order to find mutation-gene pairs
related to a disease. In such a case, without any need to re-extract relations for a specific
disease, relevant mutation-gene pairs will be retrieved directly from this database table.
In construction of this database table, all previously identified mutations are unified so
as to be represented in the same format. The format is defined to be “wild-position-
mutant”. In this format “wild” denotes the wild type amino acid, “position” denotes the
position of mutation on the amino acid sequence, and “mutant” denotes the mutant

amino acid.
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4.5. User Interface

Users can interact with MuGeX via web interface. Users are able to query the
system for any disease name. Subsequent to a query, information retrieved from
MuGeX is displayed on the browser. Furthermore, MuGeX is equipped with a caching
mechanism. Results of at most 10 queries are stored in separate database tables;
however system can easily be modified to store more than 10 query results. When there
are 10 database tables and user performs a query, the table that is not accessed for the
longest time is deleted; and a new table is created for the queried disease. With this
caching mechanism, after querying the system for a specific disease, which takes about
1 minutes depending on the length of the query string, in repeating queries for the same
disease the results are displayed at constant time.

Retrieved information comprises mutation-gene pairs, PubMed identifiers and
topics of the abstracts that contain these mutation-gene pairs. Each PubMed identifier is
linked out to public server of Medline. Thus, whenever user clicks on an identifier,
public server of Medline displaying corresponding abstract is opened in a new window.
Besides, a button is placed next to each identifier that defines an abstract that contains
potentially ambiguous mutation. This button allows the user to review the abstract and
label it as containing protein level mutation, DNA level mutation or cell line/strain. In
the next complete run of MuGeX, this information is incorporated into training corpus
that is used to train the machine learning algorithm. Thus, by incorporating user

contribution we aim to improve accuracy of disambiguation step.

4.6. Conclusions

In this chapter we tried to give the methodology that is followed throughout the
development of this thesis by mentioning the function of each module. The question of
how the techniques given in Chapter 3 are combined together to form MuGeX system

is answered. In the next chapter we explain the experiments conducted and their results.
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CHAPTER S

Experiments and Results

5.1. Introduction

This chapter presents the conducted experiments and results for MuGeX system.
We first describe the test to measure performance of mutation extraction and then
present resulting precision and recall values along with a discussion. Then we report

performance of mutation-gene relation extraction in detail.

5.2. Performance of Mutation Extraction

To estimate recall and precision of mutation extraction, a test corpus that consists
of 231 randomly selected Medline abstracts, which contain either word “mutation” or
“polymorphism”, was created. It contains 472 unique mutations 280 of which are
ambiguous mutations.

In order to overcome the bias caused by the occurrence of same mutation
mentioned more than once in an abstract, performance of MuGeX is evaluated with

respect to two metrics, namely cited mutation and contained mutation. While several
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occurrences of same mutation mention is considered as one individual result for
contained mutation metric, in cited mutation metric, each correctly identified mutation
mention is considered as individual result. While a term that is correctly identified as a
mutation with or without means of disambiguation is considered as true positive, a term
that is incorrectly identified as a mutation with or without means of disambiguation is
considered as false positive. A mutation that is not extracted, whereas it should be, is
considered as false negative. Performance of MuGeX is tested with and without the
disambiguation module. The resulting recall and precision values are given in Table 4

and Table 5.

% Precision % Recall % F-Measure
Cited mutation 85.8 &9.0 87.4
Contained mutation 88.3 84.6 86.4

Table 4 Recall and precision values for mutation extraction (without disambiguation)

% Precision % Recall % F-Measure
Cited mutation 95.9 85.9 90.6
Contained mutation 96.7 82.0 88.7

Table 5 Recall and precision values for mutation extraction (with disambiguation)

As seen in Table 4, for cited mutation extraction when disambiguation is not
performed MuGeX system has 85.8% precision and 89.0% recall. When disambiguation
is performed MuGeX system has 95.9% precision and 85.9% recall. So, when
disambiguation is incorporated into mutation extraction process, the precision of
MuGeX is increased by 10 points (11.7% relative) in return for 3.1 points (3.5%
relative) decrease in recall. Besides when disambiguation is performed, F-Measure is
increased by 3.2%. High precision values imply that mutations retrieved by MuGeX
system are considerably relevant. Looking at recall values it may be said that MuGeX
system is capable of retrieving a large portion of available mutation information from
biomedical documents. Thus, the results obtained by analyzing abstracts via MuGeX
system are very encouraging.

To have a better insight in mutation extraction capability of MuGeX, its

performance on contained mutation extraction on the test corpus is given in Table 6.
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Unidentified Mutations Incorrect | Correct
Grammatical | Unrecognized | No Regex False Mutations | Mutations
Mutations Typing to match Negative
37 11 23 14 13 387

Table 6 Result of contained mutation extraction in numbers

As seen from Table6, MuGeX extracted 387 of 472 existing mutations. Furthermore,
while MuGeX retrieved 13 incorrect mutations, a total of 85 mutations could not be
identified. When the results are analyzed, it is seen that 11 of the 13 incorrect mutations
are ambiguous mutations that pass the disambiguation step as false positives. The
remaining incorrect mutations are irrelevant patterns that happened to be matched by
some regular expression.

Most of the unidentified mutations are grammatical mutations, meaning that the
mutations that are described using natural language. You may see examples of

unidentified grammatical mutations in Table 7.

PubMed Id Mutation

1541680 ... replacement of a highly conserved leucine residue by proline at
position 207 in the alpha-spectrin chain ...

15288791 ... the mutant version of aspartate transcarbamoylase in which
Glu50 in the catalytic chains was replaced by Ala destabilizes ...

8452538 ... the tryptophan residues 388 and 412 in the glucose transporter
GLUT1 were altered to leucine ...

8026500 ... three mutants in which Gly156 and/or Asnl57 was replaced by
Phe ...

Table 7 Examples of grammatical mutations that cannot be identified by MuGeX

The last example of Table 7 is rather interesting. While MuGeX identifies the mutation
of Asnl57 to Phe, it cannot identify mutation of Gly156 to Phe in this sentence. Besides
these grammatical mutations, 23 mutation citations could not be identified since they
could not be matched with current regular expression set of MuGeX. Examples of such

mutation citations are show in Table 8.

PubMed Id Mutation
11578065 34Asn (AAT)-to-Ser (AGT)
10896920 (15)glycine (GGT) to alanine (GCT)
1985702 Val----Glu
Table 8 Some mutation patterns that cannot be identified by MuGeX
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These unidentified grammatical and unmatched mutations can be retrieved and thus
recall can be increased by introducing new regular expressions or relaxing the existing
ones. Furthermore, 11 mutations could not be identified due to typing errors and
nonstandard citations, i.e., citing three-letter coded amino acids in all uppercase letters.
Yet again, by relaxing existing regular expressions these unidentified mutations can be
identified. Apart from these mutations, the loss of relevant information at
disambiguation step is another cause of decrease in recall. However, this loss of
information is negligible when high increase in precision is considered.

To better judge the disambiguation performance of MuGeX, we enumerated the
number of correctly disambiguated and incorrectly disambiguated contained mutations.
An amino acid level ambiguous mutation is judged to be correctly disambiguated if the
abstract in which it is cited is classified as containing amino acid level mutation;
otherwise it is judged to be incorrectly disambiguated. Same reasoning is followed for
correctly and incorrectly disambiguated protein mutation-like terms. Table 9 displays

results corresponding to correctly and incorrectly disambiguated mutations.

Correctly Disambiguated Incorrectly Disambiguated
Amino Acid Level Mut. Other | Amino Acid Level Mut. | Other
214 41 14 11

Table 9 Disambiguation performance in numbers

As mentioned before, the test corpus contains 472 unique mutations 280 of which
are ambiguous mutations. While 228 of these ambiguous mutations are amino acid level
mutations, 52 of them are amino acid level mutation-like terms. Looking at Table 9, it
may be said that MuGeX is capable of differentiating between amino acid level
mutations and mutation-like terms with a precision of 95.1% and a recall of 93.8%. It
can be concluded that utilized disambiguation method is very successful in
differentiating between amino acid level mutation citations and non-amino acid level
mutation citations.

However, disambiguation performance can be improved by utilizing more
sophisticated machine learning algorithms; however it is important to emphasize that
even with a naive algorithm one is able to acquire accurate results. Another approach to
improve performance might be to filter all mutation-like terms prior to classification;

such as cell line, strain name, using a comprehensive dictionary. However, if this
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process is not handled carefully this methodology would produce several false
negatives.

Finally, we compared performance of MuGeX with that of MEMA[22] system.
The result of the comparison is given in Table 10. Recall and precision values for
MEMA system are taken from the original publication. It is said in the publication that
MEMA'’s recall and precision values were estimated over a set of 100 abstracts, each of
which contain at least one mutation and this set is retrieved by querying public server of
MEDLINE with keywords “mutation” and “polymorphism”. Similarly, MuGeX system
is tested on a set of 231 abstracts, which are collected via querying public server of
MEDLINE with the same keywords. Like MuGeX, MEMA is capable of extracting
mutations that are described in natural language. Difference between these two systems
arises from the type of mutations they identify. While MEMA extracts also nucleotide

level mutations, MuGeX is designed to extract only amino acid level mutations.

MEMA MuGeX
%Precision %Recall %F-Measure | %Precision %Recall %F-Measure
Cited 98.6 74.7 85.0 95.9 85.9 90.6
Contained 97.9 75.3 85.1 96.7 82.0 88.7

Table 10 Comparison of MuGeX with MEMA

As seen in Table 10, MuGeX performs better than MEMA in terms of recall.
Considering that MuGeX does not extract nucleotide level mutations while MEMA
does, this result is promising. When performance of both systems is compared in terms
of F-Measure, MuGeX system outperforms MEMA due to its ability to retrieve higher
amount of existing relevant information while maintaining high precision. It is not noted
how MEMA differentiates between nucleotide level mutations and amino acid level
mutations. However with its disambiguation approach MuGeX is able to differentiate
between not only nucleotide level mutations and amino acid level mutations, but also
between point mutation like biological terms (i.e., cell lines) and amino acid level

mutations successfully.
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5.3. Performance of Mutation-Gene Association for Alzheimer’s Disease

To measure the performance of mutation-gene association, MuGeX system was
queried with the keyword “alzheimer”. As a result of this query MuGeX retrieved a set
of mutation gene pairs from abstracts that contain word “alzheimer”. If no gene was
associated with a mutation, then only mutation was retrieved. Subsequently, MuGeX
retrieved 505 abstracts that contain 873 contained mutations and 808 contained
mutation-gene pairs. Performance of mutation-gene relation extraction is given in

numbers in Table 11.

Incorrect Relations Unknown | Correct
Incorrect | Unidentified | Incorrect Other Relations | Relations
Association Gene Mutation
28 43 18 1 65 718

Table 11 Results of mutation-gene relation extraction

MuGeX extracted 718 correct relations along with a total of 90 incorrect relations
and 65 unidentified relations. As seen from Table 11, main problem in relation
extraction is low performance of gene name identification module. This is caused
mainly by the fact that gene names cited in several abstracts do not exist in the gene
name dictionary downloaded from HUGO Database. Also, MuGeX normalizes gene
names by considering only their orthographic variants. Therefore, mutations in other
variant forms; such as morphological variants, cannot be identified by exact matching
technique of MuGeX. Due to unidentified gene names in context of a mutation 43
incorrect relations are built. In addition to this, again due to unidentified gene names, 65
mutations could not be associated with any gene, even though there is at least one gene
citation in each abstract. 18 of 90 incorrect relations result from the wrongly identified
ambiguous mutations that pass disambiguation step as false positives. Also, 28 of the 90
incorrect relations result from associating the mutation with a wrong gene. Since
MuGeX utilizes only a notion of proximity, most of these 28 incorrect relations are
observed when more than one gene is cited in the context of a mutation. Still, the
performance of MuGeX is promising. 88.9% of mutation-gene pairs retrieved by

MuGeX are correct.
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We also compared our results with information found in Alzheimer Disease &
Frontotemporal Dementia Mutation Database (AD&FTDMDB), which is a locus-
specific database of Human Genome Variation Society.[2] This database not only
contains mutations that are collected from literature and presentations at scientific
meetings; but also links to scientific documents that contain those mutations.

We retrieved 183 substitution type mutations from AD&FTDMDB by querying
the database with respect to phenotype. 25 of these mutations are observed on APP
gene, 147 mutations are observed on PSEN1 gene and 11 mutations are observed on
PSEN2 gene. Mutation-gene pairs obtained by querying MuGeX system by keyword
“alzheimer” is compared with the entries retrieved from AD&FTDMDB database.

Comparison results are illustrated in Table 12.

Gene Identified Unidentified Total
MEE ABE ADE MDE NIC
APP 21 0 0 0 0 4 25
PSENI1 84 2 1 4 33 23 147
PSEN2 9 0 0 1 1 0 11
Cumulative 114 2 1 5 34 27 183

Note: MEE: Mutation Extraction Error. ABE: Association Building Error. ADE: Reference abstract does not
contain disease name. MDE: Reference abstract does not mention the mutation. NIC: Reference abstract is not
in our corpus.

Table 12 Comparison of MuGeX results with data extracted from AD&FTDMDB

Due to reasons that are not related to performance of MuGeX system, 66
mutation-gene pairs could not be identified. While documents that cite five of these 66
mutation-gene pairs do not mention disease name in their abstracts, documents that
discuss 34 mutation-gene pairs do not mention the cited mutation in their abstracts.
Besides these, documents that cite 27 pairs do not exist in our corpus since they are
dated after January 1, 2005. However, MuGeX is very good at extracting remaining
mutation-gene pairs. It extracts 97.4% of remaining 117 mutation-gene pairs correctly.

We believe that if the corpus is extended so as to contain abstracts of documents
that are published thus far, number of identified mutation-gene pairs will increase.
However, it should be noted that retrieval of mutation-gene pairs is limited by the
information given in the abstract. And usually the information contained in the abstracts
is insufficient. For instance, in this case, most of the unidentified mutation-gene pairs

result from incited mutations. Therefore, to improve recall, it might be a better idea to
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analyze full text articles instead of abstracts. However, processing full text articles

brings about extra overhead and different processing.

5.4. Conclusions

In this chapter we reported the results of our experiments. The performance of
MuGeX is measured in two aspects: its performance in mutation extraction and its
performance in relation extraction. We tried to discuss the outcome of experiments and
addressed the question of why certain erroneous extractions are observed in detail.

Our results indicate that MuGeX is successful at mutation extraction. It is
observed that main problem that influences performance of mutation extraction in terms
of recall is insufficiency of regular expression set of MuGeX. To overcome this
problem the existing regular expressions may be relaxed or new regular expressions
may be created. Moreover, it is seen that utilized disambiguation method is very
successful in differentiating between amino acid level mutations and non-amino acid
level mutations. However, further improvements may be achieved with utilization of
more sophisticated machine learning algorithms.

The relation extraction performance of MuGeX is also encouraging. The principal
factor that affects relation extraction performance of MuGeX is the identification of
gene mentions. Performance of the system in terms of both recall and precision can be
improved by utilization of a more comprehensive gene name dictionary or a
combination of several gene name dictionaries. Further improvements will be achieved

by extending the gene name normalization procedure so as to cover more variation

types.
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CHAPTER 6

Conclusions

In this thesis, we presented design and implementation of a system that is capable
of automatically extracting mutation-gene pairs from MEDLINE abstracts for a given
disease name.

In mutation extraction, performance of MuGeX is satisfactory. MuGeX retrieves
large amount of existing relevant mutation information while maintaining accuracy of
extracted mutations at a high level. MuGeX differs from existing systems of mutation
extraction in the way it handles ambiguous mutation citations. By looking at context of
the mutation-like entities and following a supervised approach, MuGeX is capable of
differentiating between not only nucleotide level mutations and amino acid level
mutations, but also between point mutation like biological terms and amino acid level
mutations successfully.

In relation extraction, performance of MuGeX is highly encouraging. It is
observed that most of the extracted incorrect and unidentified relations are caused by
unidentified gene names. However, for abstracts where genes are identified correctly, it
is seen that the relations that are built by MuGeX are correct with high probability. For
Alzheimer’s disease, MuGeX retrieves a large portion of the previously known and
approved mutation-gene pairs. Thus, we may draw the conclusion that MuGeX retrieves
highly relevant information. Besides these approved mutation-gene pairs, MuGeX
retrieves additional pairs that are in some way related to Alzheimer’s disease. For
instance, pairs that consist of mutations, which are synthetically produced as a result of

mutagenesis experiments are also retrieved in context of Alzheimer’s disease. In
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extreme case, where all these additional pairs are considered to be irrelevant, MuGeX
will still be regarded as a versatile system that lessens the search space of researchers
with the information it retrieves, given that it assures that a portion of the retrieved
information is highly relevant.

One of the advantages of MuGeX is that its memory requirements are very
modest compared to similar systems. It is fully functional on a machine with 100-150
MB free main memory. Also, the complete run of MuGeX with a corpus of 376000
abstracts on the same machine takes about 16 hours, which is considerably short
compared to similar systems. Moreover as long as the MEDLINE corpus that constitutes
basis of the system is kept up to date the time required to access relevant information is
very short. Querying the system for a disease name takes about 30 seconds, depending
on the length of the query term. However, this advantage is also a handicap since it
requires the system to be executed from beginning to end. Still, since the complete run
of MuGeX takes a reasonable time, running the system once in a month does not seem
to be a major concern. Nevertheless as future work, development of a runtime update
mechanism is also planned that avoids the execution of the system from beginning to
end when the basis corpus is renewed.

Currently, MuGeX does not give semantic meaning to the extracted mutation-
gene relations. It is just known that the extracted mutation and its associated gene are
related somehow; but it is not known whether the relation is positive or negative;
meaning that the mutation is eventuated on that gene or not. Same vagueness exists
between the disease name and the mutation-gene pairs that are associated to it. With
utilization of natural language processing techniques semantic meanings can be given to

extracted relations in the future.
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Appendix A — List of Commonly Used Abbreviations

PEOPLE jr, mr, mrs, ms, dr, prof, sr, gov, supt, det, rev

ARMY col, gen, It, cmdr, adm, capt, sgt, cpl, maj

INSTITUTES dept, univ, assn, bros

COMPANIES inc, Itd, co, corp

PLACES arc, al, ave, cl, ct, cres, dr, dist, mt, ft, la, pl, plz, rd, st,
tce, Ariz, Ark, Cal, Calif, Col, Colo, Conn, Del, Fed,
Ga, Ida, Id, III, Ind, Ia, Kan, Kans, Ken, Ky, La, Me,
Md, Is, Mich, Minn, Miss, Mo, Mont, Neb, Nebr, Nev,
Mex, Okla, Ok, Ore, Penna, Penn, Pa, Dak, Tenn, Tex,
Ut, Vt, Va, Wash, Wis, Wisc, Wy, USAFA, Alta, Man,
Ont, Que, Sask, Tuk

MONTHS jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

MISCELLENCOUS | vs, etc, no, esp, Gen, Genet, Mol, resp, ca, i.e., pv, etc,
ed, p, sp
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Appendix B — Stopword List

a
able

about
above
according
accordingly
across
actually
affected
affecting
affects
after
afterwards
again
against

all

allow
allows
almost
alone
along
already
also
although
always

am

among
amongst
an

and
another
any
anybody
anyhow
anyone
anything
anyway
anywhere
apart
apparently
appear
appreciate
appropriate
are

arise
around

as
aside

ask
associated
at
available
away
awfully
be
became
because
become
been
before
beforehand
behind
being
believe
below
beside
best
better
between
beyond
boil

both

brief
briefly
but

by

cal

came

can
cannot
cant

cause
certain
change
chem
clearly

co

com

come
concerning
consequently
consider

contain
containing
contains

copyright

corresponding

could
course
currently
definitely
described
despite
did
different
do

does
doing
done
down
downwards
dr

due
during
each

edu

effect

cg

either

else
elsewhere
enough
entirely
especially
et

etc

even

ever

every
everybody
everyone
everything
everywhere
ex

exactly
example
except
furthermore

few
followed
following
for
former
formerly
forth
found
from
further
far

gave

get

gets
give
given
gives
giving
go

goes
going
gone

got
gotten
had
happens
hardly
has

have
having
he

help
hence
her

here
hereafter
hereby
herein
hereupon
hers
herself
him
himself
his
hither
how

howbeit
however
ie

if
ignored
immediate
importance
important
inc
indeed
indicate
indicated
indicates
mner
instead
into
mward

is

it

its

itself
just

keep
keeps
kept

kg

kcal

kma

km
know
knowledge
known
knows
largely
last
lately
later
latter
least

less

lest

let

like
likely
little
look

looking
looks

Itd

made
mainly
make
many
may
maybe
me

mean
meanwhile
merely
mg
might

ml

mm
more
moreover
most
mostly
much
must

my
myself
name
namely
near
nearly
necessarily
necessary
need
needs
neither
never
new

next

no
nobody
non
none

nor
normally
not
nothing
novel
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now
nowhere
obtain
obtained
obviously
of

off

often

old

on

once
ones

only

onto

or

other
others
otherwise
ought
our

ours
ourselves
out
outside
over
overall
owing
own
particular
particularl
y

past

per
perhaps
plus
poorly
possible
possibly

potentially
present
presumably
previously
primarily
probably
quickly
quite
rather

rd

readily
really
reasonably
recently
refs
regarding
regardless
regards
relatively
respectively
resulted
resulting
results
right

said

same

say

saying
says
second
secondly
see

seeing
seem
seemed
seems
seen

self

selves
sensible
sent
several
shall

she

should
show
showed
shown
shows
significantly
similar
similarly
since
slightly

SO

some
somebody
somehow
someone
something
sometime
sometimes
somewhat
somewhere
soon
specifically
specified
specify
specifying
state

states

still
strongly
sub

substantially
successfully
such
sufficiently
sup

sure

take

taken

tell

than

that

that’s

the

their

theirs
them
themselves
then

there
thereafter
thereby
therefore
therein
thereupon
these

they

think

this
thorough
thoroughly
those
though
through
throughout
thus

to

together

Too
took
toward
towards
tried
tries
truly
try
trying
under
un
unfortunately
unless
unlikely
until
unto

up
upon
us

use
used
useful
usefully
uses
using
usually
value
various
very

via

viz

]

want
wants
was
way

we

Well
went
were
what
whatever
when
whenever
where
whereas
whereby
wherein
whereupon
wherever
whether
which
while
who
whoever
whole
whom
whose
why
widely
will
willing
wish
with
within
without
wonder
would
yes

yet

you

your
yourself
yourselves

48




Appendix C — Major Database Tables

In construction of database and database tables we made use of MySQL. The
database contains two major tables, namely medline and mutation. Structures of these

tables are illustrated below.

Tbl:Medline Tbl:Mutation
PK |id
ambiguous FK1 |id
mutation — mutation
gene mutationtext
journal wild
11 | topic position
tok_topic mutant
11 content gene
tok_content
pmid

“Tbl:Medline” stores information on the abstracts that are retrieved from public
server of Medline. Primary key of medline table is the unique identifier given to each
abstract sequentially. The field named “ambiguous” takes on binary values. If an
abstract contains potentially ambiguous mutation then value of this field is set to be 1;
otherwise it is set as 0. Similarly “mutation” and “gene” fields of the table take on
binary values. Values of these fields are set according to the existence of mutations and
genes. “journal”, “topic”, “content” and “pmid” fields of the table store information on
journal, topic, content and pubmed id sections of an abstract respectively. What is
meant by content of an abstract is actually the body of the abstract. Finally, while
“tok _topic” field keeps tokenized version of the topic section, “tok content” keeps
tokenized version of the content section of an abstract. It is important to note that
Medline table contains a full-text index, named as I1, on topic and content fields, which
provides the system with fast text search capability on these fields. This feature is
extremely useful when querying MuGeX system against a disease name.

“Tbl:Mutation” is used for storing information on mutations that are extracted
from the abstracts in the corpus. Mutation table does not have any primary key, yet it is
related to mutation table via the field named “id”. “mutation” field of the table contains
the mutation in wild-position-mutant format, where wild denotes wild type amino acid,

position denotes the position of mutation on the amino acid sequence and mutant
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denotes the mutant amino acid. “mutationtext” field contains the mutation citation as it
is matched in the abstract. For instance, let the following sentence be part of an abstract:
“It is observed that in several patients Valine at position 114 is replaced with
Isoleucine”. Then for this abstract an entry will be inserted into mutation table. While
“mutation” field for this entry will be “V-114-1", “mutationtext” field for this entry will
be “Valine at position 114 is replaced with Isoleucine”. Besides these, in order to store
wild type amino acid, position of mutation and mutant amino acid the table contains
three fields, namely “wild”, “position” and “mutant” respectively. Finally, the field

named as “gene” stores the name of the gene, which is associated with the mutation.
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