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Abstract 
 
 

Understanding the structural means of protein function via  structural comparisons 
have wide range of applications such as protein fold classification, protein structure 
modelling and design. In this thesis, a novel structural alignment algorithm based on a 
amino acid network model is presented.  

 
The method we present models proteins as an amino acid network, derived from 

contact map representation of proteins. By using this model, we obtain fast tertiary 
structure comparisons, and combine them with primary and secondary structure 
comparisons to develop an overall similarity function. The similarity function drives a 
dynamic programming based alignment algorithm to obtain fast and accurate structural 
alignments.  

 
The structural alignments obtained are used to discover functional structural subunits 

called domains and to discover overall structural similarity of two proteins. We compared 
our domain prediction results with existing domain recognition methods and saw that our 
method correlates well with existing methods. Our global structural alignment results are 
compared with CE alignments.  
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Özet 
 

 
Proteinin işlevinin yapısal karşılaştırma kullanarak anlaşılmasının proteinin katlanma 

sınıflandırılması, protein yapı modellemesi ve tasarımı gibi farklı alanlarda uygulamaları 
vardır. Bu savda, amino asit ağ modeline dayalı yeni bir yapısal hizalama algoritması 
sunulmaktadır.  

 
Sunulan yöntem değme haritası gösterimden yararlanarak proteinleri amino asit ağları 

olarak modellemektedir. Bu modeli kullanarak hızlı üçüncü yapı karşılaştırmaları elde 
edilir ve birinci ve ikinci yapı karşılaştırmaları ile birleştirilerek genel bir benzerlik 
fonksiyonu elde edilir. Benzerlik fonksiyonu dinamik programlamaya dayalı bir hizalama 
algoritmasını yönlendirerek hızlı ve doğru hizalamalar elde etmeyi sağlar.  

 
Elde edilen yapısal hizalamalar işlevsel yapısal altbirimler olan yapısal kümecikleri 

ve genel yapısal benzerliği keşfetmekte kullanılır. Yapısal kümecik tahmini sonuçlarımız 
varolan diğer yapısal kümecik tanımlama yöntemleri ile karşılaştırıldı ve aralarında 
uygunluk olduğu görüldü. Genel yapısal hizalama sonuçlarımız CE hizalamaları ile 
karşılaştırıldı.  
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1  INTRODUCTION 

 

The development of high throughput experimental methods in molecular biology has 

caused the number of discovered proteins increase on a yearly basis. With the aid of 

bioinformatics, these proteins are stored in online databases, made accessible to all via 

Internet. This ever increasing huge amount of data, stored in databases like SWISS-PROT, 

GENBANK and PDB, needs to be analyzed and classified accordingly to facilitate further 

growth, ease of use and information retrieval. 

 

For analysis and classification purposes, a basic requirement is a distance measure or 

a similarity assessment. Protein alignments, sequential or structural, are widely used and 

accepted methods to discover similar regions between proteins and to assess the similarity 

by a score. Especially structural alignment methods, which are capable of capturing 

structural thus functional homologies, are useful tools for protein fold classification, protein 

structure modeling and structure based annotation. With rapidly growing databases, the 

need for fast and accurate structural alignment algorithms is apparent.  

 

In this thesis, we try to find structurally and sequentially similar regions between 

homologous proteins. Homologous proteins contain structural elements called domains, 

which have unique structures and sequences. For some domains, amino acid sequences may 

not be unique, but the structure always exhibit strong similarity, which also gives the 

domain its specific function. Thus, we further expect that we’ll be able to discover the 

domains by aligning proteins if both proteins possess the same domain. Domains are self 

independently folding structural units, each capable of fulfilling a specific duty, and many 

protein chains contain one or more domain structures that make the functioning of the 
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protein possible. Discovery of domains can also aid synthetic multifunctional protein 

design by using domains as building blocks. 

 

The alignment process is based on a dynamic programming approach to discover the 

best alignment between two proteins. The similarities are assessed by a special function 

that combines sequence similarity and structural similarity in such a way  that two types of 

measures consolidate each other. We model each protein as an amino acid network 

represented by a contact map, and assess the structural similarity by comparing 

connectivity and cliquishness parameters of nodes (amino acids) in the graph. These two 

parameters represent the local contact relationships between amino acids. In addition to this 

structure parameter, we also use the secondary structure similarity to assess the matches 

between different secondary structure elements. We expect that homologous proteins 

preserve local topologies and contacts, and the similarities between them can be captured 

by comparing connectivity, cliquishness and secondary structure parameters.  

 

1.1 Organization of Thesis 

 

Chapter 2 presents the biological background of our study and the literature survey of 

the existing methods addressing the issues addressed in this thesis. The fundamental idea of 

an alignment is explained as well. In Chapter 3, we explain our method in detail and 

explain the concepts used in developing our method. In Chapter 4, the development of the 

thesis is shown, in terms of experiments. Each experiment is presented with the set of 

results it yields and discussion of the results. In Chapter 5, the conclusion is made with a 

short summary, a general discussion of the method and future directions. 
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2  BIOLOGICAL BACKGROUND AND LITERATURE SURVEY 

In this section the biological information related to the concepts and ideas presented 

in thesis will be explained. The data unit of our algorithm is a protein, thus we start with the 

proteins. 

 

2.1 Proteins 

 

Proteins are organic compounds that are vital to all organisms. Proteins are composed 

of linear chains of amino acid molecules. The sequence of the amino acids in a certain 

protein is determined by the DNA sequence of the gene that encodes that protein. All 

proteins have unique sequences, and different sequences provide the wide range of diverse 

functions proteins fulfill.  

 

Proteins are synthesized in the cell by ribosomes. Ribosomes attach amino acids one 

after another in the order dictated by the gene that codes for that protein, forming the amino 

acid chain that will be the protein. Proteins fold into their three dimensional structure 

during synthesis, and the structure determines the function of the protein. This structure is 

determined by the interaction of the amino acids. To understand how the proteins function 

and rules that govern the protein folding, types and properties of amino acids will be 

covered first. 

 

2.1.1 Amino acids 

 

Amino acids are the building blocks of proteins. Amino acid is a molecule that 

contains an amine (NH2) group, a carboxyl (COOH) group, a hydrogen atom and a side 
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chain attached to a carbon atom which is referred as alpha carbon (Cα) [1].  There are 

twenty different types of amino acids, the type of the amino acid is determined by the 

composition of the side chain.  

 

The carboxyl and amine groups can react by releasing a water molecule to form a 

special bond called peptide bond. Long chains of amino acids are linked by peptide bonds 

formed between succeeding amino and carboxyl groups. Such chains are called peptides or 

poly-peptides. Side chain group does not take part in a peptide bond [2]. 

 

A side chain can be formed of different atom groups and defines the physical and 

chemical properties of an amino acid (Fig.2.1). For instance, if the amino acid is charged, 

the charge is on the side chain atoms. Amino acids can be classified into groups by 

different schemes based on side chain properties. One widely used classification is based 

on polarity of the side chain, it determines whether an amino acid is hydrophilic or 

hydrophobic. Hydrophilic amino acids can be divided into two groups, polar amino acids 

and charged amino acids. 

 

Figure 2. 7 Atomic structure of amino acid [1] 
 

Hydrophobic amino acids do not favor to contact water molecules as their name 

implies. They mostly consist of carbon atoms, that’s why they shy away from making 

contact with water. Amino acids of this type tend to be buried in the core of a protein to 
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avoid being close to water molecules surrounding the protein. This inclination is one of the 

major factors that determine the three dimensional structure of proteins. Hydrophobic 

amino acids are alanine, proline (weakly hydrophobic with small non-polar side chains), 

valine, leucine, isoleucine, phenylalanine and methionine (strongly hydrophobic with large 

side chains). Another property of proline and phenylalanine (also tryptophane and tyrosine 

which are polar) is that they are aromatic amino acids, meaning that their side chain form a 

ring structure. Other hydrophobic groups are called aliphatic amino acids because they are 

established by different combinations of CH3 groups [1].  

 

 

Figure 2. 8 Hydrophobic amino acid side chains [2] 
 

Charged amino acids are usually found on the surfaces of proteins. They interact with 

water, opposite charged groups or other molecules proteins are designed to bind. The 

charge is on the atoms in the side chain. Aspartic acid and glutamic acid contain carboxyl 

groups in their side chains so they are negatively charged amino acids. Side chains of lysine 

and arginine contain amine groups, which gives them positively charge. Charged amino 

acids can make salt bridges, ionic bonds between positively charged and negatively charged, 

which contributes to protein stability [1]. 
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Figure 2. 9 Charged amino acid side chains [2] 
 

Polar amino acids are neutral and their side chains are more soluble than non-polar 

amino acids (more hydrophilic) because they contain functional groups that form hydrogen 

bonds with water molecules. Therefore, they can be found on the exterior or interior 

regions of proteins. Polar amino acids are serine, threonine, tyrosine (both have side chains 

with hydroxyl group that makes hydrogen bonds), asparagine, glutamine, histidine 

(histidine may be neutral or positively charged based on the pH of the environment), 

tryptophan, glycine (glycine’s side chain is a single hydrogen atom), cysteine (side chain 

contains a sulphur atom which can from stabilizing disulphide bonds) [1].  
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Figure 2. 10 Polar amino acid side chains [2] 
 

Different types of amino acids are linked by peptide bonds to form the poly-peptide 

chain that will be the protein. After the poly-peptide chain is formed, it takes a certain 

shape which allows it to be a functional protein.   

 

2.2 Protein Synthesis and Folding 

 

Each protein is formed by a specific sequence of amino acids and sequence 

information is stored as genes in the DNA of each cell. Protein synthesis takes place in 

cytoplasm thus the sequence information must be transferred from the DNA in nucleus to 

cytoplasm. The sequence information is copied onto messenger RNA molecules (m-RNA), 

this process is called transcription. After the transcription, mRNA molecules are transferred 

to cytoplasm. 

 

In the cytoplasm, ribosome organelles process the data on the mRNA molecules and 

attach the amino acids one after other, making a poly-peptide chain in the order specified 

by mRNA. This process is called translation. However translation is not the final step.  
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After translation, a protein assumes a certain stable conformation that minimizes its 

free energy, and this conformation is the conformation protein assumes for most of its 

activity. This process is largely dependent on the amino acid composition of the protein. 

The shape taken by the protein is also the shape that allows the protein to fulfill its duties. 

The shape dependent function is what makes proteins an irreplaceable element of 

metabolisms of all organisms.  

 

The conformation of a protein is determined by certain forces. The electrostatic and 

covalent bonds between atoms are a major factor in the determination of conformation, 

such bonds are salt bridges, hydrogen bonds and disulfide bonds. Salt bridges are formed 

between positively and negatively charged atoms. Hydrogen bonds occur between a 

hydrogen atom and an electronegative atom, and occur a lot among atoms of amino acids 

that form alpha helices and beta sheets. Disulfide bonds occur between two sulfur atoms. 

Disulfide bonds are the most stabilizing type of electrostatic bonds and occur between 

cysteines which contain a sulfur atom in the side chain group [4].  

 

There are also other factors that act to determine a protein’s conformation. The Van 

der Waals interactions between atoms have a significant effect. The Van der Waals 

interaction occurs between very close atoms, creating influences on electron clouds and 

resulting in a weak attraction between the atoms. Even though the effect of each interaction 

is small, since there are so many interactions, the total effect on conformation is important 

[2].  

 

Proteins also try to bury hydrophobic residues in the protein core since these residues 

don’t favor contact with water, while polar and charged are on surface of the protein to 

make them accessible to water. This also promotes the formation of hydrogen bonds 

between water and charged/polar amino acids.  

 

The sum of all these factors, weak factors (hydrogen bonds, hydrophobic effect and 

Van der Waals interactions) and others contribute to determine the stable folded 
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conformation of the protein [3]. These factors enable the protein to overcome entropic and 

enthalpic constraints in order to minimize its free energy of folded state.  

 

Proteins try to minimize their free energy during folding process (a negative value 

of ∆G) because it enables them to become more stable. In equation (2.1), the free energy 

change is formulated in terms of enthalpy and entropy where ∆G is the free energy change 

between folded and unfolded state, ∆H is the enthalpy change and ∆S is the entropy change 

from folded to unfolded state. The enthalpy change, ∆H, corresponds to the binding energy 

(dispersion forces, electrostatic interactions, van der Waals potentials and hydrogen 

bonding) while hydrophobic interactions are described by the entropy term, ∆S.  

 

∆G = ∆H – T. ∆S                                                                                                   (2.1) 

 

Entropy expresses randomness or disorder of components of a system, and 

randomness is favored by nature. When the proteins fold and becomes ordered, this reduces 

the entropy, causing a negative value of ∆S, which does not favor folding. However the 

folding of the proteins is driven by the hydrophobic effect, burial of hydrophobic residues 

to core, and this causes the polar groups localization to protein surface. This gives more 

freedom to water molecules around the water, thus increases entropy. 

 

 

Enthalpy (H) is the heat content of a chemical system. During folding, proteins 

maximize the hydrogen bonding between its own molecules, resulting in a release of 

energy, which in turn causes a negative ∆H. A negative ∆H favors bonding since it causes a 

negative ∆G, minimization of free energy.  

 

2.3 Protein Structure 

 

Protein structure is described in four levels. Each level describes protein structure at a 

different degree of complexity. The four structure levels are primary, secondary, tertiary 

and quaternary structures. [2] 
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In biochemistry, primary structure of a molecule is the exact atomic composition and 

the bonds connecting the atoms of the molecule. This definition has been generalized for 

proteins since all proteins are connected by peptide bonds and amino acid itself suggests 

the atomic composition. For a protein, the primary structure is the amino acid sequence of 

the protein. 

 

Secondary structure describes the general three dimensional configuration of the local 

regions of a polymer. Hydrogen bonds among the amino acids are defining factors for 

secondary structure because they signify local contacts, therefore local form. Two basic 

secondary structure units are alpha helix and beta sheet. These local structure 

conformations are held together by hydrogen bonds.   

 

The alpha helix is a right handed coil conformation, its shape resembling a spring. 

Each amino acid has a 100 degree turn, so there are average 3.6 amino acids in a complete 

turn (Figure 2.2). In alpha helices, the amine group of an amino acid makes a hydrogen 

bond with the carboxyl group of an amino acid four ahead in the protein sequence, known 

as (i,i+4) bonding. This way, hydrogen bonds stabilize the helix in a parallel direction to 

helical axis. In this conformation, the side chains of amino acids are located on the outer 

region of the helix. [2] 

 

Figure 2. 11 Forming of an alpha helix [1] 
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The beta sheet consists of strands of amino acids connected to each other by hydrogen 

bonds (Fig.2.3). Amino acids in one chain make hydrogen bonds with other amino acids in 

neighboring strands, the hydrogen bonds are between the backbone carboxyl group of one 

amino acid and amine group of other. Beta sheets can be parallel or anti-parallel depending 

on the biochemical direction of neighboring strands. If the strands are in the same direction, 

the beta sheet is said to be parallel, else it’s anti-parallel.  

 

Figure 2. 12 Beta sheet structure [1] 
 

The third secondary structure element is the loop. The loop is defined by the close 

approach of two amino acids when these two amino acids are not in an alpha helix or beta 

sheet conformation. The close approach can be defined as carbon alpha distance between 

two amino acids being smaller than 7.0 Å. Such two amino acids may or may not have 

hydrogen bond between them. A loop is far less ordered compared to alpha helix or beta 

sheet [5]. 
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Even though loops are said to be less ordered than helices or sheets, some of the loop 

regions are relatively more ordered than others. They are called turns and their general 

purpose is to change the direction of a poly-peptide chain. Turns are grouped by the 

number of amino acids that makes up the turn and the dihedral angles, the number most 

commonly being three or four. The most common type of turn is β turn, which consists of 

four amino acids, and the first and fourth amino acids form a hydrogen bond. The γ turn 

contains three amino acids, the hydrogen bond is between the first and third residue. γ turn 

serves the purpose of linking two antiparallel beta sheets. Other types of turns exist, 

depending on the dihedral angles and number of amino acids they contain. [?] 

 

The tertiary structure describes a protein’s shape, or technically referred as its fold. It 

is defined as the spatial arrangement of atoms that make up the protein. The tertiary 

structure can be given as a set of three dimensional coordinates (x,y,z) where each 

coordinate corresponds to one atom of the protein. Tertiary structure is largely determined 

by the primary structure. The problem of predicting the tertiary structure of a protein from 

its primary structure is known as the protein folding problem and is one the major problems 

of computational biology. 

  

Most proteins are made up from multiple poly-peptide chains, referred as subunits. 

The interaction and arrangement of the subunits in a protein make up the quaternary 

structure of that protein. The interfaces between subunits allow for formation of binding 

sites which monomeric proteins (single chain proteins) cannot attain. Quaternary structure 

or organization of subunits to create complex proteins increases functional versatility of 

proteins.  

 

There can be actually one more level of structure additional to the four levels 

mentioned before. However this level is not actually recognized like the ones mentioned 

before but it’s more like a structural organization unit. This unit is called structural domain 

or just domain for short. 
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2.4 Domains 

 

During the folding process, the tertiary structure may organize around more than one 

structural unit. Such structural units are called domains. One subunit may consist of one or 

more than one domain. An absolute definition of domain does not exist but a widely 

accepted one is that domains are autonomous folding units within a protein. [6] 

 

Domains are important because they have certain duties in fulfilling the biological 

duties of the protein they are a part of. Proteins from different organisms that have 

functionally similar duties share domains. Since domains are functional units and structure 

determines function, each domain has its specific shape, or fold and can be classified on 

this basis. Three major classification schemes exist. There is the α class that contains 

domains consisting mainly of alpha helices, β class containing domains consisting mainly 

of beta sheets and  α + β which contains both of the elements. [7] 

 

One example of a domain is the calcium binding domain, which has the duty of 

binding calcium atoms as its name implies. The calcium binding process can be observed in 

different parts of the body for different purposes, e.g. muscles and bones. In muscle cells 

calcium binding occurs during contraction, whereas calcium is used in the bones to 

reinforce structure. Proteins from muscles and bones, involved in these processes, contain 

the calcium binding domain even though their main purpose may be different. The calcium 

domain has a specific EF hand motif that is formed of two helices connected by a loop 

region. To bind the calcium atom, specific amino acids must exist in the helix and the loop 

region, like the presence of aspartic acids or glutamic acids in the loop region.  

 

Another major domain type is the DNA-binding domain. These domains are included 

in proteins that bind to DNA for different purposes like gene expression or DNA packing. 

Different types of DNA binding domains can be observed. One example is zinc finger 

domain, named so because it contains zinc atoms. This domain contains four amino acids at 

specific locations which may be histidines or cysteines, which act as binding residues for 
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zinc atoms. Proteins that contain the zinc finger domain are generally involved in 

transcription regulation duties. 

 

As stated before, the domains are functional units of the protein and make one realize 

the variety of functional properties of a protein.  

 

2.5 Protein Function 

 

The functional duties of proteins can be very diverse. Almost all functional duties in 

the biochemical and biophysical processes in an organism are fulfilled or assisted by 

proteins. Some of the proteins are enzymes that catalyze biochemical reactions. Others may 

fulfill mechanical functions like binding certain metal atoms for specific tasks like 

transportation or biochemical reactions. Proteins may also bind other proteins for in cell 

signaling; to form protein complexes or one protein may modify another. Moreover 

proteins interact with other biochemical compounds like RNA, DNA and ATP to facilitate 

the processes these compounds are involved in.  

 

The diverse functionality of proteins is dependent on their ability to bind to other 

molecules selectively. The region that binds is called the binding site or pocket. The 

binding process is dependent on the structure and amino acid composition of the protein. 

The shape of the pocket and the physiochemical properties of amino acids in the pocket 

allow for selective binding. In short, protein function is directly dictated by protein 

structure. 

 

2.6 Protein Structure Determination and Folding Problem 

 

Determining the correct structure of a protein is calculating the exact three 

dimensional coordinates of the atoms (excluding hydrogen atoms) that make up the protein. 

Two widely accepted experimental methods are X-ray crystallography and NMR 

spectroscopy. X-ray crystallography calculates atom coordinates by measurements done on 

the diffraction patterns of X-rays through protein crystals [8]. NMR does its calculations 
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based on multidimensional nuclear magnetic resonance experiments on purified samples of 

aqueous proteins [9].   

 

In the X-ray crystallography methods, X-ray beams are directed to a protein crystal, 

causing the electrons of the crystal to emit x-rays. By making calculations on the x-rays 

emitted by the electrons, the electron density of the molecule is calculated, which facilitates 

the building of a molecular model. This method requires the crystallization of the protein, a 

long and difficult process, thus cannot be used to discover the structures of proteins that 

cannot be crystallized, such as membrane proteins. [10] 

 

Certain atoms have magnetic moment (spin) properties that allow them to react to RF 

pulses when they are aligned in a strong magnetic field. NMR method makes use of this 

property, by making calculations on the RF radiation emission of the atoms when they are 

excited by RF waves, the surrounding molecular environment of each atom can be 

determined. By setting a set of distance constraints, possible atomic models of the molecule 

can be derived by using the data obtained. The samples used in NMR experiments are 

protein solutions, which is easier to obtain than protein crystals. However this method can 

be used for small and medium size proteins because signals emitted by large molecules 

may overlap, thus making it impossible to discern between different molecules. [11] 

 

It must be noted that both of these methods are expensive and time consuming. 

However protein sequence determination is comparatively an easier and less time 

consuming process, thus the number of proteins with known sequences are surpassing the 

number protein whose structures are also known. Since the tertiary structure is mostly 

dependent on primary structure, a method to correctly predict the tertiary structure from 

primary structure is highly desirable. The search for such a method is referred as protein 

folding problem.  

 

 Even though the primary structure is main determinant for tertiary structure, the 

folding problem is far from easy because the search space is very large, the physical factors 

that make a protein stable are not fully understood and for some proteins, there are 
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secondary factors like chaperones that affect the folding process. To solve the folding 

problem, three kinds of approaches exist: ab initio approach that tries to predict the 

structure from primary structure data and physical principles, comparative protein modeling 

approach that tries to find the correct structure by using known structures of homologous 

proteins and threading approach that compares target protein with different proteins 

families using a function that evaluates the goodness of fit based on energy, interactions, 

etc.. 

 

The protein folding problem hasn’t been solved yet, new approaches are being 

proposed. CASP (Critical Assessment of Techniques for Protein Structure Prediction) is a 

community experiment aiming to assess the accuracy of existing prediction methods, done 

every two year [12]. Unfortunately, the problem has not been solved satisfactorily, thus the 

only known structures are determined by conventional NMR and crystallography.  

 

Proteins with known structures are deposited to the PDB database. PDB database 

contains the structure information of almost forty thousand proteins and is the universal 

database of proteins. The data is stored in PDB’s own file format.[11] 

 

2.7 PDB files 

 

A PDB file stores structural information of a protein. The primary, secondary, tertiary 

structure information is available. If the protein is composed of more than one poly-peptide 

chain, information of each chain is stored with a different one letter code. Depending on the 

file, there may be more information about the protein or the about structure determination 

process of the protein, e.g. notes by authors, etc… The primary structure is stored using 

three letter codes of amino acids. The secondary structure is stored as a pair of numbers, 

indexes of first and last residue of each secondary structure element. The tertiary structure 

is stored as a set of three dimensional cartesian coordinates for each atom of the protein 

[13]. 
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In this rest of this section, the basic idea of alignment is explained. Also existing 

alignment methods comparable to our method are presented.  

 

2.8 Protein Alignment 

 

Identification of similar subsequences or global similarities among proteins is a very 

critical process for computational and theoretical biological studies. The identification 

process is generally referred as alignment because sequences are aligned against each other 

where similar regions are in correspondence. 

 

Protein alignments are useful for gaining information about newly discovered proteins. 

Aligning a new protein against known protein families can give clues about the new protein, 

as alignment scores may help us decide which protein family the new protein belongs. An 

alignment between two proteins can also be considered as a distance measure between 

those two proteins so alignments can be used for classification as well [15]. Multiple 

alignments can align more than two proteins and can be used to discover similar conserved 

regions in protein families [16]. Generally speaking, alignment process is integral part of 

almost all protein analysis related tasks.  

 

Different parameters can be used in deciding homologous subsequences. Amino acids 

themselves are the most simple and obvious choice for evaluating similarity. However to be 

able to do this, the similarity between different types of amino acids have to be defined or 

evaluated. For this purpose, two dimensional matrices of integers, called similarity matrices, 

are used. Each column and row represents one amino acid and the number at the 

intersection of one column to another row is the similarity of the column’s amino acid to 

row’s amino acid.  

 

Two widely used examples of similarity scoring matrices are PAM and BLOSUM. 

PAM (Point Accepted Mutations) matrix is built with the assumption of a preset mutation 

rate and by observing the mutation rates between proteins with the use of markov chains.  

Probability transition matrix is calculated for sequences that are one generation apart from 
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each other. Similarity score is calculated by finding log likelihood ratio of these 

probabilities over random occurrence probabilities to obtain the PAM matrix. [17].  

 

BLOSUM (BLOcks SUbstitution matrix) is built by using the BLOCKS database 

which contains ungapped alignments of highly conserved regions of proteins. The 

substitution frequency of each amino acid to other types is counted over the database. The 

similarity scores of two amino acids are obtained by finding the log score of the ratio 

between the probabilities of actual substitution probability by random substitution 

probability for two amino acids. BLOSUM-N means the matrix is built by using sequences 

of N percent or greater sequence identity. BLOSUM-62 is the most versatile and widely 

used one [18].  

 

Structural information of a protein can also be used as a parameter for alignment 

processes. Amino acid composition itself is not always sufficient to decide whether two 

subsequences are homologous or not because some very distant proteins (remote homologs) 

have very low sequence identity [19]. Besides most amino acids don’t have unique 

properties thus it’s possible to replace amino acids with other types for most cases. 

Structural information, which is a direct determinant of function, can be more sensitive in 

capturing similarities where sequence information fails. 

 

 

2.9 Sequence Alignment Methods 

 

Early alignment algorithm use sequence similarities to discover homologous regions. 

It’s because of the fact that discovering amino acid sequence of a protein is a relatively easy 

task compared to discovering the 3-D atomic structure. In most cases, functionally similar 

and evolutionally close proteins have high sequence identity and for such proteins sequence 

alignment methods are reliable and accurate.  

 

Sequence alignment methods try to find the maximum length of homologous 

subsequences among different proteins. If the subsequences were to be continuous, it’d be 
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an easy task to find and evaluate homologous subsequences. However during evolution, 

genes undergo insertion and deletion, and this obviously affects proteins. Thus any method 

that has to find correct alignments must address the problem of insertions and deletions 

[20].  

 

Insertion and deletion lead to excess regions between optimally alignable homologous 

regions. Consider the alignment process of two proteins; if one of the proteins has an insert 

region and the other one does not, or one protein has a specific region and the other protein 

has that region deleted, such regions must be aligned with gap regions so that the 

homologous regions can be correctly aligned globally. 

 

There are two types of sequence alignment methods. The first type is the dynamic 

programming based approach. Such methods build sub-solutions iteratively; new solutions 

are built on previous ones. The solutions are overlapping, meaning that they can be 

combined. By combining the sub-solutions, the global optimum solution is found.  In the 

case of proteins, sub-solutions are short alignments of similar regions. These regions are 

connected by gaps, and their combination yields one final alignment.  

 

Needleman-Wunsch algorithm and its variation, Smith Waterman algorithm are two 

good examples of dynamic programming alignment methods [21],[20]. These methods 

rigorously try to find all local non-overlapping similar segments and combine them in a 

single alignment, putting gaps as necessary. When aligning large proteins, these methods 

may have long running times. However sequence alignments are measures of similarity and 

can be used to compare one protein with databases of proteins to discover information. To 

facilitate such searches, faster algorithms are required [15]. 

 

The second type of sequence alignment methods, heuristic based approaches are used 

to develop fast algorithms to fulfill the need for fast database searching. Such methods lack 

clear biological definitions of similarity, like minimal number of mutations between 

sequences, but have proven to be useful in discovering relationship between proteins. They 
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make use of good heuristics to discover similarities. A widely used heuristic is to use k-

letter words, short subsequences.  

 

BLAST is a typical example of a heuristic based approach using words. It operates by 

finding most similar words between two proteins and extending the alignment from such 

words [15]. FASTA is another significant heuristic based algorithm. FASTA does a 

preliminary search to find identical segments, then optimizes the final alignment by 

combining the identical segments by a dynamic programming approach [22]. These 

methods do not guarantee to find the global optimum, both execute faster than dynamic 

programming based methods. 

 

Multiple sequence alignment methods exist which align more than two proteins. 

Multiple alignment algorithms also make use of dynamic programming. The main concern 

of a multiple sequence alignment is to decide the order of alignments and their integration 

afterwards. The dynamic programming methods and heuristic based methods are two 

mainstream approaches to protein sequence alignment problem. CLUSTALW is a widely 

used method of multiple sequence alignment [16].  

 

Sequence alignment algorithms are useful for discovering conserved regions among 

families of proteins, phylogenetic tree construction, and classification of proteins. However 

they have their limitations when aligning certain types of proteins, the remote homologs. 

Remote homologs are homologous proteins that have lower than %25 sequence similarity. 

It is naturally hard to discover the homologies between remote homologs using sequence 

alignment methods. However as with other homologous proteins, remote homologs have 

conserved functions [23], [24]. To discover similarities between homologous proteins with 

low sequence similarity, structure information -which captures functional information- 

should be used.  
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2.10 Structural Alignment Methods 

 

Structural alignment methods try to align proteins based on their three dimensional 

coordinates. The resulting alignment is a superposition of amino acids where structurally 

similar regions are superposed on each other. RMSD (Root mean square distance) measure 

is one of the most universal measures to measure the goodness of a superposition which 

calculates the mean distance and the similarity of two structures. RMSD measure is the 

average distance between the Cα atoms of two aligned and superimposed proteins [25].  

 

Structural alignments use three dimensional coordinates to align proteins, so naturally 

it’s only applicable for proteins with known structures. As the number of proteins in PDB 

has increased dramatically during the recent years, structure alignment has become 

applicable for more and more proteins.  

 

There are different approaches for solving the structure alignment problem but they 

are roughly classified into two categories, superposition and clustering [26]. Superposition 

methods translate and rotate one protein in three dimensional space to minimize the 

protein’s intermolecular distance to other protein. Clustering methods cluster the amino 

acids and compare the intra molecular amino acid to amino acid distances of one protein to 

another. Our method is a clustering method as well.  

 

2.10.1 Superposition methods 

 

As stated before, these methods operate by rotating one protein while the other one is 

stable, and the alignment they discover is the one that yields the optimum superposition, 

measured by RMSD [27]. In this section, we present two examples of superposition 

methods.     

 

MinRMS method tries to find the alignment that yield the most optimum 

superposition, measured by RMSD. An intermediary similarity score is not used to evaluate 

the alignments; instead the algorithm uses sum squared distance between Cα atoms which 
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can be used to calculate RMSD. Since RMSD is the target, a one amino acid residue long 

alignment is always the best solution. To address this problem, minRMS allows the user the 

set the length of the alignment, and alignments of that length are generated [28]. 

 

The alignments are discovered using a dynamic programming approach similar to 

Needleman-Wunsch algorithm, but MinRMS iterates over three dimensions, two 

dimensions on each protein’s residues and one dimension over the length of the alignment. 

This matrix is like a pyramid, third dimension getting smaller as the length of the alignment 

is increases. This method is capable of lots of structural alignments with optimum RMSD 

values for one protein pair, however run times are on the order of a few minutes, thus it’s 

not feasible to use in large scale searches or classification purposes. 

 

Another example of superposition approach is presented by Taylor, based on double 

dynamic programming. This method centers two structures on a pair of amino acids, one 

from each protein, then orients the structures based on local features to achieve a 

superposition between two proteins. In the obtained superposition, all relationship between 

pairs of atoms are quantified and an alignment is obtained by using dynamic programming. 

All feasible and favorable pairings are tried, each yielding a superposition and a second 

dynamic programming step extracts the best alignment from these set of superpositions 

[24].    

 

2.10.2 Clustering methods 

 

These methods make use of the euclidian distances between atoms to find the best 

structure alignment. As the aim of the structure alignment is to produce the best alignment 

with ideal superposition among proteins, using the intra atomic distance is a direct 

approach to the problem. One amino acid is composed of more than one atom and  some or 

all of the atoms may be used in distance calculations. Calculating and using all of the 

distance information can result in very costly algorithms so heuristics and constraints are 

integrated into algorithms to achieve feasible algorithms with good results.  
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2.10.2.1 CE 

 

CE (Combinatorial Extension) is a widely used structure alignment method that uses 

inter residue distances [29]. Protein sequence is broken into and represented by a set of 

AFPs (aligned fragment pair). AFPs are of fixed size, it’s reported that 8 is optimum size in 

terms of speed and accuracy. The alignment of two proteins A and B is defined as a path of 

AFPs in a similarity matrix S of size (nA-m) * (nB-m) where m is the AFP size and nA and 

nB are the length of proteins.  

 

An alignment may start from any AFP and after that consecutive AFPs are added in 

such an order that the next added AFP cannot contain any residue that was included in the 

previous AFP. Gaps are allowed but there is an upper limit to the length of a gap segment 

to reduce running times, the limit is 30. In the process of addition of new AFPs, not all 

possibilities are explored; heuristics are employed to reduce search space.  

 

CE uses three distance measures to evaluate similarity and AFP path extension 

decisions. The first measure is the average of the sum of distances between residues of two 

different AFPs where each residue participates once. First measure is used to decide how 

well two AFPs combine; it’s the path extension heuristic. The second measure is similar to 

first one but all possible distances between non-neighbor residues are averaged for two 

different AFPs. Second measure evaluates the goodness of a single AFP, whether two 

protein fragments match well. The third measure is the root mean square distance from 

superimposed structures and is used in the final steps to pick best alignments and 

optimization. 

 

The path extension process may start at any starting point that satisfy similarity 

criteria in matrix S but only the longest path is kept during path extension so result is a 

single alignment. Three heuristics are employed in the extension process. For candidate 

AFP decisions, intra AFP distance should be smaller than 3 Å. The best AFP is chosen by 

calculating the average distance of candidate AFP to all existing AFPs in path. The 
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termination heuristic is based on the average distance between all possible pairings of 

existing AFPs.  

 

After extension ends, the statistical significance of the longest path is calculated by 

evaluating the probability of finding an alignment of same length with same or less gaps or 

distance from a random comparison of structures from a non-redundant set. This statistical 

process yields a z-score. There may be further optimization if z-score is higher than a 

certain threshold. The z-score is also a distance measure of two proteins, the higher the 

score is, more similar the proteins are.  

 

CE was also used to detect family members of a protein among a set of proteins. By 

aligning a probe protein with all members of a random set, CE is able to discern the 

proteins of same family of probe. CE can also be used to recognize protein fold, by using a 

set of probes. As these results show, structural alignments are useful for classification 

purposes as well. 

 

2.10.2.2 DALI 

 

DALI (Distance matrix ALIgnment) is another clustering type structural alignment 

method [30]. DALI makes use of residue to residue distance matrices where each residue is 

represented by its Cα atom. The algorithm discovers similar regions based on the idea that 

similar structures should have similar inter-residue distances.  

 

After each protein is converted to a inter residue matrix, the matrices are decomposed 

into submatrices, in practice the algorithm uses a hexapeptide to hexapeptide submatrix. By 

comparing the submatrices of two proteins to each other, using a similarity metric based on 

the difference of inter residue distances, and structurally similar regions are found in the 

form of alignments. At the second step, the alignments are combined by a score 

maximization procedure to achieve the best alignment.  
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DALI is also used for classification purposes. The FSSP (Fold classification based on 

Structure-Structure alignment of Proteins) makes use of DALI alignments to make a 

classification of PDB [19]. The classification is based on exhaustive 3D comparison of all 

structures among remote (<%30 percent sequence identity) and medium (%30 to %70 

sequence identity) using tree representation of hierarchical clusters. 

 

As the examples of CE and DALI demonstrate, structural alignments are used to 

classify remotely homologous proteins where sequence alignment may prove impotent. 

They can also be used in fold recognition, as exemplified by FSSP.  

 

2.10.2.3 FAST 

  

FAST is another clustering method [27]. As with the other examples of clustering 

approach, FAST makes use of intra molecular distances. However FAST has a novel 

approach of modeling the alignment as a graph and eliminates incompatible residue pairs to 

reduce the computational complexity of the problem.  

 

FAST models the alignment of two proteins as a graph, a set points and lines 

connecting the points. In the graph FAST uses, the points(vertices) represent a match 

between one amino acid from first protein and one amino acid from second, and the 

lines(edges) are drawn if intra molecular distances between amino acids is smaller than a 

threshold value. Finding the maximum clique, a subgraph where each vertex is connected 

to all others by an edge, of this subgraph yields the alignment between two proteins.  

 

The algorithm is composed of four steps. Since the graph this method proposes to use 

can be very huge even for medium sized proteins (105 vertices), FAST firstly eliminates 

pairs (vertices) that doesn’t fit local structure comparison criteria. This local structure 

comparison is dependent on a similarity score which is in turn dependent on the Cα 

distances between members of five amino acid segments. After this elimination phase, the 

second step of the algorithm commences, where the edges between pairs are weighed 
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according to the agreement of distances, angles between these two pairs of amino acids and 

the angles of side chain groups of the two pairs.  

 

The third and fourth steps of the alignment build the alignment between two proteins. 

In the third phase, isolated pairs, or pairs connected with low scoring edges are eliminated 

as well to further reduce the complexity and make the global optimum stand out. 

Afterwards a simple dynamic programming algorithm is run on the remaining pairs to 

discover the best scoring alignment where weights on edges are used as similarity scores. 

The final step of this algorithm tries to further improve the algorithm by trying to add pre-

eliminated pairs or eliminate some bad pairs from the existing alignment by dynamic 

programming. 

 

FAST, as the name implies, takes shorter time to run compared to other clustering 

methods like CE and DALI. FAST is also similar to the method we propose because we 

propose to use graph theory as well, however while FAST uses graphs to model the 

alignment in term of matches between amino acids, we use graphs to model proteins in 

terms amino acids.  

  

Structural alignment are useful and have a wider scope of use than sequence 

alignment methods because of their ability to capture structural similarities which may not 

be captured by sequence similarity, however this comes at the expense of algorithmic 

complexity.  Furthermore, structural alignments are used for fold classification [31][32], 

protein structure modeling [33] and structure based function annotation [34][35] since these 

tasks are done using structural comparisons.  

 
2.11 Alignment Based Domain Recognition Methods 

 

The two widely used functional protein classification databases are SCOP and CATH. 

These databases classify the proteins on the basis of their fold, functional similarity and the 

domains they have. Such a classification is essential and aids computational and 

experimental studies. Discovery and listing of domains aids protein engineering studies, 
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whereas a comprehensive classification is essential for systematic studies of taxonomy and 

evolution [31][32].   

 

However SCOP and CATH are built by human experts. As the number of solved 

structures increase, the need for an automated method becomes more apparent. Different 

methods of proteins automated classification and domain recognition exist. DALI and CE 

are used to build all to all protein fold classification databases.  

 

For domain discovery and recognition, sequence alignments methods are used 

extensively. Most of the domains have conserved sequences, thus sequence alignments are 

useful for discovering structural domains existence and boundaries by analyzing multiple 

sequence alignments of protein families. ProDom is an example of domain recognition 

method that use multiple sequence alignment methods [36]. 

 

2.11.1 ProDom 

 

The ProDom was generated from the SWISS-PROT database [37] by automated 

sequence comparisons to study domain arrangements within known families or new 

proteins. In this approach the domains are selected according to the sequence similarities 

between homologous domains of SWISS-PROT sequences, the comparison between the 

proteins is done with BLASTP to obtain a list of homologous segment pairs. Those sets are 

grouped into homologous segment sets by transitive closure using the MKDOM program. 

In order to address the domain boundaries those sets were processed either at the ends of 

bona fide sequences, at the ends of tandem repeats, or where sequence shuffling is detected. 

After the addressing of domain regions, a multiple alignment for each family was processed 

with MultAlin program, and a consensus sequence is determined as the best weighted 

average sequence for each multiple alignment.  

 

Since this approach addresses the domains based on conserved subsequences as found 

in various proteins rather than the structural conservation, such conservation does not 
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always infer the genuine structural domains. That is why the method may not be trusted for 

the domains that have the structural conservation but don’t have conserved subsequences. 

 

2.11.2 Pfam  

 

Pfam is another protein family database that makes use of multiple sequence 

alignments to discover domains and families [38]. Since it uses sequence alignments, Pfam 

is similar to ProDom. However in addition to sequence alignments, Pfam also makes use of 

HMM profiles and structural data when it’s available to achieve better results.  

 

In this thesis, we’ll also try to discover domain boundaries of proteins by aligning two 

proteins that are known to contain the same domain. We expect that the regions aligned by 

our algorithm to be regions belonging to domains because of the properties of the similarity 

function we use. Pfam and ProDom are the methods we will use to compare the results of 

our method when we are trying to discover domain boundaries.  
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3  METHODS 

The algorithm we propose uses a amino acid contact network model to represent the 

proteins [39]. The model is used to capture the tertiary structure data information of 

proteins, and allows for quick and accurate assessment of structural similarities. The 

alignment algorithm is based on the well established dynamic programming method, and is 

driven by a similarity function based on primary, secondary and tertiary structures.  

 

In our contact network model, the amino acids are nodes of the network, and the links 

between the nodes represent the existence of contact between the amino acids where 

contacts are dependent on the three dimensional distances between amino acids. By using 

such a model, the local structure surrounding each amino acid can be captured and 

compared. 

 

The contact information of a protein can be obtained via a contact map of the protein, 

which is built by using the three dimensional coordinates of the atoms that make up the 

protein (tertiary structure) [40]. After the contact map is prepared, the network can be 

modeled by using graph theory. In the following sections, contact maps are explained and 

graph theory is explored. 

 

3.1 Contact Map 

 

The contact map is a two dimensional matrix that contains contact information of 

residues of a protein. Researchers use different criteria to decide whether two amino acids 

are in contact or not. A widely used and accepted criteria that we will adopt as well is 
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defined as follows: two residues i and k are in contact if the Euclidian distance between the 

Cβ atoms (Cα for glycine) of the residues is smaller than or equal to 7.0 Å.  

 

Let’s say the contact map matrix is M. M matrix is filled according to a certain 

condition, The value at row I, column K is set to 1 if ith residue of the protein is in contact 

with the kth residue of protein, else the value is 0. In short Mik = 1 if ith residue and kth 

residue are in contact, else Mik = 0. 

 

Assume that a hypothetical protein P has 6 amino acids and amino acids are 

enumerated from one to six. Let’s say that, according to the 7.0 Å contact definition, amino 

acid 1 is in contact with 2 and 5, amino acid 2 is in contact with 1 and 3, amino acid 3 is in 

contact with 2 and 4, amino acid 4 is in contact with 3, 5 and 6, amino acid 5 is in contact 

with 1, 2 and 4 and amino acid 6 is in contact with 4. Then the contact map of P is as 

presented in Figure 3.1. 

 1 2 3 4 5 6 

1 0 1 0 0 1 0 

2 1 0 1 0 1 0 

3 0 1 0 1 0 0 

4 0 0 1 0 1 1 

5 1 1 0 1 0 0 

6 0 0 0 1 0 0 

Figure 3.1. Contact map of P 

   

 The information stored in the contact map makes it practical to model the protein as a 

graph. Graphs are used to model relations between a set of objects and in our case the 

objects are amino acids and the relations are contacts.  
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3.2.Graphs 

 

A graph is a set of points and lines connecting subset of points. The points are called 

nodes or vertices and lines are called edges or arcs. The nodes represent objects while 

vertices represent the relations. A more formal definition is given in next paragraph. 

 

A graph G is an ordered pair G = (V , E ) that satisfies three conditions: 

• V is a set of vertices or nodes, 

• E is a set of pairs of distinct vertices, which are called edges or arcs, 

• The vertices that belong to an edge are called endpoints or end vertices of the edge. 

 

The order of a graph is |V|, the size of a graph is |E| and the degree of a vertex is 

number of other vertices it is connected by edges.  

 

This definition is the most basic definition in graph theory, where more complex 

graph types like directional and attributed graphs exist. However this definition is sufficient 

for our content. To represent the definitions explained above, the protein P whose contact 

map is given in Figure 3.1. is modeled as a graph in Figure 3.2.  

 

 

Figure 3.2. Graph of protein P 

 

The nodes of the graph presented in Figure 3.2. represent the amino acid and labeled 

with numbers. The edges between the nodes signify the contacts, if two amino acid are in 

contact, the nodes that represent these amino acids are connected by an edge.   
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Two node parameter definitions will be given, which will be used in our content. But 

before that an additional definition must be made. Two nodes are adjacent if they are 

connected to each other by an edge. The connectivity of a node is the number of nodes that 

are adjacent to the node. This connectivity is essentially same as the node degree. The 

cliquishness of node N is the ratio of the number of adjacent pairs among the set of nodes 

adjacent to N to the number of all pairs in set of nodes adjacent to N. 

 

Example: Connectivity of Node 4 is 3 since it has 3 adjacent nodes. Cliquishness of 

Node 4 is 0 / 3 because out of three possible adjacencies between Node 4 neighbors, none 

of them are realized. Cliquishness of Node 1 is 1 / 1 because two adjacent nodes can make 

1 adjacency among themselves, and it’s realized. 

 

The contact map & graph model will be employed in our method to model tertiary 

structures of proteins. Structural similarities will be captured by comparing the information 

in graph representation.  

 

3.3 Alignment Process 

 

Our alignment algorithm is based on dynamic programming idea which has been 

widely used in computational biology, especially in alignment problems. Dynamic 

programming algorithms find the optimum solutions by using optimal substructures (or 

subsolutions). The substructures may overlap, meaning that they can be combined to yield 

the optimum solution. The early solutions to sequence alignment problem are two dynamic 

programming algorithms by Needleman-Wunsch [21] and Smith-Waterman [20] based on 

the observation that sequence alignment problems have overlapping substructures that can 

be combined.  

 

The algorithm we present is based on Smith-Waterman algorithm, which is a 

variation of Needleman-Wunsch algorithm. These two algorithms are used in finding the 

optimum local (Smith-Waterman) and optimum global (Needleman-Wunsch) sequence 
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alignments. In the next section, we explain the basics of Smith Waterman algorithm since 

it’s essential to explaining our method as well.  

 

3.3.1 Smith-Waterman Algorithm 

 

Let’s say two protein are given as A = a1a2...an and B = b1b2...bn and the similarity 

between amino acids a and b are given as s(a,b). To align two proteins of length m and n, a 

two dimensional matrix, H, is set first. Firstly, 

 

Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m                                                               (3.1) 

 

The matrix is filled in such a way that Hij has the maximum similarity of two 

segments that end in amino acids ai and bj, as given in the following relationship, 

 

Hij = max {Hi-1,j-1 + s(ai,bj), max k≥1{Hi-k,j - Wk}, max i≥1{Hi,j-l – Wi}, 0}              (3.2) 

 

for 1 ≤ i ≤ n and 1 ≤  j ≤ m 

 

This relationship considers three possibilities of ending at Hij, if ai and bj have been 

matched, then similarity is 

 

Hi-1,j-1 + s(ai,bj).                                                                         (3.3) 

 

If the segment before ai has been matched with k gaps, the similarity is  

 

Hi-k,j - Wk                                                                                     (3.4) 

 

If the segment before bj has been matched with l gaps, the similarity is  

 

 Hi,j-l - Wl                                                                                     (3.5) 

 



 34 

And 0 is included so that negative similarity cannot occur. W is a gap penalizing 

function, which can vary, the optimum one presented in the original article is Wk = 1 + 1 / 

3 * k. The similarity function “s” can vary for DNA sequences, for protein sequences 

statistically derived and biologically meaningful similarity scoring matrices are used.  The 

maximum similarity segments are found by tracking the maximum value in H. The 

alignment represented by the value is extracted by tracing back the values to a zero. Next 

best similar segment can be found by finding the second maximum value not associated 

with the first best similarity.  

 

For protein sequences, Smith-Waterman algorithm is run using two dimensional 

similarity scoring matrices to define s function. BLOSUM [18] and PAM [19] are two 

examples of such matrices, statistically derived from protein sequences. These matrices are 

20x20 matrices and contain the similarity score of all possible matches between 20 types of 

amino acids.  

 

Such similarity scoring matrices are only capable of capturing the sequence 

similarities, meaning that they assign scores to matches between different types of amino 

acids according to specific properties of each amino acid. Matches between amino acids 

that exhibit similar properties are scored with positive bonuses, whereas matches between 

different types of amino acids are penalized with negative values. 

   

In our method, we propose to use a combo similarity function F that replaces function 

s, which is built as a combination of different similarity parameters. Such a function will be 

capable of capturing more than just sequence similarity.   

 

3.4 Similarity Function F 

 

The parameters of F will try to capture the similarities between primary, secondary 

and tertiary structures of two proteins. The primary structure similarities can be captured by 

using a similarity scoring matrix, like most sequence alignments do. F uses BLOSUM62 
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because it’s built from a sufficiently large dataset and useful for both low and high 

sequence identity cases.  

 

To score the similarity of different secondary structure elements (loop, sheet, helix), a 

similarity scoring matrix is used [41]. The matrix is built by statistically scoring the 

matches between secondary structure elements in 3D_ali database [42], a database of 

protein alignments done by human experts. The scores are calculated by normalizing the 

ratio of actual match probability to random match probability for possible match 

combinations of secondary structure elements. The matrix is given in Table 3.1. 

 

 H S L 

H 2   

S -4 4  

L -15 -4 2 

Table 3.1. Secondary structure similarity matrix 

 

For tertiary structure comparison, we propose to model the protein as a graph based 

on its contact map and use cliquishness and connectivity parameters of each amino acid as 

a means of capturing structural (three dimensional) similarities. It’s a common idea to find 

locally similar regions in structural alignment methods, as CE and DALI does [29][30]. In 

accordance with this idea, connectivity and cliquishness parameters contain local residue 

interaction information at two levels. Connectivity is the contact information of a residue, 

whereas cliquishness is the contact information of the surrounding residues. Two amino 

acids can be compared according to their cliquishness and connectivity values and their 

structural similarity can be scored.  

 

The F function is built as a combination of the similarity scores of primary, secondary 

and tertiary structure. As a result of using a combination of three parameters, F function 

will award matches between amino acids of similar types that have similar local contact 

patterns and are members of same secondary structure elements.  
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By using the similarity function F, we aim to discover accurate alignments 

independent of sequence similarity. For close homologs (>%70 sequence identity), primary 

structure parameter is sufficient in finding the correct alignment. By adding secondary 

structure parameter, accurate alignments can be generated for medium (%70 to %30 

sequence identity) and by adding tertiary structure along with secondary may help to 

determine the remote homologs (<%30 sequence identity) [19]. For medium and remote 

homologs, primary structure parameter can act to consolidate the matches, important 

matches among two cysteines or tryptophans can still have an impact while mismatches 

caused by non deleterious mutations will not have significant effects on the overall 

alignment.  

 

The addition of tertiary structure parameter to F also has two advantages. Firstly, 

since we are comparing the local contacts, thus comparing local structure, our alignments 

can be considered structural alignments at the same time. Structural alignments are very 

important in many topics related to proteins and are time costly to produce. The 

cliquishness and connectivity parameters can be calculated relatively quickly, and their 

comparison cost is composed of a few arithmetic operations. Thus we obtain fast and 

accurate structural alignments. We obtain the structural alignments by using local 

alignment algorithm where gaps are allowed. 

 

Secondly, we expect to discover domains during the alignment process, if two aligned 

proteins share one. Although an absolute definition of domains doesn’t exist, the generally 

accepted definition is as follows: domains are semi-independently folding structural units, 

having a distinct structure aimed at fulfilling a specific function [43]. Considering this 

definition, It’s probable that the local contact patterns of amino acids in domains should be 

preserved among different proteins containing the same domain. The scoring of local 

contact patterns make it possible to discover regions that may in fact be domains. 

Additionally, to capture the regions domains expected to belong to domains, we use a 

slightly different algorithm that captures set of alignments of short regions (generally five 

to twenty amino acid long). In this scheme, gaps are not allowed and mismatch penalties 

are higher than regular mismatch penalties. 
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3.5 Our Alignment Algorithm 

 

The alignment process is based on the Smith-Waterman algorithm. To align two  

proteins A and B of size n and m respectively, matrix nxm M is used where Mij is the 

maximum similarity of an alignment ending at ith residue of A and kth residue of B. The 

first initialization step is to set the first row and first column to zero. 

 

M0j = Mi0 = 0 for 0 ≤ j ≤ m and 0 ≤ i ≤ n                                   (3.6) 

 

The formula to calculate the rest of matrix M is given as: 

 

Mij = max { Mi-1,j-1 + F(i,k), Mi-1,j +  G, Mi,j-1 + G, 0 },                                            (3.7) 

 

where F(i,k) is the similarity score of ith residue of A and kth residue of B and G is the 

gap penalty. A zero is included to make it possible to start from beginning at a point where 

the accumulated similarity reaches negative values. Thus the alignment is local, meaning 

that all of the amino acids don’t have be to aligned, instead a subset of each protein’s amino 

acid set is aligned. 

 

The F function is the similarity function combining primary, secondary and tertiary 

structure similarities. If sequence (primary structure) similarity is Sseq, secondary structure 

similarity is Sss and structural (tertiary structure) similarity is Sstr, then they can be linearly 

combined to form F function.  

 

F = k1 . Sseq + k2 . Sstr + k3 . Sss                                               (3.8) 

 

where k1, k2 and k3 are the weights on each parameter. This is the general form of our 

similarity scoring function.  
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After the matrix is calculated, the maximum value is found and other matrix elements 

leading to maximum are found sequentially, thus the path of the alignment is discovered. 

Traceback ends at a zero value. The matches of amino acids, signified by diagonal direction 

moves, from the amino acid matches in the alignment whereas horizontal or vertical moves 

signify gap regions.  

 

3.5.1 Example 

 

A small example of the alignment process will be presented in this section. For sake 

of simplicity, let’s say the amino acid alphabet consists of three letters: A, B and C. The 

sequence similarity matrix is given in Table 3.2., let it be Fseq. Moreover we’ll use a simple 

structure function Fstr for the example and secondary structure similarity will be omitted for 

this example. For two amino acids x and y, if their cliquishness and connectivity 

parameters are same, the structure similarity score is 2, else it is -2. Function F combines 

the sequence and structure parameters directly, k1 and k2 are 1. 

 

F = Fstr + Fseq                                                                                                            (3.9) 

 

 A B C 

A 4 -1 -1 

B -1 2 1 

C -1 1 2 

Table 3.2. Similarity matrix of 3 letter amino acid alphabet 

 

Assume that there are two hypothetical proteins P1 and P2 with length 4 and 6 

respectively. The sequences of two proteins are: P1 = AACC and P2 = CAABAC.  

 

The connectivity parameters of P1 are (2, 3, 3, 2) and connectivity parameters of P2 

are (1, 3, 4, 3, 3, 2). The cliquishness parameters of P1 are (1, 0.66, 0.66, 1) and 

cliquishness parameters of P2 are (0, 0.33, 0.5, 0.66, 0.66, 1). Let the gap penalty be -3. 
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The first row and column of matrix M is set to zero, initial conditions of the algorithm 

according to equation (3.6). The matrix is as shown in Figure 3.3. at the beginning. 

 

Figure 3.3. Initial state of matrix M 
 

From the initial state, some example cases of use of equation (3.7) are shown. To 

calculate M1,1, we’ll use equation (3.7) as follows: 

 

 M1,1 = max{ M0,0 + F(1,1), M0,1 + G, M0,1 + G, 0 } 

 M1,1 = max{ 0 + ( -1 + (- 2) ), 0 + (-3), 0 + (-3), 0 } 

 M1,1 = 0 

 

In this calculation, the first number is the similarity score of matching 1st residue of P1 

and 1st residue of P2. Neither structure score (-2) nor sequence score (-1) is favorable, 

resulting in a mismatch. Since there have not been any matches before, gapping is not 

sensible. Both of gap scores are negative (-3). Since matching and gapping are all negative, 

a zero is assigned to M1,1. This case is an example of choosing a zero. The matrix is 

presented at figure 3.4. at its current state. 
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Figure 3.4. Matrix M’s current state 
 

After the calculation of M1,1, the calculation of M1,2 is as follows: 

 

 M1,2 = max{ M0,1 + F(1,2), M0,2 + G, M1,1 + G, 0 } 

 M1,2 = max{ 0 + ( 4 + (-2) ), 0 + (-3), 0 + (-3), 0 } 

 M1,2 = 2 

 

In this case, the match is favorable for sequence score whereas it’s unfavorable for 

structure score, however sequence score is higher, thus the match is a good one. Opening a 

gap from a previous match from M0,2, M1,1 is not possible since both of them are zero. This 

case is an example of choosing a match. The path of choice is marked with an arrow. The 

current state of matrix M is presented in Figure 3.5. 
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Figure 3.5. Current state of matrix M 

 

For the next example, the calculations until M3,5 are not presented. After the matrix is 

prepared until that point, the calculation of M3,5 is as follows, 

 

 M3,5 = max{ M2,4 + F(3,6), M2,5 + G, M3,4 + G, 0 } 

 M3,5 = max{ 3 + (-1 + 2), 6 + (-3), 7 + (-3), 0 } 

 M3,5 = 4 

 

This case is a good example, for all possibilities can be observed here. The total 

similarity score of 3th amino acid of P1 and 5th amino acid of P2 is 1, a positive value, and 

they can be matched. However the similarity sum of previous regions may be higher. The 

similarity sum of regions till M2,5 is 6 and  the same sum till M3,4 is 7. Opening a gap region 

from these indexes is a possibility as well. In this case, matching from M2,4 and opening a 

gap from M3,4 are equally ideal, both yielding a score of 4, thus this case can be an example 

of choosing a match or a gap. The matrix M at this point is shown in figure 3.6. Since it’s 

possible to set M3,5 from two different indexes, two arrows exist.  
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Figure 3.6. Current state of matrix M 

  

The final state of the matrix M is shown in figure 3.7 after all calculations are done. 

The maximum value is sought to find the best alignment. After it’s found, the traceback 

procedure starts to discover the alignment that yields the found best score. The traceback 

procedure can simply be done by observing the path of the arrows. For this particular case, 

the different paths that yield the maximum score exist. In order to present the alignment 

that contains a gap, the path with the gap choice is preferred over the other path.  

 

Figure 3.7. Final state of matrix M 
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The maximum value 8 is found in M4,6. The traceback procedure yields the path: 

 

M4,6 → M3,5 → M3,4 → M2,3 → M1,2 → M0,1   

 

The path starts at maximum value found and ends at a zero. All moves except M3,5 → 

M3,4 are matches (diagonal moves) while M3,5 → M3,4 move is a gap move. Thus the 

alignment is as shown as Figure 3.8.  

 

P1 AAC_C 

P2 AABAC 

Figure 3.8. Resulting alignment 

 

The fundamentals of our alignment algorithm were presented in this section. On this 

base, further improvements will be integrated to achieve better results and overcome the 

shortcomings of the presented alignment algorithm and scoring function.  

 

One shortcoming of Smith-Waterman algorithm is the way it penalizes the gaps. 

When aligning two proteins, gaps are aligned against excess regions of one protein which 

may not be found in the other. In nature, excess regions are caused by insertions and 

deletions, and these deletions are insertions occur in terms of blocks. To adapt the gap 

penalties to this fact, affine gap penalty scheme is used [44]. 

 

3.5.2 Affine Gap Scheme 

 

This scheme splits the gap penalties into two categories, opening gaps and extension 

gaps. Each gap is penalized according to its places in a gap region. If the gap in question is 

the first gap in a gap region, it “opens” the gap region and is penalized with gap opening 

penalty. If the gap is not the first gap in a gap region but merely “extends” the gap region, it 

is penalized with a gap extension penalty which is less than the gap opening penalty. In 

figure 3.9., the first gap that is aligned with D is penalized with gap opening penalty while 

the rest of gaps aligned with C’s are penalized with gap extension penalty.  
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AAAAAAA--------EEEEEE 

AAAAAAADCCCCCCCEEEEEE 

Figure 3.9. Example alignment for affine gaps  

 

With the affine gap scheme, the total penalty is o + (k – 1) * e for a gap region 

consisting of k gaps where o is the opening penalty and e is the extension penalty. With a 

regular static gap penalty scheme, the penalty would be g * k, making no difference if the k 

gaps are a continuous bulk or not. By setting a high gap opening penalty and a low 

extension penalty, we favor continuous gaps over isolated single gaps.  

 

The implementation of the affine gap scheme is similar to Smith-Waterman algorithm, 

to distinguish between opening and extension gaps, three matrices are used instead of one. 

The implementation is based on the observation that there are possible cases in an 

alignment process, two amino acids are aligned, one amino acid from first sequence is 

aligned with a gap and a gap is aligned with an amino acid from second sequence.  

 

Each case is represented by a matrix, amino acid to amino acid case is represented by 

matrix A, amino acid to gap case is represented by matrix B and gap to amino acid case is 

matrix C. Matrices are initialized in the same manner as before. The similarity of ith amino 

acid from first sequence and kth amino acid from second sequence is represented by p(i,k). 

The gap opening penalty is o and extension penalty is e, both are negative numbers. Given 

these definitions, the matrices are filled by the following formulas:  

 

Aij = max { Ai-1,j-1 +  p(i,j), B i-1,j-1 + p(i,j), C i-1,j-1 + p(i,j), 0 }                            (3.10) 

 

Bij = max { Ai,j-1 + o , B i,j-1 + e, C i,j-1 + o, 0 }                                                     (3.11) 

 

Cij = max { Ai-1,j + o , B i-1,j + o, C i-1,j + e, 0 }                                                     (3.12) 
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Valid for 0 ≤ i ≤ n, 0 ≤ j ≤ m, where n is the length of first sequence and m is the 

length of second sequence.  

 

Since using two matrices allows us to discern between different gaps, staying in the 

same matrix means we are extending an existing gap region, thus the move is penalized 

with only e. Moving from one matrix two another means we are starting a new gap region, 

thus the move is penalized with o.  

 

3.5.3 Variations of Our Method 

 

During the development of the thesis, we designed variants of Smith-Waterman 

algorithm and experimented with them to achieve better alignments. We have also tried 

different similarity functions and different ways of combining them. In the results section, 

the different sets sequence and structure scoring functions, gap penalties, and weights will 

be presented with each result set. Moreover, the modifications to the basic algorithm, along 

with their reasons and their effects on results, will be discussed.  

 

However there’s a slight variation of the algorithm that will be explained in this 

section. The alignments can be generated in two manners; the first way is using the local 

alignment method (Smith-Waterman) with regular penalties, as presented in the example. 

We call this method local because whenever the sum of similarity falls into negative values, 

a zero is used instead, ensuring that alignment can start from any location. In this scheme, 

only the best alignment is extracted from the M matrix. By this method we obtain structural 

alignments and we try to maximize the length of the alignment while keeping the RMSD as 

low as possible. 

 

The second way of finding the alignment is similar to local alignment method, the 

generation of the matrix M and extraction procedures are same. However in this scheme, 

the gap penalty is set to a very large value (-1000) so there can be no gaps in the alignment. 

In this scheme, the alignments are gapless continuous segments which are obviously shorter 

compared to the alignments generated by local alignment. In this scheme, a single short 
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alignment cannot be the solution, thus we extract the N-best solutions and combine the ones 

that do not overlap. This combination approach is used in some clustering based structure 

alignments as well. The way the alignments are combined can vary and is explained in 

results section.  

 

By using the second method, we obtain local segments of very high similarity. In this 

context, local is used in a different meaning than local alignment. We expect such segments 

to be regions belonging to domains since they exhibit highly conserved local similarity for 

both sequence and structure. Another factor in favor of this belief is that these local 

segments do not contain gaps or mismatches, thus the alignments built by using the 

segments are “purer” alignments compared first method.  

 

Another feature we’ll mention here is the constraint we integrated into our alignment 

algorithm that allows elimination of paths that create undesirable alignment. This constraint 

forces one to one correspondence between helices and sheets. The constraint is 

implemented by using additional matrices to store recent memory of matches while the 

alignment is being built. Amino acid matches that result in the alignment of one helix or 

sheet to two different helices or sheets are nullified while the alignment is being built.  

 

3.5.4 Optimization 

 

Our method has combined different ideas and used different variations and parameters 

during the development. Furthermore our similarity function linearly combines three 

functions using weights. Different parameter combinations affect the accuracy of the results, 

however the abundance of variables used in the algorithm makes manual control of 

parameters difficult.  

 

To automate the parameter setting processes and to discover the set of parameters that 

give the best results, we have optimized our method using a genetic algorithm. Genetic 

algorithms are (GA for short) are heuristic search algorithms that try to find an approximate 
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best solution to a given problem. In our case, we have used them search for the parameter 

set that yields optimum results.   

 

3.5.4.1 Specifications of optimization procedure 

 

In order to use a genetic algorithm for optimization, a genetic representation of 

solution, fitness function and crossover and mutation operators have to be defined. An ideal 

data structure for genetic representation of our parameter set is a list. A solution S is a list 

of parameters S = ( go, ge , cstr, cseq, css ) where go and ge are integers and cstr, cseq or css are 

real numbers.  go is the gap opening penalty, ge is the gap extension penalty, cstr is the 

structure coefficient of structure score in the similarity function (denoted as k1), cseq is the 

sequence coefficient of sequence score in the similarity function (denoted as k2) and css is 

the secondary structure coefficient of secondary structure score in the similarity function 

(denoted as k3) of equation 3.8. For each element of list, a range will be defined dependent 

on the depth of search.  

 

The list representation is ideal for mutation and crossover. It’s rather similar to binary 

representation, but each digit has a different domain. Crossover between two lists can be 

defined as a switch between one randomly picked element of same type between two lists. 

Mutation can be implemented by shifting a parameter’s value, adding a positive or negative 

value. The shifting value will be small compared to size of the range of a parameter.  

 

The fitness function choice is rather obvious because we are trying to achieve good 

structural alignments with low RMSD values. To eliminate alignments with high RMSD 

values, a fitness function that assigns high fitness values to low RMSD values is required. 

A rather simple choice for fitness function can be RMSD-1, however very short alignments 

tend to have low RMSD values, thus such a fitness function may favor very short alignment 

to lower RMSD.  
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The length of the alignment, the number of matched amino acid pairs, must be 

incorporated into the fitness function to find alignments with meaningful and good 

superposition. If we directly use the length of alignment, the fitness function can be: 

 

RMSD

length
Fitness

×
=

3
                                                                                               (3.13) 

 

It was decided to multiply length by three empirically, to balance the two factors. 

However since we are optimizing a set of proteins, some proteins may have greater impact 

because they may be longer, thus the length of alignment have to be normalized. This is 

achieved by dividing the length of the alignment by the length of the shorter of the two 

proteins, normalizing the length into range between 0 and 1. The final fitness function 

definition is as follows: if we are aligning two proteins A and B of length n and m 

respectively, and the length of the A and B’s alignment is l, the RMSD value of alignment 

is the RMSD, then fitness function Fit is,  

 

( )
( )mnRMSD

l
RMSDlmnFitness

,min
,,,

×
=                                                       (3.14) 

 
After making the necessary definitions, optimization process was initiated. The latest 

version of discrete structural similarity function was used. For sequence similarity score 

doubled BLOSUM62 matrix is used. The modified version of secondary structure 

similarity matrix is used. Gap penalty, gap extension, and coefficients of each score are 

parameters. The search is done with 20 solutions at each generation, for 10 generations. For 

randomly generated parents, the following intervals were set: 

 

 10 ≤ go ≤ 50, 

1 ≤ ge ≤ 10,  

0 ≤ cstr ≤ 1, 

0 ≤ cseq ≤ 1, 

0 ≤ css ≤ 2 
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With the constraint, 

 

 cstr + cseq = 1                                                                                                           (3.15) 

 

And each parameter can take values that are multiples of increments for that interval 

to avoid a minimum distance between randomly generated parameters. The increment for 

gap parameters is 1, increment for sequence and structure is 0.05 and increment for 

secondary structure score is 0.1. To increase the depth of search, mutation rate was set 

to %100. 

 

In the following results section, the alignments generated by using different 

parameters, the development and integration of different parameters are presented and 

compared to other methods. Also the detailed specification and definitions of different 

variations of algorithm and implementation process of constraint are also provided.  
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4  RESULTS & DISCUSSION 

 

4.1 Data 

 

During the development of this thesis, three datasets have been used. In the first  ten 

experiments, we’ve used a dataset of remote homologs with high structural similarity. This 

dataset is presented in a paper by Capriotti et.al. Seventeen pairs of proteins have been 

picked from this dataset to create our own dataset of remote homologs [45].  

 

The second dataset is chosen from the ASTRAL database [46], [47]. ASTRAL is 

generated from SCOP. For the second dataset, we have picked eleven proteins belonging to 

three different families. The proteins were picked from a subdatabase of ASTRAL; 

ASTRAL40 which contains families whose sequence identity is lower than %40 percent.  

 

The third dataset contains proteins manually picked from SCOP. The proteins were 

randomly chosen from the same fold, they contained the same domain or variations of the 

same domain but proteins had different functions. Different proteins containing ATP 

binding, DNA binding (winged helix, zinc finger) and calcium binding (EF hand) are 

chosen. 

  

4.2 Experiment 1: Basic Algorithm 

  

For the first ten experiments, we use the first dataset obtained from dataset of 

Capriotti et. al. The contact cutoff distance is 7Å. The scoring function is based on tertiary 

structure and sequence information. To score sequence similarity, BLOSUM62 matrix is 
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used. BLOSUM62 scores are doubled beforehand to bring them to same range with 

structure scores.  Sequence similarity is denoted as Fs. Structure score is based on a 

function that compares connectivity and cliquishness of two residues separately and sums 

them. The final score is the linear combination of two parameters.  

 

Let’s say the connectivity parameters of two amino acids A and B are given as cA and 

cB and cliquishness parameters are given as ςA and ςB respectively. To assess connectivity 

and cliquishness similarity, we calculate the difference divided by the arithmetic mean for 

both parameters, 

 

)c c (

|c -c|. 2
  ) c ,(c S

BA

BA
BAc

+
=                                                                                       (4.1) 

and, 

 

)  (

| -|. 2
  ) ,( S

BA

BA
BA

ςς

ςς
ςςς

+
=                                                                                     (4.2) 

 

The matching of A and B is awarded or penalized based on the interval in which 

values of Sc and Sς are. By dividing the difference by mean, small differences between 

larger values will yield smaller values of Sc and Sς compared to small differences between 

small values. This makes it scoring more reliable because small differences between large 

values are more significant. The intervals of the function is given as in the  Table 4.1. where 

Fc signifying connectivity function and Fς signifying cliquishness function. Both function 

use same values thus only connectivity function is presented. 
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Sc intervals  Fc result 

Sc ≥ 1 -8 

1 > Sc ≥ 0.875 -4 

0.875 > Sc ≥ 0.75 -2 

0.75 > Sc ≥ 0.625 -1 

0.625 > Sc ≥ 0.5 0 

0.5 > Sc ≥ 0.375 1 

0.375 > Sc ≥ 0.25 2 

0.25 > Sc ≥ 0.125 4 

0.125 > Sc ≥ 0 8 

Table 4.1. Function intervals 

 

These three values are combined linearly to create the final similarity scoring function 

F. Given two amino acids A and B, their similarity is F(A,B), 

 

F(A,B) = k1 . Fc(cA, cB) + k2 . Fς (ςA, ςB) + k3 . Fs                                                 (4.3) 

 

where k1 = 0.25, k2 = 0.25 and k3 = 0.5. 

 

Using this function, proteins are locally aligned with gap penalty g = 4 and the best 

alignment is obtained. At this point, the RMSD measure of the alignment is not calculated, 

the alignments are compared with the results of existing methods. We used CE for this task. 

The alignment of 1A0A and 1AM9 produced by our alignment and by CE alignment are 

presented below in Figure 4.1. 
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1A0A:A  KRESHKHAEQARRNRLAVALHELASLI_PAEWKQQNVSAAPSKATTVEAACRYIRH____L_QQNGS 

1AM9:A  KRTAHNAIEKRYRSSINDKIIELKDLVVGTE_AKLNKSAV_LRKA_ID_YIRFLQHSNQKLKQENLS 

Our alignment 

 

1A0A:A  RESH-KHAEQARRNRLAVALHELASL-IPAEWKQQNVSAAPSKATTVEAACR---YIRHLQQNG 

1AM9:A  RGEKRTAHNAIEKRYRSSINDKIIELKDLVVGTEAKL-----------NKSAVLRKAIDYIRFL 

CE alignment 

Figure 4.1 Alignment Comparison 

 

This comparison showed that our method roughly aligned the homologous regions 

other method aligned, but there are shifts. The RMSD values are affected as a result as 

presented in Table 4.2 along with the RMSD values CE alignments yield for comparison. 

The shifts exist because the gap penalty is not ideal and gap extension is a problem. To 

address this problem, affine gap penalty scheme is implemented.  

    

 Our Method CE  

Protein Pair RMSD (Å) Length RMSD (Å) Length 

12AS:A 1PYS:A 22.65321541 245 3.4 210 

19HC:A 1NEW:_ 8.462189674 63 3.1 64 

1A0A:A 1AM9:A 6.735984325 57 3.5 48 

1A17:_ 1E96:B 15.4651947 144 1.8 122 

1A1Z:_ 1NTC:A 16.93305969 77 3.9 40 

1A28:A 1LBD:_ 8.084799767 213 2.8 193 

1A34:A  1AUY:A 10.54008961 119 3.7 123 

1A3A:A  1A6J:A 2.939950228 139 2.3 132 

1A53:A  1NSJ:_ 13.20775795 186 2.7 188 

1A5R:_1 UBI:_ 4.232666969 74 2.5 70 

1A6M:_ 1ASH:_ 3.159033298 133 2.0 139 

1A7T:A 1SML:A 8.585944176 213 2.2 194 

1A9V:_ 1EHX:A 10.70693493 80 3.9 83 

1ABA:_ 1ERV:_ 6.854056835 72 3.7 75 

1AC5:_ 1IVY:A 6.63659668 416 2.3 378 

1ACP:_ 2AF8:_ 5.65189743 75 5.3 56 

1AD3:A 1BPW:A 3.283203125 416 2.3 416 

Table 4.2. RMSD values of experiment 1 
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4.3 Experiment 2: Affine Gap Penalties 

 

In this experiment, we implemented the affine gap penalty which is explained in 

methods section. Affine gap scheme was used to counter the problems explained in the 

previous section, and can be seen by comparing the alignments in Figure 4.1. 

 

After affine gap penalty scheme was implemented, RMSD values of the alignments 

have been calculated to assess the alignments produced by our method. The gap opening is 

-10 and extension penalty is -1.  

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 22.62244225 254 

19HC:A 1NEW:_ 8.921919823 63 

1A0A:A 1AM9:A 4.378242493 54 

1A17:_ 1E96:B 19.23015976 145 

1A1Z:_ 1NTC:A 13.94208145 70 

1A28:A 1LBD:_ 10.98708439 219 

1A34:A  1AUY:A 10.67560101 120 

1A3A:A  1A6J:A 3.642231464 137 

1A53:A  1NSJ:_ 11.09077358 186 

1A5R:_1 UBI:_ 3.719026327 76 

1A6M:_ 1ASH:_ 2.622909784 138 

1A7T:A 1SML:A 7.151891708 215 

1A9V:_ 1EHX:A 16.9732132 82 

1ABA:_ 1ERV:_ 7.145294666 73 

1AC5:_ 1IVY:A 9.200638771 411 

1ACP:_ 2AF8:_ 5.35771513 75 

1AD3:A 1BPW:A 4.27207756 417 

Table 4.3. RMSD values of experiment 2 

 

The results, as presented in Table 4.3, vary for each protein. For some proteins the 

alignments are unacceptable, having very high RMSD values in the range of 15Å to 20Å. 

Some alignments are acceptable, RMSD values in 4Å to 6Å range. There are also very 

good alignments with RMSD values in 2 Å to 4 Å range.  



 55 

 

Different gap penalties were tried to decide if the gap penalty choice is the cause of 

high RMSD values. The generally accepted ideal range for gap penalties is the range of 

maximum value of awarding function and the values -10,-1 comply with this idea.. In Table 

4.4, the results produced by setting gap opening = -5, gap extension = -1 are presented as an 

instance.  

  

It can be observed that lowering the gap penalties did not improve the results at all. 

The protein pairs that yielded high RMSD alignment still do so. For example, 12AS:A-

1PYS:A pair yields RMSD values higher than 20Å regardless of gap penalty choice. These 

results show that gap penalty itself is not cause of inaccurate alignments. Therefore 

additional information must be incorporated into the similarity function to get lower RMSD 

values. 

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 23.0240612 233 

19HC:A 1NEW:_ 7.849016666 65 

1A0A:A 1AM9:A 5.252778053 53 

1A17:_ 1E96:B 15.38170719 134 

1A1Z:_ 1NTC:A 16.39752007 76 

1A28:A 1LBD:_ 10.90044594 215 

1A34:A  1AUY:A 10.28055286 112 

1A3A:A  1A6J:A 2.972669363 136 

1A53:A  1NSJ:_ 11.66374588 181 

1A5R:_1 UBI:_ 4.417040348 73 

1A6M:_ 1ASH:_ 3.114444017 135 

1A7T:A 1SML:A 10.25722122 208 

1A9V:_ 1EHX:A 17.35075378 82 

1ABA:_ 1ERV:_ 9.444479942 66 

1AC5:_ 1IVY:A 10.29088402 399 

1ACP:_ 2AF8:_ 5.35771513 75 

1AD3:A 1BPW:A 5.102340221 408 

Table 4.4. RMSD values of experiment 2 with different gap penalties 
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4.4 Experiment 3: Secondary Structure Similarity Matrix 

  

At this stage, the similarity function is based on sequence and structure parameters. 

Sequence similarity function is essentially comparing the primary structure similarity of 

proteins. Structure similarity function is based on cliquishness and connectivity parameters 

which model tertiary structure information of proteins. To further consolidate the similarity 

function, secondary structure information can be incorporated into similarity function.  

 

The secondary structure similarity score is denoted by FSS and is obtained by using 

the secondary structure similarity matrix as explained in Methods sections. FSS is added to 

combination of sequence and structure similarity scores. The original values in the matrix 

are not in the range of other similarity functions so FSS function is multiplied by two. The F 

function changes as follows, 

 

F(A,B) = k1 . Fc(cA, cB) + k2 . Fς (ςA, ςB) + k3 . Fs + 2 . FSS                                    (4.4)        

 

where k1 = 0.25, k2 = 0.25 and k3 = 0.5. 

 

The results produced by the new function are given in Table 4.5. with gap opening 

penalty = -10, gap extension penalty = -5. The secondary structure information improved 

the results for 12AS:A-1PYS:A and 1A34:A-1AUY:A pairs. Especially the first pair has its 

RMSD value halved from 20 Å to approximately 10Å. The RMSD values of some 

alignments haven’t improved at all (1A17:_ - 1E96:B, 1A1Z:_ - 1NTC:A, 1A28:A - 

1LBD:_). 
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Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 9.664269447 215 

19HC:A 1NEW:_ 6.898514271 68 

1A0A:A 1AM9:A 4.484011173 47 

1A17:_ 1E96:B 16.99118996 147 

1A1Z:_ 1NTC:A 11.63062382 63 

1A28:A 1LBD:_ 12.53302288 212 

1A34:A  1AUY:A 5.549195766 116 

1A3A:A  1A6J:A 3.521498442 135 

1A53:A  1NSJ:_ 7.775279999 178 

1A5R:_1 UBI:_ 4.253891468 76 

1A6M:_ 1ASH:_ 2.204893351 137 

1A7T:A 1SML:A 5.952233791 201 

1A9V:_ 1EHX:A 16.37402916 75 

1ABA:_ 1ERV:_ 4.778537273 67 

1AC5:_ 1IVY:A 8.032186508 402 

1ACP:_ 2AF8:_ 5.286103249 75 

1AD3:A 1BPW:A 3.368440628 408 

Table 4.5. RMSD values of experiment 3 

  

Since we have added a new parameter to F function, the maxima of F function has 

increased as well. Gap penalties should be changed accordingly, so higher penalties than -

10,-1 has been tried to see if better results can be obtained. In Table 4.6., results with higher 

gap opening penalty are presented. The gap opening penalty has been increased to -15, 

extension penalty is same, still -1. This change hasn’t done a lot of contribution but has 

improved almost all alignments marginally, except for 1A28:A - 1LBD:_ pair whose 

RMSD has improved a lot.  
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Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 9.594562531 216 

19HC:A 1NEW:_ 6.753612041 68 

1A0A:A 1AM9:A 4.605853558 48 

1A17:_ 1E96:B 17.23191834 150 

1A1Z:_ 1NTC:A 11.63062382 63 

1A28:A 1LBD:_ 7.569907665 210 

1A34:A  1AUY:A 4.88739872 119 

1A3A:A  1A6J:A 3.466456652 133 

1A53:A  1NSJ:_ 7.801670551 178 

1A5R:_1 UBI:_ 3.740767479 75 

1A6M:_ 1ASH:_ 2.204893351 137 

1A7T:A 1SML:A 5.551774025 196 

1A9V:_ 1EHX:A 16.15745354 78 

1ABA:_ 1ERV:_ 4.495889187 67 

1AC5:_ 1IVY:A 7.979990005 407 

1ACP:_ 2AF8:_ 5.286103249 75 

1AD3:A 1BPW:A 3.222174883 414 

Table 4.6. RMSD values of experiment 3 with different gap penalties 

 

4.5 Experiment 4: Secondary Structure Similarity Matrix Modified 

 

It can be observed in the secondary similarity matrix that helix to helix similarity and 

loop to loop similarity is equal. However helices are more ordered secondary structure 

elements compared to loops. We want to emphasize helix matches over loop matches thus 

we made some empirical modifications to secondary structure matrix. Helix to helix match 

score is increased to 4 and sheet to sheet match has been increased to 6 to preserve the 

difference between the two scores. Furthermore, generally a sheet is shorter than a helix, so 

helix similarity contributions in the overall alignment can shadow the significance of the 

sheet similarity contributions without increasing the sheet to sheet match score. The 

modified secondary structure matrix is given in Table 4.7.  
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 H S L 

H 4   

S -4 6  

L -15 -4 2 

Table 4.7. Modified secondary similarity matrix 

 

Results with the modified secondary structure are presented in Table 4.8. Different 

gap penalties have been tried since the change in secondary structure similarity matrix 

changes affects the maxima of F. For results presented in Table 4.8.: gap opening = -20,gap 

extension = -1. Thus the gap opening penalty has been increased again according to the 

increase in F function.  

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 8.438858032 219 

19HC:A 1NEW:_ 6.753612041 68 

1A0A:A 1AM9:A 4.605853558 48 

1A17:_ 1E96:B 17.23191834 150 

1A1Z:_ 1NTC:A 11.63062382 63 

1A28:A 1LBD:_ 7.153425694 210 

1A34:A  1AUY:A 5.078693867 126 

1A3A:A  1A6J:A 3.466456652 133 

1A53:A  1NSJ:_ 7.688687801 182 

1A5R:_1 UBI:_ 3.740767479 75 

1A6M:_ 1ASH:_ 2.204893351 137 

1A7T:A 1SML:A 5.537323952 198 

1A9V:_ 1EHX:A 15.80622292 77 

1ABA:_ 1ERV:_ 4.37745285 68 

1AC5:_ 1IVY:A 5.582899094 402 

1ACP:_ 2AF8:_ 5.286103249 75 

1AD3:A 1BPW:A 3.21536088 415 

Table 4.8. RMSD values of experiment 4 

 

The results in Table 4.8. show marginal improvements, except for 1AC5:_ - 1IVY:A 

pair. For this pair, the RMSD improvement is approximately 3Å, which brings the overall 
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RMSD to 5 Å, into the range of acceptable RMSD interval (2 Å to 5Å) for protein 

alignments. Even though the change in secondary similarity matrix does not contribute 

much at this step, there is improvement and for the reasons stated before, the changes to 

matrix are kept for the remaining experiments.  

 

4.6 Experiment 5: Continuous Structure Function 

  

At this point, results have been improved significantly for some proteins. Affine gap 

penalty scheme and secondary structure information has reduced RMSD values for almost 

all protein pairs with two exceptions. For some alignments, the improvements have been 

drastic, the change was more than 10Å as in the case of 12AS:A 1PYS:A pair. In the 

beginning, some alignments’ RMSD values unacceptable (more than 10Å) and their RMSD 

values have been reduced to acceptable values (less than 5Å). For 1A17:_ - 1E96:B, 

1A1Z:_ - 1NTC:A and 1A9V:_ - 1EHX:A pairs, alignments still have unacceptable RMSD 

values, larger than 10 Å. Thus we conclude that affine gap scheme and secondary structure 

information are not sufficient additions to our method to extract acceptable alignments 

from these three pairs. Rather than adding new parameters to current similarity function, 

existing parameters are to be optimized. 

 

Considering the current parameters, the structure similarity function, which is the 

combination of cliquishness and connectivity similarity functions, is assessing the 

similarity roughly. The award is dependent on the ratio of difference to average for 

cliquishness and connectivity parameters. This ratio can be misleading in certain cases. For 

example, assume that two amino acids A,B have connectivity values 1 and 2 respectively 

and two amino acids C,D have connectivity values 4 and 8. Since the ratio of difference to 

average is equal for pairs (1,2) and (4,8), thus 

 

Fc(cA, cB) = Fc(cC, cD)                                                                                                (4.5) 

 

The same case is true for cliquishness function Fς as well. This property is obviously 

undesired because the similarity is being misjudged. According to Atılgan et. al. on a study 
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of 54 proteins at 7Å contact distance, connectivity parameter of proteins are in the range of 

2 to 14, majority of them in 4 to 10 range.  Considering this statistic, 1 and 2 are very close 

values and should be awarded while 4 and 8 are distant values and shouldn’t be awarded at 

all.  

 

To fix this problem, a different structure similarity function is designed. This function 

is not made of separate two functions, a cliquishness similarity function and a connectivity 

similarity function, like the old one but combines the both parameters directly to assess 

structure similarity as modeled by connectivity and cliquishness measures. The function 

uses the absolute difference of both connectivity and cliquishness parameters. Logarithm 

function is used to make the scores exponential. The structure similarity function FS for two 

amino acids A and B is given as, 

 

( ) )
1  c c

1
log(1 . 1.10 ) ,,c ,(c F

BA
2BABABAs

+−
+−−= ςςςς                                    (4.6) 

 

where ςA, ςB are cliquishness values and cA, cB are connectivity values of amino acids 

A and B.  

 

Since there is only one structure similarity function now, the linear combination of 

similarity function F is modified as follows  

  

 F(A,B) = k1 . Fs(cA, cB, ςA, ςB) + k2 . Fseq + 2 . FSS                                        (4.7) 

 

where k1 = 0.5 and k2 = 0.5. 

 

The results generated by using the modified structure function are presented in Table 

4.9. Different gap penalties have been tried and the presented results are with gap opening 

= -20, gap extension = -1. The new function has increased RMSD value of some alignments 

and reduced one of them. The improved alignment is of 1A53:A  1NSJ:_, and the RMSD is 

4Å. Up until now, the changes introduced haven’t been able bring this pair’s alignment to 
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4Å. However the new structure function Fs has increased the average RMSD thus it cannot 

be considered an improvement. 

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 8.644621849 219 

19HC:A 1NEW:_ 8.782649994 60 

1A0A:A 1AM9:A 4.42521143 47 

1A17:_ 1E96:B 17.02920151 150 

1A1Z:_ 1NTC:A 11.52779865 62 

1A28:A 1LBD:_ 6.725256443 206 

1A34:A  1AUY:A 6.482067585 106 

1A3A:A  1A6J:A 3.378324032 131 

1A53:A  1NSJ:_ 4.740402222 173 

1A5R:_1 UBI:_ 3.740767479 75 

1A6M:_ 1ASH:_ 2.204893351 137 

1A7T:A 1SML:A 5.616611958 192 

1A9V:_ 1EHX:A 15.85970306 79 

1ABA:_ 1ERV:_ 4.927250385 65 

1AC5:_ 1IVY:A 5.881895065 388 

1ACP:_ 2AF8:_ 6.832217693 75 

1AD3:A 1BPW:A 3.530610323 403 

Table 4.9. RMSD values of experiment 5 

 

4.7 Experiment 6: Discrete Structure Function 

  

Given that the continuous structure similarity function hasn’t reduced the overall 

RMSD values, another structure function is designed. The new structure function proposed 

is discrete and the decision of penalizing or awarding is based on connectivity values and 

absolute differences of cliquishness and connectivity. The design of function is based on 

the observation that domains are well connected which means that amino acids in domains 

have large connectivity values. Thus structural matches in well connected regions are 

awarded more than other regions. The connectivity threshold to decide if an amino acid is 

well connected is 6.  
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In the process of scoring the structure similarity of two amino acids, the first criteria 

is to check if both amino acids’ connectivity values are higher than 6. The second criteria is 

the absolute difference of connectivity values of amino acids. The last criteria is the 

absolute difference of cliquishness values. The function branches according to these criteria 

and assigns an award or a penalty to the match. 

 

The function can be presented best in a flowchart. If both amino acids’ connectivity 

values are larger than or equal to 6 and the absolute difference of connectivity measures is 1, 

then: 

 

 

 

 

 

 

Figure 4.2. First tree of function 

  

The score assigned by function is given in the last node. If both amino acids’ 

connectivity values are larger than or equal to 6 and the absolute difference of connectivity 

measures is 2, then: 

 

 

 

 

 

 

Figure 4.3. Second tree of function 

 

These two charts show the cases for matches between well connected amino acids. If 

one of amino acids’ connectivity measure is smaller than 6 and the absolute connectivity 

difference is 1, then: 

|c1 - c2|== 1, 
 c1 ≥ 6 and c2 ≥ 6 

| ς1 - ς2 |≤ 0.05 
  

| ς1 - ς2 |≤ 0.1 | ς1 - ς2 |≤ 0.2 | ς1 - ς2 | ≥0.2 

30 24 18 -12 

|c1 - c2|== 2, 
 c1 ≥ 6 and c2 ≥ 6 

| ς1 - ς2 |≤ 0.05 
  

| ς1 - ς2 |≤ 0.1 | ς1 - ς2 |≤ 0.2 | ς1 - ς2 | ≥0.2 

18 15 10 -18 
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Figure 4.5. Third tree of function 

 

If the absolute difference is 2, then 

 

 

 

 

 

 

 

Figure 4.6. Fourth tree of function 

  

For the remaining conditions where absolute connectivity difference is larger than 2, 

all matches will be penalized. The penalty is simply calculated by the formula, 

 

( ) 10-15- . c c .  ) ,,c ,(c F BABABABAs −−= ςςςς                                                    (4.8) 

 

The results obtained by using this new function are presented in Table 4.10. After 

trying different gap penalties, gap opening penalty is set to -30 and extension penalty is set 

to -1. Gap opening penalty has been increased as the structural function maxima is higher 

now. Increasing the gap penalty has reduced the length of some alignments thus reducing 

the RMSD values marginally but some alignments have improved. RMSD values of pairs 

|c1 - c2|== 1, 
 c1 < 6 or c2 < 6 

| ς1 - ς2 |≤ 0.05 
  

| ς1 - ς2 |≤ 0.1 | ς1 - ς2 |≤ 0.2 | ς1 - ς2 | ≥0.2 

18 12 6 -12 

|c1 - c2|== 2, 
 c1 < 6 or c2 < 6 

| ς1 - ς2 |≤ 0.05 
  

| ς1 - ς2 |≤ 0.1 | ς1 - ς2 |≤ 0.2 | ς1 - ς2 | ≥0.2 

9 6 3 -18 
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1A17:_ - 1E96:B and 1A9V:_ - 1EHX:A have been over 15Å up until now, with the new 

function they have been lowered to approximately 10Å. Plus, 1A53:A  - 1NSJ:_ pair’s 

RMSD measure has been reduced to 4Å from 7Å. But RMSD values of two pairs, 19HC:A 

1NEW:_ and 1A34:A  1AUY:A, has increased by approximately 4Å. New function has 

contributed, allowing us to reduce the RMSD values of pairs that have been unacceptable 

until now but needs to be optimized overall.  

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 7.488014221 204 

19HC:A 1NEW:_ 10.03957939 45 

1A0A:A 1AM9:A 4.277388096 47 

1A17:_ 1E96:B 10.02275658 138 

1A1Z:_ 1NTC:A 10.8199892 58 

1A28:A 1LBD:_ 7.208533287 201 

1A34:A  1AUY:A 9.747236252 97 

1A3A:A  1A6J:A 3.080663919 133 

1A53:A  1NSJ:_ 4.113963127 178 

1A5R:_1 UBI:_ 3.623967409 65 

1A6M:_ 1ASH:_ 2.722320795 137 

1A7T:A 1SML:A 4.667170048 192 

1A9V:_ 1EHX:A 9.643212318 74 

1ABA:_ 1ERV:_ 5.270978928 69 

1AC5:_ 1IVY:A 4.855390072 386 

1ACP:_ 2AF8:_ 4.911249161 70 

1AD3:A 1BPW:A 2.988206148 403 

Table 4.10. RMSD values of experiment 6 

 

4.8 Experiment 7: Discrete Structure Function Modified 

 

The discrete structure function has a well defined award scheme but the penalties are 

fixed for nearly all penalty situations. We decided to fix this problem with a simple change. 

Our observations showed that the majority of gaps in alignments are in loop regions 

between concentrated sheet and helix regions. Furthermore two loop regions from two 

homologous proteins exhibit less structural similarity compared to helices and sheets since 
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loops are not as ordered as helices and sheets. The discrete structure function was modified 

according to these observations. 

 

When calculating Fs for two amino acids A and B, if A or B is part of a loop, then Fs 

is , 

 

( ) 6-15- . c c .  ) ,,c ,(c F BABABABAs −−= ςςςς                                                      (4.9) 

 

Else the Fs is, 

 

( ) 12-15- . c c .  ) ,,c ,(c F BABABABAs −−= ςςςς                                                  (4.10) 

 

By modifying the function this way, we hope to introduce less gaps and reduce the 

sensitivity of alignments to gap parameter.  

 

The results generated with the modified Fs are presented in Table 4.11. Two sets of 

results are displayed, each one with a different gap penalty. The first set is generated with 

gap opening = -30, gap extension = -3. Second set is generated with gap opening = -40, gap 

extension = -4. Reducing the penalty for loop regions didn’t have an impact on the results. 

There is a specific problem that can be observed with comparing the two sets of results. 

Gap parameters that reduce the RMSD of 1A17:_ - 1E96:B pair, increase the RMSD of 

1A9V:_ - 1EHX:A pair, resulting in a trade off situation. This trade off is because of the 

fact that by using the same gap penalty for all alignments we cannot optimize all the 

alignments without modifying other parameters. 
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Table 4.11. RMSD values of experiment 7 

 

4.9 Experiment 8: Strip Combining Approach 

 

By observing the results of our experiments, we discovered that gap penalty was very 

important factor in determining the RMSD value of the alignments. Two alignments 

generated with same parameters except gap parameter can align almost exactly same 

regions with very small shifts, but even small shifts can affect RMSD greatly. This property 

of the RMSD measure can be observed in the example of the alignment of pair 1A17:_ - 

1E96:B.  

 

 

 

 

 

 Gap opening = -30, extension = -3 Gap opening = -40, extension = -4 

Protein Pair RMSD (Å) Length RMSD (Å) Length 

12AS:A 1PYS:A 7.698416233 223 8.501337051 217 

19HC:A 1NEW:_ 6.938711643 38 6.643115044 34 

1A0A:A 1AM9:A 4.265600204 46 4.265600204 46 

1A17:_ 1E96:B 16.22870636 146 9.948364258 139 

1A1Z:_ 1NTC:A 12.71069241 61 12.71069241 61 

1A28:A 1LBD:_ 7.208533287 201 6.557795525 211 

1A34:A  1AUY:A 5.166750908 119 5.373473167 120 

1A3A:A  1A6J:A 3.080663919 133 2.722803116 136 

1A53:A  1NSJ:_ 4.042504787 181 4.050766468 182 

1A5R:_1 UBI:_ 4.193257332 75 2.813886166 72 

1A6M:_ 1ASH:_ 2.722320795 137 2.722320795 137 

1A7T:A 1SML:A 6.040650845 203 5.710077763 200 

1A9V:_ 1EHX:A 9.213345528 80 15.00353336 75 

1ABA:_ 1ERV:_ 5.118096352 70 5.101519585 72 

1AC5:_ 1IVY:A 5.39422226 405 5.491436005 391 

1ACP:_ 2AF8:_ 5.149586201 74 5.149586201 74 

1AD3:A 1BPW:A 3.196627378 421 2.954343557 422 
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1A17:_ KRAEELKTQANDYFKAKDYENAIKFYSQAIELNP_SNAIYYGNRSLAYLR 

1E96:B VEAISLWNEGVLAADKKDWKGAL____DAFSAVQDPHSRICFNIGCMYTI 

 

1A17:_ TECYGYALGDATRAIELDKKYIKGYYRRAASNMALGKFRAALRDYETVVK 

1E96:B LKNMTEAEKAFTRSINRDKHLAVAYFQRGMLYYQTEKYDLAIKDLKEALI 

 

1A17:_ VKPHDK________________DA_____________KMKYQECNKIVKQ 

1E96:B QLRGNQLIDYKILGLQFKLFACEVLYNIAFMYAKKEEWKKAEEQLALATS 

 

1A17:_ KAFERAIAGDEHKRSVVDSLDI_ESMTIEDE 

1E96:B MKSEPRHSKIDKAMECVWKQKLYEPVVIPVG 

Gap opening = -30, gap extension = -3, RMSD = 16.23 

 

1A17:_ KRAEELKTQANDYFKAKDYENAIKFYSQAIELNPSNAIYYGNRSLAYLRT 

1E96:B VEAISLWNEGVLAADKKDWKGALDAFS___AVQDPHSRICFNIGCMYTIL 

 

1A17:_ ECYGYALGDATRAIELDKKYIKGYYRRAASNMALGKFRAALRDYETVVKV 

1E96:B KNMTEAEKAFTRSINRDKHLAVAYFQRGMLYYQTEKYDLAIKDLKEALIQ 

 

1A17:_ KPHDK________________DA_____________KMKYQECNKIVKQK 

1E96:B LRGNQLIDYKILGLQFKLFACEVLYNIAFMYAKKEEWKKAEEQLALATSM 

 

1A17:_ AFERAIAGDEHKRSVVDSLDI 

1E96:B KSEPRHSKIDKAMECVWKQKL 

Gap opening = -40, gap extension = -4, RMSD = 9.95 

Figure 4.7. Different alignments of our method 

 

The two alignments are very similar, there is only one residue shift until the first gap 

opening and after a few gap regions the two alignments stay identical to end, except for an 

extra region the first alignment contains. Shift and the extra region at the first alignment’s 

end results in a 5Å difference in RMSD values.  

 

To attack this problem, we tried to exclude the gap concept out of our alignments. As 

it can be observed in the example alignments, alignments are generally composed of long 

alignments of amino acid regions without gaps (we’ll call them strips) and long gap regions. 
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Short aligned amino acid regions and short gap regions do exist, but they are rare compared 

to strips. So we can think of our alignments as a set of strips connected with gap regions. 

However the strips are not independent of each other, the way two strips can be connected 

is affected by the gaps between, thus the gap penalty parameter itself. If the strips making 

up the alignment can be obtained one by one and combined to obtain the correct alignment, 

the gap penalty won’t be a parameter anymore.  

 

To implement the idea explained in the previous paragraph, proteins are aligned using 

the same similarity function, but the gap opening parameters is set to a sufficiently large 

number, e.g. -1000, to prevent generating alignments containing gaps. After the alignments 

matrix M is prepared, not only the 1st best alignment is extracted, but the 50 best 

alignments are extracted. As the gap penalty is very high, we expect these alignments to 

represent strips. The strips will be combined to obtain the correct alignment we want to find. 

However some of the strips may overlap, thus the combination process is not a 

straightforward one.  

 

We want to construct a set of non-overlapping strips to form a long and accurate 

alignment. Adding one strip at a time and checking if the added strip overlaps with existing 

ones is an exhaustive approach and bound to consume a lot of time. To hasten the 

combination process, overlapping strips are collected in buckets, a set of strips in which 

each strip overlaps with at least another strip. After the strips are placed in buckets, sets of 

strips can be generated by picking one strip from each bucket and adding each to a strip set. 

Each set of strips represents a different alignment, generating multiple solutions. This 

makes sense, as fifty strips can be combined in different combinations.  

 

Some of the handpicked results are presented in Table 4.12. We picked some of the 

longest results and some of lowest RMSD alignments. Since this new approach was meant 

to solve pairs with poor results, we worked on 4 specific pairs. 12AS:A - 1PYS:A pair has 

found the correct alignment, but there was no improvement. For 1A28:A – 1LBD:_ pair, 

even the lowest RMSD attained is higher than the earlier results. The same case holds for 

1A9V:_ - 1EHX:A pair, the new results are worse. 1AC5:_ - 1IVY:A pair found correct 
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alignment like earlier results but there is no improvement in terms of RMSD and the length 

of the alignment is shorter.  

 

Protein Pair RMSD (Å) Length 

12AS:A 1PYS:A 7.806663513 216 

1A28:A 1LBD:_ 7.957023144 43 

1A28:A 1LBD:_ 17.57217598 134 

1A9V:_ 1EHX:A 6.869467258 37 

1A9V:_ 1EHX:A 3.313695669 11 

1AC5:_ 1IVY:A 2.97833848 110 

1AC5:_ 1IVY:A 5.939013958 316 

Table 4.12. RMSD values of experiment 8  

 

The strip combining approach’s limitations lie in the fact that for some pairs, the 

strips extracted overlap too much, so too many fall into the same bucket, limiting the search 

space. However if more strips are extracted, runtime will increase too much, limiting the 

feasibility of the algorithm. Furthermore for 12AS:A – 1PYS:A pair, more than a thousand 

solutions are generated, however the result again converged approximately to the limits we 

attained with earlier results.  

 

4.10 Experiment 9: 1-1 Correspondence Constraint. 

 

Seeing that strip combining approach did not improve our results, we again 

concentrated on our previous approach. Gap penalties are again included in our parameter 

set. To understand why our results are unsatisfactory for some proteins, we analyzed the 

alignments generated by our method in detail. We also did comparisons with alignments 

generated by existing methods.  

 

During the analysis, we observed that one helix or sheet from one sequence can be 

aligned with two or possibly more helices or sheets respectively. This situation is not 

desirable, one to one correspondence between helices and sheets of homologous proteins is 

expected because each of these secondary structure elements in a protein is an element of 

the fold the protein is part of.  
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The problem can be observed in  Figure 4.7. A small subset of the alignment of two 

proteins is presented. Let’s denote the first protein as PA and second as PB. The protein 

sequences are in the first two lines and the secondary structure types of each amino in the 

sequence are presented in the following lines. In this short alignment, the loop between two 

helices of PB is aligned with gaps, thus the single helix of PA is aligned with two helices of 

PB.    

 

PA sequence              V    T    D    _    _    _    _    _    S    L 

PB sequence              M    K    A    R    G    V    T    P    R    D 

PA secondary structures  H    H    H    _    _    _    _    _    H    H 

PB secondary structures  H    H    H    L    L    L    L    H    H    H 

Figure 4.8. Alignment of one helix to two helices 

 

We have included a constraint in our algorithm to force one to one correspondence 

among helices and sheets. The basic idea is make the matrix setting process intelligent. 

When scoring a match between two amino acids, the secondary structure types of the 

previous amino acid match are checked. If this match violates one to one correspondence 

property, the match is scored with a large negative integer, nullifying it. However the 

previous match information is not always readily available, because of the presence of gaps 

in the alignment. As exemplified in Figure 4.7. the match before S-R is A-D, however this 

information is not directly accessible because there are gaps between the pairs. We also 

cannot decide the matched pair before the current pair by looking at the alignment because 

the alignment is not fully determined while it’s being calculated. To circumvent this 

difficulty, the memory of recent matches has to be kept.  

 

Three match information memory matrices are introduced to store the secondary 

structure information of amino acid pairs that have been matched. There are three memory 

matrices because affine gap penalty scheme uses three matrices. The memory matrices are 

D,E,F keeping the matched pair information of A,B,C respectively.  
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The conditions are different for D,E and F because D matrix stores the match memory 

of A matrix which is the matrix of amino acid to amino acid matches. E and F matrices 

store the memory of B and C matrices which in turn store the memory of gap to amino acid 

matches.  

 

For D matrix, the rules are as follows: to set D(i,k), the if the new matched pair (ith 

amino acid and kth amino acid) is a match of same types of secondary structures, no 

memory is necessary and the new match is stored in the matrix. If one member of the 

amino acid pair (ith amino acid or kth amino acid) is in a loop, the previous match - whether 

it’s in D(i-1,k-1), E(i-1,k-1) or F(i-1,k-1) - is stored in to D(i,k). The reasoning of this rule 

can be observed in Figure 4.8. The match between R-R is a match between a helix and loop, 

thus the first helix of PB is now out of picture. The last match has to be remembered so that 

the helix of PA is not matched to another helix of PB.  

 

PA sequence              V    T    D    R    S    L 

PB sequence              M    K    A    R    R    D 

PA secondary structures  H    H    H    H    H    H 

PB secondary structures  H    H    H    L    H    H 

Figure 4.9. Example of violation of one to one correspondence 

 

The rule for setting E and F matrices is similar, however in this case memory of a 

previous match must always be kept because there are no pairs stored in these matrices as 

all pairs stored in B and C matrices are amino acid to gap type. While setting E(i,k), the 

information of the previous match - whether it’s from D(i,k-1), E(i,k-1) or F(i,k-1) – is 

stored in E(i,k). If E(i,k) can be set from more than one matrix, then the priority is 

according to the priority scheme in alignment extraction method. This rule is identical for F 

matrix as well. This rule’s reasoning can be observed in Figure 4.7. as well. 

 

The results generated with the new one to one correspondence enforcing scheme are 

presented in Table 4.13. The similarity function uses the latest version of discrete structure 
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similarity function, the gap opening penalty is -20 and extension penalty is -2. Also the 

results obtained by setting the gap opening penalty to -30 and extension penalty set to -3 

are presented as well. Again two sets of results are presented to observe the impact of gap 

penalties on results. However the impact is not very significant on these two particular sets. 

By comparing these results with best results we have achieved so for,  it’s interesting to 

note that 1A17:_ - 1E96.B pair’s RMSD has finally been lowered to a satisfactory scale. 

1A1Z:_ - 1NTC:A pair’s RMSD is lowered in the second set of results. These two pairs’ 

results have been very high from the start. However 1A28:A – 1LBD:_ pair’s RMSD has 

increased because of one to one correspond ace constraint. It can be concluded that forcing 

one to one correspondence eliminates bad alignments but it can eliminate good paths at the 

same time.  

 

Table 4.13. RMSD values of experiment 9 

 

 

 Gap opening = -20, extension = -2 Gap opening = -30, extension = -3 

Protein Pair RMSD (Å) Length RMSD (Å) Length 

12AS:A 1PYS:A 7.781368732 210 6.842104912 216 

19HC:A 1NEW:_ 10.21330643 50 6.905212879 38 

1A0A:A 1AM9:A 4.43990612 40 4.43990612 40 

1A17:_ 1E96:B 4.164266586 114 3.073358297 114 

1A1Z:_ 1NTC:A 12.59808731 55 8.132660866 40 

1A28:A 1LBD:_ 10.58347034 203 10.24848938 207 

1A34:A  1AUY:A 5.899938107 106 4.68641901 120 

1A3A:A  1A6J:A 3.048616171 132 3.094862938 133 

1A53:A  1NSJ:_ 4.346774101 177 4.320028782 179 

1A5R:_1 UBI:_ 4.349606514 73 4.193257332 75 

1A6M:_ 1ASH:_ 2.618900776 120 2.618900776 120 

1A7T:A 1SML:A 4.57208252 196 5.836570263 203 

1A9V:_ 1EHX:A 9.809444427 75 11.85821915 77 

1ABA:_ 1ERV:_ 5.144833565 69 5.064451218 70 

1AC5:_ 1IVY:A 7.325204372 393 6.986800671 393 

1ACP:_ 2AF8:_ 4.774550915 69 5.149586201 74 

1AD3:A 1BPW:A 4.350210667 391 3.580681324 406 
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4.11 Experiment 10:  Optimization 

 

Over the course of recent experiments, the algorithm has been introduced new 

parameters (secondary structure similarity) and some parameters’ have gotten more 

complex (gap penalty). Up until this point the general guidelines have been followed in 

determining parameters, keeping them in similar ranges and changes that have proved their 

usefulness have been adopted. In our experiments we tried to variate the parameters as 

much we can manually and for each experiment the best results have been presented out of 

numerous results sets. 

However at this point, manual control and experimentation with parameters is not 

practical. Besides optimum results may be evading us because we may be overlooking 

some combinations of parameters. Therefore at this phase, optimization process can be 

initiated. The optimization will be driven by a genetic algorithm because genetic algorithms 

are ideal in solving problems by combining solutions’ parts to achieve optimum solutions. 

In our case, the solution sought is a set of parameters, ideal for combination. 

 

The results of optimization are presented in Table 4.14, with the parameter set that 

yielded the results.  
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Table 4.14. RMSD values of experiment 10 

 

4.12 Experiment 11: Optimization of Astral40 Dataset 

 

In this experiment, we try to optimize our algorithm based on the results generated by 

using the Astral40 dataset. On this dataset, we’ll use two variations of our algorithm, as 

explained in methods section. Firstly the same optimization approach of the previous 

experiment is used; the only difference is the dataset. Eleven proteins were picked from 

Astral40, belonging to three different families, and each protein is aligned with all members 

of the family it belongs to.  

 

 go = -39, ge = -4 , cstr = 0.4, 

 cseq = 0.6, css = 1.8 

go = -18, ge = -1 , cstr = 0.35, 

 cseq 0.65=, css = 1.2 

& 1-1 correspondence 

Protein Pair RMSD (Å) Length RMSD (Å) Length 

12AS:A 1PYS:A 
6.25169 212 6.25169 212 

19HC:A 1NEW:_ 
1.31773 14 1.31773 14 

1A0A:A 1AM9:A 
4.31527 47 4.31527 47 

1A17:_ 1E96:B 
9.94836 139 9.94836 139 

1A1Z:_ 1NTC:A 
12.7107 61 12.7107 61 

1A28:A 1LBD:_ 
6.5578 211 6.5578 211 

1A34:A  1AUY:A 
4.95136 124 4.95136 124 

1A3A:A  1A6J:A 
2.7228 136 2.7228 136 

1A53:A  1NSJ:_ 
4.0291 178 4.0291 178 

1A5R:_1 UBI:_ 
2.81389 72 2.81389 72 

1A6M:_ 1ASH:_ 
2.16448 138 2.16448 138 

1A7T:A 1SML:A 
5.00551 199 5.00551 199 

1A9V:_ 1EHX:A 
12.6515 61 12.6515 61 

1ABA:_ 1ERV:_ 
5.06445 70 5.06445 70 

1AC5:_ 1IVY:A 
5.598817 390 7.248859 382 

1ACP:_ 2AF8:_ 
5.14959 74 5.14959 74 

1AD3:A 1BPW:A 
2.93705 422 2.93705 422 
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In this experiment, we also tested our method’s capability of domain recognition. The 

sequences of the protein of this dataset were submitted to ProDom database, which has a 

utility that discovers domain boundaries of a protein by using a classification scheme 

dependent on multiple sequence alignments. The idea is to see if the regions of the protein 

we align are the regions that constitute the domains or not. However the fitness function 

remains same to see if the domains can be discovered by optimizing for good structural 

alignments. 

 

Table 4.15. RMSD values of experiment 11 

 

The results are presented in Table 4.15. One to one correspondence constraint is not 

enforced; the structure similarity function is discrete. Our results are comparable to CE, but 

for some pairs we fail to find as good alignments as CE does. However all of the 

alignments have acceptable RMSD values.  

 go = -46, ge = -9 , 

 cstr = 0.35, 

 cseq = 0.65, css = 0.4 

 

 

 

CE 

Protein Pair RMSD (Å) Length RMSD (Å) Length 

1NGK:A 1S69:A 
3.51889 116 2.2 109 

1NGK:A 1IDR:A 
2.22581 115 2.2 116 

1NGK:A 1DLW:A 
2.29497 115 2.3 116 

1S69:A  - 1IDR:A 
1.39818 107 1.2 115 

1S69:A  - 1DLW:A 
1.08984 107 1.1 114 

1IDR:A  1DLW:A 
0.990477 114 1.0 115 

1CSH:_ 1K3P:A 
4.55397 315 2.8 344 

1CSH:_  1IOM:A 
4.40758 353 2.8 349 

1K3P:A  1IOM:A 
3.64318 350 2.8 361 

1MY6:A  1COJ:A 
5.38116 179 2.1 175 

1MY6:A  1B06:A 
5.3473 193 1.6 176 

1MY6:A  1IX9:A 
1.76591 194 1.5 194 

1COJ:A  1B06:A 
2.96567 187 1.7 190 

1COJ:A  1IX9:A 
5.74693 180 1.6 175 

1B06:A  1IX9:A 
5.6686 194 1.4 178 
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With these results, we also checked our ability to discover domains these proteins 

may share. ProDom was used to discover the domain boundaries of these proteins and they 

are presented in Table 4.16. The last four proteins contain two domains, and boundaries of 

each domain is presented, separated ‘&’ symbol. In Table 4.17 we present the boundaries 

of alignments for each of the two proteins of each alignment. We can observe that 

boundaries of our alignments correlate with the boundaries discovered by ProDom, in some 

cases close to %100 correlation. However our method and ProDom do not agree on the 

same boundaries for 1CSH:_ and 1K3P:A. To decide if this was an error on our part or 

ProDom’s part, we decided to check with another domain detection method, Pfam. Pfam is 

similar to Prodom, both of the method use sequence alignment method to recognize 

domains, however Pfam also makes use of profile hidden Markov models. The boundaries 

discovered by Pfam are also presented in Table 4.16. For 1CSH:_ and 1K3P:A, Pfam 

reports domain boundaries as 42-420 and 45-408 and these results support our findings. 

Thus we can see conclude that the error for the 1CSH:_ and 1K3P:A pair comes from 

ProDom.  

 

Table 4.16. Boundaries from ProDom and Pfam 

 

 

 

Protein Domain Boundaries of ProDom Domain Boundaries of Pfam 

1NGK:A 
2-122 1-121 

1S69:A 
2-120 1-121 

1IDR:A 
10-128 13-127 

1DLW:A 
1-115 1-116 

1CSH:_ 
7-428 42-420 

1K3P:A 
8-420 45-408 

1IOM:A 
3-370 4-356 

1MY6:A 
1-84 & 94-199 1-87 & 91-196 

1COJ:A 
2-87 & 95-212 1-88 & 90-196 

1B06:A 
4-90 & 105-210 6-90 & 96-202 

1IX9:A 
1-86 & 96-205 1-89 & 91-201 
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Table 4.17. Boundaries discovered by our Method 

 

4.13 Experiment 12: Optimization of Astral40 Dataset with Algorithmic Variant 

 

In this experiment, we used a variant of our algorithm. This approach is similar to the 

strip combining approach presented in experiment 8, however the way strips are prepared 

and combined is different. Similar to the experiment 8, gaps are not permitted. Moreover, 

mismatches are not allowed, if the similarity of a match is negative, that match is 

eliminated while the matrix is being prepared. By using these two conditions, we ensure 

that only very similar regions are aligned. 

 

Since gaps are not allowed, the alignments will be again “strips”. The optimum 

solution can be discovered by combining non-overlapping strips. In experiment 8, N-best 

alignments are first obtained from the matrix, then from this set, the alignments are 

combined with greedy algorithm. This method is slow and wastes computation time 

because some of the alignments (more than %75 percent) in the set overlap with others and 

Aligned Protein Pair Boundaries of First Protein Boundaries of Second Protein 

1NGK:A 1S69:A 
3-121 2-117 

1NGK:A 1IDR:A 
4-125 14-128 

1NGK:A 1DLW:A 
4-125 1-115 

1S69:A  - 1IDR:A 
3-113 14-120 

1S69:A  - 1DLW:A 
3-113 1-107 

1IDR:A  1DLW:A 
14-127 1-114 

1CSH:_ 1K3P:A 
93-422 86-408 

1CSH:_  1IOM:A 
44-425 6-361 

1K3P:A  1IOM:A 
54-414 15-364 

1MY6:A  1COJ:A 
18-197 18-198 

1MY6:A  1B06:A 
1-197 8-205 

1MY6:A  1IX9:A 
1-198 1-203 

1COJ:A  1B06:A 
12-201 18-208 

1COJ:A  1IX9:A 
18-199 17-203 

1B06:A  1IX9:A 
8-207 1-204 



 79 

are discarded. A new and faster method of combining is necessary because during the 

optimization, a few thousands of alignments are done, making speed is essential. 

 

To solve this problem, we propose an iterative divide and conquer extraction method. 

The new method of combination is also a greedy algorithm, however the new method 

doesn’t extract unnecessary alignments. Initially, the highest scoring alignment is extracted 

from the matrix M, after that the matrix M is split into two submatrices, one from the zero 

to the beginning of extracted alignment, the other submatrix from the end of the extracted 

alignment to the end of the matrix. This division is presented in Figure 8. 

By making the division, we eliminate extraction of alignments that overlap with the 

pre-extracted alignments, avoiding unnecessary computations. The same procedure is again 

initiated in the two submatrices: best alignment of the submatrix is found and submatrix is 

divided into two. If a submatrix is smaller than 5x5 or no alignment can be found in a 

submatrix, that submatrix is not divided and no search is done in that matrix.  

 

The final solution is the set of the alignments extracted during the divide and conquer 

method. However before the final solution is prepared, alignments of length lower than five 

amino acids are discarded to keep the solution pure. Similarities of very short regions may 

occur at random and possibly can be insignificant. All of the extracted alignments may be 

combined since divide and conquer method ensures that none of them overlap. 

 

The results generated by using this method are presented in Table 4.17. The discrete 

structure function is used. This set is the third fittest results, manually picked rather than the 

first fittest results. Our algorithm is sensitive to small changes in parameters, and the fittest 

set generates some alignments with RMSD values higher than 5Å. The parameters are also 

presented in Table 4.17. The combination method picks only very similar regions, thus our 

alignments are shorter but have lower RMSD values. For some cases, we obtain better 

superpositions than CE, with only minimal and insignificant changes in length. When the 

length of the protein increases, it becomes harder to keep vision of global features, the 

possibility of finding wrong strips increases, thus RMSD values are high. 
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Table 4.18. RMSD values of experiment 12 

  

We also present the boundaries discovered by the combination approach in Table 4.18. 

The boundaries discovered by this method are similar to boundaries found in previous 

experiment. The boundaries discovered correlate with Pfam and ProDom except for 

boundaries of 1CSH:A - 1IOM:A pair. As stated before, combination approach has 

difficulties when aligning longer proteins because the number of strips increases. The main 

contribution of combination approach is to lower the RMSD values at the expense of length 

of the alignment, leading to better superpositions, thus more confident alignments. 

 

 

 

 

 

 

 cstr = 0.2, 

 cseq = 0.8, css = 1.0 

 

 

CE 

Protein Pair RMSD (Å) Length RMSD (Å) Length 

1NGK:A 1S69:A 
1.8359 93 2.2 109 

1NGK:A 1IDR:A 
1.95223 90 2.2 116 

1NGK:A 1DLW:A 
2.54537 84 2.3 116 

1S69:A  - 1IDR:A 
0.795931 101 1.2 115 

1S69:A  - 1DLW:A 
1.20919 106 1.1 114 

1IDR:A  1DLW:A 
0.973617 113 1.0 115 

1CSH:_ 1K3P:A 
3.145 233 2.8 344 

1CSH:_  1IOM:A 
5.74582 259 2.8 349 

1K3P:A  1IOM:A 
2.37883 284 2.8 361 

1MY6:A  1COJ:A 
4.77745 148 2.1 175 

1MY6:A  1B06:A 
4.03236 144 1.6 176 

1MY6:A  1IX9:A 
1.01064 173 1.5 194 

1COJ:A  1B06:A 
2.4365 159 1.7 190 

1COJ:A  1IX9:A 
1.67263 134 1.6 175 

1B06:A  1IX9:A 
4.21922 143 1.4 178 



 81 

Table 4.19. Boundaries Defined by Combination Method 

 

4.14 Experiment 13: Domain Recognition between Distant Proteins 

 

In this experiment, the third dataset is used. This database contains pairs of proteins 

containing ATP-binding, DNA binding and calcium binding domains. Each pair was 

randomly chosen from its corresponding fold, thus the degree of homology between the 

proteins are not exact. In this experiment we tested our methods capability of discovering 

domains among proteins containing the same domain but having different functions. 

 

We ran an optimization procedure for this set of proteins, using combination 

approach. The discrete structure function was used. The fitness was again targeted at the 

combination of RMSD and length. However since combination approach picked very 

similar regions between the proteins, our algorithm converged to parameter sets that 

generated very short solutions with very small RMSD values. Out of the result set, we 

picked a parameter set that yielded longer solutions. The results are presented in Table 4.19 

 

Aligned Protein Pair Boundaries of First Protein Boundaries of Second Protein 

1NGK:A 1S69:A 
1-116 1-113 

1NGK:A 1IDR:A 
2-115 13-119 

1NGK:A 1DLW:A 
2-121 1-109 

1S69:A  - 1IDR:A 
2-112 13-119 

1S69:A  - 1DLW:A 
2-123 1-115 

1IDR:A  1DLW:A 
13-127 1-115 

1CSH:_ 1K3P:A 
61-420 65-408 

1CSH:_  1IOM:A 
90-413 44-348 

1K3P:A  1IOM:A 
53-408 12-356 

1MY6:A  1COJ:A 
8-197 3-205 

1MY6:A  1B06:A 
1-184 6-191 

1MY6:A  1IX9:A 
1-198 1-203 

1COJ:A  1B06:A 
3-197 3-204 

1COJ:A  1IX9:A 
17-200 17-205 

1B06:A  1IX9:A 
6-197 1-197 
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Table 4.20 Boundaries by our method results 

 

 In Table 4.20. the domain predictions of these proteins from Pfam are presented. 

Most of the boundaries of our alignments fall in the range specified by Pfam, however for 

some pairs we may align regions outside the boundaries. For example, 1K04:A of the first 

pair is aligned more than the Pfam boundary. The same case holds for 1ZBD:B whereas the 

alignment of 1WEM:A is longer. However we roughly align the similar regions. The error 

may occur because these proteins are distant relatives (they come from different super 

families of SCOP). 

 

Protein Domain Start Domain End 
1K04:A 24 162 
1JOY:A 11 66 
1ZBD:B 2 134 
1WEM:A 18 70 
1QBJ:A 7 73 
2HDC:A 2 97 
1UWO:A 3 80 
5CPV:_ 43 109 
1R0O:A 9 80 
1RMD:_ 26 64 

Table 4.21 Boundaries by Pfam 

Aligned Protein Pair Boundaries of First Protein Boundaries of Second Protein 

1K04:A - 1JOY:A 
9-132 2-60 

1ZBD:B - 1WEM:A 
14-118 46-72 

1QBJ:A - 2HDC:A 
2-64 7-78 

1UWO:A - 5CPV:_ 
26-77 5-106 

1R0O:A -1RMD:_ 
2-64 25-55 
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5  CONCLUSION 

In this section, a summary of the development process of our algorithm and the 

results is presented. Furthermore, the list of the software applications that were developed 

to implement our algorithm is provided. Lastly, the future direction of our research and 

other potential uses of our algorithm are explained. 

 

5.1 Summary 

 

New and fast algorithms to process and derive information from protein structure data 

are needed with the increasing number of protein structures deposited in the PDB. Protein 

structure information is especially useful to compare remote homologs because sequence 

alignment methods fail to discover similarities among these kinds of proteins. We designed 

an alignment algorithm that uses both sequence and structure data to make it capable of 

finding accurate alignments even for proteins of minimal sequence identity. 

 

We designed our algorithm based on a well established alignment approach, dynamic 

programming. Dynamic programming approach ensures a quick search of the global 

optimum. The similarity function that drives the alignment algorithm combines primary, 

secondary and tertiary structure similarities. Affine gap penalty scheme was preferred to 

achieve more accurate alignments.  

 

The measure we used to evaluate the accuracy of our alignments is RMSD measure. 

We used different combinations of the three similarity parameters and tried different 

functions to evaluate the tertiary structure similarity, while we used similarity scoring 

matrices for primary and secondary structure similarities. The different combinations and 
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functions were tried to achieve longest alignments with lowest RMSD scores. In building 

our tertiary structure similarity score, we observed the alignments built by other structure 

alignment methods and tried to set the scoring criteria of our function accordingly.  

 

Variations of the general dynamic programming approach were also tried. We tried 

building the optimum alignment by combining short gapless alignments and short highly 

similar alignments. We also introduced different constraints to dynamic programming 

approach, forcing one to one correspondence between secondary structure elements. We 

also tried to optimize all the different parameters we introduced by using a genetic 

algorithm driven optimization process.  

 

Our algorithm discovers regions that share high sequence and structure similarity. We 

expected these regions to belong the domains that proteins may have when we are aligning 

two proteins that both have the same domain. We explored this possibility as well, and 

checked if the regions we align agree with other domain boundary recognition methods.  

 

5.2 Discussion 

 

In this section, we discuss the results of our algorithm in terms of speed, accuracy and 

novelty. We’ll compare our method to existing ones and explain the advantages and 

shortcomings. 

 

In terms of speed, our method is comparable to methods designed for speed, like 

FAST. FAST reports that a typical alignment takes approximately 1 second with a PIII 

1.2GHz, whereas more computational intensive methods like CE take a few seconds. Our 

algorithm also takes less than a second when performing a typical alignment with a PIII 

1.7GHz, even though the code hasn’t been optimized for speed. By using premade contact 

maps and network models, our method can be used for fast database searches. 

 

The factor that makes our algorithm faster than most methods is the model we use. By 

representing the large set of three dimensional coordinates with a graph, and using two 
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structural comparison parameters obtained from the graph with quick and straightforward 

calculations, the structural similarity can assessed very quickly compared to other methods 

that make complex distance calculations during their alignment process. The similarity 

matrices we use for primary and secondary structures also help to increase the speed of our 

algorithm, because using them reduces the process of assessing the primary and secondary 

structure similarity to a matrix look-up operation. 

 

The accuracy of our alignments is comparable to other methods for most cases. We 

used CE for structural alignment comparison process since it’s a widely accepted and still 

one of the best alignment methods available. The RMSD and the length of an alignment are 

two parameters that can assess the goodness of a structural alignment; RMSD should be as 

small as possible while maximum number of amino acids should be aligned. Generally we 

perform comparably, however for most cases CE is better. This can be attributed to the 

trade off between speed and accuracy, by modeling the three dimensional structure, some 

details of the model may be overlooked while reducing computational complexity. 

Moreover, our method doesn’t calculate inter atomic distances of aligned amino acids 

during the alignment, and doesn’t do post processing on the alignment to further reduce 

RMSD unlike CE. By sacrificing speed and increasing computational complexity, such 

processes can also be introduced to our method, reducing the RMSD values of our results. 

 

Using two different approaches to obtain the final alignment can also cause another 

tradeoff situation for our method. The first and main approach is more tolerant of 

mismatches and uses gaps to maximize the length of the alignment, causing some bad 

matches to occur. The second approach, combination approach doesn’t allow mismatches 

or gaps, thus the alignments found by this approach contain no or little bad matches. Given 

these, the alignments generated by the second approach are more accurate, with lower 

RMSD values compared to the alignments of the first method, but they are shorter. The 

second approach can be used for aligning highly similar proteins to pinpoint highly similar 

regions, whereas the first approach has a more general use and can be applied for proteins 

with variable degrees of similarity.  
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It was observed that our method failed to generate alignments with acceptable RMSD 

values for some pairs for protein pairs. To discover the problem, we checked the 

alignments of these pairs generated by CE and calculated the similarity scores of matched 

amino acids using our similarity scoring function. It was observed that our similarity 

scoring function cannot assess the similarity accurately for these pairs. We noted that the 

structure of pairs we fail to align accurately were determined by using NMR. NMR method 

is less accurate compared to X-ray crystallography and since we are using just a single 

atom (Cβ or Cα) and a cutoff distance to evaluate contacts, the accuracy of PBD files is 

critical. Even an error of lower than 1Å can result in loss of some contacts, resulting in a 

wrong contact map. Thus we suspect that the quality of the PDB files may be affecting our 

results. 

 

The accuracy of the domain discovery approach is satisfactory. The regions aligned 

by our algorithm correlate with the regions predicted as domains by ProDom and Pfam. In 

some cases, results of ProDom and our method differ, but Pfam correlates with our results. 

Unlike Prodom, Pfam also uses structural information to discover domains, thus we can say 

that our method performs better than Prodom and is on par with Pfam.  

 

The novelty of our approach is the use of the network (graph) representation of 

protein in an alignment algorithm. The network model has been applied and studied before 

by Atilgan et.al. However we have used this model to capture the structural properties of 

proteins and use this model for comparison purposes, allowing us to align similar regions of 

two proteins. Since the network model is based on graph theory, we are actually using 

graphs in an alignment method and modeling the alignment as a graph matching problem.  

 

The network model contains the primary, secondary and tertiary structural properties 

of the protein. Each node, representing one amino acid, has different attributes: the type of 

the amino acid representing primary information, the type of the secondary structure 

element representing secondary structure and the cliquishness and connectivity of that node, 

representing the tertiary structure. By using these three parameters together, we have 

achieved better results than using them separately, and other different secondary structure 
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alignment methods. Using each parameter singularly for aligning the proteins of the first 

dataset yields a best of 6.0Å average RMSD by using secondary structure. Primary 

structure information also yields 6.0Å average but find shorter alignments whereas tertiary 

structure yields longer alignments but an average RMSD of 7.0 Å. Alignments obtained by 

using secondary and primary structure information have an approximate average of 5.0Å 

and the average length is almost half of alignments discovered by other alignment methods 

like CE. Our method, which uses all three parameters, achieves 4.2 Å RMSD average while 

the average alignment length is very slightly larger than average attained by CE.  

 

The constraint enforcement procedure we introduced into our dynamic alignment 

algorithm is also another novel addition to alignment routine. Methods aligning secondary 

structures generally force one to one correspondence between secondary structures by post 

processing the alignment. We have integrated additional matrices to keep track of the 

matches being made and eliminated matches that violated one to one correspondence. 

  

 

5.3 Applications Developed 

 

In this section, the software applications developed during the research are presented. 

 

PDB Parser: This application is used to parse PDB files and store information inside 

the files. PBD files contain lots of information with a specific format, thus the parser can be 

used as a general purpose tool to extract and display desired content. The parser processes 

primary, secondary and tertiary structure information and stores them. 

 

Protein Class: A software package was prepared to implement the amino acid 

network model. The package is capable of processing the data obtained by the PDB parser 

and prepare contact maps. After contact map is prepared, the model can also be prepared 

and the connectivity and cliquishness parameters can be obtained.  
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Alignment Tools: An extensive alignment algorithm was coded, capable of different 

kinds of alignments. The purpose of the alignment tool is to implement our methods, 

however sequence alignment and secondary structure alignments can be done separately as 

well. The algorithm can also use affine gaps and do global and local alignments. We have 

also integrated different methods of extracting alignments, as explained in the results 

section. The one to one correspondence constraint is also implemented in this package.  

 

Genetic Optimizer: A general purpose alignment parameter optimizer has been 

prepared to optimize our results. It can also be used to optimize other alignments, if a 

proper fitness function is defined.  

 

RMSD Calculation Scripts: A group of scripts to automate the RMSD calculation of 

an alignment were prepared using Tcl-Tk language. The scripts make use of the VMD 

software to perform the superposition and RMSD calculation.  

 

5.4 Future Directions 

 

The results of our algorithm have shown promise in the two purposes it was designed 

for. Structural alignment results have obtained a good balance between speed and accuracy, 

we can discover acceptably accurate alignments which are comparable to existing methods 

and our algorithm performs faster. The accuracy can be further improved by using more 

than one contact map, or making the contact map define contacts continuously, rather than 

a binary true/false. 

 

The alignment algorithm also scores every alignment it finds, thus can calculate the 

distance between each protein. The higher the alignment score is, the closer two proteins 

are. The scores of the alignments can be used for fold classification purposes, we can 

predict the members of same fold (family) by comparing the scores of alignment.  

 

We have tried fold classification on the dataset of Capriotti et.al, by aligning each 

protein with all others and grouped highest scoring protein pairs together as homologs after 
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a score normalization process. The results are promising with more than %80 percent 

accuracy. Tests on larger datasets can be run to explore the full capability of this possible 

use of our algorithm.  

 

Our alignment combination approach has some problems when working with long 

proteins (around 400 amino acids). The difficulty arises from the fact that there are too 

many local similarities between two such long proteins, especially if its motifs are 

repetitive, thus we may lose sight of global order when working with local similarities. To 

address this problem, the address this problem, both of the methods we devised can be used 

together. By using our first alignment method, by allowing gaps mismatches, we can 

extract one alignment which captures the global picture. Then based on this first alignment, 

we can extract short strips of high similarity, without gaps or mismatches, and combine 

them according to the first alignment. This method shouldn’t increase run times 

dramatically, and can achieve more confident results than each of the separate methods. 



 90 

 

REFERENCES 

[1]. Branden, C. and Tooze, J. (1991) Introduction to Protein Structure. New York: Garland 
Publishing, 62-63. 
 
[2]. Nelson, D.L., Cox, M.M. (2005) Lehninger Principles of Biochemistry, Fourth Edition.  
New York: W. H. Freeman & Co, 43-44.  
 
[3]. Gromiha, M.M., Saraboji, K., Ahmad, S., Ponnuswamy, M.N. and Suwa, M. (2004) 
Role of non-covalent interactions for determining the folding rate of two-state proteins. 
Biophys. Chem. 107, 263-72. 
 
[4]. Abkevich, V.I. and Shakhnovich, E.I. (2000) What can disulfide bonds tell us about 
protein energetics, function and folding: Simulations and bioinformatics analysis. J. Mol. 
Biol. 300, 975-985. 
 
[5]. Kabsch, W., Sander, C. (1983) Dictionary of protein secondary structure: Pattern 
recognition of hydrogen-bonded and geometrical features. Biopolymers. 22, 2577-2637.  
 
[6]. Ponting, C., Russell, R.R. (2002) The Natural History of Protein Domains. Annual 
Review of Biophysics and Biomolecular Structure. 31, 45-71.  
 
[7]. Holm, L., Sander, C. (1998) Dictionary of recurrent domains in protein structures. 
Proteins: Structure, Function, and Genetics. 33, 88-96.  
 
[8]. Kendrew, J.C., Bodo, G. Dintzis, H.M., Parrish, R.G., Wykcooff, H., Phillips, D.C. 
(1958) A three-dimensional model of the myoglobin molecule obtained by X-rat analysis. 
Nature.  
 
[9]. Martin, G.,E; Zekter, A.,S. (1988) ‘’Two-Dimensional NMR Methods for Establishing 
Molecular Connectivity’’; VCH Publishers, Inc: New York. 59 
 
[10]. Drenth J. (1999) Principles of Protein X-Ray Crystallography. Springer-Verlag Inc. 
New York.  
 
[11]. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids. John Wiley & Sons, New 
York. 166.  
 



 91 

[12]. Moult, J., Fidelis, K., Zemla, A., Hubbard, T. (2003) Critical assessment of methods 
of protein structure prediction (CASP)-round V. Proteins: Structure, Function, and Genetics. 
53, 334-339. 
 
[13]. http://www.wwpdb.org/documentation/format2.3-0108-us.pdf (retrieved on Jan. 28, 
07)  
 
[14]. Bernstein, F.C., Kowtzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D. Rodgers, J.R., 
Shimanouchi, T., Tasumi, M. (1977) The Protein Data Bank: A computer-based archibal 
file for macromolecular structures. Eur. J. Biochem. 80, 319-324. 
  
 [15] Altschul S.F., Gish W., Miller W. Myers E.W., Lipman D.J (1990) Basic Local 
Alignment Search Tool. J. Mol . Bio. 215, 403-410. 
 
 [16] Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: Improving the 
Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, 
Positions-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res, 22, 4673-
4680. 
 
[17] Schwarz R., Dayhoff M. (1979) Matrices for Detecting Distant Relationships. Atlas of 
Protein Sequences, 5. 
  
 [18] Henikoff S., Henikoff J.G. (1992) Amino Acid Substitution Matrices from Protein 
Blocks.  PNAS, 89, 10915-10919. 
 
 [19] Holm L., Sander C. (1996) The FSSP Database: Fold Classification Based on 
Structure-Structure Alignment of Proteins. Nucleic Acids Research, 24, 206-209. 
 
 [20] Smith T.F., M.S. Waterman. (1981) Identification of Common Molecular 
Subsequences. J. Mol. Biol. 147, 195-197. 
 
 [21] Needleman S., Wunsch C. (1970) A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J Mol Biol. 48(3), 443-53. 
 
 [22] Lipman D.J., Pearson W.R. (1985) Rapid and Sensitive Protein Similarity Searches. 
Science, 227, 1435-1441 
 
 [23] Chothia C., Lesk A.M. (1986) The Relation Between the Divergence of 
Sequence and Structure in Proteins. EMBO J., 5, 823–826. 
 
 [24] Taylor W.R. (1999) Protein Structure Comparison Using Iterated Double Dynamic 
Programming. Protein Sci., 8, 654-665. 
 
 [25] Kabsch W. (1978) A Discussion of the Solution for the Best Rotation to Relate Two 
Sets of Vectors. Acta Crystallogr. A, 34, 827–828. 
 
 [26]Eidhammer I., Jonassen I., Taylor W.R. (2000) Structure Comparison and 



 92 

Structure Patterns. J Comp. Bio., 7, 685–716. 
  
 [27] Zhu J., Weng Z. (2005) FAST: A Novel Protein Structure Alignment Algorithm. 
Proteins: Structure, Function and Bioinformatics, 58, 618-627. 
 
 [28] Jewett A.I., Huang C.C., Ferrin T.E. (2003) MinRMS: An Efficent Algorithm for 
Determining Protein Structure Similarity Using  Root-Mean-Squared-Distance. 
Bioinformatics, 19, 625-634. 
 
 [29] Shindyalov I. N., Bourne P.E. (1998) Protein Structure Alignment by Incremental 
Combinatorial Extension (CE) of the Optimal Path. Protein Engineering, 11, 739-747. 
 
 [30] Holm L., Sander C. (1993) Protein Structure Comparison by Alignment of Distance 
Matrices. J Mol Bio, 233, 123-138. 
 
 [31] Murzin A.G., Brenner S.E., Hubbard T., ChothiaC. (1995) 
SCOP:A Structural Classification of Proteins Database for the Investigation 
of Sequences and Structures. J. Mol. Biol., 247, 536–540. 
 
 [32] Orengo C.A., Michie A.D., Jones S., Jones D.T., Swindells M.B. 
Thornton J.M. (1997) CATH—A Hierarchic Classification of Protein 
Domain Structures. Structure, 5, 1093–1108. 
 
 [33] Moult J., Fidelis K., Zemla A., Hubbard T. (2003) Critical Assessment 
of Methods of Protein Structure Prediction (CASP)-round V. Proteins, 
53, 334–339. 
 
 [34] Skolnick J., Fetrow J.S., Kolinski A. (2000) Structural Genomics and 
Its Importance For Gene Function Analysis. Nat. Biotechnol., 18, 283–287. 
 
 [35] Baker D., Sali A. (2001) Protein Structure Prediction and Structural 
Genomics. Science, 294, 93–96. 
 
 [36] Corpet F., Gouzy J, Kahn D. (1998) The ProDom Database of Protein Domain 
Families. Nucleic Acids Research, 26, 323-326. 
 
 [37] Bairoch A. Apweiler R. (1997) The SWISS-PROT Protein Sequence Database: Its 
Relevance to Human Molecular Medical Research. J. Mol. Med., 75, 312-316. 
 
 [38] Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S.R., Griffiths-Jones 
S., Hoew K.L., Marshall M., Sonnhammer E.L.L. (2002) The Pfam Protein Families 
Database. Nucleic Acids Research, 30, 276-280. 
 
 [39] Atilgan A.R., Akan P., Baysal C. (2004) Small World Communication of Residues 
and Significance for Protein Dynamics. Biophysical Journal, 86, 85-91. 
 



 93 

 [40] Vendruscolo M., Kussell E., Domany E. (1997) Recovery of Protein Structure from 
Contact Map. Folding&Design, 2(5), 295-306. 
 
 [41] Wallqvist A., Fukunishi Y., Murphy L.R., Fadel A. Levy R.M. (2000) Iterative 
Sequence/Secondary Structure Search for Protein Homologs: Comparison with Amino 
Acid Sequence Alignments and Application to Fold Recognition in Genome Databases. 
Bioinformatics, 16, 988-1002. 
 
 [42] Pascarella S. Milpetz F. Argos P.A. (1996) Databank (3D_ali) Collecting Related 
Proteins Sequences and Structures. Protein Engineering, 9, 249-251 
 
 [43] Marchler-Bauer A., Anderson J.B., P.F. Cherukuri P.F., DeWeese-Scott C., 
Geer L.Y., Gwadz M., He S., Hurwitz D.I. , Jackson J.D.,  Ke Z., Lanczycki C.J., Liebert 
C.A., Liu C., Lu F., Marchler G.H., Mullokandov M., Shoemaker B.A., Simonyan V., Song 
J.S., Thiessen P.A., Yamashita R.A., Yin J.J., Zhang D., Bryant S.H.(2005) CDD: a 
Conserved Domain Database for Protein Classification. Nucleic Acids Research, 33, 192-
196. 
 
 [44] Altschul S.F. (1989) Gap Costs for Multiple Sequence Alignment. J Theor Biol, 138, 
297-309. 
 
 [45] Capriotti E., Fariselli P., Rossi I., Casadio R. (2003) A Shannon Entropy Based Filter 
Detects High-Quality Profile-Profile Alignments in Searches for Remote Homologs. 
Proteins: Structure, Function and Bioinformatics, 54, 351-360. 
 
 [46] Brenner S.E., Koehl P., Levitt M. (2000) The ASTRAL Compendium for Protein 
Structure and Sequence Analysis. Nucleic Acids Research, 28, 254-256. 
 
 [47] http://astral.berkeley.edu/ 
 


