
RFID-Based Manufacturing
Monitoring and Analysis System

Sergei Drannikov

Submitted to the Graduate School of Engineering and

Natural Sciences in partial fulfillment of the requirements for

the degree of Master of Science

Sabanci University
Autumn 2007

APPROVED BY

Assist. Prof. Dr. Hüsnü Yenigün

(Thesis Supervisor)

Assoc. Prof. Dr. Bülent Çatay

(Thesis Co-Supervisor)

Assoc. Prof. Dr. Erhan Budak

Assist. Prof. Dr. Tonguç Ünlüyurt

Assist. Prof. Dr. Ayhan Bozkurt

Dedicated to
My wife Irina, my daughter Alina and the beautiful Siberian city of Krasnoyarsk

RFID-Based Manufacturing Monitoring and

Analysis System

by Sergei Drannikov

Abstract

Radio Frequency Identification (RFID) has become an important driver in the pro-

duction and logistics activities of today’s information-based industries and economies.

With the innovative developments in information and communication technologies,

companies focus more on how these changes can be implemented and promoted in

order to benefit from these technologies and to improve their value-added processes.

This thesis presents an RFID-based manufacturing monitoring and analysis system

to bridge the gap between the physical flow of materials on the shop floor and manu-

facturing information and execution systems by allowing to quickly model, develop,

deploy, monitor, and analyze a discrete manufacturing environment. The system

was designed to be as generic as possible so that it can be applied to any existing

manufacturing process without or with very little modification. In this way our

system may be considered what is called an RFID-enabling technology.

RFT Tabanlı İmalat İzleme ve Analiz Sistemi

Sergei Drannikov

Özet

Radyo Frekans Tanıma teknolojisi, bugünkü bilgi tabanlı endüstri ve ekonomiler-

deki üretim ve lojistik faaliyetlerinin önemli bir faktörü olmuştu. Bilgi ve iletişim

teknolojilerindeki yenilikçi gelişmelerle birlikte şirketler daha çok, bu teknolojilerden

yararlanmak ve katma değer süreçlerini ilerletmek için bu değişikliklerin nasıl uygu-

lanacağına ve terfi edileceğne odaklanıyor. Bu tez, ayrık üretim çevresinin çabuk

modellenmesini, geliştirilmesini, uygulanmasını, izlenmesini ve analiz edilmesini sağ-

layarak, üretim bölümündeki malzemelerin fiziksel akışıyla üretim bilgi ve işletme

sistemleri arasındaki boşluğu kapatacak RFT tabanlı üretim izleme ve analiz sis-

temini sunuyor. Sistem, hiç değişiklik yapılmadan veya az bir değişiklikle varolan

üretim süreçlerine uygulanabilsin diye mümkün olduğu kadar jenerik tasarlanmıştır.

Bu bakımdan sistemimiz, RFT etkinleştiren teknoloji olarak da nitelendirilebilir.

Acknowledgements

My sincerest thanks go to Assist. Prof. Dr. Hüsnü Yenigün, Assoc. Prof. Dr.

Bülent Çatay, Assoc. Prof. Dr. İbrahim Tekin and Assoc. Prof. Dr. Erhan Budak

for their dedication to our project and patience in assisting me with this thesis. I

appreciate their valuable advice and efforts offered during the course of my studies.

I would also like to thank my jury members, Assist. Prof. Dr. Tonguç Ünlüyurt

and Assist. Prof. Dr. Ayhan Bozkurt, for their equally valuable support generously

given during the writing of my thesis.

I would also like to mention that my graduate work is supported by the Scientific

and Technological Research Council of Turkey (TÜBİTAK).

I would also like to express my gratitude to Teksan Generator Factory staff and

especially to Mr. Faruk Sezen and Mr. Yunus Teksan for their invaluable help and

support provided during the work.

Special thanks go to my friends Mehmet Abbak, Hüseyin Ergün, Serhat Alagöz,

Ergi Şener, Sefa Özbek and Ercan Kaymaksüt. I appreciate their friendship and

sympathetic help which made my life easier and more pleasant during graduate

studies.

Especially, I would like to give my special thanks to my wife Irina whose patient

love enabled me to complete this work.

Lastly, I would like to thank my parents for their enormous encouragement and

assistance, for without them, this work would not have been possible.

vi

Contents

Abstract iv

Özet v

Acknowledgements vi

1 Introduction 1

1.1 Overview of Computer-Integrated Manufacturing 2

1.2 Overview of RFID Technology . 4

2 Relevant Literature 8

3 RFID-Based Manufacturing Monitoring and Analysis System 13

3.1 Overview . 13

3.2 Setup and Configuration Studio (RFPML Studio) 16

3.3 Process Description Formats . 17

3.3.1 Business Process Management (BPM) 19

3.3.2 XML Process Definition Language (XPDL) 20

3.3.3 Process Specification Language (PSL) 20

3.3.4 Sensor Markup Language (SensorML) 21

3.3.5 RFPML . 21

3.4 Runtime . 26

3.4.1 Client Software . 26

3.4.2 Server Software . 27

3.4.3 Database Structure . 30

3.4.4 Client and Server configuration files 31

vii

Contents viii

3.4.5 Client-Server Interaction Protocol 33

3.4.6 Client-Server Interaction Algorithm 37

3.4.7 RFPML Web Monitoring Tool 39

3.5 Implementation . 39

3.5.1 RFPML Studio . 39

3.5.2 Runtime . 41

4 Factory Integration 42

5 Conclusions and Future Work 47

Appendix 48

A Descriptions and XML Schemas of some of the formats developed

for the system 48

A.1 RFPML Document Format . 48

A.2 Client Request Message Format for the Client-Server Interaction Pro-

tocol . 54

B Examples files for some of XML formats developed for MaMAS

Runtime 56

B.1 Example of a Client Configuration File 56

B.2 Example of a Server Configuration File 57

Bibliography 58

March 10, 2008

List of Figures

1.1 The diagram shows a typical backscatter scheme for RFID tags, which

are powered using the energy contained in the requesting wave from

the reader device. 5

3.1 Major parts of the system . 16

3.2 RFPML Studio screenshot . 17

3.3 RFPML Studio screenshot, showing property editor for components . 18

3.4 Process View elements . 22

3.5 RFID View elements . 23

3.6 The Process View of an example production process 25

3.7 The RFID View of an example production process 26

3.8 Example Windows Forms .NET client 28

3.9 Example Windows CE.NET client . 29

3.10 Hierarchical structure of workstations for the example sequence of

workstations . 30

3.11 Database Structure . 31

3.12 A sample client configuration file saving dialog 33

3.13 A sample server configuration file saving dialog 34

3.14 Example of an XML-based client request file 35

3.15 Client-Server Interaction Algorithm 38

3.16 RFPML Web Monitoring Tool . 40

4.1 Production flow for a generator. Courtesy of Teksan Generator Factory. 45

4.2 A Full View of the generator production process of the Teksan factory 46

4.3 Tag event data table obtained for 3 generator assembly process runs . 46

ix

Chapter 1

Introduction

Most modern manufacturing management initiatives are real-time driven and based

on information from events as they occur [1]. Monitoring the part flows in a man-

ufacturing system time-wise and location-wise is very critical for productivity, cost,

quality, inventory, and speed. In companies where the production automation has

been implemented the parts are monitored by the system anyway; or barcode read-

ers are used to obtain that information. The barcode systems require either full

operator support or the part has to be presented to the reader with an appropriate

orientation and proximity. This increases the positioning and the reading time. In-

telligently networked control systems equipped with RFID technology, on the other

hand, may allow better monitoring of the manufacturing processes with expedient

material flow and more effective planning and control.

This research is motivated by the need of bridging the gap between the physical

flow of components/products and the corresponding information flow in conventional

manufacturing systems. RFID technology can provide the solution for bridging and

even closing the gap [2]. Our aim is to develop an RFID-based manufacturing moni-

toring and analysis system to monitor where and when a part is located throughout

its flow in a production process using RFID tags placed on the parts and anten-

nas located at appropriate places. This system will enable the visibility of multiple

parts simultaneously without requiring particular positioning of the part and min-

imizing operator support to the possible extent. Moreover, relevant product and

production information may be recorded on the tags as well, if necessary. Since the

1

1.1. Overview of Computer-Integrated Manufacturing 2

process history of each part will be monitored in real-time using the information

saved either on the tag or in the database potential future mistakes which may oc-

cur in the subsequent production, assembly, or service steps may be avoided. The

proposed monitoring system will provide similar abilities of those of a computer in-

tegrated manufacturing (CIM) system. However, CIM is very rarely used in Small

and Medium Enterprises (SME) because of high investment and maintenance costs.

In this regard, our system may be an alternative as an economical and efficient

method of production monitoring in SMEs as well as in large enterprises.

The remainder of the thesis is organized as follows: below is a brief overview

of CIM and RFID technologies. Chapter 2 reviews the literature on RFID-enabled

technologies and applications. Chapter 3 describes the proposed RFID-based man-

ufacturing monitoring system, and some of its implementation details are given as

well. Factory integration is discussed in Chapter 4. Finally, Chapter 5 presents the

implications and concluding remarks and provides future research directions.

1.1 Overview of Computer-Integrated Manufac-

turing

The Computer and Automation Systems Association (CASA) of the Society of Man-

ufacturing Engineers (SME) defined CIM as follows:

CIM is the integration of the total manufacturing enterprise through the use of

integrated systems and data communications coupled with new managerial philoso-

phies that improve organizational and personnel efficiency. [3]

CIM describes a new manufacturing paradigm in which speaking simplistically

the entire production process is controlled by a computer. CIM systems can include

many advanced manufacturing technologies (sometimes called subsystems of CIM),

among others:

* Robotics

* CAD/CAM, Computer-Aided Design/Computer-Aided Manufacturing

* CAPP, Computer-Aided Process Planning

March 10, 2008

1.1. Overview of Computer-Integrated Manufacturing 3

* CAQ, Computer-Aided Quality Assurance

* ERP, Enterprise Resource Planning

* CNC, Computer Numerical Control machine tools

* DNC, Direct Numerical Control machine tools

* ASRS, Automated Storage and Retrieval Systems

* AGV, Automated Guided Vehicles

* Automated Conveyance Systems

* FMS, Flexible Manufacturing Systems

* Lean Manufacturing

* Cellular Manufacturing

* JIT, Just-In-Time production

* A business system integrated by a common database.

* Office automation

As can also be seen from the above list, among the important building blocks which

constitute a successful CIM system the following can be emphasized: a commitment

to total enterprise quality, continuous improvement, customer satisfaction, use of

a single computer database for all product information that is the basis for manu-

facturing and production decisions in every department, removal of communication

barriers among all departments, and the integration of enterprise resources. [4] [5] [6]

According to another definition, CIM is a process of using computers and com-

munication networks to transform islands of enabling technologies into a highly

interconnected manufacturing system. CIM involves integration of advanced tech-

nologies in various functional units of an enterprise in an effective manner to achieve

the corporate objective of the manufacturing enterprise.

The following key challenges are encountered when implementing CIM systems:

March 10, 2008

1.2. Overview of RFID Technology 4

- Integration of components from different suppliers: When different machines,

such as CNC, conveyors and robots, are using different communications pro-

tocols. In the case of AGVs, even differing lengths of time for charging the

batteries may cause problems.

- Data integrity: The higher the degree of automation, the more critical is the

integrity of the data used to control the machines. While the CIM system

saves on labor of operating the machines, it requires extra human labor in

ensuring that there are proper safeguards for the data signals that are used to

control the machines.

- Process control: Computers may be used to assist the human operators of

the manufacturing facility, but there must always be a competent engineer on

hand to handle circumstances which could not be foreseen by the designers of

the control software. [6]

As a final note in this brief introduction, the M in CIM is rather misleading

because the word manufacturing makes it easy to assume that it is intended for use

only in manufacturing or for integrating the operation of shop floor machinery. The

M in CIM is actually the connection of all manufacturing-related functions linked in

a computer network in an integrated manner. Production planning and scheduling,

production control, process design, and purchasing, as well as all manufacturing

processes and equipment, must be integrated in a total CIM system. [7]

1.2 Overview of RFID Technology

Radio-frequency identification (RFID) is an automatic identification method, re-

lying on storing and remotely retrieving data using devices called RFID tags or

transponders. [8]

An RFID tag in the Figure 1.1 is an object that can be applied to or incorporated

into a product, animal, or person for the purpose of identification using radiowaves.

Some tags can be read from several meters away and beyond the line of sight of the

reader.

March 10, 2008

1.2. Overview of RFID Technology 5

Most RFID tags contain at least two parts. One is an integrated circuit for

storing and processing information, modulating and demodulating a (RF) signal

and can also be used for other specialized functions. The second is an antenna for

receiving and transmitting the signal.

RFID tags come in three general varieties: passive, active, or semi-passive (also

known as battery-assisted). Passive tags require no internal power source, thus

being pure passive devices (they are only active when a reader is nearby to power

them), whereas semi-passive and active tags require a power source, usually a small

battery.

To communicate, tags respond to queries generating signals that must not create

interference with the readers, as arriving signals can be very weak and must be

told apart. Besides backscattering, load modulation techniques can be used to

manipulate the reader’s field. Typically, backscatter is used in the far field, whereas

load modulation applies in the nearfield, within a few wavelengths from the reader.

Figure 1.1: The diagram shows a typical backscatter scheme for RFID tags, which

are powered using the energy contained in the requesting wave from the reader

device.

Passive RFID tags have no internal power supply. The minute electrical cur-

rent induced in the antenna by the incoming radio frequency signal provides just

enough power for the Complementary metaloxidesemiconductor (CMOS) integrated

circuit in the tag to power up and transmit a response. Most passive tags signal by

backscattering the carrier wave from the reader. This means that the antenna has to

March 10, 2008

1.2. Overview of RFID Technology 6

be designed both to collect power from the incoming signal and also to transmit the

outbound backscatter signal. The response of a passive RFID tag is not necessarily

just an ID number; the tag chip can contain non-volatile, possibly writable Electri-

cally Erasable Programmable Read-Only Memory (EEPROM) for storing data.

Unlike passive RFID tags, active RFID tags have their own internal power source,

which is used to power the integrated circuits and broadcast the signal to the reader.

Active tags are typically much more reliable (i.e. fewer errors) than passive tags due

to the ability for active tags to conduct a “session” with a reader. Active tags, due

to their onboard power supply, also transmit at higher power levels than passive

tags, allowing them to be more effective in “RF challenged” environments like wa-

ter (including humans/cattle, which are mostly water), metal (shipping containers,

vehicles), or at longer distances, generating strong responses from weak requests

(as opposed to passive tags, which work the other way around). In turn, they are

generally bigger and more expensive to manufacture, and their potential shelf life is

much shorter.

Many active tags today have practical ranges of hundreds of meters, and a bat-

tery life of up to 10 years. Some active RFID tags include sensors such as tempera-

ture logging which have been used to monitor the temperature of perishable goods

like fresh produce or certain pharmaceutical products [9]. Other sensors that have

been married with active RFID include humidity, shock/vibration, light, radiation,

temperature, and atmospherics like ethylene [10]. Active tags typically have much

longer range (approximately 500 m/1500 feet) and larger memories than passive

tags, as well as the ability to store additional information sent by the transceiver.

Semi-passive tags are similar to active tags in that they have their own power

source, but the battery only powers the microchip and does not broadcast a signal.

The RF energy is reflected back to the reader like a passive tag. An alternative use

for the battery is to store energy from the reader to emit a response in the future,

usually by means of backscattering.

The battery-assisted receive circuitry of semi-passive tags lead to greater sensi-

tivity than passive tags, typically 100 times more. The enhanced sensitivity can be

leveraged as increased range (by a factor 10) and/or as enhanced read reliability (by

March 10, 2008

1.2. Overview of RFID Technology 7

one standard deviation).

Semi-passive tags have three main advantages 1) Greater sensitivity than pas-

sive tags 2) Better battery life than active tags. 3) Can perform active functions

(such as temperature logging) under its own power, even when no reader is present.

The antenna used for an RFID tag is affected by the intended application and the

frequency of operation. Low-frequency (LF) passive tags are normally inductively

coupled, and because the voltage induced is proportional to frequency, many coil

turns are needed to produce enough voltage to operate an integrated circuit.

At 13.56 MHz (High frequency or HF), a planar spiral with 57 turns over a

credit-card-sized form factor can be used to provide ranges of tens of centimeters.

These coils are less costly to produce than LF coils, since they can be made using

lithographic techniques rather than by wire winding, but two metal layers and an

insulator layer are needed to allow for the crossover connection from the outermost

layer to the inside of the spiral where the integrated circuit and resonance capacitor

are located.

Ultra-high frequency (UHF) and microwave passive tags are usually radiatively-

coupled to the reader antenna and can employ conventional dipole-like antennas.

Only one metal layer is required, reducing cost of manufacturing.

HF and UHF tag antennas are usually fabricated from copper or aluminum.

Conductive inks have seen some use in tag antennas but have encountered problems

with IC adhesion and environmental stability. [11]

March 10, 2008

Chapter 2

Relevant Literature

Different uses of the RFID technology were reported in recent years in the manufac-

turing industry. Ford Motor Company has successfully implemented an RFID-based

Just-In-Time (JIT) manufacturing model at its facility in Cuautitlan, Mexico [12].

In the manual coding system, the identification sheets were manually updated at

every stage in the production line. In the RFID-based system, however, updates

are automatically written on the tag as the vehicle advances on the production line

without the risk of operator error.

IBM has transformed chip production at its Fishkill plant with a semiconductor

manufacturing system that leverages real-time information to automatically control

the fabrication process, enabling employees to work more productively and be more

responsive to customers product status inquiries [13]. IBM has accomplished this

using IBM SiView Standard, a manufacturing execution system that the company

integrated with its own wireless e-business technology. SiView Standard leverages

information from IBM DB2 Universal Database to automatically control each step of

the fabrication process. DB2 manages information about the fabrication processes

that need to be applied to every wafer containing chips, and supports data analysis

tools that provide production-related statistics. IBM WebSphere MQ provides the

messaging platform that enables DB2 to exchange information with the production

tools and other application programs used to run the plant.

BMW and Vauxhall use RFID tags to enable accurate customization of customer

orders [14]. A read/write smart tag is programmed in the customer order. The tag

8

Chapter 2. Relevant Literature 9

is then attached to and travels with the car during the production process. This

tracking ensures that the car is manufactured with the correct color, model, interior,

and any other option the customer specifies.

Extensive studies were also performed on the various types of systems that RFID

technology can be used in. Zhou et al. [15] discuss an architecture where communica-

tion between RFID-based data acquisition system and various monitoring terminals

is performed using RFID, Bluetooth and Internet channels. Koumpis et al. [16]

address various architectures related to wireless/wired communications in manufac-

turing environments. Brewer et al. [17] propose “Intelligent Tracking Technologies”,

or IT2, which comprises Global Positioning Systems (GPS), Geographic Information

Systems (GIS), wireless communications, and RFID to enable dynamic scheduling in

manufacturing and supply chain management. Huang et al. in [18] and [19] develop

“Wireless Manufacturing” (WM) technology to manage job shop Work-In-Progress

(WIP) inventories in real time. The emphasis is placed upon how to avoid chang-

ing from functional (or “walking-worker fixed-position” in their terms) to cellular

layouts “in order to retain existing operational flexibility while improving efficiency

and capacity”.

By taking advantage of data capacity stored in an RFID tag, critical manufac-

turing information on a product can be locally stored with the product. Such a

feature may be very important when it is not possible to work in a networked en-

vironment. Qiu [20] offers a framework to enable the instant delivery of pertinent

data and information on a uniquely identifiable job/product at point-of-need across

factories.

Alternatively, Yagi et al. [21] discusses the application of RFID in construction

production field where information related to a product is carried by the product

itself and can be handled to manage the whole system.

The interested reader is referred to [22] and [23] for more examples and case

studies on how RFID technology was successfully implemented in real-world manu-

facturing projects.

In the field of manufacturing monitoring and control systems a great amount of

research is conducted on the use of so called software agents. In computer science,

March 10, 2008

Chapter 2. Relevant Literature 10

a software agent is a piece of software that acts for a user or other program in a

relationship of agency. Such “action on behalf of” implies the authority to decide

which (and if) action is appropriate. The idea is that agents are not strictly invoked

for a task, but activate themselves. [24]

Tnazefti-Kerkeni et al. [25] presents a multi-blackboard approach to design and

implement a control/monitoring system for the Automation of Production Systems.

The proposed architecture is composed of several control/monitoring agents (CMAs)

organized hierarchically. Communication between agents is done through a hierarchy

of blackboards, where consistent replicated data is kept.

Sauer and Sutschet [26] developed Provis.Agent - the first agent-based production

monitoring and control system for distributed real-time production monitoring that

allows integration with other shop-floor related applications.

Leitao and Restivo [27] intends to introduce an agent-based approach to the

manufacturing problem, that uses holonic concepts, is focused on distributed manu-

facturing shop floor control for discrete batch production, considers the optimization

of set-up and maintenance operations, and develops mechanisms for agile and fast

reaction to disturbances without compromising the global production optimization.

“Holonic” here refers to systems (holons) which are parts of some other, larger

and more complex systems and at the same time are autonomous self-reliant units,

which have a degree of independence and handle contingencies without asking higher

authorities for instructions [28].

An interesting case (not software agent-based) is presented by Yurtsever and

Pierce [29]. They developed and implemented the so called Graphical Manufacturing

Monitoring System (GraMMS), consisting of 4 main applications namely; Dynamic

Dispatch, WIP Monitoring System (WMS), Equipment Management System (EMS),

and Throughput Monitoring System (TMS).

Up to here cited works are in essence “applications” (as opposed to frameworks).

The evident shortcoming of them is that they are applicable only to concrete projects

and situations, that is they lack any generality at all. Our work on the other hand

is the development of an enabling technology, i. e. the technology which enables

existing manufacturing processes with monitoring and control means through using

March 10, 2008

Chapter 2. Relevant Literature 11

the RFID technology. Our aim is not only developing of an RFID enabled monitoring

system at a given shop floor, but we want to develop a system that would simplify

and accelerate the application of RFID enabled monitoring systems at any given

factory.

The only example of an RFID enabling technology we could find in the literature

was one of IBM’s alphaWorks projects namely the RFID Integrated Solution En-

ablement (RISE) [30]. As is written on its website, RISE is a model-driven solution

integration framework for RFID solutions. RISE facilitates the following:

* rapid creation of solutions through GUI-based component composition and soft-

ware reuse

* effective testing with simulation environment that allows developers to validate

the logical flow of the solution prior to real deployment into physical environ-

ment

* easy solution deployment and management through polymorphism and a stan-

dard method of application lifecycle management (OSGi).

RISE also provides a set of built-in library components, which vary from four differ-

ent vendor models of RFID readers to some logical components such as a duplicate

tag read filter.

Some of the similarities between RISE and our system:

- Both systems have to a great extent similar overall component-based archi-

tectures. Models are produced in a modeling environment, then solutions are

deployed in a runtime execution platform.

- Both RISE and our system provides GUI-based modeling environments for

solutions prior to deployment. RISE has developed an Eclipse-based plugin

for this purpose, and we developed a .NET-based model creation and manage-

ment tool called RFPML Studio. RFPML stands for Radio Frequency Process

Modeling Language and is explained in the next Chapter.

March 10, 2008

Chapter 2. Relevant Literature 12

- RISE persists solution models in XML-based RISE model format. RFPML

Studio also persists models in XML-based format (with a different schema of

course).

And some of the differences:

- RISE uses a standard Java-based method of application lifecycle manage-

ment called Open Services Gateway initiative (OSGi) for solution deployment

and configuration management. Deployment of models in our system occurs

through the GUI-based modeling environment.

- RISE uses a third-party execution engine called called Ptolemy II developed

and supported by the UC Berkeley [31]. Our system only needs .NET Frame-

work 2.0 on any supporting Windows Operating System.

- RISE provides a testing with simulation environment, our system does not.

- RISE does not have any monitoring and analysis module, our system has a

web-based monitoring tool developed by a group of students of the Sabanci

University [32].

- RISE has several prerequisites some of which are quite expensive. Some pre-

requisites (by IBM) are projects either discontinued by IBM or transformed

into some other projects. So, as of January 2008, it is impossible to install

RISE on a computer. Our system does not have any particular prerequisites

except for the .NET Framework 2.0 mentioned above.

March 10, 2008

Chapter 3

RFID-Based Manufacturing

Monitoring and Analysis System

3.1 Overview

The ability to monitor manufacturing parts and processes in real-time can provide

many benefits from the point of view of production planning and productivity. We

list below some problems and the capabilities of our proposed RFID-based manu-

facturing monitoring and analysis system to overcome these problems.

i) In order for the right parts to go to the right workstations at the right time

the parts need to be tracked in real-time. With the RFID-enabled system the

arrival and departure times of a part in a workstation can be recorded automat-

ically. An integrated planning and/or monitoring software such as Enterprise

Resource Planning (ERP) systems may access and utilize this information in

real-time.

ii) Process flow and time analyses should be performed very carefully and can be

time consuming. If such analyses are not performed or performed improperly

it becomes difficult to trace workstation related problems in the production

processes. In the proposed system since the workstation each part visits in the

process flow is traced in real-time, such problems will be fairly easy to detect

and resolve.

13

3.1. Overview 14

iii) Work-in-process (WIP) stocks are critical for productivity, bottleneck manage-

ment, and inventory control. Since the RFID-based system provides visibility

at each stage the location and quantity of the parts can be monitored in real-

time and the arising bottlenecks can be detected and resolved more rapidly.

iv) Even simple parts in manufacturing processes can consist of many different

sub-assemblies and components. Different problems can arise in the flow of

these items during the production process. The proposed RFID system pro-

vides the capability of detecting such problems faster and taking necessary

actions properly.

In the proposed RFID-based manufacturing monitoring and analysis system we col-

lect the following information related to a part and write it to a database:

a) Arrival time to a workstation

b) Departure time from the workstation

c) Some extra information which may be relevant to the outcome of the operation

performed on the workstation.

Note: We actually distinguish between two types of workstations. One of them

records both the arrival and the departure times and the other one records only the

departure time.

A typical RFID system consists of the following three components:

(i) Tags attached to the physical objects to be identified

(ii) Readers, and

(iii) A host system that contains information on the identified object and dis-

tributes information to other remote data processing systems, such as ERP,

Manufacturing Execution Systems (MES), etc. [2]. The host system can be

used for other purposes as well, such as RFID infrastructure management and

configuration, data storage configuration, integration to other enterprise sub-

systems, etc. The tag data can also be stored on tags themselves instead of

the host system, e.g., see [20].

March 10, 2008

3.1. Overview 15

An essential part of our research is the development of such a host system. The

system needs to be as generic as possible, such that it can be easily adapted to most

manufacturing environments with some setup and configuration options. In what

follows we discuss the developed host system.

Typically development of custom solutions with the help of our system will con-

sist of 2 stages:

1) Model development. By models we mean constructs used to represent the

logical flow of a manufacturing process. We developed a special structure for

the models, which we called RF Process Modeling Language, or RFPML. On

top of this we built a Graphical User Interface tool in order to create, manage

and deploy the models, which we called RFPML Studio. Models include the

description of RFID infrastructure underlying the system and to some extent

they also include the specification of the way the data would be collected (the

stations from which the data will be collected, type of workstations regarding

the data collection pattern (arrival/departure or just departure)).

2) Model deployment. We also created runtime environment which is used to do

actual job of monitoring and control. Runtime consists of server-side part and

client-side components (they may also be called edge components). Runtime

uses the developed models in order to properly monitor and if necessary con-

trol the flow of manufacturing parts. Server software handles requests from

clients, performs all database queries, and manages RFID hardware if neces-

sary. Both client and server parts of the runtime use model information in

the form of initialization files and database entries generated from the model.

Such generation (what we call code generation) occurs on the RFPML Studio’s

side.

Therefore our system mainly consists of 3 primary parts: RFPML Studio, Ma-

MAS (stands for Manufacturing Monitoring and Analysis System) Runtime, and

also Web Monitoring tool. The third part comes from the work performed by a

group of students from the Sabanci University who developed a web-based mon-

itoring software for the system [32]. Using the generated RFPML document the

March 10, 2008

3.2. Setup and Configuration Studio (RFPML Studio) 16

tool reconstructs the graphical layout, then uses specially devised custom queries to

extract the system’s runtime information from the database.

Figure 3.1: Major parts of the system

3.2 Setup and Configuration Studio (RFPML Stu-

dio)

The setup and configuration part of the system is implemented as a graphical model-

ing environment as depicted in Fig. 3.3. The environment has all the basic necessary

user interface (UI) tools for the end user to construct a model of his/her specific

RFID-enabled solution appropriately.

Visually the environment consists of three major parts:

1. Left pane containing two tabs:

a. A library of the building blocks of an RFID-enabled manufacturing pro-

cess, naturally grouped into two categories: Process components, and

RFID infrastructure components.

March 10, 2008

3.3. Process Description Formats 17

b. A property grid to edit the properties of the building blocks

3. The working area at the center of the screen, where all the actual modeling

work happens.

4. The toolbar providing some more common and frequently performed functions.

Figure 3.2: RFPML Studio screenshot

Users drag components from the library tab and drop them on the working area.

Then they can adjust their positions, connect them with one another to construct a

process flow, set their properties using the Properties pane, and perform some other

basic modeling functions.

3.3 Process Description Formats

At the end the user can save the work to an XML-like format. The purpose of this

is two-fold:

March 10, 2008

3.3. Process Description Formats 18

Figure 3.3: RFPML Studio screenshot, showing property editor for components

(i) persistence means, that is to be able to work with the models later and

(ii) it will be used in generating software components necessary for specific appli-

cations.

In choosing the format, we conducted a thorough examination of the literature and

the Internet on the subject of manufacturing process XML specifications. We had

in mind the following criteria when searching:

* It should be able to represent manufacturing processes.

* It should be extensible to represent RFID infrastructure, such as readers, an-

tenna, etc.

* It should have graphical notation capabilities or at least be easily extensible

in this respect, i. e. we should at least be able to represent the entire XML

document using some graphical elements.

Among others, we studied Business Process Management (BPM) together with some

related technologies, such as Business Process Management Notation (BPMN), Busi-

ness Process Execution Language (BPEL) with variants/successors; and also XML

March 10, 2008

3.3. Process Description Formats 19

Process Definition Language (XPDL), Process Specification Language (PSL) and

SensorML.

3.3.1 Business Process Management (BPM)

Business Process Management (BPM), like Service Oriented Architecture (SOA) is

one of those “buzz enterprise technologies” of recent years plenty of resources talk

about but few seem to properly implement at their own enterprises. The definition of

BPM by the Association of Business Process Management Professionals (ABPMP):

Business Process Management (BPM) is a disciplined approach to identify, de-

sign, execute, document, monitor, control, and measure both automated and non-

automated business processes to achieve consistent, targeted results consistent with

an organization’s strategic goals. BPM involves the deliberate, collaborative and in-

creasingly technology-aided definition, improvement, innovation, and management

of end-to-end business processes that drive business results, create value, and enable

an organization to meet its business objectives with more agility. [33]

As seen from the above BPM is a fairly general concept. That’s why academic

authors may give different meaning to this concept and vendors generally provide

varying implementations. There are also many technologies related in some way to

BPM:

- Business Process Modeling Notation (BPMN). Its main goal is to provide a

standardized graphical notation for business processes as it is evident from

the name. One of the reasons for introducing the concept of BPM in the

technological aspect is that it will provide a general standard notation platform

for business analysts who create the business processes, technical developers

who implement them and managers who monitor and manage them. That’s

why the notational aspect of BPM quickly evolved into separate standard

developed by the Business Process Management Initiative (BPMI).

Business Process Execution Language (BPEL). As it is again evident from

the name BPEL is a business process language that is executable. Because of

its implied practicality it was widely embraced by the industry from its very

March 10, 2008

3.3. Process Description Formats 20

beginning.

For our purposes BPM is too general. We needed something narrower for both

aspects of our system, manufacturing and RFID infrastructure.

3.3.2 XML Process Definition Language (XPDL)

XPDL is also related to Business Process Management. As described on the web-

site of the Workflow Management Coalition - the organization which created and

maintains XPDL:

The goal of XPDL is to store and exchange the process diagram, to allow one

tool to model a process diagram, and another to read the diagram and edit, another

to “run” the process model on an XPDL-compliant BPM engine, and so on. For this

reason, XPDL is not an executable programming language like BPEL, but rather a

process design format that literally represents the “drawing” of the process defini-

tion. Specifically, it has ’XY’ or vector coordinates, including lines and points that

define process flows. This allows an XPDL to store a one-to-one representation of

a BPMN process diagram. For this reason, XPDL is effectively the file format or

“serialization” of BPMN, as well as any non-BPMN design method or process model

which use in their underlying definition the XPDL meta-model. [34]

As can be seen from the above XPDL emphasizes yet another aspect of business

processes which we also needed for our system - the one-to-one serialization from

the graphical format to the textual format of a process.

The problem with XPDL as regarding applicability to our system is actually the

same as with the BPM - it is far too broad, we needed something more specific.

3.3.3 Process Specification Language (PSL)

PSL defines a neutral representation for manufacturing processes. Process data is

used throughout the life cycle of a product, from early indications of manufactur-

ing process flagged during design, through process planning, validation, production

scheduling and control. In addition, the notion of process also underlies the entire

manufacturing cycle, coordinating the workflow within engineering and shop floor

March 10, 2008

3.3. Process Description Formats 21

manufacturing. [35]

Unfortunately, PSL lacked the necessary degree of extensibility to provide for the

RFID infrastructure of our system and was fairly difficult to implement in graphical

respect.

3.3.4 Sensor Markup Language (SensorML)

SensorML provides standard models and an XML encoding for describing any pro-

cess, including the process of measurement by sensors and instructions for deriving

higher-level information from observations. Processes described in SensorML are

discoverable and executable. All processes define their inputs, outputs, parameters,

and method, as well as provide relevant metadata. SensorML models detectors and

sensors as processes that convert real phenomena to data. [36]

SensorML on the other hand almost totally lacked the ability to represent ade-

quately manufacturing processes.

3.3.5 RFPML

So we decided to implement our own format which we called RFID Process Markup

Language (RFPML). In this section we briefly describe the language.

An RFPML document has 2 equivalent notations: a graphical notation and an

XML based textual notation. We firstly describe its graphical components. An

RFPML document has 2 major parts: Process Description Symbols and RFID

Integration Description Symbols. The Process Description Symbols describe

elements related to the manufacturing process itself, while the RFID Integration

Description Symbols describe elements related to the corresponding RFID infras-

tructure.

Process Description Symbols

In the Process View, we decided to utilize 5 symbols from the production charts

symbol set standardized by the American Society of Mechanical Engineers (ASME)

[37]: Workstation, Storage, Inspection, Delay, and Transportation. We have also

March 10, 2008

3.3. Process Description Formats 22

added the Decision element to support generic flowcharting notations. The symbols

are illustrated in the figure below.

Figure 3.4: Process View elements

Here is a concise description of each symbol:

-a) Workstation. Also called an Operation. An operation occurs when an ob-

ject is arranged or prepared for another step, assembled or disassembled or

intentionally changed.

b) Inspection. An inspection occurs when an object is verified for quality or

quantity in any of its characteristics.

c) Storage. A storage occurs when an object is kept and protected against unau-

thorized removal.

d) Delay. A delay occurs when an object waits for the next planned action.

e) Transportation. A transportation occurs when an object is moved from one

location to another.

f) Decision. A decision or branching point. Lines representing different decisions

emerge from different points of the diamond. [38]

RFID Integration Description Symbols

RFID View helps process designer to define precisely the underlying RFID infras-

tructure used to collect the data. In other words, the designer will be able to define

March 10, 2008

3.3. Process Description Formats 23

which workstation will be collecting which type of data, in what formats, from which

readers, etc. For visual representation of these specific features of our system we

propose the notation of symbols depicted in Figure 3.5.

Figure 3.5: RFID View elements

Again a brief description of each symbol is as follows:

a) Antenna. We decided to use this symbol since it already has a widespread

usage in the literature. An antenna will be connected from one end to a

reader (either directly or through a switch) and from the other to the element

of a manufacturing process, e. g. a workstation (for an example see the

antenna symbol connecting a Workstation named “W2” with a Reader on

Figure 3.3). A link between the workstation and an antenna means that

during the operation of the system information about the workstation will

be collected. The information will be in the form of arrival and departure

times, or just departure times (depending on the workstation type) of a part

to/from the workstation. If some extra information is needed we will have to

use another element, which we called Antenna with PC. For example, we may

need to be able to record the result of an operation on an Inspection element.

In this case an operator has to enter the result into the system. For this type

of operations we need a PC attached to the antenna. That’s the reason for

introducing the next type of symbol.

b) Antenna with PC. As described above we need a PC for operations requiring

manual data entry from operators (see, for example, an Antenna with PC

connecting “T1” station with a Switch on Figure 3.3). We need the kind of

antenna-PC pair for other situations as well. For example, when a process de-

March 10, 2008

3.3. Process Description Formats 24

signer decides to have multiple workstations attached to the same antenna we

need a manual entry from the operator in order to find out on which worksta-

tion the tagged part under consideration is being processed (see Workstations

“W3” and “W5” connected to a Reader through an Antenna with PC on Fig-

ure 3.3 for an example). Actually this element was designed bearing in mind

the probability of the following real-life scenario. Process designer may want

to be able to collect data from more than one workstation using hand-held

RFID reader. In this case it will inevitably be asked from the operator which

workstation s(he) currently is at.

Since Antenna with PC will definitely require operator support it should not

be used for workstations with automatic data collection. In this situation we

need to use the Antenna symbol.

Antenna with PC will be connected either directly to an RFID reader or

through a switch. From the other side this symbol will be connected to one

or more manufacturing process description symbols. So it will be clear that

for workstations connect to the Antenna with PC manual data entry will be

required.

The PC part of the Antenna with PC element can be a desktop computer, a

notebook or a palm computer. The type of the PC can be described in the

form of a property of this symbol. In any case this computer will be connected

to a LAN.

c) Switch. In our system switches are used for connecting multiple antennas

to a single reader. So the information such as which antenna connected to

which reader through which switch is represented graphically. More than one

Antenna or Antenna with PC symbol will be connected to a Switch symbol.

The control of switches will be done through a server computer.

d) Reader. It illustrates RFID readers as attached to antennas either directly or

through a switch. The readers can be connected either to a LAN or directly

to a PC through an RS232 port.

March 10, 2008

3.3. Process Description Formats 25

Elements are combined to each other using different types of connections. Process

Description Symbols connect to each other using normal connections having starting

cap of the line flat and ending cap - an arrow. Lines connecting Process Description

Symbols to RFID Integration Description Symbols are dashed and have both caps

flat. Lines connecting RFID Integration Description Symbols with each other (for

example, Switches to Readers) are normal lines and also have both caps flat.

The graphical picture consisting of Process Description Symbols together with

RFID Integration Description Symbols detailing the underlying RFID infrastructure

is called a Full View in the RFPML Studio parlance (see Figure 3.3). If we hide the

RFID Integration Description Symbols in the Studio we get a Process View (Figure

3.6), and if we hide the Production Process Description Symbols, we correspondingly

get an RFID View (Figure 3.7).

Figure 3.6: The Process View of an example production process

So far it was a description of a graphical notation of the RFPML format. There is

also an equivalent textual notation which is XML-based. It is this textual language

that is used for serialization and for code generation purposes. The details of this

language are given in Appendix A.1.

March 10, 2008

3.4. Runtime 26

Figure 3.7: The RFID View of an example production process

3.4 Runtime

The Runtime part is the main execution engine of our system. Runtime mainly

consists of 2 types of software as mentioned earlier: client and server software.

3.4.1 Client Software

Client software is the software that works on the shop floor workstation PC’s. Since

it works “on the edge” of the system we also refer to them as Edge Components.

Edge components perform connections to the Server and provide necessary inter-

actions with an operator if needed. The can be many client software modules, of

course, as opposed to one server module.

First of all let’s talk about why we need client software at all. Normally when you

design a model of a process you should try to attach to each process element under

consideration one and only one antenna. In this way there would be no need for client

software as the information would be collected and sent to the server automatically.

But there are several situations where an operator (person performing a job on a

workstation) support is required through his/her interaction with the client software:

- Several stations may me connected to a single Antenna with PC. Also several

March 10, 2008

3.4. Runtime 27

workstations may be positioned in a limited space, so if we were to attach a

separate antenna to each workstation the antennas might see several worksta-

tions at once. In these situations we need some means to differentiate between

workstations, so we use the client software for this purpose.

- Inspection stations. Inspection stations typically have a result associated with

an operation (or testing) on that station. To enter such results to the system

we again need the help of an opertor, so we use the client module. To facilitate

even further this operation we provide the operator with the list of possible

results for that particular station. The list can be configured during the model

development phase using the RFPML Studio.

- So called Initial Tagging Stations. Initial Tagging Stations are the points in

the production process flow where we start to collect information. Tags are

attached to the parts entering production line at these points. During this

operation we also need the information about the relevant job order for which

the product (corresponding to the tagged part) is being manufactured. The

attached tag is linked to the job order number and that information is sent

to the database on the server. Again to facilitate this operation we provide

the operator with the list of available job orders fetched from the JobOrders

database table.

We tried to provide a very simple graphical user interface (GUI) for client mod-

ules bearing also in mind that the modules may also be deployed on a touchscreen-

enabled PC. We also provided identical versions for different client platforms and

operating systems, such as Windows XP, Vista (Figure 3.8), Windows CE (Figure

3.9). So the client software may be deployed on normal desktop PC’s, notebook

computers and portable (handheld) devices, such as Pocket PC, PDAs, etc.

3.4.2 Server Software

As opposed to the client software, server software is installed on one computer in

the system. Among primary goals of the server software are communication with a

March 10, 2008

3.4. Runtime 28

Figure 3.8: Example Windows Forms .NET client

client, control of RFID readers, processing and synchronization of data coming from

readers and clients, database-related operations, etc.

When processing data coming from clients the server compares the data with the

information from the database and checks for errors. Actually one of the features

of our system is to control the material flow inside a production process. After the

initial tagging phase the sequence of workstations through which the tagged part will

pass is known from the RFPML model. In other words, we would like to guarantee

that parts travel in the factory as they are supposed to. So when the part passes

a workstation out of order a message warns the operator. There are many more

checks as well, like, e. g., when an unidentified tag comes to a non-initial tagging

station. In Section 3.4.6 an algorithm is given describing server actions in response

to client messages.

In the above statement we mentioned that the information about the sequence of

workstations through which a tagged part passes is known from the RFPML model.

Actually it is generated from the RFPML model and afterwards it is saved in the

database in the special column named OrderSequence of the table named JobOrders.

The format of the column is the following:

w1, w2, w3, w10; w5, w6, w10; w7, w8, w9, w10 (3.1)

March 10, 2008

3.4. Runtime 29

Figure 3.9: Example Windows CE.NET client

where wNumber denotes a workstation, comma separates workstations within a

sequence and semicolon separates sequences. So in the above example there are 3

sequences (w1,w2,w3,w10), (w5,w6,w10) and (w7,w8,w9,w10). We can reconstruct

the hierarchical structure of workstations for the above example as the following:

As it is seen from Figure 3.10 an example product has three parts. The first

one goes through the stations w1, w2, w3. The second part goes through stations

w5, w6. The third part goes through w7, w8, w9. The three parts get assembled at

station w10.

March 10, 2008

3.4. Runtime 30

Figure 3.10: Hierarchical structure of workstations for the example sequence of

workstations

3.4.3 Database Structure

As mentioned earlier our system uses a database as a persistence media. All the

necessary database components such as tables, rows, etc. are generated after the

modeling phase using a special generating module of our graphical environment.

The module uses a produced RFPML document. After the generation phase the

user is ready to deploy the generated software solution in an actual manufacturing

environment.

This structure of the database is shown in Figure 3.11. As it is seen from the

figure it is quite simple and consists of only 3 tables:

- JobOrders. This table is needed for keeping information about job orders.

Only two fields of the table are directly related to our system: OrderID - for

distinguishing between different job orders; and OrderSequence - for keeping

the sequence of workstations through which a tagged part will pass as described

earlier in Section 3.4.2. Other fields are for convenience only and may be used

in case there are no other (more sophisticated) order management systems

available.

- Events. This table is used to keep track of times when a tagged part passes

a workstation. OrderId field denotes a job order to which a given tagged part

belongs, TagCode denotes the tag data (ID) of the part, Source denotes a work-

station passed, StartTime and FinishTime fields are related to the concept we

briefly described at the beginning of this Chapter in Section 3.1: we told there

that concerning the data collection pattern there are 2 types of workstations:

March 10, 2008

3.4. Runtime 31

workstations collecting only departure times and those collection both the ar-

rival and departure times. StartTime and FinishTime fields store those two

times. In case when we want to store only departure time, StartTime field is

set to NULL value.

- EventDetails. In Section 3.4.1 we described stations which can have an associ-

ated result after processing. This table is used to record extra event informa-

tion coming from this type of stations. So EventId just points to an event from

the Events table, and EventDetails field stores the extra information related

to this event.

Figure 3.11: Database Structure

3.4.4 Client and Server configuration files

In this subsection we would like to talk about client and server configuration files.

Client configuration files are generated by the RFPML Studio (Figure 3.12), and

the server configuration file is generated by a special configuration and management

March 10, 2008

3.4. Runtime 32

tool (Figure 3.13), which resides on the server machine. Examples of both files are

given in Appendices B.1 and B.2 respectively.

Client configuration file is XML-based and has the following sections:

- Server. This section contains TCP information about the server machine, such

as server’s IP and port number.

- Reader. This section contains information about the reader through which

data is collected. Attributes for this element include only the name of the

reader.

- Workstations. This is a collection of Workstation elements, each of which con-

tains information about all stations serviced by the respective client software

module. The information consists of the name of the workstation, boolean

value indicating whether it is an initial tagging station (to be described in

the next subsection) or not and again a boolean value showing whether the

events on the workstation have both arrival times and departure times or only

departure times as described in Section 3.4.3.

Server configuration file is also an XML-based file, containing information about

the RFID readers controlled by the server module. It is basically a collection of

Reader elements having the following components:

- Name. The name of the reader. This name must be the same as the one in

the respective client configuration files.

- IPAddress. IP address of the reader.

- Port. The port through which server connects to the reader.

- Login. The login name with which server connects to the reader.

- Password. The password with which server connects to the reader.

March 10, 2008

3.4. Runtime 33

Figure 3.12: A sample client configuration file saving dialog

3.4.5 Client-Server Interaction Protocol

Before describing the Client-Server Interaction Protocol and Algorithm we would

like to summarize what was said in the previous sections and to introduce some

concepts which would help us in describing the protocol and the algorithm.

In Section 3.4.1 we talked about the necessity of client software and already

described the types of workstations within the client-server interaction scope. We

have to make a couple of points clearer here. Firstly, we differentiate between the

client workstation types according to the information they send to the server. So

we have only 3 types:

- Initial Tagging Station (or First Tagging Station). It is the first workstation

in any sequence in a given job order, e. g. the first tagging stations for Figure

3.10 are w1, w5 and w7 for the sequences (w1, w2, w3, w10), (w5, w6, w10)

and (w7, w8, w9, w10). Operator applies a tag to a part and connects the tag

with a corresponding job order by choosing a job order ID from a list supplied

to the client by the server. The information sent to the server is a job order

ID and, possibly, tag data (we will explain this point a bit later).

March 10, 2008

3.4. Runtime 34

Figure 3.13: A sample server configuration file saving dialog

- A station with an output result. Some stations can have additional information

after processing. All possible outcomes for specific stations are taken from

client initialization files which are generated from the model developed in the

RFPML Studio. So operator just chooses the appropriate result and sends it

to the server.

- A regular, or normal station. Operator just signals that the part is at a specific

workstation, that’s all, nothing is sent to the server except, possibly, tag data

(will be explained shortly). There is actually one more type called “a merging

station”, i. e. a station where at least 2 parts are being assembled. But since

we do not send anything to the server, except, possibly, tag data, this type is

actually a normal station.

We several times mentioned now that we possibly send tag data to the server.

This is related to two modes of acquiring tag data:

- Tag reading is performed by the server.

March 10, 2008

3.4. Runtime 35

- Tag reading is performed directly by the client and then the tags read are sent

to the server in the body of the message.

Different clients can have different modes of tag acquisition. The modes are

specified during RFPML model development phase and are recorded in the generated

client initialization files.

Now we can describe the protocol itself. It is a special XML-based protocol

for the interaction between clients and the server. Server acts as a TCP listener

and clients occasionally connect to it to exchange information. These messages are

structured in XML format (Figure 3.14) whose schema is given in Appendix A.2.

The main parts of the message are as following:

Figure 3.14: Example of an XML-based client request file

MessageType. As the name suggests it describes the type of a message. It is

of enumeration type and can have 1 of 4 values:

GetJobList. Used when a client requests a list of available job orders from

the server.

InitialTagging. Used when client sends data for an initial tagging work-

station to the server.

OuputPass. Used when client needs to attach some additional information

when sending data to the server.

March 10, 2008

3.4. Runtime 36

NormalPass. Used for all other messages.

MessageData. Contains data for a message. The data varies for different mes-

sage types. For GetJobList type of messages we have the following subparts:

JobType. The more appropriate name for this would be WorkstationType

since it designates the type of workstation requesting job order list from

the server. It is of enumeration type having only 2 values: FTS - for

initial tagging stations and Other - for all others.

Workstation. It is just the name of a client workstation from which the

message is sent to a server.

For all other types:

OperationType. Describes the type of operation when sending data to

server. It is of enumeration type having 3 values:

Single. Operator sends message only once, typically when he com-

pletes his task.

Start. Used in a so called “start-finish” scenario when operator sends

2 messages designating the start and end of his task. So this opera-

tion type is used for messages before the operator begins the task.

Finish. This operation type is used for messages after the operator

finishes his task.

Workstation. Like for the GetJobList type of messages it is just the name

of a client workstation from which the message is sent to a server.

Reader. It is the name of the reader used to read tags.

Job. It is the job order ID for which the current request occurs.

OutputResult. Some workstations can have an associated result from the

work being performed on them (like, for example, error message when an

error occurs). This field is used to convey this result to the server.

Tags. This field is used when tags are read by the clients themselves and

is used to send read tags to the server.

March 10, 2008

3.4. Runtime 37

3.4.6 Client-Server Interaction Algorithm

We devised a special algorithm for the Client-Server Interaction Protocol described

above (see figure below). We would like to make some comments for the figure

regarding figure symbols:

* Red cross represents exception to be thrown by the runtime.

* Green/red lines denote boolean responses to the previous inquiry (YES/NO

respectively).

* If inquiry is not of boolean type possible responses are explicitly given in

dashed rectangles.

* Green rectangles denote successful terminations of requests.

Describing the algorithm in plain words:

(1) After a request is received from the client by means of a TCP channel it is

parsed to reveal any possible errors in the format.

(2) Then we check the type of the request.

(A) if it is of GetJobList type return the list of available job orders. By

available we mean either non-started jobs or jobs having non-started se-

quences.

(B) Otherwise read tags if it is configured to be read by the server. Check

the number of tags read.

(I) If no tags read throw an exception

(II) If 1 tag is read then again check the type of the request.

(a) If it is of the FTS type (First, or Initial Tagging Station), check

whether the tag under consideration is active or not. By active

we mean that the tag is being used in an unfinished job order.

(i) If it is active throw an exception.

(ii) If it is not active register the event.

March 10, 2008

3.4. Runtime 38

Figure 3.15: Client-Server Interaction Algorithm

(c) If it is not of the FTS type check whether the tag is active. Then

check whether it is expected. By expected we mean that it comes

in the correct order in the sequence so that all previous work-

stations were visited. Then check whether it is at the merging

point according to the model. If any of the checks fails throw an

exception.

(i) If it is at the merging point check whether the operation type

is Finish.

* If the operation type is Finish it means that we should finish

the merging event started before.

March 10, 2008

3.5. Implementation 39

* If the operation type is not Finish throw an exception.

(ii) If it is not at the merging point register an event.

(III) If more than 1 tag is read it means that it should be a merging

point where several parts are assembled into one. Again check the

type of the request.

(a) If it is not of the NormalPass type throw an exception.

(b) If it is of the NormalPass type check whether all tags are active.

Then check whether they are all from the same job order. Then

check whether they are all expected. If any of the checks fails

throw an exception. Then check whether the operation type is

Finish for all tags.

(i) If the operation type is Finish for all tags register all events.

(ii) If the operation type is not Finish for all tags check whether

there are sufficient tags present.

* If sufficient tags are present register all events.

* Otherwise throw an exception.

3.4.7 RFPML Web Monitoring Tool

As mentioned above a web-based monitoring tool was developed for the system. It

uses an RFPML document to draw the underlying system in the browser window.

A PHP library called GD [39] was used to draw all the graphics. The information

about each object is shown in the pop-up box (Information) when you click on the

shape. This pop-up box is updated with a predefined refresh rate through using

AJAX technology.

3.5 Implementation

3.5.1 RFPML Studio

We built RFPML Studio on top of Microsoft .NET 2.0 Framework. For diagramming

purposes we used Netron - free .NET diagramming library written in C#. The

March 10, 2008

3.5. Implementation 40

Figure 3.16: RFPML Web Monitoring Tool

biggest change we had to introduce was development of several shape types, one

for each symbol type in our system, development of 3 connection types and also

development of custom logic, such as when, for instance, InterConnection cannot

join two objects both from the Process View or both from the RFID Infrastructure

View, one of them must be from the Process View, another from the RFID View.

Regarding the class structure. There are 3 projects inside the solution:

* Netron.Core. The diagramming base from the Netron project mentioned

above.

* PropertyGridEx. This component is needed to provide support for property

grid used when editing properties for diagram components.

March 10, 2008

3.5. Implementation 41

* RfpdlStudio. This is the main project for the RFPML Studio. The class

structure of the project is the following (we omit system helper classes):

* MainForm. Class containing the main form of the application.

* Serializer. Class for serializing models into .rfpml format.

* IniGenerator. Class for generating initialization files for clients.

* Several helper classes for serialization.

3.5.2 Runtime

The runtime was also implemented on the .NET Framework 2.0 platform. The main

solution, called MaMAS (which stands for Manufacturing Monitoring and Analysis

System) consists of several projects:

* Service. A Windows Service which provides all the necessary servicing func-

tionality to edge clients. It handles requests from the clients, sends back

responses, performs database queries, reads tags from correct readers if neces-

sary and enhances business logic of the underlying manufacturing process. It

implements the server endpoint of the above-mentioned Client Server Interac-

tion Protocol.

* Client. A WinForms.NET client which acts as a frontend for the manufac-

turing shop floor. It takes user input when necessary and provides interaction

with the server. It implements the client endpoint of the above-mentioned

Client Server Interaction Protocol.

* CeClient. A Windows CE.NET client with the same functionality as the

above WinForms.NET client.

* Server. Server provides management of all related hardware and software as

well as serves as the point of communication with the RFPML Studio.

* Common. This projects contains common constants, enumerations, classes,

etc. which are shared between the Client/CeClient and Service.

March 10, 2008

Chapter 4

Factory Integration

The pilot implementation of the developed system was executed at some critical

workstations of the generator assembly process at Teksan Generator Company. Tek-

san is one of the leading and most advanced producers of diesel generating sets. They

offer more than 300 different models ranging from 0.5 kVA to 3500 kVA. In their

factory at Sarıgazi, Istanbul, they seek a higher degree of visibility and control over

certain stages throughout the assembly of the main components and sub-assemblies

of the generators. It is also worth noting that the production environment at Tek-

san is a very challenging one to model and deploy an RFID-based system since the

facility is dense with metallic materials.

The production of generator is a fairly complex process. The complexity is even

increased because of the customer-based model of production adopted at Teksan.

There are many customization points depending on customer’s choices. A simplified

diagram of a generator production flow is shown in Figure 4.1.

With the help of Teksan’s management we identified the stations (denoted by a

red square on the diagram) of particular interest since at those stations errors were

frequently encountered, like, for example, when parts from different job orders were

combined to form a new system.

Abbreviations of station names mean the following:

MA: a station where a coupling of an engine and an alternator occurs. It is

an Initial Tagging Station.

42

Chapter 4. Factory Integration 43

ChMA: a station where assembly of MA group on the chassis occurs.

ChMAP: a station where assembly of ChMA group and control panel occurs.

Test: a station where the assembled system passes through tests.

TP: a station where a transfer panel is assembled. In our model it is again an

Initial Tagging Station.

Gen: a station where a transfer panel is attached to the ChMAP group and a

generator assembly is finished.

The corresponding model (Figure 4.2) was constructed using our RFPML Studio.

We depicted only the stations which were of interest to the factory staff. All stations

are naturally of the Workstation type, except for the Test station, which is an

Inspection station.

We have only two sequences of stations to monitor, that is (MA, ChMA, ChMAP,

Test, Gen) and (TP, Gen). Initial tagging stations are MA and TP respectively. At

Gen the two sequences join and appropriate control is executed at runtime.

We decided, as it is also can be seen from Antennas with PC of the model, to

have 3 client software modules, since we had only three RFID readers available,

two Alien 8800 model fixed readers and one CAEN A528 integrated Psion Teklogix

Workabout Pro handheld device. Information from stations MA, ChMA, ChMAP

and Test was collected using the handheld reader, from other stations - using the

fixed readers. This choice was made because these 4 stations were physically located

relatively close to each other, while TP was even on the other floor.

We would also like to mention the time it took us to develop a whole system

with the help of our system. We had all the readers plugged and devices connected

to each other through a network. Construction of a diagram took approx. 10

minutes. Discovery of RFID readers through a MaMAS Configuration tool took

some 2 minutes more. Deploying configuration files to client and server machines

including a handheld RFID reader took another 5 minutes. Adding necessary job

sequence records to a database took 3 minutes. So the whole time we spent at

development and deployment of the system was not more than 25 minutes.

March 10, 2008

Chapter 4. Factory Integration 44

After three runs of generator assembly process the data shown in Figure 4.3 were

obtained.

March 10, 2008

Chapter 4. Factory Integration 45

Figure 4.1: Production flow for a generator. Courtesy of Teksan Generator Factory.

March 10, 2008

Chapter 4. Factory Integration 46

Figure 4.2: A Full View of the generator production process of the Teksan factory

Figure 4.3: Tag event data table obtained for 3 generator assembly process runs

March 10, 2008

Chapter 5

Conclusions and Future Work

In this thesis we present a generic manufacturing monitoring and analysis system al-

lowing a rapid development of real-time manufacturing automation solution through

the use of RFID technology. We have implemented the graphical modeling environ-

ment of the proposed system, which is used to generate the necessary software

components ready to be deployed on the computers at the shop floor and a central

server. It took approx. 25 minutes for us to develop and deploy a test system on a

shop floor in Teksan Generator factory.

As a future research on this topic we plan to add some analytic capabilities to

the system and develop a generic API to enable fuller integration with external

information systems such as ERP or MES.

One of the possible extensions for the RFPML Studio would be the ability to

include custom user-defined libraries of both Process and RFID Integration Descrip-

tion symbols. At present we have only a predefined set, which can not be changed.

Another improvement for the RFPML Studio would be development of a more solid

generic modeling framework such as, for example, the Generic Modeling Environ-

ment [40] or the Ptolemy Project [31].

47

Appendix A

Descriptions and XML Schemas of

some of the formats developed for

the system

A.1 RFPML Document Format

<rfpml>: the main element of an RFPML document. Used in order to conform to

the general format of an XML document. Contains exactly one <process>, exactly

one <rfid>, at most one (one or no such element at all) <connections> and at

most one <connectors> elements.

<process>: contains the production process elements corresponding to Pro-

cess Description Symbols of the graphical representation. Contains at least one

<workstation> element, and any number (zero or more) of <storage>, <inspection>,

<delay> and <transportation> elements.

<workstation>, <storage>, <inspection>, <delay>, and <transportation>:

elements corresponding to the Process Description Symbols of the graphical repre-

sentation. They all have the following set of attributes:

- id. The id of an element. Must be unique throughout the document.

- text. The name of an element. Optional.

- description. The description of an element. Optional.

48

A.1. RFPML Document Format 49

- locX. The X coordinate of an element on a document canvas.

- locY. The Y coordinate of an element on a document canvas.

The <inspection> element contains in addition at least 2 <outcome> elements,

which denote the possible outcomes for the Inspection type of stations.

<rfid>: contains the elements corresponding to RFID Integration Description

Symbols of the graphical representation. Contains at least 1 <antenna> and at least

1 <reader> elements, and any number of <switch> elements.

<antenna>, <reader>, and <switch>: elements corresponding to RFID Integra-

tion Description Symbols of the graphical representation. They all have the same

set of attributes as production process elements, i. e. id, text, description, locX,

and locY. <antenna> in addition has a <type> attribute, which is of enumeration

type having 2 values: normal and pc.

<connections>: an element denoting the connections - the objects connecting

various symbols, both Process Description and RFID Integration Description, with

each other. Contains at least 1 <connection> element.

<connection>: an element described in the previous paragraph. Has 4 at-

tributes:

- id. The id of an element. Must be unique throughout the document.

- from. The id of a <connector> element from which this <connection> is

exiting.

- to. The id of a <connector> element to which this <connection> is entering.

- type. The type of a connection. It is of enumeration type having 3 possible

values: process, denoting connections between Process Description Symbols,

rfid, denoting connections between RFID Integration Description Symbols,

and inter, denoting connections between symbols of different domains.

<connectors>: an element denoting the connectors - the objects used by con-

nections to connect to Process or RFID Integration symbols or to other connections.

Contains at least 1 <connector> element.

<connector>: an element described in the previous paragraph. Has 4 attributes:

March 10, 2008

A.1. RFPML Document Format 50

- id. The id of an element. Must be unique throughout the document.

- parent id. The id of a parent of the current <connector> element. If a

<connector> has a parent, it is not drawn on a canvas. These situations

happen, for example, when a connection line is broken, so it in reality consists

of two connections linked to each other.

- locX. The X coordinate of an element on a document canvas.

- locY. The Y coordinate of an element on a document canvas.

The corresponding XML Schema of the format:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema id="RFID"

targetNamespace="http://mamas.sabanciuniv.edu/RFPML.xsd"

elementFormDefault="qualified"

xmlns="http://mamas.sabanciuniv.edu/RFPML.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="rfpml">

<xs:complexType>

<xs:sequence>

<xs:element name="process">

<xs:complexType>

<xs:sequence>

<xs:element name="workstation" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

<xs:element name="storage" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>

<xs:sequence />

March 10, 2008

A.1. RFPML Document Format 51

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

<xs:element name="inspection" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="outcome" type="xs:string" minOccurs="2"

maxOccurs="unbounded" />

</xs:sequence>

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

<xs:element name="delay" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

<xs:element name="transportation" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rfid">

<xs:complexType>

March 10, 2008

A.1. RFPML Document Format 52

<xs:sequence>

<xs:element name="antenna" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

<xs:attribute name="type">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="normal" />

<xs:enumeration value="pc" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="switch" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

<xs:element name="reader" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence />

<xs:attributeGroup ref="item_attribs" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="connectors" minOccurs="0">

March 10, 2008

A.1. RFPML Document Format 53

<xs:complexType>

<xs:sequence>

<xs:element name="connector" maxOccurs="unbounded"

minOccurs="1">

<xs:complexType>

<xs:sequence>

</xs:sequence>

<xs:attribute name="id" type="xs:string" />

<xs:attribute name="parent_id" type="xs:string" />

<xs:attribute name="locX" type="xs:int">

</xs:attribute>

<xs:attribute name="locY" type="xs:int" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="connections" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="connection" maxOccurs="unbounded"

minOccurs="1">

<xs:complexType>

<xs:sequence>

</xs:sequence>

<xs:attribute name="id" type="xs:string" />

<xs:attribute name="from" type="xs:string" />

<xs:attribute name="to" type="xs:string" />

<xs:attribute name="type">

<xs:simpleType>

<xs:restriction base="xs:string">

March 10, 2008

A.2. Client Request Message Format for the Client-Server Interaction
Protocol 54

<xs:enumeration value="process" />

<xs:enumeration value="rfid" />

<xs:enumeration value="inter" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:attributeGroup name="item_attribs">

<xs:attribute name="id" type="xs:string" />

<xs:attribute name="text" type="xs:string" />

<xs:attribute name="description" type="xs:string" />

<xs:attribute name="locX" type="xs:int" />

<xs:attribute name="locY" type="xs:int" />

</xs:attributeGroup>

</xs:schema>

A.2 Client Request Message Format for the Client-

Server Interaction Protocol

<?xml version="1.0" encoding="utf-8"?>

<xs:schema id="Request"

targetNamespace="http://mamas.sabanciuniv.edu/Request.xsd"

elementFormDefault="qualified"

xmlns="http://mamas.sabanciuniv.edu/Request.xsd"

March 10, 2008

A.2. Client Request Message Format for the Client-Server Interaction
Protocol 55

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MamasMessage">

<xs:complexType>

<xs:sequence>

<xs:element name="MessageType" type="xs:string" />

<xs:element name="MessageData">

<xs:complexType>

<xs:sequence>

<xs:element name="OperationType" type="xs:string" />

<xs:element name="Workstation" type="xs:string" />

<xs:element name="Reader" type="xs:string" />

<xs:element name="Job" type="xs:string" minOccurs="0" />

<xs:element name="OutputResult" type="xs:string" minOccurs="0" />

<xs:element name="Tags" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="Tag" type="xs:string" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

March 10, 2008

Appendix B

Examples files for some of XML

formats developed for MaMAS

Runtime

B.1 Example of a Client Configuration File

<?xml version="1.0" encoding="utf-8"?>

<ClientInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://mamas.sabanciuniv.edu/MamasEdge.xsd">

<Server ip="192.168.0.1" port="19795" />

<Reader name="Reader1" />

<Workstations>

<Workstation name="MA" isInitTagging="true" hasStartEnd="false" />

<Workstation name="ChMA" isInitTagging="false" hasStartEnd="false" />

<Workstation name="ChMAP" isInitTagging="false" hasStartEnd="false" />

<Workstation name="Test" isInitTagging="false" hasStartEnd="false" />

</Workstations>

</ClientInfo>

56

B.2. Example of a Server Configuration File 57

B.2 Example of a Server Configuration File

<?xml version="1.0" encoding="utf-8"?>

<Readers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://mamas.sabanciuniv.edu/Readers.xsd">

<Reader name="Teksan Reader">

<IPAddress>192.168.0.101</IPAddress>

<Port>23</Port>

<Login>alien</Login>

<Password>password</Password>

</Reader>

</Readers>

March 10, 2008

Bibliography

[1] Michael McClellan, “Optimizing the Manufacturing Enterprise Using BPM,”

available online at https://www.bpminstitute.org/presentations/featured-

presentation/article/track-chair-keynote-optimizing-the-manufacturing-

enterprise-using-bpm.html (last accessed at January 2008).

[2] Lu, B.H., Bateman, R.J. and Cheng, K., “RFID enabled manufacturing: fun-

damentals, methodology and applications,” Int. J. Agile Systems and Manage-

ment 1(1), pp. 73–92, 2006.

[3] T. Sobezak, Glossary of Terms for Computer Integrated Manufacturing, Com-

puter and Automated Systems Association of; 1st ed edition, June 1984.

[4] James A. Rehg, Henry W. Kraebber, Computer-Integrated Manufacturing,

Prentice-Hall, 2001.

[5] Grier C. I. Lin, Sev V. Nagalingam, CIM Justification and Optimization, Taylor

& Francis, 2000.

[6] Wikipedia article, “Computer integrated manufacturing,” available online

at http://en.wikipedia.org/wiki/Computer Integrated Manufacturing (last ac-

cessed at January 2008).

[7] Russel Biekert, CIM Technology, The Goodheart-Willcox Company, Inc., 1998.

[8] RFID Journal, “The Basics of RFID Technology,” available online at

http://www.rfidjournal.com/article/articleview/1337/1/129/ (last accessed at

January 2008).

58

Bibliography 59

[9] “All Weather Asset Tracking Tag, 5-ETD00433,” available online at

http://www.visonictech.com/elpas tags.html (last accessed at January 2008).

[10] “SEAL ARFID Platform based sensors,” available online at http://www.x3-

c.com/?id=5f1520a4-273e-102a-a307-00e029508ef8&sid=171b3e44-2eb6-102a-

a307-00e029508ef8 (last accessed at January 2008).

[11] Wikipedia article, “Radio-frequency identification,” available online at

http://en.wikipedia.org/wiki/RFID (last accessed at January 2008).

[12] Johnson D., “RFID tags improve tracking, quality on Ford line in Mexico,”

Control Engineering 49(11), pp. 16–16, 2002.

[13] “IBM Fishkill semiconductor plant an example of

agile, realtime operation,” available online at

http://whitepapers.zdnet.co.uk/0,1000000651,260090942p,00.htm (last ac-

cessed at January 2008).

[14] Brewer, A. and Landers, T., “Radio Frequency Identification: A Survey and

Assessment of the Technology,” 1997. University of Arkansas Department of

Industrial Engineering Technical Report.

[15] Shouqin Zhou, Weiqing Ling and Zhongxiao Peng, “An RFID-based remote

monitoring system for enterprise internal production management,” The Inter-

national Journal of Advanced Manufacturing Technology 33(7-8), pp. 837–844,

July, 2007.

[16] Koumpis K., Hanna L., Andersson M., and Johansson M., “Wireless Industrial

Control and Monitoring beyond Cable Replacement,” in PROFIBUS Interna-

tional Conference, 2005.

[17] Brewer A., Sloan N., and Landers T. L., “Intelligent tracking in manufacturing,”

Journal of Intelligent Manufacturing 10(3-4), pp. 245–250, September 1999.

[18] Huang, G. Q., Zhang Y.F., Jiang P.Y., “RFID-based wireless manufacturing for

real-time management of job shop WIP inventories,” The International Journal

of Advanced Manufacturing Technology , 2005.

March 10, 2008

Bibliography 60

[19] Huang, G. Q., Zhang Y.F., Jiang P.Y., “RFID-based wireless manufacturing

for walking-worker assembly islands with fixed-position layouts,” Robotics and

Computer-Aided Manufacturing 23(4), pp. 469–477, August 2007.

[20] Qiu, R. G., “RFID-enabled automation in support of factory integration,”

Robotics and Computer-Aided Manufacturing 23(6), pp. 677–683, December

2007.

[21] Yagi J., Arai E., Arai T., “Parts and packets unification radio frequency iden-

tification application for construction,” Automation in Construction 14(4),

pp. 477–490, August 2005.

[22] Li Zhekun, Rajit Gadh, & B.S. Prabhu., “Applications of RFID technology

and smart parts in manufacturing,” in Proceedings of ASME 2004 Design Engi-

neering Technical Conferences and Computers and Information in Engineering

Conference (DETC2004), 2004.

[23] Baudin M., Rao A., “RFID applications in man-

ufacturing,” available online at http://www.mmt-

inst.com/RFID%20applications%20in%20manufacturing%20 Draft%207 .pdf

(last accessed at March 2007).

[24] Wikipedia article, “Software agent,” available online at

http://en.wikipedia.org/wiki/Software agent (last accessed at January

2008).

[25] Tnazefti-Kerkeni, I.; Arantes, L.; Paviot-Adet, E., “An agent-oriented frame-

work for controlling and monitoring manufacturing system,” in 2003 IEEE

International Symposium on Intelligent Control., pp. 383–388, 2003.

[26] Sauer, O.; Sutschet, G., “A step towards real time [production monitoring and

control system],” Manufacturing Engineer 85(3), pp. 32–37, June-July 2006.

[27] Paulo Leitao, Francisco Restivo, “Agent-Based Holonic Production Control,”

in 13th International Workshop on Database and Expert Systems Applications

(DEXA’02), p. p. 589, 2002.

March 10, 2008

Bibliography 61

[28] “Concepts for Holonic Manufacturing,” available online at

http://www.mech.kuleuven.be/goa/concepts.htm (last accessed at January

2008).

[29] Yurtsever T., Pierce N.G., “Computerized Manufacturing Monitoring and Dis-

patch System,” Computers and Industrial Engineering 35(1), pp. 137–140, Oc-

tober 1998.

[30] “RFID Integrated Solution Enablement,” available online at

http://www.alphaworks.ibm.com/tech/rise (last accessed at March 2007).

[31] J. Davis et al., “Overview of the Ptolemy Project,” available online at

http://ptolemy.eecs.berkeley.edu/publications/papers/01/overview/overview.pdf,

Mar. 2001 (last accessed at March 2007).

[32] Simsek, O., Caglar, R. C. and Erdem, M. A., “Implementing a Visual Editor

and a Monitoring Software,” 2007. Sabanci University ENS 491/492 Progress

Report.

[33] Mark Treat, “What is BPM Anyway?,” available online at

https://www.bpminstitute.org/articles/article/article/what-is-bpm-

anyway.html (last accessed at January 2008).

[34] “XPDL,” available online at http://www.wfmc.org/standards/xpdl.htm (last

accessed at January 2008).

[35] “Process Specification Language,” available online at

http://www.mel.nist.gov/psl/ (last accessed at March 2007).

[36] “SensorML,” available online at http://vast.uah.edu/SensorML/ (last accessed

at March 2007).

[37] Sule, D. R., Manufacturing facilities: location, planning and design, Boston:

PWS Pub. Co., 1994.

[38] Ben B. Graham, President, The Ben Graham Corpora-

tion, “Rediscover Work Simplification,” available online at

March 10, 2008

Bibliography 62

http://www.worksimp.com/articles/rediscover%20work%20simplification.htm

(last accessed at January 2008).

[39] “GD Library,” available online at http://www.libgd.org (last accessed at Jan-

uary 2008).

[40] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, Ch.

Thomason, G. Nordstrom, J. Sprinkle and P. Volgyesi, “The

Generic Modeling Environment. In Proceedings of Workshop on

Intelligent Signal Processing,” May 2001. available online at

http://www.isis.vanderbilt.edu/Projects/gme/GME2000Overview.pdf (last

accessed at March 2007).

March 10, 2008

